UNCLASSIFIED

AD NUMBER

ADB102655

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Di stribution authorized to DoD and DoD
contractors only; Adm nistrative/ Qperati onal
Use; MAY 1986. Ot her requests shall be referred
to Alr Force Armanent Lab., Eglin AFB, FL
32542.

AUTHORITY

AFSC/MNCOL Itr dtd 13 Feb 1992

THISPAGE ISUNCLASSIFIED

A

AD-B102 655 -

AFATL-TR—-85-93

Common Ada® Missile Packages (CAMP)

Volume II: Software Parts Composition Study Results

Daniel G. McNicholl
Constance Palmer, et al.

DTIC
ELECTE
JUN 1 81988

McDONNELL DOUGLAS ASTRONAUTICS COMPANY
POST OFFICE BOX 516
ST.L.C.. ., MISSOURI 63166

D
MAY 1986

FINAL REPORT FOR PERIOD SEPTEMBER 1984 - SEPTEMBER 1385

-

/7

OISTRIBUTION LIMITED TO DO0 ANO DOO CONTRACTORS ONLY; THIS REPORT
OOCUMENTS SEO%=AdiS=RUALUALLAN; OISTRIBUTION LIMITATION APPLIEO
SEPTEMBER 1985. OTHER REQUESTS FOR THIS OOCUMENT MUST BE REFERREO
TO THE AIR FORCE ARMAMENT LABORATORY (FXG), EGLIN AIR FORCE BASE,
FLORIOA 32342-3000.

DESTRUCTION NOTICE: DESTROY BY ANY METHOD THAT WILL PREVENT
DISCLOSURE OF CONTENTS OR RECONSTRUCTION OF THE DOCUMENT.

WARBNING: This document contains technical data whose export is restricted by

the Arms Export Control Act (Title 22, U.S.C. 2751 et seq) or Executive Order
12470. Violation of these export — control laws is subject to severe criminal penalties.
Dissemination of this document is controlled under DOD Directive 5230.25

® Ada is a registered trademark of the U.S. Government,
Ada Joint Program Office

AIR FORCE ARMAMENT LABORATORY

Air Force Systems Command* United States Air Force*Eglin Air Force Base, Florida

BTiC FILE COEY

..'.
*m
T a

fs' ¥
X

»
&

#

-.

L) .-‘
{

-

-~

o B 2%t U e g B NN e
e '- [el Nl WA e P

o e e

kb

NOTICE

-y
)

[5

¥

I’

-

[}
14
1
k)
ARRARSY [k

F =

-
l

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government
procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the

v

Government may have formulated, furnished, or in any way supplied the said
drawings, specifications, or other data, is not to be regarded by implication

LA

l'lH

or otherwise as in any manner licensing the holder or any other person or

o
il‘

corporation, or conveying any rights or permission to manufacture, use, or .
sell any potential invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

= AP AR

FOR THE COMMANDER

%Cw

’
DONALD C. DANIEL
* Chief, Aeromechanics Division

Even though this report may contain special release rights held by the
controlling office, please do not request copies from the Air Force Armament
Laboratory. If you qualify as a recipient, release approval will be obtained
from the originating activity by DTIC. Address your request for additional

&
copies to:
Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314
If your address has changed, if you wish to be removed from our mailing
Tist, or if the addressee is no longer employed by your organization, please
notify AFATL/FXG, Eglin AFB, FL 32542
Copies of this report should not be returned unless return is required
by security considerations, contractual obligations, or notice on a specific
document.
................................... A, | ‘.-"\: .

RN ST W L SWON 10s sl L L L

Ty FLaCH Gl e B R G A L ;.".,-\‘\ B UTORREN SR & 5 AL Nl -"-\.}" ENE, G ® BT SR e ie s ik et e Lt FRES
W -v,;\‘rs_'_\' AL R CH T LS AL S AR RL S ERE S UL TR UL AT CLE TRV WAVE V. FLYRr Ly E SR L L PL IS PP LV SRELVE P PR VPR PR TR ZE LR

R e, J Fe W " -’_‘-l. - "" .‘- *:'- -‘ 'H' " s . . !
::" :" -‘ ‘-\\) .'. 'A‘{n." :‘\ a8 '-:-.::- \° H”h "j-‘ p.\':: ‘: u‘ \'. ‘."- M:-) "'-.")‘ ‘-’ A“_\
by
L
X
%4 URCLASSITILD
: BECUATY C L aSS $1CATION Of Tmig PAGHE
. —
2 REPORT DOCUMENTATION PAGE
a 'te MEPORT SBECUMTY CLASS/IN«CATION 1o ALSTRICTIVE MARR INGS
Unclassified
2 20 SECUMITY CLABSIFICATION AUTHONITY 3 O'STRIBUTION/AVAILADILITY OF AL POAY
| Distribution limited to 00D and 00D ContnACtors
: o DU CLASSI# ICATION /OOWNGRADING SCHEOULE Enw. this report documents
1 istribution limitation applied September 1985,
s PERIDAMING ORGANIZATION REPOARY NUMBERIS) 5 MONITORING ORGANIZATION AEPOAT nuUMBER(S)
‘ AFATL-TR- 85-93 I
. Ss NAME OF PERFORMING ORGANIZATION o OFFICE SYMBOL [Js NAME QF upm'ro[ﬂm%) GANIZATION
McDonnell Douglas (1 appiucotie) rAeromec anics Div
Astronautics Company Air Force Armament Ldboratory
&« AQDAESS (Cit) Siaie and ZIP Code) To. ADORLESS (City, Stote and ZIP Code)
a P. 0. Box 516
St. Louis, MD 63166 Eqlin AFB, FL 32542-5434
: & Nami OF FUNDING/APONSOAING jin OFFiCE SYMOO L 0. PROCUARLMENT INSTRAUMENT IOENTIFICATION NUMBLA
a OAGANIZATION tif applicadia:
: STARS Joint Program Dffice F08635-84-C-028D
8 ADOARISS (City. Stews ond ZIP Codel 10 SOURCE OF FUNDING NOS |
Room 3D139 (1211 Fern St.) PROGRAM *ROJECT Tasx WORK UNIT
The Pentagon ELEMENT nO. oL Lo Lo
Washington, D.C. 20301-3081 63756A :
n 1708 rlaru-biuunh Classification) L
Common Ada(® Missile Packages (CAMP), Volumell: =
12 PERSONAL AUTHORLS) Goeke,
McNicholl, Daniel G., Palmer, Constance, Cohen, Sanford G., Whitford, William H., Gerard 0.
13a TYPE OF REFPOARY 30 TimE COVERED 'a OATL OF REPORT (Y7, Mo , Doyt 18 PAGE COUNT
FINAL snom Sppn B84 vo _Sep B5|May 1986 185
6 SUPPLEMENTARY MOTATION SUBJECT TD EXPORT CONTROL LAWS.
Availability of this report is specified on verso of front cover.
1y COSATI COOLS 18 SUBIECY TE AME (Continug on reverae if necenery and idenfify by block number)
u;o GRAOUS SUS GA. Reusable Software, Missile Software, Software Generators, Ada

Parts Composition, Systems, Software Parts.

18 ABSTRACY (Continus 0n miever if mcemery and idenlify by Mack numberr . The objective of the CAMP program is to
demonst-ate the feasibility of reusable Ada software parts in a real-t{ime embedded applica-
. tion area; the domain chosen for the demonstration was that of missile flight software
systems. This required that the existence of commonality within that domain be verified
(in order to justify the development of parts for that domain}, and that software parts be
designed which address those areas identified. An associated parts cataloging scheme and

. parts composition system were developed to support parts usage.
}
30 COISTRIGUTION/AVAILABILITY OF ABSTRACT 2V ABSTRACY SECURITY CLASSIFICATION
vecLassipitorunLiiteo O same as mer. D ovic vsens B Unclassified
13e NAME OF ARESPONEIBLE INDIVIDUAL 230 TELEPHONE NUMBEA 23¢ OFPICE SYMBOL
{intiude Aree Code
Christine Anderson (904) 882-2961 AFATL/ FXG
DO FORM 1473, 83 APR €0ITION OF 1 JAN 7345 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

L;_-'.L'Lg‘JL'.: PP PE DY T0 Dr rawen

\:'- ' Td g 1".*": ,,t'- 3 > 8 '1 - . R
AL e ¥ » \ LHE -“ S - L
LA '.l\.\-‘:a LIRS R YL L ..\ \ "- 'L i .‘h. -'A". ot .Vsl - \.P\’ ’.F‘\)‘.l\‘ 2;\ n"?.:'\ \‘f‘: }% At 'L{A.'\ Py Hh aX n,' ._h & -'lh:* ‘-"“ }‘:‘ .:‘.. e

l UNCLASSITIED

SECURITY CLASSIFICATION OF Trig PAGE

RN

o

11. TITLE (CONCLUDEN)

-~
- e e

P o gt

Software Parts Composition Study Results

-
-

DISTRIBUTION/AVAILABILITY OF REPORT. (CONCLUDED)}

Other requests shall be referred to the Air Force Armament Laboratory (FXG),
Eglin Air Force Base, Florida 32542-5434.

.
-
2
Y

| PnNS
IR PP

. g
P Sl el

T

l' "‘I. " l"‘

et

.

SN

W

= ORCTASSIFItU

y b o
P, L SVE A DR B

- w

et W N

1 - '.-. ‘. l‘ - - ' o I . . .l 3 '\] . -
AN J“._m'n'_l".h.l‘l_. l .1.: Skt e ‘\'* A.J.‘..\.n\ s

Safutrh bad iaf ‘et » .
B P B TR Syl il Wt i il g (8 4 e o Ry , ol ol ‘b U 4 el Ve iy : i U

PREFACE

This report describes the work performed, the results obtained, and the
conclusions reached during the Common Ada Missile Packages (CAMP) contract
(F08635-B4-C-0280). This work was performed by the Computer Systems &
Software Engineering Department of the McOonnell Douglas Astronautics
Company, St. Louils, Missour) (MDAC-STL) and was sponsored by the United
States Air Force Armament Laboratory (FXG) at Eglin Air Force Base,
Florida. This contract was performed between September 1984 and September
1985.

The MDAC-STL CAMP program manager was Or. Daniel G. McNicholl (McDonnell
Douglas Astronautics Company, Computer Systems and Software Engineering
Department, P.0. Box 516, St. Louids, Mo. 63166) and the AFATL CAMP program
manager was Christine M. Anderson (Air Force Armament Laboratory,
Aeromechanics Division, Guidance and Control Branch, Eglin Air Force Base,
Florida 32542).

This report consists of three volumes. Volume I contains overview
material and the results of the CAMP commonality study. Volume II contains
the results from the CAMP automatod parts engineering study. Volume III
contains the rationale for the CAMP parts.

Commercial hardware and software products mentioned in this report are
sometimes identified by manufacturer or brand name. Such mention is
necessary for an understanding of the R & O effort, but does not constitute
endorsement of these items by the U.S. Government

ACKNOWLEDGEMENT
Special Thanks to the Armament Division Standardization Office and to

the Software Technology for Adaptable, Reliable Systems (STARS) Joint
Program Office for their support of this project.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced

Justification

111
e —

(The reverse of this page is blank) Distribution |

eearmereganmmpens-asac coann]

Availability Codes

UALipy

: Avail analor
Dist Special

Y bk ‘*3%

.!‘n".n
110" a
Y .A'.'.'_l‘..l'.l"x.n -l:..l\ '..l o)

B :-" & | 1‘ 1' ‘-"‘n'. Nt e T

>t -

‘n

L LN

1t BDTRA

SN A

LR S)

LY

.
>
b |
"
¥ g
i
TABLE OF CONTENTS E*
Section Title Page n
I L, Al NP R NRRY el SR AR S 1 ;.
‘
Il CATALOGING OF THE CAMP PARTS caeeioioicaicaianss aeasesiosaes 2
T
s O O O S e o ol O oo el R bl o Tt o e ey okt o on(sy sh SEc syt ol oM SM vt 57 2 -
R e ST o e g1 o n sty S PRSI s e ORI 2 %
; I G B R o e e LR L e Y L it 6
& Ry B INRETGN . I S0 e s Ban s h s A ala s v 10 "
4 5. Documentation Requirementsoovvivuiiiinniinnnn. 13 N
| 6. OrQanYZARIONE] FECRBET .. .viiumeseisodaiinesiantsdnenansns 13 ;
111 EVALUATION OF SOFTWARE GENERATION TECHNOLOGYcc... 18 :%
: 3
1) (1 LV) e e e e %0 i e T G e N 1 VR EARIE P B Ry S S 18 5
g L e e e e it Sl e c b S PTEIET Spe 18
R S DR O) e e e i T S e R N R e S e R 36)
AR eI U 3 r 2 G ook 0 006 o oo b ioidio 0 & b ol oo oo ook T 41 b
IR T | o sl ISR VI SRR S S Y RO SRR 54 g
Iv THE'RDWIE (OF EXPERITE SYSTEMS! 2 oo o ol kel v sieie sl sfs staial o faalaie s s 61 v
1. Expert System Overviewoovivierinrennecnnennnnnns 61 b
2. Schematic Part CGenstructors:..cciheersciscccacccsiss: 63 £
3. GoerTc IRMEAMEIELOrcoiccaassnusivissarsnarsonnonn 67 <
. B, Parts TAOmEIRVERRION <. c.ovoccnnasenennnnassssensonansans 67 tt
3 5071 PARHSLGAEAVOGE S as siivs sl svie s s S S e e R 5 s R e 5 8 e 68 A
A O T BIRRON 7o 555 s30T o A S B s o o o e 5 69 %
:1
r
Fl
¢
v
ﬁd
-'4
4
o
Y
|
-
1
=1
'''' 4 X e NN e T e YT e T AT e e . . "‘ "> ol T wrn st S :__.::_4

i oD e P et i R s g e g b gl e i S i g il it gl R gy LS

cads -

TABLE OF CONTENTS (CONCLUDED)

Section Title Page
v EVALUATION OF AN EXPERT SYSTEMcviiiitriiieenneannnnnan 12

Vo IRERGAWEEYOM: = o i viin o o oneieray el shiet) ariafreriat /o abiohalict shatnotatielion ohreriorid (oL 5o, o 12 i

2 M an S ol BV AN O o i ottt sl ok ool ook e R amal sl o e il 74 1

3 OV IRV O O AR o o s e e T e ey R e TR e T S 74 g

4. Evaluation of ART with respect to the Problem Domain !

GRMBEEN S .ooi i oo st o o e R Ay Shenahe ha Y 5 i MR E A & e o m i 81 3
5 HOMEAIUSHONS,, - 57 e oo e Tt 3 i) ok SVt o e o o 85
LA SOF IWARE FARTS COMPOSITION CONCLUSIONSccitieneninnns 86

Appendix

A DEFINITION OF THE CAMP PARTS CATALOG ATTRIBUTES.............. 89
B GAMPS EATIALOGTNG FORME & o S S e MR Erai e (o) 1 sh{aatver R ans ot ol et o 103
c SAMPLE DBMS IMPLEMENTATION OF THE CAMP PARTSc.... 107
D THE FINITE STATE MACHINE CONSTRUCTORvveveevnnnnnnnnns 111
REEERENCESL, oo s ayenenom i draatt o N n Rk o b e s apiesat o o it o oareb e o/ 169

::

Y

:

h

vi N

.

K

. %

& A PPl A PR T W L
USRS AT AL R S UL R RS OREATR LR e SR o e

Figure

D =~ O e LN

[B
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

LIST OF FIGURES

Title
Graphical Representation Methodsccvevieereneeenncnnnas
Craltrarliog ATt Y DAIRIBISE i cirilie i retaion s i alional sl iasamiy siiaravisl ol anatie er o siveiaiie arisvabie s’ o ik ab{oma
Information Flow through Catalog System it
orngan¥zatilionall Fagters) Fhrii . i S g ST s e i e
Forms of Motidvatiionciceuaivanas 00 00 0100 IAR 00 T a4
Goals of Automating the Software Generation Process
Sumeairy:ioff SREVIVeW: 4 by Janiae il S sa o 5s 3 oola o e saias 3 elastE At o
Speciifficatiion. TeChnMGUEIS .i: .l v uia o ohe o8 deluhoratolel oo diaies elfarsh sl ovatstinore
Issues/ErBEERNa Of @) SGSF % ois o e Sai s e 2 she o o o e et B el e e s
Software Generation without Parts Reusecivvvinuennnn
Software Generation with Parts Reuseciiiiinenns.
Summary of Specification Techniquesccvecvveerreecncenenns
Facilities of a Software Generation System
Overview of the Ideal Software Generation System
The Ideal Software Generation Systemcoiiiininncnines
Major Component Requirements of an Ideal SGScevvevvnnans
Parts Identlficatlon: s iinssanilssa s Saminas s fah saeens e
An Example of Parts Identification with an Expert System
Parts Construction with an Expert Systemcciivnnn..
Near-Term Technology Requirementsccieiieenncrnrnnnnns
Mid-Term Software Generation System iivnnnnen
The Structure of an Expert Systemcoviiiiiiinnnnanenn.
Overview of a Schematic Part Constructor
The Lateral/Directional Autopilot Schematic
THe NavVIgatlion SCHEMAEIC .- .:isiniieiiinicsimmneeninasomeansesess
Sample Parts Identification Rulescciiiiiiiiirinnnnns

¥,

PR A

4

e .-_
IR R g o o

/ -“'

AR AAL

L WYL Y. o ot dy faspa il gt g gl gk b i L iue g M- g g g e i BanLii il i e o e S s g o S R e T il 4 6 e s NaXnt

3 A
_: LIST OF FIGURES (CONCLUDED) :;
\ o
N "
B Figure Title Page ¢
,
21 Overview of the AMPEE Systemcccitiiiernrennnnnnnennna 10 -
28 Operations Provided by the AMPEE System n
3 29 Why ART was Selected for Evaluationocuen... 13 N
2 3 B e i e i e e o 13
. 31 ISSUES/CrILEria 0F @ SBS ounnreneeieeeenienneneeeereneeennn 83 N
- B=1 CatAVog RURPIDEEEE ... v it ooty doobe oo oo aed & iemmds 9] ;:
F R-2 CARP PRTtS ToXOWOME ... ouooissoiosasasdim oo aesidsessssssis 101 n
'Z Bl The Catalogimg COnrm ... o s oo iia o s s dde s s dstnsss 105 i‘
Gl Davabase SCINEMAr < m s Aa Er lE T s e el 109
Dl ALFinfite State MaChiN®' . i o i e e 5 a0 o hebet orarion o v s Spees e - 112 S
, D2 ATCEECCHURE, . s i aned e S N e stk e ot o W F s irsydad 55 s o 117
- B8 COREROL TVRE 52000y /TR0 f b i b E ST o1 ks e b e s e ad g oo e e 118 ’;
DA Datal FTOM! o oimis s falls o s SR R St p ek R ey o sy bR Y o e ol S/ S el 119 =

D-5 Overview of the Proof-of-Concept Implementation 120

d
3
-
»
4

N N W e

- - - nh e. s

SECTION I
INTRODUCTION

fThis volume contains the results of the work performed on CAMP in the
development of a soflware parts cataiog and in the design of a prototype
softygre parts composition system.
‘*ﬁSect1on II describes the resuits of the CAMP software parts cataloging

study and the cataloging scheme recommended for CAMP. The goal of the

software cataloging task was to develop a method of aescr1blng and managing
software parts to increase the productivity of the parts user. In addition
to providing the structure for a textua) catalog, the cataloging scheme
developed on-CAMP Vs sultable for automation. Appendices A through C present
more detatled information on the CAMP cataloging scheme.

Section III contains the results of the CAMP software generation study
and presents our view of the functionality of a software parts composition
system. . Although our major area of study was the automatic generation of
software using parts, this examination included an Vnvestigation of software
generation systems which did not handle parts.

Section IV discusses the role of an expert system in the construction of
a sofiware Paris Composition System (PCS). The protolype software parts
composition system we designed during CAMP was based on incorporating all
functions within an experl system to maximize the sharing of data between
components of the PCS.

Section V describes ihe particular expert system tool, the Automated
Reasoning Tool (ART), used on CAMP and discusses iis applicability in the
software parts composition system application. This tool was used to
construct a proof-of concept implementation of a schematic part. Appendix D
contalins a description of this schematic part constructor.

Section VI discusses the major concluslons of the software cataloging and

software parts composition system studies.

) u Gt i i PR R o i S o i i i i T e R i

.l

b o e T

....-.
l‘',_’-'_n' 00 00

ey
s TR
L ,'5 sy

A
(T)

L3

v,

-
o

2ot

[}

ae s ad
"y

- -

B R S i S R A SRS S e CAT G R Bl R St a s S AER LA SR LS b st e S s

SECTION II
CATALOGING OF THE CAMP PARTS

. Introduction 2
ARV BWE S i I S S L ST e s 2
] (£ SR X [A e ANRCR S RP F (1 i el 6
. Catalog Definition 10
. Documentation Requirements .. 13
. Organizational Factors 13

1. INTRODUCTION

The oblective of this portion of the CAMP study was the development of a
procedure Lo facilitate storage and relrieval of software parts for use on
other projects. To achieve this objective, an Ada parts cataloging scheme
was developed which provides a means for organizing, indexing, describing,
and referencing these parts.

In Paragraph 2 exisling sofiware cataloging schemes are reviewed. Major
issues related to software parts description are discussed in Paragraph 3. A
detalled description of the cataloging scheme that was developed ¥s provided
in Paragraph 4. In addition to developing the cataloging scheme, the
documentation required to support 1t has also been identifled (see Paragraph
5). Paragraph 6 contains recommendations for the organizational structure
needed to support the iImplementation and use of this scheme.

2. REVIEW

For many years people have advocaled the use of exisling software parts
as a way to reduce the cost of software development and mainlenancc.
Although there ¥s currently a great deal of research being conducted in this
area, significant inroads have not been made in the workplace; notable
excepltions include Raytheon Missile Systems (References | and 2), and The
Yiartford Insurance Group (References 3 and 4), which have achieved a
significant level of reuse in thelr business data processing departments.

Reuse of sofiware has been successful in the area of mathematical and

statistical packages such as the standard roulines (e.g., sine, cosine)

' -~ . _— s e T e R
) o . » B Tom P - - - £, . £ 4 ol el o Al e e R e e ,
._-._._1‘.:.\(: P K 0: - .\i O SO L R S Ly R I BT TR N e T T T RO A R R LR R U O O RS 50

Sl A A R e N N S R ER IR RS e L R e R iy by Big S Jin tiag S S Ji L el

usually supplied by compiler vendors, or the International Math and
Statistical Library (IMSL) and Numerical Algorithms Group, Inc. (NAG)
software libraries. The primary reason for this success is that users
understand the functioning of the routines and have confidence in their
quality. For instance, In the case of the IMSL, the routines undergo
extensive testing; they are developed with strict adherence to standards; the

-t

i

2%

code 1s robust, efficient, and accurate; technical support is provided; and

N

. ' A

the documentation (1.e., the catalog) 1s comprehensive and standardized.

One of the most significant reasons for the fallure of many past
reusability efforts is that a disproportionate emphasis has been placed on .
development of software components, while 1ittle or no effort was expended on
developing a method for describing and identifying available parts.

As a prelude to developing an Ada parts catalog, existing catalogs,
cataloging standards, and descriptive techniques were examined. 0On-going
research efforts in software descriptive techniques were also reviewed. None
of the catalogs, techniques, and standards reviewed pertained specifically to
Ada (some did not even pertain specifically to software), but they provided
useful background and insight into what is required of an Ada parts catalog.
A survey of our findings follows.

]

a. Catalog Standards

o 5

0f the standards reviewed, those that had the greatest applicability
to this task were the ones dealing with computer program abstracts. These

“ SR

were useful in determining the attributes and level of support necessary to

develop a viable Ada parts catalog.

One such standard was developed by the Natlonal Bureau of Standards
(Reference 5); it was intended to be applicable to all programs developed or
acquired by federal departments and agencies. In this scheme, an abstract
provides a synopsis of capabilities, environmental requirements, and other :f
relevant information that can assist a user in determining the functiopal\ty
and appropriateness of a particular program.

The American National Standards Institute has also developed a
standard for computer program abstracts--ANS! X3.88-1981 (Reference 6). In ‘:
addition to the usual 1tems (1.e., name, date, contact), the standard o
recommends the inclusion of a category fileld, keywords, program status within

the 1ifecycle (e.g., requirements definition phase, in development,

e 2. P LS ata’s’

v .
FUBLD i

A

r‘ 3

SO =

-
s mp

.
+

PR T BT

o e T i e i A e B e o e AR S B b B ol aiiaio . ‘-) .‘-: .t gt i il e s

operational), and assumptions and limitations (e.g., assumptions about the
form and range of the input data).

b. Existing Software Catalogs

Although there are a number of software catalogs in existence today,
many use basically the same attributes (1.e., name, 1d, abstract, etc.) to
describe the software parts.. In the summaries that follow, the features of
existing catalogs that may be of particular interest in developing an Ada
missile parts catalog are highlighted. .

The Data and Analysis Center for Software (DACS) (Reference 7)
software catalog makes use of a software engineering thesaurus to determine
the proper classification of a software part both at the time of cataloging
and at the time of retrieval. The thesaurus contains a 1isting of major
areas, called cluster terms, and separate 11stings of subjects within the
major area (e.q., MODELS 1s a major topic area that is found in the 1ist of
cluster terms; listed separately under MDDELS, the user finds the fileld
further subdivided into AVAILABILITY MODELS, BEHAVIDR MODELS, RELIABILITY
MODELS, etc.). The individual subject jtems may be further decomposed.
Attributes not found in most other catalogs examined include stage of
development, purpose of development, target computer, documentation, and
references.

The National Technical Information Service (NTIS) (Reference 8)
utilizes a standard form to collect data for each software part that will
come under NTIS control. The parts are classified by category; there are 40
major categories (e.g., Aeronautics and Aerodynamics, Astronomy and
Astrophysics, Computers, Control, and Information Theory), and 342
subcategories. A subject classification booklet (Reference 9) is used to
categorize incoming software, and to assist the user in locating cataloged
software. E£ach category 1s given together with the titles of all of its
subcategories (e.g., within Computers, Information, and Control Theory there
are subcategories such as Computer Hardware, Computer Software, Control
Systems and Control Theory, Information Processing Standards). Each
subcategory is presented with a 1isting of the subject areas covered by that
subcategory (e.g., within Computer Software are the subjects Computer

Programming, Programming Languages, Compilers, etc.); a cross reference to

related sections 1s also provided.

- e N R e TR R R R VWA L Fia i il Sl S Y P T R T T oy i ek g

The NTIS catalog entries are nol characterized by any unique ;%
Information; but the catalog does have mulitiple indices that allow access via ;-
a4 number of different keys. The entries are indexed by subject (keyword,
titie, 1d), producing agency (agency name and location, agency id, title,
producl number, i1d), 1d number (either NTIS 1d or originaling agency id,

R |

e

title), hardware (entries are in alphanumeric order by hardware type), and

-

Tanguage (alphanumeric order by source language).

The IMSL (International Math and Statistical Library) Catalog f
(Reference 10} consists of mathematical and statistical routines, and has
gained widespread acceptance and use because of the consistent quality of the ;h
routines. A1l modules conform to established coding and documentation
standards, and contaln both in-l1ine and external documentation. The
algorithms are categorized by the area of mathematics or statistics to which ;j
they apply, and the categories are alphabet)zed and organized iInto chapters
in the documentation. The routines are kept alphabetically within category.
Within each documentation chapter there is a quick reference guide to the s
purpose of each routine. i

For each category, modules are described by the following
information: routine name (label), brief statement of purpose,

precision/hardware, and other required IMSL routines. Documentation for each «:
o
rouline contain: routine name, purpose, call line, arqgumenis (argument name; Q§
type; usage, 1.e., input, input-outpul, output, work arrays, error QQ
-

¥ s

parameters), precision/hardware, required IMSL routines, notation, remarks,
algorithm, an example, and optionalily, notes and accuracy.

The Numerical Algorithms Group, Inc. (NAG) (Reference 11) has a
library of subroutines for mainframes and a small package of routines for the

personal computer. The documentation provided for the routines is available S
both In hard-copy form and on-1ine. As with the IMSL routines, extensive, L
standardized documentatlon 1s provided, and the routines go through an ;j
extensive validation and certification process before being released. Naming i:
conventions for the routines are strictly adhered to; this is important in ::

Increasing readability. Updates to the collection of routines are published
well in advance of the effective date in order to allow users time to "
dccommodate these changes. The routines are supported on a wide range of
hardware.

...... N T N
- \ - - - - - . - " e
':". \.:‘:.:" Nt s Ve P \‘.\ S

.....

g e il & e Vi, SRR WLV A S il B A T L A e Ry o s R e ey s

The Collected Algorithms of CACM (Reference 12) provide extensive
certification information for each algorithm. This includes ‘certified by’
information, explanatory remarks, test procedures, results, and comments.

Some other catalogs examined include the Micro Software Report
(Reference 13), and the International Computer Programs Software Directory
(Reference 14).

C. Descriptive Techniques

The Naval Research Laboratory, as part of its Software Cost
Reduction Project (References 15 and 16), developed a module descriptive
technique for software parts. Reusability was specifically addressed in this
project. The researchers determined that reusability is promoted by
well -defined and well-documented software. Information hiding and data
abstraction are two techniques that were used to achleve this goal. An
abstract interface specification technigque was developed to allow interfaces
to be specifled without requiring internal details. Modules were designed to
be flexible (1.e., easily modifiable) rather than general. Ada, through its
package facility, provides many of the features desired by the researchers on
the Software Cost Reduction project.

Much attention was given to documentation and the form 1t should
take. Module documentation 1s precise and detalled; 1t 1s collected into
module guides that serve as a software catalog. The documentation explains

how requirements are allocated among the modules, and defines the scope and

contents of individual design documents. A precise abstract is also provided.

3. [ISSUES

Three major categories of issues arose during the investigation of
cataloging Ada missile software parts. These 1ssues address the following
areas: the cataloging scheme, the cataloging mechanism, and organizational
requirements. These areas are not independent of each other and the
interdependencies will be pointed out in the discussion that follows.

Gy -qu‘ '<‘1..;.|.

3

Y
0
L" g
i'.
(&
5

- i g g P et e e b RN g e By Bl 58 Tea e (RS

a. The Cataloging Scheme

Reuse of softw = parts can be implemented at a number of different
levels. Reusability can be defined as reuse of analysis (e.g., systems
analysis, domain analysis), reuse of design, or reuse of code. The
implementation level affects both the structure of a parts catalog (1.e., the
attributes needed to describe the part), and the organizational and
procedural requirements needed to support the use of such a catalog. There
are several views as to appropriate level at which reuse should take
place. For example, Nelghbors (Reference 17) indicates that to be
meaningful, reuse should encompass analysis and design in addition to code.

A number of researchers, have pursued the idea of parts as software
modules (e.qg., mathematical and statistical routines, or special function
modules such as data conversion routines). The issue then arises as to
whether a part is reused only if it is taken 'as 1s' and used in another
application, or if ¥t can sti11 be considered to be reused if it undergoes a
series of transformations or modifications before 3t can be used elsewhere.
It has also been suggested that parts consist of code templates that can be
filled in by the user. A combination of approaches has proven successful in
several applications, e.g., The Hartford Insurance Company (Reference 4),
Raytheon Missile Systems (Reference 1).

The effectiveness of a parts catalog is heavily dependent upon the
selection of attributes that will be kept for each part. If the catalog
entry does not contain sufficient information for a user to determine, either
manually or via an automated system, the appropriateness of a particular
part, reuse of existing parts becomes virtually impossible.

It is inevitable that eventually there will be several parts in the
catalog that appear similar in functionality but whose internals result in
quite different execution or storage efficiency. The catalog must contain
attributes that enable a user to differentiate between these parts, or there
must be an automated means of determining the appropriate part for the user.

Lack of an efficient means of differentiating between parts can lead to user
dissatisfaction and a fallure of the reusability effort.

LS,

% % " %
'._ 0

P AR A A

(B

)

Pl A o

SO

A

l- .lA " " l.
el pte e

P

* %

R
{/ .“1‘11
e TR Ty

e

~
[| .
Boa A . o ®

e L LI

5l o

-

SN [

.

-

By 2

L

OO

&

e la

Sy

ML

= Nl Ml S

b. The Cataloging Mechanism

The presentation of catalog information to the user can have a
bearing on the success of the parts catalog. The information can, of course,
be presented textually. Graphical representation of a part may be of value
in clarifying the part's definition, and thus help the user to select the
appropriate part. There are several different graphical representation
methods that could be used; they are summarized in Figure 1.

The technology requirements for the user interface techniques must
be considered when determining the feasibility of any particular system. For
example, database technology and query language interfaces are well developed
areas in computer science, but graphical and natural language interfaces are
sti11l in the early stages of practical development.

To galn acceptance and use, a parits catalog must provide adequate
user support. It must be well documented and easy to use for both novice and
experienced users. [t must provide a reasonably fast response to inquirtes;
users become frustrated with slow, cumbersome systems. It must also provide
some form of access control, although this would not necessarily meet DOD
security requirements for trusted systems; research in this area 1s beyond
the scope of this project.

* BUHR- OR BOOCH-GRAMS OR AN ADAPTATION
* FLOW OIAGRAMS

* BEFORE/AFTER OIAGRAMS THAT OEPICT THE CHANGES
TO THE OATA STRUCTURE

Figure 1. Graphical Representation Methods

G Organizational Requirements

One of the most Important organizational issues surrounding a parts
catalog s who will mandate 1ts development and use. Previous studles have
recommended the establishment of a catalog and 1ibrary of parts, but without
the aulhority to enforce such a recommendation, reuse of software

e N S e Rk - e w e e - e

parts has not become a reality. Reuse of existing partserequires discipline
on the part of software developers; until the benefits of reuse of parts
become obvious to all involved, there must be a means of enforcing that
discipline.

The scope issue must be addressed in both the macroscopic and
microscopic sense. The macroscopic view addresses the applicability of a
parts catalog to an organization, i.e., the catalog can have an inter-company
scope (e.g., the catalog .y contain Ada missile software paris developed by
all Air Force missile untractors) or intra.-company scope {(e.g., the catalog
may contain Ada missile software parts developed only by McDonnell Douglas).

The microscopic view addresses Lhe domain of the catalog (e.g., the
domain could be very broad and include all Air Force Ada software development
projects, or it could be narrow and include only Ada missile flight
software). With respect to the microscopic view of scope, a decision must be
made whether to have a single library, or to have several libraries based on
the application or task area.

The organizational applicability of the catalog (i.e., is it
inter-company or intra-company), affects several aspects of the catalog
development and maintenance. For instance, standards become very important
when parts from different developers are cataloged together, but it is easier
to establish standards within a single company than across all Air Force
contractors. Additionally, certain entries in the catalog should contain
different levels of information depending on the catalog's scope. For
example, information on the developer would vary depending upon the scope of
the catalog. If the catalog is intra company, information about the
individual(s) actualiy involved in the development may be of use, whereas if
the catalog is inter-company, merely identifying the company performing the
development is probably sufficient. Additionally, if the catalog 1s
inter-company, the question of proprietary rights may become an issue.

Procedures for maintenance must be established prior to the
implementation of a parts catalog. Guidelines are needed for the addition
and removal of items from the catalog. A consistent classification scheme
should be deveioped and enforced when a part is added to the catalog.
Security controis must be implemented to prohibit unauthorized access to both
catalog entries and to the parts they identify. There must be a way to
ensure that all required information is provided with a part when it enters
thg catalog system.

. .
I
ot e ts

—

AR e AR

v . .
At

52als

PFILSPS

Although Lhere may be a way of differentiating among parts that
appear similar, an attempt should be made to 1imit their proliferation.
Confronted by too many cholices, a user may find it simpler to develop a part

from scratch rather than wade through the descriptions of existing parts.

i

This problem can be ameliorated by the imposition of procedural controls on P

the maintenance of the parts catalog (1.e., additions to the parts catalog
should follow a standardized and carefully monitored procedure).

As mentioned earlier, quality assurance (QA) is essential to the 1
success of reusable parts. The exact nature of the QA structure 3s at least i
partially dependent upon the scope of the catalog. &

4. CATALOG DEFINITION

Ly B tesp et i 4

The purpose of a software parts catalog is to facilitate reuse of
existing software parts by providing a mechanism for rapidly identifying 2
relevant parts to a software developer. To that end, the software parts f
catalog must contain sufficient information to permit selection of i
. components, but not so much information lhat it is cumbersome to use. This :
requires careful selection of attributes for inclusion in the catalog.

