
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB102655

Approved for public release; distribution is
unlimited.

Distribution authorized to DoD and DoD
contractors only; Administrative/Operational
Use; MAY 1986. Other requests shall be referred
to Air Force Armament Lab., Eglin AFB, FL
32542.

AFSC/MNOL ltr dtd 13 Feb 1992

MllljilUWWWijm«tfil*L*L^H«W^^^

i
AFATL-TR-85-93

©
Common Ada Missile Packages (CAMP)

Volume II: Software Parts Composition Study Results

Daniel G. McNicholl
Constance Palmer, et al.

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY

POST OFFICE BOX 516
ST LC. ., MISSOURI 63166

LO
in

Ji MAY 1986

CO
I

Q
<

DTIC
ELECTE
JUNI 81988 D

FINAL REPORT FOR PERIOD SEPTEMBER 1984-SEPTEMBER 1&85

+ff-
DISTRIBUTION LIMITED TO D00 AND 000 CONTRACTORS ONLY; THIS REPORT
DOCUMENTS WW '"n BÜMMMIi DISTRIBUTION LIMITATION APPLIED
SEPTEMBER 1985. OTHER REQUESTS FOR THIS DOCUMENT MUST BE REFERRED
TO THE AIR FORCE ARMAMENT LABORATORY (FXG) , ECLIN AIR FORCE BASE,
FLORIDA 32542-3000.

DESTRUCTION NOTICE: DESTROY BY ANY METHOD THAT WILL PREVENT
DISCLOSURE OF CONTENTS OR RECONSTRUCTION OF THE DOCUMENT.

WARNING: This document contains technical data whose export is restricted by
the Arms Export Control Act (Title 22, U.S.C. 2751 et seq) or Executive Order
12470. Violation of these export-control laws is subject to severe criminal penalties.
Dissemination of this document is controlled under DOD Directive 5230.25

(R) Ada is a registered trademark of the U.S. Government,
Ada Joint Program Office

AIR FORCE ARMAMENT LABORATORY
Air Force Systems Command*United States Air Force* Eglin Air Force Base, Florida

one Fin coey
86 6 17 004

'* •J-J •_» :J ij^V~ yIvlVJ»:.<^<1''*?'^&M".l-'^-'-V^'*t+fihCLC+£*£m£*£2£aX*.^^^*':^a. v.Y^y..

v.

NOTICE

When Government drawings, specifications, or other data are used for any

purpose other than 1n connection with a definitely related Government

procurement operation, the United States Government thereby Incurs no

responsibility nor any obligation whatsoever; and the fact that the

Government may have formulated, furnished, or In any way supplied the said

drawings, specifications, or other data, 1s not to be regarded by implication

or otherwise as 1n any manner licensing the holder or any other person or

corporation, or conveying any rights or permission to manufacture, use, or

sell any potential Invention that may 1n any way be related thereto.

This technical report has been reviewed and 1s approved for publication.

FOR THE COMMANDER

DONALD C. DANIEL
Chief, Aeromechanics Division

Even though this report may contain special release rights held by the

controlling office, please do not request copies from the A1r Force Armament

Laboratory. If you qualify as a recipient, release approval will be obtained

from the originating activity by OTIC. Address your request for additional

copies to:

Defense Technical Information Center

Cameron Station

Alexandria, Virginia 22314

If your address has changed, 1f you wish to be removed from our mailing

11st, or 1f the addressee 1s no longer employed by your organization, please

notify AFATL/FXG, Eglln AFB, FL 32542

Copies of this report should not be returned unless return 1s required

by security considerations, contractual obligations, or notice on a specific

document.

A£&SJ%*1V1VIVA^ CvCv^ IVAV vL_\ u\r'i \o *!>\^V- \^ J•^Vi'iw"^-*. vZ\".\\V. ••- «v\\v " V^A

V

UNCLAbblf ILO
•I Cu* * v C*.»5» * 'C*T*0^ O» TMI* F'AGI

REPORT DOCUMENTATION PAGE

Unclassified
1» «IST*. CT. VI WAAftiNGS

}• ilC^«'T* CLASS'FICATIQN AüTMO*iTT

J* O« CL***-» 'CAT.ON 00IWNGRAD»NG ICHlOüLl

) pitTmiuliONJAwAiLAUklTv OF RtF»ORT
)istribution limited to DOD and DOD Contractors
>nly; this report documents li il iiiul in ilinil in
Iistribution limitation applied September 1985

« M«'0*MIMG ORGANIZATION «l»OMT HUMlIRlII ft MONITORING ORGANIZATION «t'O^T NUMlUltl

AFATL-TR- 85-93

4« s*wi O* »£*)» 0»M,NG ORGANIZATION

McDonnel1 Douglas
Astronjutics Company

OFFiCI SYMBOL 7» KAMI Or MjJNiTORjNQ ORGANIZATION
Aeromechanics Division
Air Force Armament Laboratory

»i AOO"tSft 'Cut Jfcf» tmt kW Cmd*t

P. 0. Box 516
St. Louis, MO 63166

7» AooAiis tCxp.Smm «** u*Cod*i

Eglin AFB , FL 32542-5434

MAtaf C" »UAlOiNCVONIOMiNC
OAGANiZATiON

STARS Joint Program Office

OMlCl IVUIOL • MOCUMIMINT INSTRUMENT lOCNTlFlCATlON NUMIIR

F08635-84-C-0280
At ADO*« SI C«, Sl«*t «ntf IVCMN

Room 3D139 (1211 Fern St.)
The Pentagon
Washington, O.C. 20301-3081

10 SOUACf O' »UNDING NOS

PROGRAM
iLlMfNT NO

63756A

Common Ad 3® Mi ssile Packages (CAMP), Volumell:

F-ROJlCT
NO.

TASK
NO

«VOR« UNIT
NO

ia MRSONAL AüTwoRisi Goeke ,
^cNicholl, Daniel G. , Palmer, Constance, Cohen, Sanford G., Whitford, William H., Gerard 0

13* T'M O' «l»0«T

FINAL
136 TlMl COVIRIO
MOM .Spp «4 TO Spp AR

14 OATI or RiFORT '»'
May 1986

*• . Dmyl 16 »AOi COUNT

185
.•I^MMINU.VNOTAT,ON SUBJECT TO EXPORT CONTROL LAWS.
Availability of this report is specified on verso of front cover.

i? COtATi coots

*>$LO GROUP • ui GR
1ft SulJt: CT Tit «MS ii'o«/>iMi mm rmmrmf tf RMMHnj •*< tAttnfl/y »» M*c* A>«iRtwri
Reusable Software, Missile Software, Software Generators, Ada,,
Parts Composition, Systems, Software Parts.

»• AMTMACT tfvMMtj «MI MOT ifflsvnBnjRTMJ**••/> «•> Hap* «««**<•, The objective of «the CAMP program is to
demonstrate the feasibility of reusable Ada software parts in a real-time embedded applica
tion area; the domain chosen for the demonstration was that of missive flight software
Systems. This required that the existence of commonality within that domain be verified
(in order to justify the development of parts for that domain), and that software parts be
designed which address those areas identified. An associated parts cataloging scheme and
parts composition system were developed to support parts usage. ,

r

JO O-ST R'SwT'ON/A VAiLAAiLfTV O» AASTRACT

^CiAM'MO'VNUMiTlo D IAMIUMT OoTlCUttRS CO

IS« KAMI O» «H'ONIIJ INOlVlOWAk

Ch'istine Anderson

DO FORM 1473. BO APR

11 ABSTRACT SCCuAiTY CLASSIFICATION

Unclassi fied

tl» Tftl^HONl NUMSIR
tlnitmäi 4 AM C«*J>;

(904) 882-2961

»9« O'A'CI iTMIOk

AFATL/ FXC

tO<TlON OF 1 JAN T] IS OSSOLlTf UNCLASSIFIED
SI CUR IT* CLASSIFICATION OF TMIS »AGC

- g^AAAAi^^

••••••••••••. •••lüM I i i.'^^^^^T^^^^^^nv^^w^^mpppwp^pPwppwpwj
v - M \.%.. *v • - V ".» V V > -* V •> •• > V V V •* * V -• V V. -* -- *>^>>J>%^% ** •* -% -% *• -^ L"v-v*i^ifc ,j

UNCLASSIFIED

iruRiTV Ci*»if:C*TiON O* TMIfMCI

11. TITLE (CONCLUDED

Software Parts Composition Study Results

3. DISTRIBUTION/AVAILABILITY OF REPORT. (CONCLUDED)

Other requests shall be referred to the Air Force Armament Laboratory (FXG),
Eglin Air Force Base, Florida 32542-5434.

OREtKSsmrv

y^V^^V'^A'.'","'JVVA"^.^W.'.*^'^1^ " wMfw^ywwwn^WWW.'g'.V.W.MWW.'M.Vffl' vU'l'UHInmwJ

PREFACE

This report describes the work performed, the results obtained, and the

conclusions reached during the Common Ada Missile Packages (CAMP) contract

(F08635-84-C-0280). This work was performed by the Computer Systems &

Software Engineering Department of the McDonnell Douglas Astronautics

Company, St. Louis, Missouri (MDAC-STL) and was sponsored by the United

States A1r Force Armament Laboratory (FXG) at Eglln Air Force Base,

Florida. This contract was performed between September 1984 and September

1985.

The MDAC-STL CAMP program manager was Dr. Daniel G. McNIcholl (McDonnell

Douglas Astronautics Company, Computer Systems and Software Engineering

Department, P.O. Box 516, St. Louis, Mo. 63166) and the AFATL CAMP program

manager was Christine M. Anderson (Air Force Armament Laboratory,

Aeromechanics Division, Guidance and Control Branch, Eglln Air Force Base,

Florida 32542).

This report consists of three volumes. Volume I contains overview

material and the results of the CAMP commonality study. Volume II contains

the results from the CAMP automated parts engineering study. Volume III

contains the rationale for the CAMP parts.

Commercial hardware and software products mentioned in this report are

sometimes identified by manufacturer or brand name. Such mention is

necessary for an understanding of the R&D effort, but does not constitute

endorsement of these Items by the U.S. Government

ACKNOWLEDGEMENT

Special Thanks to the Armament Division Standardization Office and to

the Software Technology for Adaptable, Reliable Systems (STARS) Joint

Program Office for their support of this project.

1l1

(The reverse of this page is blank)

Accesion For

NTIS CRA&I •
DTIC TAB ff
Unannounced Q
Justification

By
Distribution/

Availability Codes

Dist

[övfc

Avail and/or
Special

1
a^Lia^i^kai '-'• - ••:••• iM'-v •»•-•» , -.-• „v- J>"-^,^'^\>J- ;->;;--:;^ •.-•,-;

^'W^IP^MVM^^IW1*A.WW

TABLE OF CONTENTS

Section Title Page

I INTRODUCTION 1

11 CATALOGING OF THE CAHP PARTS 2

1. Introduction 2

2. Review 2

3. Issues 6

4. Catalog Definition 10

5. Documentation Requirements 13

6. Organizational Factors 13

III EVALUATION OF SOFTWARE GENERATION TECHNOLOGY 18

1. Introduction 18

2. Review 18

3. Assessment 36

4. Conceptual Framework 47

5. Recommendations 54

IV THE ROLE OF EXPERT SYSTEMS 61

1. Expert System Overview 61

2. Schematic Part Constructors 63

3. Generic Instantlator 67

4. Parts Identification 67

5. Parts Catalog 68

6. AMPEE System 69

•»*_*•* "•-«•

. . . -% -. -% -w. ••I'AIVA.I.- - - - - -* - ^ -_ i.A.*. ^•..-.-W^.'^^J

nr ^ ^ — ••- .,« i V.I,M,I,,,I,II|,III|,I i u i T-^TT'^-'t^ I I',1»!' .'^.ir'^.I'.l'1- '..'l^l>.H.lT-T',.l-T> ••' ''••ll •••••'.• '> l,

TABLE OF CONTENTS (CONCLUDED

Section

VI

Appendix

A

8

C

0

Title Page

EVALUATION OF AN EXPERT SYSTEM 12

1. Introduction 12
2. Means of Evaluation 74

3. Overview of ART 74

4. Evaluation of ART with respect to the Problem Domain

(AMPEE) 81

5. Conclusions 85

S0F1WARE PARTS COMPOSITION CONCLUSIONS 86

DEFINITION OF THE CAMP PARTS CATALOG ATTRIBUTES 89

CAMP CATALOGING FORM 103

SAMPLE DBMS IMPLEMENTATION OF THE CAMP PARTS 107

THE FINITE STATE MACHINE CONSTRUCTOR Ill

REFERENCES 169

vl

^ V>>\>V^L^^V'.V:-V-A:->>^^^^. A'.V.vV'.v .V.VA > V.Wl,. L-.\ v. .V.W. w ._^J\

LIST OF FIGURES

Figure Title Page

1 Graphical Representation Hethods 8

2 Catalog Attributes 11

3 Information Flow through Catalog System 12

4 Organizational Factors 14

5 Forms of Motivation 14

6 Goals of Automating the Software Generation Process 19

7 Summary of Review 21

8 Specification Techniques 21
9 Issues/Criteria of a SGS 37

10 Software Generation without Parts Reuse 39

11 Software Generation with Parts Reuse 39

12 Summary of Specification Techniques 44

13 Facilities of a Software Generation System 48

14 Overview of the Ideal Software Generation System 49

15 The Ideal Software Generation System 50

16 Major Component Requirements of an Ideal SGS 51

17 Parts Identification 56

18 An Example of Parts Identification with an Expert System 57

19 Parts Construction with an Expert System 57

20 Near Term Technology Requirements 58

21 M1d-Term Software Generation System 60

22 The Structure of an Expert System 62

23 Overview of a Schematic Part Constructor 64

24 The Lateral/Olrectlonal Autopilot Schematic 65

25 The Navigation Schematic 66

26 Sample Parts Identification Rules 68

VI 1

1\ ' ^it V •>-V;'-v^^^

W^^l^ff^^L^l^^l^l^l^i'^tf^W'TWl^.mT'^IT^^-^T1^.'-'l' 'iT^T**^^^ '.•••/• Wlil V,Mp V1' V-

LIST OF FIGURES (CONCLUDED)

Figure Title Page

27 Overview of the AMPEE System 70

28 Operations Provided by the AMPEE System /I

29 Why ART was Selected for Evaluation 73

30 ART Features 76

31 Issues/Criteria of a SGS 83

A-l Catalog Attributes 91

A-2 CAMP Parts Taxonomy 101

B-l The Cataloging Form 105

C-l Oatabase Schema 109

0-1 A Finite State Machine 112

D-2 Architecture 117

0-3 Control Flow 118

0-4 Oata Flow 119

D-5 Overview of the Proof-of-Concept Implementation 120

vi ii

V
»• - *- iiiix A'.1, _^_ ̂ £i^^^^^^>^^^j>^£^ig>^^>^i^i^i^i^^^

'•^•^W^V'^.V-'v--J '-' ».'».""»•" i.J • • II i^^^^y^^^^^^wwp^^i^^^Wl^pp^WlWjpipipff

SECTION I

INTRODUCTION

fhis volume contains the results of the work performed on CAMP 1n the

development of a software parts catalog and In the design of a prototype

software parts composition system.
c Section II describes the results of the CAMP software parts cataloging

study and the cataloging scheme recommended for CAMP. The goal of the

software cataloging task was to develop a method of describing and managing

software parts to Increase the productivity of the parts user. In addition

to providing the structure for a textual catalog, the cataloging scheme

developed on CAMP Is suitable for automation. Appendices A through C present

more detailed Information on the CAMP cataloging scheme.

Section III contains the results of the CAMP software generation study

and presents our view of the functionality of a software parts composition

system. Although our major area of study was the automatic generation of

software using parts, this examination Included an Investigation of software

generation systems which did not handle parts.

Section IV discusses the role of an expert system In the construction of

a software Parts Composition System (PCS). The prototype software parts

composition system we designed during CAMP was based on incorporating all

functions within an expert system to maximize the sharing of data between

components of the PCS.

Section V describes the particular expert system tool, the Automated

Reasoning Tool (ART), used on CAMP and discusses Its applicability In the

software parts composition system application. This tool was used to

construct a proof-of concept Implementation of a schematic part. Appendix 0

contains a description of this schematic part constructor.

Section VI discusses the major conclusions of the software cataloging and

software parts composition system studies.

:•;-. ' - «r- ^-* ~ *- *- •'- W- if- » - J- • - • - « - «*- » - v -• v -• _* "J •_- v-*v.-v .-.-•.'•.-. >>_.>*v.x^v

T V ^ IT* .*•'."•. ' *." V »r *r*" VV. V "" V **fc w -oH»I 7V7V "^ *V WV TM WV •-- TVFVwj-

A1

*•-,- --—7- "^..Ti.TV."'

SECTION II

CATALOGING OF THE CAMP PARTS

1. Introduction 2

2. Review 2

3. Issues 6

4. Catalog Definition 10

5. Documentation Requirements .. 13

6. Organizational Factors 13

1. INTRODUCTION

The objective of this portion of the CAMP study was the development of a

procedure lo facilitate storage and retrieval of software parts for use on

other projects. To achieve this objective, an Ada parts cataloging scheme

was developed which provides a means for organizing. Indexing, describing,

and referencing these parts.

In Paragraph 2 existing software cataloging schemes are reviewed. Major

Issues related to software parts description ore discussed In Paragraph 3. A

detailed description of the cataloging scheme that was developed Is provided

In Paragraph 4. In addition to developing the cataloging scheme, the

documentation required to support it has also been Identified (see Paragraph

5). Paragraph 6 contains recommendations for the organizational structure

needed to support the Implementation and use of this scheme.

REVIEW

For many years people have advocated the use of existing software parts

as a way to reduce the cost of software development and maintenance.

Although there Is currently a great deal of research being conducted In this

area, significant inroads have not been made 1n the workplace; notable

exceptions Include Raytheon Missile Systems (References) and 2), and The

liartford Insurance Group (References 3 and 4), which have achieved a

significant level of reuse In their business data processing departments.

Reuse of software has been successful In the area of mathematical and

statistical packages such as the standard routines (e.g., sine, cosine)

vVv/X'v>>Xv:^*^'^ _.* -- -• a. - -J -* • -L -* J- - -•

vr.-^"" '•„-.•.• v *."•.' vn ^•"^•'^.^^»•M'i .^i .*i.^rnLMu«,j*i"iii;,,wvM • v»i"i mJ

usually supplied by compiler vendors, or the International Math and

Statistical Library (INSL) and Numerical Algorithms Group, Inc. (NAG)

software libraries. The primary reason for this success Is that users

understand the functioning of the routines and have confidence 1n their

quality. For Instance, In the case of the INSL, the routines undergo

extensive testing; they are developed with strict adherence to standards; the

code is robust, efficient, and accurate; technical support Is provided; and

the documentation (I.e., the catalog) Is comprehensive and standardized.

One of the most significant reasons for the failure of many past

reusability efforts Is that a disproportionate emphasis has been placed on

development of software components, while little or no effort was expended on

developing a method for describing and Identifying available parts.

As a prelude to developing an Ada parts catalog, existing catalogs,

cataloging standards, and descriptive techniques were examined. On-going

research efforts in software descriptive techniques were also reviewed. None

of the catalogs, techniques, and standards reviewed pertained specifically to

Ada (some did not even pertain specifically to software), but they provided

useful background and Insight into what 1s required of an Ada parts catalog.

A survey of our findings follows.

a. Catalog Standards

Of the standards reviewed, those that had the greatest applicability

to this task were the ones dealing with computer program abstracts. These

were useful In determining the attributes and level of support necessary to

develop a viable Ada parts catalog.

One such standard was developed by the National Bureau of Standards

(Reference b); It was Intended to be applicable to all programs developed or

acquired by Federal departments and agencies. In this scheme, an abstract

provides a synopsis of capabilities, environmental requirements, and other

relevant Information that can assist a user In determining the functionality

and appropriateness of a particular program.

The American National Standards Institute has also developed a

standard for computer program abstracts - -ANSI X3.88-1981 (Reference 6). In

addition to the usual Items (I.e., name, date, contact), the standard

recommends the Inclusion of a category field, keywords, program status within

the llfecycle (e.g., requirements definition phase. In development,

v*_.-
--•- -- »- ^

lyil.ll M., --J* -' ' »•- '* *'»•••»• - I *'»*'*"-• *-'.•"•»• *••*• ff P'PP .• ^F .• *'.•*?• .H U •••• PQ T-T^TV.11 «T^*'T»'T-' ^ T / A'

operational), and assumptions and limitations (e.g., assumptions about the

form and range of the Input data).

b. Existing Software Catalogs

Although there are a number of software catalogs In existence today,

many use basically the same attributes (i.e., name. Id, abstract, etc.) to

describe the software parts. In the summaries that follow, the features of

existing catalogs that may be of particular Interest In developing an Ada

missile parts catalog are highlighted.

The Oata and Analysis Center for Software (OACS) (Reference 7)

software catalog makes use of a software engineering thesaurus to determine

the proper classification of a software part both at the time of cataloging

and at the time of retrieval. The thesaurus contains a listing of major

areas, called cluster terms, and separate listings of subjects within the

major area (e.g., MODELS Is a major topic area that Is found 1n the list of

cluster terms; listed separately under MODELS, the user finds the field

further subdivided Into AVAILABILITY MODELS, BEHAVIOR MODELS, RELIABILITY

MODELS, etc.). The Individual subject Hems may be further decomposed.

Attributes not found In most other catalogs examined Include stage of

development, purpose of development, target computer, documentation, and

references.

The National Technical Information Service (NTIS) (Reference 8)

utilizes a standard form to collect data for each software part that will

come under NTIS control. The parts are classified by category; there are 40

major categories (e.g., Aeronautics and Aerodynamics, Astronomy and

Astrophysics, Computers, Control, and Information Theory), and 34?

subcategorles. A subject classification booklet (Reference 9) Is used to

categorize Incoming software, and to assist the user In locating cataloged

software. Each category Is given together with the titles of all of Its

subcategorles (e.g., within Computers, Information, and Control Theory there

are subcategorles such as Computer Hardware, Computer Software, Control

Systems and Control Theory, Information Processing Standards). Each

subcategory Is presented with a listing of the subject areas covered by that

subcategory (e.g., within Computer Software are the subjects Computer

Programming, Programming Languages, Compilers, etc.); a cross reference to

related sections Is also provided.

v^t*^-'.V/'V-f-*>-v-/.--v-y ^t^w«'.«\ •. ••. ^-•:^^-V.I--T-V--•--•- «*- «-_v_v_. --••',.*. -_„•_ *.-_..*_. ^ m".«*. • ^ 1., •;—»-.«.. »._* • • •- ^ »\ *. »;

,W«V» lUW* '.'• • « i'i'-1 '•• ••••' ••••••••. H^^^^^^^P^

Ihe NTIS catalog entries are not characterized by any unique

Information; but the catalog does have multiple Indices that allow access via

a number of different keys. The entries are Indexed by subject (keyword,

title. Id), producing agency (agency name and location, agency Id, title,

product number, Id), Id number (either NTIS Id or originating agency Id,

title), hardware (entries are In alphanumeric order by hardware type), and

language (alphanumeric order by source language).

