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PREFACE
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SECTION 1

INTRODUCTION

This report summarizes Task 3 accomplishments on the
ongoing Northrop/AFWAL program titled "Bolted Joints in Composite
Structures: Design, Analysis and Verification." This program
was initiated with the following objectives: (a) to develop
analytical methods for strength and life prediction of bolted
joints, accounting for stress concentration interactions, if any:
(b) to verify the developed analyses through a series of
experiments; and (c) to develop a comprehensive, design-oriented
guide for bolted joints in composite structures.

To achieve program objectives four tasks were
identified. Under Task 1, analytical techniques were developed
for the prediction of the strength of single fastener joints in

composite structures, accounting for finite 3joint geometry
effects and 1localized through-the-thickness strain wvariation
(Reference 1). The developed analyses were complemented and

validated by testing 450 single-fastener composite-to-metal joint
specimens of various configurations (Reference 2).

Under Task 2, analytical techniques were developed to
predict the strength of multiple fastener joints in composite
structures accounting for stress concentration interaction
effects, if any (Reference 3). The developed analyses were
validated by conducting 159 static tests on multifastener
specimens with different fastener arrangements, and in selected
cases, with circular cutouts adjacent to the fasteners (Reference
4).



Task 3 was defined to ensure that the methodology
developed under Tasks 1 and 2 can be used to design and analyze
full-scale bolted structural components. Task 3 tests were
conducted on elements representative of a typical bolted vertical
stabilizer root section. The test element was analyzed using the
methodology developed in Task 2, and theoretical predictions
correlated well with experimental results.

In Task 4, results from Tasks 1 to 3, and available
information from previous investigations, were compiled to
develop a guide for the design of bolted composite structures
(Reference 5). The guide includes general design guidelines,
easy-to-use design curves, and detailed instructions, with
examples, for the use of the developed computer programs in
designing bolted composite structures.

In the following sections, the design, fabrication,
testing and analysis of Task 3 bolted structural elements is
discussed.



SECTION 2

DESIGN AND FABRICATION OF TASK 3 ELEMENTS

2:1 Background

In Reference 6, a composite-to-metal bolted joint
design was assessed as an alternative to a high load transfer
composite-to-titanium, step lap, adhesively bonded joint. The
existing production tail structure of the F/A-18A was used as the
baseline for this assessment. In Reference 7, the conceptual
bolted joint selected in Reference 6 was evaluated further and
refined, based on test results that accounted for environmental
effects, production and service-induced flaws, etc. This effort
included tests on many coupons and nineteen larger elements.

The design of the elements tested in Reference 7 was
based on F/A-18A design conditions and their associated loads.
Swept torsion and swept moment at the root, caused by
differential pressure acting on the tail surface under various
design conditions, were used to compute chordwise and spanwise
loads (Reference 8). Based on these results, the 22-percent spar
was reaffirmed to be the location of maximum spanwise load
transfer. The spanwise thermal load reactions at br near the
root joint contributed between 1 and 1.5 kip/in of the total 7
kip/in peak reaction. The critical design condition induced
shear flows and chordwise loads that were much smaller than the
spanwise loads, except in one skin location just forward of the
62.5-percent spar. There, Nx (spansiwe) was 4115 lb/in, Ny
(chordwise) was 628 1lb/in, and Nxy or q (shear flow) was
approximately 1000 lb/in. The selected element design was
verified to be adequate under this biaxial loading condition, and
also accounted for the chordwise load due to the thermal mismatch
between the graphite/epoxy skin and the aluminum closeout rib.



The bolted joint element tested in Reference 7 was made
up of a forged 7075-T736 aluminum root rib (with a web, flanges
and tabs), and two AS4/3501-6 graphite/epoxy skins (See Figure
1) . The graphite/epoxy skins contained 41 plies in a 49/39/12
(percentages of 0 degrees, + or - 45-degrees and 90-degree plies,
respectively, with the zero-degree direction aligned with the
loading direction) layup. At the graphite/epoxy-to-root rib
joint, 5/16-inch-diameter high-strength steel fasteners were
used. An assembled element is shown in Figure 2.

Static tension tests on the element in Figure 2
resulted in a net section failure of the aluminum root rib,
across the first row of bolts (Figure 3). The same failure
resulted when the element was subjected to a residual static
tension test after completing two lifetimes of a tensin-dominated
spectrum fatigue 1loading. Under a static compression 1load,
however, the laterally constrained graphite/epoxy skin suffered a
pure compressive failure on the blind side, directly above the
second row of bolts. The same failure resulted when the element
was subjected to a residual static compression test after
completing two 1lifetimes of a compression-dominated spectrum
fatigue loading.