The investigators have developed a set of attributes to describe each i
catalog entry which provide the catalog user with sufficient but not

v

overwhelming information about individual software parts. Figure 2

summarizes these attributes. Each of these attributes s discussed in

greater detall in Appendix A. Figure 3 graphically depicts the flow of

information into and from the parts catalog system. I
MDAC-STL developed a prototype Ada parts catalog as a proof of concept. -

The catalog was developed using a relational database system (ORACLET") on

a VAX 11/780. A description of this catalog is contained in Appendix C. s

b W Y
s

DSOS

.’
‘a

. 10

L)
SRTAE 1P

Ll
’
’
-
e,
b
7
¢
.l
Tl

g% 7

1) ’
v
] o
»
-
J ‘\
[}
PART ID REVISION 1D
1 VERSION NAME K
) %
‘ ABSTRACT CATEGORY : -
TYPE LEVEL g
CLASS INLINE 3
‘\
OPERATION PARAMETER NAME .
1 KEYWORDS DATE CATALOGED "
. "
. OEVELOPED BY OEVELOPED FOR
OEVELOPMENT STATUS VERIFICATION STATUS -
3 CATALOG UNITS WITHED WITHING UNITS i
: USAGE LOCATION OF COOE i
t SECURITY CLASS (PART) SECURITY CLASS (CATALOG ENTRY)
3 LINES OF CODE (SOURCE) FIXEQ OBJECT COOE SIZE y
X REQUIREMENTS OOCUMENTATION OESIGN DOCUMENTATION =
1 HARDWARE OEPENOENCIES OTHER RESTRICTIONS ':
‘ ¥
; ACCURACY TIMING CHARACTERISTICS
3 REMARKS Ry
: ‘-
Figure 2. Catalog Attributes ;
: .
3 ;
¥ M »
. T
r
»

a gl at "
. i, St 8ot Sat Rt Pt Qg8 = G Wa . ‘N 4 w B il el P g ' m bt 4 i iy
. ’
¢)
4
] !
& ';
5
F
b3
1 3
L
et b
¥

o« v Ty -

SOFTWARE
DEVELOPER

Pl AP el 3

- SOFTWARE CATALOG s
. DOCUMENTATION ¢
.f PART - - ENTRY FORM o
Y ::
3 1}
. SOFTWARE O.A. DOCUMENTATION CHECK FOR N
. O.A. COMPLETENESS A
3 UNIFIED PARTS MANAGEMENT SYSTEM 3
| SOFTWARE ;

DOCUMENTATION

' .
+ :'1

'Y

3 UNIFIED PARTS MANAGEMENT SYSTEM b

e .1

Figure 3. Information Flow through Catalog System

Ba e a4 8 %

d

e

LA ST

12 . J

=
i
d
\'..r.\._\ X -"'.-r.'l'\. LR o

; o
) A‘:'A'"l PRI I I B W D Ne¥ W TF Mt W | PRI IR SR I SEMAERULE WL WS L A S bl e it

S

LN T O A N AR TN AR AN AT Y O SR @ e T e 6 e - S

5. DOCUMENTATION REQUIREMENTS

In order to ensure that all necessary information is supplied when a part
enters the parts catalog system, a standard form should be developed and
utilized. Appendix B provides an example of such a form; this is the form
used in the developmeni of the MDAC Ada parts cataiog. Some of the items on
the form could be supplied automatically as a software part enters the system
(e.g., Lines_of_Code, Units_Withed, Withing Units). This form can be used
for both intra-company and inter-company cataloging, although the level of
delail of information provided in certain fields will vary depending upon the
scope. Appendix A discusses the scope-dependent differences in attribute
information.

Parts documentation is crucial to the success of any software reusability
effort; information indicating the type of documentation and its availlability
should be provided for each part in the catalog.

Although reusable software has been discussed for a number of years, its
implementation is fairly recent, therefore, the user must be provided with
documentation and training material for use of the parts catalog, both from
the viewpoint of a catalog user and as a developer of software that will be
cataloged for future reuse.

6. ORGANIZATIONAL FACTORS

Organizational factors play a critical role in the success of any altempt
to implement reuse of pre-built software parts. Although the scope of the
catalog has a direci bearing on the exact nature of the organizational
factors that musi be addressed, the issues remain essenlially the same.
Figure 4 summarizes the organizational factors required to support a viable
parts ldentification effort.

13

MBS

N
-

RS

. ,,..
1_.‘. , 22
A A e

LlaS al ol N

. ¥
s

5
b

'- SO 4
% A
- l‘ T X 0 _ . %e8

v
A

’ 2 A‘l'

; S
R

r v

FEN P IRIA,

B e e B it el T AR o & Ll . TS T W A TR T T T T ST W L S TR T O 7 T TR T T T T TR T TR, TR TR

A E R U e ER

¢ MOTIVATION FOR REUSE * PROCEDURAL CONTROLS
e CENTRAL REPOSITORY * TRAINING

e STANDARDS * USER SUPPORT

v T w v e

Figure 4. Organizational Factors

a. Motivation for Reuse

ik
L la.

As stated earlier, software development that makes use of pre-built
software parts requires discipline on the part of the developer. It also

v e . TEmmmw A v

requires an initial investment of time and effort to establish a reusability
program. Until the benefits of reuse become apparent to all involved, there
must be motivation for organizations and individuals to reuse existing

i
e
|
N
4

TR E . Te T T

I software in a structured way. Although in the long-run reuse of existing
) software parts can produce significant economic gains, some form of b,
motivation will be required initially. The form that this motivation may ;T
take is scope-dependent (see Figure 5). E
:
g
MOTIVATION BY CONTRACTOR MOTIVATION BY CUSTOMER . S
« COMPANY STANDARD * DOD MANDATE !
* SUGGESTED COMPANY PRACTICE * CONTRACT REQUIREMENT ’j
o COMPETITIVE EDGE © CONTRACT INCENTIVE
Figure 5. Forms of Motivation i
.

T——

0
-

TN NS)

At one exireme, motivation could be provided in the form of a DOD
mandate similar to that for the use of Ada. Due to the extremely broad scope
of such a mandate, this is not considered an optimal form of motivation at
this time.

14

o~
'.- ' - ';‘ |.l,-"_l).'<‘.'

The Air Force could provide motivation in the form of contract N
Incentives or contract requirements. Incentives could take the form of iy
giving companies that have reusabi1Vty programs in place greater

consideration In proposal reviews. Motivation could also take the form of e

only considering companies that have reusability programs in place. :

] Although cost-plus contracts provide 1ittle incentive for the g
contractor to economize on development costs, some form of economic Incentive L

may be appropriate to contractors who initiate or have in place a functioning ;_

reusability program. For example, a bonus could be tled to the amount of j?

reuse on a project. 8

= If Yndividual contractors are expected to set up thelr own programs, >

the AVr Force should provide guidelines in order to ensure comparability 3

i between programs, and lo lay the foundation for the implementation of reuse ;;
',

of software on a more global scale.

Motivation for software reuse within a company can range from a
corporate suggested practice to a strictly enforced company standard. A
suggested practice may recommend software parts reuse as a sound software
engineering practice and provide guidelines for developing reusable
software. When adherence to reusability guidelines 1s required, a system of
checks and audits must be established in order to determine compllance.

o L e e
Ty WV =
PR

‘..-,_.

»' l. % l' .‘i, .\\‘\:o

b. Central Repository

e oo

[

Regardless of the scope of the catalog there should be a central
repository for both the catalog and the parts. This eliminates redundancy,
reduces overhead, and facilitates maintienance, control, and use of the
catalog and paris. Ideally users would be able to access the catalog and
parts dalabase from remole localions. The need for a ceniral repositiory has
been supportied by a number of researchers, including DeRoze (Reference 18)
who performed a study of defense software.

4

gt ce e

B LA

€: Standards

Adherence 1o coding and documentation standards is important to the
success of the reusability concept. The development of a set of usable
standards s a non-trivial task whose importance should not be

15

..‘.'..}'/ s

P

. M . . . - . -
" g o N5 Ly C]) . 7", . Op o) . Ny o
Fa W ey T 2P ' Ol g W T . SRRl T e ¥ B gy Ol O . e e "
At n b al o0 8wl o7 gt el P L R R N Y L D LTS TN PR T T . -'-!- -'-_-'-. . .'.'.'.-"- 1

et 6 S

.' .s:f' _"

EMEA

- % &t

undereslimated. Although the development of those standards 3is not within
the scope of this study, we have recommended a set of attributes with which
to characterize software parts.

d. Procedural Controls

Entry of parts into the system must be carefully controlled. Part
of the control procedure involves ensuring that all required Information is
entered into the catalog in the anpropriate format; this can be facilitated
by the use of a catalog entry form similar to the one discussed In Paragraph
5.

Before entering the system, each part should be screened for
conformance to coding and documentation standards. A determination of what
these standards should be are not within the scope of this study, but they
should be comprehensive and quantitatively enforceable.

Quality assurance is critical to the success of parts reuse; this
was found to be a recurring theme In the Iiteralure reviewed (References 1
and 19). Poor quality parts cause two problems:

-.- Encounters with a few poor quality paris can destroy user

confidence in all of the parts.

- Poor quality parts negate the benefits of reusability (}.e.,

reduced cosi of development, grealer rellability of the systems
developed) .

Verification of correctness of software parts is a complicated
issue. Ideally, each part entering the system should be independently tested
and certified as meeting 1ts requirements. If the catalog s to be for all
Alr Force development, independent certification will require extensive
resources In terms of both personnel and equipment. If the scope is
intra-company, the QA procedures that are currently in place could be used as
the basis for developing a verification and certificatisan process for parts.
At the very least, it should be required that the provider of the part
identify the type of verification performed and who (or what organization)
performed that verification.

16

bl ik Y
fata fa

oy 5

K| POOAS,

Configuration control s another important aspect of procedural
controls required for a software parts catalog. Users should not be allowad
to make random additions of new parts, or indiscriminately create new
versions of existing parts. There must be adequate justification for a new
version of an existing part (e.g., correction of an error, major
enhancement). Instantiations of meta-parts should not, in general, be
included in the parts catalog because these are application-specific (V.e.,
tallored to a specific application) software components rather than general
or domain specific parts.

As siated earlier, new parts must go through adequate quality
control procedures before enltering the calalog system. If possible, users
should be notified well in advance of any updates to the cataloged parts;
this provides the user with time to plan for the new or updated part. This
procedure is followed by Lhe Numerical Algorithms Group (see paragraph 2b).

e. Training Requirements

Training may be required in the use of the catalog and assocliated
documentation procedures. Additional training may be reguired to teach
personnel how to develop software that incorporates existing parts.

f. User Support

Extensive user support should be provided in addition to the
training discussed in Paragraph 6e. For example, guidelines for selecting
and using parts should be developed and published. Major updates and
enhancements, and oither information concerning the catalog should also be
publicized.

17

SECTION III 5
EVALUATIGN OF SOFTWARE GENERATION TECHNOLOGY

. Introduction 18
= AReVilleWi e i i S 18
. Assessment 36
. Conceptual fFramework ... 47

. -

U & W AN =

. Recommendations 54

A

1. INTRODUCTION -

The objective of the Software Generation System (SGS) study was to

determine the feasibility of an automated or semi-automated means of
developing missile software that makes use of existing software parts. The
approach taken by the investigators was to first survey current and past
research efforts in this and related areas (see Paragraph 2). This led to an K,
jdentification of issues and the development of a set of evaluation criteria S
that could be applied to existing and proposed systems (see Paragraph 3). i
Next, a conceptual framework was developed to facilitate the determination of
technology requirements for an ideal software generalion system (see
Paragraph 4). finally, based on an evalualtion of current and E
state--of the-art technology, recommendations for systems with current and

- »
S .

mid -term feasibility were developed (see Paragraph 5).

2. REVIEW

TN NN YN

Over the years there has been a wide range of views on the nature of
software generation systems. As technological advances are made, oo
researchers' expectations of these systems also advance (e.g., FORTRAN was o
originally thought of as an automatic program generator). The current desire ;
for software generation systems is motivated by the same forces that
motivated development of high order languages (HOL's), and assembly languages
before them- -better software faster and cheaper (References 20 and 21). -
Although there is sti11 no general consensus on the exact nature of such a _;
system, there is a consensus that their use will significantly reduce
software development time and cost.

In researching the feasibility of automating the software generation

process, the goals of that automation must be kept in mind. These goals are
summarized in Figure 6.

* SIMPLIFY THE PROGRAMMING TASK.
* LOWER THE COST OF PROOUCING SOFTWARE.

¢ IMPROVE THE QUALITY OF THE SOFTWARE PROOUCEO.

Figure 6. Goals of Automating the
Software Generation Process

An automated software generation system simplifies the programming
process by reducing the need for detailed programming knowledge. This is
achieved by allowing the software to be specified at a much higher level of
abstraction than is possible with manual programming, and/or requiring the
'programmer' to be less precise. 7The ultimate goal of a software generation
system is to allow programming to be performed by domain engineers rather
than software engineers; this would mean fewer programmers would be required
resulting in a significant cost savings. Automated software generation that
involves reuse of pre-built parts would realize additional cost savings by
reducing the amount of software that would have to be developed.

Improved reliability is another goal of automation of the software
generation process (e.g., fewer coding errors). The use of pre-built
software parts would yield benefits in this area also; the parts would have
been previously tested and verified, thus less time and effort would be
required for testing and debugging of new software systems.

Many researchers have tried to develop universal software generation
systems (i.e., systems thal are applicable to all problem domains) with the
result being that they are not particularly well suited to any given domain.
Because of {heir generality, software specifications required by these
systems often necessilate nearly Lhe same level of detall as that associated
with ordinary programming. Additionally, the lack of domain specific
knowledge often results in significanlly less efficient code than could be
produced by a human coder. A number of researchers have noted that most
success in the automation of software generation has come from systems with

e

P

2

vy
.

-~
", TN

1 "T"r:'.rs‘- - .',

L % te e N % e

. -

o ; T el i
ol bk £ 3 ik ar-ube

modest goals, V.e., systems attempting to deal with 1imited application
domains and a limited range of user proficiency (e.q., Prywes, Reference 22).

As mentioned earlier, lhe CAMP study is interested in software generation
systems that make use of existing software parts; this requires a way to
describe existing parts, store, manage, and retrieve them, and integrate lLhem
into fulure software development projects. In the past, it was almost as
difficult to determine 1f an existing software part would meet a user's
requirements as it was to (re-)develop the part. Generally, 1ittle or no
documentation was availlable. The documentation Lhat was available was poorly
written making it difficult for the (potential) user to determine the
functionality and appropriateness of a software part. Additionally, the
quality of available components was unreliable. (Software parts cataloging
and its assoclated problems were discussed in Section II.)

- As part of the investigation into the feasibility of an automated
software generation system, existing work in the technology areas that are
relevant to software generation systems (1.e., automatic programming, expert
system applications, formal specification systems, natural language
interfaces, and text generation) was surveyed. The 1iterature surveyed
contained a great deal of ambigquity in the usage of terms such as automatic
programming, program generator, and software generator. Some researchers use
the terms automalic programming and program generator interchangeably, while
others distinguish between the two. Program generators are often considered
more mechanical in nature, not Involving the expert system reasoning
capabilities often assoclated with automatic programming. In our view,
automatic programming and automatic software generalion are equivalent,
although the term automatic programming appears to be used more frequently in
recent research; we will use the phrase sofiware generation.

The remainder of lhis paragraph contains a summary of our findings. We
will first look at automatic software generation systems in the large, and
then provide a detalled look at three fairly recent systems. Next, we will
look at the major architectural components of such a system (1.e., the
specification technique, the method of operation, and output generation). An
alternative to software generation is the use of expert system assistance in
the development process. This 1s of particular interest to us, as one of the
goals of the CAMP study was to investigate the feasibility of an automated or
semi-automated means of developing missile flight software. Expert system

20

. n -,

st S A ST N

it e

RIS

PII | WRAPOR P |

ALY W

e

- v e

P Y o
gt td e e S

I}

(AT,

T s et]

. TR e
P ¥
' o 4

e %
P

[

~ TR T TR

T

)
E

assistance has often been incorporated into proposals for fully automated
systems. Two representative systems are presented in Paragraph Z2e. Figure 7

summarizes our presentation.

REVIEW
AUTOMATIC SPECIFICATION SYSTEM EXPERT SYSTEM
SOFTWARE TECHNIQUE OUTPUTS ASSISTANCE
BENEHATEY * NATURAL LANGUAGE e CODE * PROGRAMMER'S
e DRACO * FORMAL e DOCUMENTATION APPRENTICE
* DARTS * SEMI-FORMAL e KBSA
e USE. IT * GRAPHICAL
METHOD OF
OPERATION

Figure 7. Summary of Review

a. Automatic Software Generation

An Automatic Software Generation System is a software system that
automatically generates software when given a requirements specification in a
very high order language (VHOL). VHOL's allow specifications to be provided
at a higher level of abstraction than HOL's, just as HOL's provided a higher
level of abstraction than assembler languages. The form of the VHOL can
range from very formal specification languages to natural language;
specification techniques are discussed in Paragraph 2b.

In addition to the specification technique, software generation
systems can be characterized by their method of operation, their target
language, and the problem domain (Reference 23). The method of operation is
the technique employed to change the initial specification into a software
part. There are a number of operational methods that a software generation
system can incorporate; Lhey are discussed in Paragraph 2c. The target
language is the language In which the software will be generated. In the
case of the CAMP sludy, the target language of interest is Ada. The problem

21

N—
oA

yanmes |

TRV

la ':;,_‘A‘_(L

i

228

i

-
o~

y P AW v <Y 8
bl R,

P

~
L]

domain refers to the application area for which software will be generated
(e.g., missile flight software). It can be seen that a wide range of
technology areas are covered by software generation systems.

The scope of software generation systems can vary significantly.
Some systems are designed to generate single program units while others are

L S = e

intended to generate entire software systems. Sti111 others are designed to

generate onlv specific parts of program units (e.g., data slructures).

e

Most software generation sysliem implementations are in the research

phase, or at lhe stage that only relatively small programs can be developed.
According to Neighbors (Reference 17), specification and requirements
analysis present the major impediments to the development of complete
software generation systems.

PR = e L |)

Software generation systems do not necessarily involve reusable

BT R D T AR AT IR

software parts, and most systems developed to date do not. A few recently

developed systems incorporate reusability of some form; they include DRACD,
DARTST". and USE.IT; these systems are discussed in the fol iowing

paragraphs. :
. r

(1) DRACO i

| {

DRACO (Reference 17) is an interactive software generation system y

developed by Jim Neighbors at- the University of California at Irvine. The

system allows solutions to classes of problems to be developed. Once a i

solution to a particular class of problems has been developed, individual

systems can be developed by personnel who are not necessarily software

engineers. -
Development begins with a determination of the existence of an

TLMEE S T

appropriate mode!ing domain for the problem area (e.g., missile flight
software). A modeling domain is essentially a model of the type of system
the user wishes to develop. If a modeling domain does not exist, a domain

‘
PPNV

expert must perform a domain analysis. The domain analysis takes a |
high-level Took at the objects and operations that are used (required) in the
problem domain. Domain analysis differs from systems analysis in that domain

analysis examines the objects and operations that are required by systems of f
a particular class rather than looking at the requirements for one particular i
system. :
22 :

\J l

e o N ; WL] ' LS w U AL o+ L L ey AL LA i /R 3 bepit

If it is not 1ikely that a number of similar systems will be buiilt,
domain analysis should nol continue; instead a custom system should be
constructed. Oomain analysis is an expensive, time-consuming task that
requires extensive knowledge of the problem domain. For this reason, DRACO
1s not well suited for the development of one-of-a-kind systems.

Domain analysis results in the development of a domain model and a
domain language. The domain lanquage encapsulates the design aspect of the
application, and 1s intended to allow users to communicate in a language with
which they are familiar rather than requiring them to learn an ordinary high
order language for programming. €ach object and operation in the domain
language)s represented by a software component (i.e., a part). Most domain
languages are quite different from ordinary programming languages (e.g., a
domain language may take the form of a table). It is through use of the
domain language that reuse of design takes place.

The user specifies the problem in a domain language program; the
domain language program then undergoes a series of refinements that are
guided by the user or by a predefined strategy, to produce an executable
program. The refinement history is saved along with the executable code that
is produced.

We have identified several aspects of the DRACO system which make
its widespread usability in the missile flight soflware domain questionable.

- The DRACO system is sti11 in the early stages of development,
and considerably more work Ys required to make 1t a
production-quality system.

-- The specification technique of the DRACO system is designed for
ease of use, but the user still must learn a formal

specification lanquage and technique in order to use the system.

-- Considerable detal}l is required on the part of the user when
specifying requirements.
Efficiency Vs another concern with the DRACG system. The code
produced s claimed to be very efficient, but DRACO is a
universal software generation system, and, as we have
previously pointed oul, the efficlency of the code produced by
ihese types of systems is frequenitly inadequate for the types
of applications with which we are concerned (i.e., real-time
embedded systems).

23

Ty v .-

oy v

00 e

o A 0 A A&

g

(2) DARTS

DARTS'™ (Development Arts for Rea).-Time Systems) (References 24,

?5. and 26), developed by General Dynamics, also allows solutions to be
developed for classes of problems. The goal of the research leading to the
development of the GARTS technology was that once end users had a working
system in place, they would be able to generate similar systems without
programmer assistance. The user would enter the system specifications in
some domain lanquage, and through a serles of {ransformations, the
specifications would gel translated to source code.

One premise upon which the technology was developed is that
creativity s only really required in the developmeni of the first
implementation of a particular class of applications; significantly less
creativity is required for the development of each successive system of a
given class. Thus, after the initial system ¥s developed, it should be
possible to generate additional systems of the same class automatically using
the original system as a prototype.

EfFficliency was an Important consideration in the development of the
DARTS technology, Jjust as 1t Is In the CAMP study. The developers of the
DARTS technology wanted the automatically generated systems to be at least as
efficient as custom systems. As with DRACO, DARTS is a universal software
generation system, and it is not clear that the'code it can produce is
efficlent enough for the missile flight software domain.

When a problem 1s initially identified as being a candidate for
solution by Lhe DARTS technology, an analyst must perform a domain analysis
and design a genera! software solution to the problem; a working system may
already exist in Lhe problem class. Once the initlal software system is in
existence, it must be genericized, or in the DARIS terminology, made into an
archetype. During this time Y1 Vs also necessary lo develop a domain
language and translator. AXE, the language component of the DARTS system, is
extensible, and should be extended to incorporate the domain language. The

f v v emm

T

. . R
CMEARO Il (e i L

s v e w

3™
-

P

Rl ORI

'S

e e

R e

-

P
<, o P
atal La "

'.u)\.-.'v‘..n.'-“. N . s - - .
".h" 4.1..-.!‘..“5'\:.1..\'.\‘..‘-..\-{'..._\-..\-_\‘.“.. (R GCE R '-"..\...\~.n. ' '.\j.¢' L s q(- L .) 8.8 ST BT ey _'i‘_'- '.'l“.'t -'\...n. '-. S

domain language is intended to facilitate user interaction with the system,
but 1t still requires the learning of another specification language. The
requisite knowledge bases for the application must also be developed. The
end result of Lhe domain analysis phase 1s that an environment is created
that allows users to completely specify software systems without programmer
assistance; code 1s generated automatically once the specifications are
determined to be complete.

Existing software is genericized by embedding AXE statements in the
source code; these statements are used to direct software generation by
referencing the system knowledge bases. Actual software or code generation
takes place through a series of transformations. Each class of system (or
application area) essentially has its own software generator (1.e., 1ts own
archetype). AXE statements can also be embedded in documentation to allow
the automatic generation of new documentation along with a new system.

DARTS provides a way to generate a family of modules. The domain
analysis and language development are time consuming and relatively expensive
tasks that require extensive knowledge of the domain. Prior to developing a
general solution for an application area, an assessmenl must be made as to
the 1ikelihood that many similar systems will be needed or 1f the required
system will probably be one-of-a-kind. Because of the costs involved, this
technology should not be applied uniless there 1s a foreseeable need for
several systems of the same Lype.

DARTS is currently being marketed by General Dynamics, but at the
time of our study, we were unable to obtain conclusive evidence from General

Dynamics concerning its appropriateness to the missile fl1ight software domain.

(3) USE.IT

USE.IT (References 27 and 28), a commercial system developed by

Higher Order Software, Inc. (H0OS), allows a user to specify unit requirements
via a graphic specification technique. 7The specifications take the form of a
hierarchical tree structure which 1s referred to as a control map. The leaf
nodes of the control map are system primitives or external routines developed
by a programmer. HOS provides the system with only very low-level
primitives; it 1s left to the user (or installation) to develop higher level
primitives. It 1s only through the development of additional primitives and

25

T A T B L L L R R L S : Sy

E"H‘lx‘\;lv_v;v_";--.r\n"_'\l'.1_1Hm,w.\.h_\ N TR L S T A DT W N N W O W . S R Y A R e e T T N T T D N N
-

external routines that programming with USE.IT is raised to a higher level of
abstraction than ordinary programming.

The requirements specifications are analyzed, and if found to be
incomplete or inconsistent, the specification-analysis phase is reiterated.
Once the specification is finalized, the control map can be used to
automatically generate code, or it can be used as a specification for manual

) SCRLSUBRIRORIPAEE |1 e B e NS

coding. English-language documentation can be produced as a by-product.

Reusability is manifested through the reuse of primitives. This is
really reuse of both design and code (if the code for the primitives is also
reused via automated or manual means). .

We have identified a number of problems associated with the use of

2 IR N s

this system for the development of Ada missile flight software:

-~ USE.IT does not generate Ada code and there is no definite date
in the future for the generation of Ada.

R e

= The user must be aware of which primilives exist and be able to
choose which would best suit his needs (this may require a

primitives administrator position which would be similar to a :
database administrator). !
-- The primitives need to be developed at a sufficienliy high i
Tevel otherwise specification must be at as low a level as b
required for manual coding. :
0
b. Specification Techniques
The specification technique employed by a software generation system - :
has a significant impact on the system's usability and even its feasibility. !

The techniques range from natural language (NL) to code-1ike program design

languages. When considering a specification technique, the intended user
must be taken inte consideration; some techniques require a substantial

investment in Lime and effort to achieve effective use. The specification

S THERYS DT,

techniques covered are summarized in Figure 8.

o SV e B

FRFRFRFAREES PR

26

C ™ N T T Y o A GUE I R, e e PO SR R Ay Tl T ol O o poe N RN A 8 e Y MR

o o4 -1 A 5 ¥ -t Ya & b | el Al it SN . - - .- - - - - - - a'ls - - . 1 S < - 1 -
LHETEELLS 0, 08 CR TN O 6L S ELE R COR L BE S PR TR REA S AR 1 QLSRN ERER TR A6 AR SR 6 5 ARLHENES U A i . G BIAHEHE S LSRR

e
e
lus|
N
S

* NATURAL LANGUAGE f:
* FORMAL SPECIFICATION LANGUAGE |
* SEMI-FORMAL SPECIFICATION LANGUAGE -
* GRAPHICAL LANGUAGE ;
Figure 8. Specification Techniques -
K
i
. (1) Natural Language

For years 1t has been the goal of reseurchers to develop
Natural Language (NL) man-machine interfaces. Although such interfaces could
be used for a wide variety of man-machine interactions, we are particularly

o
-

interested in natural language interfaces to databases and software

generation systems. Natural language interfaces to software generation
systems could alleviate many software development problems by allowing the
user to communicate his requirements directly Lo the system rather than

requiring him to work through a software engineer who must interpret and
analyze his requirements.

- . S —
P PIPE I WA

TR

Due to the wide range of possible inputs and their
interpretations, the development of an NL interface for software generation

o Pr

systems is a more complicated problem than providing a natural language
interface to a dalabase. Unrestricted NL interfaces have not yet been

realized, but some progress has been made, particularly within 1imited
domains and with a restricted set of users; this finding is supported by

. v vy -
LY,

several researchers including Biermann (Reference 20) and Hendrix and
Sacerdoti (Reference 29).

Domain dependent specification languages are a special type of B
natural specification. These are specification languages that incorporate :
the jargon of the application domain; they are intended to facilitate

* ML .

user-system interaction by providing a simpler form of communication than a

high order programming language. They are part of a trend towards naturail "
language interfaces. P
1

217 "

i

AL D00 S SOV

"
-'ﬁ’

-
.

¥

-
LR R R

Hendrix and Sacerdoti (Reference 29) distinguish between

natural language systems that utilize an explicit world model (1.e., a
knowledge base containing information on the world as the system needs to see
it) and those that do not. Systems that do not require an explicit world
model are simpler to implement and are generally used for applications such
as database interfaces. Systems that do use an explicit world model have
been developed in the laboratory, but have not yet progressed into readily

available production-quality systems.
One natural language system, SAFE (Skills Acquisition from
Experts), developed by Robert Balzer, is concerned primarily with the <
transformation of a 1imited English specificalion into a formal
specification. SAFE is part of a larger project under development by the
Information Sciences Institute at USC, to develop a comprehensive software
generation system.
Greater success has been realized in the implementation of

B e S T

natural language database interfaces (Reference 29); several projecis have

implemented NL interfaces of various types. LADDER (Language Access to

Distributed Data with Error Recovery), developed at SRI (Reference 23), is an :

NL interface to a naval database; 1t makes use of the LIFER NL system |

(Reference 30). LIFER is a utility system that facilitates the development

of natural language interfaces. LUNAR, a system dcvcloped at Bolt, Barenek,

and Newman (Reference 30) to aid in geologic analysis of material brought

back on the Apollo-11 space mission, also makes use of a natural language

database interface. Natural language interfaces have been successful in

these cases for two reasons: the goals have been relatively modest, and the

application domain has been limited. "
A natural language interface can also be used to assist a user

in the development of database queries. RENDEZVOUS (Codd, 1978) (Reference

23) is one such system. It carries on a clarifying dialog via a series of

R & ey

menus that provide the user with options fe- further input and output. At
the conclusion of the dialog, the system produces a natural language summary

LT T v

of its interpretation of the user's request.

s s ow ¥

28

(2) fFormal Specification Languages -
Formal Specification Language systems make use of very high b

order languages to specify requiremenls. The complexity of these systems ﬂ
varies greally; they can be used Lo specify everything from entire systems to 3
individual program units. The nature of the specification language has a h

significant impact on the system in which it ¥s incorporated.

Specification languages (SL) can be classified as procedural or
non -procedural. Procedural languages describe not only what to do, but how
to do 1t; most ordinary programming languages fall into this category.

Non- procedural languages mcrely describe what needs to be done (e.g.,

database query languages); they generally require less ski11 to use than -
procedural languages, and are at a higher level of abstraction.
Specification languages can be further classified as domain independent or
domain specific. Some systems incorporate extensible languages that allow
the development of specification languages tallored to a particular domain
area (e.g., DARIS). b

Stoegerer (Reference 31) has partitioned specification
languages into three classes: requirements specification languages, (system)
design specification tanguages, and program design languages (the CAMP
investigators have classified program design languages as a Semi-fFormal
Specification Technique). 1In reality, the distinction between the classes
tends to be somewhal hazy. Stoegerer and others have suggesled integrating a
cohesive set of specification languages Into a software development
environment.

Two examples of requiremenls specification languages are RSL,
the requirements specification language associated with the Software
Requirements Engineering Methodology (SREM) developed by TRW for the Army y
Ballistic Missile Advanced Technology Center, and PSL (Problem Stateinent L
Language), the requirements specification language portion of the tool 4
PSL/PSA (Problem Statement Analyzer). Both RSL and PSA are tallorable, .
structured English specification languages (1.e., the languages can be
extended or tatlored to fit the needs of a particular project) but both .
suffer from a relative lack of use. This emphasizes the fact that formal
specification languages are typically difficult to work with. Training in
either technique can take 1-2 months (Reference 32), and training must be

29

i

‘ provided not only for those who will be writing requirements specifications, E
but also for those who must read them. K

Both the ORACO and DARTS systems provide extensible ;

specification lanquages that can be tallored to form domain specific F
specification languages. Many other systems utilize formal specification N

languages for user Ynput; two of them are described briefly here. 1

MODEL (Module Description Language), developed by Noah Prywes E

\ of the University of Pennsylvania (References 22 and 33), is part of an :f
'f experimental software generation system. MODEL is non-procedural and similar 5

X in structure to PL/1. The user must supply a rairly detailed specification -

] of the input and output data. Assertions, or equations, which describe ;
' relationships between dalta objects, are also supplied by the user. The MODEL E
1 program undergoes analysis for inconsislencies, ambiguities, and :"
. incompleteness. Afler checking and correction, either PL/) or COBOL can be >
generated. Although the use of a non procedurail language does ease the Ny

! programming burden, the user is stiil required to iearn a P'L/1-type language, i'
X and provide detailed specificalion of inputs and outputs. k
' Protran, the user interface to the IMSL library, is an ¢
; extension of FORTRAN, and is nol a parl of a soflware generation system. o
V. Programs written in Protran are much smaller than equivalent programs written S
f in FORTRAN, but the specifications are not any less complete than those E
: required for a FORTRAN program. :
'z (3) Semi-Formal Specification Languages E}
f Program design languages (PDL's) and specification by example G ?
are two forms of semi-formal specification techniques. Program design '
: languages can take many forms; the ones of particuiar interest to us are am
E those that are Ada based. McDonnell Douglas Astronautics Co. has developed B f.
] one such language, referred to as ADL (Ada Design Language) (Reference 34). E
' It consists of a subset of Ada and is intended to be used for the design of '_
1 software systems. Numerous other versions of Ada-based PDL's have been hf
b developed. fhere is currently an effort under way by the IEEE (Reference 35) :f
' to establish guidelines for their development. g
30 2

One form of specification by example consists of the user
providing the system with input-output pairs; the system then generates the
code that would result in the given output when supplied with the specified
Input. A user must carefully construct examples that completely specify the
requirements. The development of a comprehensive example for more than a
trivial problem 1s not a simple task, but for simple problems, it has been
found that users can converge on the correct solution fairly quickly simply
by providing successive examples; Lhis has been noted by several researchers
(References 23 and 36).

Specificalion by example has been incorporated into PSI, a
software geperation system developed by Cordel| Green at the Universicy of
Southern California.

(4) Graphical Specification Languages

Studies have indicated that both clarity and speed of
Information transfer are greater with graphic-based languages than with other
types of languages (e.g., formal specification languages, natural languages
(Reference 31)). The use of graphical languages for both I1nput of
specifications and other man-machine interactions (e.q., requests for further
Information from the user, summaries of specifications) has been proposed.
Graphical representations allow information to be presented concisely.

A Graphical Specification tanguage requires bolh an appropriate
set of symbols and a method for processing 1t. The development of aulomated
graphical specification techniques i1s sti11 In the early stages.

MIT had a project underway to develop such a technique
(Reference 37). A preliminary step In Lhe development process was the
development of an appropriate set of symbols to represent various programming
constructs and concepls. HOS's USE.IT syslem makes use of a graphical
specification technique, although It s not at a very high level.

Both Booch (Reference 38) and Buhr (Reference 39) have proposed

manual graphical representation schemas for Ada software parts.

-y

-

At

§ Aoy

F e,

= 8
)

= i g b A TR 8Bt fabBad S i o e i e b e e e e e e i v dig i g e i i i S, i o BB i B

2 e 00 1
-

C. Methods of Operation

i e A
AL, S PR)

A software generation system takes some form of requirements

o
-

; specification as Ynput, and generates some form of software part as output.

] The technique used to change a requirements specification Into code 1Is

referred to as the method of operation. There are, of course, many ways to

do this, but, there do not appear to be any clean cut lines that clearly

delineate the methods and thus facilitate classification; this 1s often the

case with technologles that are In the early stages of development. This is

not to Imply that classification schemes have not been proposed. Some -
categorles that have been suggested are deductive techniques, transformation

o gy S S0 50

Y v oy e

.. 8

techniques, expert system techniques, and custom tadloring.
Custom tailloring is often thought of as using parameterized software

= -.-_". l.-l"_‘

R R

to generate unique configurations from a standard software system. This
process has been used in telecommunicatlons systems, and)s also the method L

o
=
f

used to transform generic Ada parts into concrete usable instances; it 1s a

.
SivTe:

- way to generate families of concrete software systems (or programs) from an

v r

abstract system (or program).
An expert system can be used in conjunction with any method of operation,
thus, a strict classification as expert system technique s not really
meaningful.

Deductive or theorem proving techniques incorporate transformations

Sl Sl o

v 20 m
N

that are usually in the form of predicate calculus statements. These
techniques start with a theorem to be proven, and attempt to find a series of

transformations which lead to that conclusion. A program is produced as a

e T e B

. by-product of the proof. %
The problem that we see with an attempt to classify the methods of

- operation at this stage of development 1s that almost all methods of
operation can be forced into the category of transformation systems (l.e.,

they all transform a specification Into a software part). The
transformations can take a number of forms: they can be in the form of
predicate calculus statements, they can be In the form of rules, or they can
be simptle substitutions.

A mechanism for selection and application of the transformations 3is

required. The amount of user assistance required to guide the application of

4 the transformations varles consliderably between systems. Some systems

32

<
require no user input other than the provision of the Initial specification, ;
while others require a significant amount of human guidance (e.g., Kestrel's ;'
proposed Knowledge Based Software Assistant). An expert system may be used .
to ald In selection of the transformations, or the transformations may be ﬁ
applied in an arbitrary manner or with the ald of heuristics. The steps in ﬁ
the transformation process are often saved so that the transformation can be 5

replayed later 1f the need arises to re-implement the soflware.

fhe range of problems that can be solved by any given method of
operalion varies considerably depending upon the particular implementation.
As with specification languages, the trend in methods of operation has been

. towards greater domain specificity (Reference 40).

Several software generation systems (DRACO, DARTS, USE.IT) have
previously been discussed, but we wilil briefly summarize how they produce
programs. In the DRACO system, a program specified in a domain language
undergoes a series of refinements (or transformations) that follow a
pre-defined strategy or are guided by the user. In the DARTS system, the
archetype system has AXE lanqguage statements embedded in them that reference
varlous knowledge bases. The user's program supplies application specific
information that 1s used in conjunction with the information from the
knowledge bases to guide the transformation of a system From a model solution
into a spectfic instanttation. In HOS's USE.IT system, code modules are
substituted for primitives 'n the control maps; module Interconnections on

€« v s & sl

the control map require the generation of code.
PSI, a software generatlon system developed by Cordell Green at
Stanford University in the 1970's, uses a number of cooperating experts

M

{(e.g., a domalin expert, coding experlt, efficiency expert) to transform the
specification (which may be in the form of a serles of examples) into code.
The DEDALUS system developed by Manna and Waldinger at SRI
(References 23 and 36), has been referred to as a deductive system. Jt uses

a modified form of predicale calculus (V.e., more English language text 1is

o
=i
4 .« @

A N

<

Lt -.-"-,
-t Dod B

s ate s
[

iy

allowed) for the specification, and generales programs in a language similar
to LISP. The transformation rules contain knowledge about both general
programming principles and the specific implementation language. Successive
-f application of the rules leads to the transformation of the original
specification into the final program.