The IHSL (International Math and Statistical Library) Catalog

(Reference 10) consists of mathematical and statistical routines, and has

gained widespread acceptance and use because of the consistent quality of the

routines. All modules conform to established coding and documentation

standards, and contain both In-line and external documentation. The

algorithms are categorized by the area of mathematics or statistics to which

they apply, and the categories are alphabetized and organized Into chapters

In the documentation. The routines are kept alphabetically within category.

Within each documentation chapter there Is a quick reference guide to the

purpose of each routine.

For each category, modules are described by the following

Information: routine name (label), brief statement of purpose,

precision/hardware, and other required IMSL routines. Documentation for each

routine contain*, routine name, purpose, call line, arguments (argument name;

type; usage. I.e., Input, Input-output, output, work arrays, error

parameters), precision/hardware, required IMSL routines, notation, remarks,

algorithm, an example, and optionally, notes and accuracy.

The Numerical Algorithms Group, Inc. (NAG) (Reference 11) has a

library of subroutines for mainframes and a small package of routines for the

personal computer. The documentation provided for the routines Is available

both In hard copy form and on-line. As with the IMSL routines, extensive,

standardized documentation Is provided, and the routines go through an

extensive validation and certification process before being released. Naming

conventions for the routines are strictly adhered to; this 1s Important In

Increasing readability. Updates to the collection of routines are published

well in advance of the effective date in order to allow users time to

accommodate these changes. The routines are supported on a wide range of

hardware.

'2foS*Iy:*ly>/^y?^

 " • • • v^v*'^'.v.q «•VH'^^VTA-
1
'-' '•"^', -,m y*W!Jm*v,W*?*!r~T<\w-r}'-li

The Collected Algorithms of CACM (Reference 12) provide extensive

certification Information for each algorithm. This Includes 'certified by'

Information, explanatory remarks, test procedures, results, and comments.

Some other catalogs examined Include the Micro Software Report

(Reference 13), and the International Computer Programs Software Directory

(Reference 14).

c. Descriptive Techniques

The Naval Research Laboratory, as part of its Software Cost

Reduction Project (References 15 and 16), developed a module descriptive

technique for software parts. Reusability was specifically addressed In this

project. The researchers determined that reusability Is promoted by

well defined and well documented software. Information hiding and data

abstraction are two techniques that were used to achieve this goal. An
abstract Interface specification technique was developed to allow Interfaces

to be specified without requiring Internal details. Modules were designed to

be flexible (I.e., easily modifiable) rather than general. Ada, through Its

package facility, provides many of the features desired by the researchers on

the Software Cost Reduction project.

Much attention was given to documentation and the form It should

take. Module documentation Is precise and detailed; 1t Is collected Into

module guides that serve as a software catalog. The documentation explains

how requirements are allocated among the modules, and defines the scope and

contents of Individual design documents. A precise abstract 1s also provided.

3. ISSUES

Three major categories of Issues arose during the Investigation of

cataloging Ada missile software parts. These Issues address the following

areas: the cataloging scheme, the cataloging mechanism, and organizational

requirements. Ihese areas are not Independent of each other and the

Interdependences will be pointed out In the discussion that follows.

- L iL •• __y/._,, ...^/^^J.^.VJ^.V. w^^ ->--••-•'-~i • •

•A•!••.',•. K*H ^ .* f. w* ,*•*.',*'*• • W "" " •"' •••!•!• i •»••••• • i. » '•"wyfri,"'MMWWVi,ii'MU»1 ••

a. The Cataloging Scheme

Reuse of softw e parts can be Implemented at a number of different

levels. Reusability can be defined as reuse of analysis (e.g., systems

analysis, domain analysis), reuse of design, or reuse of code. The

implementation level affects both the structure of a parts catalog (I.e., the

attributes needed to describe the part), and the organizational and

procedural requirements needed to support the use of such a catalog. There

are several views as to appropriate level at which reuse should take

place. For example. Neighbors (Reference 17) Indicates that to be

meaningful, reuse should encompass analysis and design In addition to code.

A number of researchers, have pursued the Idea of parts as software

modules (e.g., mathematical and statistical routines, or special function

modules such as data conversion routines). The issue then arises as to

whether a part Is reused only If it 1s taken 'as 1s' and used In another

application, or If It can still be considered to be reused If It undergoes a

series of transformations or modifications before It can be used elsewhere.

It has also been suggested that parts consist of code templates that can be

filled In by the user. A combination of approaches has proven successful In

several applications, e.g., The Hartford Insurance Company (Reference 4),

Raytheon Missile Systems (Reference 1).

Ihe effectiveness of a parts catalog Is heavily dependent upon the

selection of attributes that will be kept for each part. If the catalog

entry does not contain sufficient Information for a user to determine, either

manually or via an automated system, the appropriateness of a particular

part, reuse of existing parts becomes virtually Impossible.

It is Inevitable that eventually there will be several parts In the

catalog that appear similar In functionality but whose Internals result In

quite different execution or storage efficiency. The catalog must contain

attributes that enable a user to differentiate between these parts, or there

must be an automated means of determining the appropriate part for the user.

Lack of an efficient means of differentiating between parts can lead to user

dissatisfaction and a failure of the reusability effort.

>:

>v:-/V-*v*vy - —-..-, —

w^^^^w^^^^^*^^^^^^^^^^ "••'•I

b. The Cataloging Mechanism

The presentation of catalog Information to the user can have a

bearing on the success of the parts catalog. The Information can, of course,

be presented textually. Graphical representation of a part may be of value

In clarifying the part's definition, and thus help the user to select the

appropriate part. There are several different graphical representation

methods that could be used; they are summarized In Figure 1.

The technology requirements for the user Interface techniques must

be considered when determining the feasibility of any particular system. For

example, database technology and query language Interfaces are well developed

areas in computer science, but graphical and natural language Interfaces are

still In the early stages of practical development.

To gain acceptance and use, a parts catalog must provide adequate

user support. It must be well documented and easy to use for both novice and

experienced users. It must provide a reasonably fast response to Inquiries;

users become frustrated with slow, cumbersome systems. It must also provide

some form of access control, although this would not necessarily meet 00D

security requirements for trusted systems; research In this area Is beyond

the scope of this project.

• BUHfl OR BOOCH GRAMS OR AN ADAPTATION

• FLOW DIAGRAMS

• BEFORE/AFTER DIAGRAMS THAT DEPICT THE CHANGES
TO THE DATA STRUCTURE

Figure 1. Graphical Representation Methods

c. Organizational Requirements

One of the most Important organizational Issues surrounding a parts

catalog Is who will mandate Its development and use. Previous studies have

recommended the establishment of a catalog and library of parts, but without

the authority to enforce such a recommendation, reuse of software

>** - *s*y*--.*-•"«-*'-«^.--v/v-.y-y•*_yv-!'^-'.•'-^••.'^V;.'
•..%.%.-.

y.-J.-^.--'_--r.

~"" * '^^^^^^*^^^^T^pT^^^"^^T^}^'\^^^^^^^»Tr^T**^^^^^^^^^^^^T^>^^jr*»^"^'s^^^^T^^^^^pV^^r^^^^^*yT^^^^ * TT TTJ^ ~V- *71 •*• ~V~J

parts has not become a reality. Reuse of existing parts»requires discipline

on the part of software developers; until the benefits of reuse of parts

become obvious to all Involved, there must be a means of enforcing that

discipline.

The scope Issue must be addressed In both the macroscopic and

microscopic sense. The macroscopic view addresses the applicability of a

parts catalog to an organization. I.e., the catalog can have an Inter-company

scope (e.g., the catalog ^y contain Ada missile software parts developed by

all Air Force mlssllt untractors) or Intra company scope (e.g., the catalog

may contain Ada missile software parts developed only by McDonnell Douglas).

The microscopic view addresses the domain of the catalog (e.g., the

domain could be very broad and include all Air Force Ada software development

projects, or 1t could be narrow and Include only Ada missile flight

software). With respect to the microscopic view of scope, a decision must be

made whether to have a single library, or to have several libraries based on

the application or task area.

The organizational applicability of the catalog (I.e., Is It

Inter-company or Intra-company), affects several aspects of the catalog

development and maintenance. For Instance, standards become very Important

when parts from different developers are cataloged together, but 1t Is easier

to establish standards within a single company than across all A1r Force

contractors. Additionally, certain entries In the catalog should contain

different levels of Information depending on the catalog's scope. For

example. Information on the developer would vary depending upon the scope of

the catalog. If the catalog Is Intra company, information about the

Indivldual(s) actually Involved in the development may be of use, whereas If

the catalog Is Inter company, merely Identifying the company performing the

development is probably sufficient. Additionally, 1f the catalog Is

Inter company, the question of proprietary rights may become an Issue.

Procedures for maintenance must be established prior to the

Implementation of a parts catalog. Guidelines are needed for the addition

and removal of Items from the catalog. A consistent classification scheme

should be developed and enforced when a part Is added to the catalog.

Security controls must be Implemented to prohibit unauthorized access to both

catalog entries and to the parts they Identify. There must be a way to

ensure that all required Information 1s provided with a part when It enters

the catalog system.

,'.V.V.V. V. /. i','-,./>\\''.'V-<A>i'.\,.\-. ^^^^j^^^^^^^^^^^^^^^j^^^j^^^^^^^^^^^Y^l^tV /:>•

'jigyMV'-it'M^J'.M'M" " ••••••• ' »•»« '""""" ""^ ""•"w^v^y^a

Although Ihere may be a way of differentiating among parts that

appear similar, an attempt should be made to limit their proliferation.

Confronted by too many choices, a user may find It simpler to develop a part

from scratch rather than wade through the descriptions of existing parts.

This problem can be ameliorated by the Imposition of procedural controls on

the maintenance of the parts catalog (I.e., additions to the parts catalog

should follow a standardized and carefully monitored procedure).

As mentioned earlier, quality assurance (QA) 1s essential to the

success of reusable parts. The exact nature of the QA structure Is at least

partially dependent upon the scope of the catalog.

4. CATALOG DEFINITION

Ihe purpose of a software parts catalog Is to facilitate reuse of

existing software parts by providing a mechanism for rapidly identifying

relevant parts to a software developer. To that end, the software parts

catalog must contain sufficient Information to permit selection of

components, but not so much Information that It Is cumbersome to use. This

requires careful selection of attributes for Inclusion In the catalog.

The Investigators have developed a set of attributes to describe each

catalog entry which provide the catalog user with sufficient but not

overwhelming Information about Individual software parts. Figure 2

summarizes these attributes. Each of these attributes Is discussed In

greater detail 1n Appendix A. Figure 3 graphically depicts the flow of

Information into and from the parts catalog system.

MDAC-STL developed a prototype Ada parts catalog as a proof of concept.

The catalog was developed using a relational database system (ORACLE) on

a VAX 11/780. A description of this catalog Is contained In Appendix C.

10

.V' \ L ,'... 3 .-V-*-V~- -* ...V.\ ,'.,.-, _ •^-^^••^•.v.^^-_-..- .••V^.-.J.'^./.--'.'L- -^•^A-.C i.-. W'VA'.».-. O V'.-.-. V'O. O

•JPJF-P.'WJ». ^iJPipipMp^JJi.ll'yjy^^pyy^jpilJill H^MMi mi. iH|MMUH'i"»iJI'.ti,ifi5 ^^W^WWWP

PART ID REVISION ID

VERSION NAME

ABSTRACT CATEGORY

TYPE LEVEL

CLASS INLINE

OPERATION PARAMETER NAME

KEYWORDS DATE CATALOGED

DEVELOPED BY DEVELOPED FOR

DEVELOPMENT STATUS VERIFICATION STATUS

CATALOG UNITS WITHEO W1THING UNITS

USAGE LOCATION OF CODE

SECURITY CLASS (PART) SECURITY CLASS (CATALOG ENTRY)

UNES OF CODE (SOURCE) FIXED OBJECT CODE SIZE

REQUIREMENTS DOCUMENTATION DESIGN DOCUMENTATION

HARDWARE DEPENDENCIES OTHER RESTRICTIONS

ACCURACY TIMING CHARACTERISTICS

REMARKS

•;

•'.

Figure ?. Catalog Attributes

II

'•»^^^.^••i^i-A-i.-.--. .-. . _. _, _, ^ _t _, ^ y^-_,. * -> y-^':-''-±^>^'-*>->> ' - y >-':-> j>y^~'•">•>'

pjUMMMlJ>M'J^MMMg'J'M.MM'J|l'JWlM|J|.l--,|J >W 'WWW JM»^ypPpJP.'«.'.• .•JMIHVJJ *L»lE.l«.l'.•'••I

SOFTWARE
PART

SOFTWARE Q.A

DOCUMENTATION

DOCUMENTATION
Q.A

CATALOG
ENTRY FORM

CHECK FOR
COMPLETENESS

UNIFIED PARTS MANAGEMENT SYSTEM

UNIFIED PARTS MANAGEMENT SYSTEM

Figure 3. Information flow through Catalog SyitM

\7

< „ • . 4 .

f'-v'.v ^:.:vv^>w:v>i:.:v.:v:.-:•- •. .- • * ^.... .-..-;• ,^_-^ - »-* _ - - -

5. DOCUMENTATION REQUIREMENTS

In order to ensure that all necessary Information Is supplied when a part

enters the parts catalog system, a standard form should be developed and

utilised. Appendix B provides an example of such a form; this Is the form

used In the development of the HDAC Ada parts catalog. Some of the Items on
the form could be supplied automatically as a software part enters the system

(e.g., L1nes_of_Code, Unlts_W1thed, WlthlngJJnlts). This form can be used

for both Intra company and Inter-company cataloging, although the level of

detail of Information provided In certain fields will vary depending upon the

scope. Appendix A discusses the scope-dependent differences In attribute

lnformatIon.
Parts documentation Is crucial to the success of any software reusability

effort; Information Indicating the type of documentation and Its availability

should be provided for each part 1n the catalog.

Although reusable software has been discussed for a number of years, Its

implementation Is fairly recent, therefore, the user must be provided with

documentation and training material for use of the parts catalog, both from
the viewpoint of a catalog user and as a developer of software that will be

cataloged for future reuse.

6. ORGANIZATIONAL FACTORS

Organizational factors play a critical role In the success of any attempt

to Implement reuse of pre-bu11t software parts. Although the scope of the

catalog has a direct bearing on the exact nature of the organisational
factors that must be addressed, the Issues remain essentially the same.

Figure 4 summarizes the organ!zatlona1 factors required to support a viable

parts Identification effort.

13

• MOTIVATION FOR REUSE • PROCEDURAL CONTROLS

• CENTRAL REPOSITORY • TRAINING

• STANDARDS • USER SUPPORT

Figure 4. Organizational Factors

a. Motivation for Reuse

As stated earlier, software development that makes use of pre-bullt

software parts requires discipline on the part of the developer. It also

requires an Initial Investment of time and effort to establish a reusability

program. Until the benefits of reuse becomc apparent to all Involved, there

must be motivation for organizations and Individuals to reuse existing

software In a structured way. Although in the long-run reuse of existing

software parts can produce significant economic gains, some form of

motivation will be required Initially. The form that this motivation may

take 1s scope dependent (see Figure 5).

MOTIVATION BY CONTRACTOR MOTIVATION BY CUSTOMER

« COMPANY STANDARD • DOD MANDATE

• SUGGESTED COMPANY PRACTICE • CONTRACT REQUIREMENT

• COMPETITIVE EDGE • CONTRACT INCENTIVE

Figure 5. Forms of Motivation

At one extreme, motivation could be provided In the form of a 00D

mandate similar to that for the use of Ada. Due to the extremely broad scope
of such a mandate, this Is not considered an optimal form of motivation at

this time.

14

•.v.* ^r^ivriTivvv 'rrj'.Jvr>ff v»V'JV.v..p:v^ ^pg^ * .-rr *>*»•»•.I».Pjr-m.» ."FI—• • • "ig^ * ' '" " •• ^

The Air Force could provide motivation In the form of contract

Incentives or contract requirements. Incentives could take the form of

giving companies that have reusability programs In place greater

consideration In proposal reviews. Motivation could also take the form of

only considering companies that have reusability programs In place.

Although cost plus contracts provide little Incentive for the

contractor to economize on development costs, some form of economic Incentive

may be appropriate to contractors who Initiate or have In place a functioning

reusability program. For example, a bonus could be tied to the amount of

reuse on a project.

If Individual contractors are expected to set up their own programs,

the Air Force should provide guidelines In order to ensure comparability

between programs, and to lay the foundation for the Implementation of reuse

of software on a more global scale.

Motivation for software reuse within a company can range from a

corporate suggested practice to a strictly enforced company standard. A

suggested practice may recommend software parts reuse as a sound software

engineering practice and provide guidelines for developing reusable

software. When adherence to reusability guidelines Is required, a system of

checks and audits must be established In order to determine compliance.

b. Central Repository

Regardless of the scope of the catalog there should be a central

repository for both the catalog and the parts. This eliminates redundancy,

reduces overhead, and facilitates maintenance, control, and use of the

catalog and parts. Ideally users would be able to access the catalog and

parts database from remote locations. Ihe need for a central repository has

been supported by a number of researchers. Including DeRoze (Reference 18)

who performed a study of defense software.

c. Standards

Adherence to coding and documentation standards 1s Important to the

success of the reusability concept. The development of a set of usable

standards 1s a non trivial task whose Importance should not be

15

y^^v-v-v- v - -••^-^••••- \A*_' 1 ^ _ -__^

llpW«^-*Vr-TJFilp'^'-JT> "- w W'\P'J. *.'". •*. -' .'-T -' -' '• -' -w ' " ' -' * '-* '•" * ' -m * '.' '"* • " .•••'.• .f !•' • • r .• •- y T -p y • r r

underestimated. Although the development of those standards Is not within

the scope of this study, we have recommended a set of attributes with which

to characterize software parts.

d. Procedural Controls

Entry of parts Into the system must be carefully controlled. Part

of the control procedure Involves ensuring that all required Information 1s

entered Into the catalog In the anproprlate format; this can be facilitated

by the use of a catalog entry form similar to the one discussed In Paragraph

5.

Before entering the system, each part should be screened for

conformance to coding and documentation standards. A determination of what

these standards should be are not within the scope of this study, but they

should be comprehensive and quantitatively enforceable.

Quality assurance Is critical to the success of parts reuse; this

was found to be a recurring theme In the literature reviewed (References 1

and 19). Poor quality parts cause two problems:

Encounters with a few poor quality parts can destroy user

confidence In all of the parts.

Poor quality parts negate the benefits of reusability (I.e.,

reduced cost of development, greater reliability of the system;

developed).

Verification of correctness of software parts Is a complicated

Issue. Ideally, each part entering the system should be Independently tested

and certified as meeting Its requirements. If the catalog Is to be for all

Air Force development. Independent certification will require extensive

resources In terms of both personnel and equipment. If the scope Is

Intra-company, the QA procedures that are currently In place could be used as

the basis for developing a verification and certification process for parts.

At the very least. It should be required that the provider of the part

Identify the type of verification performed and who (or what organization)

performed that verification.

16

v. ------ •\ -\-\v.v v v v WwCwCfW w v v v

v —»T- V^'.^r" '•'T\^I-^'!,T'.'^"^ ^'.^ '.^V^ T f •' ^ '^«gy^ '^'T^'T'^'V

Configuration control Is another Important aspect of procedural

controls required for a software parts catalog. Users should not be allowed

to make random additions of new parts, or Indiscriminately create new

versions of existing parts. There must be adequate Justification for a new

version of an existing part (e.g., correction of an error, major

enhancement). Instantiations of meta parts should not. In general, be

Included In the parts catalog because these are application-specific (I.e.,

tailored to a specific application) software components rather than general

or domain specific parts.

As stated earlier, new parts must go through adequate quality

control procedures before entering the catalog system. If possible, users

should be notified well In advance of any updates to the cataloged parts;

this provides the user with time to plan for the new or updated part. This

procedure Is followed by the Numerical Algorithms Group (see paragraph ?b).

e. Training Requirements

Training may be required In the use of the catclog and associated

documentation procedures. Additional training may be required to teach

personnel how to develop software that Incorporates existing parts.

f. User Support

Extensive user support should be provided In addition to the

training discussed In Paragraph 6e. For example, guidelines for selecting

and using parts should be developed and published. Major updates and

enhancements, and other Information concerning the catalog should also be

publicized.

17

A*J"'^: !-".'«_-•'*• .-*.-. -.*. •-.:*. I**- **^ -»-* -*" :+:*'l>*\

W\VJ^JUl?'y.^P.^J>lJi^l>J'l^^y^li^M'V^VW.'.y"f''1 •-". •• v-• ^ wryyy *•" ̂ ^ >M ,.,.<, .,L,, |.IIf.V, * "J'.^'.^<

SECTION III

EVALUATION OF SOFTWARE GENERATION TECHNOLOGY

1. Introduction 18

2. Review 18

3. Assessment 36

4. Conceptual Framework ... 47

5. Recommendations 54

1. INTRODUCTION

The objective of the Software Generation System (SGS) study was to

determine the feasibility of an automated or semi-automated means of

developing missile software that makes use of existing software parts. The

approach taken by the Investigators was to first survey current and past

research efforts In this and related areas (see Paragraph 2). This led to an

Identification of Issues and the development of a set of evaluation criteria

that could be applied to existing and proposed systems (see Paragraph 3).

Next, a conceptual framework was developed to facilitate the determination of

technology requirements for an Ideal software generation system (see

Paragraph 4). Finally, based on an evaluation of current and

state of the-art technology, recommendations for systems with current and

mid term feasibility were developed (see Paragraph 5).