An element with a thinner tab segment was also tested
under static tension, after it was subjected to a tension-
dominated spectrum fatigue loading. 1In this case, a net section
failure occurred in the tab region of the root rib, across the
upper row of bolts that connect it to the fuselage stub frame
(see Figure 4). A fractographic analysis of the tab revealed
fatigue-induced cracks around the two hole boundaries. Also,
multiple fatigue crack initiation sites were identified in the
fillet region of the tab.

In summary, the element tests in Reference 7 indicated
that the aluminum root rib and the support fitting were more
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Figure 4.

Net Section Failure in the Aluminum Tab
Region, Observed in Reference 7, During
Residual Tension Strength Testing of the
Thin-Tab Element.



susceptible to static and fatigue failure under tension than the
graphite/epoxy skins. It was, therefore, realized than an
element design change was necessary before applying the results
from Reference 7 to the design of an efficient subcomponent.
This task was successfully accomplished in this Northrop/AFWAL
program and proved to be valuable in designing and fabricating
subcomponents in the Northrop/NADC program. The changes
incorporated in the Northrop/AFWAL element included a lightly
loaded root rib and the direct attachment of extended
graphite/epoxy skins to the fuselage fittings. The following
sub-sections describe the design and fabrication details of the
elements tested in this Northrop/AFWAL program.

2.2 Design of Task 3 Elements

The initial design of the Task 3 bolted element was
based on the approximate analysis used in Reference 7 and the
test results generated in References 6 and 7. The analysis
assumed that the load transferred by the two rows of bolts in the
graphite/epoxy tab bear a maximum ratio of 1.5 to 1. The
adequacy of the tab layup and the fasteners to transfer the
design ultimate load of 70.2 kips was verified using the analysis
developed in Reference 9. The design ultimate load was obtained
from the F/A-18A empennage stress analysis report (Reference 8).

The Task 3 element tested in this Northrop/AFWAL
program is an improvement over those tested in Reference 7. The
direct attachment of the graphite/epoxy skins to the fuselage
frame eliminates the need for an attaching root rib, saving
weight and reducing machining costs. This also precludes the
fatigue failure that occurred in the tab region of the aluminum
root rib in Reference 7. However, the direct attachment of the
skins to the stub frame introduces a higher running load in the
graphite/epoxy tab region. A preliminary analysis of this
element indicated that the 41-ply skin has to be increased to a



60-ply layup in the tab region. The graphite/epoxy tab could be
later machined to fit the attachment fittings used in Reference
7. The analysis also indicates that 3/8-inch-diameter, high-
strength (125 ksi in shear) steel bolts should be used at the
graphite skin-to-stub frame joint.

2.3 Fabrication of Task 3 Elements

Fabrication drawings for the spar, rib and the
graphite/ epoxy skins of the Task 3 element are presented in
Figures 5 to 7, respectively. Figure 8 presents an assembly
drawing for the bolted element. The spar was fabricated
using 7075-T7351 aluminum alloy, and the rib was fabricated
using 7050-T73651 (or 7050-T7451) aluminum. Graphite/epoxy skins
were fabricated using AS4/3501-6 prepreg in accordance with
established process procedures (NAI-1460). Inspection tests on
the prepreg yielded a resin content of 33.8% by weight, a fiber
areal weight of 148 gm/m , and 0.6 ¥ of volatiles. Process
control tests on the fabricated skins yielded a resin content of
23.9% by weight, a fiber volume of 69%, a laminate specific
gravity of 1.62, a void content of less than 0.1% by volume, and
a cured ply thickness of 0.0049 inch.

Two elements were fabricated and assembled in
accordance with Figures 5 to 8. Photomicrographs of cross-
sections of 59-ply and 41-ply locations in the graphite/epoxy
are presented in Figure 9. These records verify the presence of
the design layup at these skin locations. Figure 10 presents a
photograph of an assembled Task 3 element.

Figures 11 and 12 present the tab thickness
measurements at various locations in the two skins of each
element. Figure 11 indicates that one tab in element 1 was
machined to be approximately 5 plies thinner than the other tab.
Figure 12 indicates that the two skins in element 2 were
machined to be the same thicknesses.