B Wl ASRAAN

-

. s

33

Al R

» ’ - . s, » g o o - _w_ e _» PR P e e . B LI =
‘(.:(_:.'..J‘"J'-' LR PO N PP Gt .:("q'.‘f_‘.-__e\.~\,'*(. SRR _.,‘._'_'. RO CR TN g

s s e TSR e T B b TR N Rt Vel T e e e R e i e
STl IR A R e Rt e T Ve et P A NS e o s

s st -.- L T $q 4 o Bl Nt Ta Y 3 Fe x

gy oy

P if ey v

PR AP AR

v -I._ A A

Text Generation

In addition to producing code, 11 is desirable for a software

generation system to also produce documentation. Text generation poses

bastcally the opposile problem of natural lanquage specification. Text
generation requires the iransformation of an internal representation of
information (i.e., program specifications) into English text. A few systems
incorporate some rudimentary form of text generation (e.g., HOS's USE.IT
generates documentation that the developer claims meets military standards,
but it appears to be at a fairly low level). The DARTS system is able to
generate documentation from genericized documentation provided with the
archetyped system. As was mentioned earlier, the Rendezvous system generates
natural language summaries of user specifications. Automated text generation
is not highly developed.

Expert System Assistance

An Expert System is a software system designed to exhibit human |ike
reasoning behavior (i.e., such systems are able to form Inferences based on
factual knowledge, data, and rules of thumb). Expert systems have been
proposed thal would assist in the programming task rather than perform it
aulomatically.

One such system is the Programmer's Apprentice (References 23 and
41), proposed in 1976 by researchers at MIT. The system is intended to
provide assistance in the areas of documentation, verification, debugging,
and modification management. The system incorporates general programming
knowledge; this knowledge is stored in the form of plans. The programmer can
either provide plans for the solution of a problem or provide code. The
Apprentice uses the plans to form an understanding of the problem; it tries
to determine if the code implementation corresponds to a valid plan, and if
there s no correspondence, the programmer is notified. The Programmer's
Apprentice can also provide assistance in determining the ramifications of
modifications. A combination of plans and user supplied information are used
to generate documentation. Research and development work on prototype
systems has proceeded over the years.

T I T e N Y T 3

) -‘-‘-". ‘e ".-\.-.‘-.". " o .v(\..-l

T

!
5
(9
[
A
-
N
[

-
N
n
i
'
1]
P
L
’]
E
4
W

Another knowledge-based programming assistant that has been proposed
is the Knowledge-Based Software Assistant (KBSA). In a study performed by
the Kestrel Institute for Rome Air Development Center (Reference 42),
researchers proposed the development of a system that would provide
assistance in all areas of a software development project, from requirements
analysis to project management. It is proposed that the system be developed
incrementally over the next 10 to 15 years, with work proceeding on a number
of areas concurrently. Formalization of development practices is a key
factor in automating the program develepment process.

The proposed system would interact with different types of users at
the appropriate level (e.g., project managers would not be burdened with
programming details, but a programmer would be able to get the information he
needs from the system). An interesting aspect of this study is that the
researchers chose not Lo include as goals of the KBSA two important goals of
other proposed systems: automatic program generation and natural language
interfaces. Natural language interfaces were omitted because it was felt
that such interfaces would require the same underiying formalisms proposed
for development as part of the KBSA, but that the amount of research required
to effectively implement a NL interface is so vast that to do so would
detract from the development of the remainder of the KBSA. Automatic
programming was not included as a goal because it was felt that the user
could be allowed to interact with the system at a higher level of abstraction
if he was alsoc required to assist in the code generation process (i.e., there
is a technology gap between what is fully automatable and what is
semi-automatable). For example, the user could be provided with the
capability to partially specify softiware requirements and have the system

assist with their completion.

35

L, e

-

o[

“
oS
¥

R

~ v
z
\ (P

. -

S L
R SV ¥ |

a2y
- B

A WA A S

<

= el

Sl

i

AR A A S N EER

...

W= .

; |
Q2 3. ASSESSMENT 3
‘ When considering a particular software generation system, it should be q
f; examined carefully in 1ight of relevant issues and evaluation criteria. Two §
&E levels of issues and evaluation criteria were identified during the CAMP
' feasibility study. The top level relates to the system as a whole (1i.e., i
_ reusability issues, issues related to Ada and the problem domain, technology !
: issues, system maintenance and initialization issues, and issues relating to ;
| 24 physical attributes of the system), while the second level looks at specific 5
Eﬁ facilities and parts of the system (i.e., the specification technique and the é
!I specification itself, user support, and system outputs). Figure 9 summarizes : !
) these issues and evaluation criteria; each category is discussed in detail in b
the following paragraphs. E
a. Reusability Issues i

The CAMP study is concerned specifically with the reuse of existing

ot o

software, therefore, any system examined must be evaluated in 1ight of its
ability to incorporate reusable software parts. Few existing software
generation systems have such facilities. Figures 10 and 11 depict two views
of an SGS--one system does not involve reuse of existing software and the
other does.

The level at which reuse will take place is important to the

W RS ey Ty T T

structure of a software generation system. Reuse can be at the analysis,
design, or code level. HOS's USE.IT system implements reuse at the code
level through the reuse of primitives (1.e., pre-built software parts), but
fails to provide an automated parts management system for these primitives.

YOTEEERT RS T

The DARTS system essentially reuses previously developed software systems

(i.e., the archetype is used to generate new software systems). In the DRACO -
system, the emphasis is on the reuse of design and analysis (through the

reuse of domain analysis and the domain language). Each component and

I e

operation in the domain language is a software component, and thus, reuse at

the code level also takes place.

!

.

Y

h

y

{

]

‘

y

36 .

\

L4

~

§ |

Iy

\

4

A

''''' I T T I T TR T R N e T T T T Tkt TR e T e T Toe T e T % Tl BN P ol -_,:_. - » -_,,-_. AN T & .‘- B S Rt Bt Rl TR S o O gt i _._. CPC L
LGS L0 U T AL ey % (0 T 0 R R PR LS REL R ST ARG OR IR S SRS GERL SN Th F SRR THE S SR TSN GO 1, 1% 9 454 2% et

REUSABILITY

¢ iS THE REUSE OF PRE-BUILT PARTS SUPPORTED?

* AT WHAT LEVEL IS REUSE SUPPORTED (e.g., REQUIREMENTS, DESIGN,
CODE) AND MAINTENANCE PERFORMED?

IS REUSE OF PRE-BUILT PARTS ENFORCED?

ADA AND THE PROBLEM DOMAIN

IS ADA SUPPORTED? (i.e., CAN ADA PARTS BE GENERATED?)

IS THE PROBLEM DOMAIN (e.g., MISSILE FLIGHT SOFTWARE)
ADDRESSED?

IS THE CODE PRODUCED EFFICIENT ENOUGH FOR THE PROBLEM DOMAIN?

TECHNOLOGY

iS THE TECHNOLOGY OF SUFFICIENT MATURITY FOR INCORPORATION INTO
AN AUTOMATED SOFTWARE GENERATION SYSTEM?

* WHAT DEGREE OF AUTOMATION IS PROV/IDED?

SYSTEM INITIALIZATION MAINTENANCE

WHAT IS REQUIRED WHEN THE SYSTEM ‘COMES IN THE DOOR'? (i.e., IS
DOMAIN ANALYSIS REQUIRED? MUST A DOMAIN-SPECIFIC LANGUAGE BE
DEVELOPED? DOES EXiSTING CODE NEED TO BE RESTRUCTURED? DO
SOFTWARE PARTS NEED TO BE PRE-BUILT FOR LATER USE?)

IS THE SYSTEM EASY TO MAINTAIN?

CAN THE SYSTEM EVOLVE AS TECHNOLOGICAL ADVANCES ARE MADE?

N

L

PHYSICAL ATTRIBUTES OF THE SYSTEM

L
L]
-" .
o, T

iS THE SYSTEM A REASONABLE SIZE? li.e., WHAT ARE ITS BASIC
STORAGE REQUIREMENTS?}

o0 b

IS THE SYSTEM EFFICIENT IN TERMS OF BOTH STORAGE AND RESPONSE
TIME?

roeo-

s
[)
TN

Figure 9. Issues/Criteria of a SGS

, ’.l "l

LAZ AR

. '.V

L <8y~ S

N

£,

‘l .

“»

a
o
-

7
-

ORI I

'._"-"'n_' s le ta -\1"-'_‘ o Tm e

4

LT J

v T i s e aceh ik oo Batetei i il vl aida o
i can i LA TR S S MO A A v, .‘"_"l.-?',‘ s, e e

TR T S I R T i Sl e A e ied S SR EA LRI R ARG A S S o e, i S ! 5 T R

SPECIFICATION TECHNIOUE AND THE SPECIFICATION

* WHAT TYPE OF SPECIFICATION TECHNIQUE IS AVAILABLE? (e.g.,

FORMAL SPECIFICATION LANGUAGE? NATURAL LANGUAGE? PROCEDURAL
OR NON-PROCEDURAL?}

* IS THE SPECIFICATION TECHNIOUE APPROPRIATE TO THE USER? ARE
MULTIPLE SPECIFICATION TECHNIOUES PROVIDED SO THAT THE MOST
APPROPRIATE ONE CAN BE USED?

* WHAT LEVEL OF EXPERTISE/TRAINING IS REOUIRED TO EFFECTIVELY
INTERFACE WITH THE SYSTEM?

* IS THE INTERFACE TECHNIOUE APPROPRIATE TQ THE PROBLEM DOMAIN?

* CAN THE SPECIFICATION BE AUTOMATICALLY TRANSFORMED TO A FORM
THAT IS COMPREHENSIBLE TO ALL PARTIES WHQO NEED TO KNOW?

¢ CAN THE SPECIFICATION BE PJT IN A FORM THAT IS ANALYZABLE &
(e.g., FOR COMPLETENESS, CONSISTENCY, CLARITY)?

* IS THE SPECIFICATION MAINTAINABLE (IF THE SPECIFICATION IS TO
FUNCTION AS A FORM OF DOCUMENTATION AND CONTROL, IT MUST BE
MAINTAINED IN A CURRENT STATE THROUGHOUT THE SOFTWARE LIFE
CYCLE)?

USER SUPPORT

* IS THE USER ASSISTED WITH SPECIFICATIONS (i.e., IS PARTIAL
SPECIFICATION SUPPORTED?)?

¢ DOES THE SYSTEM SUPPORT AN INCREMENTAL OR ITERATIVE APPROACH TO
DEVELOPMENT?

Chi
* ARE THE SPECIFICATIONS CHECKED FOR COMPLETENESS, CONSISTENCY, -
CLARITY? *
k]
e CAN THE USER INTERFACE DIRECTLY WITH THE VARIOUS COMPONENTS iy
OF THE SYSTEM (e.g.. CAN HE DIRECTLY OUERY THE PARTS CATALOG?? !l
SYSTEM OUTPUTS s
]
&
* IS OPTIMIZED CODE PRODUCED? (:
fy
* |S THE CODE VERIFIABLY CORRECT? ¥ £y
* ARE FACILITIES PROVIDED TO VERIFY CORRECTNESS OF RESULTING !
MODULES (e.g., AUTOMATIC GENERATION OF TEST PROCEDURE, 5|
CORRECTNESS PROOFS) & _:
N
¢ ARE SUPPORTING DOCUMENTS (e.g., ADL, SYSTEM DOCUMENTATION) N

PRODUCED?

Figure 9. Issues/Criteria of a SGS (Concluded)

" HRY

o a -
+ a8

38

[ak
Bk bR

[0k

.
- g

- & SIS H Bl NS e S i SAGOR 0y)\‘..»‘..‘ o \‘\¢ .
WSO -' i ‘\"-...!.":.l RN ‘l.:‘ .'h;h. TR ;nh AL SN '& \;& LB 'q

T

TV wY

SOFTWARE
GENERATOR

b
p
q
SOFTWARE
SPECIFICATION] NEW CODE
& L_-'-l
Figure 10. Software Generation without Parts Reuse
>
. 1

l. SOFTWARE \ l
SPECIFICATION

PRE-BUILT
PARTS Py
: -> '| cooe | '
SOFTWARE
bt GENERATION
S Figure 11. Software Generation with Parts Reuse
39

iz "-i“l’ a' l
a2’ xs

S T

’

....
e F ¢
ST

o

~

Rl |

.
s % "
Eaial o A

Dot i TR T R QO O

T S

.
-

The level at which reuse takes place affects the level at which
maintenance will be performed (e.g., will the recuirements specification or
the code be maintained?). If requirements specifications are maintained, a
record must be kept of any manual changes made to the part (i.e., deviations
from the standard part) in case re-implementation becomes necessary at a

later time. If the code 1s maintained, the requirements must be changed as

changes are made to the code. There are a number of advocates of maintenance

of requirements (e.g., Jim Neighbors, Reference 17).

Enforcement of, and motivation for, reuse s critical. Motivation
may take many forms. In addition to organizational motivation for reuse, the
software generation system itself may incorporate a mechanism to prevent an
engineer from bullding a part that already exists (1.e., a redundant code
detector).

b. Ada and the Problem Domain

The CAMP study requires Ada as the implementation language for both
the pre-built parts and the generated parts; the effect of this on the
feasibility of an automated SGS has to be considered.

One of the key issues in this area is that any system used to
develop missile flight software for the Air Force must produce efficient code
(both in terms of execution time and storage requirements). Efficiency is
crucial in this area. Although currently there is some degree of efficiency
lost just by using Ada, we think that this will change in the near future.

As more Ada compilers become available, compiler developers will strive to
improve their competitive edge by producing compilers that generate
increasingly more efficient code. This was seen to be the case with FORTRAN
in its early stages of development. Initilally there were objections to its
use because 1t was claimed to be inefficient in comparison to the language
with which most programmers were familiar (V.e., assembler), but over time,
the efficiency of the code produced by FORTRAN compilers was increased to an
acceptable level. HWe expect this to be the case with Ada compilers also.

Mandating Ada as a common language to be used for all DOD software
development does have the advantage of providing an incentive to both improve
Ada and develop optimizing compilers that will eliminate the inefficliencles
currently found in compiled Ada code. Ada itself incorporates certain

40

§ ."-"-: -l-- -. . ..7- CI . y5 P, .'-' O T R, TR 2at % b LMY af
A I N N R W N) DR 1 0 PRkt R A N e WO N N N N N N

L)
L)
>
(Y
s
4
5
¢
’
”
e

ey

LW, . .(.. -‘:ﬁ‘_f.-&.‘.

L3
.
-~

R RN P

-
£ 8

s v . v
gl .

N

e T T T T T T T T T A N T et . .., s e e e e

features that lessen the effects of constructing software systems from
pre-built parts (i.e., pragma IN_LINE).

The problem domain (i.e., missile flight software) has a bearing on
the structure and acceptability of any given software generation system that
might be considered. One certain effect is that any software generated for
this application area must be highly reliable. Although no known software
generators exist for the domain of interest in the CAMP study, some systems
claim to be tailorable to any domain (e.g., DARTS, DRACO). It is not clear
that the efficiency of the code produced by these systems is efficient enough
for the problem domain under consideration; realistic demonstrations are
required to prove their acceptability.

c. Technology Issues

The maturity of the technology required for any given part of a
software generaticn system is of prime importance in determining the
feasibil1ity of the system as a whole. The stage of development of the
technology should be determined (i.e., is 1t in the production stage,
laboratory use, or research phase?).

The degree of automation provided by a software generation system is
an important point to consider. Generally, there are trade-offs between the
degree of automation provided and other technologically advanced features
incorporated into the system (e.g., the Knowledge Based Software Assistant
described in Paragraph 2e, trades off higher levels of abstraction in the
specification technique against a lesser degree of automation in 'the software
generation process).

d. System Initialization and Maintenance

Initialization (1.e., what is required to make the system
operational for the end user) and maintenance of a software generation system
are not strictly related to the feasibility of such a system, but they have
important implications for its actual use. As we saw in the survey, some
systems require an extensive amount of work before the system is operational
for a particular application area. For example, DRACO requires domain
analysis and the development of a domain language. DARTS (General Dynamics)
requires that an archetype system be developed or that an existing system be

4]

.....

- YN
v o

¥
.

VA S IRV AR SRS ST

LS AR S S T D D R

A

Pui e e e e M g s

e

archetyped; the specification language also has to be extended for each
domain. If a system requires this type of work, it must be determined who
will perform it (e.g., will the work be performed by the Air Force with each
contractor being required to install identical systems, will there be a
central facility which can be accessed by all contractors as needed, or will
each contractor be required to perform the work on their own). This is
really an issue of scope of the system; many other issues will arise from any
decision made in this area but an examination of them is not within the
purview of the current study.

Fase of maintenance of the software generation system is important
to its continued use. Because it is clear that technological advances will
be made over time, it is desirable to be able to extend the capabilities of a

software generation system as it becomes feasible to do so.
e. Physical Attributes

Physical attributes of the system also impact its feasibility. Its
size and efficiency affect both where it can be used and by whom.

f. Specification Techniques and the Specification

The form of the specification (i.e., natural language, formal
specificatien language, semi-formal specification language, graphical
specification, or some combination) is important not only to the usability of
the system, but also to its feasibility. The specification technique should
be appropriate to the user of the system and to the problem domain. A
minimum of training should be required in order to interface with the
software generation system.

The specification should be in a form (or be readily convertible to
a form) that is comprehensible to both the developer and the customer. It
should also be in a form that is analyzable for completeness, consistency,
and clarity. Finally, the specification should be maintainable throughout
the software lifecycle.

Figure 12 presents a summary of how the specification techniques
that were presented earlier stack up in light of the issues and criteria

discussed here.

)
\
\
‘l

"ok o 8

Frs |Rrcnauheal |

Ol
yox
o

353

ERGR |5

7 TETY Y T
aca® 2282 840

7

-

* o,
l’_/_l_

il

49
’

1

Ty) s pups gt < flile S gh B g Be* el Sa iy S SR oI S By Lt O Uiad as s arioa

Natural language interfaces are easy to use and have the advantage
that no new language s required; generally the specifications can be
incomplete with the system prompting for more information as needed (this is
the partial information issue).

The major drawback of natural language specification is that the
technology required to support such an interface technique is not as mature
as that needed to support formal specification languages. Another drawback
of NL specifications is that they are not as concise as specifications in
some other forms (e.g., formal specification languages) and may become
voluminous for large systems.

A natural language interface makes the system easier to use, but
does not negate the need for any of the underlying formalisms required by
specification systems (1.e., the natural language specification will require
translation into some type of formal specification in order for the system to
be able to analyze it and generate code); this was the point made by
researchers at Kestrel Institute who developed the plan for the Knowledge
Based Software Assistant (Reference 42).

-

S

PR AL A

e T AN

SN ’ A PATLISA

4
-
Ly
-
v
LE
&

UNRESTRICTED [SUBSET}| FORMAL | SEMI-FORMAL | GRAPHIC

NL NL St SL SL

(PDLI

APPROPRIATE ;

I ’ /
g gy OE/SE DE/SE SE SE DE/SE
LEVEL OF

M H M
TRAINING NEEOEO ¢ B
APPROPRIATE TO m! 2 W3 o e
PROBLEM OOMAIN
COMPREHENSIBILITY 4
OF SPECIFICATION g K . ia "
ANALYZABILITY OF L M H K H
SPECIFICATION °
MAINTAINABILITY e i & i i
OF SPECIFICATION
TECHNOLOGICAL L M H H M
FEASIBILITY
LEGEND

L - LOw

M — MOOERATE

M - RIGH
NOTES

&

£

ENGINEER

51 IF COMPILABLE
[

OF ~ DOMAIN ENGINEER
SE - SOFTWARE ENGINEER

11 SPECIFICATION OF SYSTEM REQUIREMENTS MAY BECOME VOLUMINOUS ANO WOROY WITH
UNRESTRICTEO NL

RESTRICTING THE SPECIFICATION TO A NL SUBSET MORE NARROWLY FOCUSES THE
STATEMENT OF THE SPECIFICATION SO THAT IT DOES NOT BECOME RAMBLING PROSE
FACILITATES A PRECISE STATEMENT OF REQUIREMENTS BY A KNOWLEDGEABLE SOFTWARE

4) COMPREHENSIBILITY MAY QECLINE AS SPECFICATIONS BECOME VOLUMINOUS

TEXTUAL NATURAL LANGUAGE SPECIFICATIONS CAN BE MAINTAINED ON A WORD PROCESSOR

Figure 12.

Summary of Specification Techniques

44

mi &

b

"

e e oe sw d | LSS

Piar i B e B

. R E-g P 8 _S_° ° - mEmE *

It s probably not feasible at this time to expect that an entire
< set of missile software specificaiiions can be entered via a natural language
interface, although 1t may be possible for some of the interaction to be
carried out in NL. For example, after analyzing the specifications for
completeness, etc., the system could interact with the user in some 1imited !
natural language in order to obtain clarifying information. To date, most
3 success with natural language interfaces has been with systems that have a

1imited domain of discourse (Reference 20).

The use of formal specification languages (1.e., VHOL's) avoids the

technological problems associated with natural language interfaces, and

N generally avoids the need to deal with partial knowledge (specifications are
B generally required to be complete). Although these are advantages for the
5 implementor of the software generation system (the technology required for

these types of systems is, for the most part, more mature than that for

natural language systems), they are generally viewed as disadvantages for the
user of the system.

The use of formal specification languages necessitates the learning
of yet another language in order to specify component requirements (e.g.,
even "state-of-the-art" systems such as DARTS and DRACO require the use of a
formal specification lanqguage). Because of the large number of people who
must be able to understand the specification, this may not be feasitle
(Reference 43), e.g., Stoegerer (Reference 31) states that

8 A KT

* Specifications written in formal notations are largely
incomprehensible to the vast majority of persons who contract
- for the design and development of software systems."

This 1dea 1s supported by the general lack of use of formal
specification languages such as RSL and PSL (Reference 32).

Formal specification languages facilitate a precise statement of
requirements; this can be both an advantage and a disadvantage. On the one
R hand, forcing precise requirements from the user helps ensure that the

. problem 1s well thought out in advance. It is also a step in the direction
) of developing verifiably correct specifications. The disadvantage of this
1 precision is that the development of precise specifications requires a more

educated and sophisticated user.

...........

- i e . 4 & 1 e i
P e ke i ot JEes S gie b, o et SRR N e e T LRt B e g Lo

Because of the level of detall required when using most universal
specification languages (V.e., a single specification language for all
application areas), the benefits of programming this way as opposed to
programming in an ordinary HOL may not be significant enough to warrant a
change to a formal specification language. Speclial-purpose systems (1.e.,
those directed to a particular application area) may be somewhat easier to
use effectively, but they still require an investment of time and effort for
- additional training.

General purpose VHOL's typically result in less efficient code than
that produced by HOL's that are human-coded. The reason for this is that,
unlike a human coder, the VHOL processor cannot take full advantage of
domain-specific knowledge (Reference 20). Some systems have directly
addressed the efficliency issue (e.g., DARTS, PSI) but we have not seen
3 conclusive evidence to indicate that they have been successful in their
attempts at producing code that ¥s efficient enough for the missile flight
software domain. More recent systems stress the importance of
domain-specific specification languages and domain knowledge.

e.rr

P e

PDL's are semi-formal, general purpose specification languages, and
as such, suffer from the same drawbacks as general purpose formal
specification languages. PDL's can be used at varying levels of abstraction,
and this should be viewed as an advantage to their use as an Ynput medium.
Additionally, PDL's based on Ada have been developed, and their use for
specifications reduces the variety of languages a software engineer must know.

As mentioned previously, graphical languages have advantages over
other types of languages in terms of both clarity and speed of informatiion
transfer. They permit the concise representation of large amounts of
information. The software and hardware technology required to support
graphical input of requirements is sti1l in the early development stages;
graphical specification languages cannot be eas)ly processed into a
machine-comprehensible form. Booch (Reference 38) and Buhr (Reference 39)

e e
M .
LILPS

have both developed manual graphical representation schemes for depicting

software parts at a high level. N
N
.
& ']

.
A

{ll;:

. v
»
-

e N

46

b~ gL & T A
“ e L L TS e Ty

ol # % . T Y O F o AOn R S LT el St 0 %S p Lo L & e e o) B E il
.'.-.l“".-.ntld. DA T P N -') - "'_“.‘ PP oty & 0, e g5 2 a2 ol A b et LLALA""A

g. User Support

The quality and quantity of user assistance directly impacts the
usability of any system, and thus is of concern when evaluating a software

%)

4 generation system. Specifically, the system should be viewed in 1ight of the \A
amount of assistance provided when the user 3s specifying requirements. '

Ideally, the user should be provided with an iterative approach to
requirements specifications. System checking for completeness, consistency,

_'r'a"“)

and clarity of requirements is another desirable feature of a software

Ik

generation system.

h. System Outputs

L ll

The two major outputs from a software generation system are code and S
documentation. Because of efficlency concerns, optimizing procedures within e
the software generation system may be desirable. Correctness of missile
X f1ight software is critical; therefore, facilities for verifying correctness 0
j are also desirable. ;
; The system should be further evaluated in 1ight of its ability to ¢
generate supporting documentation. Text generation 1s, as yet, an Ymmature
technology area. As mentioned earlier, a few systems generate textual -
output, but for the most part, it is done at a rather mechanical level. i

4. CONCEPTUAL FRAMEWORK

The CAMP investigators found 1t useful to develop a view of an ideal _
software generation system to serve as a framework for developing near-term %
and mid-term recommendations for automation of the software generation i
process; we refer to this as our Conceptual Framework. There are several
versions of a software generation system that can be envisioned as we proceed

n
-
1
»
o

. concentrate on presenting a single ideal system without emphasizing 1ts
technological feasibility.

from the near-term to the long-term, but in this paragraph we will

PP AP

41 -

¢

SF LSRR b LA T AT A7 P s L ek) et L Sk " S s s (O) . TN] isLs
FEN T LW PR g R TR TR, DR O YA, LR DY AT] A, &‘_sX\‘Lr\.'L\..A. .\\\\.s.\-h_-.-d'

o U e LaNBC T it Jheonl &

b i T i e g e N T b e o b S ik o S R o i

a. The Ideal System

An ideal software parts generation system should have the ability to

:; manipulate pre-built Ada parts, as well as the ability to generate new
: software parts. The major facilities of such a system are summarized in
"
> Figure 13.
1. PARTS IDENTIFICATION.................. THE PROCESS OF SELECTING A PART, OR SET OF =
. PARTS, FROM A SET OF PRE-EXISTING PARTS FOR
A SPECIFIC APPLICATION.
2. COMPONENT CREATION.................. THE PROCESS OF CREATING A SPECIFIC
N COMPONENT.
2a COMPONENT INSTANTIATION.. THE PROCESS OF CONSTRUCTING AN -
INSTANTIATION OF A GENERIC SOFTWARE PART.
25 COMPONENT GENERATION............. THE PROCESS OF CONSTRUCTING A SPECIFIC
- COMPONENT FAROM A SCHEMATIC PART BY MEANS
) OF A PARTS CONSTRUCTION SCHEME.
2 COMPONENT CONSTRUCTION... THE PROCESS OF MANUALLY BUILDING A SPECIFIC
i SOFTWARE COMPONENT.
; 3. PARTS COMPOSITION. THE PROCESS OF INTEGRATING PARTS INTO A
SOFTWARE SYSTEM UNDER DEVELOPMENT.
- Figure 13. Facilities of a Software Generation System
Before discussing the technology requirements for an ideal SGS, a
G scenario of the system's use will be provided. Figure 14 depicts a
™ high-level view of the system; Figure 15 goes into more detail.
) The software generation system should have an intelligent interface;
expert system assistance should be provided for all system facilities and
- processes. Requirements specification should be an iterative process
L
~ performed at a high level of abstraction. In order to accommodate users with
N a wide range of backgrounds and needs (i.e., the user should not have to be a
computer scientist), a variety of interface techniques should be provided
i_ (e.g., natural language, graphical language, formal (machine readable)
. specification lanquage).
; The specification should not have to be complete; the system should
have facilities for dealing with partial knowledge. Analysis of the by
i specification should be performed and should include checking for :i

)

r)

-
S

completeness, consistency, and clarity. Information should be solicited from
. the user as needed.

I

‘I

WA

o

L]
v

48 o

4 d

=

o

Y

3

T Ty R N P R RO O R i 1 SR g Pl en e e e T e AR AR R AT A P B O
Sl '.".,'n'_'a"'_';':.'\.\ ORI B 3 1"3 L P PR RIS S MR PR PRI FROERTS T 00 P ST

saa 8

SPECIFICATION

PARTS

IDENTIFICATION '

PARTS _4 i Coe
COMPOSITION

COMPONENT
CREATION

Figure 14. Overview of the Ideal
Software Generation System

Once the specification phase is complete, 1t should be determined if
a pre-built part exists that meets the user's requirements (this requires
facilities for automatic location of existing software parts). Parts may be
simple or meta-parts (see Volume I, Section II for a discussion of software
parts), and one or more parts may be located that meet the requirements. If
a part is located, the user will be notified in order to prevent
redevelopment, otherwise, a new part will be built.

The user should be able to recall the specification in any of a
number of forms--textual, graphical, formal specification language.
Documentation should be generated as needed.

49

— NATURAL LANGUAGE

~ FORMAL SBECIFICATION LANGUAGE

— SEMI-FORMAL SPECIFICATION LANGUAGE
— GRAPHICAL SPECIFICATION LANGUAGE

INTERFACE

EXPERT

DOCUMENTATION

SYSTEM

[

PARTS
CATALOG

\ DB J

COOE
GENERATOR

MISSILE GENERAL

TEXT
GENERATOR

SOFTWARE PROGRAMMING
KB KB

Figure 15. The Ideal Software Generation System

* - ", - - v a - \ - v e >
.-"...N' -.‘-) .‘u..,) .u_"

b. Components and Requirements

P ot 2 PPt

Based on an analysis of the scenmario depicted in Paragraph 4a, the
high level component requirements can be determined; Figure 16 summarizes

these requirements. Some of the areas have previously been discussed (e.g.,

specification techniques; parts identification--see Section II); the other

CPRPIPONS

o

areas are discussed in the following paragraphs.

EXPERT SYSTEM

R LA

. * KNOWLEDGE BASE MANAGEMENT SYSTEM
* KNOWLEDGE BASES .
* INFERENCE ENGINE

SPECIFICATION TECHNIQUE

v,

NATURAL LANGUAGE

FORMAL SPECIFICATION LANGUAGE
SEMI-FORMAL SPECHICATION LANGUAGE
GRAPHICAL SPECIFICATION LANGUAGE

*® o 0
R T
4 4

INTERFACE SUPPORT

DIALOG MANAGER
QUERY MANAGER
GRAPHICS EDITOR
SYNTAX-DIRECTED CODE EDITOR

o & & @
| PO ILRS

PARTS IDENTIFICATION

&£

* PARTS CATALOG OATABASE
¢ DATABASE MANAGEMENT SYSTEM

o e i s
£1sd

AR T e Tl I

PARTS CREATION

* PARTS CATALOG
4 * CODE GENERATOR
, ¢ TEXT GENERATOR

PARTS COMPOSITION AND DOCUMENTATION

R R 7]

faf 3

* COOE GENERATOR
* TEXT GENERATOR

4 Figure 16. Major Component Requirements '.:;
S of an Ideal SGS -
+ ':1
g 51 -
1’ l.
£,

£y
-

] Y
~

o P

\
-
L s

X, 7, 7, L ——_—
O o A o Ao

g

ey Ty By

. "
i

Lo

e bl i o g kgt gl g Tt PR ol e B i b g A b b 4 CRf Ry W 6 "R L A Y A LAt a i pL

(1) Expert System Assistance

Expert system assistance should be provided throughout the
system. This requires a knowledge base management system, several knowledge
bases, and an inference engine. -
A knowledge base management system (KBMS) is simdlar to a
database management system in that it manages and coordinates activities
within the knowledge bases. KBMS's vary depending upon the knowledge -
representation scheme used, and the sophistication of the system.
Conceptually, three knowledge bases are required: (a) the
Missile flight software knowledge base contains knowledge specific to the
development of missile flight software, (b) the General software knowledge]
base contains general programming and program development knowledge, and (c¢)
the General knowledge base 1s needed to support the intelligent interface
(e.g., support of a natural language specification technique).
The inference engine Is the reasoning mechanism that utilizes
the knowledge bases and other input to draw conclusions.
Expert system assistance includes a mechanism to analyze the
completeness, consistency, and clarity of the requirements provided by the
user. This determines when iteration of the specification-analysis phase :
terminates, and implies that the system must deal with incomplete (}.e.,
partial) information. The technology required to support this mechanism i
depends upon the level of detall and checking that will be performed and the
way in which the analysis will be performed.

{2) Interface Support

Natural language specification necessitates the presence of a

Dialog Manager. The Dilalog Manager s responsible for managing (i.e., -
analyzing, processing, and conducting) the natural language dialog with the !
user. N

The Query Manager handles queries directed to the database.
This function would generally be performed by the database management
system. Querdes must be translated into a machine comprehensible form. The
technology requirements for this component are dependent upon the query
specification technique.

52 K

ol P

g M g B s A A M w0 e e e o B i s et e P T e R e e R R S R i B i S o (e B - i i

Interface support for an automated software generation system
includes a Loader/Unloader for formal specifications in a machine-readable
form. The Loader is needed to input machine-readable specifications directly
into the system; this is similar to loading a HOL program. The Unloader
outputs machine-readable specifications; this s analogous to unloading
object code for an HOL program.

A graphical editor is required to support a graphical
specification technique; it provides an easy way to manipulate the components
of the specification.

A code editor is another requirement of the interface support.
Ideally, a syntax directed editor should be part of the automatic programming
environment. Ada syntax directed editors are currently under development in
the commercial sector.

(3) Parts Identification

The Parts Identification facility requires a parts catalog
which was discussed in detail in Section II. Expert system assistance should
be provided in locating parts. Additionally, an automatic code locator
should be provided to determine the existence of a software part; this
mechanism would prevent the development of redundant code. Such a mechanism
requires the system to be able to translate the user's requirements
1 specifications into a form that would allow formulation of a query to the
b parts catalog. If the user was attempting to build a part that already

existed, he should be notified of the existence of the part. It may not
. always be possible to accurately ascertain the existence of a part.

Bt]

(4) Component Creation

Component Creation consists of Component Instantiation, F‘
, Component Generation, and Component Construction. Parts Identification plays

a role in determining whether a part exists that can be instantiated (1.e., a
3 generic part) or generated (i.e., a schematic part), or has to be constructed
(either automatically or manually). Automated component construction
requires a code generator and other supporting mechanisms at a lower level,
Expert system assistance should aid in the creation of software parts.

53

-
0

- = . - y o R T N . oS P N W 5 ., N0 . BT, UL T g A s L e o
b l\:'-\‘- Xy P‘“{"‘u"-_’t-.} b)-\‘. "\". ":1. ", "~\N‘\¢:)“"‘ oy s .'-\ S B T ‘.\ # -'.\ AERX S shd b gied ot 2 "".‘ P AR NIV IR
- Jo Y » o a

P A om ® oo W@ o

{5) Parts Composition

Parts Composition involves the integration of software parts.
Ideally, software parts composition would be an automated process based on
expert system knowledge and the user's requirements specification. Parts
composition requires code generation to combine the individual software

parts. The degree of automation of this facility has a significant impact on

the supporting mechanisms required. HOS's USE.IT system has an automated
parts composition element, but this does not appear to be at the level of
sophistication desired for the 1deal system presented here. Research is
continuing in this area.

5. RECOMMENDATIONS

The recommendations presented here take into account the ideal software
generation system presented in Paragraph 4, and temper it with what appears
to be technologically feasible. Recommendations are presanted for both the
near-term and mid-term. We define near-term to be in the range of 0 to 3
years, and mid-term to be from & to 7 years. The recommendations start with
a very basic system that handles parts identification, management, and
generation, and proceed to a progressively more sophisticated and fully
automated software generation system. At each stage of development,
increasingly more sophisticated technology is required, thus the design must
allow for evolution over time as technological advances are made. This 1s a

very important aspect of our recommendations. Given the fast pace with which

technological advances are made, users should not be burdened with a system
made obsolete by its inability for progressive development.

a. Near-Term Recommendations

The system with the greatest potential for near-term payoff 1s a
relatively simple system consisting of parts identification and parts
management facilities, and a parts generation facility that makes use of the
meta-parts (generic and schematic Ada parts) discussed earlier. The parts
identification facility would be as described in Section I1. The parts
management facility would keep track of parts usage (1.e., where and by whom
parts are being used).

54

O O —

Pl ol AR O & | of SE o

+2THEE S~ &

1 A S DL LA

P T T 1

PR % ®s 9P VW

"2 "

T TR M

p o GERr

“

al 7 o Tos Db _BRA-Rasl B2 =t % g & A s S Sl SN J S T ST AT . 5 U S . e A e e e e S e e e e e

The basic scenario for using such a system involves the user
interfacing with the system to determine the existence of a simple or
meta-part that will meet his requirements. The user could either specify his
needs via some query language, or browse through the catalog. Zero or more
parts may be found that fit the user's described needs. If a part is found,
further information about it may be obtained by accessing the complete
catalog entry. If a user selects a part for use, the Parts Management system

must keep track of this.
|) Simple parts may be used as is (i.e., merely by providing the
i requisite parameters). If a generic meta-part is found, the user must
provide instantiating information in order to generate a usable software
component. Schematic meta-parts provide information on how to build the
required software part; the user would perform the actual construction.
Based on this scenario, several systems can be envisaged that are
currently technologically feasible. One version of such a system could be
developed with 1imited technological requirements (e.g., a database
management system, a query language, and minimal additional supporting
software); Figure 17 depicts a simple Parts Identification facility.