REVIEW

Over the years there has been a wide range of views on the nature of

software generation systems. As technological advances are made,

researchers' expectations of these systems also advance (e.g., FORTRAN was

originally thought of as an automatic program generator). The current desire

for software generation systems 1s motivated by the same forces that

motivated development of high order languages (HOL's), and assembly languages

before them better software faster and cheaper (References 20 and 21).

Although there 1s still no general consensus on the exact nature of such a

system, there Is a consensus that their use will significantly reduce

software development time and cost.

18

Q

•-'*--'"-'"*-r",-'*,-"*f'-'--•-•--' - v' - . i •--. . . . -x- ,. _^. _^. i • • ni^'-' M

 JM"i'. '".nMI !• !••«••• Tl'VyiA V^W^ ^••IA'*' ^•.•J^^V^l*"¥W.*1*'.«

In researching the feasibility of automating the software generation

process, the goals of that automation must be kept In mind. These goals are

summarized In Figure 6.

• SIMPLIFY THE PROGRAMMING TASK.

• LOWER THE COST OF PRODUCING SOFTWARE.

• IMPROVE THE QUALITY OF THE SOFTWARE PROOUCED

Figure 6. Goals of Automating the
Software Generation Process

An automated software generation system simplifies the programming

process by reducing the need for detailed programming knowledge. This Is

achieved by allowing the software to be specified at a much higher level of

abstraction than is possible with manual programming, and/or requiring the

'programmer' to be less precise. The ultimate goal of a software generation

system is to allow programming to be performed by domain engineers rather

than software engineers; this would mean fewer programmers would be required

resulting In a significant cost savings. Automated software generation that

Involves reuse of pre-bullt parts would realize additional cost savings by

reducing the amount of software that would have to be developed.

Improved reliability is another goal of automation of the software

generation process (e.g., fewer coding errors). The use of pre-bullt

software parts would yield benefits In this area also; the parts would have

been previously tested and verified, thus less time and effort would be

required for testing and debugging of new software systems.

Many researchers have tried to develop universal software generation

systems (I.e., systems that are applicable to all problem domains) wit*) the

result being that they are not particularly well suited to any given domain.

Because of their generality, software specifications required by these

systems often necessitate nearly the same level of detail as that associated

with ordinary programming. Additionally, the lack of domain specific

knowledge often results in significantly less efficient code than could be

produced by a human coder. A number of researchers have noted that most

success In the automation of software generation has come from systems with

19

^•.'••.•j.;-. ---'^ -V AJ/-.J. •» *A-«* »\VjWlVuW»-VfcVfcV^\VA • ^V-V. A .^V. . -

modest goals. I.e., systems attempting to deal with limited application

domains and a limited range of user proficiency (e.g., Prywes, Reference 22).

As mentioned earlier, the CAMP study 1s Interested In software generation

systems that make use of existing software parts; this requires a way to

describe existing parts, store, manage, and retrieve them, and Integrate Ihem

Into future software development projects. In the past. It was almost as

difficult to determine If an existing software part would meet a user's

requirements as 1t was to (re-)develop the part. Generally, little or no

documentation was available. The documentation that was available was poorly

written making It difficult for the (potential) user to determine the

functionality and appropriateness of a software part. Additionally, the

quality of available components was unreliable. (Software parts cataloging

and Its associated problems were discussed In Section II.)

As part of the Investigation Into the feasibility of an automated

software generation system, existing work 1n the technology areas that are

relevant to software generation systems (I.e., automatic programming, expert

system applications, formal specification systems, natural language

Interfaces, and text generation) was surveyed. The literature surveyed

contained a great deal of ambiguity In the usage of terms such as automatic

programming, program generator, and software generator. Some researchers use

the terms automatic programming and program generator Interchangeably, while

others distinguish between the two. Program generators are often considered

more mechanical In nature, not Involving the expert system reasoning

capabilities often associated with automatic programming. In our view,

automatic programming and automatic software generation are equivalent,

although Ihe term automatic programming appears to be used more frequently In

recent research; we will use the phrase software generation.

The remainder of this paragraph contains a summary of our findings. We

will first look at automatic software generation systems In the large, and

then provide a detailed look at three fairly recent systems. Next, we will

look at the major architectural components of such a system (I.e., the

specification technique, the method of operation, and output generation). An

alternative to software generation is the use of expert system assistance In

the development process. This 1s of particular Interest to us, as one of the

goals of the CAMP study was to Investigate the feasibility of an automated or

semi automated means of developing missile flight software. Expert system

20

• ."V- . • .*• "* .**."• -^ ." iVV-V^.^'j'''« *•'_ * '•" *-V-W'-' vA\.^.' .•-»'•^V.V,V:.P.V-.-:A>:. ••^•J.-J._« y-^.j,*-.:^:-*--*.-^ -, ^ - ^ ^V-- ._ -*.'-_• -»-,_, -^ _.. _ _. _. .»•-•.-.- j^^U^i^AA^

assistance has often been Incorporated Into proposals for fully automated

systems. Two representative systems are presented In Paragraph 2e. Figure /

summarizes our presentation.

REVIEW

METHOD OF
OPERATION

AUTOMATIC
SOFTWARE

GENERATION

• DRACO
• DARTS
• USE IT

• CODE
• DOCUMENTATION

SYSTEM
OUTPUTS

• PROGRAMMER'S
APPRENTICE

• KBSA

EXPERT SYSTEM
ASSISTANCE

• NATURAL LANGUAGE
• FORMAL
• SEMI-FORMAL
• GRAPHICAL

SPECIFICATION
TECHNIQUE

Figure 7. Summary of Review

a. Automatic Software Generation

An Automatic Software Generation System 1s a software system that

automat leal ly generates software when given a requirements specification In a

very high order language (VHOL). VHOL's allow specifications to be provided
at a higher level of abstraction than HOL's, just as HOL's provided a higher

level of abstraction than assembler languages. The form of the VHOL tan
range from very formal specification languages to natural language;

specification techniques are discussed 1n Paragraph 2b.
In addition to the specification technique, software generation

systems can be characterized by their method of operation, their target

language, and the problem domain (Reference 23). The method of operation Is

the technique employed to change the Initial specification into a software

part. There are a number of operational methods that a software generation

system can Incorporate; Ihey are discussed 1n Paragraph 2c. The target
language Is the language in which the software will be generated. In the
case of the CAMP study, the target language of Interest Is Ada. The problem

21

domain refers to the application area for which software will be generated

(e.g., missile flight software). It can be seen that a wide range of
technology areas are covered by software generation systems.

The scope of software generation systems can vary significantly.
Some systems are designed to generate single program units while others are

Intended to generate entire software systems. Still others are designed to

generate only specific parts of program units (e.g., data structures).

Host software generation system Implementations are In the research

phase, or at the stage that only relatively small programs can be developed.

According to Neighbors (Reference 17), specification and requirements

analysis present the major Impediments to the development of complete

software generation systems.

Software generation systems do not necessarily Involve reusable

software parts, and most systems developed to date do not. A few recently

developed systems Incorporate reusability of some form; they Include DRACO,
TM

DARTS , and USE IT; these systems are discussed 1n the fol owing

paragraphs.

(1) DRACO

DRACO (Reference 17) Is an Interactive software generation system

developed by Jim Neighbors at the University of California at Irvine. The

system allows solutions to classes of problems to be developed. Once a

solution to a particular class of problems has been developed. Individual

systems can be developed by personnel who are not necessarily software

engineers.

Development begins with a determination of the existence of an

appropriate modeling domain for the problem area (e.g., missile flight

software). A modeling domain Is essentially a model of the type of system

the user wishes to develop. If a modeling domain does not exist, a domain

expert must perform a domain analysis. The domain analysis takes a

high-level look at the objects and operations that are used (required) In the

problem domain. Domain analysis differs from systems analysis in that domain

analysis examines the objects and operations that, are required by systems of

a particular class rather than looking at the requirements for one particular

system.

22

.•„^^•«•^»•«••H,.V M», uim^Mum.ijiM.'HH'JIHUHI •Ji.iljl • I m ,| nin ji jnn •!!• t , ,;, ,

If It Is not likely that a number of similar systems will be built,

domain analysis should not continue; Instead a custom system should be

constructed. Domain analysis Is an expensive, time-consuming task that

requires extensive knowledge of the problem domain. For this reason, DRACO

Is not well suited for the development of one-of-a kind systems.

Domain analysis results In the development of a domain model and a

domain language. The domain language encapsulates the design aspect of the

application, and 1s Intended to allow users to communicate In a language with

which they are familiar rather than requiring them to learn an ordinary high

order language for programming. Each object and operation In the domain

language Is represented by a software component (I.e., a part). Host domain

languages are quite different from ordinary programming languages (e.g., a

domain language may take the form of a table). It Is through use of the

domain language that reuse of design takes place.

The user specifies the problem In a domain language program; the

domain language program then undergoes a series of refinements that are

guided by the user or by a predefined strategy, to produce an executable

program. The refinement history Is saved along with the executable code that

Is produced.

We have Identified several aspects of the DRACO system which make

Its widespread usability In the missile flight software domain questionable.

The DRACO system Is still In the early stages of development,

and considerably more work Is required to make It a

production-quality system.

The specification technique of the ORACO system 1s designed for

ease of use, but the user still must learn a formal

specification language and technique In order to use the system

Considerable detail Is required on the part of the user when

specifying requirements.

Efficiency Is another concern with the DRACO system. The code

produced 1s claimed to be very efficient, but DRACO Is a

universal software generation system, and, as we have

previously pointed out, the efficiency of the code produced by

these types of systems is frequently Inadequate for the types

of applications with which we are concerned (I.e., real time

embedded systems).

23

^ _ -i

yx* .^/TIf Vi^vr• wMj mi*i»r r»v v.lf rw V*v*if\\if i^1l^.", y.^T.iyJVVVlVJi"• JV;^.""A" " ""* "V^.W^TV,

(2) DASTS

TM
OARTS (Development Arts for Real Time Systems) (References 24,

25, and 26), developed by General Dynamics, also allows solutions to be

developed for classes of problems. The goal of the research leading to the

development of the DARTS technology was that once end users had a working

system in place, they would be able to generate similar systems without

programmer assistance. The user would enter the system specifications in

some domain language, and through a series of transformations, the

specifications would get translated to source code.

One premise upon which the technology was developed Is that

creativity Is only really required in the development of the first

Implementation of a particular class of applications; significantly less

creativity is required for the development of each successive system of a

given class. Thus, after the initial system Is developed. It should be

possible to generate additional systems of the same class automatically using

the original system as a prototype.

Efficiency was an Important consideration In the development of the

DARTS technology. Just as it Is In the CAMP study. The developers of the

OARTS technology wanted the automatically generated systems to be at least as

efficient as custom systems. As with DRACO, DARTS is a universal software

generation system, and it is not clear that the code it can produce Is

efficient enough for the missile flight software domain.

When a problem is Initially Identified as being a candidate for

solution by the DARfS technology, an analyst must perform a domain analysis

and design a general software solution to the problem; a working system may

already exist In the problem class. Once the initial software system is In

existence, it must be generlclzed, or In the OARIS terminology, made Into an

archetype. During this time It Is also necessary to develop a domain

language and translator. AXE, the language component of the DARTS system, is

extensible, and should be extended to incorporate the domain language. The

24

c«>^"^>v>r«'*^''.\v -*•• _*.-.VANI*-V-IL*-^.' -.!/•_**.« ^*^» <.< ,U£XA.

'•'•.— .' ' •• • •••».»- • .-•-•-. -F..,.^^ p.,.p^FFppp,. m^m^^^ | | V ^^^^^^^p^^^^p^^^^

domain language Is Intended to facilitate user Interaction with the system,

but It still requires the learning of another specification language, lhe

requisite knowledge bases for the application must also be developed. The

end result of the domain analysis phase Is that an environment Is created

that allows users to completely specify software systems without programmer

assistance; code Is generated automatically once the specifications are

determined to be complete.

Existing software Is generldzed by embedding AXE statements In the

source code; these statements are used to direct software generation by

referencing the system knowledge bases. Actual software or code generation

takes place through a series of transformations. Each class of system (or

application area) essentially has Its own software generator (I.e., Its own

archetype). AXE statements can also be embedded In documentation to allow

the automatic generation of new documentation along with a new system.

DARTS provides a way to generate a family of modules. The domain

analysis and language development are time consuming and relatively expensive

tasks that require extensive knowledge of the domain. Prior to developing a

general solution for an application area, an assessment must be made as to

the likelihood that many similar systems will be needed or If the required

system will probably be one of a kind. Because of the costs Involved, this

technology should not be applied unless there Is a foreseeable need for

several systems of the same type.

DARTS Is currently being marketed by General Dynamics, but at the

time of our study, we were unable to obtain conclusive evidence from General

Oynamlcs concerning Its appropriateness to the missile flight software domain

(3) USE.IT

USE.IT (References 27 and 28), a commercial system developed by

Higher Order Software, Inc. (HOS), allows a user to specify unit requirements

via a graphic specification technique. The specifications take the form of a

hierarchical tree structure which Is referred to as a control map. The leaf

nodes of the control map are system primitives or external routines developed

by a programmer. HOS provides the system with only very low level

primitives; It Is left to the user (or Installation) to develop higher level

primitives. It 1s only through the development of additional primitives and

2b

&&iür^^ . : : &&A<A;./.•.;*.;•.:•'.:-.

external routines that programming with USE.IT Is raised to a higher level of

abstraction than ordinary programming.

The requirements specifications are analyzed, and If found to be

Incomplete or Inconsistent, the specification-analysis phase 1s reiterated.
Once the specification Is finalized, the control map can be used to

automatically generate code, or 1t can be used as a specification for manual
coding. English-language documentation can be produced as a by-product.

Reusability 1s manifested through the reuse of primitives. This Is

really reuse of both design and code (If the code for the primitives is also

reused via automated or manual means).

We have Identified a number of problems associated with the use of

this system for the development of Ada missile flight software:

USE.IT does not generatr Ada code and there Is no definite date

in the future for the generation of Ada.

The user must be aware of which primitives exist and be able to

choose which would best suit his needs (this may require a

primitives administrator position which would be similar to a

database administrator).

The primitives need to be developed at a sufficiently high

level otherwise specification must be at as low a level as

required for manual coding.

b. Specification Techniques

The specification technique employed by a software generation system

has a significant Impact on the system's usability and even Its feasibility.

The techniques range from natural language (NL) to code-like program design

languages. When considering a specification technique, the intended user

must be taken Into consideration; some techniques require a substantial

Investment In time and effort to achieve effective use. The specification

techniques covered are summarized in figure 8.

26

• NATURAL LANGUAGE
• FORMAL SPECIFICATION LANGUAGE
• SEMI-FORMAL SPECIFICATION LANGUAGE
• GRAPHICAL LANGUAGE

Figure 8. Specification Techniques

(1) Natural Language

For years It has been the goal of researchers to develop

Natural Language (NL) man-machine Interfaces. Although such Interfaces could

be used for a wide variety of man machine Interactions, we are particularly

Interested In natural language Interfaces to databases and software

generation systems. Natural language Interfaces to software generation

systems could alleviate many software development problems by allowing the

user to communicate his requirements directly to the system rather than

requiring him to work through a software engineer who must Interpret and

analyze his requirements.
Due to the wide range of possible Inputs and their

Interpretations, the development of an NL Interface for software generation

systems Is a more complicated problem than providing a natural language

Interface to a database. Unrestricted NL Interfaces have not yet been

realized, but some progress has been made, particularly within limited

domains and with a restricted set of users; this finding Is supported by

several researchers Including Blermann (Reference 20) and Hendrlx and

Sacerdotl (Reference 29).
Domain dependent specification languages are a special type of

natural specification. These are specification languages that Incorporate

the jargon of the application domain; they are Intended to facilitate
user-system Interaction by providing a simpler form of communication than a

high order programming language. They are part of a trend towards natural

language Interfaces.

27

Hendrlx and Sacerdotl (Reference 29) distinguish between

natural language systems that utilize an explicit world model (I.e., a

knowledge base containing Information on the world as the system needs to see

It) and those that do not. Systems that do not require an explicit world

model are simpler to implement and are generally used for applications such

as database Interfaces. Systems that do use an explicit world model have
been developed In the laboratory, but have not yet progressed Into readily

available production-qual1ty systems.
One natural language system, SAFE. (Skills Acquisition from

Experts), developed by Robert Balzer, Is concerned primarily with the

transformation of a limited English specification Into a formal
specification. SAfE is part of a larger project under development by the

Information Sciences Institute at USC, to develop a comprehensive software

generation system.
Greater success has been realized In the Implementation of

natural language database Interfaces (Reference 29); several projects have

Implemented NL Interfaces of various types. LADDER (Language Access to

Distributed Data with Error Recovery), developed at SRI (Reference 23), is an

NL interface to a naval database; It makes use of the LIFER NL system

(Reference 301. LIFER Is a utility system that facilitates the development

of natural language Interfaces. LUNAR, a system developed at Bolt, Barenek,

and Newman (Reference 30) to aid 1n geologic analysis of material brought

back on the Apollo-11 space mission, also makes use of a natural language

database Interface. Natural language Interfaces have been successful 1n
these cases for two reasons: the goals have been relatively modest, and the

application domain has been limited.
A natural language Interface can also be used to assist a user

1n the development of database queries. RENDEZVOUS (Codd, 1978) (Reference

23) Is one such system. It carries on a clarifying dialog via a series of

menus that provide the user with options fo- further Input and output. At

the conclusion of the dialog, the system produces a natural language summary

of Its interpretation of the user's request.

• • •» • • ^ •' l •• ""^.^l'.'AH'.VA^ ' ,M'"1' ' V*^"V*V" ••••••! • i ' . • L

(?) Formal Specification Languages

Formal Specification Language systems make use of very high

order languages to specify requirements. The complexity of these systems

varies greatly; they can be used to specify everything from entire systems to

individual program units. The nature of the specification language has a

significant Impact on the system In which It Is incorporated.

Specification languages (SL) tan be classified as procedural or

non procedural. Procedural languages describe not only what to do, but how

to do It; most ordinary programming languages fall Into this category.

Non procedural languages merely describe what needs to be done (e.g.,

database query languages); they generally require less skill to use than

procedural languages, and are at a higher level of abstraction.

Specification languages can be further classified as domain Independent or

domain specific. Some systems Incorporate extensible languages that allow

the development of specification languages tailored to a particular domain

area (e.g., 0AR1S).

Stoegerer (Reference 31) has partitioned specification

languages Into three classes: requirements specification languages, (system)

design specification languages, and program design languages (the CAMP

Investigators have classified program design languages as a Semi Formal

Specification lechnique). In reality, the distinction between the classes

tends to be somewhat hazy. Stoegerer and others have suggested Integrating a

cohesive set of specification languages into a software development

environment.

Two examples of requirements specification languages are RSL,

the requirements specification language associated with the Software

Requirements Engineering Methodology (SREM) developed by TRW for the Army

Ballistic Missile Advanced Technology Center, and PSL (Problem Statement

Language), the requirements specification language portion of the tool

PSL/PSA (Problem Statement Analyzer). Both RSL and PSA are tallorable,

structured English specification languages (I.e., the languages can be

extended or tailored to fit the needs of a particular project) but both

suffer from a relative lack of use. This emphasizes the fact that formal

specification languages are typically difficult to work with. Training In

either technique can take 1 ? months (Reference 3?), and training must be

29

. •.

-•'• • •-•-• ------ -•-• - - .•.••^•^-/.••.•••••.••A^--V.->J.JVa-.,'i-r»-,-..:>;.:,..ki.

•Vi.H.iHi.1 WH.i '^^.f^r^'"'"'»'»'»'!' • I •••••g^'Ji.P' ' • • ' ""'V" .1 .1 MI.Mpil.l

provided not only for those who will be writing requirements specifications,

but also for those who must read them.

Both the DRACO and DARTS systems provide extensible

specification languages that can be tailored to form domain specific

specification languages. Many other systems utilize formal specification

languages for user inpjt; two of them are described briefly here.

MODEL (Module Description Language), developed by Noah Prywes

of the University of Pennsylvania (References 22 and 33), Is part of an

experimental software generation system. MODEL Is non-procedural and similar

In structure to PL/1. The user must supply a ralrly detailed specification

of the Input and output data. Assertions, or equations, which describe

relationships between data objects, are also supplied by the user. The MODEL

program undergoes analysis for inconsistencies, ambiguities, and

Incompleteness. After checking and correction, either PL/1 or COBOL can be

generated. Although the use of a non procedural language does ease the

programming burden, the user Is still required to learn a PL/1 type language,

and provide detailed specification of Inputs and outputs.

Protran, the user Interface to the 1MSL library, Is an

extension of FORTRAN, and Is not a part of a software generation system.

Programs written In Protran are much smaller than equivalent programs written

In FORTRAN, but the specifications are not any less complete than those

required for a FORTRAN program.

(3) Semi-Formal Specification Languages

Program design languages (PDL's) and specification by example

are two forms of semi formal specification techniques. Program design

languages can take many forms; the ones of particular Interest to us are

those that are Ada based. McDonnell Douglas Astronautics Co. has developed

one such language, referred to as ADL (Ada Design Language) (Reference 34).

It consists of a subset of Ada and is Intended to be used for the design of

software systems. Numerous other versions of Ada based PDL's have been

developed. There is currently an effort under way by the IEEE (Reference 35)

to establish guidelines for their development.

30

^i-.'v'-.'.^'.'^ /.y .•'-.•'•.'•'••••.'**-' -• •-• . -.v. •-•_•._•-•_•.. ._ — _^---a,'-*».-. ^.^.^- •-«.'•..«-1. ..-i.-i.-i-\.-.,

wm •,•• •,^^-^.,^,,^t^L^L^,^ j^L^,w^t„,^,^,^lP^,,j,•,,^,^k^tipi^i^M^»^^^FT^T^fpp^p^^^i^^^^^^^p^^^^^fillij 1 ij•. • [^•^^^r^'^^Py

One form of specification by example consists of the user

providing the system with Input output pairs; the system then generates the

code that would result In the given output when supplied with the specified

Input. A use- must carefully construct examples that completely specify the

requirements. The development of a comprehensive example for more than a

trivial problem 1s not a simple task, but for simple problems. It has been

found that users can converge on the correct solution fairly quickly simply

by providing successive examples; this has been noted by several researchers

(References ?3 and 3b).

Specification by example has been Incorporated Into PSI, a

software generation system developed by Corde I I Green at the University of

Southern CaItfornla.