10



08 ¥ 001

[ i v S [ 9 7] T 8 s | ol
LST) MOLLYON v 338 VAVO J0VSN WO4 - L£02¢€00S
T imUedD ON MEWO NIAS NROMS ON MEVO 000
T :S31ON
W34 104 30WV LIV DN v2i-YW 03dS d3d 3INIHOVW I
e Ve e Ly s e ¥3A0 17V £3 HSINIA 2
(TSR il 08-d4$82-dd 03dS Y3d HSINI3 € T e
o T €2-WI 03dS ¥3d AJIUIN3AIY
— ‘1edg JueWBTY 943l I10J SurmeIg UOTIEBITIqEI °C 2In
. i e | | = s P
I N u_\on:.ocrm%.‘«‘w&ku*wmms,\%mmﬁ ~Yvds I- ; lwl -
IS S . Je 4 - f—\f¢ NOILO3S
SL:TIT /! | —— # o= el l _ el ~— G001 VLT — / /
(9]
o 1d ¢ (43Y) n
2 S00: ¥8l —=i=—— (9068 ———= ; dAL $30Vd 2
° 1d2 G0036.2 —= l—— 338 @QILE)—] 1 2 —={ 9l f=— dAl oo_u_ ¥ 06! (]
% | —yeie =
- 12 SYXGET YIINVHO — _\| LT il
qm ||||||| JE | g =] B o —={f=—S30V1d 2 00!
—— ! | |
_ 062 " | -
| |
; goz| | 1
: | oce ,
14 2 : “ ﬁ _
¥y GI— MH — = |
] N [ I [
> 1 2 _ , _ ” =
¥oie—— e L ! e W
. f | | 08 |
S005 2.8~ _ 5007 24¢ _
= . Ao | u
7, | i W
| | ﬁ
|
| | |
| I
a . | | a
\ “ . A Il ~4006
A | i 0
|
_ | |
Ly /! ,_ | le—
| _, f A
| [ j [
; I
[ | ,_ |
| I ” se1R
3 | ! | i m .
| ' |
ﬁ | : H
I I K ,
[ | | ﬂ
— : ; | |
1 |
_ }
l
, |
| I
‘ [ ﬁ 4
I _
I [
, 1 | ”
ﬁ : _ -
- | | _
_ | |
I |
* , I
ﬁ t |
b) I | H 2]
_ I I
1 b Il 4
| |
| | , L
_ﬁi —— o1 T
|
|
i |
” , r
I H | H
| i ﬂ |
I IS |
Q3OMasv | u¥O | NOLMWISIQ JEDETT
_ SNOISIAIY 8 — 6 _ oL
B : T z v s 9 ’ |

. VIEV JVTEAOC WIHOIIIW

2C023S02)



| v b | 8 s | ol
IUMS0WO ON MEVO NIAT NIOMS ON MEVO 000 ARy | WS On Dea)
Wid MBI
== T S3ILON
ININI T3 LNIOP FErtome] = s o ;
v 031708-818 L00Y oo = e v $EI-AW,_DadF Nad INiHauw
e . ey 2o Y3IN0 11V Ay, HSINIA 2 €T
2T Tl T e 08-d4 #82-d4 )3dS HId HSINI4 £
" ——— o) £T-WI J23dS H3d A4ILN3QI ¥
1SN S1¥Ve @i 0911 93dS Y34 LI3dSNI'§ . .
ET T wimcmow | miow | owomiaiea *qTyY 300y WREWRTH 34yl I10J JurmBig UOTIBOTIqE] 9 2an31g
T B v TONImON — - — ¥0 Luvd _ _
0504 SWv | sudiste| v isesciosed] ©¥ 100d ] - w M )
— ].i\wr| — S ‘l\r M \% -
L | L I L]
O
=
N
O
<
(2]
-
o
6003660 = ~—— G003 010% IJ
- |
|
_ |
o - W !
» V' agz
f oor— wose
W |
m— o8z ,
- § , ——=—71d2 ozl
e ﬁ.mll,l_
—— G003 012V
3
—
4
_
)
|
-
|
ki %
—r
, e 39NV14 dIAOWIH Y[E3
[oinonary | “3iva [ woumvama vl
SNOISIAIW
8 6 ol

l

. VIUY dVIEHAC WIHOIIW

2C02503e

E 110 13018 80



voar ey, POV WHIVesm @

I

-

1 1

v €l 1 vl T sl

9l

AST1 NOLLYINédY 338 VAVO JOVEN WO+
L1040 ON HEVO NIAT NMOHS ‘O HEVO 000

08 W11 01 Y o

= mnomﬂoo n«

€ 0 ¥ D14 IVAIW L3IMS La3IX3 0L ¥V INONY

9-I0SE/¥SY d3/¥ Z_Xw

i _u><m§ 4] mw< 19,

2C0350%8

8£02£00S,

']