The system could also be implemented with a 1imited natural language
or domain specific specification language, and some rudimentary form of

<

graphical specification technique. As we have stated previously, the

=
Ay Y

¥
-

technology required for unrestricted natural language dialog is not currently

=
+
P

of sufficient maturity for production quality systems. Limited forms of NL
interfacing are feasible; some success has been realized with 1imited natural

& (A

language database interfaces. As mentioned earlier, the technology required

A

v v Te e
IR

to support a full-blown graphical specification technique is still in the
early stages of development, but i1t appears feasible to provide an elementary

.

graphical technique. These additions, while currently technologically i

feasible, impose considerable additional technology requirements upon the ‘
=

implementor. :j
-
!

g 1

s

55

“oa

LIST OF
PARTS

T N AW TN L R T W W A E E A

Figure 17. Parts Identification

v Expert system assistance could also be provided for the parts

E
A
i
£
B
[
i
R
r
b

identification and creation facilities. Using a Parts Identification Expert
(PIE) and a 1imited natural language (or domain specific specification
language), the user would specify his requirements, and PIE would transform

the specification into an internal form that could be used to access the -4
parts catalog to determine the existence of the requested part{s). A Parts
Construction Expert (PCE) could be used to aid in the instantiation and
generation of components. Figures 18 and 19 depict an expert system approach
to parts identification and creation, respectively. The main differences in
approaches to near-term systems is in the system interface technique and the
technology required to support it.

* ';.L" e ‘m."'. TS ..

L
&S e T

T
Ay

.'..
' o

-
-

Rudeaie - L
S| LN,

A

it hahd >
Lg%y Col s
RPN hELET

56 3

AL T e R T T
s

AEIS R NE i 5 B NP I

TN AT S S A e T T R o T AR Y T T Py SR T
R :’.‘-:."\"‘-\:‘.\.“-:". PR P FEIE A SERE BT SHARR T PR EREREPE) s i

-

MISSILE - LIST OF RELEVANT
REQUIREMENTS EAPE MISSILE SOFTWARE
AND DESIGN SYSTEM PARTS
INFORMATION
sl
J
ADA PARTS

CATALOG

MISSILE DOMAIN MISSILE SOFTWARE

NOWL A USAGE
" s KNOWLEDGE BASE

Figure 18. An Example of Parts Identification with an Expert System

META PARTS

SCHEMAS

i
i
pp
g EXPERT PARTS CONSTRUCTION
SYSTEM RULES
INFORMATION
FROM USER
SOFTWARE
PARTS

Figure 19. Parts Construction with an Expert System

57

LR & far \-‘n‘.- ‘-' ..' o -_.t- .‘- ‘-' ‘\.‘q-.ﬂ. i ‘-"-' --"-".‘"-' ..' ey
L N % N RIS R TROEIA D LR E I TR HEHA R S ORE RSSO O

»

b

g SU Lol e o

L3
e«

F
'A
1S
-

IR

B e AP
oL

- . v o .

.
/

o+

<S¢ 7

™ W Rl P Py

Ro B

= 5 e e T g
i X e

r
>

¢

i
o o
U

. . . " 3 . Ty i ey . g T T
e Ve W N W o Waw o S at . wr st gtegr i o - Al Bt el e i R0 ER ol E g S A A B R TR SR R g st e i g

A A S B A S

A near-term system may be characterized by the following:

-- It generates single software units (as opposed to entire
software systems) via pre-defined meta-parts.

-- The specification technique is a domain specific speclification
language.

- Some degree of expert system assistance is provided.

Although we have continually highlighted the disadvantages of formal
f specification languages, they are r1..1tively easy to implement and thus
contribute to the overall feasibility of the system. The technology
requirements for the near term are ummarized in Figure 20.

-...I ® aa

* DATABASE MANAGEMENT SYSTEM
— DATABASE SCHEMA
- DATABASE OUERY LANGUAGE
— DATABASE

* EXPERT SYSTEM
— KNOWLEDGE BASE MANAGEMENT SYSTEM
- KNOWLEDGE BASES
o DOMAIN SPECIFIC g
o GENERAL SOFTWARE DEVELOPMENT
KNOWLEDGE
o GENERAL KNOWLEDGE
— INFERENCE ENGINE

e s a3 ».A

S o s

¢ INTERFACE TECHNIQUES
— SPECIFICATION LANGUAGE
— {LIMITED) NATURAL LANGUAGE

N * ADA PARTS CATALOG

Figure 20. Near-Term Technology Requirements

b. Mid-Term Recommendations

LS e e

Most of the technological advances will affect the specification

b technique and the component creation facility. In the mid-term we may expect :j
L%

4 the software generation system to allow the specifications to be provided at 3“
! a higher level of abstraction than was previously possible. Additionally, we :
may now expect the parts creation facility to progress beyond merely -

he

R

N

To}

’ i

o

T e e S T S e T e e N e e e e N

D Bat St et et B8 Bt Bat Bt B8 S Pub Rat Bl b BLbl b IS e St B R Eat Rt BaRuiet Ml it B0 Bt Bl Bt B gud Sk Bub b 8ot S0 S8 8,

3 [
supplying the user with parts constructors to actually generating code for P
some parts. ’

The basic scenario in this stage of development involves having the
user, via some high-level specification technique and/or natural language
dialog, specify his requirements. The software generation system would
analyze the requirements for clarity, consistency, and completeness. The
specification-analysis phase would be an iterative process. Once the
specifications were finalized, an automatic code locator would determine if a

c simple or meta-part exists that would satisfy the user's reqﬁirements. If a
simple part existed, 1t would be retrieved for the user. The user would be
provided with expert system assistance for the instantiation and generation
of meta-parts. Automated construction of some parts will be feasible.
Figure 21 depicts a view of this system.

The automated parts composition system designed during CAMP is
currently feasible (and thus fits the near-term classification). It can
generate complex software components from predefined meta-parts but cannot
generate entire systems. It will make use of a 1imited natural language
interface and specification method, and it will incorporate expert system
assistance. Sectlons IV and V contain more information on this system. The
reader 1s also directed to References 44 and 45 for a description of the CAMP
parts composition system.

59

Tl P,V 0 2% s s a’m

w'y a2 &

L e
INTERFACE
f MECHANISM

USER

¢ PARTS LOCATOR

¢ SOFTWARE PARTS

PARTS CONSTRUCTION RULES
o META-PART SCHEMAS

¢ CODE GENERATOR

EXPERT SYSTEM

SOFTWARE
COMPONENTS

figure 21. MYd-Term Software Generation System

> & = w

>
-_).\(‘ . ._"J"D C .'514-

SECTION IV
THE ROLE OF EXPERT SYSTEMS

1. Expert System Overview 61
2. Schematic Part Constructors ... 63
3. Generic Instantiator 67
4. Parts Identification 67
B PaREsH CaEallioghe e R 68
6. AMPEE SySHEemltces eieisiuens 69

1. EXPERT SYSTEM OVERVIEW

An Expert System 1s a software system which emulates the
buman experts solve problems.

manner in which
A particular expert system is a software
system which has been giVen a body of knowledge about some finite domain
(i.e., application area) and a method of applying this knoqledge to problems
within this domain. When presented with data about a specific problem within
the domain, the expert system 1s able to draw conclusions about the problem
and possibly take some actions based on the conclusions it has reached.
Conceptually, an expert system has a very simple structure (see Figure
22). 1It's knowledge base contains all the knowledge about the domain over
which 1t s intended to be an expert. The inference engine or inference
generator is the mechanism by which the knowledge is used in 1ight of a given
set of problem data to infer conclusions. If an analogy i5s made between
humans and expert systems, the knowledge a human possesses would correspond
to the knowledge base of the expert system, and the physical, electrical, and

chemical mechanisms of the brain would correspond to the inference engine.

61

J.

--h
.‘._“A_

- - o

-
oy
.A_L.A:‘.hf_n .L‘A‘.A.\—A. e a ¥

A

TREF S5 AN

XA

)

O SO O
Oy %, B

2
‘I
l
a
9 EXPERT SYSTEHN
:f PROBLEN 5| INFERENCE >CONCLUSIONS -
& DATA ENGINE AND ACTIONS
N
N KNOULEDGE
BASE
.,
A
ﬁ
s
i Figure 22. The Structure of An Expert System
>
b A great deal of research has been performed over the past two decades

into the structure of knowledge. Much of this work is sti1l in the
conceptual stage but some of it has been incorporated into commercially
avaitable products. For the purposes of this report, the knowtedge
structuring mechanism of one such product, the Automated Reasoning Yool

Ll
& a"

(ARY), will be used to illustrate a typical expert system knowledge base (it "
should be noted that ART is not typical when compared with older systems).

..rj 3’
9 3w

Section V contains more information on ART. ART's knowledge base consists of
: three types of knowledge--facts, rules, and schemata.
, A fact 1s a statement of truth within the domain of exportise. For
; example, the statement "1 i1s the identity for multiplication” 1s a fact
11kely to be found in an expert system designed to manipulate mathematical

-
1]

N
il e i O

equations. Likewise, the statement "steel is heavier that wood" is a fact.

: \:
1 A
f i
s 62 3
g b
J A
¢ b
=
g '
¢ pX
'-. - " T e e I) . » > 1o - - a .. - - SR TR e o e by

v .(-;{4.":{.‘1" i ‘4‘ - .)...- -A_-I'.v_ < F{'$ﬂ {:._I_.-.- \-{~ -f_.- .F“’"‘_-.":.'! I\d’$(‘.'d'_ P .; .,""-f\.'_‘-:'.._:_...'..‘\‘-.\' '.-_."\"..- LN -.- ST -'

A rule is a statement of inference. An inference statement can be
; conceptuaiize as a statement which says "If I know A, then I can infer B".
For example, the statement "If R is transitive and aRb and bRc, then aRc"
would be a rule typically found in an expert system designed to manipulate
mathematical equations. ULikewise, the statement "If X is the lightest
avallable material and X is sufficient strong, then use X in the product™ s
a rule.

A schemata 1s a mechanizm used to structure facts. A schemata 1s very
similar to a data structure in classical programming lanquages in that it
allows the aggregation of data into a single entity. A structure which
contains all the information about a software part in a software parts
catalog would be an example of a schemata.

In the remaining portions of this section, the utility of expert systems
) will be discussed in various software parts composition areas. At the end of
: the section, a system will be presented which encompasses all these areas

into one tool.

2. SCHEMATIC PART CONSTRUCTORS

During.the CAMP domain analysis, it was determined that there were some
types of commonaiity which could not be implemented by means of the Ada
generic facility alone. In other words, we identified software design
paradigms which we believed could be automated but the Ada generic facility
was not sufficient for this process. We called these types of parts

Lt i
A

1 schematic parts. A schematic part is a design template together with a set
:] of construction rules used to build application-specific software components

[y]
PRy .

from the template. After examining various methods of automating these
schematic parts we decided that an expert system would be the best vehicle
for building the schematic part constructors (see Figure 23).

These constructors would allow the user to specify his application's

I TRy

needs for a specific software component and would build the Ada code to

satisfy these requirements. This process 1s best 1l1lustrated with examples.

Y,

o . ,"."‘f X v, e,
A i PN AR

)
g e

63

" o N

S AR

R hantl oM WA i S Sl o Y e T T T W T X R L T T S e et d

FL oM

< a
_ L4

y

, COMPONENT

x CONSTRUCTOR

CUSTOMIZED

, SOFTWARE

3 COMPONENT

-

1 KNOWLEDGE BASE THE KNOWLEDGE BASE CONTAINS
o « RULES THE DESCRIPTION OF THE
= « FACTS SCHEMATIC PART AND A SET

1 ¢ SCHEMATA OF CONSTRUCTION RULES USED

. TO GENERATE AN APPLICATION

~ SPECIFIC SOFTWARE COMPONENT
o FROM THE SCHEMATIC PART

s

3 Figure 23. Overview of a Schematic Part Constructor

A

” Figure 24 depicts the structure of a typical missile's latera)l
¥ directional autopilot subsystem. This subsystem was identified as a
:: schematic part because it can be mechanically constructed given basic «
(4

L4

requirements frow the user such as the type of digital filters to use, the
required rangc and precision of the data, and the type of limiters te use.
Given this information, 1t ¥s possible for an expert system to construct the
. application-specific Ada code for this subsystem. It should be noted that
the expert system w))) use quite a few non-schematic CAMP parts in this

construction. For example, it wil) use CAMP parts to construct the digital
filters and Yimiters.

3
.

L ¢
-

.
]
.
]

: 64

«’m T R R s) B SAORG
.-L-—&:A-:ﬁ‘ .‘LL‘."-‘. ‘\4_...;“_;! 33-)...—-#1‘}-&;4

Another example of a schematic part is d1lustrated in Figure 25. The
construction of a navigation subsystem is dependent upon what the user wants
the navigation subsystem to compute, what data is provided as raw input to
the navigation subsystem, and what navigation coordinate system (e.g. wander
azimuth, north pointing) the navigation computation are to work within.

—| K¢ || FILTER

o

CLAMP SAC b
- i Kol "ol
' . 2 - o . 3

4 O [DIGITAL ® (ROLL ATTITUDE) (RO'.L RATE) ;
FILTER

- J.

A

1 | gSIN .F 2
{) v 3
r IYAW RATEN BIGITAL A o 3

! ====—""1 FLTER F

- “i::T(.:EE?.AL DIGITAL ;

- é K ..
g FILTER Ay || FILTER .:.
.) | KAY| + "
s = %

[

Figure 24. The Lateral/Directional Autopilot Schematic

'
I

-
R R T
S

ave N WY
I.l' LU.'.

-

65

b R R R L T it (i A o i TN

T YT
»

REQUIRED OUTPUT COMPUTATIONS ;.
3 DATA RATE | PRECISION UNITS 5 ;
ER ANGLE :
yeioemy |iemz | iamone Jeeereee | | omwaeasT-———wiC,cle AT
LATITUDE 8 HZ 7 DIGITS JRADIANS
LONGITUDE - - - VERTICAL VELOCITY it c ‘..
GRAVITY 2 HZ 7 DIGITS |FEET/SEC2 PREVIOUS ALTITUDE «—=sstn-{ “26 ko= ALTITUDE a :.,_
=-| HEADING - - - TIME INTERVAL i
. . . . PREVIOUS VERTICAL——-—J }.:_
o N : : VELOCITY {;:;
USER EXPERT SYSTEM =
CONSTRAINTS o't
® NAVIGATION COORDINATE SYSTEM I ~::
® AVAILABLE INPUT J ADA CODE FOR A SPECIFIC I
= 5 NAVIGATION SUBSYSTEM 7
”'.-_
-
pd
6X
(A
Figure 25, The Navigation Schematic :‘_;
Given this data, the actual computations to transform the input to the .
required output are relatively standard. Figure 25 illustrates a schematic j::
part constructor whose knowledge base would contain the standard computations I‘.
such that when told the required output, available input, and coordinate L
system, the constructor would be able to select the correct computations for N
performing the navigation functions required to produce the output. .
Appendix 0 in this volume presents a much more detailed example of a .'.':-
schematic part and its constructor. Appendix D 1s the result of actually o
building a proof-of-concept implementation of one of the schematic part i
k.
constructors. v t]:
N
w
:'\\
:Z::
66 e
Ay
cR

.

"" ')' J.J-,.r AR U

. -
P RE y“ B -,..'.. ..1)\ . PR Ry o . ___\

3. GENERIC INSTANTIATOR

In order to make the CAMP parts as reusable as possible while stil]
protecting them against misuse, many of the CAMP parts were designed as
generic subprograms or packages with relatively complex generic declaration
sections. Fortunately, by using defaults for many of the generic functional
parameters, this complexity can be hidden from the user. But, when the user
wants to have more control over the operation of the part (e.g., what sine
routine 1t should use) he will need to be able to properly instantiate these
generics so that the defaults are overridden. For these reasons, we belleve
some type of general purpose generic instantiator is needed as part of the
software parts composition system. This constructor will have the ability to
construct the Ada code for correctly instantiating any generic based on data
it obtains from the user by means of a dialog. In effect, this generic
instantiator wil) allow the part designer to specify what questions should be

asked of the user to allow the proper instantiation of the generic part.

4. PARTS IDENTIFICATION

A key aspect to an effective software parts program is to provide a

mechanism for the early identification of appropriate software parts.
Software parts need to be identiflied very early in the system development
process (even before the completion of the software requirements activities)
in order to facilitate trade-off analyses, cost estimates, software sizing
and timing analyses, and other activities. In many cases, the functions
provided by a software parts catalog (to be discussed in the next subsection)
are not sufficient for this task. What s needed is the abi1ity to relate
product characteristics to software parts.

The software parts identification function provides the user with the
ability to find appropriate parts for a new application based only on high
level missile requirements and design information. In effect this function
maps missile requirements to software parts. Figure 26 depicts some sample
rules for this function. 1In this sample, by knowing that an anti-ship
missile is being constructed the expert system can infer the need for a

terminal seeker interface package part.

o foehlsienl

g M A e o T R e A S S R ALY S ES CE TR RO
R M S O T B S S S TR LR AN LAY

RULE 1: IF the missile's target type is a ship
THEN the missile will contain some type of terminal seeker

RULE 2: IF the missile contains a hardware component X
THEN the missile software system will need a software
interface package to X

e e s b oA

RULE 3: [IF the missile needs a software interface package to X
THEN ask the parts catalog if one exists

RULE 4: IF the catalog confirms the existence of part X

THEN ask the user if part X s satisfactory for his
application

- Figure 26. Sample Parts Identification Rules

5. PARTS CATALOGING

3 Examined in Vsolation, there is 1i1ttle evidence that an expert system
; needs to be used for a software parts catalog. Although expert systems

N are well suited for this type of application, existing mature tools such
g as database management systems can mplement a software parts catalog

. quite well. 8ut, when one considers the close interaction between the

i schematic part constructors, the generic instantiator, the part

identification function, and the parts catalog, there are benefits to
7] implementing the parts catalog in the same expert system as the remaining
: functions. The parts catalog provides several functions for managing
; parts and examining all information about the parts. These functions
¢ have been discussed elsewhere in this volume. the next subsection also

3 presents some details on the role of the parts catalog.
» 68

r . . a r y - e e _ e a_®e . . . - . - S, -] - 0 . Y J
G o Vo (AL o (AN " B 8 oo f ok T T Ak T e ST N e T s e e e B e s i e Sy o
3 4’ ERERLS] » .‘.‘4.-.0,,...‘:_. s ® 4 -‘,‘:_, .:.._,.:'-l_,.‘...l‘-"._,A.L-.l.' il ey o f 0 830 @, S e Rl Lo L "

-y e al s allat ada -

T T TV T T R R BT R S R N R V-

8

T T TR

6. AMPEE SYSTEM

During CAMP, a software parts composition system was designed based
on the use of an expert system that would provide all the aforementioned
capabilities in one tool. This system was entitled the Ada Missile Parts
Engineering Expert system and is summarized in Figures 27 and 28.

The advantages of use using an expert system for this tool are:

a. Expert systems are useful when the process being implemented are
evolutionary in nature. In other words, when the knowledge
changes rapidly, a classical program would have to be recoded.
An expert system needs only its knowledge base charged.

b. Expert systems are very powerful symbolic processors. Our
implementation of a schematic constructor showed that with a

small number of rules, a very powerful system can be constructed.

c. Expert systems allow the construction of a very simple user
interface. Because the interaction between man and machine has
been a primary focus of artificial intelligence since fits
inception, most expert systems have very powerful facilities for
building interfaces which allow the system to be used with

minimum training and/or expertise.

69

PR | SRR | e

N
;ﬁ
:
E

, e
PR e

— CRS
AL, LU ANCS

=%

< SRS A

PLSSRAEREREAC Y LPASLILPLERTY! AR A AN AT ket P S | IR R

Cad Al el el e Rt S Dn Loy

VTR m T Y %

Wa3SAS 33dWY Y3 3O MILAUIAQ /7 34nbiy

j FEVH4 DNIOOD IVALIOS FSVHY NOISIO IVMLIOS ISV NOISIO WILSAS THSSN ﬂ

VIINONT IVMLI0S WIINIONT FIUVYMLIO0S VEMRDNI PALSAS JUSSIN @

22 laled o Ealalalia

SNOSI0 sve SPHONLS $90-30VML * g
GUVONVLS NOMS SLNINOINGD VAVO S1UVd 3HL OVNVI OL UVINOV4 A

FNVMLIOS (DH1DI34S NOUVINdY o1 BLNV4 ML LNOGY Q1 ¥30¥0 M AWYV3 S1Wve
CIDWOLSND LUAVENTD OL NOUYWYON! TTV LNO ONtd OL FUVAUIOS 1UVINIOUSIY ONEd OL

2o a2t nlolal mla

Alatc tanaTa s oo Yo Yot " AT

70

i I P 0 Y

AT ATLT a %Y

01 QaY OL ASV3 »

35N 01 ASYS » ‘ ;
1001 INO NI SNOLLONNS 1TV «

XVA D30 ANV NO 218V1ISOH «

A AN S o A SR e Dy S Sy e YR - RS S G e e T e

wa3SAS 33dWY U3 Aq papLAOLd suorjeaadg -8z 24nbL4

71

O Awve

ONIDOTVLIVI SiNVd
WOOR RevALIOS THISIN TWIBOWVEEN

e — %L £ R Nt LRt e e T A R Y S e A A A S e S TR e S S H A B

Ay
¥
.
*»
i
N
e
ﬁ
Vv
¥
A
.
.
-
i
el
i
O
S
1
' x
.
uFe
v
L
I
L
<
%
0y
v
“u
73

s
|
N
...L
o |
A

1
-

SECTION V
EVALUATION OF AN EXPERT SYSTEM

M R LR

1. Introductioncciiiaatn 12
2. Means of Evaiuation 14
3. Overview of ARTc.o..n. 14
4. Evaluation of ART with respect to

the Problem Domain (AMPEE) 81
5. CONCTUSIONS . cvvcsossmosimsssnmeninns 85

1. INTRODUCTION

T TR N e 6T

The CAMP program was tasked to evaluate the role that could be played by
{ an expert system in support of software reusability in the missile flight
‘ software domain (see Section IV), and to evaluate a commercially available
(1.e., an off-the-shelf product) expert system tool relative to this
domain. ARTTH, available from Inference Corp., was selected for

evaluation.
ART is a commercially available expert system development tool that falls

into the category of ar 2xpert system shell. An expert system shell is a
software system that provides the inference engine and infrastructure for an
expert system thus greatly simplifying the development of an expert system.
The expert system developer need only supply the domain specific information
for his application (i.e., he provides the rules, facts, etc., which are
specific to his domain). Although this is not a trivial task, it does bring
the development of expert systems within the grasp of many more people.

It must be emphasized that ART is neither an expert system nor a software
generation system, rather it is a tool that can be used in the development of
2 expert systems. The CAMP project utilized ART as the basis for developing a
I software parts engineering expert system, but ART is not limited to that
h domain (1.e., it can be used as the basis for development of expert systems

R PR et PRTRERTRT AT

in virtually any domain).
ART was selected from among the available products for a number of

reasons; they are summarized in Figure 29, and discussed in the following

paragraphs. N

RN §
AT

12

..................................
o -

B T T T T N A A NS AN T A T L T Y M S M TN M 0 M0 A R S S Sl S e e e e
¥

No hardware procurement under CAMP contract

Available on a widely used processor
o Lower cost to end-user by utilizing VAX
Sufficient functionality

BN (AT)

%

s
——
o

e
o
A

Figure 29. Why ART was Selected for Evaluation

oA,

- The CAMP contract called for the procurement of no additional hardware,
thus it was almost mandatory to find a product that was avallable on a VAX.
Additionally, it was desired to evaluate a product that was hostable on a
widely available processor. Again, this pointed to a product that was
available on the VAX.

VAX equipment is in widespread use throughout the DOD and defense
contractor communities, thus the cost of adopting the expert-system approach 5
to software parts engineering that is recommended here is much lower than if
speciaiized hardware (e.g., LISP machines) were required. Cost can be
measured in terms of both time and money. The monetary cost is much less
because specialized hardware is not required. The time cost is also less
because personnel are already familiar with the VAX. Familiarity has the
additional advantage that, although there are many new ideas assoclated with

TV R T
-

STy

-
'S

AR .

s

A
L

a parts engineering approach to software engineering, at least the tool is
based on a familiar computer system and thus may not appear as radical.
These factors can contribute substantially to the probability of success of
this type of software reusability effort. N
Many of the expert system development tools that are commercially
available have been developed for specialized LISP hardware such as the
Symbolics machine. Although these specialized machines are optimized for

LISP, and generally provide a comprehensive development environment, the

R It R

additional cost of acquiring such hardware was unacceptable at this time both
from the viewpoint of developing the system, and from the viewpoint of
expecting others to acquire and use such a system. ART provides
functionality that is at least on a par with many of the products that are
avallable only on specialized LISP hardware; this functionality is discussed
in Paragraph 3. (Note: ART is also avallable on both the Symbolics and LMI
LISP machines.)

Thus, the cost, functionality, and availability of ART made it a feasible

DUERCES LGSR O S S e

product for evaluation in the CAMP study.

«

13

IR Y Te T

2. MEANS OF EVALUATION

In order to evaluate ART, 1t was used as the basls for a proof-of-concept
implementation of a software parts engineering expert system known as the Ada
Missile Parts Engineering Expert (AMPEE) System, and as the foundation for
the requirements and design of a prototype of the AMPEE System. The
requirements and top-level design of this prototype system are described in
References 44 and 45, respectively. The AMPEE System 1s an expert system to
promote software reuse in the area of Ada missile flight software. It
provides capabilities to catalog, identify, and locate reusable Ada software
parts. It also provides a component construction facility to assist the user
in the instantiation of meta-parts. The proof-of-concept implementation
involved primarily the Finite State Machine Constructer which 1s described in
detall in Appendix D of thls volume.

1he application did not entail the use of all of the features provided by
ART, but many of them were tried with smaller sample applications.
Additionally, one member of the CAMP team attended two weeks of training in
the use of ART and was able to try and discuss features that were not used in
the CAMP application. The proof-of-concept implementation made use of the
following ART features:

= facts
relations
schemata
- rules
-- case statement, 1f-then statement
-~ LISP interface

3. OVERVIEW OF ARTY

In the following paragraphs a number of ART features that faclilitate the
development of expert systems are discussed. Some other features that would
be useful, although they are rot currently available, are also identified.
tinally, some problems and design 1ssues that arise from the use of AR] to

develop an expert system are dliscussed.

It should be noted that during the evaluation period, only Beta versions
of ART were available on the VAX. Although an improvement was noted between
Beta versions, initially functionality was somewhat limited, and development
was hindered by system bugs.

a. ART Background

An ART program does not contain functions or subprograms as are
found in traditional programming languages such as Ada or Fortran. Instead,
actions {(which traditionally are performed by subprograms, etc.) are
performed by rules which fire (1.e., execute) when all of their conditions
are satisfied. Rules generally take the following form:

if <condition{s)> then <perform specified action(s)>

Conditions take the form of patterns and pattern restrictions which
must be matched by data within the current state of the expert system's
knowledge base. Data is represented as facts which take a specific syntactic
form (see the ART Reference Manual, Reference 46, for details).

ART automatically runs through all of the rules that have been
supplied in an effort to determine which rules have their conditions met (or
satisfied) by facts currently in the knowledge base. Rules whose conditions
are met are said to be instantiated. Instantiated rules are placed on what
is referred to as an agenda. Only rules that are on the current agenda can
be fired (i.e., executed).

The determination of which rule on the agenda will fire is based in
part on priority. The expert system developer can assign priorities to rules
which will cause an ordering of rules on the agenda (1.e., rules that have
been instantiated). If a rule has not been assigned a priority, either
expliclitly or based on the type of rule, it will automatically be assigned
the default priority. Rules with the same priority are ordered on the agenda
in essentially a random manner.

If a rule firing causes a change in the current state of the
knowledge base, the agenda will be recalculated. In general, rules do cause
changes to the current state of the knowledge base, thus one can effectively
think about the agenda being updated after every rule firing.

75

5
PN

LI T T 7

P
G g

A

o o w el ey
e o e S e e s
’ . D)

e e ow .
s igt,” 8

v e
(3
%

A L U - a g g i e L@ a0 B i Gy 8 8 o b ety o o s A AT A RS, o e (A VI et o foai b a i i il b et s o g g el it T i

| | reTe

At any given point in the running of the expert syslem, a particular

R RRRG)

fact will only cause one firing of a given rule. The implication of this 1is
that although a rule may st1l11 be instantiated by a particular fact, 1t wili

£ P e

-
.

not remain on the agenda or fire repeatedly in what would essentially be an
endless loop.

25

Retrieval of information from an ART knowledge base differs from
retrieval of information from a traditional database. Within ART, searching
¥s merely an outgrowth of the pattern matching process, 1.e., specific

-~
L3

R
.

searching routines need not be developed because this function 1s performed

N

automatically by the pattern matching process which is an integral part of '
the ART environment. Specific rules are needed to direct ART to attempt

v r
“'e

pattern matching in search of specific data within the knowledge base, but
this differs from writing a traditional search routine.

e o W
’,....

b. Features Provided

l‘l

v w e
™ PR

ART consists of both a programming lanqguage, and a development and

e

run-time environment for expert systems. ART incorporates many features that
facilitate the development of an expert system; these are summarized in
Figure 30. Detalled Information can be found in the ART reference material
{References 46 - 49).

aa AT,])

e

e Forward and Backward Chaining

* Viewpoint Mechanism

¢ Schema Structure ‘
* Relation Faclility

e LISP Interface

¢ Development Environment

-,...L,.,,
P82ttt e T

L .
o -
l"'l-

EEIorLL

¢ Debugging Alds

Figure 30. ART Features

.‘;; ',

.
.y
3

=

)

76

o= 2"
a s

L G R L RR PR GE S O n

The reasoning mechanism of an expert system s referred to as the
inference engine. The inference engine typically works through either
forward or backward chaining; ART incorporates both reasoning methods.
forward chaining starts with a basic premise and reasons forward to a
particular concluston. A forward chaining rule could be represented in the
form 'if an anti-ship missile is to be developed, then a terminal seeker will
be needed’'. Backward chaining begins with a conclusion to be proven (or a
goal) and then attempis to find a series of logically consistent facts and
rules that support that conclusion. For example, if the gocal is to compute
navigation coefficients and not all of the information is immediately
available, subgoals will be established to compute the required information.
If these subgocals can be satisfied, then the original goal witl also be
satisfied. Forward chaining reasoning has been referred to as being data
driven, while backward chaining reasoning has been referred to as being goal
driven (Reference 50).

Historically, expert systems have utilized a backward chaining
reasoning mechanism. The parts engineering application involves the
potential search through many parts in an attempt to determine all of the
parts required for a particular application. Backward chaining through such
a search space will not be as efficient as establishing a set of forward
chaining rules to accomplish t!'= same task, thus ART's dual reasoning
mechanism is a desirable feature for incorporation into the AMPEE System.

ART provides a powerful viewpoint mechanism for use in modeling both
temporal and hypothetical reasoning. The temporal viewpoint mechanism allows
the expert system to reason about a situation over time, while the
hypothetical reasoning mechanism allows the system to reason about
hypothetical alternatives. One CAMP related area in which hypothetical
reasoning could be utilized is component construciion. For example, if the
construction of a component requires the composition of several software
parts from the Ada missile parts catalog, and more than one part meets the
initlal criteria for inclusion in the composite, hypothetical reasoning could
be used 1o have the conslructor pursue the use of these alternative parts.
Through the use of Lhe hypothetical reasoning mechanism, all alternative
paths to the constructlon could be pursued essentially simultaneously. If
timing, size, or accuracy constraints had been established by the user, this
information could be utilized to select the appropriate instantiation for the
user.

17

s

 SOSI

AP ETSSS S

>

-
-

L

u

RO SRR | SRR |

a” o

»
B

A TR R RSN s

.

*

NIRRT | anan s et i ity |

-

ol e et o TSR o T DT AN (R gt G bl e b g e . A e

The two types of reasoning can be combined in a single application.
The viewpoint mechanism also provides a2 method of reducing the search space.
Fof example, 1f 1t Is known that it 3s a contradiction for a certain set of
events to occur in the same viewpoint, that viewpoint can be pruned from the
search space; ART will never alliow that viewpecint to be created again. ART
also provides a mechanism for merging viewpoints In order to reduce
redundancy.

A schema structure 1s provided that allows automatic inheritance of
information between related schemata. A schema 1s a collection of facts
about a particular object. The Ada software parts catalog that forms a part
of the AMPEE System can be implemented via the schema structure provided by
ART. This 1s done by establishing a template for a catalog entry; there is a
place for each catalog attribute in the template. Default values or known
properties about an attribute can be specified In this template. Each
specific catalog entry is an instantiation of the template; the individual
catalog entries will inherit the default values and specified properties.

ART also has a relation structure that provides a simplified means
of enforcing certain consistency constraints. For example, if a relation
‘upstream' was defined, and its inverse was defined to be ‘downstream', then
any time an 'upstream' fact occurred, @ 'downstream' fact would be added to
the knowledge base automatically.

ART provides a means of interfacing to LISP routines. This allows
the expert system developer to write special -purpose LISP routines to perform
functions not provided by ARTY and to access those routines from within ART
rules. Examples of the types of routines that might be developed in LISP
include data conversion routines and speclal-purpose Input-output.

The Symbolics version of ART provides facilities for the development
of graphic end-user interfaces; the facility is known as the ARTIST. The VAKX
version does not currently have this feature but 1t 1s expected to be
availiable in the near future.

The ART development environment has several features to facllitate
system development. For Instance, the Studio interface provides menus for
accessing ART facilities; these facilities can also be accessed via
commands. Faclilities are provided for watching changes as they occur in the
knowledge bases, and for watching the firing of rules as the application is

run. A graphical interface is available on the Symbelics version that allows

PR}

o v e e e e

o 2R SO SR R
[a"r s -._1 e

-

T

-
oy dys iy

‘s

10 3¢

e
)

B Pty by

S

the user to watch the viewpoint structure during the running of the expert
system. There are also facilities for inspecting the knowledge bases both
before and after execution, and for viewing the stztic viewpoint structure.
The Symbolics version has {(and the VAX version will have) facilities for the
display of multiple windows; this allows the user to view several aspects of

system operation simultaneously.
C. Facilities not Provided

One faclility not currently provided is for the use of variable names
to reference schema slots, although this 1s a feature that 1s under
consideration for incorporation in a future release of ART. This feature may
not be needed on a day-to-.day basis, but on occasion, it would allow rules of
a more general nature to be written.

Additionally, ART does not provide a mechanism for permanently
updating the Initial state of the knowledge base by facts generated during a
run. Currently the knowledge base Is reset to 1ts Initial state each time
the expert system Is loaded or reset. This can cause difficulties in certain
applications, but 1t is possible to work around this constraint by providing
knowledge base updating routines in LISP and accessing those routines from
the ART application.

ART does not currently support the use of rule sets. Although more
than one ART application fille can be loaded, if they are not all loaded at
the time the expert system is initiated, the 'reset' that is required to make
an ART application file accessible, will cause all of the ART files that have
been loaded to be reset, thus restoring the knowledge bases to their initial

state.
d. Problems Encountered with the VAX Version

The VAX version of ART 1s lacking many of the 'nice' run-time
debugging features that are avallable on the Symbolics version of the
product. As mentioned earlier, there arc currently no end.user graphic
interface capabilities, although work 1s currentiy in progress at Inference

to make this feature available on the VAX.

19

v i A TR) i \J. . o

. « a8 i
PR SRS

SRR e A S SR R Al S e i T O g N SR ik
{3-"' s ‘:J ':!4':: Lot '.I—J.L*‘ o ¥ % LrA.'-‘_rL-‘.-_“A_’f._"L' at L(‘\‘“L{‘.-t A\'.-!‘..f..\"‘\'\1.:1‘ P M Rt e o W VR

0
i il

-] PP P AL 4 P e

Con o gl g’ o oo
% »

or e SN

)

APt

4. -r.i

e
AP

|

B
'
.

'
‘m

SO |

FFDPL IR

L

AT o 4

s

il

s a_ B8 0, 0 'y
RV WU

S

L]
PR %% e

At et s

4 a & & 2 &

S AR

Execution speed has also been somewhat of a problem with the VAX
version of the product. Achievement of any type of reasonable response time
on a VAX 11/780, required operation as a single user. Even then development
and debugging proceeded at an agonizingly slow pace. AR1 was rehosted on a
VAX 8600 with a significant improvement in response time even with many (up
to 15) users on the system running all types of applications. A three and a
half fold decrease in CPU time was noted for the loading of some ART files.
The reaily dramatic improvement came in actual elapsed time. ART is
scheduled to be targeted for the Micro-VAX II; no figures are yet available
concerning expected response time on this machine. '

Improvements 1n speed will come in two areas: from the optimization
of LISP by DEC, and from the optimization of ART by Inference.

e. Design Issues

The incorporation of ART into an expert system has a direct impact
on the design of that system. For example, the AMPEE System will require a
non-trivial amount of time to load and reset on the VAX, therefore i1t would
be desirable to load in smaller portions of the system as they are needed.
The problem with this 1s that in order for an AR) application program to be
run, it must first go through the load and reset steps. Load causes the ART
source code to be compiled and certain data structures to be built. Reset
causes any initial facts and schemata to be asserted into the knowledge
base. It also calcutates the initial agenda. If, during the execution of
some portion of the AMPEE System, it became necessary to load in another

portion of the system, a reset would cause all of the Art-based expert system .

that had previously been loaded, to be reset. The implication of this is
that all of the previously fired rules would become eligible for firing again
as the old facts were re-asserted into the knowledge base. Additionally, the
reset wipes out any interim facts that may have been added to the knowledge
base by means of actions on the RHS of rules.