(4) Graphical Specification Languages

Studies have Indicated that both clarity and speed of

Infounatlon transfer are greater with graphic-based languages than with other

types of languages (e.g., formal specification languages, natural languages

(Reference 31)). The use of graphical languages for both Input of

specifications and other man machine Interactions (e.g., requests for further

Information from the user, summaries of specifications) has been proposed.

Graphical representations allow Information to be presented concisely.

A Graphical Specification Language requires both an appropriate

set of symbols and a method for piocesslng It. The development of automated

graphical specification techniques Is still In the early stages.

MIT had a project underway to develop such a technique

(Reference 37). A preliminary step In the development process was the

development of an appropriate set of symbols to represent various programming

constructs and concepts. HOS's USE.IT system makes use of a graphical

specification technique, although II Is not at a very high level.

Both Booch (Reference 38) and Buhr (Reference 39) have proposed

manual graphical representation Schemas ior Ada software parts.

31

• /,.- .-. -\ ,-, •>
^ V y, -v- *J '-

• - * -
f- t. ^. W- tm • - • - » - * - ^- * - • - » - • J

• • «, n \ n PPPJPJ ,-« •• ^^II^I^II^ ^ m • •••••••••• ninni •> i urn • P»I m pip»

Methods of Operation

A software generation system takes some form of requirements

specification as Input, and generates some form of software part as output.

The technique used to change a requirements specification Into code Is

referred to as the method of operation. There are, of course, many ways to

do this, but, there do not appear to be any clean cut lines that clearly

delineate the methods and thus facilitate classification; this Is often the

case with technologies that are In the early stages of development. This 1s

not to Imply that classification schemes have not been proposed. Some

categories that have been suggested are deductive techniques, transformation

techniques, expert system techniques, and custom tailoring.

Custom tailoring Is often thought of as using parameterized software

to generate unique configurations from a standard software system. This

process has been used In telecommunications systems, and Is also the method

used to transform generic Ada parts Into concrete usable Instances; It Is a

way to generate families of concrete software systems (or programs) from an

abstract system (or program).

An expert system can be used In conjunction with any method of operation,

thus, a strict classification as expert system technique is not really

meaningful.

Deductive or theorem proving techniques Incorporate transformations

that are usually In the form of predicate calculus statements. These

techniques start with a theorem to be proven, and attempt to find a series of

transformations which lead to that conclusion. A program Is produced as a

by-product of the proof.

The problem that we see with an attempt to classify the methods of

operation at this stage of development Is that almost all methods of

operation can be forced Into the category of transformation systems (I.e.,

they all transform a specification Into a software part). The

transformations can take a number of forms: they can be 1n the form of

predicate calculus statements, they can be In the form of rules, or they can

be simple substitutions.

A mechanism for selection and application of the transformations Is

required. The amount of user assistance required to guide the application of

the transformations varies considerably between systems. Some systems

32

-•/:_-**_• v-^'^-.,"-^.-»':>>.«:-«'••>k--.-v-_v^»_/- .'-.•:.,^,-v, ,v.w.-...v^ ->^-:-^.w.*:—. J.^v.\>.ih ^-_:--.:--:.--v.^.-_-^- J^A

require no user Input other than the provision of the Initial specification,

while others require a significant amount of human guidance (e.g., Kestrel's

proposed Knowledge Based Software Assistant). An expert system may be used

to aid In selection of the transformations, or the transformations may be

applied In an arbitrary manner or with the aid of heuristics. The steps In

the transformation process are often saved so that the transformation can be

replayed later If the need arises to re Implement the software.

The range of problems that can be solved by any given method of

operation varies considerably depending upon the particular Implementation.

As with specification languages, the trend In methods of operation has been

towards greater domain specificity (Reference 40).

Several software generation systems (DRACO, DARTS, USE.IT) have

previously been discussed, but we will briefly summarize how they produce

programs. In the DRACO system, a program specified In a domain language

undergoes a series of refinements (or transformations) that follow a

pre defined strategy or are guided by the user. In the DARTS system, the

archetype system has AXE language statements embedded In them that reference

various knowledge bases. The user's program supplies application specific

Information that Is used 1n conjunction with the Information from the

knowledge bases to guide the transformation of a system from a model solution

Into a specific Instantiation. In HOS's USE.IT system, code modules are

substituted for primitives In the control maps; module Interconnections on

the control map require the generation of code.

PSI, a software generation system developed by Cordel I Green at

Stanford University In the 1970's, uses a number of cooperating experts

(e.g., a domain expert, coding expert, efficiency expert) to transform the

specification (which may be in the form of a series of examples) Into code.

The DEDALUS system developed by Nanna and Maldlnger at SRI

(References 23 and 36), has been referred to as a deductive system. It uses

a modified form of predicate calculus (I.e., more English language text Is

allowed) for the specification, and generates programs In a language similar

to LISP. The transformation rules contain knowledge about both general

programming principles and the specific implementation language. Successive

application of the rules leads to the transformation of the original

specification Into the final program.

33

yafr£^fcia lb *>v-^v --'-•- --- - • - >• -- vv v-\ - ->.-.-. » •>;:-:;-;-:>;>VA,\ ^ ̂ L.

«,•,•„,„•-,„,«ll„l„^„lll ,i ,, „ ,i ,.1,^1 tl,iW^ „y,,,,,, ll|IU^^^iy^p^Wipip^|pipipppipppppp|lfpp^|
-* .

d. Text Generation

In addition to producing code, it is desirable for a software

generation system to also produce documentation. Text generation poses

basically the opposite problem of natural language specification. Text

generation requires the transformation of an Internal representation of

information (I.e., program specifications) into English text. A few systems

incorporate some rudimentary form of text generation (e.g., HOS's USE.IT

generates documentation that the developer claims meets military standards,

but it appears to be at a fairly low level). The DARTS system 1s able to

generate documentation from generldzed documentation provided with the

archetyped system. As was mentioned earlier, the Rendezvous system generates

natural language summaries of user specifications. Automated text generation

Is not highly developed.

e. Expert System Assistance

An Expert System is a software system designed to exhibit human like

reasoning behavior (i.e., such systems are able to form inferences based on

factual knowledge, data, and rules of thumb). Expert systems have been

proposed that would assist In the programming task rather than perform it

automat W a Ily.

One such system Is the Programmer's Apprentice (References 23 and

41), proposed In 1976 by researchers at MIT. The system is intended to

provide assistance in the areas of documentation, verification, debugging,

and modification management. The system incorporates general programming

knowledge; this knowledge is stored In the form of plans. The programmer can

either provide plans for the solution of a problem or provide code. The

Apprentice uses the plans to form an understanding of the problem; It tries

to determine If the code implementation corresponds to a valid plan, and If

there Is no correspondence, the programmer Is notified. The Programmer's

Apprentice can also provide assistance in determining the ramifications of

modifications. A combination of plans and user supplied Information are used

to generate documentation. Research and development work on prototype

systems has proceeded over the years.

34

^Ss^^r^^^^j^

Another knowledge-based programming assistant that has been proposed

Is the Knowledge-Based Software Assistant (KBSA). In a study performed by

the Kestrel Institute for Rome Air Development Center (Reference 42),

researchers proposed the development of a system that would provide

assistance In all areas of a software development project, from requirements

analysis to project management. It Is proposed that the system be developed

Incrementally over the next 10 to 15 years, with work proceeding on a number

of areas concurrently. Formalization of development practices 1s a key

factor 1n automating the program development process.
The proposed system would Interact with different types of users at

the appropriate level (e.g., project managers would not be burdened with
programming details, but a programmer would be able to get the Information he

needs from the system). An Interesting aspect of this study Is that the

researchers chose not to Include as goals of the KBSA two Important goals of

other proposed systems: automatic program generation and natural language

Interfaces. Natural language Interfaces were omitted because It was felt

that such Interfaces would require the same underlying formalisms proposed

for development as part of the KBSA, but that the amount of research required

to effectively Implement a NL Interface Is so vast that to do so would

detract from the development of the remainder of the KBSA. Automatic
programming was not Included as a goal because It was felt that the user
could be allowed to Interact with the system at a higher level of abstraction

If he was also required to assist In the code generation process (I.e., there

1s a technology gap between what 1s fully automatable and what 1s

semi-automatable). For example, the user could be provided with the

capability to partially specify software requirements and have the system

assist with their completion.

35

3. ASSESSMENT

When considering a particular software generation system, 1t should be

examined carefully 1n light of relevant Issues and evaluation criteria. Two

levels of Issues and evaluation criteria were Identified during the CAMP

feasibility study. The top level relates to the system as a whole (I.e.,

reusability Issues, Issues related to Ada and the problem domain, technology
Issues, system maintenance and Initialization Issues, and Issues relating to

physical attributes of the system), while the second level looks at specific
facilities and parts of the system (I.e., the specification technique and the

specification itself, user support, and system outputs). Figure 9 summarizes

these Issues and evaluation criteria; each category Is discussed in detail 1n

the following paragraphs.

a. Reusability Issues

The CAMP study 1s concerned specifically with the reuse of existing

software, therefore, any system examined must be evaluated in light of its

ability to Incorporate reusable software parts, few existing software

generation systems have such facilities. Figures 10 and 11 depict two views

of an SGS—one system does not Involve reuse of existing software and the

other does.

The level at which reuse will take place Is Important to the

structure of a software generation system. Reuse can be at the analysis,

design, or code level. HOS's USE.IT system Implements reuse at the code

level through the reuse of primitives (I.e., pre-built software parts), but

fails to provide an automated parts management system for these primitives.

The DARTS system essentially reuses previously developed software systems

(I.e., the archetype 1s used to generate new software systems). In the DRACO

system, the emphasis 1s on the reuse of design and analysis (through the
reuse of domain analysis and the domain language). Each component and

operation in the domain language Is a software component, and thus, reuse at

the code level also takes place.

36

"." •.•••' «.•_•. ,v'^.v.V^'*.*JT.,"• .^'^'T^T*\mm*v*vv*.v*} 'vfr>'.JvF.1 "Jv .FJ."JV_VJ•*.y. *. *F*»\rrvr^r^rrw*v*vvi.»w„m•." ••'•:'p vyir

REUSABILITY

• IS THE REUSE OF PRE-BUILT PARTS SUPPORTED?

• AT WHAT LEVEL IS REUSE SUPPORTED (eg., REQUIREMENTS. DESIGN.
CODE) AND MAINTENANCE PERFORMED?

• IS REUSE OF PRE-BUILT PARTS ENFORCED?

ADA AND THE PROBLEM DOMAIN

• IS ADA SUPPORTED? (i.e., CAN ADA PARTS BE GENERATED?)

• IS THE PROBLEM DOMAIN (e.g., MISSILE FLIGHT SOFTWARE)
ADDRESSED?

• IS THE CODE PRODUCED EFFICIENT ENOUGH FOR THE PROBLEM DOMAIN?

TECHNOLOGY

• IS THE TECHNOLOGY OF SUFFICIENT MATURITY FOR INCORPORATION INTO
AN AUTOMATED SOFTWARE GENERATION SYSTEM?

• WHAT DEGREE OF AUTOMATION IS PROVIDED?

SYSTEM INITIALIZATION MAINTENANCE

WHAT IS REQUIRED WHEN THE SYSTEM COMES IN THE DOOR'? (i.e.. IS
DOMAIN ANALYSIS REQUIRED? MUST A DOMAIN-SPECIFIC LANGUAGE BE
DEVELOPED? DOES EXISTING CODE NEED TO BE RESTRUCTURED? DO
SOFTWARE PARTS NEED TO BE PRE-BUILT FOR LATER USE?)

IS THE SYSTEM EASY TO MAINTAIN?

CAN THE SYSTEM EVOLVE AS TECHNOLOGICAL ADVANCES ARE MADE?

PHYSICAL ATTRIBUTES OF THE SYSTEM

IS THE SYSTEM A REASONABLE SIZE? (i.e., WHAT ARE ITS BASIC
STORAGE REQUIREMENTS?)

IS THE SYSTEM EFFICIENT IN TERMS OF BOTH STORAGE AND RESPONSE
TIME?

Figure 9. Issues/Criteria of a SGS

37

^vJ.V/.V-V-V-'.'.V-'-'.VJ-'. -\ i..:'..i^V. '<-^"J#JJVi.-'^. - - ^ .• „ ^ .' :. .•-.... J. ^ ..-..:» - - - - - - •- *-

«t• „_• i. i :jrjw^r;w'jwjy:wjw>^\'Wjy j T- " --—r ------ . --.

 \

SPECIFICATION TECHNIQUE AND THE SPECIFICATION

• WHAT TYPE OF SPECIFICATION TECHNIQUE IS AVAILABLE? (e.g.,
FORMAL SPECIFICATION LANGUAGE? NATURAL LANGUAGE? PROCEDURAL
OR NONPROCEDURAL?)

• IS THE SPECIFICATION TECHNIQUE APPROPRIATE TO THE USER? ARE
MULTIPLE SPECIFICATION TECHNIQUES PROVIDED SO THAT THE MOST
APPROPRIATE ONE CAN BE USED?

• WHAT LEVEL OF EXPERTISE/TRAINING IS REQUIRED TO EFFECTIVELY
INTERFACE WITH THE SYSTEM?

• IS THE INTERFACE TECHNIQUE APPROPRIATE TO THE PROBLEM DOMAIN?

• CAN THE SPECIFICATION BE AUTOMATICALLY TRANSFORMED TO A FORM
THAT IS COMPREHENSIBLE TO ALL PARTIES WHO NEED TO KNOW

• CAN THE SPECIFICATION BE PUT IN A FORM THAT IS ANALYZABLE
(e.g., FOR COMPLETENESS, CONSISTENCY, CLARITY»?

• IS THE SPECIFICATION MAINTAINABLE (IF THE SPECIFICATION IS TO
FUNCTION AS A FORM OF DOCUMENTATION AND CONTROL, IT MUST BE
MAINTAINED IN A CURRENT STATE THROUGHOUT THE SOFTWARE LIFE
CYCLE»?

USER SUPPORT

• IS THE USER ASSISTED WITH SPECIFICATIONS (i.e., IS PARTIAL
SPECIFICATION SUPPORTED?!?

• DOES THE SYSTEM SUPPORT AN INCREMENTAL OR ITERATIVE APPROACH TO
DEVELOPMENT?

• ARE THE SPECIFICATIONS CHECKED FOR COMPLETENESS, CONSISTENCY,
CLARITY?

• CAN THE USER INTERFACE DIRECTLY WITH THE VARIOUS COMPONENTS
OF THE SYSTEM {e.g., CAN HE DIRECTLY QUERY THE PARTS CATALOG?)?

SYSTEM OUTPUTS

• IS OPTIMIZED CODE PRODUCED?

• IS THE CODE VERIFIABLY CORRECT?

• ARE FACILITIES PROVIDED TO VERIFY CORRECTNESS OF RESULTING
MODULES (e.g.. AUTOMATIC GENERATION OF TEST PROCEDURE.
CORRECTNESS PROOFS»

• ARE SUPPORTING DOCUMENTS (eg. ADL, SYSTEM DOCUMENTATION)
PRODUCED?

Figure 9. Issues/Criteria of a SGS (Concluded)

38

' ^ •*" .^ «"^ a^ •"• a•' •''
;• -• »' -/>^^

• • • P i i • p. .^PT • ! • • M ••. ' J • ' t • • »1 my •'J • ' •'. • | I . I ft ltH|i,W ff I. 1 f *^^^^^^^^^»^^^^^H

SOFTWARE
SPECIFICATION

NEW CODE

Figure 10. Software Generation without Parts Reuse

SOFTWARE
SPECIFICATION

PREBUILT
PARTS

SOFTWARE
GENERATION

NEW
COOE

Figure 11. Software Generation with Parts Reuse

39

-._v l-il-:w-^r^-'^^"^'^"J^-,I-*-Vwr^^^wvA^\vl%l"«'l tOp--V-V-'^lvlv-v''.vv\-l^v^l\-!v''.'":.t>^ y^'

pyM".vy.uv'WJMVVpi'* 'ww'^y ** p * • p p ••.•••!•!••••• i •• min»!

The level at which reuse takes place affects the level at which

maintenance will be performed (e.g., will the reouirement: specification or

the code be maintained?). If requirements specifications art maintained, a

record must be kept of any manual changes made to the part (1 e . deviations

from the standard part) In case re Implementation becomes necessary at a

later time. If the code 1s maintained, the requirements must be changed as

changes are made to the code. There are a number of advocates of maintenance

of requirements (e.g. f Jim Neighbors, Reference 17).

Enforcement oft and motivation for, reuse Is critical. Motivation

may take many forms. In addition to organizational motivation for reuse, the

software generation system Itself may Incorporate a mechanism to prevent an

engineer from building a part that already exists (I.e., a redundant code

detector).

b. Ada and the Problem Domain

The CAMP study requires Ada as the Implementation language for both

the pre-bullt parts and the generated parts; the effect of this on the

feasibility of an automated SGS has to be considered.

One of the key Issues In this area 1s that any system used to

develop missile flight software for the Air Force must produce efficient code

(both In terms of execution time and storage requirements). Efficiency Is

crucial 1n this area. Although currently there Is some degree of efficiency

lost Just by using Ada, we think that this will change 1n the near future.

As more Ada compilers become available, compiler developers will strive to

Improve their competitive edge by producing compilers that generate

Increasingly more efficient code. This was seen to be the case with FORTRAN

In Its early stages of development. Initially there were objections to Its

use because It was claimed to be Inefficient 1n comparison to the language

with which most programmers were familiar (I.e., assembler), but over time,

the efficiency of the code produced by FORTRAN compilers was Increased to an

acceptable level. We expect this to be the case with Ada compilers also.

Mandating Ada as a common language to be used for all D00 software

development does have the advantage of providing an Incentive to both Improve

Ada and develop optimizing compilers that will eliminate the Inefficiencies

currently found In compiled Ada code. Ada Itself Incorporates certain

40

mtef^ji^-.vv'*.-"«::^-vy _.•....••.•--.'•_ -.-..- -. -... v - ._. ._>...

features that lessen the effects of constructing software systems from
pre-bu1lt parts (I.e., pragma IN_LINE).

The problem domain (I.e., missile flight software) has a bearing on

the structure and acceptability of any given software generation system that

might be considered. One certain effect 1s that any software generated for

this application area must be highly reliable. Although no known software

generators exist for the domain of Interest In the CAMP study, some systems

claim to be tallorable to any domain (e.g., DARTS, DRACO). It 1s not clear

that the efficiency of the code produced by these systems Is efficient enough

for the problem domain under consideration; realistic demonstrations are
required to prove their acceptability.

c. Technology Issues

The maturity of the technology required for any given part of a

software generation system 1s of prime Importance 1n determining the

feasibility of the system as a whole. The stage of development of the

technology should be determined (I.e., 1s 1t 1n the production stage,

laboratory use, or research phase?).

The degree of automation provided by a software generation system 1s

an Important point to consider. Generally, there are trade-offs between the

degree of automation provided and other technologically advanced features

Incorporated Into the system (e.g., the Knowledge Based Software Assistant

described 1n Paragraph 2e, trades off higher levels of abstraction 1n the

specification technique against a lesser degree of automation In the software
generation process).

d. System Initialization and Maintenance

Initialization (I.e., what 1s required to make the system
operational for the end user) and maintenance of a software generation system

are not strictly related to the feasibility of such a system, but they have

Important Implications for Its actual use. As we saw 1n the survey, some

systems require an extensive amount of work before the system 1s operational

for a particular application area. For example, DRACO requires domain

analysis and the development of a domain language. DARTS (General Dynamics)

requires that an archetype system be developed or that an existing system be

archetyped; the specification language also has to be extended for each

domain. If a system requires this type of work, 1t must be determined who

will perform 1t (e.g., will the work be performed by the A1r Force with each

contractor being required to Install Identical systems, will there be a
central facility which can be accessed by all contractors as needed, or will

each contractor be required to perform the work on their own). This Is
really an Issue of scope of the system; many other Issues will arise from any

decision made 1n this area but an examination of them Is not within the

purview of the current study.
Ease of maintenance of the software generation system Is Important

to Its continued use. Because 1t 1s clear that technological advances will

be made over time, 1t 1s desirable to be able to extend the capabilities of a

software generation system as 1t becomes feasible to do so.

e. Physical Attributes

PhysUdl attributes of the system also Impact Its feasibility. Its

size and efficiency affect both where 1t can be used and by whom.

f. Specification Techniques and the Specification

The form of the specification (I.e., natural language, formal

specification language, semi-formal specification language, graphical

specification, or some combination) 1s Important not only to the usability of

the system, but also to Its feasibility. The specification technique should

be appropriate to the user of the system and to the problem domain. A

minimum of training should be required 1n order to Interface with the

software generation system.
The specification should be 1n a form (or be readily convertible to

a form) that 1s comprehensible to both the developer and the customer. It

should also be 1n a form that 1s analyzable for completeness, consistency,

and clarity. Finally, the specification should be maintainable throughout

the software Hfecycle.
Figure 12 presents a summary of how the specification techniques

that were presented earlier stack up In light of the Issues and criteria

discussed here.

42

Wy*l*r"*\ *' VJH^V v'yvvvT^ Vv^JV. • • v wyp* •.• v • • •-• ••• •-• ' • " •-• +.w-w-w- -* • ''•"

Natural language Interfaces are easy to use and have the advantage

that no new language 1s required; generally the specifications can be

Incomplete with the system prompting for more Information as needed (this 1s

the partial Information Issue).

The major drawback of natural language specification 1s that the

technology required to support such an Interface technique 1s not as mature

as that needed to support formal specification languages. Another drawback

of NL specifications Is that they are not as concise as specifications 1n

some other forms (e.g., formal specification languages) and may become

voluminous for large systems.

A natural language Interface makes the system easier to use, but

does not negate the need for any of the underlying formalisms required by

specification systems (I.e., the natural language specification will require

translation Into some type of formal specification In order for the system to

be able to analyze 1t and generate code); this was the point made by

researchers at Kestrel Institute who developed the plan for the Knowledge

Based Software Assistant (Reference 42).

43

l'/vlvlvl .-.y.r.ylv. u jA.<:-'^-v' •- --•-'- --*-*" -'•-'•-' '-'W- --•••- •--•-• •- fci - -. - .., _, .. ^_^___ .