A

[

I

:S3LON

0241 Sd J3dS H3id ER-TeoN|
‘ST3INYd ufEtv«SﬁMtQ&um 28/5585 1430 04 5040)73¥

Nv2SD Liw8ns v SS¥72° 68 -LI 23dS d3d ST3INVd LI3dSNI 2
EIl-¥W J3dS J04d d3d 3INIHIYW €

[y
[

M

<+

© o

o::zu_% [ON A4
39N3INOIS ININIVL L

6
[o[L] §%02¢005

‘v‘—

T 020507 —

142 ¥eg — |

R

—

1427 ¥001 —

(ONINIHOYW 3d80438)

\f 11v130

d3Y HEE - |h

- 1d 2 SLI I

S —

S50S52

434 ¥5¢

(543LS ON) /

3ov4d 7001

1474

L
434 wﬁ.iL _‘1

0#'85 LE'ET'TT 0T SISI E1'TL Y

3NON :37V¥2S
WYY9YIQ 4404040 ATd CT

*SUPYS JUSWOTY 3yl 103 Burmelq uorIeOTIqRi °/ 21n8TJ

(OS2 b5 8v 'Lt Sv'iy

‘ON §317d 440 dO¥Q) d4S O3 8l
434 897

T
0
[} 5
N 7
|
— - - 06
e N
0 JS¥= | oSkt
d 40 39Q3| — /
0
|
T\I. 010’305 L _—
ol L - 6 |
VIV VW | o whice: W .

2C025028

RO £10°113 (8°90)



eE0sE0d0e

IAO WHHORIW .

00 C1L O g ey
v p 3 Z T s 6 i ol [ 1" I u €l I i [ s [ 91
3T WOVLYoUaaY 338 Vi¥O 30VAN W04 _ 2 _ _ 6¢£0¢¢00S _
LIS0IO 'ON MEVO NIAS NMOWS 'ON HEVO 000 ?
Whd HBIN 4
¥4 01 LT 00 :SILON LT
0701 Tvitm LI L1 304 UVIIONY /2-H4 23dS ¥3d SYINILSY: QIQVIYHL TTVISNI |
v
1¥vd 303 ¢
40 30Is HIVI NO AT1vnd3 SWIHS 1334 % A1quassy jusweTg sYy3l 103 Burmeiq uoriedTagey °g 2an8714g
/-4207£02S wo¥4 A3771¥a 38 0L S3IToH &
NOLLY N 10348
L RIAST-V-00 |5/ w001  wnv L3aws, YIIVdS £ I.\|~_
m [ | , 814 100 1-9£02£09S | | —
b 4vds I-Z£07£098| |
al—
° _ NINS 1-9502£00S | 2
m | WIHS 05L-0+2000450% 7 | 0107 NIHLIM 7 0L WAS
el | WIHS 05 -097000y50%| 2 | I/ 9
— ! WIS 22-05L000¥50%| 2 ; \
o $L65 1430 A8 0377140 38 0L SITOH 1207 3T0H diL
HW Q9-psbwess L10 j3wp (305 #Lod wEky: 2 )
F w IYNLX/4 LSIL HILYW, 0L 1-9£07£095 —
14 8 S3ITOH VI $ie — N
— - 1708 L- +££815|02] ||
1708 or-secqis| » | FERREE N
| 2-979siN| 9 | ‘A
| | £1-929SVYN| 2| £l I
5 ! | #1-979SYN| oI T2
51-929SYN| 7 ‘Iﬁr S B AV G o
— v A A v . -
91-979ISYN| 72 o .
T T og 56 xwll
1708 L1-929SYN| ¥+ |M
— b TLHOIZSW <F] b3y z 05L-082900%. 0 —
{ | A +h1TH0IT SW 1q7 ———— Qo3 owﬁi;uoxf 1
! f - Qo3Y & 4 T9IRI0IENY ~— 99 L-hERIS <A ] ab3dz  0SL -0b7 AOOHSOt - v
. [ d3IHSYM 1915-096NV | 8 Sty el . - SL-0b 0 m
| | ¥3HSYM 1915 -Q96 NV $7 1-98025005~ .
I 1 g ds 03¢ r
_ YIHSYM 7919-096NY 95 yI€ = ~ _ :
a ; e | == ~. 1-L£02£03S - —_ - e
{ | 10N | 97Z401ZSWI9S ~ $ILH0ITSW / | i a
! 1 — —— - — 1 —— Qb3YT{  1914-096NY aoawz g£- — M I
_ 10N YIZ901ESW 8, i 01-V#- 494 815 It 1
S Lerpdied] _— 5o 57 5
M T aan T Tsvusoresw vz T X oeaU z 2ur-osa00v50r — Wy [l
_ L1708 0UE-59IF81S T | mm._.@ S i o
> i i 1708 91494 915 9 G35 51 <998V I S o N — w_uwwm.\‘ww‘« _ _ | "
I 9VF- 494815 i 1
H - i 7 / [ i
; B P : Qo3y 9 U-9TISIN - **
n I i — ! I |
g : 4 ! a0 ¥ 91-979SYN——|— —~— | / ny. - __ .
? t I h I I | f 2
<Eder i S N apm U £-9295WN i1 ALy
" 45039 /[aeuz 7 51-9295¥N " ) I
{ - _ N Q04 9 +1-9TISYN O |
_ | | A" ) e
, 1
| . -
_ ) |E||| ) /// -4 * r.*ll
N i TEJId 2 11— ////// \ |
, % [ : ~ N\ ——ab3y 71 51-929 SWN oy \
i _ | . T~ Q3N 7 LI-979 YN |
, .
CE]7d 7 dAL S6 , qQoIY9S 9TZHOIZSW
4 I 1 ¢ : ; Qa0 IS T919-096 NY 4
_ % / o3y 9 91-97I SYN
| e aowz L-9zo s
—of b L
i s &1 B e .
—= Tq % C
2
] i
m g 9
1-$202£09S 1-$202£02s
) F b
\J
— —
GTZHOIZSW UM Swro_wmzxo a
1915096 SYM 191HD096NYJ| ™~ | 44
£L-GEERIG SUM L-hEEQISY for-a :
OI-GECQIG Svm OI-heeaIg)] ©|e-a
3L WY3HS AIAow |V[33
‘NO! L4t 830
RO AIY
N [ z T v 1 S L 3 | ol | u | zl €l | vl | st 1 9