One possible solution to this problem is to precede the load and
reset sequence of commands with a clear command. Then previously fired rules
would not Fire again, but, the clear would eliminate any intermediate facts
from the knowledge base. Additionally, the rules that had previously been
loaded would no longer by available, as they too would have been cleared from
the knowledge base.

80

PAFRS| (APl e i s as e P R

Py o S e N

. e -
L, T

=i e B

Another possible solution is to maintain the AMPEE System as a LISP
suspended image. Thus, as part of the logout procedure from the AMPEE
System, a new suspended image would be created that would be written to 2 new
version of the same file that was resumed. If for some reason, an abnormal
termination occurred during the execution of the AMPEE System, and normal end
of processing was not performed, the work of the entire session would be lost
because the new suspended image would not be created.

Depending on the type of usage that s foreseen (especially for the
prototype version), th)s may not be such a drawback. Ffor instance, 1f little
updating will be performed to global knowledge bases (e.q., the catalog or
the requirements database) then generally not much data would be lost In the
event of an abnormal termination.

4. EVALUATION OF ART WITH RESPECT TO THE PROBLEM DOMAIN (The AMPEE System)

Because AR1 is an expert system development tool, 1t Vs suitable for the
development of expert systems in any problem domain. 1hus, in addition to
evaluating AR1 Vtself, the expert system developed using ART must also be
evaluated for 1ts suitablility to the problem domain. In the paragraphs that
follow, the evaluation criterla and issues identified in Section III will be
applied to the system proposed under the CAMP study. These issues and
evaluation criteria are summarized In Figure 32.

The AMPEE System does support the reuse of pre-bullt Ada software parts
for use In the area of missile flight software, but the prototype design does
not call for an automatic means of enforcing reuse. Reuse is supported at
the requirements and design level via the use of schematic parts. Reuse at
the code level takes place through the reuse of simple and generic parts.
Code efficlency 1s very important in the AMPEE System. There are two places
where this comes into play:

.- The s¥mple and generic parts are coded as efficiently as possible.

-- Efficlency rules are Incorporated into the part constructors to

facilitate the production of efficient code.

The technology used in the AMPELE System has emerged from the laboratory
and s now commerclally avallable, but 1t is sti1l considered an emerging
technology area. The system is designed to be flexible and easy to maintain
'n order to Incorporate future technolegical advances.

81

:... ,.'-ﬂ‘ (PP |

R
A,

i i e et i e LA bbb e b e 2o S et e ol s s i L o R ek i e e - g g

Automation s provided in the areas of part identification and location,
and in the generation of tallored software components from meta-parts.
further automation can be incorporated as Yt becomes feasible.

The AMPEE System is targeted for the missile flight software domain,
thus, l1ittle is required when the system is delivered. The catalog of parts
1s easily updated, thus the addition or deletion of parts to the system is
easily accomplished.

The user will interface to the AMPEE System via menus and a |imited
natural language dlalog. €Each major facility (V.e., the catalog, parts
identification, and component constructors) will be directly accessible to

PR b ot 8

the user. It ¥s expected that the system will be usable by both software
engineers and domain engineers. User training requirements will be developed
in the next phase of CAMP.

The user will be prompted for specifications for the software component
under construction. The specifications provided by the user will be analyzed
for consistency and completeness. The transformation of these specifications
into different forms (e.g., program design language, text, graphical form) 3is
not a feature that will be provided initially, although it ¥s a desirable
feature of this type of system.

The component constructors will produce correct Ada code that will have
efficiency bullt into 1t, but facilities are not provided for proving the 7
correctness of the code. The size of the AMPEE System and the storage and
response times are indetermipnate at this time (see References 44 and 45).

g (PP RNRS . AR

o
f

ettt et

e,

N PN |

-
.

1

u"

-:1

*a

a

82 :1

4

' A .

=

y

£ 4

W P W e e AN e DV W -. . s L- . .: 3 o F 3 ~ -\..) = - r ‘p - - [. . - .' L

. 3 . T W R .t By %1y b Lk % S 3
ﬂgvﬁdi;dfﬁcff?seddhhuu,.”:rr:uuuuL‘ru‘.u).»\AJ,,JJ,,AuuL

REUSABILITY
* {S THE REUSE OF PRE-BUILT PARTS SUPPORTED?

* AT WHAT LEVEL IS REUSE SUPPORTED {e.g.. REQUIREMENTS, DESIGN,
CODE} AND MAINTENANCE PERFORMED?

® IS REUSE OF PRE-BUILT PARTS ENFORCED?

ADA AND THE PROBLEM DOMAIN
* |S ADA SUPPORTED? li.e., CAN ADA PARTS BE GENERATED?}

* IS THE PROBLEM DOMAIN {s.g., MISSILE FLIGHT SOFTWARE)
ADDRESSED?

* IS THE CODE PRODUCED EFFICIENT ENOUGH FOR THE PROBLEM DOMAIN?

TECHNOLOGY

¢ IS THE TECHNOLOGY OF SUFFICIENT MATURITY FOR INCORPORATION INTO
AN AUTOMATED SOFTWARE GENERATION SYSTEM?

* WHAT DEGREE OF AUTOMATION IS PROVIDED?

SYSTEM INITIALIZATION MAINTENANCE
* WHAT IS REQUIRED WHEN THE SYSTEM "COMES IN THE DOOR? (i.e., IS
DOMAIN ANALYSIS REQUIRED? MUST A DOMAIN-SPECIFIC LANGUAGE BE
DEVELOPED? DOES EXISTING CODE NEED TO BE RESTRUCTURED? DO
SOFTWARE PARTS NEED TO BE PRE-BUILT FOR LATER USE?)
® IS THE SYSTEM EASY TO MAINTAIN?

* CAN THE SYSTEM EVOLVE AS TECHNOLOGICAL ADVANCES ARE MADE?

PHYSICAL ATTRIBUTES OF THE SYSTEM

® IS THE SYSTEM A REASONABLE SIZE? {i.e., WHAT ARE ITS BASIC
STORAGE REQUIREMENTS?)

® IS THE SYSTEM EFFICIENT IN TERMS OF BOTH STORAGE AND RESPONSE
TIME?

fFigure 31. Issues/Criterta of a SGS

a3

. -

P —— e
~ o B % s et e RERTY,T,CL T

e s e e) S A Ly i & TR S < /R e - PR

LIS o s 2

- A

SPECIFICATION TECHNIDUE AND THE SPECIFICATIDN

* WHAT TYPE DF SPECIFICATIDN TECHNIDUE IS AVAILABLE? (e.g.,
FORMAL SPECIFICATION LANGUAGE? NATURAL LANGUAGE? PRDCEDURAL
OR NDN-PROCEDURAL?)

S rrrr‘;;.

A doA

* IS THE SPECIFICATION TECHNIOUE APPROPRIATE TD THE USER? ARE
MULTIPLE SPECIFICATIDN TECHNIDUES PRDVIDED SD THAT THE MDST
APPRDPRIATE ONE CAN BE USED?

¢ WHAT LEVEL DF EXPERTISE/TRAINING 1S REQUIRED TO EFFECTIVELY
INTERFACE WITH THE SYSTEM?

® IS THE INTERFACE TECHNIOUE APPRDPRIATE TO THE PROBLEM DDMAIN? 4

¢ CAN THE SPECIFICATION BE AUTOMATICALLY TRANSFORMED TO A FORM ‘
THAT IS COMPREHENSIBLE TO ALL PARTIES WHO NEED TO KNDW?

* CAN THE SPECIFICATIDN BE PUT IN A FORM THAT IS ANALYZABLE 1
{e.g.. FOR COMPLETENESS, CONSISTENCY, CLARITY)?

* IS THE SPECIFICATION MAINTAINABLE (IF THE SPECIFICATIDN IS TO
FUNCTION AS A FORM OF DOCUMENTATION AND CONTROL, IT MUST BE
MAINTAINED IN A CURRENT STATE THROUGHDUT THE SOFTWARE LIFE
CYCLER

USER SUPPDRT

* IS THE USER ASSISTED WITH SPECIFICATIONS (i.e., IS PARTIAL
SPECIFICATIDN SUPPORTED?)?

g * DOES THE SYSTEM SUPPORT AN INCREMENTAL DR ITERATIVE APPROACH TO
. DEVELOPMENT?

b, * ARE THE SPECIFICATIONS CHECKED FOR COMPLETENESS, CONSISTENCY,
4 CLARITY?

¢ CAN THE USER INTERFACE DIRECTLY WITH THE VARIDUS COMPONENTS
OF THE SYSTEM (e.g.. CAN HE DIRECTLY OUERY THE PARTS CATALOG?I?

SYSTEM OUTPUTS

e e LT e

¢ IS OPTIMIZED CDDE PRDDUCED?

¢ IS THE CDDE VERIFIABLY CDRRECT?

o, 4=

® ARE FACILITIES PROVIDED TO VERIFY CDRRECTNESS OF RESULTING
MODULES (e.g., AUTOMATIC GENERATION OF TEST PROCEDURE,
9 CORRECTNESS PRDOFS)

o i
r t
ik

iy

L=
»

* ARE SUPPORTING DOCUMENTS (e.g.. ADL, SYSTEM DDCUMENTATION)
PRODUCED?

.

.
b

0
s

+

f P .

Figure 31. Issues/Criteria of a SGS (Concluded)

R e

E* 5

84

’.~. -

._“,, Ry 7 YO U T h DR T
- |l

T T T T e T T T T T T Y I N T T e T M T T T R T M S e o

5. CONCLUSIONS

During the evaluation period only Beta versions of ART were avallable on
the VAX (ART was released on the Symbolics in March, 1985), but a consistent
increase in quality has been noted during that time. Although ART is not yet
a mature product, and as such suffers from some of the drawbacks of systems
that are newly developed, it provides a high degree of functionality for the
application under consideration in the CAMP study. It is anticipated that
there will be an improvement in efficiency and speed of the system which will
facilitate system development and make ART an even more attractive choice for

- expert system developmeznt on VAX-based systems. Thus, ART's functionality

! coupled with its availability on VAX equipment and the interest of Inference
L personnel in improving the product, lead us to conclude that ART is a tool
that should continue to be used in the CAMP project.

'
‘i
»
4
'.
A
.
)
5
N
»
N

Y
l’

£

,..‘
it

sd.d

g el g L
Aoy) LR .

T T T
P
e T

.l

PR I8

PR

JIET

a1 4§ 4§y A ' tom Lol gl Ry, s o il ot LA R R e g PURE Y Fiag R T e s b gd Lol Al Sl e el g e e Bl e g o g

SECTION VI
SOFTWARE PARTS COMPOSITION SYSTEM CONCLUSIONS

This section discusses some of the conclusions reached during the
software composition/generation study portion of the CAMP project. Volume I
contains conclusions that relate to missile software commonality and the
design of software parts.
The development of a universal software generator system is not
" practical in the foreseeable future. Although there are several research
efforts underway to develop application independent systems which can ~
generate software from requirements, these systems have several major
drawbacks.

They are sti11] in the research phase of development.

They are very complex to use.
i (8 The code they generate is not efficient enough for real-time
3 embedded applications.

Few existing software generation systems are capable of handling
software parts. Most of the work being done In the area of software
generation assumes that a new software system will be generated from
scratch. In those systems which do account for reusable components (e.g.,
Use.It), the parts are restricted to simple functional black boxes. No

% provision s made for complex parts (e.g. generic and schematic parts).
Formal specification languages have severe drawbacks as interface |
j mechanisms to a software parts composition system. Although a formal
specification language i1s a sound technical approach to specifying software
requirements and design information, past experience has shown that this type
interface mechanism 1s very poor In terms of comprehensibility. In effect,
only experts can read and understand the data being described. Since the
goal of a software parts composition system is to simplify the use of parts,
we believe that this approach 1s not fruitful. I
An automated software parts catalog is an essential component of any l
successful software reusability effort. Given that there ¥s a significant
number of parts, an automated too) will be needed to help manage the parts
and to help the user of the parts analyze them for suitability for his

86

.....

'J'#"J.f..r..q-.' b e "¢ :
- LR AT AN e LY b L M Ve N - . X &=
_A'_A_. y B W B ‘AA.h}_qh'.A‘.n;_.x * ' a*>a"a ‘_A_.J_:A_'.L:J}AAL.!A_IAA~._A__.__.\ b, S T UL PN, WL DU I, L N T, e e e o,

2 Al

application. |If parts are constructed from other parts (as they should be)
the interrelationship of the set of parts can become quite complex. An
automated tool can help the user manage this complexity and increase the
productivity gained from using the parts.

A textual software parts catalog 1s an essential aspect of any
successful software reusability effort. The exlistence of an automated
software parts catalog does not preclude the need for a textual version of
the catalog. There will be organizations which for some reason or another
will not have access to the automated tool and will need information about
the parts. Ideally, the automated software parts catalog will be able to
generate the textual software parts catalog.

The early Ydentification of software parts can be facilitated by an
automated tool. A critical factor in the successful use of software parts
wil) be the introduction of the parts into the software system early in the
softwqre development process. In other words, the knowledge that software
parts will be used (and the knowledge of what parts will be used) will have
an effect on the design of the software. In addition, the use of software
parts might impact the requirements for the software. This case might arise
when the existence of certain parts facilitates a certain algorithmic
approach (e.g., If the missile guldance engineer is aware of the existence
of a wealth of parts to perform an operation in a certain manner, he might
select that approach to reduce costs). The parts identification process will
map system (e.g., missile) requirements to existing software parts thereby
allowing early identification of applicable software parts. 1This
identification will also facilitate trade-off analyses, cost estimates, and
sizing and timing analyses.

The technology exists for automating the construction of software
components from design paradigms. The concept of software design parts has
been discussed for a number of years within the software engineering
community. In the past, most researchers have adopted a template view of
this type of part. In other words, the design would be implemented by means
of a template which the user would manually complete. Our experience on CAMP
indicated that 1f the template 1s supplemented by a set of construction rules
then the construction of the software component from user -specified
requirements could be completely automated. We have termed these types of
parts {template plus construction rules) schematic parts.

87

gl TR e

Wl VX XA

A

Pl PR

. 8t Y

s -5

Expert systems have a high potential in the automation of the software
parts engineering process. Expert systems are typically beneficial in areas
which have eluded solution by classical programming techniques and which are
currently being solved by human experts. This 1s most definitely the case iIn
the use of schematic parts and in the identification of applicable software
parts. During CAMP we demonstrated that schematic parts can be effectively
and efficlently generated using an expert system. We also designed a system
for parts ldentification using an expert system. Although the software parts
catalog need not use an expert system (e.g., classical data base management
systems can be used), the incorporation of all three functions iInto one tool
facilitates Information sharing.

88

B gl S

: = - . AN e B
hf..-‘-\fk-tlain fcf — \.hn..ll-“. QQ‘. ~.\~ > -..w..\.‘-. PR #

NN _.w‘..i..i..:..u
A A P T
%4

s

)
2

1 %
-0

. X
o o

i! *

. o
. "

o
A Y

SN
A

S

89
n\:n

APPENDIX A
DEFINITION OF THE CAMP PARTS CATALOG ATTRIBUTES

p i N

2 8 s X

b

a Tmewm - - Ui Rt et | b - Chad . . - = ¥a - =W oN - - [T A - by - S e e A

APPENDIX A
OEFINITION OF THE CAMP PARTS CATALOG ATTRIBUTES

This appendix provides a detalled explanation of each attribute of the
Ada missile software parts catalog developed under the CAMP contract. For
each attribute the following information is provided (as applicable):

(a) The name of the attribute.

(b) The data type of the attribute. The type of an attribute can be
STRING (e.g., the value of 'Part Jd' s a string), TEXT (e.qg., the
value of 'Abstract' 1s of type TEXT), ENUMERATION (e.g., the ‘Level’
attribute must have a value of 'simple’', 'generic', or 'schematic'),
or NUMERIC (e.g., the value for 'Source Size' must be the number of
Iines of code).

(c) The domain of an ENUMERATION type.

(d) 1The status of the attribute. This is elther REQUIRED (1.e., all
parts must be supplied a value for this attribute) or RECOMMENDEQ
(V.e., the attribute s recommended for completeness but not
required).

(e) Where useful, an example of an attribute value is shown.

(f) The description of the attribute's meaning.

In addition to the above Information, attributes whose value 1s dependent
upon the scope of the catalog are identified, and the differences in content

are elaborated. Figure A-1 enumerates the catalog attributes.

=g P

PART ID

VERSION

ABSTRACT

TYPE

CLASS

OPERATION
KEYWORDS
DEVELOPED BY
DEVELOPMENT STATUS
CATALOG UNITS WITHED
USAGE

SECURITY CLASS (PART)

LINES OF CODE (SOURCE) FIXED OBJECT CODE SIZE ﬁ
REQUIREMENTS DOCUMENTATION DESIGN DOCUMENTATION
HARDWARE DEPENDENCIES OTHER RESTRICTIONS ¢
ACCURACY TIMING CHARACTERISTICS i
REMARKS 3

REVISION 1D -
NAME E
CATEGORY :
LEVEL :
INLINE

PARAMETER NAME

DATE CATALOGED

AT |

DEVELOPED FOR

VERIFICATION STATUS

WITHING UNITS

LOCATION OF CODE

SECURITY CLASS (CATALOG ENTRY)

Figure A-1.

T T - e o . s L "
AT AN N O e PR, o o P R TN

A

v

Catalog Attributes

{IJJ_.'{-’ ‘

N

s S “ho%, X - -

Part Id

STATUS Required

EXAMPLE

DESCRIPTION The Part Id 1s a non-semantic code which together with
the value of the Revision Id attribute uniquely identifies a catalog entry.
The Part Id is not required to be unique (e.g., the same code would be used
for all revisions of a given part). This type of code will facilitate

catalog implementation by providing a way to identify software parts
independently of their names (e.g., different developers may develop parts
wiih the same name); by assigning a Part Id to each part, all of these parts
can be kept in the same catalog. There are currently several coding schemes
proposed or currently in use to identify software; these codes are used to
fdentify the developer and the software product (Reference 15). We propose
that the Part Id merely be a sequential identifying number assigned to the
software part with other fields being used to convey descriptive information.

Revision Id

Required

DESCRIPTION The Revision Id is a non-semantic code used to uniquely
identify revisions of a particular part. This code together with the Part Id
form a unique key.

ATTRIBUTE NAME Version

TYPE .cccaaesinness String

STAIUS: .:.oovvciaaas Required

EXAMPLE Wander angle, North pointing

DESCRIPTION This attribute contains a brief description used to

differentiate between parts that have the same name.

o il
...........

Pl hel il
>
-

-
-
by
=]
(=t
=
[aa]
=
>
x
m
x
3

.

Y BB s e e String .

STRTUS: .. . oueioaesine Required

EXMWPLE 0000, Missile Launch Platform !
g DESCRIPTION This attribute provides a brief, but not necessarily

unique, descriptive name of the part (e.g., a package may have more than one
body, In which case both bodies would have the same name bul they would be

J; - uniquely Ydentiflable by the combined key consisting of Part Id and Revision E
- 19). 5
[' A1TRIBUTE NAME Abstract
;1| AR (R Text
SRS ... iisonniins Required |
OESCRIPTION The abstract s a brief (300-500 words) explanation of ?

the purpose and functioning of the part, and the reason for original
development (including design rationalization). The Naval Research
Laboratory's Software Cost Reduction Project has a separate entry for design
¥ssues. An alternative that we recommend is to include a brief reference to
design issues in the abstract, and if 1t s thought that the user will

- require further information, he should be referred to an external design %
: document. If the part 1s being revised, the originating component may be g
referenced for this information, but the abstract must contain the reason for 8

revision. Information on reason for original development may provide insight

into the appropriateness of a unit for a particular application, and thus {'
facilitate reuse of parts; the DACS software catalog contains a separate ff

o >
entry for this. We think this too can be briefly stated In the abstract and }

if greater detall is required, the user should be referred Lo an external
document. The level of detal) in the abslract witl depend upon the scope of F
the catalog; it is intended lo provide the user with a quick overview of the ;§

unit. 1f the calalog has been incorporated into an automated system, the

abstract can be scanned to pick up keywords or phrases when the system is >
performing a search for requested parts.

93

F e = "= ™ p - Py "o f - " g -
TN Al B e e W e e W e o e i i W
T T L SR A LR R T TS LU

i
ATTRIBUTE NAME Category
a 1] 2L NI s o R Enumeration
5 DOMAIN see Figure A-2
\ SERIUE .. vviivnens Required
DESCRIPTION This attribute speciflies the taxonomeiric classification
of the part.
3 ATTRIBUTE NAME Type
9 | A S Enumeration
, ODMAIN (package, subprogram, task)
r STATUS Required
| DESCRIPTION The TYPE attribute specifies the Ada program unit type
i of the software part.
% ATTRIBUTE NAME Leve!
A | L Enumeration
DOMAIN (simple, generic, schematic)
SHATUS) 5o asva s e Required
DESCRIPTION The LEVEL specifies .the abstraction level of the part.
E See Volume I, Section 11 for more detalls.
) ATTRIBUTE NAME Class
FTYPE 5o asas35nsnhs Enumeration
¢ DDMATNc0000. {specification, body)
5 STATUS .. sassameaanss Required
) DESCRIPTION Ada specifications and their assoclated bodies have
separate entries in the parts catalog; this attribute is used to identify
! that aspect of a part.
4 ATTRIBUTE NAME Inline
TYPE .oicociaiasccias Enumeration
5 STATUS' . inaasasanss Required
X DOMAIN (yes, no, N/A)
DESCRIPTIDN This attribute specifies whether the part has been set

up to be 'intined’ or not.

94

. e
T

L Y S R L R R N e S A T

L o ¥ ¢ - j Y OO RO A e Y s *aTe MY s Mg
AR R S TR PR L IO T eI S T g LSS Mt SNt PV VR VR G PR S N

ATTRIBUTE NAME Keywords

TRV S o iaito or of i orie: 5 o1 hars Set of 0 or more Strings

STRIUS) .. ccvocmeiaza Recommended

DESCRIPTION This attribute contains one or more keywords or phrases

that can be used to locate a part. Keywords can be used to describe
functionality of the part, or task area. The purpose of a keyword 1s to
narrow the search for a desired component. If an automated catalog scheme 1s
utilized, words that appear In the abstracl need not be repeated here as they
can be automatically extracted and added Lo the keyword 11st.

ATTRIBUTE NAME Date Cataloged

)5 /1] o S e String

STATYUS: " 5 0 s s Required

EXAMPLE:.:..... 02 22-85

DESCRIPTION This attribute provides the date that the original part

or revision was cataloged. A standard format for the date should be
established.

ATTRIBUTE NAME Developer

TYPE. 5 o0 S S s String

STATS ::ciaasssais Required

EXAMPEE .. .cosaaee 4a McDonnell Douglas Astronautics Co.

DESCRIPTION The exact Information contained in this entry 1s

dependent upon the scope of the catalog. For instance, if the catalog 1s
Iintra-company, knowledge of the actual individual(s) may be useful, whereas
If the catalog ¥s Inter company, knowledge of the organization may be
sufficlent. 1his entry should contain al least the name of the developing
organization. Other Information that might be useful includes the address of
the developer and a phone number for a contact person. If the entry is for a
revision, the modifler should be identificd.

95

» c .. et T .
i W W @ LR LR G P e R .'. Pla, Tamiar. § o R A £g _.I.‘- "-'_‘-',_"..' -.‘-._'{...

-." ?
)

AL0L

il

=

I,

T
& o
.
.’.J_AA

"
ATTRIBUIE NAME Developed For -
INRIE e Saie o oi snatis String .
SEERS ... 0000000 Recommended E:;
EXAMPLE Tomahawk (BGM-109AS) Flight Software o3
DESCRIPIION This attribute should identify the project and type of ;?
software.)]
ATTRIBUTE NAME Development Status)
YR E -5 S e Enumeration
DOMAIN (in development, complete, verified) A
STATUS) .. onivaoesss Required v
DESCRIPTION This attribute indicates the development status of the ?
unit. The usefulness of such an entry 1s dependent upon the scope of the iﬁ
catalog. For instance, If the catalog 1s for all Air Force software]
projects, the usefulness of knowing the stage of development of a particular
component diminishes greatly, whereas if the catalog is being used within a 3
single project or for a particular contractor, such information may be of ;j
value. The DACS software catalog contains an entry for this, and ANSI o
X3.99-1981 recommends the inclusion of this attribute in program abstracts. by
ATIRIBUIE NAME Verification Status ?i
WO 5 555 ndias e o oa s Enumeration ;j
DOMAIN (internal, external) o
STANUS . ..oiounsusns Recommended y
DESCRIPTION Verification of the units increases user confidence and :}?

promotes reuse of existing parts. This is 1)llustrated by the contrast in
usage of parts supplled by a computer users group which are not validated,
and those supplied by an organization which performs extensive testing, e.g.,
IMSL. The entries for algorithms presented in the Collected Algorithms of
the CACM also provide information on verification; the name of the certifying
individual or organization, the certification method, results, and remarks
are supplied. The majJor issue surrounding verification and validation of
parts, s who should perform this operation. User confidence s increased
when an independent or external organizatlon performs the verification, but

. o . - by o ey
~ PR LR TRER TS Y

Ak s ol .
-
r o . b o e e b B ik L e o L

i S
. Car i e
b~ i, B, 9, T W

Verification Status (concluded)
the task of verifying all parts may become monolithic for a single
organization. Our proposed solutton is to provide information on whether
the part was verified internally or by am external organization. This
1ssue ¥s discussed In greater detall in Section II, paragraph 6,
Organizational Factors.

ATTRIBUTE NAME Catalog Units Withed

L Mo b b o O P I b6 String

SITATUS) & . oo oo Required

DESCRIPTION This attribute contains an enumeration of other units

within the catalog that this unit 'withes' (units identified by Part Id,
Revision Id, Name, and Version.

ATTRIBUTE NAML Withing Units

DV s S S R String

STATUSE &, s s Required

DESCRIPTION This attribute contains an enumeration of other units

within the catalog that 'with' this unit.

ATTRIBUTE NAME Usage

1 SRR e AN String

STATUS! o5 5m s aiaassias Recommended

DESCRIPTION This attribute contains an enumeration of the projects

and systems that use this particular part. This should also include the
places where parts generated via schematics are used. The usage attribute
alds in the tracking of which systems have ‘'checked a part out of the
library'. Such an entry facilitates maintenance in the event that an error
Vs found in a part.

ATTRIBUTE NAME Location of Code/Constructor

FYPE S naaasansnamns String

STATUS - ::cansnsescs Recommended

DESCRIPTION This entry should specify the file name, library, and

computer system where the part is located; the parl 'level' determines

whether it will be source code or a parts constructor.

97

LT,

AT

ATTRIBUTE NAME Security Classification of Part

INMB B s Lo s R sy s Enumeration

DOMAIN

{(Unclassified, Confidential, Secret, Top_Secret)

SHATUS .. .uwiiaeaeaa Required

DESCRIPTION This atiribute specifies the DOD security classification
of the part.

ATTRIBUTE NAME Security Classification of Catalog Entry

TYIPE v arh S e o g Enumerat ion

DOMAIN

(Unclassified, Confidential, Secret, Top_Secret)

STATUSE &ttt et Required

DESCRIPTION This entry specifies the security classification of a

part's catalog entry; this may be different from the security classification
of the part itself.

ATTRIBUTE NAME Operation

TYPE .. iomiamsainteae String

STRTUS . ..c::0000 080 Recommended

DESCRIPTION This attribute identifles the operations that are

exported by the part.

ATTRIBUTE NAME Parameter Name

TYPE . .csevsbisaszee s String

SHTATUSS s s e Recommended

DESCRIPTION This attribute idenlifiles the parameters associated with

each operation identified in the 'Operation' field. The parameters shall be
identified as to whether they are 'in', 'out', or 'in/out' parameters.

ATTRIBUTE NAME Source Code Size

TYPE -:occsvcnasonan Numeric

STRTUS - -7 cmmais Recommended

DESCRIPTION This attribute provides the size of the Ada part in

terms of lines of source code (LOC). The definition of LOC must be provided
when the catalog 1s established.

98

e v e " sl b Y Vv v

b

oy et - Q8D

LY. T N T,

¢ > w
PR .

" v

T

NNt R | L)

.
]

. 4

pers e
elaae

TS

1L

s Tv e

VAR,

Ll T T

Iy
-
<
‘4
°d
%4
)
“
“a
]

w e - - v - Ve Ve o W ¥ N L N AN e Mo

STATUSc000us Recommended
DESCRIPTION This attribute provides the fixed (static) size of the
Ada part In terms of bytes of object code.

ATTRIBUTE NAME Hardware Dependencies

Y BB S o s el o sl ool Text

SITIATIUS) cioe oo sibinoiarvrain Recommended

EXANPLE ... 000000, 15538 data bus

DESCREPTION This entry contains an elaboration of any hardware

dependencies of the part which would limit its transportability.

ATTRIBUTE NAME Requirements Documentation

TRV . S 5a savad e o A Text

SHATUS) . oiiv actciaes <a Recommended

DESCRIPTION This attribule identifies the requirements documentation

and indicates its avallability.

ATTRIBUTE NAME Design Documentation

PR ool sy s Text

STAMUSoiieacee s Recommended

DESCRIPTION This attribute identifies the design documentation and

Indicates its avallability.

ATTRIBUTE NAME Restrictions

WRE. A5l s Ve Text

STRNUS - o550 5900 855 a0 Recommended

DESCRIPTION This attribute indicates any usage restrictions such as

proprietary rights and copyrights.

Ll

(ot S«

[Sa 54 \ i . v Bodiad AR IO B A B S0 o

ATTRIBUTE NAME Remarks

RN B Esiros o i Text

STATUScc0cvene Recommended

DESCRIPTION This fleld is for any general remarks concerning the

part, or for continuations of other flelds.

A TRIBUTE NAME Accuracy

YRS Sy s i e a Jext

STATUS .o o astioiia o Recommended

DESCRIPTION This field contains information on the accuracy or

precision of numerical results computed by the part. If this information is
not relevant, it should be left blank.

ATTRIBUTE NAME Timing

TVPE: oar i i o aees Text

STATUS, . cioeernation snat oo Recommended

DESCRIPTION This fieid contains information on execution time for

sample invocations or instantiations of the part. The run-time conditions
that produced the timing results must be specified in order to make this
information relevant.

100

. ’l-_'i

P AT

v

B o

, .
WA

LS

‘ '-'..._'. o .'.

-.I =
)

<
‘
5 CAMP PARTS TAXONOMY
. » DATA PACKAGE PARTS » PROCESS MANAGEMENT PARTS
3 — DATA CONSTANT PARTS — ASYNCHRONOUS CONTROL PARTS
. — DATA TYPES PARTS —~ COMMUNICATION PARTS
4 * EQUIPMENT INTERFACE PARTS « MATHEMATICAL PARTS
b — GENERAL PURPOSE EQUIPMENT INTERFACE PARTS — COORDINATE ALGEBRA PARTS
. — SPECIFIC EQUIPMENT INTERFACE PARTS — MATRIX ALGEBRA PARTS
4 — QUATERNION ALGEBRA PARTS
* PRAIMARY OPERATION PARTS — TRIGONOMETRIC PARTS
— NAVIGATION PARTS — DATA CONVERSION PARTS i
; ~ KALMAN FILTER PARTS — SIGNAL PROCESSING PARTS C
1 — GUIDANCE & CONTROL PARTS — POLYNOMIAL PARTS &
£ — NON-GUIDANCE CONTROL PARTS — GENERAL MATH PARTS .
» ABSTRACT MECHANISM PARTS » GENERAL UTILITY PARTS f:i
— ABSTRACT DATA STRUCTURE PARTS - |
— ABSTRACT PROCESS PARTS !
E l i q
X

i SR

Figure A-2. CAMP Parts Taxonomy

o A
5, 1
PR W)

v

et

Ty >

'l’ &, .4,
LA |

10
(The reverse of this page is blank)

.
P

APPENDIX B

CAMP CATALOGING FORM

103

-
ChP P g

i APPENDIX 8
CAMP CATALOGING FORM

s

This appendix contains a form for use with the Ada parts catalog described
in Appendix A. This form is shown on the next page.

k L
L I W I

NS O

T
e e "t 1

R

l',l

0 St}

104

he
-
o

] .

.l
r . L] r e
.‘A-._.;...".-L‘A.'A'-A WA W P ...’ .’.J.f..--l.‘- n.o-l..i

;I

"

o EE S S S S e SIS S SIS E L EE S E S ST R E R T R R S E T EEE S ETE R EESEREEEEEESTIESEESE b
: Io Revision ... }
Name t;

i Version .. b=
A Type __ Subprogram __ Package __ Task :
q tevel __ Simple __ Generic ___ Schematic ~
Class __ Specification __ Body s

: Inline ... __ Yes No N/A

v

Abstract .

~r Y

Category .
- Keywords .

. _-
L)

.y o
b M

e Operatton Parameter Name In/0ut
: mrimicee i - -. e . wm e ;.
-3
Development Status __ In Progress s COmpleted pt
Verification Status ... __ None __ Internal __ External -
Date Cataloged I,
Developed By
Developed For i
l~b
Requirements Documentation hy
Design Documentation =
3 tocation of Code

4 Code Size (loc) Object Size (bytes) 3
__ X
Accuracy Characterization ;
. Timing Characterizations t
] Hardware Dependenctes R
Other Restrictions
k Withed Parts Withing Parts K
; s Sas ST TS SRR e 5.'
' Remarks

Securtty Classification (of part)
Security Classification (of catalog) ...

- - - e = e = = e S e e e T e e e e - ———

Figure 8-1. The Cataloging Form -

105 .
(The reverse of this page is blank)

& F. o e g S S R e T M R e 1 Bl - A e
R A S, Lot e Tt e AT A ST s et el S Sy ‘.‘-‘._‘- T i et I e U R R L g e ot vkl e, Tas Blaeiat Ml

000 2% 8% g 0" 60 0 Pl 6 6 6 0 e e i B Bt e e 8 O'e by ble At b " Wl) fa b] J

|l

e i)

APPENDIX C

SAMPLE DBMS IMPLENENTATION OF THE CAMP PARTS CATALOG :

[-
o

S

-y

)
.

ryawaye
e om0 i

b T

B A s A A
Le

e e St B 7

107

APPENDIX C
SAMPLE DBMS IMPLEMENTATIOM OF THE CAMP PARTS CATALOG

1. Database Schema 106
2. Database Usage 108

As a proof-of-concept, MOAC-STL constructed a parts database using

ORACLET". a state-of-the-art relational database management system.

1. DATABASE SCHEMA

The parts database consists of 6 tables. They and their associated
attributes are shown in Figure C-.1. 1lhe purpose of each table 1s described
in the following paragraphs.

The Parts Table contains the attributes unique to each cataloged part
(1.e., there exists a one-to-one mapping between attribuile values and
entities). This is the primary table in the database, containing the
majority of the items described in Appendix A. 1lhe Part ID and Version ID
together form the key for this relation.

The Developer Table contains information about each engineer developing]
software. The Developer ID 1s the key for this relation. This information N
1s separated from the Parts Table because an engineer can develop more than

- ""
s

LI s W, e]
O)

v
..

one part; data redundancy would result from including this information in the
Parts Table. Parts and Developers are bound together by means of the
Developer ID attribute in the Parts Table.

The Project Table contains a 11st of parts which are in use by one or

more prolects, and an indication of which projects are using which parts.

1)
v w e
= .

i e g
| A)

There 1s a many-to-many relationship between parts and part users, thus, the
project Information 1s kept separate from the Parts table to avoid data
redundancy.

5
““_

ff‘I

s

P s’

2y

Coce s YR

SRS

vt e fg" Sk Bat B dor Ba e : Bl byt 90t

between 'withing' and 'withed' parts.

.............
.......

catalog, or are generated from another part in the catalog.
separated from the Parts Table because there s a many-to-many relationship

A T -
WSV WAL LI IR S ol Sl I R T P,

TABLES ATTRIBUTES
PARTS Id Version
Name Abstract
Category Type
Level Class
Date of Development Developer
Project Sof tware
Deve lopment Status Verification Status
Security Class of Part Security Class of Entry
- Source Size Object Size
Hardware Dependencies Documentation
Restrictions Remarks
Accuracy Timing
DEVELOPER Id Name
Department MOC Component
PROJECT Id Software
Part Version
USAGE Usage Mechanism Used Part
Used Part's Version Using Part
Using Part's Version
KEYWORD Word Part
Version
NOISE Word
Figure C-1. Database Schema

The Usage Table tracks parts that either 'with' other parts in the

This table is

A AR

i ;:: "\-i B A A N T L G L GG R U AT AP

The Keyword lable contains a list of keywords found in the abstracts of
cataloged parts. Entries in the Keyword lable can be generated in two ways:

(1) Explicit entry: A user can specify a keyword to be included in the

table by specifying that word in the 'Keywords' section of the
Missile Software Ada Parts Cataloging Form (see Appendix B).