•nwiiiui^i'tipjfij iwwivwvi*. i }*!*.*:L*. IJ-"'J.1 J JJ-> P<PVfP wm I •

UNRESTRICTED
NL

SUBSET
NL

FORMAL
SL

SEMI FORMAL
SL

(PDLI

GRAPHIC
SL

APPROPRIATE
TO USER..

DE/SE DESE SE SE DE/SE

LEVEL OF
TRAINING NEEDED

L M M M M

APPROPRIATE TO
PROBLEM DOMAIN

M1 H2 H3 M H

COMPREHENSIBILITY
OF SPECIFICATION

H* H L M H

ANALYZABILITY OF
SPECIFICATION

L M H H5 H

MAINTAINABILITY
OF SPECIFICATION

H6 H L L H

TECHNOLOGICAL
FEASIBILITY

L M H H M

LEGEND

OE DOMAIN ENGINEER

SE SOFTWARE ENGINEER

L - LOW

M - MODERATE

M - r.lGM

NOUS

It SPECULATION Of SYSTEM REQUIREMENTS MAV BECOME VOLUMINOUS AND WORDY WITH

UNRESTRICTED Nl

2 RESTRICTING THE SPECIFICATION TO A NL SUBSET MORE NARROWLY FQCUSES TM{

STATEMENT Of THE SPECIFICATION SO TMAT IT DOES NOT BECOME RAM8HNG PROSE

3. FACILITATES A PRECISE STATEMENT OF REQUIREMENTS B* A KNOWLEDGEABLE SOFTWARE

ENGtNEE«

« COMPREHENSiB'L'TY M«> DECLINE AS SPECIFICATIONS BECOME VOLUMINOUS

SI if COMPILABLE

81 TEXTUAL NATURAL LANGUAGE SPECIFICATIONS CAN BE MAINTAINED ON A WO*0 PROCESSOR

Figure 12. Sunwary of Specification Techniques

44

r ^ v-:-,\r v BVA • *.• * J ,*-« . .--- -V - - -- - ifrtofr

1 • • .•" • V51'1." -»— "••I 11 11.1 III • I • '.'» '.* '.•!.• I.1* L "J '.*l* I. • ii • • •«•<••<

It Is probably not feasible at this time to expect that an entire

set of missile software specifications can be entered via a natural language

Interface, although It may be possible for some of the Interaction to be

carried out 1n NL. For example, after analyzing the specifications for

completeness, etc., the system could Interact with the user 1n some limited

natural language 1n order to obtain clarifying Information. To date, most

success with natural language Interfaces has been with systems that have a

limited domain of discourse (Reference 20).

The use of formal specification languages (I.e., VHOL's) avoids the

technological problems associated with natural language Interfaces, and

generally avoids the need to deal with partial knowledge (specifications are

generally required to be complete). Although these are advantages for the

Implementor of the software generation system (the technology required for

these types of systems 1s, for the most part, more mature than that for

natural language systems), they are generally viewed as disadvantages for the

user of the system.

The use of formal specification languages necessitates the learning

of yet another language 1n order to specify component requirements (e.g.t

even "state-of-the-art11 systems such as DARTS and DRACO require the use of a

formal specification language). Because of the large number of people who

must be able to understand the specification, this may not be feasltle

(Reference 43), e.g., Stoegerer (Reference 31) states that

1 Specifications written In formal notations are largely

Incomprehensible to the vast majority of persons who contract

for the design and development of software systems."

This Idea Is supported by the general lack of use of formal

specification languages such as RSL and PSL (Reference 32).

Formal specification languages facilitate a precise statement of

requirements; this can be both an advantage and a disadvantage. On the one

hand, forcing precise requirements from the user helps ensure that the

problem 1s well thought out 1n advance. It Is also a step 1n the direction

of developing verlflably correct specifications. The disadvantage of this

precision Is that the development of precise specifications requires a more

educated and sophisticated user.

45

v^ %_^^^ k^ . :^>li. •\r.\ •:..-» • a. I . ^ — • -I-' . 1..-...-.. •• - -* -•- -• - - -

T*T7'Tri*W!n**rc,irW^^
V* J J .•••••

i
Because of the level of detail required when using most universal

specification languages (I.e., a single specification language for all

application areas), the benefits of programming this way as opposed to

programming 1n an ordinary HOL may not be significant enough to warrant a

change to a formal specification language. Special-purpose systems (I.e.,

those directed to a particular application area) may be somewhat easier to

use effectively, but they still require an Investment of time and effort for

additional training.

General purpose VHOL's typically result 1n less efficient code than

that produced by HOL's that are human-coded. The reason for this 1s that,

unlike a human coder, the VHOL processor cannot take full advantage of

domain specific knowledge (Reference 20). Some systems have directly

addressed the efficiency Issue (e.g., DARTS, PSI) but we have not seen

conclusive evidence to Indicate that they have been successful 1n their

attempts at producing code that 1s efficient enough for the missile flight

software domain. More recent systems stress the Importance of

domain-specific specification languages and domain knowledge.

PDL's are semi-formal, general purpose specification languages, and

as such, suffer from the same drawbacks as general purpose formal

specification languages. PDL's can be used at varying levels of abstraction,

and this should be viewed as an advantage to their use as an Input medium.

Additionally, PDL's based on Ada have been developed, and their use for

specifications reduces the variety of languages a software engineer must know,

As mentioned previously, graphical languages have advantages over

other types of languages In terms of both clarity and speed of Information

transfer. They permit the concise representation of large amounts of

information. The software and hardware technology required to support

graphical Input of requirements Is still 1n the early development stages;

graphical specification languages cannot be easily processed Into a

machine-comprehensible form. Booch (Reference 38) and Buhr (Reference 39)

have both developed manual graphical representation schemes for depicting

software parts at a high level.

46

Y---^ •- --— ±** h h.hifci

-.... •••,-.,•. . i .H^Hn^^A1'' ^'.f!WWWWWIWiWWWg^fW^^^^

g. User Support

The quality and quantity of user assistance directly Impacts the

usability of any system, and thus 1s of concern when evaluating a software

generation system. Specifically, the system should be viewed In light of the

amount of assistance provided when the user 1s specifying requirements.

Ideally, the user should be provided with an Iterative approach to

requirements specifications. System checking for completeness, consistency,

and clarity of requirements 1s another desirable feature of a software

generation system.

h. System Outputs

The two major outputs from a software generation system are code and

documentation. Because of efficiency concerns, optimizing procedures within

the software generation system may be desirable. Correctness of missile

flight software Is critical; therefore, facilities for verifying correctness

are also desirable.

The system should be further evaluated 1n light of Its ability to

generate supporting documentation. Text generation Is, as yet, an Immature

technology area. As mentioned earlier, a few systems generate textual

output, but for the most part, 1t Is done at a rather mechanical level.

4. CONCEPTUAL FRAMEWORK

The CAMP investigators found It useful to develop a view of an Ideal

software generation system to serve as a framework for developing near-term

and mid-term recommendations for automation of the software generation

process; we refer to this as our Conceptual Framework. There are several

versions of a software generation system that can be envisioned as we proceed

from the near-term to the long-term, but 1n this paragraph we will

concentrate on presenting a single Ideal system without emphasizing Its

technological feasibility.

47

,.• • _ ••••• -v - --- •^" _.* 'M' •W_ Av^^v!%^VlvIv^v'l-.W_--'. VAVA'^AVVUW^'A £&^£<&o

• • m • p _••• • •••• •« •• • —« "1 'lil'iy •»» 1 •> • J»l'l'l'l".lM','l".^ M^ • •'.•!•» ' • I ' ' < ' I J ^•^•^ ^ *•• •• v^'H1* n * ^

a. The Ideal System

K

An Ideal software parts generation system should have the ability to

manipulate pre-bu1lt Ada parts, as well as the ability to generate new

software parts. The major facilities of such a system are summarized 1n

Figure 13.

1. PARTS IDENTIFICATION THE PROCESS OF SELECTING A PART, OR SET OF
PARTS. FROM A SET OF PRE-EXISTING PARTS FOR
A SPECIFIC APPLICATION.

2. COMPONENT CREATION THE PROCESS OF CREATING A SPECIFIC
COMPONENT.

2a COMPONENT INSTANTIATION THE PROCESS OF CONSTRUCTING AN
INSTANTIATION OF A GENERIC SOFTWARE PART.

2b COMPONENT GENERATION THE PROCESS OF CONSTRUCTING A SPECIFIC
COMPONENT FROM A SCHEMATIC PART BY MEANS
OF A PARTS CONSTRUCTION SCHEME.

2c COMPONENT CONSTRUCTION THE PROCESS OF MANUALLY BUILDING A SPECIFIC
SOFTWARE COMPONENT.

3. PARTS COMPOSITION THE PROCESS OF INTEGRATING PARTS INTO A
SOFTWARE SYSTEM UNDER DEVELOPMENT.

Figure 13. Facilities of a Software Generation System

Before discussing the technology requirements for an Ideal SGS, a

scenario of the system's use will be provided. Figure 14 depicts a

high-level view of the system; Figure 15 goes Into more detail.

The software generation system should have an Intelligent Interface;

expert system assistance should be provided for all system facilities and

processes. Requirements specification should be an Iterative process

performed at a high level of abstraction. In order to accommodate users with

a wide range of backgrounds and needs (I.e., the user should not have to be a

computer scientist), a variety of Interface techniques should be provided

(e.g., natural language, graphical language, formal (machine readable)

specification language).

The specification should not have to be complete; the system should

have facilities for dealing with partial knowledge. Analysis of the

specification should be performed and should Include checking for

completeness, consistency, and clarity. Information should be solicited from

the user as needed.

48

vlvlvlvVl ••-•>'- .-IvIVr/',/'« Iv'.v'.v. •«•?•• .•».•.-.v..^. -• -r"~ --r Id :-t- '-• -• -* -•
•^•-,>.V::.-.->v-i--!,--^-v-^^>: •*. r.- m f.t £

rf^.T^-'yT.'il,lf.*,Tl^,'l-'i,|''''fl,llV'fV^. ' U^W—WllHlllUiW^I^^^'WWJ'W'aUji

1
SPECIFICATION

PARTS
IDENTIFICATION

/

I
PARTS

COMPOSITION

COMPONENT

CREATION

{

Figure 14. Overview of the Ideal
Software Generation System

Once the specification phase Is complete, It should be determined If

a pre-bu1lt part exists that meets the user's requirements (this requires

facilities for automatic location of existing software parts). Parts may be

simple or meta-parts (see Volume It Section II for a discussion of software

parts), and one or more parts may be located that meet the requirements. If

a part Is located, the user will be notified In order to prevent

redevelopment, otherwise, a new part will be built.

The user should be able to recall the specification In any of a

number of forms—textual, graphical, formal specification language.

Documentation should be generated as needed.

49

,-->>>''v->^-:;-j^ •l."-^>* -V

I
»^CM'XJS^I^ O.-^ 1 '•••1> V- i.ii

• ••^••••MM^'^W^WIWJUWW *•*•*•*"» i« iiI11»'.'-"«'•'i

NATURAL LANGUAGE
FORMAL SPECIFICATION LANGUAGE
SEMI-FORMAL SPECIFICATION LANGUAGE
GRAPHICAL SPECIFICATION LANGUAGE

GENERAL
PROGRAMMING

KB

CODE

CODE
GENERATOR

DOCUMENTATION

TEXT
GENERATOR

Figure 15. The Ideal Software Generation System

50

.•k. _•„ ^ w A^^VV 1 ^-:iy^: v:^

uninmi^^i^^i, wm M»" •iM^^m "junif MV>JIJI'J>V -''VLT1'.' '">," •*'». - JP.'PJ- .'»

i

b. Components and Requirements

Based on an analysis of the scenario depicted In Paragraph 4a, the

high level component requirements can be determined; Figure 16 summarizes

these requirements. Some of the areas have previously been discussed (e.g.,

specification techniques; parts Identlf1cat1on--see Section II); the other

areas are discussed 1n the following paragraphs.

EXPERT SYSTEM

• KNOWLEDGE BASE MANAGEMENT SYSTEM
• KNOWLEDGE BASES
• INFERENCE ENGINE

SPECIFICATION TECHNIQUE

• NATURAL LANGUAGE
• FORMAL SPECIFICATION LANGUAGE
• SEMI-FORMAL SPECULATION LANGUAGE
• GRAPHICAL SPECIFICATION LANGUAGE

INTERFACE SUPPORT

• DIALOG MANAGER
• QUERY MANAGER
• GRAPHICS EDITOR
• SYNTAX-DIRECTED CODE EDITOR

PARTS IDENTIFICATION

• PARTS CATALOG DATABASE
• DATABASE MANAGEMENT SYSTEM

PARTS CREATION

• PARTS CATALOG
• CODE GENERATOR
• TEXT GENERATOR

PARTS COMPOSITION AND DOCUMENTATION

• CODE GENERATOR
• TEXT GENERATOR

'•

i

Figure 16. Major Component Requirements
of an Ideal SGS

*

51

-Slv^^vl/v^

p
Ik
•1

J
M

----•- '* - '

www^iii^.^^'V^TA'v.'^^^1.'1-' ' ')^'^M^^^m^i^ig^i^i^H^v^W

> (1) Expert System Assistance
A

Expert system assistance should be provided throughout the

system. This requires a knowledge base management system, several knowledge

bases, and an Inference engine.

A knowledge base management system (KBMS) Is similar to a

database management system In that It manages and coordinates activities

within the knowledge bases. KBMS's vary depending upon the knowledge

representation scheme used, and the sophistication of the system.

»! Conceptually, three knowledge bases are required: (a) the

I Missile flight software knowledge base contains knowledge specific to the

development of missile flight software, (b) the General software knowledge

base contains general programming and program development knowledge, and (c)

S the General knowledge base 1s needed to support the Intelligent Interface

I (e.g., support of a natural language specification technique).

r The Inference engine Is the reasoning mechanism that utilizes

': the knowledge bases and other Input to draw conclusions.

Expert system assistance Includes a mechanism to analyze the

| completeness, consistency, and clarity of the requirements provided by the

user. This determines when Iteration of the specification-analysis phase

C terminates, and Implies that the system must deal with Incomplete (I.e.,

* partial) Information. The technology required to support this mechanism

I depends upon the level of detail and checking that will be performed and the

way 1n which the analysis will be performed.

] (2) Interface Support

Natural language specification necessitates the presence of a

Dialog Manager. The Dialog Manager Is responsible for managing (I.e.,

J analyzing, processing, and conducting) the natural language dialog with the

user.

! The Query Manager handles queries directed to the database.

This function would generally be performed by the database management

system. Queries must be translated Into a machine comprehensible form. The

technology requirements for this component are dependent upon the query

I specification technique.

I 52

I_,„..,_. „_. 1

F'."F7'. w, ••.' P» 'J„ F ' •- w y w. '.vi .r IT, rjy.1 r' f. r f; r; JV », f.r.'r.".1.'. *"• •••».•'».'»•' w J •'•'• •' "•••) V W' * W '." ".' ,-'

Interface support for an automated software generation system

Includes a Loader/Unloader for formal specifications In a machine-readable

form. The Loader Is needed to Input machine-readable specifications directly

Into the system; this Is similar to loading a HOL program. The Unloader

outputs machine-readable specifications; this 1s analogous to unloading

object code for an HOL program.

A graphical editor Is required to support a graphical

specification technique; It provides an easy way to manipulate the components

of the specification.

A code editor 1s another requirement of the Interface support.

Ideally, a syntax directed editor should be part of the automatic programming

environment. Ada syntax directed editors are currently under development In

the commercial sector.

(3) Parts Identification

The Parts Identification facility requires a parts catalog

which was discussed In detail In Section II. Expert system assistance should

be provided In locating parts. Additionally, an automatic code locator

should be provided to determine the existence of a software part; this

mechanism would prevent the development of redundant code. Such a mechanism

requires the system to be able to translate the userfs requirements

specifications Into a form that would allow formulation of a query to the

parts catalog. If the user was attempting to build a part that already

existed, he should be notified of the existence of the part. It may not

always be possible to accurately ascertain the existence of a part.

(4) Component Creation

Component Creation consists of Component Instantiation,

Component Generation, and Component Construction. Parts Identification plays

a role In determining whether a part exists that can be Instantiated (I.e., a

generic part) or generated (I.e., a schematic part), or has to be constructed

(either automatically or manually). Automated component construction

requires a code generator and other supporting mechanisms at a lower level.

Expert system assistance should aid 1n the creation of software parts.

53

PfWl^L^WLV.^jy,T^lJl.,^VV^LV^rA^"^T^*A^^/.-'.l'.Tl^^''f-'.1-'1'- *"" Jl 'T '"'-'•" •'."- " * '"p-''"" * W r ,'»"»• »•»• ^ • p" • ^ ^

(5) Parts Composition

Parts Composition Involves the Integration of software parts.

Ideally, software parts composition would be an automated process based on

expert system knowledge and the user's requirements specification. Parts

composition requires code generation to combine the Individual software

parts. The degree of automation of this facility has a significant Impact on

the supporting mechanisms required. HOS's USt.IT system has an automated

parts composition element, but this does not appear to be at the level of

sophistication desired for the Ideal system presented here. Research Is

continuing In this area.

5. RECOMMENDATIONS

The recommendations presented here take Into account the ideal software

generation system presented 1n Paragraph 4, and temper 1t with what appears

to be technologically feasible. Recommendations are presented for both the

near-term and mid-term. We define near-term to be In the range of 0 to 3

years, and mid-term to be from 4 to 7 years. The recommendations start with

a very basic system that handles parts Identification, management, and

generation, and proceed to a progressively more sophisticated and fully

automated software generation system. At each stage of development.

Increasingly more sophisticated technology Is required, thus the design must

allow for evolution over time as technological advances are made. This 1s a

very Important aspect of our recommendations. Given the fast pace with which

technological advances are made, users should not be burdened with a system

made obsolete by Its Inability for progressive development.

a. Near-Term Recommendations

The system with the greatest potential for near-term payoff 1s a

relatively simple system consisting of parts Identification and parts

management facilities, and a parts generation facility that makes use of the

meta-parts (generic and schematic Ada parts) discussed earlier. The parts

Identification facility would be as described 1n Section II. The parts

management facility would keep track of parts usage (i.e., where and by whom

parts are being used).

54

&J£.flfcfcfc£&&gj!££* v\ * - '-'"v-^' !>j>v--lNl->.f?^.-v:vj-f:v-.j. v_v:-. •'-:.« y. -l^. ^ --• ^ ,/-.«* ^^ ^.--

The basic scenario for using such a system Involves the user

Interfacing with the system to determine the existence of a simple or
meta-part that will meet his requirements. The user could either specify his

needs via some query language, or browse through the catalog. Zero or more

parts may be found that fit the user's described needs. If a part 1s found,

further Information about It may be obtained by accessing the complete

catalog entry. If a user selects a part for use, the Parts Management system

must keep track of this.
Simple parts may be used as 1s (I.e., merely by providing the

requisite parameters). If a generic meta-part Is found, the user must

provide Instantiating Information 1n order to generate a usable software
component. Schematic meta-parts provide Information on how to build the

required software part; the user would perform the actual construction.
Based on this scenario, several systems can be envisaged that are

currently technologically feasible. One version of such a system could be

developed with limited technological requirements (eg., a database

management system, a query language, and minimal additional supporting

software); Figure 17 depicts a simple Parts Identification facility.

The system could also be Implemented with a limited natural language

or domain specific specification language, and some rudimentary form of

graphical specification technique. As we have stated previously, the
technology required for unrestricted natural language dialog Is not currently

of sufficient maturity for production quality systems. Limited forms of NL
Interfacing are feasible; some success has been realized with limited natural

language database Interfaces. As mentioned earlier, the technology required

to support a full-blown graphical specification technique Is still 1n the

early stages of development, but 1t appears feasible to provide an elementary

graphical technique. These additions, while currently technologically

feasible. Impose considerable additional technology requirements upon the

Figure 17. Parts Identification

Expert system assistance could also be provided for the parts

Identification and creation facilities. Using a Parts Identification Expert

(PIE) and a limited natural language (or domain specific specification

language), the user would specify his requirements, and PIE would transform

the specification Into an Internal form that could be used to access the

parts catalog to determine the existence of the requested part(s). A Parts

Construction Expert (PCE) could be used to aid In the Instantiation and

generation of components. Figures 18 and 19 depict an expert system approach

to parts Identification and creation, respectively. The main differences 1n

approaches to near-term systems Is 1n the system Interface technique and the

technology required to support It.

56

m m • " • ' *' rv •. ^IIIH, •'•.m.^i.wM.lw '•"'. " ' '«'^' "•• "i^r "">••'• '• -

ADA PARTS
CATALOG

MISSILE DOMAIN
KNOWLEDGE BASE

LIST OF RELEVANT
MISSILE SOFTWARE
PARTS

MISSILE SOFTWARE

USAGE
KNOWLEDGE BASE

figure 18. An Example of Parts Identification with an Expert System

FROM USER

SOFTWARE
PARTS

1
I

PARTS CONSTRUCTION
RULES

figure 19. Parts Construction with an Expert System

57

------ - - '• •^>>v->v-'-^'/>^^'>-'^^». .vv^, .\, .-'•> ;. >>i

» *~ . ,^ • i 11414 |i MV.piMM IlliVVi •' • 'P'fHpi** * m • •.•

A near-term system may be characterized by the following:

It generates single software units (as opposed to entire

software systems) via pre-defined meta-parts.

The specification technique 1s a domain specific specification

language.

Some degree of expert system assistance 1s provided.

Although we have continually highlighted the disadvantages of formal

specification languages, they are i^.itlvely easy to Implement and thus

contribute to the overal1 feasibility of the system. The technology

requirements for the near term are .ummaMzed 1n Figure 20.

• DATABASE MANAGEMENT SYSTEM
- DATABASE SCHEMA
- DATABASE QUERY LANGUAGE
- DATABASE

• EXPERT SYSTEM
- KNOWLEDGE BASE MANAGEMENT SYSTEM
- KNOWLEDGE BASES

o DOMAIN SPECIFIC
o GENERAL SOFTWARE DEVELOPMENT

KNOWLEDGE
o GENERAL KNOWLEDGE

- INFERENCE ENGINE

• INTERFACE TECHNIQUES
- SPECIFICATION LANGUAGE
- (LIMITED) NATURAL LANGUAGE

• ADA PARTS CATALOG

Figure 20. Near-Term Technology Requirements

b. Mid-Term Recommendations

Most of the technological advances will affect the specification

technique and the component creation facility. In the mid-term we may expect

the software generation system to allow the specifications to be provided at

a higher level of abstraction than was previously possible. Additionally, we

may now expect the parts creation facility to progress beyond merely

58

• •-*•* i'-V- --' *-* •-" -' frfrvV h --•- ^ •- ^ >~

'.v^vjr^jr^i - JT" P7'7^''VTV»\ -V • k -f "I»l • & "M*MTaHM*MPJ*M"JI*Jl*.*ml ' I» V*J*1 •«•••,•'

supplying the user with parts constructors to actually generating code for

some parts.