2C0235029

007113 W0



i

Figure 9. Photomicrographs of Cross-Sections of the 59-Ply
and 41-).‘1y’mnions in the Graphite/Epoxy Skin.




Figure 10. Photograph of an Assembled Task 3
Element.
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Figure 11. Tab Thickness Measurements on Element 1.
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ELEMENT 2
TAB 1

ELEMENT 2
TAB 2

Figure 12.
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Tab Thickness Measurements on Element 2.
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SECTION 3

TASK 3 ELEMENT TEST RESULTS

Task 3 elements were initially subjected to two
lifetimes of a tension-dominated spectrum fatigue 1loading, and
subsequently tested under static tension to obtain their residual
tensile strengths. The following sub-sections describe the
employed test procedure and test results.

3.1 Task 3 Element Test Procedure

Prior to testing, axial strain gages were bonded to the
graphite/epoxy tabs at the locations shown in Figures 13 and 14.
Figure 15 shows a close-up of tab 1 of element 1, indicating the
strain gage arrangement on this surface. A photograph of an
assembled element in the test machine, prior to load
introduction, is shown in Figure 16.

The two elements were initially subjected to two
lifetimes of a representative tension-dominated F/A-18A vertical
tail spectrum loading, under ambient environmental conditions.
Figure 17 presents the spectral density functions associated with
the imposed loading. The exceedance counts on the peaks, valleys
and amplitudes in the spectrum are plotted in Figure 18. The
maximum spectrum load was the design limit load (46.8 kips) for
the first lifetime, and the design ultimate load (70.2 kips) for
the second lifetime. The imposed spectrum load was significantly
more severe than the actual F/A-18 vertical tail design spectrum
load. Elements 1 and 2 survived the imposed spectrum loading
with no indication of local or total fatigue failure.
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Figure 13. Strain Gage Locations in Element 1 Tabs.
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ELEMENT 2
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Figure 14. Strain Gage Locations in Element 2 Tabs.
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Figure 16. Photograph of an Assembled Element in
the Test Machine, Prior to Loading.
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Subsequently, the elements were statically tested to
measure their residual tensile strengths. Strain gage readings
were recorded during these tests (see Figures 13 and 14).
Failure was indicated by an unloading phenomenon, accompanied by
audible cracking or delaminating noise. Failed elements were
photographed and examined to record failure modes. The residual
static tension tests were also conducted under room temperature,
dry (ambient) conditions.