Automatic entry: A Keyword Table generation program will examine

the abstract of each cataloged part and make an entry for each
keyword found. A keyword s any word which is not found in the
Noise Table. The Noise Table is a 11st of words which should not be
included in the Keyword Table when found in an Abstract (e.g.,
and, "the", "a", "not").

2. DATABASE USAGE

Two primary interfaces can be developed for database report generation.
The first is a menu-driven mechanism for generating standard reports, based
on ORACLE's Interactive Application Faclility (JAF). The second interface 1is
command driven and uses Structured Query Language (SQL) commands to access

any information in the database. The following are some examples of the use

of SQL to retrieve information from the Ada parts catalog.

EXAMPLE 1. List all parts which are currently in development:
SELECT ID, VERSION_ID, NAME
FROM PARTS_TABLE
ERE DEVELOPMENT_STATUS = “IN DEVELOPMENT*

EXAMPLE 2. L1st all parts which ‘with' part called BINARY_TREE:
SELECT USTNG_PART_ID, USING_VERSION_ID
FROM USAGE_TABLE
WHERE USED_PART_ID®USED_VERSION_ID =
(SELECT 10"VERSION_!ID
FROM PARTS_1ABLL

WHERE NAME - "BINARY_IREL")

APPENDIX D

THE FINITE STATE MACHINE CONSTRUCTOR

“—'.‘-'.’.'7-'-' .y ".'--‘7.'-"-‘-‘- - - p Yt atite Xataa e In"a" N - - A% 19%4 %0 % . s .'.'.“.‘.’
o A L R S S S L HE LSS ERE AR SU RN e ARHCE UL LS TR RS (R LS GRS ATt At i atnt et 4t LR R N L

APPENDIX D
THE FINITE STATE MACHINE CONSTRUCTOR

1. Introduction 110
2. FSM Constructor Requirements 112
3. FSM Constructor Top-Level Design 114
4. Implementation of the Proof-of-Concept

FSM Constructor, .. 117

1. INTRODUCTION

A finite state machine (FSM or finite automaton) is an abstraction that
can be used to model software systems or portions of software systems that
consist of a number of distinct states and stimulil or events that cause a
change in or transition between those states. An FSM has one state that 1is
designated as the initial or beginning state. This is the state at which
processing begins. A terminal or end state is a state at which processing
ends (1.e., there are no transitions out of that state). Transitions between
the states of the FSM are caused by stimuli or events. A transition 1s
dependent upon the current state at the time the event occurs (V.e., the same
stimuli applied in two different states in the same FSM may result in two
different transitions). Figure D-1 depicts a typical graphical
representation of a finite state machine.

S5
A2

S2
A2

54
Ad

@

Figure D-1. A Finite State Machine

112

Rz

DRSS V' S RN WAl | FARP T |

.
s

e TR

LM AAARAMNR | S

oF &7 B
L

it
o

-1

AU (S MIR

There are several variations of the basic finite state machine. For
example, actions can be assocliated with the transitions between states or
with the states themselves.

Finite state machines are a useful representation for a number of
different types of software that arise in the missile flight domain (e.q.,
launch control software, signal processing).

As part of the CAMP study, MDAC developed the requirements specification
and top-level design of a prototype software parts engineering expert system
known as the Ada Missile Parls Engineering Expert (AMPEE) System (see
References 44 & 45). This system incorporates a facility for component

& construction thal provides the user with the ability to construct (l.e.,
tatlor or iInstantiate) meta-parts (1.e., schematic or generic parts) found in
the Ada missile sofiware paris catalog. The Component Construction facility
is intended to consist of a constructor for each schematic part and for some
generic parts (constructors will only be developed for generic parts that are
suffictently complex). The Finite State Machine Constructor s one
constructor that will form a part of the AMPEE System.

A number of reasons exist for developing a schematic part and part
constructor for a finite state machine.

-- Finite state machines occur frequently within the operational
missile flight software domain.
The part s very straight.-forward to build, but certain variations
cannot be captured via the Ada generic facility (e.g., actions
assoclated wilh state transitions).

o Providing a schematic part relleves the software developer of the
tedium of building a fairly simple plece of software, and provides
an error-free implementalion based on his specifications.

R.J.A. Buhr (Reference 39) summarized the need for a standardized implementa-
tion in the following way:

®* finite state machines are ubiquitous in many types of
embedded systems. Accordingly, their explicit, consistent,
and uniform representation in the Ada program text seems
desirable, both for verifiability and readability."

113

i B e R e R AR LAk R A R AR R R R ST L N G S N SR S RN D B L Rl A R il R R S Sl A St B Bl R St et Bt et Bt el i ."1.7‘.11

The implementation of the Finite State Machine Constiructor served two

purposes:

.- It served as a proof-of-concept for providing a semi-automated means
of generating missile flightl software.

- It provided a means for evaluating ART, the expert system
development tool discussed in Section V.

In the paragraphs that fc'low, the requirements, design, implementation,

and efficiency considerations are discussed. %
2. FSM CONSTRUCTOR REQUIREMENTS

The Finite State Machine Constructor forms a part of the Component
Generation function of the Ada Missile Parts Engineering Expert System. It
is a domain-independent schematic part that provides the user with an
automated means of generating a finite state machine software component. An
Ada package 1s created that contains a procedure to process incoming
stimuli. A function is also provided that allows the current state to be

determined.
The Finite State Machine Constructor requires the use of both the ART
programming language and LISP.

a. Interface Requirements

The FSM Constructor is required to interface to the VAX file system
in order to access the fixed portions of code used in the component

L
5

construction process, and write the FSM component that is output from this

vu '

constructor. File access is handled via LISP input/output facilities.

bty

b. Functional Requirements

The functional requirements of the FSM Constructor are discussed in

T S S Vo T

the following paragraphs.

114

-«
P —

) I, I e et A T T e T L S e e e T T
PR SUETR R L, PRS00, S LRI BT TR O TR T O TR TR

P PN N P

ot L b il sl Bt b e e a4 atad R o ot Gl oy I A B B G £ o s 2

X
4
(1) Inputs t
N
The user supplied inputs are enumerated below. .f
-- File Name: The name of the file where the component is to Ei
be written; must be a valid file name.
Process Name: An Ada Ydentifier that will identify the
package to be constructed. y
Initial State: The initial state of the finite state 3
machine. :
States: The valid stales within the finite state machine. .
Transitions: The transitions associaled with each state. e
- Stimuli: The stimull that result in the transitions 5
associated with each state. H
Actions: The actions (if any) that are assocliated with the 2
transitions between states; this is in the form of a o
package name and the procedure within the package that %
performs the requested action. :
A1l states, stimuli, and actions provided by the user must be)
valid Ada identifie;s. S
System supplied inputs are as follow.
o
Ada Missile Parts Catalog: This s used to determine the i-

location of the fixed portions of code that are used in the
construction of a component for the user.

fSM Construction Rules: These are the rules that guide the]
construction of the component.

By e .

(2) Processing ¥

The FSM Constructor prompts the user to enter the required at
inputs. These inputs are edited for conformance to format and other
constraints. |1If the input data passes all consistency and Format checks, an .%
Ada component 1s constructed and written to the file specified by the user.

LS R

= a a 3]

S Bt

(3) OQutputs

A\l

i The FSM constructor outputs the Ada code that implements Lhe

}

d FSM specifled by the user. Jhis output 1s directed to the file specified by
! the user.

o C. Quality factors

There are several areas that must be addressed when considering the

quality requirements for the FSM Constructor. Correctness of the Ada code

F. produced 1s of the utmost concern in the development of part constructors
S within the AMPEE System. As was pointed out in the main portion of this
'E report, a few encounters with bad parts could destroy much of the reusability

effort. This constructor must not only produce correct Ada code, 1t must do
so consistently. Although 1t ¥s Important that the FSM Constructor operate
efficiently, 1t ¥s of greater importance that the code produced by the FSM
constructor be efficlent.

4 Usability, flexibiiity, and maintainability are other quality
concerns that must be addressed. The Finite State Machine Constructor is
designed to be easy to use; the user will be prompted for the required inputs
. and will be provided with the appropriate formal. Flexibility and
maintainabi1ity are two concerns of the entire AMPEE System.

3. §£SH CONSTRUCTOR TOP-LEVEL DESIGN

M This paragraph diécusses the top--level design of the Finite State Machine
Constructor. A top-level view of the architecture Vs presented along with
the functional and data flow for this portion of the AMPEE System. Global

and local data are also discussed.

a. Architecture

j: figure D-2 depicts the top-level architecture for this portion of

. the system. As can be seen in the dlagram, the AMPEE System Executive (see
Reference 45), which s invoked when a user logs into the system, Invokes the

. Component Construction subfunction. At this point the user can invoke any of

y) 116

) YR % Tt W LN R AN 't C AT RTRL N AT e e

o A AT T T T T " 3 5 R
R R W, G S R A A A A S A T R S A L A AR AL RO R AL S S A NS L S AR RS TR NN

4
P

the avallable component constructors. Control Vs transferred to the Finite E

State Machine Constructor when the user requests this part and it s verified v

that a constructor exists. ‘ -}n
N
] N

AMPEE SYSTEM

EXECUTIVE e

COMPONENT %

& CONSTRUCTION -

F TLCSC ;1
' FSN -
A CONSTRUCTOR =
¢ Figure D-2. Architecture f

b. Functional Control and Data flow S

Figure D-3 depicts the functional) control flow and Figure D-4
depicts the data flow for this constructor. L

c. Global Data

The following global data 1s utilized by the Finite State Machine
Constructor:

Ada Missile Parts Catalog: This ¥s used to obtain the location

of fixed portions of code used in the construction of the
component .

s, e
(4

PRI

User Id: Thils ¥s used to tag the set of requirements provided
: by the user.

W TR

117

a,

......... TR FSF T RS R g e s R & N T , e }\ Ce _”.) P \‘ ,..'.'_'.L o i \. LY .‘ \ 3 \. . ..-_ = RIOLEN v
1'“"'“""1’""‘-{'\ n".{" Lt S o -'. - .Lh _.'_.'\'L." \‘ ¥ 1.1_;\ 'n_;n ;\.‘J LA S At LS '.‘ ASAREAN L e L] L
. il Sl i_.hh_;._\-h_

d. Local Data

The Finite State Machine Construclor makes use of the following

local data:

FSM-User--Requirements: This is a schema that }s used to

capture and store the user's requirements for a specific
instance of the finite slate machline part. These requirements
are tagged with the user's id and are Lime-stamped in order to
facilitate their retrieval at a later Lime (e.g., to perform
Component Regeneration - see References 44 and 45).

~- DOther local data includes intermediate data structures used in

constructing the software component and local facts used to
control the firing of rules.

T

AMPEE SYSTEM

AMPEE SYSTEM
EXECUTIVE
1
!l COMPONENT
. CONSTRUCTION
f TLCSC
-
FSN
CONSTRUCTOR

fFigure D-3. Control Flow

118

-

-

- a5 Gy
-

. P . « " a - " . .l o ..I --I “‘ ap i X " '(["-. ‘. .. ~h‘ o & e Gl l.. -. l‘. o -. - - ‘- ‘- v
'-i‘z:-}‘-:-}'l‘-i‘-}“' e '.g‘.b‘.-?.p":-)}‘;}.!ﬂ‘:i".n:'.ﬂ.-:\t S N S e e e e e e e T T e T e

AR Ytk ik i St
o e

-

"]

VA N W TNE AT W AW UG O I P A T W RO N AN . & R e e e e e e e S s

=

AMPEE SYSTEM %
EXECUTIVE 'cnrtt:o :.d
onstructed”

COMPONENT
CONSTRUCTION
TLCSC

e —— o

PARTS
CATALOG
m‘nt/-
Requirements < >

R
’
(=]
o
=
(2]
-
D
c
(]
-
o
w
]
m
o

FSM
COMP

¢

Figure D-4. Data Flow

4. IMPLEMENTATION OF THE PROOF-OF -CONCEPT FSM CONSTRUCTOR

Gy

The purpose of this part constructor is to provide a standard design for
finite state machines. It was desired to build a part that is flexible
(e.g., actions can be associated with the state transitions if the user
desires), efficient (e.g., dead code will not be introduced), and simple to
use (e.g., the user doesn't have to learn a high-order specification language
in order to use this part constructor successfully). A proof-of-concept
implementation of this part constructor was undertaken to prove the
feasibility of both the approach (i.e., the use of an expert system) and the
tool (i.e., ART).

E
;
;ﬁ
g
t

-“‘- .‘; ‘\‘..."n .‘-‘:, _:",.. e .! = .ll B

. —
S

.- v o ow
1
roaan

.
«

a. The Implementation !
-
~
The implementation consisis of both ART and LISP files. The t
individual components are discussed below; Figure D-5 provides an overview of &
L

the implementation.
119 ‘.;3
™~
N

sl | R

=V
2P S S

l —_ »1 PROLOG

LISP
UTILITIES

I;___________ FSM

.,
.

‘l* l5

v.:

s

{ Figure D-5. Overview of Proof-of-Concept

i Implementation

1 - PROLOG.ART: This is an ART application file that encompasses a
: bare-bones version of ihe AMPEE system executive. This

B

¢ component assumes initial control when the system s brought

up. It performs the following functions: \

(1) Verifies the validity of the user requesting AMPEE System
services

(2) Solicits identity of the part to be constructed

(3) Verifies the existence of the part in the Ada missile parts
catalog

(4) Obtains the fixed code locations from the catalog entry

(5) Obtains the name of the file where the component is to be

written

.-~ CATALOG.AR1: This componenl contains the Ada missile parts
catalog. For this implementation, it contains only the basic <
catalog schema and a schema for the Finlte State Machine
schematic part. No processing is performed by this component.

120

205 T L BACS GRG0, 5 G G RO G) R e AT A 2 6 0 T ARG S RN "y

- - - - L » - » - P VRE . - - - - - . w - - - ~ - 0 N - s L » - Wa WP a - » » »

SRR R RS NS A B NI LS ROLER TR RS A 1 25N A ARAE X SRS) 3 A R 2D % VW ST I A PO S R S AL
< L] * L - - - - - .. - .

A E

Tl K SEERRTNTH W A AL

e e T EERIRL A AR Y Yt .

T EEmCw T T AN LT . A CTEEENE s Lt

cImmr s

FSM.ART: 7This is the ARY file thal contains the actual FSM
Constructor; 1t performs the following Functions:

; -
2 atm s a0

(1) Sollicits user input to construct an instanitation of the
finite state machine part

Pal el T e Sl |

: {2) Creates a schema to store the component requirements
specified by the user

X {3) Performs consistency checks and constructs intermediate

I ‘ data structures (through the invocation of LISP routines)

{4) Generates the FSM component speciflied by the user

-- LFSM.LSP: 1This 1s a LISP file that contalns utilities that
construct vartfous intermediate data structures used in the
construction of the finite state machine component, perform
error checking of the data provided by the user, and write out
the majority of the Ada component.

b. Expert Features

B Al b BT

The Finlte Stale Machine Constructor incorporates a number of
E features (V.e., the smarts or optimizations) that contribute to the
. efficiency and Flexibility of the Ada code that 1s produced. These features
contribute to the generation of Ada code that s as good as that produced by
an expert Ada programmer.

s The user 1s provided with the expected format of the input
9 data. This type of assistance makes the part usable by a wide
range of personnel.

- - Redundant state transitions are eliminated from the input
(V.e., If the beginning state and ending states are the same
for two sets of transitions, then Lhe stimull will be combined

; and only one slate-transition wil) appear). 1This is one means

' of preventing the introduction of redundanl code in the

’ component .

- 121

-~ Checks are made for non-determinism in the state transitions
(e.g., If for two sets of state transitions, the beginning
states are the same and the stimull are the same, but the
ending states are different, then a data error 1s signaled).

A decision to use a case statement or an i1f-then else statement
is based on the number of alternatives. Some work is currently
in progress to determine at what point a case statement becomes
more efficient than an if.-then-else statement. As yel, no
results have been obtained, but the decision point Vs easily
changed.

- A check is made to determine if a stimuli does not result iIn a
transfer out of the present state. If a transfer does not
occur, then a re-assignment of the current state will not be
made. This prevents the introduction of extraneous code into
the constructed component.

(¥ User-System Interaction

The following sections provide a sample of an interactive session
with the system, and the output from that session (1.e., the generated
component). The compilation 1isting of the generated Ada component 1s
provided 'n paragraph (3).

The scenario for this interaclive session is as follows.

.- The user, desiring to build a finite state machine
representation for missile firing, elects to use the AMPELE
System Finite State Machine Constructor Lo facililate the

implementation.

The user logs in and 1s presented with a series of menus for
facility selection.

127

i AL R s e .‘.‘.'.".‘.”""..'-."..'.'.".'."." N s s
A R

. - - Sy |y . -
eI WP ERT PRI TR N LN e KN gt an il e I A AR A

After selecting the Finite State Machine Constructor, the user

is prompted to provide state-transition information, V.e., the
beginning state, the stimuli that cause transitions from Lhat
state, the ending state, and any actions assoclated with the
transition.

-- When the user has entered all the state-transition information
assoclated with the FSM that he 1s building, he enters ‘quit’.
The Ada component 1s then generated 1f all data checks are
passed.

.-‘.‘ L .’-.I ..'...." WL S L% S\ 7.-' "% . -.. 0 Sl L Yy L -_'- ARG S TR Ol St) B o e
o e C, TN L C a3 8 . '

e L s LT
O WL TN e e

-
ol

L =

A

)

XN AR

«
&

L= R e e

L

A Sample User Session

Dribbling to USERDISK3:[PALMO3)FTR.LSP;1

Enter User 1d: u207215
Ada Missile Parts Engineering Expert System
1) Parts Catalog
2) Parts ldentification
J) Corponent Construction
Please enter choice:
$3

Component Construction

1) Component Generation
2) Coumponent Regeneration

Please enter choice:
D!
Component Constructors
1) Finite State Machine®

Pleaae enter choice:
41

Part ID: a00!

Revision ID: 0

Enter file name (pathname) for component: "miasile.ada"

Enter Component Name: miasile

Enter Initial State: a_0

Enter statea and tranaitiona as prompted below.

Events are to be entered in the following format:
(event_1 event_2 ... event_n)

Actions are to be in the following format:
(<action_package> <action_procedure>)

If no actions are associated with the transition enter NIL

States are to be entered as symbols, e.g., state_l

Beginning State: s_0

Events: (intent_to_launch_cmd_recd)

Ending State: s_1

PRI W SRR e ¥
TV L T O)
e Se st

L

e Sl

Action: (ap launch_countdown_seq)

Beginning State: #_l
Events: (test_failure_1)
Ending State: s_n

Action: (ap shutdown_abort_seq)

Beginning State: s_l

Events: (all_tests_passed_l)
Ending State: s_2

Action: (ap first_motion_seq)

Beginning State: s_2

Events: (test_failure_2_

)

Error - Invalid Ada identifier entered as an event.
Events: (test_failure_2)

Ending State: s_n

Action: (ap shutdown_abort_seq)

Beginning State: s_2
Events: (passed_launcher_clear_test)
Ending State: s_3

Action: (ap fin_deploy_seq)

Beginning State: s_3
Events: (all_test_passes_2) -
Ending State: s_&4

Action: (ap wings_out_early)

Beginning State: s_&
Events: (thrust_decay_detected)
Ending State: s_5

Action: (ap system_ off_seq)

125

0

% |

»
»

.
oA

r
.

| R

.
"x

T v B IE
LAl

- -
AL ._}_‘
oSa .

vt

.

.“l
LA

L

" PR s
W §f

Pl el A8)

R
N

.'_*."1'1":,‘

.\ gty
WLl

P

g
"-‘"n “ '.)“').'

v
.

.
.

. ot

| el i

a

o,

v
a'a's

wr

LIRS

.
‘%,

-

S

- -\ ;- -2 W W < v - T M T T R L
T A ST T P m QIS SE - SN T R WO W TR N R N R U e

P T T N R T X R P T . T RN L L R W W T W R W T

]

1}

Beginning State: quit

Data passed nd check

Data passed check for unreachable states.
Constructing component MISSILE

| No applicable rules.

Ending run.

NIL

ART1.0 Lisp> (dribble)

- e

. ——— T — W % w e

.o
.

«

G

1"!:‘-’.2
L

126

ata™atu

AR

A oie i
LS. . G
NP

S e e R o

| e i sk A

D b T i B i e e e e gt g

{2) The Generated Ada Component

with AP;
package MISSILE is
type States is (S_2, S 3, S_ 0, S_5, $ 4, 8.1, 8 N);

type Stimuli is (TEST_FAILURE_Z, INTENT TO_LAUNCH_CMD_RECD,

_DETECTED,

ALL_TESTS_PASSED_1, TEST_FAILURE_1, ALL_TEST PASSES_2);

function Current_State return States;
procedure Signal (Event : in Stimuli);
Invalid_Stisuli : EXCEPTION;
end MISSILE;
package body MISSILE 1
Present_Sctate : States := §_0;
kvent : Stimuli;
function Current_Stste return states is
begin
return Present_State;
end Current_State;

procedure Signal (Eveat : in Stimuli) is
begin

case Present_State is
when S_0 >
if (event = INTENT_TD_LAUNCH_CMD_RECD) then
AP, LAUNCH_CDUNTDOWN_SEQ;
Present_State := S_1;

else
raise lavalid_Stimuli;
end if,;
wvheo S_2 =y

1f (event = PASSED_LAUNCHER_CLEAR_TEST) then
AP, FIN_DEPLDY_SEQ;
Present_State := § 3;
elsif {event = TEST FAILURE_2) then
AP, SHUTDOWN_ABORT_SEQ;
Present_Sctate := S_N;

else
raise lavalid_Stimuli;
end if;
vhen S & 5

if (event = THRUST_DECAY_DETECTED) then
AP. SYSTEM_DFF_SEQ;
Present_State := S_5;

else
raise Invalid_Stimuli;
end 1f;
when S_1 =>

if (event = ALL_TESTS_PASSED_l) then
AP.FIRST_MDTION_SEQ;
Present_State := S_12;
elsif (event = TEST_FAILURE_1) then
AP. SHUTDOWN_ABDRT_SEQ;
Present_State := S_N;
else
rsise Invalid_Stimuli;
end if;
when S_J3 =
if (event = ALL_TEST_PASSES_2) than
AP.WINGS_DUT_EARLY;

127

PASSED_LAUNCHER_CLEAX TEST, THRUST_DECAY

[
z

i - Sk ot L i G i - ko s

Present_Stete :=~ 5_4;
else

reise Invalid_Stimuli;
end if;

when others => raise invalid_stimuli;
end case;
end Signal;

end MISSILE;

LA AU St o B ol GF B g R

U

~eiY, v = -

oy

-

[

ey
R

-

o r
¥

i

Shes o ko R o RS b Dhie i iy

A i < aa i Far 4P % 9% " a ¥ e Y4 Ve Vil Ye Yo% b
i £ .’-‘,"4' Ly Ny '4'.'- '-'.'- B e) !\ .!“ Sete ,’1!'.-,! e e ‘:i;’{m‘;‘:&‘;‘\ o --‘:'-- .

(3) The Compiled Ada Component

MISSILE 10-Sep-1985 08:57:44 VAX Ads V1.
Page 1

D1 10-8ep-1985 08:4)3:51 USERDISK3:(
MO3|MISSILE,ADA ;L (1)

1 with AP;

2 package MISSILE is o

3 type States is (S 2, S 3, S 0, 85, 54, 5.1, S N);

4 type Stimuli is (TEST_FAILURE_2, INTENT_TO_LAUNCH_CMD_RECD, PASSED_LAUNCHER CLEAR TEST, T.
ST_DECAY_DETECTED,

s ALL_TESTS_PASSED 1, TEST_FAILURE_1, ALL_TEST_PASSES_2);

6 function Current_State return Ststes;
7 procedure Signal (Event : in Stimuli);
g Invalid_Stimuli : EXCEPTIDN;

9 end MISSILE;

PSECT MAP
Psett Hex Size Dec Size Name
0 D0000006 6 MISSILE_, $CODE
1 00000010 16 MISSILE_.SCONSTANT

IADAC-1-CI,_ADDED, Package specification MISSILE added to library

LIBRARY SUMMARY

USERLISK3: [PALII03. CAMP,LIB)

Unit name llodes Percent Blocks Unit kind
read read
AP 4 40 &4 Package specification
129

e B AE LT DT SRl T T e Ve =

&4
.‘l
<,
<\
>
A
- B:1SSILL 10-Sep-1985 G8:57:47 VAX Ads V1.]
X, Page 2
i vl 10-Sep-1985 08:43:51 USERDISK3:{!
5 MO3]MISSILE, ADA;)
~
= 10
11 package body MISSILE is x
12 Present_State : States := S_0;
13 Event : Stimuli;
1 14 function Current_State return states is
A 15 begin -
L 16 return Present_State; :
o 17 end Current_State; A
! 18 b
P 19
20 procedure Signal {(Event : in Stimuli) ie 5
] 21 begin
y 22 3
.\’ 23 case Present_State is 1
- 24 when S_0 =>
o 25 if (eveat = INTENT_ TO_LAUNCK_CMD_RECD) then
) 26 AP. LAUNCH_COUNTDOWN_SEQ; ‘
: 27 Present_State := S-]; S
28 elese
) 29 raise Invalid_Stimuli;
by 30 end if; ;
- 31 when §_2 > d
5 32 if (event = PASSED_ LAUNCHER_CLEAR_TEST) then 3
- i3 AP. FIN_DEPLOY_SEQ; by
S 34 Present_State := S_3; 3
> 35 eleif (event = TEST_FAILURE_2) then d
3 36 AP, SHUTDOWN_ABORT_SEQ;
37 Present_State := S_N;
", 38 else .
L 39 raise Invalid_Stimuli; *
. 40 end if; g
X 41 when §_ 4 -> .
'-: 42 if (event = THRUST_DECAY_DETECTED) then -
A 43 AP. SYSTEM_OFF_SEQ; .
o (YA Present_State := S_5;
45 else r
i 46 raise Invalid_Stimuli; -
~" 47 end if; o
L 48 when S 1 => o
", 49 if (event = ALL_TESTS_PASSED_]) then °
X 50 AP, FIRST_MOTION_SEQ; .
b 1 51 Present_State := S_2; 2
52 elsif (event = TEST_FAILURE_]1) then
53 AP. SHUTDOWN_ABORT_SEQ: F
- 54 Present_State := S_N; o
I 55 else H
.- 56 raise Invalid_Stimuli; -4
e 57 end if; e
e 58 when S_3 =-> 3
= 59 if (event = ALL TEST_PASSES_2) then h
2 60 AP, WINGS_OUT_EARLY;
61 Present_State := S_&;
= 62 else]
- 63 raise Invalid_Stimuli; é
< 64 end if; '
o 65 g
E 66 o
al »
o [
4 130 .
o i

-
wt, s T T OO o % b ol o)

e & o L R AT B N
Al e LR e e e N T T T e e R A T T L

MISSILE 10-8ep-1985 08:57:47 VAX Ads V1.t
Page 3

o1 10-5ep-1985 08:43:51 USERDISK3: [}
M03)MISSILE.ADA;} 1)

67 vhen others => rsise invslid_stimuli;
68 end case;

69 end Signal;

70

11 end MISSILE;

PSECT MAP
Psect Hex Size Name

0 00000154 MISSILE. $CODE
1 00000004 MISSILE. $DATA

IADAC-1-CL_ADDED, Packsge body MISSILE sdded to library
Corresponds to packsge specificetion MISSILE compiled 10-Sep-1985 08:57

LIBRARY SUMMARY

USERDISK3: [PALY.03,CAMP, LIB])

Unit name Nodes Percent Blocks Unit kind
read read
MISSILE 27 100 Package specificstion
AP 10 100 10 Package specificstion

B il ot Yot i S I Pt et Jh b s B o) Bl Jg i g damy bP etui oot R 4 ght s Aonil aih 1SS LR ATttt Al b ARl T T NT T e e oy TS

MISSILE 10-8ep-1985 08:57:47 VAX Ada V.t
Page 4

0l Ada Compilation Statistics 10-Sep-1985 08:43:51 USERDISKY: [i

MO3]MISSILE.ADA;L (1)

COMMAND QUALIFIERS

ADA/LIS MISSILE,ADA

QUALIFIERS USED -
/CHECK/COPY_SOURCE/DEBUC=ALL/ERROR_LIMIT=30/LIST/NOMACHINE_CODE
/NODIACNOSTICS/LIBRARY=ADASLIB
/NOTE_SQURCE/OYTIMIZE=TIME/NOSHOW/NOSYNTAX ONLY
/WARKINCS=(NOCOMPILATION NOTES,STATUS=LIST, SUPPLEMENTAL=ALL, WARNINCS=ALL, WEAK_WARNINGS=ALL)

COMPILER INTERNAL TIMINC

Phase CPU Elapaed Page I/0
aeconda aeconds faults count

Initialization 0.16 l.44 368 24
Paraer 0,15 0.18 167 1
Static semantics 0.16 0. 89 183 6
IL generation 0.25 1.47 242 21
Segment tree 0.13 - 1.11 130 21
Annotate tree 0.02 0.02 11 0
Flow analysis 0.02 0. 02 7 0
Linearize tree 0.07 0.31 86 0
Code generation 0.37 1. 06 337 0
Optimizer 0.11 0.37 120 0
Data sllocation 0.01 0. 01 1 0
Generate code liat 0.08 0.27 98 0
Register allocation 0.01 0.01 8 0
Peephole optimization 0.04 0.17 29 0
Write object module 0.05 0.07 35 0
DST generation 0,05 0.06 17 0
Listing generation 0.07 0,43 28 7
Compilation library 0.33 2.21 202 69
Compiler totala 1.52 7.78 1547 129

COMPILATION STATISTICS

Weak warnings: 0

Warnings: 0

Errors: 0 .
Peak working set: 2418

Virtual pages used: 4797

Virtusl pages free: 65203

CPU Time: 00:00:01.52 (2802 Linea/Minute)

Elapsed Time: 00:00:07.78

Compi lation Complete

Cea
2

132

o
b
1
R

v s e

TR R g . AT o Vi A S AR LS8 A, 3T T AR BT T, ek e T i e RE TR L R e e e e LS R
: - n'.i‘f.-'-'}-f 'I?IMA@'@ML’L'M: ha e Lastid, S fadln s fodls ol i, i

R T L T S N T N T e T N W PV N U U DY U W W W IR 7S U U5 e v Wi e N e L e

d. Source Code

The following sections provide the source code for the components
that comprise the proof-of-concept implementation of the FSM Constructor.

4

-
n't a.tl

Fou I L IPL

._.-,-.«A.
e ey D

N Ay A Ll

SR 1508 0

A

FPIRT LTV T Y s A
v
P
PR St |

AT

[

AR

o

,.
| RIS

~, .

133

"
1

B D L e e
F
.
B
p
»
WO

...;,‘I-','n.'
.'l"" '..I’l

B e G Sk S Tk e Wit s it A LR EP B G s e w2 e SR S S e e (e i e S TR AR T

...........

&

t\.
b
3
oy

el This component contains the template for entries in the Ada missile software
'i parts catalog. It is also intended to contain all of the catalog entries,
tk however, for the proof-of-concept implementation, only one partial catalog

» entry is provided.

(1) CATALOG.ART

134

B e T e

) R LY

LG SRR P

T W W W OV N WL v LTl

;#4VAX (in-peckege #L art-user)

(def-viewpoint-levels)

A badaadadaaadd it d il e a d d i d el el ot dd g a st d e da s d e i add gt) dt g g ddd g g

b CATALOG SCHEMA
§ AR R R AR RN RN AR AR AR AR AR AR AN AN AU R R AT RS

Template for catalog entries

e e we

defschema part-entry
(pert-id)
(revision-id)
(name)

- (version)
(security-clasaificetion-part)
(aecurity-classification-entry)
(type)

{1level)
(cleas)
(inline)
(cetegory)
(keywords)
(fixed-code-location)
(operation
(slot-hov-meny multiple-velues})
(verification-atetua)
(dete-ceteloged)
(developed-by)
(developed-for)
(requirements~documentetion)
(design-documentetion)
(size-source)
(eige-odject)
(eccurecy)
(timing=-charecterizetions)
(herdvere-dependencies)
(other-restrictions)
(catalog-units-withed)
(withing=-cetelog=-units)
(abstrect)
1 (remarks)
(timestemp-last-revision))

; Catalog entries for software parts

»
(defschema 299
(instance-of part-entry)
(part-id e001)
! (revision-id 0)
| (type subprogram)
(fixed-code-locetion “fsml.ada"))

PR RAAr
FAE

4

d
t
©
"

F

135

i
&

s
.- "- 2, "

P

8 e e -

- » » - . . - b - - - .
o b e T N LT T L T T AT R L S e T S S S N A ORI
B S S AN IS, S A S S R S S X G A L LR TR P PO

(2) PROLOG.ART

This component contains ART code that handles 'front-end' processing that is
required regardless of the facility selected by the user. It is from here
that control is transferred to the selected facilities.

v v

[
E%
fo
(s

N

-

-
LA
-
-

1
-

. “;'."'L “;."‘u ']

g T

2 3wl

136

A

ok

a4 »

. 8 £
'e ‘s s

By

Oic Wi e e M T O RERO R RO RO ST NI g gt AU RGN S8 1 S (W R RO, N W T O R T Y o T L T TOME TR TR S T M I T S S S O S T R R S R kY

W2 T QR e R SN i T eV s el e e ke g i B T o L WL NN . 2 bt \ b’ ol inh &8 Sof é

+#+VAX (in-packsge #L art-user)

(def-viewpoint-levels)

H Ladadd d 2 dd et d il ad i ad i adad il dadd sl gl an i ada g aaa et agtadddgiyldyyd

a . PROLOG for AMPEE System
- REENARRRRARRTRRARREARARARARR AR AR R AR ARG T rE b b rdrr T d it b e idreid

> v, 2

H
: Relations

T

»
(defrelation build-response-link
(1part=id revision-id Tresponse-scbema))

(defrelation state
] {?level-1 1level-2))

- (defrelation user-id
5 (tuid))

(defrelation user-verified)

~v

(defrelation part-available
(2PI 1R1))

Rl sk sl Sl

R e i e

H
; Facts to link parts to schemata that will store user inputs

T

1]
(deffacts initial-links
(build-response-link a00l O fsm-user-responses)) "y

'
; Valid users

e T |

(defschema valid-user .
(has-instances 1200538 201965 u203093 w207215)
(access=-privileges
(slot-datatype sequence)))

i e i o
'. "4" -"

3 ; Schems to keep track of which part is to be built

(defschema part-to-build
(part-id)
(revision-id)
(to-build-from) ;sequence of files from which fixed portioas of code
;in component being built will be copied

5 (to=build-at))

&
h]
.
L]
L]
]

137

A e - o eie e L

Bl I ST s o RS BE N f _w B
- CpE FRC PN, OO I NS s Rl Y P Pt T
._A:-.‘.\.A. y NN AN . SR LS 4~l_'_‘_\4_ C %) .A.'—l...h L8

LS PRI G 8 0" 2°0 Sl A e b D 08 Pk Sud Sad QaE Ol Pot st Eafalis 5 A8 aud el B b Autioidet Seantout chdus ut et 00 2o 2o 500 8% L% Bia ahe Stn 4he At 040 fin e 8% 4

=

3 Cleers the screen end prompts user to log in

H
(defrule initialize-system
=>

K e e maAss - oweuiuiee |

s
.

’}, {cell-out erese-page 1 1) =
:i (assert (user-id =(prompt-end-reed #L":expression

v "Enter User Id: "))))

A

i .

}‘ ; Varifies that thet user code used es log-in is velid.

H
(defrule verify-user
(user-id ?uid)

(schema ?uid (instence-of velid-user))

=) .
(essert (user-verified))) h

.
Rk

;.—-
; This will eventually be replaced by e complete menu; it currently
; goes directly to the “Component Construction’” function.

(defrule which-function
7% <- (user-verified)
->
(retrect x)
(cell-out erese-pege 1 1)
(wein-menu))

i

; Prompts user for the identity of the pert thet he wents to construct.