The basic scenario In this stage of development Involves having the

user, via some high-level specification technique and/or natural language

dialog, specify his requirements. The software generation system would

analyze the requirements for clarity, consistency, and completeness. The

specification-analysis phase would be an Iterative process. Once the

specifications were finalized, an automatic code locator would determine if a

simple or meta-part exists that would satisfy the user's requirements. If a

simple part existed, 1t would be retrieved for the user. The user would be

provided with expert system assistance for the Instantiation and generation

of meta-parts. Automated construction of some parts will be feasible.

Figure 21 depicts a view of this system.

The automated parts composition system designed during CAMP Is

currently feasible (and thus fits the near-term classification). It can

generate complex software components from predefined meta-parts but cannot

generate entire systems. It will make use of a limited natural language

Interface and specification method, and 1t will Incorporate expert system

assistance. Sections IV and V contain more Information on this system. The

reader Is also directed to References 44 and 45 for a description of the CAMP

parts composition system.

59

vv"v>^ Ayj>y&tSA •JX.\

^WHL".i|.*'. U'^.'L1 *""•'• • ' ' M .' * ,• — .,„. IJI^^^JJM

I
USER

INTERFACE
MECHANISM

• PARTS LOCATOR

• SOFTWARE PARTS

|j

• PARTS CONSTRUCTION RULES 1

• MET APART SCHEMAS

• CODE GENERATOR

EXPERT SYSTEM

SOFTWARE
COMPONENTS

Figure 21. Mid-Term Software Generation System

60

,y.v.v.v.yLV.%-.v X V»V-V» -NvVli".^'vCv'v'--/I--.'^ iViii ÄViV'^ i^Ju^'u.J:.\JAW^*wV»-', ./'IAJALA •w -. • - •-• '• -•• '. » ^ * * »• '.

BWIVWJVLWVMIWIWP^^

SECTION IV

THE ROLE OF EXPERT SYSTEMS

1. Expert System Overview 61

2. Schematic Part Constructors 63

3. Generic Instantlator 67

4. Parts Identification 67

5. Parts Catalog 68

6. AMPEE System 69

1. EXPERT SYSTEM OVERVIEW

An Expert System 1s a software system which emulates the manner 1n which

human experts solve problems. A particular expert system 1s a software

system which has been given a body of knowledge about some finite domain

(I.e., application area) and a method of applying this knowledge to problems

within this domain. When presented with data about a specific problem within

the domain, the expert system Is able to draw conclusions about the problem

and possibly take some actions based on the conclusions 1t has reached.

Conceptually, an expert system has a very simple structure (see Figure

22). It's knowledge base contains all the knowledge about the domain over

which It 1s intended to be an expert. The Inference engine or Inference

generator Is the mechanism by which the knowledge Is used 1n light of a given

set of problem data to Infer conclusions. If an analogy 1s made between

humans and expert systems, the knowledge a human possesses would correspond

to the knowledge base of the expert system, and the physical, electrical, and

chemical mechanisms of the brain would correspond to the Inference engine.

61

v^.v*'I>lVilv>.*%v-:v2^^

^T^MMMT-V'»y,j^r»,j»y«>^.v^gv^>,V»*J^«".*'.tV'»'»\»'Jl''"*»*.y'Tl'r*> '.*ffV."f mfV>mJ'.ml''f^J'.'V.'*'VI9(!Wjriv '*'f T'JVrjr^lTl'.T

PROBLEH

DATA

E X P E H T S Y S T E n

^ INFERENCE

ENGINE

>- J >

t
KN0ULED6E

BASE

»

CONCLUSIONS

AND ACTIONS

Figure 22. The Structure of An Expert System

A great deal of research has been performed over the past two decades

Into the structure of knowledge. Much of this work 1s still 1n the

conceptual stage but some of 1t has been Incorporated Into commercially

available products. For the purposes of this report, the knowledge

structuring mechanism of one such product, the Automated Reasoning Tool

(ART), will be used to illustrate a typical expert system knowledge base (It

should be noted that ART 1s not typical when compared with older systems).

Section V contains more Information on ART. ART's knowledge base consists of

three types of knowledge—facts, rules, and schemata.

A fact 1s a statement of truth within the domain of expertise. For

example, the statement "1 1s the Identity for multiplication" Is a fact

likely to be found In an expert system designed to manipulate mathematical

equations. Likewise, the statement "steel 1s heavier that wood" 1s a fact.

62

L'. •,. V J v ,^ .-• .r. /.'.•';..-. LJIMA^AJJU^L^^L^L^JJULL^^^^^A W-Jl^A -" »* •* •* -»

• ..• -^^-.T-*'-.'. i1.1**. »v *VJ.••»'.• *JPM «•,»•*. * ^"-'T P P P ^j^j>'*lj>l.»ljf'.*".irLlA'^.'y."^jfS.'yjrjyjif.|yjiF'.|^.iy.'y.|F_,y.ii' .• .•'. .• .•*•*•

A rule Is a statement of Inference. An Inference statement can be

conceptualize as a statement which says "If I know A, then I can Infer B".

For example, the statement "If R Is transitive and aRb and bRc, then aRc"

would be a rule typically found 1n an expert system designed to manipulate

mathematical equations. Likewise, the statement "If X 1s the lightest

available material and X Is sufficient strong, then use X In the product" 1s

a rule.

A schemata 1s a mechanism used to structure facts. A schemata 1s very

similar to a data structure In classical programming languages In that 1t

allows the aggregation of data Into a single entity. A structure which

contains all the Information about a software part In a software parts

catalog would be an example of a schemata.

In the remaining portions of this section, the utility of expert systems

will be discussed 1n various software parts composition areas. At the end of

the section, a system will be presented which encompasses all these areas

Into one tool.

2. SCHEMATIC PART CONSTRUCTORS

During the CAMP domain analysis, 1t was determined that there were some

types of commonality which could not be Implemented by means of the Ada

generic facility alone. In other words, we Identified software design

paradigms which we believed could be automated but the Ada generic facility

was not sufficient for this process. We called these types of parts

schematic parts. A schematic part Is a design template together with a set

of construction rules used to build appl1cat1on-spec1f1c software components

from the template. After examining various methods of automating these

schematic parts we decided that an expert system would be the best vehicle

for building the schematic part constructors (see Figure 23).

These constructors would allow the user to specify his application's

needs for a specific software component and would build the Ada code to

satisfy these requirements. This process Is best Illustrated with examples.

63

.%. -
v..i\V.<\ •:.i'.<'. ».•.*«'- «•_ v.Y-V.v.•_'y_"y^V-y .•,',• .v.y.v. .'.V-V.'.,.v .t:A.,.v.'i _«v_'^ w'•f_'^*sv'" -'- ~v -

PV WV *•«' PU i" PU P.1 •*„ P1,' UV -• "P.'P. V.' PJ ijw • i y i P P ' .• ^P^»WP»"PW • m • ii i • • • • • • n • | • i • • • 9 I |»T»^>^yr^^^f^ i «iwji ^ i ^ ijj ^up.

THE KNOWLEDGE BASE CONTAINS
THE DESCRIPTION OF THE
SCHEMATIC PART AND A SET
OF CONSTRUCTION RULES USED
TO GENERATE AN APPLICATION
SPECIFIC SOFTWARE COMPONENT
FROM THE SCHEMATIC PART

Figure 23. Overview of a Schematic Part Constructor

Figure 24 depicts the structure of a typical missile's lateral

directional autopilot subsystem. This subsystem was Identified as a

schematic part because 1t can be mechanically constructed given basic -

requirements fr«a the user such as the type of digital filters to use, the

required rangt and precision of the data, and the type of Hmlters U use.

Given this Information, It Is possible for an expert system to construct the

application-specific Ada code for this subsystem. It should be noted that

the expert system will use quite a few non schematic CAMP parts In this

construction. For example, 1t will use CAMP parts to construct the digital

filters and Hmlters.

64

"- ^«W^AX. -*- -*. *'. -". -*• •'. -". •"*""• **« - • *"• v.
-*» - • **»-'•• •"* '»*» ^* ~'!. .'AVA^.'/.V

Vvvv "v •^•^AV^iU'.u'A.i.i-iCHH^iAil^^ *p

Another example of a schematic part 1s Illustrated In Figure 25. The

construction of a navigation subsystem Is dependent upon what the user wants

the navigation subsystem to compute, what data 1s provided as raw Input to

the navigation subsystem, and what navigation coordinate system (e.g. wander

azimuth, north pointing) the navigation computation are to work within.

$C •

r (YAW RATE!

Hi (LATERAL
 ACCEL)

DIGITAL
FILTER

SINT

DIGITAL
FILTER

DIGITAL
FILTER

—* FILTER

KOI

$ {ROLL ATTITUDE)

-+H KAV

Lras:

RATE)

+ I 1

ILTER 1

Figure 24. The Lateral/Directional Autopilot Schematic

65

'* -V". \ •'- -*. -V •*.-*• -"-•". •'. •'. ^v^>k"*l^rf>i>*lfclv^

•«r—JV^. «'•J.*1:;«'"T"-1.» 'i* JT"'.* *« '•'*'"'.'VT^'VT^• jy.i7'j.r'.1 n1.^*"•'T-'.*"«'*"-'Tv• ^T» ."

r
USER

L

REQUIRED OUTPUT

DATA RATE PRECISION UNITS

VELOCITY
ALTITUDE
LATITUDE
LONGITUDE
GRAVITY
HEADING

16 HZ
16 HZ

8 HZ

2 HZ

15 DIGITS
15 DIGITS

7 DIGITS

7 DIGITS

FEET/SEC
FEET
RADIANS

FEET/SEC2

_

CONSTRAINTS

COMPUTATIONS

WANDER ANGLE
NOMINAL EAST

VELOCITY

VERTICAL VELOCITY.
PREVIOUS ALTITUDE
TIME INTERVAL
PREVIOUS VERTICAL

VELOCITY

25
^.EAST

VELOCITY

26 »• ALTITUDE

i

EXPERT SYSTEM

NAVIGATION COORDINATE SYSTEM
AVAILABLE INPUT li ADA CODE FOR A SPECIFIC

NAVIGATION SUBSYSTEM

Figure 25. The Navigation Schematic

Given this data, the actual computations to transform the Input to the

required output are relatively standard. Figure 25 Illustrates a schematic

part constructor whose knowledge base would contain the standard computations

such that when told the required output, available Input, and coordinate

system, the constructor would be able to select the correct computations for

performing the navigation functions required to produce the output.

Appendix D 1n this volume presents a much more detailed example of a

schematic part and Us constructor. Appendix 0 1s the result of actually

building a proof-of-concept Implementation of one of the schematic part

constructors.

66

V_'v ^•J'jL^fc^__5^_\ • -• 4 • -* «*_. -Ü _• XJ •*--^ -A—' -- -• -•

 V !•.••* • • ' "MMIH "l ii.ii.n.»? «IMIi'V '.'•'.•I • i^'.'W*" * *, • •

3. GENERIC INSTANT!A TOR

In order to make the CAMP parts as reusable as possible while still

protecting them against misuse, many of the CAHP parts were designed as

generic subprograms or packages with relatively complex generic declaration

sections. Fortunately, by using defaults for many of the generic functional

parameters, this complexity can be hidden from the user. But, when the user

wants to have more control over the operation of the part (e.g., what sine

routine It should use) he will need to be able to properly Instantiate these

generlcs so that the defaults are overridden. For these reasons, we believe

some type of general purpose generic Instantlator 1s needed as part of the

software parts composition system. This constructor will have the ability to

construct the Ada code for correctly Instantiating any generic based on data

1t obtains from the user by means of a dialog. In effect, this generic

Instantlator will allow the part designer to specify what questions should be

asked of the user to allow the proper Instantiation of the generic part.

4. PARTS IDENTIFICATION

A key aspect to an effective software parts program 1s to provide a

mechanism for the early Identification of appropriate software parts.

Software parts need to be Identified very early In the system development

process (even before the completion of the software requirements activities)

1n order to facilitate trade-off analyses, cost estimates, software sizing

and timing analyses, and other activities. In many cases, the functions

provided by a software parts catalog (to be discussed 1n the next subsection)

are not sufficient for this task. What 1s needed 1s the ability to relate

product characteristics to software parts.

The software parts Identification function provides the user with the

ability to find appropriate parts for a new application based only on high

level missile requirements and design Information. In effect this function

maps missile requirements to software parts. Figure 26 depicts some sample

rules for this function. In this sample, by knowing that an anti-ship

missile 1s being constructed the expert system can Infer the need for a

terminal seeker Interface package part.

67

-• - - -% **lv" "-"*•** »''J!>J>1»' j>'^'^ii^^l

Y*F FfW.'»."."!«'! TW^^^^J

RULE 1: IF the missile's target type Is a ship

THEN the missile will contain some type of terminal seeker

RULE 2: IF the missile contains a hardware component X

THEN the missile software system will need a software

Interface package to X

RULE 3: IF the missile needs a software Interface package to X

THEN ask the parts catalog 1f one exists

RULE 4: IF the catalog confirms the existence of part X

THEN ask the user 1f part X 1s satisfactory for his

application

Figure 26. Sample Parts Identification Rules

5. PARTS CATALOGING

Examined 1n Isolation, there 1s little evidence that an expert system

needs to be used for a software parts catalog. Although expert systems

are well suited for this type of application, existing mature tools such

as database management systems can Implement a software parts catalog

quite well. But, when one considers the close Interaction between the

schematic part constructors, the generic Instantlator, the part

Identification function, and the parts catalog, there are benefits to

Implementing the parts catalog In the same expert system as the remaining

functions. The parts catalog provides several functions for managing

parts and examining all Information about the parts. These functions

have been discussed elsewhere In this volume, the next subsection also

presents some details on the role of the parts catalog.

68

V><^{iifecl^ ^v:;?/.v;/v./.v. /.'AV.V/A • v i • • *!•'-*••'•*.".'•'. *"< • i. •*./--•.-•.••- * .

6. AMPEE SYSTEM

During CAMP, a software parts composition system was designed based

on the use of an expert system that would provide all the aforementioned

capabilities In one tool. This system was entitled the Ada Missile Parts

Engineering Expert system and Is summarized 1n Figures 27 and 28.
The advantages of use using an expert system for this tool are:

a. Expert systems are useful when the process being Implemented are

evolutionary 1n nature. In other words, when the knowledge
changes rapidly, a classical program would have to be recoded.

An expert system needs only Its knowledge base changed.

b. Expert systems are very powerful symbolic processors. Our

Implementation of a schematic constructor showed that with a

small number of rules, a very powerful system can be constructed.

c. Expert systems allow the construction of a very simple user
Interface. Because the Interaction between man and machine has

been a primary focus of artificial Intelligence since Its

Inception, most expert systems have very powerful facilities for

building Interfaces which allow the system to be used with

minimum training and/or expertise.

69

SECTION V
EVALUATION OF AN EXPERT SYSTEM

1. Introduction 72

2. Means of Evaluation M

3. Overview of ART 74
4. Evaluation of ART with respect to

the Problem Domain (AMPEE) 81

5. Conclusions 85

1. INTRODUCTION

The CAMP program was tasked to evaluate the role that could be played by

an expert system 1n support of software reusability 1n the missile flight

software domain (see Section IV), and to evaluate a comnerclally available

(I.e., an off-the-shelf product) expert system tool relative to this

domain. ART™, available from Inference Corp., was selected for

evaluation.
ART 1s a commercially available expert system development tool that falls

Into the category of ar expert system shell. An expert system shell Is a
software system that provides the Inference engine and Infrastructure for an

expert system thus greatly simplifying the development of an expert system.

The expert system developer need only supply the domain specific Information

for his application (I.e., he provides the rules, facts, etc., which are

specific to his domain). Although this Is not a trivial task, 1t does bring

the development of expert systems within the grasp of many more people.

It must be emphasized that ART 1s neither an expert system nor a software

generation system, rather 1t 1s a tool that can be used 1n the development of

expert systems. The CAMP project utilized ART as the basis for developing a

software parts engineering expert system, but ART 1s not limited to that
domain (I.e., 1t can be used as the basis for development of expert systems

1n virtually any domain).
ART was selected from among the available products for a number of

reasons; they are summarized 1n Figure 29, and discussed 1n the following

paragraphs.

72

B B W 5 K W J~U \T* ICY k m i "V I"V v W H V - V f v • «*_-V«VTV. M T O K a m i . ^ K u

• No hardware procurement under CAMP contract

• Available on a widely used processor

• Lower cost to end-user by utilizing VAX

• Sufficient functionality

Figure ?9. Why ART was Selected for Evaluation

The CAMP contract called for the procurement of no additional hardware,

thus It was almost mandatory to find a product that was available on a VAX.

Additionally, it was desired to evaluate a product that was hostable on a

widely available processor. Again, this pointed to a product that was

aval lable on the VAX.
VAX equipment Is In widespread use throughout the DOD and defense

contractor communities, thus the cost of adopting the expert system approach

to software parts engineering that Is recommended here 1s much lower than 1f

specialized hardware (e.g., LISP machines) were required. Cost can be

measured 1n terms of both time and money. The monetary cost Is much less

because specialized hardware Is not required. The time cost Is also less

because personnel are already familiar with the VAX. Familiarity has the

additional advantage that, although there are many new Ideas associated with

a parts engineering approach to software engineering, at least the tool Is
based on a familiar computer system and thus may not appear as radical.
These factors can contribute substantially to the probability of success of

this type of software reusability effort.
Many of the expert system development tools that are commercially

available have been developed for specialized LISP hardware such as the

Symbolics machine. Although these specialized machines are optimized for

LISP, and generally provide a comprehensive development environment, the

additional cost of acquiring such hardware was unacceptable at this time both

from the viewpoint of developing the system, and from the viewpoint of

expecting others to acquire and use such a system. ART provides
functionality that is at least on a par with many of the products that are

available only on specialized LISP hardware; this functionality 1s discussed

in Paragraph 3. (Note: ART Is also available on both the Symbolics and LMI

LISP machines.)
Thus, the cost, functionality, and availability of ART made 1t a feasible

product for evaluation In the CAMP study.

73

^^^^•)V^V»UnP|i _}'Vmimvmy*ymywy my n'l!'VVVVI>i|>IM',|PVI'LIUf liMP^I^.^^T'r M,,,,^,,,^ ,r^y^

2. MEANS OF EVALUATION

In order to evaluate ART, It was used as the basis for a proof of-concept

Implementation of a software parts engineering expert system known as the Ada

Missile Parts Engineering Expert (AMPEE) System, and as the foundation for

the requirements and design of a prototype of the AMPEE System. The

requirements and top-level design of this prototype system are described 1n

References 44 and 45, respectively. The AMPEE System Is an expert system to

promote software reuse In the area of Ada missile flight software. It

provides capabilities to catalog, Identify, and locate reusable Ada software

parts. It also provides a component construction facility to assist the user

In the Instantiation of meta parts. The proof-of-concept Implementation

Involved primarily the Finite State Machine Constructor which Is described In

detail 1n Appendix D of this volume.

lhe application did not entail the use of all of the features provided by

ART, but many of them were tried with smaller sample applications.

Additionally, one member of the CAMP team attended two weeks of training In

the use of ART and was able to try and discuss features that were not used In

the CAMP application. The proof of-concept Implementation made use of the

following ART features:

••- facts

relations

schemata

rules

case statement, If-then statement

LISP Interface

3. OVERVIEW OF ART

In the following paragraphs a number of ART features that facilitate the

development of expert systems are discussed. Some other features that would

be useful, although they are rot currently available, are also Identified.

Mnally, some problems and design Issues that arise from the use of AR1 to

develop an expert system are discussed.

M

i •--;/,•/;* ii /;/•,-'v.'v. v.vlv.v. ,: i^^Cvlv, -:.:<;v;, :v. /. gfr^ffiffi xviviv;-;;-, :v; .•;•.• :-^y;v Si-^s.-:,--:»--!

_••.•»,..• wo>v • >>->w ^•'•" .• • '.• •"• - •• ^ • • y y PJ V P^ I.PiP'P^ FjyfPJFJ.VF'f.lFJTl'FJfiJPJtfiJFJ^J Ji'y.iyjP.UJl'JJ,

It should be noted that during the evaluation period, only Beta versions

of ART were available on the VAX. Although an Improvement was noted between

Beta versions, Initially functionality was somewhat limited, and development

was hindered by system bugs.

a. ART Background

An ART program does not contain functions or subprograms as are

found In traditional programming languages such as Ada or Fortran. Instead,

actions (which traditionally are performed by subprograms, etc.) are

performed by rules which fire (I.e., execute) when all of their conditions

are satisfied. Rules generally take the following form:

If <cond1t1on(s)> then <perform specified act1on(s)>

Conditions take the form of patterns and pattern restrictions which

must be matched by data within the current state of the expert system's

knowledge base. Data Is represented as facts which take a specific syntactic

form (see the ART Reference Manual, Reference 46, for details).

ART automatically runs through all of the rules that have been

supplied In an effort to determine which rules have their conditions met (or

satisfied) by facts currently In the knowledge base. Rules whose conditions

are met are said to be Instantiated. Instantiated rules are placed on what

Is referred to as an agenda. Only rules that are on the current agenda can

be fired (I.e., executed).

The determination of which rule on the agenda will fire Is based In

part on priority. The expert system developer can assign priorities to rules

which will cause an ordering of rules on the agenda (I.e., rules that have

been Instantiated). If a rule has not been assigned a priority, either

explicitly or based on the type of rule. It will automatically be assigned

the default priority. Rules with the same priority are ordered on the agenda

in essentially a random manner.

If a rule firing causes a change In the current state of the

knowledge base, the agenda will be recalculated. In general, rules do cause

changes to the current state of the knowledge base, thus one can effectively

think about the agenda being updated after every rule firing.