3i6.2 Task 3 Element Test Results

Element 1 survived two 1lifetimes of the imposed
tension-dominated spectrum load without any indication of 1local

or gross failure. Figure 19 presents hysteresis curves obtained
on the element prior to load introduction, after completing the
first 1lifetime, and after completing the second 1lifetime.

Hysteresis curves were obtained using data generated by the clip
gage that measured the displacement between the two rows of
fasteners in the graphite/epoxy tabs and the steel attachment
fixture (See Figure 15). Figure 19 indicates no change in the
hysteresis curves after two lifetimes of spectrum 1loading. The
imposed spectrum load, therefore, had no deleterious effect on
the element.

The element was subsequently tested to failure under
static tension. The element failed at the graphite/epoxy tab
location in a combined failure mode. This included severe
delaminations around the fastener holes, partial shear-out, and
local bearing. At 89.9 kips, a major drop in the 1load was
recorded, indicating element failure. The load was released and
the failed element was examined. Considerable tilting and
"digging in" of the countersunk fasteners were noticed at every
fastener location, but delaminations and other failures were not
visible (See Figure 20). The element was reloaded to record the
progression of failures. Many delaminations accompanied

30



-8urpeo] wniidadg Jo sSAWTILITT
Z Pue T ‘0 I193JV T IUSWATH I0J SaAIn) STSa191sAH 6T 21nd14

31

) T—

<4

5} e (Ewe— oS-SS .

. SED| Sf P |-
U,T<n..dj>o __
CIrtv Lu-054-82 /& w33




FAILURE AT P = 89.9 KIPS

Figure 20. TFailed Tab 2 in Element 1.
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Figure 21. Failed Tab 1 in Element 1 After Reloading.
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considerable digging in of the countersunk fasteners into the
graphite/epoxy tabs (See Figures 20 and 21). This occurred
slightly below the failure load value. The failure load (89.9
kips) for element 1 was 28% larger than the design ultimate load
(70.2 kips).

Strain gage and clip gage readings obtained from
element 1 during the residual tension strength test are presented
in Figure 22. The tab locations these readings correspond to are
presented in Figure 13. Plots of these readings as functions of
the imposed load are presented in Figure 23. A summary of the
readings at failure (89.9 kips) is presented in Figure 24.

Element 2 also survived two lifetimes of the imposed
tension-dominated spectrum load without any indication of
failure. The hysteresis curves in Figure 25 indicate that no
significant damage was precipitated in the element during
fatigue.

The residual static tension test on element 2 yielded a
failure load of 91.8 kips. This is 31% larger than the design
ultimate load of 70.2 kips. Failure occurred in the
graphite/epoxy tab region of the element, in a combined mode.
Photographs of the failed element tabs are presented in Figures
26 and 27. The observed failure modes are identical to those
observed in element 1.

Strain gage and clip gage readings obtained from
element 2 during the residual tension strength test are presented
in Figure 28. The gage locations on element 2 are presented in
Figure 14. Plots of readings as functions of the imposed load
are presented in Figure 29. A summary of the readings at failure
(91.8 kips) is presented in Figure 30.
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In summary, both the elements failed above the design
ultimate load (70.2 kips), with a 28 to 31% margin of safety.
The analytical procedure used in the preliminary design of these
elements is, therefore, adequate to establish the applicability
of this design at the subcomponent level.
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COMPOSITE TENSILE TEST OF SPEC. #ELEM #1
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Figure 23. Strain Variations with Imposed Load

for Element 1.
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Figure 23. Strain Variations with Imposed Load
for Element 1 (Continued).
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Figure 23. Strain Variations with Imposed Load
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Figure 26. Failed Element 2 Tabs.
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Figure 27. Progression of Element 2 Failure
During Reloading.
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Figure 27. Progression of Element 2 Failure
During Reloading (Concluded).
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SECTION 4

ANALYSIS OF TA3K 3 ELEMENT

Reference 3 presents a description of the strength
analysis (SAMCJ computer code) developed in this program for
multifastener joints in composite structures. The Task 3 test
element is analyzed below, using the SAMCJ code, to predict its
tensile strength, the failure location and the failure mode.
Analytical predictions are compared with the test results in
Section 3. Though the analysis was performed retrospectively,
the assumed material and failure parameters are identical to
those used in Reference 4.

Refer to Figures 5 to 8 for details of the test
element. The element, when loaded in tension (see Figure 16),
failed in the skin tab region (see Figures 26 and 27). Of the
two test elements, the skins of only the second element were
machined uniformly to yield a symmetric loading situation (see
Figures 11 and 12). The critical skin-to-fuselage joint in
element 2 is, therefore, analyzed using the SAMCJ code.