; At a leter dete it is enticipeted thet the ueer will have been

; provided with e list of perts & will select one rether than being

3 prompted in this fashion. o
Two rules ere used to get the pert id end revision id beceuse with

; Bete 3, the compiletion resulted in the order of the prompts being

+ Cchenged.

a g e e
D) S PP

»oa
P

"

LR

LA

A

)
(defrule which-pert-1
(stete component-construction Component-generetion)
-)>
(terpri)
(essert
(scheme =(gensym)
(instence-of pert-to-build)
(pert~id =(prompt-end~reed #L°:expression "Pert ID: *)))))

= ':'. -_’. o 50 _-_-,-

N
3
»
' N
-
.
L]
.-‘
..
[
#i ot e o T BT R N e T L e R T L N o —_p— — -]
._':.‘ \i.,-i,:] -'4’. \’_'-".:‘ . -A:.-:_i.'-.' I LAy "s;‘.o.:‘q:.: ‘_."'*' et “-.-_\.‘h:~

o

T

(defrule which-part-2
(schema ?x (instance-of part-to-build) (part-id ?PI))
=)
(terpri)
(assert
(schema 7x
(revision-id =(prompt-and-read #L°:expression "Revision ID: *)))))

Verifies that the part identified does indeed exist in the parts
catalog.
I1f the part does not exist, the user should be taken back to the
prompt for part id/revision id or be allowed to exit.

e e we W e e

defrule verify-ezistance
(declare (salience 100))

(schema ?x
(instance-of part-to-build)
(part-id 7PI)
(revision-id ?RI))

(case
((schema ?y
(instance-of part-entry)
(part=-id 7PI)
(revision-id ?RI))
->
(assert (part-available ?PI ?RI)))

(othervise

-
(printous t t “Specified part does not exist in the parts catalog.")
(retract 7x))))

(defrule get-fixed-code-and-place-to-build
?x <- (part-available ?PI ?RI)

(schema ?Y
(instance-of part-to-build)
(part-id ?PI)
(revision-id ?RI))

(case

((schema ?
(instance-of part-entry)
(part-id ?PI)
{revision-id ?RI)
(fixed-code-location ?file-names))

->

(assert (schema 7Y (to-build-from ?file-names)))))

139

PR |

...,
l.l
4

A I

a A
VAP Y,

-
A,

R o e G -—a-

AN LSS S YIRS T T T

T T

=)

(retract x)
(assert (schema 7Y (to-build-st =(prompt-and-read #L’:expression
“Enter file name (pathname) for component: *)))))

140

e i e e

P —

& SR - ab b

o)

\ P,
(3) FSM.ART E
:
This ART component s the central portion of the proof-of-concept
mplementation. It contains the code necessary to carry on a dialog with the L
user to elicit requirements and construct the required Ada implementation of 3.
o
a finite state machine. ;
§
5
-
rt
‘r'.-"
<
4
4 14]
C/

X » e N % # - L L 4 e N7 o - - - - r
!:"_:_’Lrh'.’.‘.t.'-,l..'.n.,_';l_"&L-l: .l...-.' o N Lid. CadeBlfad od. 00, 3, st s R Soactoe S it i it S adfa s (LR, B s i et e s

;#+VAX (in-peckage fL art-user)

B L L L L S SR S g U T SR A e o
Finite Stete Machine Pert Cnnstructor

1]

1]

1]

; This pert constructor solicts informetinn from the user concerning the

; specific finite stete machine that is tn be built. The user’s input is

; stored in e ‘response’ scheme. In the prototype implementetinn, the ueer
; Trequirements knowledge bese will be updeted by this “respanse” schema in
; order tn fecilitate cnmponent regeneretion., Once ell input is received

*

from the user, the fsm component is cnnstructed.

F WHRA AN RARARATAR T AR ER AT AT T AR TTA AT RAAAA AR RATAANAT SN AR T AN AR AR TSV A h e bt

* % % B %8 %8N
4

; Reletinns: Fects esserted intn the knnwledge bese ere treated as relations.
B Undeclered releticns generete warnings at compile time, thus they are

5 declered here.
H
(

de}reletinn creete-stetes=-slot
{2time))

(defrelation init-st-input o
(?time)) &

(defrelation prompt
{?P1 ?R1 ?TIME ?5CH))

(defreletinn get-begimningetime)
(defreletion initiel-sequence)

{defrelation nd-check
(7P1 7R1 ?TIME))

(defreletion get-component-name
(?2P1 ?R1 7TIME))

(defrelation get-initiel-state
(?P1 2RI ?TIME))

(defrelation get-beginning-stete)

{(defreletion beginning-stete
(78S))

{defrelation get-events) &

{defreletinn events
(TEVENTS))

(defrelation get-ending-state)

(defrelation ending-stete
(72s))

(defreletion get-actions)

(defreletion ection
(2ACTION))

142

v v 73]

(dafrelation arror
{TERROR-TYPE))

(dafralation chack-for-unreachabla}

e 55 S Rl

(dafralation axtract-sea

(1P1 MRI ITIME))

.

(defrelation build-part
(?PI MRI ITIME))

> e v e
. 1

(defrelation action-pe-kagas
(1ap))

(3

(dafralation beginninz-states
(1all-baginning-states))

et
Ay tg-% g v

L] .

+ This schema tamplata is usad to stors usar input for the coostructioo of a

; particular fem compooaot. Tha informatiom providad ie storad for futura usa
; (e.g., if the component constructed is oot as tha usar wantad, ha can maka

; changas to his input withput haviog to re-aotar all of it.
H
(

o
o N

e

dafschema fem-user-raspoosas
(part=-id)
(revisioo-id)
(usar-id}
(timastamp)
(file-nsma) ;oama of fila whara cowponaot will ba writteo
{(component-name) ;oame of componaot to be built g
(initisl-stata)
(states)
(stata-transitions))

P i o I, AL ‘-4"

ey

N

»

; Establishes a schems for tha user’s requirements, sod asearts a fact to
initiata solicitation of those requirements. It ie initistad oaly aftar
; varification that a part coostructor axists for tha part requasted by tbe
 usar,

y

oy

[]
(defrula solicit-ioputs-fem
(scbema ?
(inetanca=-of part-to-~build)
(part-id pi)
(revision-id ri)
(to-build-at 1fo))

v v,
o' o o

[

(build-response-liok Tpi Tri fsm-usar-raspooses)
(user-id 101D)

->
(bind ltime (get-univeresi-time))

143

RS R i

LY,

LRSS B e

I I T Bl v R tVets et n o B F P e i

(essert (echema =(gensym)
(instence-of fsm-user-responses)
(pert-id ?PI)
(revision-id 7RI}
(user-id UID)
(timestemp ?time)
(file-name 7£n)))

(essert (get-component-neme 7PI 1RI ITIME)))

(defrule get-conponent -name
Tx <- (get-component-neme 7PI TRI TTIME)

(acheme 1sch
(instence-of fem—user-responses)
(pert-id ?PI)
(revision-id TRI)
(timestemp 7TIME))
->
(retrect x)
(terpri)
(bind Tcomponent-neme (prompt-end-reed #L°:expression
“Enter Component Name: “))
(if (symbolp ?component-name) then
-(if (velid-ede-identifier 7component-name) then
(essert
(schema Tsch (component-name ?component-name))
(get-initiel-stete ?PI 7RI TTIME))
elee

(printout t t "Invelid Ade identifier entered for component name.*)

(essert (get—component-name ?P1 7RI ?TIME)))
elee
{printout t t “Component name must be e sysbol.")
(essert (get—component-neme ?P1 7RI TTIME))))

{defrule get-initiel-stete
7x <= (get-initiel-stete 7PI 7RI 1TIME)

(schema Tech
(instence-of fem-user-responses)
(pert-id 7PI1)
(revision-id 1RI)
(timestemp ?TIME))
-
(retrect 1x)
(terpri)
(bind tinitiel-stete (prompt~end-reed #L’:expression
“Enter Initiel Stete: "))
(if (eymbolp linitiel-stete) then
(if (velid-ede-identifier Tinitiel-stete) then
(bind Teeq-stete (seq$ (list Tinitiel-stete)))
(essert
(scheme ?sch (initiel-stete Tinitial-stete)

144

D g b e
= -t e T2 lon

T D A Rt LR IR 58 Lo
‘a i it e A R TE) gy P A . o

P LN SN A

'\" \

e pmrie
P A A

-, (YJ:!" 4

.

e
D

f(.'ﬂr

.

o
CIP S

(ststes 7seq-state))
(init-st-input 1TIME))
elese
(printout t t "Initial stete must be e valid Ade identifier.")
(sssert (get-initiel-stste 7PI TRI 1TINME)))
else
(priotout t t "Initiel stete must be ¢ symbol.")
(essert (get-initiel-stete ?PI 7RI ?TIME))}))

; Initiates Stete-Transition ioput from the user.

(defrule initiete-state-trsns-ioput
1x <= (init-st-input Itime)

(schema ?
(iostence-of pert-to-huild)
(pert-id 1PI)
(revision-id 1RI))

(schema 7sch

(iostence-of fsm-user-respooses)

(part=-id 1PI)

(revision-id 7RI)

(timestamp Ttime))

->

(retrect x)
(printout t t “Enter stetes eod trensitions es prompted below.")
(printout t t “Events ere to be entered jno tbe following formetr:™)
(printout t t * (event_l event_2 ... eveot_o)")
(terpri) .
(printout t t “Actions are to he in the followiog formet:")
(printout t t * (<ectioo_package> <sctiog_procedure>)*)
{printout t t "If no ections ere associeted with the treositioco enter NIL")
(terpri)
(priotout t t “States ere to be entered ee symbols, e.g., stete_1")
(terpri) .
(assert

(prompt 7PI 7RI 1TIME 78CH)

(get-beginniog-stste)

(initial-sequence)))

H
; Gets the beginning state for e stete-trensition
i Dats and error checking is performwed oo the input supplied hy the user

1]
(defrule get-beginoing-state
1t <- (prompt TPI TRI 1TIME 75CH)
1x <- (get-beginniog-stete)
=>
(retract 7x)
(terpri)
(priotout t t "Beginning Stete: *)

145

g miye s e - s - .
R Y -J"‘-.:‘.-. N . e "". ' \-Q o u.‘ :' Fell ‘& ‘.-" e

SRS e o 8 N ..n{'n\.'h LA '.1':'. JEW i

AP

AP
£ 4 _x_1

G
l)‘l
b Ay T Y

£

LR e i S 00 ol R R Rt D it a6 ok e TRt et S 8 ~Rft B S ek i Sl

(bind ?BS (read))
(if (equalp 7BS #L"quit) then
(retract ?z)
(sssert (nd-check ?PI 7Rl ?T1ME))
else
(if (and (symbolp ?BS) (not (null ?BS))) thes
(if (valid-Ada-identifier ?BS) then
(sssert (beginning-state 1BS)
(get-events))
else
(printout t t “Invalid Ada identifier entered for Beginning State™)
(assert (get-beginning-state)))
else
(printout t t “Beginning State must be & symbol - i.s., not e list")
(assert (get-beginning-state)))))

Gets the stimuli associated with a state-transition

»
(defrule get-events
(declare (salience 100))
7x <- (get-events)
(beginning-state 7)
=>
(retract x)
(printout t t “Events: ")
(bind 7EVENTS (read))
(if #L(lisp:listp 7EVENIS) then
(if (valid-list-of-Ada-identifiers 7EVENTS) then
(bind 7seq-events (seq*$ 7TEVENTS))
(sssert (events lseq-events)
(get-ending-state))
else
(printout t t “Error - lnovalid Ads identifisr entered as sn event.")
(assert (get-events)))
else
(printout t t "Events must be entered as a list of syabols (e.g.. (s b ¢))*)
(assert (get-events))))

H
; Obtains the ending state for a state-transition

»

(defrule get-ending-state
(declare (salience 100))
1x <- (get-ending=state)
(beginning-state 27BS)
(prowpt 7P1 ?R1 7TIME 2?SCH)

(schema ?SCH
(instance-of fsm-user-responses)
(initial-state 718))
)
(retract 7x)
(printout t t “"Ending Stete: ")

146

(bind 7ES (read))
(if (end (symbolp TES) (not (mull 7ES))) theo
: (if (valid-Ada-identifier 1ES) then
N (assert (ending-stete ES)
(get-actioos))

TR

else
(printout t t “Error - Invalid Ade ideotifier entered.")

(assert (get-ending-state)))

b 3 eloe
; (printout t t “Eoding etate must be e symbol.")
(assert (get-ending-stete))))

b TV T

-

- o

’

; Phraine the geticns associated with the trsnsition
. The veer awst specify the Ada peckage that contains s routine to perform the
p ; desired ection, aod the oame of the routine. The specificetion je in the
form of ¢ LISP list,

e.g., (prepere_for_leuoch ignite_eogines)

v

.-"f.’ o

defrule get-actions
" (declere (selieoce 100))
1z <~ (get-actions)
{ending-state ?7)
-
{retrect 1s)
(printout t t “Action: ")
(bind 7ACTION (read))
{if #L(lisp:listp ?ACTION) theo
(if (valid-list-of-Ada-identifiers 7ACTION) theo
(bind 7seq-action (seq*$ Tection))
(assert (ection 7seq-ection))
else
(priotout t t "Invelid Adas ideotifier entered for & compovent of ACTION.")
(essert (get=-actions)))

else
(printout t t “Actions must be entered es a list io the following form: ")

(printout t t " (<action_peckege> <ection_routine>) or NIL")
(essert (get-actioos))))

[

PRI M

c¥-Tavaw

H
; Updates the state-trsnsition information with the latest state-treositioo
o i thet has been provided by tha user.

L]
(defrule update-state-trensitions
(prompt 7PI 7RI ?TIME ?sch)
7a <- (beginning-state 13S)
b <~ (events 7EVENTS)
¢ <- (ending-state 1ES)
1d <- (actiom TACTION) b

— -
.

{=> (biod 7list-events (list*$ 7EVENTS))
{bind ?7list-action {liet*$ TACTION)))

147

- fn iy r—
Vi -'-. kS W, e D R ECY A JORT e
L 1.'){. _.'-_. .' \‘ 1' L S ‘..'&1\",_ L A I L D T

(case
(7x <- (initial-sequence)
>
(retract 1x)
(bind TSEQST (seq*$ (list (liat ?BS ?Events TES TACTION))))
(assert (schema Tech (state-transitions ?SEQST))))

((schemsa 1sch (state-transitions IR))
->

(bind ST (list TBS ?list-events TES ?list-action))

(bind ?listr (list*$ R))

(bind teeqst (seq*$ (redundancy-elimination st Tliatr)))

(nodify (schema 7Tsch {(state-transitions ?seqst)))))
-> o
(retract 7a b ¢ 1d)
(assert (get-beginning-state)))

Verifies that the same stimuli applied to the sane state does not result in
2 different transitions.

defrule check-for-nondeterminism
?x <~ (nd-check ?PI TRI ITIME)

(schenma ?
(instance-of fsm-user-responses)
(part-id 1PI)
(revision-id IRI1)
(timestamp ?TINE)
(state~transitions 1ST))

=

(retract x)

(if (signal-nondeterminism-error (list*$ 18T)) then
(printout t t "wew Invalid State-Transition Data Entered het)
(printout t t “**% Unable to continue processing for this part *we%)
(assert (error fnput-data))

else (printout t t "Data passed nd check”) &

(assert (extract-sea ?PI ?R1 ?TIME))))

1]

; Extracts ststes, events, and actions from an embedded sequence and formse &
; sequence for each of the three. This data is used when generating the Ada
; code for the component under construction. It fs simpler to prepare the

; information shead of time.
1
(

defrule extract-states-events
7x <~ (extract-sea ?P1 IRI ?TIME)

{schema ?sch
{instance-of fem-usar-responses)
(part-id TPI)

148

"'.A, -

% %N S-S 7]

E (ravision-id 7RI)
{ (timastamp ?TIME)
(stata-transitions 7R)
(statas ?statas))

‘i

=)

(assart (chack-for-unraachabla ?P1 ?RI TTIME))
(ratract 7x)

] (bind 7listr (list*$ 7R))
(bind Tsaqstatas (saq$ ‘maka-statas ?listr (list$?statas))))
(bind ?saqavants (saq$ (maka-evants Tlistr nil)))
(bind Tsaqactions (seq$ (maks-actions ?listr nil)))
(bind 7seqbstatas {saq5 (maka<-bstatas ?listr nil)))
(assart (action-packagas lsaqactions))
(assart (baginning-statas ?seqbstatas))

- (assart (avants Tsaqavants))

] (modify

i (schema Tscd

X (statas saqstatas))))

e e e

‘-". | 3 f!""l'

T

"a,

H .
o ; Chacks stata-transitions for unraachabla atatas

»
\ (defrulas chack-unreschabla-stata
?x <- (chack-for-unraachabla ?PI !R1 ITIME)
: (baginning-statas ?7BSTATES)

L e T e 7

(acbama ?
(instanca-of fsm-usar-rasponsss)
(part-id ?P1)

(ravision=-id ?R1) t

. (timastamp TTIME) k.

(initial-stata ?718) g

. (stats-transitions TR)) E'
L -) -

(ratract ?x)
(bind ?list-bstatas (list*$ 7bstatas))
. (bind ?listr (list*$ 1R))
. (bind Ton-unraacbsblas (signal-unrsacbabla~stats 718 Tlist-bstataa Tlistr))
(if Tno-unraachablas than
(printout t t "Data passad chack fnr unraachabla statas.™)
i (assart (build-part TPI TRI 7TIME))
alsa
(printout t t ™*** Invalid Stata-Transitioo Data Entarad ww*®)
(printout t t "Unraachabla stata datactad in fsm: " Ton-unraachablas)
(assart (arror input-data))))

e N,

; Genaratas tha FSH componant apacifiad by tha usar

P
1}

idlfrula build-fsm
(not (arror 7))
7a <= (build-part ?P1 ?RI ?TIME)

~F T

149

-'w s & &

AR AR A

.

N O S S S O L LR O TN

m e
PPN |

7x <- (action-packages lTactions)
1y <~ (events levents)
1z <- (beginning-states lbstates)

A

.

(schena ?sch
(instance-of fsm-user-responses)
(part-id 7PI1)
(revision=id 1RI) -
(timestamp 1TIME) -
(initial-state ?71S)
(file-name ?file-name)
(component-nsme 1CN)
{states ?STATES)

B W g
Ll ."’-_ ", Ay

(state-transitions 1ST)) -
(schema b E;:

(instance-of part-to-build) e,

(psrt-id 1PI) o
-. (revision-id 1R1) ‘-

(to-build-from tfrom))

B4
)

->
(printout t t “Constructing component “ ?CN) "
(bind foutput #L{open 7file-name :direction output {\
:if-exists :oew-vsrsion =
iif-does-not-exist :create)) o
S
(write-fem-header Toutput (list$ Tactions) ?cn (1ist$ Tstates) (list$ tevents) lis) b

(bind Tinput #L(open tfrom :directiom :input))
(read-loop linput Toutput)

. .
=t
o Qe

(vrite-selection-code Toutput (list$ Tbstates) (list*$ 151))

v e .

(princ end Signsl;" loutput)
(terpri toutput)
(terpri toutput)

g

v

(princ "end " Toutput) o

(princ %en toutput) ;ni
: (princ *;" Toutput) P

(terpri Toutput) -,

e
)

(close toutput)

(retract 7x 7y 1z 1a b))

e b e A Tad Ve rm e e p ek Wi toh o b Ve wil. et Bl f Pk, SOL AR TN LT R e T T N L RS ST RCUR A RS ORI S ISR SR TR T S S SV SRS

(4) LFSM.LSP

This component contains the LISP utilities. Many of these routines are quite
general, and can be used by other functions within the AMPEE system.

._!.!

E
e
=3
i
B
Y

i

T THY

BT Tl N el
R N)

LW
s I

Lot e e

R ALY D

» a

ey
w-.-'-

R e S o
A2 .‘J‘.‘.'_jlllm

o
s "

e

Y. |

L)

151

o k
< .
v [
i [y
0\
: ; Externsl routine to clear the screen - DEC extension to Common Lisp '
H i
»
: (define-external-routine
'y {erase-pege :image-pame "scrshr® 5
:entry-point “libSersse_ Pl.! 5
:check-status-return t)
4] (line :lisp-type integer -
K :vex=type :word) E
f (col :lisp-type integer
- ivax-type :wvord)) ;
[}
»* . -
- » .
- ; Name: read-loop
3 s : Alphe & beta must be bound to stream names |
y : Processing: This routine reeds from streem “alphe” end writss to stresm :
5 3 “bets’. The input strsam is closed efter end—of-file is reecbed, but it .
H is left to the calling rountine to ¢lose ths output streem. 4
»
L (defun reed-loop (slpha bete)’ -
i (cond ({write-line (read-line alphs nil) bete) (reed-loop elpba bste)) N
~ (t (close elphe)))) 1
i :
- Y
»
T ; Name: write—-event-or-list .
.j ; Writss disjunction of event elements in “liste” to “output-stream” X
.l ; Example: liste := (a b ¢) I
4 A output: (event e) or (event b) or {(evsnt ¢) i1
| » -
E {(defun write-event-or-list (output-streem liste line-lengtd) b
(cond ((> (1ength 1iste) 0)
. (setq line-lengtb (+ line-length '
} (+ 14 (langtb (string (car liste)))))) o
"¢ (cond ({> line-length 119) y
K (terpri output-stress) .
.. (princ " * output-stresm} i
i (setq line=length 6)) A o
g (T 0il))) ;
/ (T 0il)) \
X (cond ((> (length liste) 1) (princ “(event = * output-stream) ¢ t
4 (princ (cer liste) output-streem) v
{ (prine *) or " output-strasam) 5
| (vrite-event-or-list output-strsam e
(edr 1iste)
B line=length))
e (t {princ "(event = " output-stresm) 3
) (prine (car liste) output-stresm)
] {princ ")" output-stresm)))) E
2 H
' .
4 152 s
i ~
. \
1 -~

& o .) i Sl .5 . -
<, o C s . b DO 5
5 M) RS T B .A\.A ‘.n - ‘-A_A. AT IR S R SR SIS E N

Name: write-alteration-list
Writes disjunction of elements in “liste” to ‘output-stream” with
the alteration symbol instead of ‘or” i
Example: liste := (a b ¢)
output: a I b | ¢

e ws W @ W W

ws ®e P ws W we we we we

defun vrite-alteration-list (output-stream liste line-length)

(cond ((> (length liste) 0)
(setq line-length (+ line-length
(+ 3 (length (string (car liste))))))
(cond ((> line-length 119)

(terpri output-stream)
(princ * " output-stream)
(setq line-length 6))

(T nil)))

(T nil))

Lcond ((> (length liste) 1) (primc (car liste) output-stream)
(princ * | " output-stream)
(write-alteration-list output-stresa
(cdr liste)
line~-length))

(t (princ (car liste) outpué-ltrcln))))

Name: vrite-cooma-list
Writes ‘comma list” of elements in LISTE to OUTPUT-STREAM
Example: LISTE := (a b ¢)

OUTPUT: a, b, ¢

defun write-comma-list (output-strean liste line-length)
first decide if output should be written on current line or if a
linefeed is needed.
(cond ((> (length liste) 0)
(setq line-length (+ line-length
(+ 2 (length (string (car liste))))))

(cond ((> line-length 119)

(terpri output=-stream)
(princ " * output-stream)
(setq line-length 6))

(T 0il)))

(T nil))

(cond ((> (length liste) 1) (princ (car liste) output-stream)
(princ ", “ output-stream)
(write-comma-list output-stream
(cdr liste)
line-length))

(t (princ (car liste) output-stream))))

; Name: make-states
Extracts the states from the embedded lists of state-transitions (i.e., it

153

s | LA

«

Y TN

w oo
T R

S

T
o

D
{ Yol ¥ P

s Y7

O

YYD IR S S R AT

L b

3
|
!
h!
!
b
!
b
E

\
-
.

sl
T Y

=

LER B AFANE St i s

) <1 ot it

g forms & list of all of the states found in the input data. The list is
; used to declare an enumeration data type in the Ada component being

H generated.

; SEQ is in the form: ((BS (events) ES (action)) ...)
; STATFS is in the form: (S1 82 ... Sn)
H
{

-

defun make-states (seq states)
(cond ((> (length seq) C)
(setq states (union
(remove-duplicates (list (caar seq) (caddar seq)))

states))
(make-states (cdr seq) states))
(t states)))

Name: make-bstates
Extracts only the beginning states from the embedded lists of
state-transitions; SEQ is of the same form as above

defun make-bstates (seq bstates) .
(cond ((> (length seq) 0)
(setq bstates (union (list (casr seq)) bstates))
(make-bstates (cdr seq) bstates))
(T bstates)))

Name: make-events

Extracts all of the events from the embedded lists of state-transitions
(i.e., it forms a list of all events found in the input dsta provided by
the user).

SEQ is of the same form as above

EVENTS is in the form: (El E2 ... En)

Pwr we B W we we we wo

defun make-events (seq events)
(cond ((pull events) (setq events (cadar seq))
(make-events (cdr seq) events))
((> (length seq) 0) (setq events (union (cadar seq) events))
(make-events (cdr seq) events))

(t events)))

Name: make-actions

Extracts all of the action packages from the embedded lists of state-transi-
tions; if the action is NIL, it is not added to list of actions. The
actions are WITHed into the Ada component that is to be generated.

ACTIONS is of the form: (Al A2 ... An)

; SEQ is the same form as above.
(

defun make-actions (seq actions)
(cond ((and (null (car (last (car seq)))) (> (length seq) 0))
(make-actions (edr seq) actioms))

154

ST R T L Tl L ST T P A el et oy CoSa
CRPECRC BTG UK RLAT ST S S AT AR D I,

'-

s

Yy .'_..'..

4
1

)
el

R |

e
"‘1.'4 TR Rl
| G e .

Ad‘ .
"es ©

, ..
e
*a® 2"

X,

I e e et
o D

-

b Bt et b S e S S e B Bk R e a o v

T e e - ”..‘-““
e Sty '...‘J.'l"l:‘;

L g g D LT T S
SR T AT AR N

- MR S g i e i i i e i v i e i

((oull ections) (setq sctions (list (ceer (lest (car seq)))))
(maks-ections (cdr seq) sctions))
((> (length seq) O) (setq ectiocns (unioo (list (ceer (lest (car eeq)))) attions))
(maks-ections (cdr eeq) ections))
(T ections))) %

Name: vrite-few-heeder

VWrites the ioitiel portion of Ade code for the fsm pert

OUTPUT-STREAM: Name of output stream

WITH=-ACTION: List of peckeges to be WiTHed ioto the Ade compooeotr thet is
voder coostruction. It is of the form (Al A2 ... An)

CN: The nase of the compoosot under coostructioo. This must be a valid Ade
identifier

STATES: List of stetes used in decleretion of eoumeretion dste type

_ representiog ell possible stetes.

EVENTS: List of events used io the decleretioo of enumeretion data type
tepreseoting ell possible events.

I1§$: loitiel stete

defuo vrite-fsm-heeder (output-stream vith-ectioos co stetes eveote ie)
(cond ((> (leogth WITH-ACTIONS) 1)
(prioe “with ™ output-stresm)
(vrite-comme-list OUTPUT-STREAM VWITH-ACTIONS 5)
(princ ";" output=streem))
((eod (= (leogth WITM-ACTIONS) 1)
(oot (equelp (cer WITH-ACTIONS) oil)))
(prioc “with * OUTPUT-STREAM)
(prioc (cer WITH-ACTIONS) OUTPUT-STREAM)
(prioc “;” output-stream))
(T oil))

(terpri output-etreas)

(prioc “peckege * OUTPUT-STREAM)
(prioc CN OUTPUT-STREANM)
(pricc * is” OUTPUT-STREANM)
(terpri OUTPUT~STREAM)

(prioc * type Stetes is (* OUTPUT-STREAM)

(write-comme-1ist OUTPUT-STREAM STATES 18)

(priec ");" OUTPUT-STREAM) Cf
(terpri OUTPUT-STREAM)

(prioc * type Stiwuli is (" OUTPUT-STREAM)
(vrite—~omme-list OUTPUT-STREAM EVENTIS 19)
(priec *);* OUTPUT-STREAM)

(terpri OUTPUT~SIREAM)

(prioc * function Curreot_Stete returo Stetes;™ OUTPUT-STREAM)
(terpri OUTPUT-STREAM)
(prine * procedure Sigoel (Eveot : io Btimuli);* OUTPUT-STREAM)
(terpri OUTPUT-STREAM)

(prioc * 1lovelid Stisuli : EXCEPTION;" OUTPUT-STREAM)
(terpri-OUTPUT-STREAM)

155

FROATTEH TR LA LS SRR RATE PR OLT S LR R U WA

B A A PR S g v
8 :

e .
Pan P Plam
a;i\'i;'.)

T S s B o e T e T T O g N T D Tl e L L T T N T T N N N N R e i e ee

a

-
»

‘-L EAAL ATy

{princ "end " OUTPUT-STREAM)}

(princ CN OUTPUT-STREAM)

(princ ;" OUTPUT=STREAM)

{terpri OUTPUT-STREAM)

(terpri OUTPUT-STREAM) s

=

(princ "package body " OUTPUT-STREAM)

{princ CN OUTPUT=STREAM® i
(princ " is " OUTPUT-STREAM)

(terpri OUTPUT-STREAM)

PRty

(princ " Present_State : Stetes := ' DUTPUT-STREAM
(princ 1S OUTPUT-STREAM) :
{(princ ;" OUTPUT-STREAM)
(terpri OUTPUT-STREAM))

L]
PoiE
-

=

-4' o,

; Name: write-aelection-code

; Determines whether the fan componest should be written with e

: “ceae’ statement or with en “if-then-elae”; the criteria is the

; number of stetea that were specified (i.e., the length of SIATES).
H
{

defun vrite-aelection-code (output-l:renn'ltetel stete-trensitions)
{cond ((> (length atetea) 2)
(write-state=-cese output-streem states stete-trensitions))

1 ({and (<= (length states) 2) (> (length stetes) 0))
(vrite-state-if-elsif output-atreem stetes stete-trensitiocns))

(T “ERROR)))

Name: write-state-case

Processes the use of e "case” stetement for the major stete selection

criteria {based on total number of stetes) ~
OUTPUT-STREAM: the name of the ocutput stream

STATES: A list of all “beginning” stetes

STATE-TRANSITIONS: A list of ell stete-tremsitions entered by the user

u%‘l""‘l .0

NG B @ W Bs W B e

defun vrite-atete-cese (output-streem states stete-trensitions) “
(prine " case Present_State is “ output-stream)
(terpri output-atreanm)

L (loop

(aetq state (car states))

(prine * vhen " cutput-atrean)
(princ stete output-atream)
(primec ") output=streem)
(terpri output-stream)

g g RS I

(setq state-i-trensitions ‘
(make-state-transitions stete °() stete-trensitions))

v s
e

156

Y R R S
L]
JERS L,

&1

(process-transitions nutput-strasm state-i-traositions)

(setq stetes (cdr statas))

(cond ((= (length states) 0) (return)) -
(T 0il)))

(terpri output-stream) o
(terpri output-streem)

(prine * vheo others => reise iovelid_stimuli;" output-stresa)
(terpri output-stream)
(princ * aod casa;"
(terpri output-stream))

output-streem)

H

: Name: vrita-ststa-if-elsif

; Processes tha use of ao “if-then-else” statement for the “stete”
; selaction criteria (besed on the totel number of stetes)

L]
(dafun vrite-stete-if-elsif (nutput-stream stetes stete~-trensitiocos)
(princ * if * nutput-stream)
335 LOOP
(1oop
(setq stete (car stetes))
(princ "present_stete ® * output-streem)
(prioc state output-streans)
(princ " then" nutput-streea)
(terpri output-stream)

(setq stata-i-traositions
(make~stete-trensitions stste “() stete-trensitions))

(procass-transitions output-stream stete-i-trensitions)
(setq states (cdr ststes))

(cond ((= (length statas) 0) (returo))
(T (terpri output-stresm)

(princ * alsif " output-straem))))
+ss END LCOP
(princ * alsa ¥ output-stream)

(tarpri output-stream)
(princ * raise Invalid_Stimuli;" nutput-straam)

.

LI [, S et]

(terpri output=streem)
(princ * end ifi" output-streem)
(tarpri output=straam))

(2
» >

’
; Nsme: meke-state-treositioos

187

PP I T e It SV S A P R B S 8 L S Rt R P e e e b . ‘ ‘ ¥
ORI LR O CIOK S L S o RN A L S R o P T e N R ; Ry X By
SR BRI IR TN IEIT DS FITA L IP IR DI 20 3or Ry AT I YR Nt U A G 7 S I VS T O AT A e A

oot S 5 St i i i e e il ek W ity Sl B o Rl il ani sk el e, oF L Ll o R o el

Extracts one state-transition set from the entire set of state-transitions.
For a given state, this routine makes a8 list whose csr is that state and
whose c¢dr is 8 list of stimuli, transitions, and associated actions that
originate at “STATE”,

STATE: A single initial state: all tranisitions thst begin with this atate
will be found

ONE=STATE: The set of transitions associsted with a particular state; it is
in the following form: =
(STATE (((event_listl) ES1 (actionsl)) ((event_list2) ES2 (actions2)) ...) ‘
When passed in, this variable should be a null list; it is then initialized 3
to a list containing the value of “STATE”,

STATE-TRANSITIONS: In the form shown below:

((80 (event_list0) esO 20)) (sl (event_listl) esl al) ...)

P e mim 4s B B s B e me We Ws We @

defun make=-state-transitions (state one-state state-transitions)
(cond ((and (> (length state-transitions) 0)
(equal (casr state-transitions) state))
(setq one-state (append one-state (1list (cdar state-transitions))))
a (mske-state-transitions state one-state (cdr state-transitions)))

Lo P PR PR

((> (length stste-transitions) 0)
(make-state-transitions state one-state (cdr state-transitions)))

CR I}

(T (append (list state) one;ltlte))))

o
TR

T .
ST Aue ana S PR

oy

Name: process-transitions

CASE-1: Ome psrticulsr trsnsition sssociated with “STATE” (it consists of
the following: ((event_list) ending_state actions)

. ;
- b .
<. (defun process-trsnsitions (output-stream state-i-transitions) "
? (cond ((> (length (cdr state-i-transitions)) 2) H
- . (vrite-event-case output-stream state-i-transitions)) %

((> (length (cdr state-i-transitioms)) 0} -
-3 (vrite-event-if-elsif output-stresm state-i-transitions))
» (T “ERROR))) p
{ ; :
.. { Name: write-event-case & -
4 : Processes the use of a “csse” statement for the events; i.e., if there are s
iy ; wmultiple conditions thst cause transition, the total number will determine g
; whether they will be handled with a “case” statement or an “if-then-else” Y
; OUTPUT-STREAM: The name of the output-stream

X s STATE-I-TRARSITIONS: The set of transitions associated with a particular
f ; state; this is obtained via the "MAKE-STATE-TRANSITIONS ™ function
i ; lnternal varisbles:

-, i STATE: A beginning state (for a state transition)
b, ; TRANS1TIONS: The set of all transitions (stimuli, anding state, and

? R sssociated actions) associsted with "STATE”

H
H
H

158

L8 PO 2, 4 LA g R i A R et Wbt SR £ a0t 800 ol] EatB et bt palln 8 et A5 e ki N e i i A

(dafun writa-evant-csse (nutput-streem steta-i-trensitinns)
(princ “ cese Event is * nutput-streem)
{terpri nutput-streen}
(satq stata (car stata-i-trensitinns))

{setq trensitinns (cdr stete-i-transitinns))

(lnop
(satq cese-i (cer transitinons))
(princ * * autput-straam)

(vrita-case-standerd putput-straam (car cesa-i))
{fsm-action-updata nutput-stresm stete cese-i)

(setq transitions (ecdr transitinns))
{cond ({= {(length transitinns) 0) (raturn))

X (T ail)))
.. (princ " vhen nthars => reise Invelid_Stimuli;™ nutput—-stream)
{terpri -nutput-straam) -
{prine * end casa;” nutput-stream)

(tarpri nutput=-stream)).

H
; Name: write-cese-stenderd

L]
{dafun writa~casa-standard (output-straem case-of)

(princ " when " ocutput-streem)
{cond ({> {langth cesa-nf) 1)
(writa-alteration-list output-stream cese-of 7))

(T (princ (cer cese-nf) nutput-streem)))

{princ * =>" putput-stream)
(terpri nutput-atream))

Nama: vwrita-avant-if-elsif
Processea the usa nf en “if-then-else’ stetemant for handiing
multipla avents thet cause tha same trensition

defun vrite-evant-if-elsif (nutput-stream stete-i-trensitinns)
B (setq steta (car stete-i-tremsitinns))
(setq trensitinns (cdr stete-i-transitinns))

(prine " if " nutput-atreem)

(1onp

(setq cese-i (cer transitions))
(cond ((> (langth {car casa-i)) 1)

(write-avant-nr-list nutput-stresn (cer cese-i) 11))
(T (princ “(event = " putput-streem)

(princ (caar case-i) nutput-stresa)

(princ ") nutput-stream)))

159

TRy e S e e [y

D e
- LD

PR N

"3.“-‘(_{-._5.. e t.‘_- -'..',\".‘ R S

A,

e % - " . - - . i I) & g ‘-". P
A Wl R T B T IR Tl ¥ | ‘..'i.L“' ':._4"‘:-";1' AT e g.'.‘h.':h\:._‘f.‘.:...\:i\.a‘fl

LA e Ny

(princ " then" nutput-stream)

(terpri nutput-stream)

- o o=
ATE A A

(fsm-actinn-update nutput-stream state case-i)

(setq transitions (cdr transitinns))

40 (cond ((= (length transitions) 0)
i (princ " else" nutput-stream) 5
i (terpri nutput-stream)
" {princ " raise Invalid_Stimuli;" nutput-stream)
L. (terpri nutput-stream)
E~ (return))
(T (princ * elsif * nutput-strsam))))
& (princ " end if;" cutput-streanm)
O (terpri output-stream))
B~ o

v
B

Name: fsm-actinn-update

Processing: Writes the Ada code to (l) call the routines that perform the
sctions associated with the :rlnoxtion. and (2) update the current state.
Note that the current state is nnt updated if the stimuli does not result in

an actual change in state.