;s

,^^;«.\i. ..-^ "^ ^.•- •-•'•.. ^ •••-••..«•. -\ -:.y.yA'J^y-w>_v-.\'»-. r-v~v_v_ ..-_vA_V. -•_.-_--_- VJ> V..V .- -• _^ •_-:v^

WA*A*^A«VT^W^U^ww*WT^ -" •".•VJ ,"-*"-*'*"•"*"*'" '"'", ' V *^^^W^^T^^^^^T^^^!^y9•\m>w•^

At any given point In the running of the expert system» d particular

fact will only cause one firing of a given rule. The Implication of this Is

that although a rule may still be Instantiated by a particular fact. It will

not remain on the agenda or fire repeatedly In what would essentially be an

endless loop.

Retrieval of Information from an ART knowledge base differs from

retrieval of Information from a traditional database. Within ART, searching

1s merely an outgrowth of the pattern matching process. I.e., specific

searching routines need not be developed because this function 1s performed

automatically by the pattern matching process which Is an Integral part of »

the ART environment. Specific rules are needed to direct ART to attempt

pattern matching In search of specific data within the knowledge base, but

this differs from writing a traditional search routine.

b. Features Provided

ART consists of both a programming language, and a development and

run time environment for expert systems. ART Incorporates many features that

facilitate the development of an expert system; these are summarized In

Figure 30. Detailed Information can be found In the ART reference material

(References 46 49).

• Forward and Backward Chaining

• Viewpoint Mechanism

• Schema Structure

• Relation Facility

• LISP Interface

• Development Environment

• Debugging Aids

Figure 30. ART Features

76

\--A-*.r.s*+++%<4.'v- - -

--^~^-T»*-*--*-T-T-TT*^ PfffVP

The reasoning mechanism of an expert system 1s referred to as the

Inference engine. The Inference engine typically works through either

forward or backward chaining; ART Incorporates both reasoning methods.

Forward chaining starts with a basic premise and reasons forward to a

particular conclusion. A forward chaining rule could be represented In the

form 'If an anti-ship missile Is to be developed, then a terminal seeker will

be needed1. Backward chaining begins with a conclusion to be proven (or a

goal) and then attempts to find a series of logically consistent facts and

rules that support that conclusion. For example, If the goal Is to compute

navigation coefficients and not all of the Information Is Immediately

available, subgoals will be established to compute the required Information.

If these subgoals can be satisfied, then the original goal will also be

satisfied. Forward chaining reasoning has been referred to as being data

driven, while backward chaining reasoning has been referred to as being goal

driven (Reference 50).

Historically, expert systems have utilized a backward chaining

reasoning mechanism. The parts engineering application Involves the

potential search through many parts in an attempt to determine all of the

parts required for a particular application. Backward chaining through such

a search space will not be as efficient as establishing a set of forward

chaining rules to accomplish tfi« same task, thus ART's dual reasoning

mechanism Is a desirable feature for incorporation Into the ANPEE System.

ART provides a powerful viewpoint mechanism for use In modeling both

temporal and hypothetical reasoning. The temporal viewpoint mechanism allows

the expert system to reason about a situation over time, while the

hypothetical reasoning mechanism allows the system to reason about

hypothetical alternatives. One CAMP related area in which hypothetical

reasoning could be utilized is component construction. For example. If the

construction of a component requires the composition of several software

parts from the Ada missile parts catalog, and more than one part meets the

Initial criteria for inclusion In the composite, hypothetical reasoning could

be used to have the constructor pursue the use of these alternative parts.

Ihrough the use of the hypothetical reasoning mechanism, all alternative

paths to the construction could be pursued essentially simultaneously. If

timing, size, or accuracy constraints had been established by the user, this

Information could be utilized to select the appropriate Instantiation for the

user.

•f.
v.

H

77

- ----- ••'.vlvlvlvl••- w y.i.y^y. fa-f Üfa.y» yfc \ y «••:; >••'-• » vi:'^L^J1^I. - .

»•»••» pip i , „ p i i I ii^^ypyfTfffi^^fy^iTi^jiiiyijpij yipirrir^ f ir j j F t. pi ,i ..Tif n^.

The two types of reasoning can be combined In a single application.

The viewpoint mechanism also provides a method of reducing the search space. I

For example. If It Is known that 1t is a contradiction for a certain set of 1

events to occur In the same viewpoint, that viewpoint can be pruned from the

search space; ART will never allow that viewpoint to be created again. ART */
also provides a mechanism for merging viewpoints In order to reduce •

redundancy. »J

A schema structure Is provided that allows automatic Inheritance of '_,

Information between related schemata. A schema Is a collection of facts N

about a particular object. The Ada software parts catalog that forms a part i •

of the AMPEE System can be Implemented via the schema structure provided by

ART. This Is done by establishing a template for a catalog entry; there Is a

place for each catalog attribute In the template. Default values or known

properties about an attribute can be specified In this template. Each fc

specific catalog entry 1s an Instantiation of the template; the individual

catalog entries will Inherit the default values and specified properties. r
ART also has a relation structure that provides a simplified means [[

of enforcing certain consistency constraints. For example, If a relation

'upstream' was defined, and Its Inverse was defined to be 'downstream', then

any time an 'upstream' fact occurred, a 'downstream* fact would be added to y
the knowledge base automatically. }*

ART provides a means of Interfacing to LISP routines. This allows

the expert system developer to write special purpose LISP routines to perform •

functions not provided by ART and to access those routines from within ART "-*

rules. Examples of the types of routines that might be developed In LISP [*,

Include data conversion routines and special-purpose Input-output. ' £

The Symbolics version of ART provides facilities for the development *

of graphic end-user Interfaces; the facility Is known as the ARTIST. The VAX V

version does not currently have this feature but 1t 1s expected to be *-;

available In the near future. £

The ART development environment has several features to facilitate •

system development. For instance, the Studio Interface provides menus for .•

accessing ART facilities; these facilities can also be accessed via -;

commands. Facilities are provided for watrhlng changes as they occur In the \\
knowledge bases, and for watching the firing of rules as the application Is |

run. A graphical Interface Is available on the Symbolics version that allows S

78

/•/•.••.'/'•.•V.-/'-/^"^ _>'•_•'•>-••»•/ .*'-..'•_ •'•_. •;^' .'V"^..^/^!.-^!.''^-^ ^•^'^•^'^1/ -V-^'^V^V-V» V» y..\% .\V?'.V.V,V.v\\V."IVJ

%^,'^^.VW>^l.l|.li.*>,B.,^','',l'^^^^^^.iy..''-'- ' * -* * •' ,',l!"iy.?'y|.' •! ••••••• i HIV,PIM"JI

the user to watch the viewpoint structure during the running of the expert

system. There are also facilities for Inspecting the knowledge bases both

before and after execution, and for viewing the static viewpoint structure.

The Symbolics version has (and the VAX version will have) facilities for the

display of multiple windows; this allows the user to view several aspects of

system operation simultaneously.

c. Facilities not Provided

One facility not currently provided Is for the use of variable names

to reference schema slots, although this Is a feature that Is under

consideration for Incorporation In a future release of ART. This feature may

not be needed on a day to day basis, but on occasion. It would allow rules of

a more general nature to be written.

Additionally, ART does not provide a mechanism for permanently

updating the Initial state of the knowledge base by facts generated during a

run. Currently the knowledge base Is reset to Its Initial state each time

the expert system Is loaded or reset. This can cause difficulties In certain

applications, but It Is possible to work around this constraint by providing

knowledge base updating routines In LISP and accessing those routines from

the ART application.

AR1 does not currently support the use of rule sets. Although more

than one ART application file can be loaded. If they are not all loaded at

the time the expert system Is Initiated, the 'reset' that Is required to make

an ART application file accessible, will cause all of the ART files that have

been loaded to be reset, thus restoring the knowledge bases to their Initial

state.

d. Problems Encountered with the VAX Version

The VAX version of ART is lacking many of the 'nice' run~t1me

debugging features that ore available on the Symbolics version of the

product. As mentioned earlier, there are currently no end user graphic

Interface capabilities, although work Is rurrently 1n progress at Inference

to make this feature available on the VAX.

79

•• *. -

i^-*^'. ••> ** •- • -. ?-'-±'* r,.' w"l •,. •/ */••'•' 9.\±JMSA-*'*-"«-'.V-: *j?^+iL<Z?. -Va->! y J" f-1» ." <,' v.'*-_' *•. v.' ,•/„•. •••.•/:J,^'VV'>-A'A..\ * J

''.*'* •V*1.*1'1 '«imp.MMIJM'l lJ,Jll.',*V.p.,MM.,Ji. 'WPJ^.f W}W}Wjf»W*M ii.vi*f»r«fr-i'i n« • •• • •••' »•* ^ "?»M^I

Execution speed has also been somewhat of a problem with the VAX

version of the product. Achievement of any type of reasonable response time

on a VAX 11/780» required operation as a single user. Even then development

and debugging proceeded at an agonizingly slow pace. AR1 was rehosted on a

VAX 8600 with a significant Improvement In response time even with many (up

to 15) users on the system running all types of applications. A three and a

half fold decrease In CPU time was noted for the loading of some ART files.

The really dramatic Improvement came In actual elapsed time. ART Is

scheduled to be targeted for the Micro VAX II; no figures are yet available

concerning expected response time on this machine.

Improvements In speed will come In two areas: from the optimization

of LISP by DEC, and from the optimization of ART by Inference.

Design Issues

The Incorporation of ART Into an expert system has a direct Impact

on the design of that system. For example, the AMPEE System will require a

non-trivial amount of time to load and reset on the VAX, therefore It would

be desirable to load In smaller portions of the system as they are needed.

The problem with this Is that In order for an AR1 application program to be

run. It must first go through the load and reset steps. Load causes the ART

source code to be compiled and certain data structures to be built. Reset

causes any initial facts and schemata to be asserted Into the knowledge

base. It also calculates the initial agenda. If, during the execution of

some portion of the AMPEE System, It became necessary to load In another

portion of the system, a reset would cause all of the Art-based expert system

that had previously been loaded, to be reset. The implication of this Is

that all of the previously fired rules would become eligible for firing again

as the old facts were re asserted into the knowledge base. Additionally, the

reset wipes out any interim facts that may have been added to the knowledge

base by means of actions on the RHS of rules.

One possible solution to this problem 1s to precede the load and

reset sequence of commands with a clear command. Then previously fired rules

would not fire again, but, the clear would eliminate any Intermediate facts

from the knowledge base. Additionally, the rules that had previously been

loaded would no longer by available, as they too would have been cleared from

the knowledge base.

80

V-V-V-V-V-V-V. V. t..r. A-»••.-•. <~ <Ak4*'\\'^-\''*; >' »- •-•*••• ^'^'^'^-'^-•'^'V•**_.•' *_•'*_ ^'.«_-.^- *.. ^* • ^' .-• *-•..• ^: • ..- *- . ^ . » • -

 I
c

If
Another possible solution Is to maintain the AMPEE System as a LISP

suspended Image. Thus, as part of the logout procedure from the AMPEE w

System, a new suspended Image would be created that would be written to a new

version of the same file that was resumed. If for some reason, an abnormal

termination occurred during the execution of the AMPEE System, and normal end

of processing was not performed, the work of the entire session would be lost

because the new suspended Image would not be created.

Depending on the type of usage that Is foreseen (especially for the

prototype version), this may not be such a drawback. For Instance, If little

updating will be performed to global knowledge bases (e.g., the catalog or

the requirements database) then generally not much data would be lost In the

event of an abnormal termination.

4. EVALUATION OF ART WITH RESPECT TO THE PROBLEM DOMAIN (The AMPEE System)

Because AR1 Is an expert system development tool. It Is suitable for the

development of expert systems 1n any problem domain. Ihus, In addition to

evaluating AR1 itself, the expert system developed using ART must also be

evaluated for Its suitability to the problem domain. In the paragraphs that

follow, the evaluation criteria and Issues Identified 1n Section III will be

applied to the system proposed under the CAMP study. These Issues and

evaluation criteria are summarized 1n Figure 32.

The AMPEE System does support the reuse of pre-bullt Ada software parts

for use In the area of missile flight software, but the prototype design does

not call for an automatic means of enforcing reuse. Reuse Is supported at

the requirements and design level via the use of schematic parts. Reuse at

the code level takes place through the reuse of simple and generic parts.

Code efficiency Is very Important In the AMPEE System. There are two places

where this comes Into play:

The simple and generic parts are coded as efficiently as possible.

Efficiency rules are Incorporated into the part constructors to

facilitate Ihe production of efficient code.

The technology used In the AMPtt System has emerged from the laboratory

and Is now commercially available, but It Is still considered an emerging

technology area. The system Is designed to be flexible and easy to maintain

in order to Incorporate future technological advances.

81

•«'AV.C.V». .V,\%._% _.\ i ^L'-^w'Vr-.\-^\ .'•^^•äv V'i-<^'-_.:--'''_'V"^i_-^.-'.A,
A\'V':.

,
,'.

,
A

,
.'A'-'JJL.V1'\'VA'.^AA'^\^.-a'fc..'»Vi

W I ii i y i pi ly i w m • • • m m i i I yyypT-i L • i I. »* •m*'.".'".'t"."V"."l V •'.•'. • '''* • '.«"» • I • fT •!

Automation Is provided In the areas of part Identification and location,

and In the generation of tailored software components from meta-parts.

Further automation can be Incorporated as It becomes feasible.

The AMPEE System Is targeted for the missile flight software domain,

thus, little Is required when the system Is delivered. The catalog of parts

is easily updated, thus the addition or deletion of parts to the system Is

easily accomplished.

lhe user will Interface to the AMPEE System via menus and a limited

natural language dialog. Each major facility (I.e., the catalog, parts

Identification, and component constructors) will be directly accessible to

the user. It Is expected that the system will be usable by both software

engineers and domain engineers. User training requirements will be developed

In the next phase of CAMP.

The user will be prompted for specifications for the software component

under construction. The specifications provided by the user will be analyzed

for consistency and completeness. The transformation of these specifications

Into different forms (e.g., program design language, text, graphical form) Is

not a feature that will be provided Initially, although It Is a desirable

feature of this type of system.

The component constructors will produce correct Ada code that wll1 have

efficiency built Into It, but facilities are not provided for proving the

correctness of the code. The size of the AMPEE System and the storage and

response times are Indeterminate at this time (see References 44 and 4S).

8?

*f-^** -.•w-:w/^-l^^/-'--v-'"^<.'-'^''-'-*-v>V-V-'--"^ ••, %. n .•- -• "• - d -• --. V ^LsL. --•---• . -J. I : **

•i.«^i • VM'JiMM'P.M'WPJP.'PJg.y^.'^'WPMW^WW^W^^^^^^^^^^^^^^^

REUSABILITY

• IS THE REUSE OF PRE BUILT PARTS SUPPORTED?

• AT WHAT LEVEL IS REUSE SUPPORTED (e.g.. REQUIREMENTS. DESIGN,
CODE) AND MAINTENANCE PERFORMED?

• IS REUSE OF PRE-BUILT PARTS ENFORCED?

ADA AND THE PROBLEM DOMAIN

• IS ADA SUPPORTED? (i.e.. CAN ADA PARTS BE GENERATED?)

• IS THE PROBLEM DOMAIN (e.g.. MISSILE FLIGHT SOFTWARE)
ADDRESSED?

• IS THE CODE PRODUCED EFFICIENT ENOUGH FOR THE PROBLEM DOMAIN?

TECHNOLOGY

• IS THE TECHNOLOGY OF SUFFICIENT MATURITY FOR INCORPORATION INTO
AN AUTOMATED SOFTWARE GENERATION SYSTEM?

• WHAT OEGREE OF AUTOMATION IS PROVIDED?

SYSTEM INITIALIZATION MAINTENANCE

• WHAT IS REQUIRED WHEN THE SYSTEM 'COMES IN THE DOOR? (i.e.. IS
DOMAIN ANALYSIS REQUIRED? MUST A DOMAIN-SPECIFIC LANGUAGE BE
DEVELOPED? DOES EXISTING CODE NEED TO BE RESTRUCTURED? DO
SOFTWARE PARTS NEED TO BE PRE-BUILT FOR LATER USE?)

• IS THE SYSTEM EASY TO MAINTAIN?

• CAN THE SYSTEM EVOLVE AS TECHNOLOGICAL ADVANCES ARE MADE?

PHYSICAL ATTRIBUTES OF THE SYSTEM

• IS THE SYSTEM A REASONABLE SIZE? (i.e.. WHAT ARE ITS BASIC
STORAGE REQUIREMENTS?)

• IS THE SYSTEM EFFICIENT IN TERMS OF BOTH STORAGE AND RESPONSE
TIME?

Figure 31. Issues/Criteria of a SGS

83

&i:v>i?i>i5fc^>i^>^i%i>i" £&%&&£&&-v-v• v//.vA• :^%VA%';*:•;:.-_-. .
> » • • •

,-•:•;.-,•

^w ijy •„* m 3-1* \ ^ l*l« l*. ITl't •'* v^^*^^Tl ^ITT'.l*1-*

SPECIFICATION TECHNIQUE ANO THE SPECIFICATION

• WHAT TYPE OF SPECIFICATION TECHNIQUE IS AVAILABLE? (eg,
FOHMAL SPECIFICATION LANGUAGE' NATURAL LANGUAGE? PROCEDURAL
OR NON PROCEDURAL?)

• IS THE SPECIFICATION TECHNIQUE APPROPRIATE TO THE USER? ARE
MULTIPLE SPECIFICATION TECHNIQUES PROVIDED SO THAT THE MOST
APPROPRIATE ONE CAN BE USED?

• WHAT LEVEL OF EXPERTISE/TRAINING IS REQUIRED TO EFFECTIVELY
INTERFACE WITH THE SYSTEM?

• IS THE INTERFACE TECHNIQUE APPROPRIATE TO THE PROBLEM DOMAIN?

• CAN THE SPECIFICATION BE AUTOMATICALLY TRANSFORMED TO A FORM
THAT IS COMPREHENSIBLE TO ALL PARTIES WHO NEED TO KNOW?

• CAN THE SPECIFICATION BE PUT IN A FORM THAT IS ANALYZABLE
(e.g.. FOR COMPLETENESS, CONSISTENCY. CLARITY)?

• IS THE SPECIFICATION MAINTAINABLE (IF THE SPECIFICATION IS TO
FUNCTION AS A FORM OF DOCUMENTATION AND CONTROL, IT MUST BE
MAINTAINED IN A CURRENT STATE THROUGHOUT THE SOFTWARE LIFE
CYCLE»?

USER SUPPORT

• IS THE USER ASSISTED WITH SPECIFICATIONS (i.e.. IS PARTIAL
SPECIFICATION SUPPORTED?)?

• DOES THE SYSTEM SUPPORT AN INCREMENTAL OR lTERATIVE APPROACH TO
DEVELOPMENT?

• ARE THE SPECIFICATIONS CHECKED FOR COMPLETENESS. CONSISTENCY.
CLARITY?

• CAN THE USER INTERFACE DIRECTLY WITH THE VARIOUS COMPONENTS
OF THE SYSTEM (e.g.. CAN HE DIRECTLY QUERY THE PARTS CATALOG?l?

SYSTEM OUTPUTS

• IS OPTIMIZED CODE PRODUCED?

• IS THE CODE VERIFIABLY CORRECT?

• ARE FACILITIES PROVIDED TO VERIFY CORRECTNESS OF RESULTING
MODULES (eg . AUTOMATIC GENERATION OF TEST PROCEDURE.
CORRECTNESS PROOFS)

• ARE SUPPORTING DOCUMENTS (eg, ADL. SYSTEM DOCUMENTATION)
PRODUCED?

figure 31. Issues/Criteria of a SGS (Concluded)

84

• • • - - - yi - --' -•^ + -* ^ /•l^-'vM-rO :*.^v.:•!:•-•: . v:. .^ •;:-:V^ü^-..v:.:>.v..-v-^-^.

5. CONCLUSIONS

During the evaluation period only Beta versions of ART were available on

the VAX (ART was released on the Symbolics In March, 1985), but a consistent

Increase 1n quality has been noted during that time. Although ART Is not yet

a mature product, and as such suffers from some of the drawbacks of systems

that are newly developed. It provides a high degree of functionality for the

application under consideration 1n the CAMP study. It Is anticipated that

there will be an Improvement In efficiency and speed of the system which will

facilitate system development and make ART an even more attractive choice for

expert system development on VAX-based systems. Thus, ART'S functionality

coupled with Its availability on VAX equipment and the interest of Inference

personnel in improving the product, lead us to conclude that ART is a tool

that should continue to be used in the CAMP project.

85

1,",,"^" " " " v I1 V B.,i^ ^u^ ^.'''J.^r-. • " • r^ ^ • • • - <yrJV'.W11 ",""^p' inwMiiMiiwuniiM^miini. -fiim »• i F«p»yyj»

SECTION VI

SOFTWARE PARTS COMPOSITION SYSTEM CONCLUSIONS

This section discusses some of the conclusions reached during the

software composition/generation study portion of the CAMP project. Volume I

contains conclusions that relate to missile software commonality and the

design of software parts.

The development of a universal software generator system Is not

practical 1n the foreseeable future. Although there are several research

efforts underway to develop application Independent systems which can

generate software from requirements, these systems have several major

drawbacks.

a. They are still In the research phase of development.

b. They are very complex to use.

c. The code they generate Is not efficient enough for real time

embedded applications.

Few existing software generation systems are capable of handling

software parts. Most of the work being done 1n the area of software

generation assumes that a new software system will be generated from

scratch. In those systems which do account for reusable components (e.g..

Use.It), the parts are restricted to simple functional black boxes. No

provision Is made for complex parts (e.g. generic and schematic parts).

Formal specification languages have severe drawbacks as Interface

mechanisms to a software parts composition system. Although a formal

specification language Is a sound technical approach to specifying software

requirements and design information, past experience has shown that this type

Interface mechanism Is very poor in terms of comprehenslbllIty. In effect,

only experts can read and understand the data being described. Since the

goal of a software parts composition system Is to simplify the use of parts,

we believe that this approach is not fruitful.

An automated software parts catalog Is an essential component of any

successful software reusability effort. Given that there Is a significant

number of parts, an automated tool will be needed to help manage the parts

and to help the user of the parts analyze them for suitability for his

86

ITO^'^""""'"' ' Wm " " 'M^'MMJMMMIJI.IIIliiWffW^ff^l^MWl^M^M^WWM^^^^^

application. If parts are constructed from other parts (as they should be)

the Interrelationship of the set of parts can become quite complex. An

automated tool can help the user manage this complexity and Increase the

productivity gained from using the parts.