Figure 31 presents the dimensions of the skin tabs in
element 2 and the fuselage attachment frame. The skin has
a [0 /+-45 /90 ] 1layup at the top of the tab region. Across
the top row of fasteners, it has an average of 58 plies, and
across the bottom row of fasteners, it has an average of 52
plies. Figure 7 includes the stacking sequence for the
unmachined skin layup. For analytical purposes, the tapered tabs
region is modeled as two uniform regions of different
thicknesses. The top region is modeled to contain a [0 /+-45
/90 ] layup, and the bottom region is assumed to be a [0 /+-45
/90 ] laminate. The average thickness of a ply in the skin was
measured to be 0.0049 inch. The fuselage attachment frame is,
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likewice, divided into a 0.4l1-inch-thick region and a 0.46-inch-
thick region (see Figure 31).

The modeled joint segment is half of the symmetric skin
tab-to-fuselage attachment. The total joint failure load is,
therefore, twice the predicted load. A single shear load
transfer between the AS4/3501-6 graphite/epoxy skin tab and the
steel attachment frame is analyzed. The graphite/epoxy tab and
the steel plate are divided into four elements each. The average
width of the slightly tapered tab is used in the analytical model
(3.57 in.). The fiber-directional tensile and compressive
failure strains for AS4/3501-6 graphite/epoxy are assumed to be
0.012 and 0.0175, respectively (References 4, 9). The
characteristic distances for net section, bearing and shear-out
failure modes are assumed to be 0.10, 0.25 and 0.25 inch,
respectively (Reference 4). The basic AS4/3501-6 lamina
properties are assumed to be 18.5 Msi, 1.9 Msi and 0.85 Msi for
E , E and G , respectively, and 0.3 for the major Poisson
ratio.

The skins are attached to the fuselage frame by 3/8-
inch-diameter, countersunk fasteners (100 degree tension
head). The effect of countersunk fasteners is accounted for by
assuming free rotation at the fastener head location, and by
using an average fastener diameter of 0.458 inch to account for
the countersunk depth in the tabs.

Analytically predicted load distribution among the
fasteners in each tab is presented in Figure 32. The symmetry in
the fastener arrangement results in low values for the transverse
components of fastener loads (perpendicular to the load
direction). Also, the loads in the top row of fasteners are
approximately 14% larger than those in the botton row of
fasteners. This leads to a prediction of failure initiation from
the top row of fasteners (see Figure 32). The predicted load
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and Failure Mode in the Graphite/Epoxy Tabs.
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distribution between the top and second rows of fasteners (53.1%
and 46.8%, respectively) was somewhat greater than the mearured
values (50.7% and 49.3%) determined by the strain gage data. The
predicted failure site (critical location) is in agreement with
experimental observation (Reference 2).

Figure 33 presents the analytically predicted element
load levels to precipitate net section, bearing and shear-out
modes of failure at the various fastener locations. From the
test results in Reference 2, the bearing strength for the
laminate layup (60/26/14 percent of 0 /+-45 /90 plies) at the
failure site may be assumed to be approximately 140 ksi, for
protruding head fasteners, under room temperature dry conditions.
Using this bearing strength and the load distribution in Figure
33, the element load corresponding to bearing failure in the top
row of fasteners (preliminary design assumption) may be computed
to be 123 kips. This agrees well with the predicted value of 127
kips (see Figure 33). However, this load level is higher than
the element failure load corresponding to other failure modes
originating from the top row of fasteners (see Figure 33).

Based on SAMCJ computations (Figure 33), element
failure is predicted to occur at 98.0 kips, at the top left
fastener location, in a shear-out mode. This corresponds to the
lowest among the element load levels in Figure 33, corresponding
to three assumed failure modes at every fastener location.

SAMCJ predictions also indicate that a net section
failure across the top row of fasteners will occur at only a
slightly higher load level. The observed failure mode, however,
was severe damage around the fastener hole, introduced by the
tilting of the countersunk fasteners (see Figures 26 and 27).
This includes some amount of shear-out and local bearing, and
severe delaminations around the fastener hole boundaries (see
Figures 26 and 27). Since SAMCJ cannot account for the severe
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local three-dimensional stress state introduced by the
countersunk fastener, the predicted failure mode (shear-out) does
not correlate well with the observed combined failure mode
(partial shear-out, local bearing, and severe delaminations). An
improvement of the fastener analysis segment of the SAMCJ code,
to account for countersunk fastener geometry, must be
complemented by the addition of a delamination predictive
capability, to accurately predict the observed (complex) combined
failure mode in the test element.