.

e T

oo

.
/™ es 0 we ws we we @0

defun fsm-actinn-update (output-stream state case-i)
(setq action-i (caddr case-i))
(cond ((not (null action-i))
(princ * “ putput-stream)
(prine (string-append (car action~i) "." (cadr action-i)) output-stream)
(princ “;" output-stream)
(terpri output-stresn))

(T nil))
(cond ((equalp state (cadr case-i)) nil)
(T (princ " Present_State := * cutput-stream)
(princ (cadr case-i) output-strean)
(prine *;" nutput-stredn)

(terpri output-strean)))

(cond ((an¢ (null actinn-i) (equnlp state (cadr case-i}})

(princ * BULL:" output~-atreso.)
(terpri cvtput-stresn))
(T nil)))

L A N N L T

jemeemmccseectaraseasmon

; Pare: signol-nondeterninisc-error

. Frocessing: This routine determines if there exists two sets of transitions

H el that tle lLegirping sftote for botl are the sone, tle ending stete fur
cach trarsitioe i« different, lut tley leve ¢t lesst one stitwli in comiong
i.e., 3t looks for situstinus vhere the ssue stinruli at & piver state
resulta in transitions to 2 different states. i

ST is the cnllectinn nf state-transitions ioput by the user

s mr w0

160

e Pt ’ S iy
‘m..l}.&.-.d—..‘.“' "“3-‘; ""1"“.1‘"(""L. o !il-..lal-\ ‘LL.LL\...‘;‘ 'S W

(defun signal-nondetciuinism-arror (ST)

(setq
(setq
(satq
(serq
(setq
(satg
(setg

;LOOP
(loop

(cond

s ws ws @ @

error nil)

state (caar st))
snding-stata (caddar st))
avent-saq (cadar st))
action (car (cddar st)))
reuse-st (cdr st))

nav-st “())

if the heginning statas and ending statas are the sama
than procaed hy gatting the naxt state-transition (don’t nead to
axamina the stimuli for this condition)

((and (> (langth reuss-st) 0)
(equsl stata (caar rausa-st))
(equal ending-stata (caddar rause-st)))
(cond :

((list-equal action (car (cdddar ravsa=-st)))
(satq rause-st (cdr reusa-st)))

(T (satq arror T)
(return))))

if the beginning states are the same, but tha ending statas ara
diffarant, and tha tvo transitions have stinuli in comton
then signal an error

(Cand (> (length reuse-st) 0)
(equal state (casr reuse-st))
(not (equal ending-state (caddar reuse-st)))
(not (null (intersection avant-seq (cadar rause-st)))))
(setq error T)
(raturn))

if there are no more stata-transitions to axamina
than axit the loop

((= (langth reusa-st) 0)
(return))

otharvisa
add tha state transition just looked at to new-st
proceed vith the axamination of the naxt stata-transition in tha
list rause-st

-
RO
.

(T (setq new-st (append (list (car rausa-st)) new-st))
(satq rausa-st (cdr reusa-st)))))

;END LOOP

(cond

((aqual arror I) arror)

((> (langth st) 1)

161

PLENT WA Ty
oty oty o X

e e N e e RN
PRSI WS S i, JRE L SR S AT RN SN

rr-ecere:

s oat

P T R TUENTET Rk bl - e N
£ S OOV 2 A ST A I T T N TR T U N P TR R TR A TR S N TR W U W P U T RO PR T W U B WU R UL R W T R MO e N

-
L5]
TR
Aty

2T

27,

T e

o
(setq st new-st) :{
(signal-nondeterminism-error st)) o
|

(1 NIL))) :_a
- 5
. i é
| - B
4 B 9%
i » "l
; Name: redundancy-elimination 57|
; Processing: As the user enters a state-transition, this routine eliminates Eg
; the following redundancy:
: if (bs0 = bsl) and (esO = esl) and (actions0 = actionsl) ¥ !
s then event~seq = (event-seqD + event-seql) ‘ ;\~
’ .
(defun redundancy-elimination (one-state-tramsition seq-of-state~transitions) EJ
T (setq beginning-state (car one-state-transition)) b
{setq event-seq (cadr one-state-transition)) &4
(setq ending-state (caddr one-state-transitiom)) e
(setq action (car (cdddr ome-state-transition)))
(setq new-st “()) 3 t
;LOOP -
(loop t
(cond L
((and (> (length seq-of-state-transitions) 0) S
(equal beginning-state (caar seq-of-state-transitions))
(equal ending-~state (caddar seq-of-state-transitions)))
(setq event-seq
(remove~duplicates r
(append event-seq (cadar seq-of-state-transitions)))) r

(setq seq-of-state~transitions (cdr seq-of-state-transitions)))

Mg gty

i

((= (length seq-of-state-transitions) 0)

(return (append
(list (list beginning-state event-seq ending-state action))

new-st))) B

N

(T (setq new-st (append (list (car seq-of-state-transitions)) new-st)) Ky

(setq seq-of-state-transitions (cdr seq-of-state-transitions)))))) i

;END LOOP ~ N

&

¥ >

;

; Name: list-equal o

; Processing: Given two lists, determines if they are equal. Test-elements is kf

H called to check the lists element by element. W
H

(defun list-equal (A B) -

(cond sy

((not (= (length A) (length B))) NIL) oy

s

(T (test~elements A B)))) :i

o

e
PR

162

RO

:

o

- T T e PO T, TPV, T o7 o0~ A W, T8 0
-

£ W NI »e e (X '_‘-:; ". r’». 0 I P Dt B \~_- - S
G0 500 35 S HaG AL RGNS O

- e " -
! Ca

) %e ' A ot i N
L O AL, S B S RSN w o % . .
".'i‘? 5 S e D A SRSV S Wt SRS T S 36 SR GG

aVaKa®y FoNa?

(dafun test-elements (A B)
(cond
(Cand (> (length A) 0)
(equal (car A) (car B)))
(test-elements (cdr A) (cdr B)))

((= (length A} 0) T)
(T NIL)))

Name: signel-unreachable-stete
Output: returns the unreechsble state if one is found, otherwvise returns T

defun sigunal-unreecheble-stete (initial-stete batetes stete-trensitions)
(setq errnr nil)
(setq bs (cer batstes))
(setq reuse-at stete-trsneitinne).

; LooP
(1nop
(setq single-st (cer reuse-st))
(setq reuse-st (cdr reuse-st))
(cond

if beginning state is the initisl stete then don"t look for
trensitions intn it

((equalp bs initiel-stete)
(returo nil))

if the beginning stete = tbe ending state of some nther stste
trensition, and the beginning stete of thet tramsitionm is mot
ssue as bs, then there is a trensition into bs snd it is bant
voreechable

((end (equalp (ceddr single-st) bs)
(ont (equelp (cer single-st) ba)))
(return nil))

if all stete-trensitinns have been checked, but oo trensitions
have been fnund intn the stete, thesn it is unreechadble

((e?ull (length reuge-st; 0}
setq errar T)
(return error))

(T ail)))
;END LOOP

(cnand

o
AP A

[

- v . ww
Foo' .

.

P

.<
’-'l L
+ e s

—
S
)

.
»

L E A A L B T T T T T T T T AN W

(error bs)

((> (length bstates) 1)
(signal-unreschable-state initial-state
(cdr bstates) .
stete-transitions))

(1 1))

; Name: valid-list-of-Ada-identifiers

; Inputs: list of identifiers to be checked for validity as Ada identifieres
; Processing: Each element of the list is tested for validity as a valid

i Ada identifier

; Outputs: T if each element of the list is & valid Ads identifier;

R Kil othervise

]

(

defun valid-list-of-Ada-identifiers (list-of-identifiers)
(cood ((and (> (length list-of-idsntifiers) 0)
(valid-Ada-identifier (car list-of-identifiers)))}
(valid-list-of-Ada-identifiers (cdr list-of-ideotifiers)))
((= (length list-of-identifiers) 0) T)

(1T 1il)))

Name: valid-Adsa-identifier
loputs: An symbol thet is to be tested as a valid Ade jdeotifier
Processing: The symbol is first “exploded” to form a list of each of the

constitueot elements of the uymbol. (1Y 29 computq_oorth_vclocity becomes
(il " .loil .lull "o lluﬂ lltll llell " n lloil ll°N Ilr" "t" “h" " w N‘ll .Iell “1" ”oll

l'cﬂ "‘Il “t" L] ll)

After cxplodxog the symbol, various tests are applied to deter-xnc if it
conforme to the requirements for s valid Ada idestifisr.
Outputs: T if the symbol represeots a valid Ada ideotifier
KIL otherviss

Nt we we WS BE WE WS W me Wa W we

dsfun valid-Ada-identifisr (identifisr)
(‘.tq Chl!‘lctl!l '(IIAII QIBIC Ncll llDll II£II l'rll llcll I.HII llx“ llJN O‘I‘OI IQLDI wHu '1"
llou "P" "Q" "R" lls " .IT.I .uu nvll U’Hu uxu n‘u uzn))

('.tq nmber' ‘(llo" “1” “1“ "3" ll““ “5.‘ .‘6" “7“ “8.‘ “’")) M
(setq list-identifier (explode identifier))

(cond ((member {car list-identifier) characters :test #“equslp)
(psrse-ideotifier (cdr list-ideotifier) characters numbers))

(T NIL)))

-

»

s

164
\‘
LN

LIPS

o
1R

o s N ¥ % W Y “m Y \
, " *} \ o ok . o \l- \ I B e T “u o
DA -.‘ *\1\.{\"\. \ FRN BN 2..““.:..\33_3.;.1‘_\._.-\-;_- el Sl

DGR R R
I] 4

e i s g Sl BN i e gLk G R i e o

; Neme: perse-identifier
; Inpute:
list-identifier: e list made up of the constituent elements of the
identifier (ell elements must be in the same order es in the
original symbol
cherecters: e list consisting of ell alphe cherecters (order is not
important)
numbers: e list consisting of the numbers from 0 to 9 (order is pot
importent)

defun parse-identifier (list-identifier cheracters numbers)
(cond ((null list-identifier) T)

((member (cer list-identifier) (union cherecters numbers)
:test # equelp)
(perse-identifier (cdr list-identifier) cheracters pumbers))

((equelp (car list-identifier} "_*")
(cond ((member (cqdr list-identifier)
(union characters numbers) :test # equelp)
(perse-identifier (cddr list~-identifier)
characters numbers)}

(T nil)))

((equelp (cer list-identifier} ".")
(cond ((wember (cedr list-identifier) cherecters :test # equslp)

(perse-identifier (cddr list-identifier)
cberecters numbers))

(T nil)}))

(T nill}))

Ngme: explode
; Inputs: A symbol thet is to be trensformed into e list of its consituent
elements
Outputs: A list of the elements (in the same order as they eppear in the
identifier) thet comprise the identifier. Duplicetes are not removed as
they are significent to proper parsing.

defun explode (identifier)}
(cond ((> (length (string identifier)) 1)
(make-identifier-list (:;rin; identifier)
(length (string identifier))))

((= (length (string identifier)) 1)
(list (string identifier)))

(T RIL)))

165

L N S R T e W R N N A N T N T RN s TP W AT I e Y N R T N AT Y N T N UV T e e N T Y N TN N S X I YA YR
-

Name: make-identifier-list
Inputs:
string~identifier: the string representstion of the original identifier
list-identifier: the list representation of string-identifier 5
index: used to index elements in the string in order to bresk them out T
separstely in the list

defun make-identifier=-list (string-identifier list-identifisr indea)
(setq list-identifier
(append (list (subseq string-identifier (- index 1) indea))
list-identifier))

(cond ({> index 1)
(setq index (-~ index 1))
o (make-identifier-list string-identilisr
list-identifisr
index))

(T list-identifier)))

; Name: main-menu
; Processing: This routine clesrs the screen, estsblished menu entries for

the AMPEE System main menu, and calls routines to display thet menu. The
users response is processed. If an uniaplemented festure is selected, the

routine is called sgain.
; Output: The menu is displsyed

.

»

L]
»
L]
.
L]

zdefun vain-menu ()
(call~out erase-page 1 1)

(setq path “(lAda Missile Ports Engineering Expert Systesl))

(setq wenu_list (add_numhers “((|Parts Cstalogl) .
(IParts ldentificstionl)
(IComponent Constructionl))))

(setq ansver (menu read path menu_list nwil nil))

{cond ((equslp (car ansver) “IParts Catalogl)

(terpri)
(pprint "The Parts Catalog fecility is not yet svsilsble.™)

(pprint “Please hit “return’ to continue.”)
(read-line)

(terpri)

{msin-menu))

((equalp (cor snsver) “[Psrcs Identificetion]|)

(terpri)
(pprint “The Psrts ldentificstion fscility is oot yet svsilsble.™)

(pprint "Please hit “return” to continue.*)
(resd-line)

.
')

R,

166

&>
R} |

P T T Ve S S - "
o % a TuaEES - P e 0 ORI L) .. s RS SFS - e PR . 1 LT T
. P AT - e LN A N Y -‘\._ B L

B i 3 o
BT I U ATE I AP P TR T I E RS RTS F RNG FE AT ASD VGV R

Al ey \--..r\-_.-_- P R . - e

- (l . G ’ 2= CE .
BN P BT ST L LAY O PPN Sl o 4

N R N R Y R e Y Y R T N T A T T Y S S oy 0 W T S L e S

-~

(terpri)
(main-menu))

((equalp (car ansver) °|Component Constructionl|)
(construction-menu))

(T 0il))) .

Name: construction-menu

Processing: This routine displays the menu for constructs and dispiays the
menu for the Component Construction faciltiy of the ANPEE System.

Output: Tne zenu is displayed

o o 4

PN @t wr ws we @

defun construction-menu ()
{call-out erase-page 1 1)

1 (setq path “(|Component Constructionl))

(setq menu_list (ndd_nube;l *(((Component Generstionl)
(|Component Regenerationl))))

(setq ansver (menu_read path menu_list nil ail))

(cond ((equalp (car snswer) °|Component Generationl)
(part-constructor-menu))

[iy

((equalp (car) “lIComp t Regenerationl|)
(terpri) |
(pprint “The Component Regeneration facility is pot yet available.”) o
(pprint "Please hit “return” to continue. ") : i
(read-line)]
(terpri) fa
(construction-menu)) "
(T nil))) _.
&
. b
7]
1:.
e
. = -
’ 3}
; Name: part-constructor-menu () l
; Processing: This routine constructs and displays a menu for the part =
i ; constructors that comprise the AMPEE System Component Generation facility. -
B ; Output: The menu is displayed. .
» ‘-
(defun part-constructor-menu () %

(call-out erase-page 1 1)

(setq path “(IComponent Constructors|))

(setq menu_list (add_numbers “((|Finite State Machinel))))
(setq snsver (menu_read path menu_list nil nil))

(cond ((equalp (car answer) °|Finite State Machinel)

T A S TR,

167

-~
)

WEHBIEF S ISP PR I AR

T AT R AL T T e e
!.: LN "r:‘%‘::(x.":m‘.‘;": ¥

TLPFUTO N NN GEN S NPT O AT AT SN T A O O IS R AR AR R e

(assert
(state component-construction component-generation)))

(T nil)))

1
egerEr T

ML T N - .

.
.
s

T

e e T R W e T T

-

TR NN g

168

AT R

P
v

o et B b e el e 2 i s el G AR AR el S e A 5 i i S i e R e e S S S At e b A L S e L R S R

REFERENCES

{ 1] Lanergan, Robert G., and Denis K. Dugan, "A Successful Approach to
Managing, Developing, and Maintaining Software", IEEE82 Trends and
Applications: Advances in Information Technology, 1982.

{ 2] Lanergan, Robert G., and Denis K. Dugan, "Software Engineering with
Reusable Designs and Code", IEEE 1981 Compcon Fall, pp 296-303.

" { 3] The Hartford Insurance Group, The Productivity Challenge, March
1982.
{ 4) The Hartford Insurance Group, The Productivity Challenge II, March
1983.
{ 5] National Bureau of Standards, Software Summary for Describing

Computer Programs and Automated Data Systems, Federal Information
Processing Standards (FIPS) Publication 30, June 30, 1974,

[6] American National Standards Institute, American National Standard
for Computer Program Abstracts (ANSI X3.88-1981).

{ 7] Promotional material from DACS

{ 8] NTIS, A Directory of Computer Software, National Technical
Information Service, Springfield, Virginia, 1984.

{ 9] NTIS, NTIS Subject Classification (A Guide for SRIM Users),
National Technical Information Service, May, 1980.

{10] IMSL, IMSL Library Reference Manual, 1979, International
Mathematical and Statistical Library, Houston, TX

{n) Promotional material from NAG, Inc.

169

>
t ’.2' ,:\ '\‘:. i 3\,- '_.":"J') b"l“‘n"_-“L" “ _L\" ALY -iLL\-hl MWM S

Ol

e e,

Sl 1t

(12]

(13]

(14]

(15]

(16]

(7]

(18]

(19]

ACM, Collected Algorithms from CACM, ACM, New York, New York, 1980.

Datapro Research Corporation, Datapro Directory of Micro Computer
Software, 2 volumes, Datapro Research Corporation, Delran, New
Jersey, 1984.

International Computer Programs, ICP Software Directory, 52nd
edition, 7 volumes, International Computer Programs, Indianapolis,
Indiana, 1984.

Parker, Robert A., Kathryn L. Heninger, David L. Parnas, and John E.

Shore, Abstract Interface Specifications of the A-7E Interface
Modulie, Information Systems Processing Branch, Communications
Division, Naval Research Lab, Nov. 20, 1980.

Clements, Paul C., R. Alan Parker, David L. Parnas, and John Shore,
A Standard Organization for Specifying Abstract Interfaces, Naval
Research Laboratory, Computer Sciences and Systems Branch,
Information Technology Division, June 14, 1984.

Neighbors, J.M., Software Construction Using Components, Ph.D.
Dissertation, Department of Information and Computer Science, Univ.
of California, Irvine, Technical Report 160, 1980.

De Roze, Barry C., Defense System Software Management Plan,
Defense Technical Information Center, Defense Logistics Agency,
March 1976.

Jones, Capers, "A Survey of Programming Design and Specification

Techniques", Proceedings of Conference on Specifications of
Reliable Software, 1979.

170

.........

.‘
B ame .. (2D al Bk B EE B T 3 BT an i ol il o il aae: 00§ SN DU S S

® 8 I YW W W W S W WS W W W S e

AT B Tha ST 4

»
-

.

" W TONNNNL 4 g 5 w« 8 2

(20]

(21]

(22]

(23]

[24)

[25]

(26]

(27)

(28]

Biermann, Alan W., "Approaches to Automatic Programming", Advances
in Computer Science, vol. 15, Morris Rubinoff and Marshall C.
Yovits, eds., Academic Press, 1976.

Brown, John R., “Getting Better Software Cheaper and Quicker',
Practical Strategies for Developing Large Software Systems, E1lis
Horowitz, ed., Addison-Wesley, 1975.

Prywes, Noah S., "Automatic Generation of Computer Programs",
Advances in Computers, vol. 16, Morris Rubinoff and Marshall C.
Yovits, eds., Academic Press, 1977.

Barr, Avron and Edward A. Feigenbaum (eds.), The Handbook of
Artificial Intelligence, vol. 2, William Kaufmann, Inc., Los Altos,
CA 1982.

Rawlings, Terry L., "A Technological Approach to Automating Software
Maintenance", Proceedings of the 1st Software Maintenance
Workshop, IEEE, 1983.

Rawlings, Terrv L., "A Discussion of Knowledge Representation within
the DARTS Technology", Proceedings of the 17th Asimolar Conference
on Circuits, Systems, and Computers, IEEE, 1984.

Mcfarland, C. and Rawlings, T., "DARTS - A Software Manufacturing
Technology", Proceedings of the AIAA 21st Aerospace Sciences
Meeting, Jan. 10-13, 1983, Reno, Nevada.

Promotional material from HOS

Hamilton, M. and S. Zeldin, "The Functional Life Cycle Model and Its
Automation: USE.IT", The Journal of Systems and Software, vol 3,
1983.

171

T T R L N T T T R N R T Ry N P N Y TN S TR IR N,

[29] Hendrix, Gary G. and Earl D. Sacerdoti, "Natural Language Processing
- The Field in Perspective”, Byte, Sept. 1981.

[3D] 8arr, Avron and Edward A. Feigenbaum (eds.), The Handbook of
Artificial Intelligence, vol. 1, William Kaufmann, Inc., Los Altos,
Ca., 1981.

{31] Stoegerer, J.K., "A Comprehensive Approach to Specification
Languages", The Australian Computer Journal, vel. 16, no. 1,
February 1984. -

2 LT R AR LS Wy s T MR LS S A A ATy

1 [32] McDonnell Douglas Astronautics Company, “"SEP 2.205: Software
4 4) Requirements Engineering Tools", Software Engineering Practices
i Manual, Mcbonnell Douglas Corporation, January, 1982.

[33] Prywes, Noah and Amir Pnueli, "Compilation of Nonprocedural
Specifications into Computer Programs", IEEE Transactions on
Software Engineering, vel. SE-9, no. 3, May, 1983.

.-

[34] Mcbonnell Douglas Astronautics Company, Ada Design Language (ADL)
Reference Manual, McDonnell Douglas Corporation, 1983.

[35] Using Ada (TM) as a Design Langque. Draft Version 2.2, IEEE
Working Group on "Ada as a Program Design Language", July 31, 1984.

BT it R R G g

[36] 8iermann, Alan W., etal (eds.), Automatic Program Construction
Techniques, Macmillian Publishing, 1984.

D DC A g

[37] MIT Laboratory for Computer Science, Laboratory for Computer
Science Progress Report, Massachusetts Institute of Technology,
July 1982-June 1983./

TE T TIEEEYY VOV TV W TATA AT L VIR Ty e Y e

..................................
....................................
...............

"‘\ e,

[38]

[39]

(40]

(41]

(42]

(43]

[(44]

(45]

(46]

L e N AR ta Cary

Booch, Grady, Software E€ngineering with Ada, The 8enjamin/Cummings
Publishing Company, Inc., 1983.

Buhr, Raymond, System Design with Ada, Prentice-Hall, 1984.

Partsch, H., and R. Steinbruggen, "Program Transformation Systems",
ACM Computing Surveys, vol. 15, no. 3, Sept., 1983.

Rich, Charles, and Howard £. Shrobe, "Design of a Programmer's
Apprentice", Artificial Intelligence: An MIT Perspective, vol. 1,

Patrick Henry Winston and Richard Henry Brown, eds., The MIT Press,

Cambridge, MA, 1979.

Green, Cordell, et al, Report on a Knowledge-Based Software
Assistant, Kestrel Institute, June, 1983.

Osborn, S.L., in a review of "SOFSPEC: A Pragmatic Approach to
Automated Specification verification™, E€rika Nyari and Harry M.
Sneed, Computing Reviews, vol. 25, no. 10, p. 465.

McDonnell Douglas Astronautics Co., Ada Missile Parts Engineering
Expert System Software Requirements Specification, Final,
September, 1985.

McDonnell Douglas Astronautics Co., Ada Missile Parts Engineering

Expert System Software Top-lLevel Design Document, Final, September,
1985.

Inference Corporation, ARTTH Reference Manual, April, 1985.

173

.....

£ . " - g - 0 T e '- -f S
.'-."."'-w-.-'. GO IR

A
Mw.n ACHLHLRTAR PSRN -':"

(47] Clayton, Bruce D., ARTT" Programming Primer, Inference Corp.,
April, 1985.

=P e e o A G

(48] Clayton, B8ruce D., ARTT" Programming Tutorial, volume 1:
tlementary ART Programming, Inference Corp., March, 1985.

LS
¥ [49] Clayton, Bruce 0., ARTT" Programming Tutorial, Volume 2: A First
ﬂ took at Viewpoints, Inference Corp., March, 1985.
y . o
[(50] Dym, Clive M., "Expert Systems: New Approaches to Computer-Aided
" Eng1neer1ngf Xerox PARC, April, 1984,
H
: [51] “NISO to Introduce Software Numbering System", Advanced Technology
: Libraries, vol.13, no. 9, Sept. 1984, Knowledge Industries
o Publications, Inc.
‘s
-
j
3 5
£
] i
A .
| s
<
b 174

\

3 "'.-

Cae” . PR Ty i O B) 20
i (Ty S Lo L o R BT S -._ -‘_. _,‘u-.:(; N I e T R
ot e’y

g'_..’ X 4 I b Cad e o " (I, \ & \-“. .'.. . %
N '.~"1 o ".r 5 ".'“.u.- 'z'.ru-. 1‘1}.-‘ ‘.-"‘: T I R P P S S WG RCHEL TR EL CLERTRER £t ! ROSIAL

INITIAL DISTRIBUTION

DTIC-DDAC

AUL/LSE

FTD/SONF

HQ USAFE/INATH
AFWAL/FIES/SURVIAC
AFATL/DOIL

AFATL/CC

AFCSA/SAMI

AFATL/CCN

AFATL/FXG

ASD/RUX

SPAWL: (814AB NC #1)
SPAWAR {CODE 613)

NRL (CODE 5150)

ASD/XRX

AFWAL/AAA-2

HQ AFSC/PLR

INST OF DEFENSE ANALYSES
STARS JOINT PROGRAM OFFICE
USA MATERIEL CMD/AMCDE-SB
NAVAL SEA SYS CMD (SEA 61R2)
NAVAL AIR DEVELOPMENT CTR (CODE 50C)
BMDATC

NSWC/CODE N20.

NAVAL UNDERSEA SYS CTR (CODE 3511)
NOSC/CODE 423
AFWAL/AAAF-2

USA EPG/STEEP-MT-DA
AFSC/DLA

USA MSL CMD/AMSMI-0AT
SPAWAR (CODE 06 NC #1)
ASD/EN

AD/ENE

SD/ALR

RADC/COEE

NRL/CODE 7590

LKFSC/SDZID

HY USAF/RDPY

AD/ERSM

BMO/ENBE

ESD/ALS

ESD/ALSE

AJPO

AFATL/AS

AFATL/SA

AD/ VP

WIS oPMO/ADT

NASA (CODE RC)

NSA

NTSC/CODE 251

AD/XRB

LOCKHEED (DR SURY)

HUGHES (MR BARDIN)

IBM {MS VESPER)

RAYTHEON {WILLMAN)
SOFTECH INC (MS BRAUN)
MITRE CORP (MR SYLVESTER)
AEROSPACE CORP (MR HOGAN)
TEXAS INSTRUMENTS (MR FOREMAN)
RATIONAL (MR BOOCH)

ROCKWELL INTERNATIONAL (MR GRIFFIN) 1

MITRE CORP (MS CLAPP)

NOSC (CODE 423)

GENERAL DYNAMICS (MR MURRAY)
HONEYWELL INC (MS GIDDINGS)
HONEYWELL INC (DR FRANKOWSKI)

HUGHES DEFENSE SYS DIV (S.Y. WONG)

NOSC (MR WASILAUSKI)

NAC (N))

TASC (MR SERNA)

MARTIN MARIETTA (MR CUDDIE)
TASC (DR CRAWFORD)

SYSCON CORP (DR BRINTZINHOFF)
ADA TRAINING SECTION

COMPUTER SCI CORP (MR FRITZ)
LINKABIT (MR SIMON)

RAYTHEON (MR GINGERICH)
UNIVERSITY OF COLORADO
MCDONNELL AIRCRAFT {MR MCTIGUE)
HUGHES AIRCRAFT (MR NOBLE)

GENERAL DYNAMICS (MR PRZIYBYLINSKI)

AJPO (MS CASTOR)

NWC (CODE 3922)

NAVAIRSYSCOM HQS

ASD/ENASF

ASD/ENA

UNIVERSITY OF TEXAS

MARTIN MARIETTA (MR SORONDO)
MCDONNELL DOUGLAS (DR MCNICHOLL)
GENERAL DYNAMICS (MR SCHNELKER)
TRW (MR SHUGERMAN)

RATIONAL (MR HAKE)

WESTINGHOUSE (MR GREGORY)
GENERAL DYNAMICS (DR TABER)

Pt ot ok ok ot i b b b et e b D

gV

Sk »

o
.

BRPIIRE

ey

‘ll.

by
R

Tree

0 s b s b N S b b b s b N\ B b e s b s b b b b b e b b e S T () B e b s e s b s e N B e = B

l—'l—'l\)l—ll—li—‘r\)l—'l—'U\l—‘l—'l—!l—'l—li—'l—‘l—'l—'l—'l—'l—'l—'l\)i—'l—'b—‘D—'l—'l—'l—'i—ll—‘l—l

AFWAL/ ARAF BOEING COMMERCIAL AIRPLANE CO

175 o

R D A M S & N g T Pl T L R] Sjfsay g i OB Tl I e L) R T L T g R LM e e, OF e« w . v
L R S N S = AT il £ o Ly o A e ORI T K e At g 5 & wa e kW e i Y s MLE
A e T R RO T O e R T Ly T T e R e T R N R s S O, MO O PO

.p T T Te I
LS S

INITIAL DISTRIBUTION

ROCKWELL INTERNATIONAL (MIKULSKI)
BOEING AEROSPACE (MR HADLEY)

IBM (MR MCCAIN)

FSU (DR BAKER)

AEROSPACE CORP (MR LUBOFSKY) -
DATA GENERAL (MR DAMASHEK)

SDC (MR HERMANN)

WINTEC (MR CONNEL)

NORTHROP (MR OHLSEN)

ARC (MR ROBERSON)

GRC (DR ALBRITTON)

AFWL/NTSAC

USA MSL CMD/SCI INFO CTR
NSWC/TECH LIB

NWC (CODE 343)

00-NAVAL RESEARCH (CODE 784DL)
NAVAL POSTGRAD SCHOOL (CODE 1424)
DEFENSE COMMUNICATIONS AGENCY
NASA AMES RESEARCH CTR (CHAPMAN)
NASA LANGLEY RESEARCH CTR (MOTLEY)
RAND CORP/AFELM

AVCO SYS DIV/RESEARCH LIB
AVCO-EVERETT RES LAB/TECH LIB
FAIRCHILD IND/INFO CTR

GENERAL DYNAMICS, CONVAIR DIV
GENERAL DYNAMICS, FT WORTH DIV
HONEYWELL/TECH LIB

HUGHES AIRCRAFT/TECH LIB

HUGHES AIRCRAFT/MSL SYS GP/TECH LIB
LOCKHEED/TECH LIB

LOCKHEED/TECH INFC CTR

MARTIN MARIETTA/TECH LIB
MCDONNELL DOUGLAS/TECH LIB
MCDONNELL DOUGLAS/LIB SVCS
NORTHROP CORP/AIRCRAFT DIV
RAYTHEON/TECH LIB

VOUGHT CORP/LIB

SDC (MR MILLAR)

INTERMETRICS (MR ZIMMERMANN)
ROCKWELL/TECH INFO

TRW (MR MUNGLE)

ATST (MR MAY)

AVCO SYS TEXTRON (MR SOHN)
BOEING ELECTRONICS (MR MEDAN)
USA CECOM/DRSEL-TCS-MCF

USA CECOM/DRSEL-TCS-ADA
UMIVERSITY OF WASHINGTON
AFATL/GRC

USA-ARDC

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

176

(CONTINUED)

ROCKWELL (MS KIM)
SCIENCE APPLICATIONS INTERNATIONAL
(MR STUTZKE)

NSWC (U-33)

COMPUTER SOFTWARE & SYSTEMS

GRUMMAN DATA SYSTEMS (MR MARKMAN)

AFWAL/FIGL

AFWAL/FIGX

AFWAL/AARI-1

EMERSON ELECTRIC (MR BYRNES)

TASC (MR JAZMINSKI)

E-SYSTEMS (MR SNODGRASS)

NTSC (CODE 742)

UNIVERSITY OF ALABAMA

MCDONNELL DOUGLAS (MR VILLACHICA)

SANDERS ASSOCIATES (MR FRY)

AFSC/PLR

AFSC/DLA

WESTINGHOUSE (MR SQUIRE)

NAVAIR SYSCOM (AIR 54662)

BOEING AEROSPACE (MR BOWEN)

GOULD INC (DR ARORA)

LOCKHEED (MR PINCUS)

INTERMETRICS (MR BROIDO)

GENERAL ELECTRIC (MS MICKEL)

HUGHES AIRCRAFT (DR HUANG)

SYSTEMS DEVELOPMENT (MR SIMOS)

GENERAL DYNAMICS (MR WARNER)

CARNEGIE-MELLON UNIVERSITY

COMPUTER TECH ASSOCIATES (HEYLIGER) 1

NORTHROP CORP (MR SWAN) 1

CNI SOFTWARE (SINGER KEARFOTT DIV) 1

LOCKHEED (MR COHEN) 1

MCDONNELL DOUGLAS (SANDY COHEN) 2

DRAPER LABORATORY (MR DAVID) 1

DRAPER LABORATORY (DR DEWOLF) 1

GOULD INC (MR WILLIS) 1

ADVANCED TECHNOLOGY (MR COOPER) 1

HQ USAF/RDST 1
1
1
1
1
1
1
1
1
1

—

O S

AFPRO/EN

AFPRO/TRW/EPP

LOCKHEED (MR DORFMAN)

HONEYWELL (MR LANE)

SPERRY A&MG (MR ROSS)

UNITED TECHNOLOGIES (STOLZENTHALER)
LTV AEROSPACE & DEFENSE

EL66 B 4610 (MR FREEMAN)

SYSTEMS DEVELOPMENT CORP (ATCHLEY)

T N A N R W WA S R RN D

.........

S e e T N G e T S R T T BT B S R G g A AT S e AR
RE G T G R R L1 L 2 R R P P O T R R ARG IR DI LGN, Ul 1 Gt L Gk S OR A LA S0, 5 % iy S 3% 34T, oYy o)

,‘\d

t

v .,
SRS

S I

R

-
L

T S N T

—R—— —~ >
4'.'-j. LRSI R

JTERTET T

A ENER AP FEEC

INITIAL OISTRIBUTION

RDCKWELL (DILLHKUNT)

IBM FED SYSTEMS DIV (MR ANGIER)

JET PROPULSION LAB (MR KRASNER)
{ARTIN MARIETTA ORLANDO AEROSPACE
GENERAL ELECTRIC (MR DELLEN).
AFWAL/PDFIC

LOCKHEED (READY)

BOEING AEROSPACE (MR DOE)

FORD AEROSPACE (DR FOX)

LOCKHEED SOFTWARE TECH CTR (LYONS)
I8M (MR BENESCH)

MITRE CORP (MR SHAPIRO)

MITRE CORP (MR MAGINNIS)

GRUMMAN AEROSPACE (MR POLOFSKY)
MCDONNELL DDUGLAS (KAREN L SAYLE)
MCDONNELL DOUGLAS (GLENN P LDVE)
POME AIR DEVELOPMENT CTR (CHRUSCICKI)
RAYTHEDN EQUIPMENT DIV (MS SILLERS)
AT&T BELL LABS (MS STETTER)

Pt pd b ot pd ot pod pd pod pd pod pd pod ot pd ot pd et

177

(The reverse of this page is blank)

(CONCLUDED)

F ae-areaa e

-

PR, | = i e WA v w e SR

- v v
3

£

el Y, 1094

~
‘» A ¥

N il
-

-~

o

[e o
o e a T

e
LN

" -_'. L l-' o

Y
. e
- 0

N EAW

Ty A
e 4.
gl S OL <

v - - .
r T e e B} -

RIF PEAOAY

'S REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
JNDER DOD DIRECTiVE 5200,20 AND
NO RESTRICTIONS ARE IMPOSED UPON
‘TS USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED,

ERRATA

AFATL—TR-85-93

VOLUMES I, II, and III
—

COMMDN ADA’MISSILE PACKAGES (CAMP)
FINAL REPORT
AIR FORCE ARMAMENT LABORATORY
EGLIN ATR FORCE BASE, FIORIDA
32542-5434
1. DD Form 1473:
In Block 16, add the following:

"Methodology used in this report does not constitute computer
software as defined in AFR 300-6."

This errata is unclassified.

o

Chief, Technical Reports Section

=E - A ASR MO LR LT LR L LR AP

DEPARTMENT OF THE AIR FORCE
WRIGHT LABORATORY (AFSC)
EGUN AIR FORCE BASE, FLORIDA, 32542-5434

T — %g&gygﬁ 355 %

sussecT: Removal of Distribution Statement and Export-Control Warning Notices

10: Defense Technical Information Center
ATTN: DTIC/HAR (Mr William Bush)
Bldg 5, Cameron Station
Alexandria, VA 22304-6145

l. The following technical reports have been approved for public release by
the local Public Affairs Office {copy attached).

Technical Report Number AD Number

{. 88-18-Vol-4 aDB 120 251
2. 88-18-Vol-5 aDB 120 252
3. 88-18-Vol-6 aDB 120 253
4. 88-25-vol-1 aDpB 120 309
5. 88-25-Vol-2 aDB 120 310
6. 88-62-Vol-1 ADB 129 568
7. 88-62-Vol-2 aDB 129 569
. 88-62-Vol-3 ADB 129-570
9. 85-93-Vol-1 aDB 102-654 “
40. 85-93-Vol-2 ADB 102-655
44, 85-93-Vol-3 ADB 102-656
A2. 88-18-Vol-1 aDB 120 248
15, 88-18-Vol-2 aADB 120 249
14, 88-18-Vol-7 ADB 120 254
{S, 88-18-Vol-8 aDB 120 255
46, 88-18-Vol-9 ADB 120 256.
{7, 88-18-Vol-10 ADB 120 257%
18.88-18-Vol-11 aADB 120 258
19. 88-18-Vol-12 aDB 120 259

2. If you have any questions regarding this request call-me at DSN 872-4620.

L Se H’hﬂg‘/ éil 1 Atch
Chief, Scientific and Technical AFDTC/PA Ltr, dtd 30 Jan 92
Information Branch

ERRATA

DEPARTMENT OF THE AIR FORCE
HEADQUARTERS AR FORCE DEVELOPMENT TEST CENTER (AFSC)
EGLIN AJR FORCE BASE, FLORIOA 325425000

AFNOF PA (Jim Swinson, 882-3931) 30 January 1992

SUBJECT: Clearance for Public Release

WL/MNA
The following technical reports have been ;:eviewed and are approved for
public release: AFATL~-TR-88-18 (Volumes 1 & 2), AFATL-TR-88-18 (Volumes

4 thru 12), AFATL-TR-88-25 (Volumes 1 & 2), AFATL-TR-88-62 (Volumes 1 thru 3)
and AF. TR-85-93 (Volumes 1 thru 3).

M(w / a_
N. PRIBYIA, Lt Col,
Chief of Public Affairs

AFDIC/PA 92-039