The analytically predicted element failure load of 98.0
kips is 7% larger than the measured value of 91.8 kips. Two
factors contribute to this non-conservative prediction: (1) SAMCJ
cannot accurately account for countersunk fastener effects; and
(2) the failure criteria in SAMCJ do not account for
delaminations that are introduced by the "digging in" of the
countersunk fastener head (see Figures 26 and 27). Nevertheless,
SAMCJ predicts the element tensile strength within 7% of the
measured value, using the same material properties and failure
parameters that were used in Reference 4.
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SECTION 5

CONCLUSIONS

Two elements were designed, fabricated and tested, to
evaluate a direct bolting concept as an alternative to the
existing F/A-18A vertical tail-to-fuselage attachment concept.
The design of the element was based on an approximate analysis
and a design ultimate load of 70.2 kips obtained from the F/A-18A
empennage stress analysis report. Details of two elements were
fabricated and assembled in accordance with design-generated
drawings. The graphite/epoxy skins of the elements extended to
the tab region that was directly bolted to the representative
fuselage attachment fixture.

The two elements were initially subjected to two
lifetimes of a representative tension-dominated F/A-18A vertical
tail spectrum loading. The maximum spectrum load was the design
limit load (46.8 kips) for the first lifetime, and the design
ultimate load (70.2 kips) for the second lifetime. The imposed
spectrum was significantly more severe than the actual F/A-18A
vertical tail design spectrum load. The elements survived these
fatigue loads without any indication of failure. Subsequently,
they were subjected to static tensile loading to measure their
residual strengths (89.9 and 91.8 kips for the two elements).
Both the elements exhibited residual strengths that exceeded the
design ultimate values by 28 to 31%.

The elements were analyzed using the SAMCJ computer
code developed in this Northrop/AFWAL program. Since SAMCJ
cannot accurately account for countersunk fastener effects, an
equivalent (average diameter) protruding head fastener was
assumed in the analysis. SAMCJ assumes three major laminate
level failure modes at every fastener location (net section,
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shear-out and bearing), and is incapable of predicting
delaminations. The analytically predicted shear-out mode of
failure was part of the observed combined failure mode (severe
delaminations, local bearing and partial shear-out). Despite the
mentioned limitations, SAMCJ predicted the element strength
within 7% of the measured value, and accurately established the
margin of safety in the preliminary element design.

The success of this Northrop/AFWAL program task added
comfort to the design of an identical bolted joint concept at the
subcomponent level in an ongoing Northrop/NADC program (Reference
7). It also established the adequacy of the SAMCJ computer code
for predicting the strength of bolted joints in composite
structures.

62



REFERENCES
Ramkumar, R. L., et al., "Strength Analysis of Composite
and Metallic Plates Bolted Together By A Single Fastener,"
AFWAL-TR-85-3064, August 1985.

Ramkumar, R. L. and Tossavainen, E., "Bolted Joints in
Composite Structures: Design, Analysis and Verification;
Task I Test Results," AFWAL-TR-84-3047, August 1984.

Ramkumar, R. L., Saether, E. S. and Appa, K., "Strength
Analysis of Laminated and Metallic Plates Bolted Together
by Many Fasteners," AFWAL-TR-86-3034, July 1986.

Ramkumar, R. L. and Tossavainen, E., "Bolted Joints in
Composite Structures: Design, Analysis and Verification;
Task II Test Results," AFWAL-TR-85-3065, August 1985.

Ramkumar, R. L., et al., "Design Guide for Bolted Joints in
Composite Structures," AFWAL-TR-86-3035, July 1986.

Kong, S. J., "Conceptual Design of a High Load Transfer
Mechanical Attachment for Tail Structures," NADC-81216-60,
August 1981.

Averill, S. W. and Zamani, H. R., "Development of High Load
Joints and Attachments for Composite Structure," NADC-
81220-60, August 1983.

Hilker, W. R., "F-18 Empennage Stress Analysis; Volume II

(Vertical Tail and Rudder), "McDonnell Douglas Report MDC
A5164, July 1978.

63



REFERENCES (CONTINUED)

Garbo, S. P. and Ogonowski, J. M., "Effect of Variances and
Manufacturing Tolerances on the Design Strength and Life of
Mechanically Fastened Composite Joints," Volume 1, AFWAL-
TR-81-3041, April 1981.

* U.S. GOVERNMENT PRINTING OFFICE: 1986 — 748-061/60563

64