A textual software parts catalog Is an essential aspect of any

successful software reusability effort. The existence of an automated

software parts catalog does not preclude the need for a textual version of

the catalog. There will be organizations which for some reason or another

will not have access to the automated tool and will need Information about

the parts. Ideally, the automated software parts catalog will be able to

generate the textual software parts catalog.

The early Identification of software parts can be facilitated by an

automated tool. A critical factor 1n the successful use of software parts

will be the Introduction of the parts Into the software system early In the

software development process. In other words, the knowledge that software

parts will be used (and the knowledge of what parts will be used) will have

an effect on the design of the software. In addition, the use of software

parts might Impact the requirements for the software. This case might arise

when the existence of certain parts facilitates a certain algorithmic

approach (e.g.. If the missile guidance engineer Is aware of the existence

of a wealth of parts to perform an operation In a certain manner, he might

select that approach to reduce costs). The parts Identification process will

map system (e.g., missile) requirements to existing software parts thereby

allowing early Identification of applicable software parts. This

identification will also facilitate trade off analyses, cost estimates, and

sizing and timing analyses.

The technology exists for automating the construction of software

components from design paradigms. The concept of software design parts has

been discussed for a number of years within the software engineering

community. In the past, most researchers have adopted a template view of

this type of part. In other words, the design would be Implemented by means

of a template which the user would manually complete. Our experience on CAMP

Indicated that If the template Is supplemented by a set of construction rules

then the construction of the software component from user-specifled

requirements could be completely automated. We have termed these types of

parts (template plus construction rules) schematic parts.

87

--'-^v— ^ :' _*._, -. ^•_. -« ^ AWirf.'d •^••^*^••^••>>-•>^'•^>>^^>>Äv^v^•>^^v^•

LVMv-vj•j.v.'y.y 'jjy.'pjpj^».».'»'w.'^'m•'.• |Ji«H,w^»*^^r*^,^^pT^^^ • LllnilWLlflW'.l ..•

Expert systems have a high potential In the automation of the software

parts engineering process. Expert systems are typically beneficial In areas

which have eluded solution by classical programming techniques and which are

currently being solved by human experts. This Is most definitely the case In

the use of schematic parts and In the Identification of applicable software

parts. During CAMP we demonstrated that schematic parts can be effectively

and efficiently generated using an expert system. We also designed a system

for parts Identification using an expert system. Although the software parts

catalog need not use an expert system (e.g., classical data base management

systems can be used), the Incorporation of all three functions Into one tool

facilitates Information sharing.

88

•/•/.v. jCMCnS L>:*:v:v^i:v^ •:-'•:<<[• •.^•f^.VoV •_" •-" h.1 ^* TifätM

APPENDIX A

DEFINITION OF THE CAMP PARTS CATALOG ATTRIBUTES

89

•_-_v_ .-.v V--A .- •-v-/ o.- •.• »l^_ ^\>mj-\^\^Wj^^W^mW^

--.»-- -W-w -T .VMM't "1-1 «•-«•-»• »••^V^^-W',-^ ^'^ '.'»l^V* ^ 'A" * ** *' " *""--^_^"V V •."•."•"A"1 ""•"•.' J ' •.'••• ' 'J "

APPENDIX A

OEfINITION OF THE CAMP PARTS CATALOG ATTRIBUTES

This appendix provides a detailed explanation of each attribute of the

Ada missile software parts catalog developed under the CAMP contract. For

each attribute the following Information Is provided (as applicable):

(a) The name of the attribute.

(b) The data type of the attribute. The type of an attribute can be

STRING (e.g., the value of 'Part Id1 Is a string), TEXT (e.g., the

value of 'Abstract' Is of type TEXT), ENUMERATION (e.g., the 'Level'

attribute must have a value of 'simple', 'generic', or 'schematic'),

or NUMERIC (e.g., the value for 'Source Size' must be the number of

lines of code).

(c) lhe domain of an ENUMERA110N type.

(d) lhe status of the attribute. This Is either REQUIRED (I.e., all

parts must be supplied a value for this attribute) or RECOMMENDED

(I.e., the attribute Is recommended for completeness but not

required).

(e) Where useful, an example of an attribute value Is shown.

(f) The description of the attribute's meaning.

In addition to the above Information, attributes whose value Is dependent

upon the scope of the catalog are Identified, and the differences In content

are elaborated. Figure Al enumerates the catalog attributes.

90

v r. -• >:^^ >>>>v/^^-:->^ >*x> ^ **

flP.V.T. •^.T'^v «• ^T.'.',.'vi|.,|.i'.|y^^^^^yy^^^^^^^^^^^^^^^wW^W^

PART ID REVISION ID

VERSION NAME

ABSTRACT CATEGORY

TYPE LEVEL

CLASS INLINE

OPERATION PARAMETER NAME

KEYWORDS DATE CATALOGED

DEVELOPED BY DEVELOPED FOR

DEVELOPMENT STATUS VERIFICATION STATUS

CATALOG UNITS W1THED WITHING UNITS

USAGE LOCATION OF CODE

SECURITY CLASS (PART) SECURITY CLASS (CATALOG ENTRY)

LINES OF CODE (SOURCE) FIXED OBJECT CODE SIZE

REQUIREMENTS DOCUMENTATION DESIGN DOCUMENTATION

HARDWARE DEPENDENCIES OTHER RESTRICTIONS

ACCURACY TIMING CHARACTERISTICS

REMARKS

Figure Al. Catalog Attributes

91

^^ - •'yjyiy <-•-'«-* .•w* -. A — V. - • -^_^_ •fa h .>V.a»

Y •''!••"<* » J • • f J ,• ."'f P'F. F fW^pWPWfW» *^*«V-^^^^^^^^^^*^M

ATTRIBUTE NAME Part Id

TYPE String

STATUS Required

EXAMPLE 1160

DESCRIPTION The Part Id 1s a non-semantic code which together with

the value of the Revision Id attribute uniquely Identifies a catalog entry.

The Part Id Is not required to be unique (e.g., the same code would be used

for all revisions of a given part). This type of code will facilitate

catalog Implementation by providing a way to Identify software parts

Independently of their names (e.g., different developers may develop parts

with the same name); by assigning a Part Id to each part, all of these parts

can be kept In the same catalog. There are currently several coding schemes

proposed or currently 1n use to Identify software; these codes are used to

Identify the developer and the software product (Reference 15). We propose

that the Part Id merely be a sequential Identifying number assigned to the

software part with other fields being used to convey descriptive Information.

ATTRIBUTE NAME Revision Id

TYPE String

STATUS Required

EXAMPLE A5

DESCRIPTION The Revision Id Is a non-semantic code used to uniquely

Identify revisions of a particular part. This code together with the Part Id

form a unique key.

ATTRIBUTE NAME Version

TYPE String

STATUS Required

EXAMPLE Wander angle. North pointing

DESCRIPTION This attribute contains a brief description used to

differentiate between parts that have the same name.

92

• . r • ^» ""V "^« *"• ' * •* • -% . • .V.V.V
.Vi »_»_•..

\ • •*'•-* T> 'TMv1» •»•.«'.* v. • .»I^VT--^ .^" ^'^' - •» •• m • —'T":" •» • —••^ »•»- • Pi^ifi^^yT^w^^^TPy^Tiin.i^i,'

ATTRIBUTE NAME Name

TYPE String

STATUS Required

EXAMPLE Missile Launch Platform

DESCRIPTION This attribute provides a brief, but not necessarily

unique, descriptive name of the part (e.g., a package may have more than one

body. In which case both bodies would have the same name but they would be

uniquely Identifiable by the combined key consisting of Part Id and Revision

Id).

A1TRIBU1E NAME Abstract

TYPE Text

STATUS Required

DESCRIPTION The abstract Is a brief (300-500 words) explanation of

the purpose and functioning of the part, and the reason for original

development (Including design rationalization). The Naval Research

Laboratory's Software Cost Reduction Project has a separate entry for design

Issues. An alternative that we recommend Is to Include a brief reference to

design issues In the abstract, and If It Is thought that the user will

require further Information, he should be referred to an external design

document. If the part Is being revised, the originating component may be

referenced for this Information, but the abstract must contain the reason for

revision. Information on reason for original development may provide Insight

Into the appropriateness of a unit for a particular application, and thus

facilitate reuse of parts; the DACS software catalog contains a separate

entry for this. We think this loo can be briefly stated In the abstract and

If greater detail Is required, the user should be referred to an external

document, ihe level of detail In the abstract will depend upon the scope of

the catalog; It Is Intended to provide the user with a quick overview of the

unit. If the catalog has been Incorporated Into an automated system, the

abstract can be scanned to pick up keywords or phrases when the system Is

performing a search for requested parts.

93

»

«*.." J-V- ^.V.V-V-^'-f. .-.'-• V V - '"-* "-»^--^ _!**-»*'-*"-_?' o*'->'-_••'•_">•./• J. ">*.^-*:^.%--\J' -»''.•^•.'•_>*•-.**-* • V.'V-V-^J

•.«• ^rJ?«rv nn^yy» •••' '•••• •• • 'Mr r r v '? y 7M^>i'Vi'<' W '.t^Jff.t'W.U^ll"^ ' ' '.*''"' '"'"T.^WT!^ T •^^T^

ATTRIBUTE NAME Category

1YPE Enumeration

DOMAIN see Figure A ?

STATUS Required

DESCRIPTION This attribute specifies the taxonometric classification

of the part.

ATTRIBUTE NAME Type

TYPE Enumeration

DOMAIN (package, subprogram, task)

STATUS Required

DESCRIPTION The TYPE attribute specifies the Ada program unit type

of the software part.

ATTRIBUTE NAME Leve!

TYPE Enumeration

DOMAIN (simple, generic, schematic)

STATUS Required

DESCRIPTION Ihe LEVEL specifies the abstraction level of the part.

See Volume I, Section II for more details.

ATTRIBU1E NAME Class

TYPE Enumeration

DOMAIN (specification, body)

STATUS Required

DESCRIPTION Ada specifications and their associated bodies have

separate entries In the parts catalog; this attribute is used to Identify

that aspect of a part.

ATTRIBUTE NAME Inline

TYPE Enumeration

STATUS Required

DOMAIN (yes, no, N/A)

DESCRIPTION This attribute specifies whether the part has been set

up to be 'Inllned' or not.

94

prrr|,'wy>."""i,i"V'-iii"rin ••••••«m^i iwm^^^vmmw^^mmwmmwimmm^mymwm^wimymimm

ATTRIBUTE NAME Keywords

TYPE Set of 0 or more Strings

STATUS Recommended

DESCRIPTION This attribute contains one or more keywords or phrases

that can be used to locate a part. Keywords can be used to describe

functionality of the part, or task area. The purpose of a keyword Is to

narrow the search for a desired component. If an automated catalog scheme Is

utilized, words that appear In the abstract need not be repeated here as they

can be automatically extracted and added to the keyword list.

A1TRIBUTE NAME Date Cataloged

1YPE String

STATUS Required

EXAMPLE 02 22 85

DESCRIPTION This attribute provides the date that the original part

or revision was cataloged. A standard format for the date should be

establIshed.

ATTRIBUTE NAME Developer

TYPE String

STATUS Required

EXAMPLE McDonnell Douglas Astronautics Co.

DESCRIPTION The exact Information contained 1n this entry Is

dependent upon the scope of the catalog. Tor Instance, If the catalog Is

Intra company, knowledge of the actual Indlvldual(s) may be useful, whereas

If the catalog Is Inter company, knowledge of the organization may be

sufficient. Ihls entry should contain at least the name of the developing

organization. Other information that might be useful includes the address of

the developer and a phone number for a contact person. If the entry Is for a

revision, the modifier should be Identified.

95

4

T-l"»;.1 *r• •. " \ wymmw T* '.^ ••••• »* * >_'»•»_ »i-»»^ <*m <*m -wr ^ r • • « >pp ^ «>P V •, *'^ < ^'T* ? ^ ."• ^ I. • V* I *l» • V,Jl 'l. "T* V •* I *'- • f •."* . J Vn ,m - ' T^ l^ V"' • • I ••

AT1RIBUH NAME Developed For

1YPF String

STATUS Recommended

EXAMPLE Tomahawk (BGM 109AS) Might Software

DESCRIPTION mis attribute should Identify the project and type of

software.

ATTRIBUU NAME Development Status

TYPE Enumeration

DOMAIN (In development, complete, verified)

STATUS Required

DESCRIPTION This attribute Indicates the development status of the

unit. The usefulness of such an entry Is dependent upon the scope of the

catalog. For Instance, If the catalog 1s for all Air Force software

projects, the usefulness of knowing the stage of development of a particular

component diminishes greatly, whereas If the catalog Is being used within a

single project or for a particular contractor, such Information may be of

value. The DACS software catalog contains an entry for this, and ANSI

X3.99-1981 recommends the Inclusion of this attribute In program abstracts.

AT1RIBUTE NAME Verification Status

TYPE Enumeration

DOMAIN (Internal, external)

SIAl US Recommended

DESCRIPUON Verification of the units Increases user confidence and

promotes reuse of existing parts. This Is Illustrated by the contrast In

usage of parts supplied by a computer users group which are not validated,

and those supplied by an organization which performs extensive testing, e.g.,

INSL. The entries for algorithms presented In the Collected Algorithms of

the CACM also provide Information on verification; the name of the certifying

Individual or organization, the certification method, results, and remarks

are supplied. The major Issue surrounding verification and validation of

parts, Is who should perform this operation. User confidence Is Increased

when an Independent or external organization performs the verification, but

96

.*• - ^>*A»«V 1*' O • V i~-V- * ^•W-V-WkSW.' •!> ^ V • >' >'* V-'.N -S\%'- r A'AV\ % '-*.*--•.*-•.. L-.\ •- , -V.\ v'J

fr*WV*WV*T*Trn >* • r*"""Ti^^Hy»l^l^l^lV*'V'»,^VM*rTy^W^»^q»V'V^^ ' ' ' "J^y

Verification Status (concluded)

the task of verifying all parts may become monolithic for a single

organization. Our proposed solution 1s to provide Information on whether

the part was verified Internally or by an external organization. This

Issue Is discussed In greater detail In Section II, paragraph 6,

Organizational Factors.

AI TRIBUTL NAME Catalog Units Wlthed

TYPE String

STATUS Required

DESCRIPTION This attribute contains an enumeration of other units

within the catalog that this unit 'withes' (units Identified by Part Id,

Revision Id, Name, and Version.

A1TRIBUIE NAME Wlthlng Units

TYPE String

STATUS Required

DESCRIPTION This attribute contains an enumeration of other units

within the catalog that 'with' this unit.

ATTRIBUTE NAME Usage

TYPE String

STATUS Recommended

DESCRIPTION This attribute contains an enumeration of the projects

and systems that use this particular part. This should also Include the

places where parts generated via schematics ore used. The usage attribute

aids In the tracking of which systems have 'checked a part out of the

library'. Such an entry facilitates maintenance In the event that an error

Is found In a part.

ATTRIBUTl NAME Location of Code/Constructor

TYPE String

STATUS Recommended

DESCRIPTION This entry should specify the file name, library, and

computer system where the part Is located; the part 'level' determines

whether it will be source code or a parts constructor.

97

.^;>^;l\i v-v-iviv^^

|^h^i.^^ir*^i^i^i^L^v«v»i^tf»^tf»v»i^u»»mT'^y**^^ v 'r,"r,rv,.|'"".'7,,,'',\',,,T'v u»¥^r-F

ATTRIBUTE NAHE . Security Classification of Part

TYPE Enumeration

DOMAIN

(Unclassified, Confidential, Secret, Top_Secret)

STATUS Required

DESCRIPTION This attribute specifies the DOD security classification

of the part.

ATTRIBUTE NAME Security Classification of Catalog Entry

TYPE Enumeration

DOMAIN

(Unclassified, Confidential, Secret, Top_Secret)

STATUS Required

DESCRIPTION This entry specifies the security classification of a

partfs catalog entry; this may be different from the security classification

of the part itself.

ATTRIBUTE NAME Operation

TYPE String

S1ATUS Recommended

DESCRIPTION This attribute Identifies the operations that are

exported by the part.

ATTRIBUTE NAME Parameter Name

TYPE String

STA1US Recommended

DESCRIPTION This attribute Identifies the parameters associated with

each operation Identified in the 'Operation' field. The parameters shall be

Identified as to whether they are 'In', 'out1, or 'In/out* parameters.

ATTRIBUTE NAME Source Code Size

TYPE Numeric

STATUS Recommended

DESCRIPTION This attribute provides the size of the Ada part in

terms of lines of source code (LOC). The definition of LOC must be provided

when the catalog 1s established.

98

»VvvV>'.; /v'v'v v"v"v v'vv V V " *''.•* - . V ".*.'/ v.v "••,'. '-
L • -*• -^ Mi «.•* - «- • .. . M\ ^\ JV J*k Jm **- -2» _". ,.*- A -"* -V -*- - - .. • -^-»>-•-V>-^-.« .'_.'_•, .-. »!-•*'- a*. «*- .•-. •*- «'.. m'_ • - **- «'.. tf- *.-..•-••*»_•-

-•,• -7 •* • • *.' * w;w 'w w * w .' r- • T - - *• • • • • • •• ^ pi • * ß pi pir^yrryTTT??TT

ATTRIBU1E NAME Fixed Object Code Size

TYPE Numeric

STATUS Recommended

DESCRIPTION This attribute provides the fixed (static) size of the

Ada part In terms of bytes of object code.

ATTRIBUTE NAME Hardware Dependencies

TYPE Text

STATUS Recommended

EXAMPLE 1553B data bus

DESCRIPTION This entry contains an elaboration of any hardware

dependencies of the part which would limit Its transportability.

A1TRIBUU NAME Requirements Documentation

TYPE Text

STATUS Recommended

DESCRIPTION This attribute Identifies the requirements documentation

and Indicates Its availability.

ATTRIBUTE NAME Design Documentation

TYPE Text

STATUS Recommended

DESCRIPTION This attribute Identifies the design documentation and

Indicates Its availability.

ATTRIBUTE NAME Restrictions

TYPE Text

STATUS Recommended

DESCRIPTION This attribute Indicates any usage restrictions such as

proprietary rights and copyrights.

99

l»l'*l* l^ '..'* '•'V ^ '^ '.VMW. V. V r ' ' ^^l,'^W^'f1i1"J!l|f'^fl *• J ; - .••yiyywj»! • * •••;"• ' • ^n.W^lfli iy•• • *p*l

ATTRIBUTE NAME Remarks

TYPE Text

STATUS Recommended

DESCRIPTION This field Is for any general remarks concerning the

part, or for continuations of other fields.

ATTRIBUTE NAME Accuracy

TYPE lext

STATUS Recommended

DESCRIPTION This field contains Information on the accuracy or

precision of numerical results computed by the part. If this Information Is

not relevant. It should be left blank.

ATTRIBUTE NAME Timing

TYPE Text

STATUS Recommended

DESCRIPTION This field contains Information on execution time for

sample Invocations or Instantiations of the part. The run time conditions

that produced the timing results must be specified In order to make this

Information relevant.

100

;&£&&&& *M >v^.V'-.'^v»**y. v»^'-!->i'>!/ v-''V-^>'^>"M> '.'>".'^-IV. v i y»y •"-> '.v ^ v *.'•" -"-**»-"-*•»"-—*. ~ J. .*

'VUMW^MMiiwiiiiM5'tW,f\^H<wi • ll'MV^HHUH'ilUH.I^^PJP'P'P WfW P P'." •••••• • ••••»•

88§$ffli8f jn«up pVpTQ TAXONOMY :-- :^v^Xx.^:^••;•:•:•:•:•:-;•;•:•:•:-:•;•:•;•:•:•:•:•:•:-:•:•:•:-:•;-'.•:•;•;-:•:•; wwnr r«n 191 #*AuniwfVi » -;-;•>;•:•:-:•:•:•;-:-:•;•:•:•;•;•;•:-:•:•:•:•>:•:•:-:•:•:•:•:•:•

• DATA PACKAGE PARTS • PROCESS MANAGEMENT PARTS

- DATA CONSTANT PARTS - ASYNCHRONOUS CONTROL PARTS

- DATA TYPES PARTS - COMMUNICATION PARTS

• EQUIPMENT INTERFACE PARTS • MATHEMATICAL PARTS

- GENERAL PURPOSE EQUIPMENT INTERFACE PARTS - COORDINATE ALGEBRA PARTS

- SPECIFIC EQUIPMENT INTERFACE PARTS - MATRIX ALGEBRA PARTS

- QUATERNION ALGEBRA PARTS

• PRIMARY OPERATION PARTS - TRIGONOMETRIC PARTS

- NAVIGATION PARTS - DATA CONVERSION PARTS

- KALMAN FILTER PARTS - SIGNAL PROCESSING PARTS

- GUIDANCE & CONTROL PARTS - POLYNOMIAL PARTS

- NON-GUIDANCE CONTROL PARTS - GENERAL MATH PARTS

• A8STRACT MECHANISM PARTS • GENERAL UTILITY PARTS

- ABSTRACT DATA STRUCTURE PARTS

- ABSTRACT PROCESS PARTS

Figure A-2. CAMP Parts Taxonomy

101
(The reverse of this page is blank)

lä - 1 •-*•-- ••* -A iii ̂-M. .a^»: a_^ ->JI>>:/:\.-1\^

mmr* •••••! • -r r yp;?".* V V1 "> p»".*'p,y*>''' V'll,W'.',tTi1H.V '.•«•'.'rt-'f !•!:••• v«.'"•T*.*-' j • J.'v.

APPENDIX B

CAMP CATALOGING FORM

103

**. •*. A *". •'. CV.fi ._t .J l^k . ••-••^•:- •-. _ i- ...-._ '-. V.A^A.,2-.^,

J

APPENDIX B

CAMP CATALOGING FORM

This appendix contains a form for use with the Ada parts catalog described

In Appendix A. This form Is shown on the next page.

104

>yv.- /•, r s V V v V V -" «" -* V «' V "-* V V V V " V V j • «•" * " •'*
• ^ - -'- '-f' V-V-V-'.

«... .• •,,.,•,•,•, . ., , ,.,. v^.,w>.v,^, ,, ,, ,, ^„, , , ^nnn i ••um im npMiiy^i^wp^i i i in

ID Revision

Name
SSKBBBSBXSSEESXBEBBBBSEKBESSBBSSSSSSSBBBaSSSBSBBSBBB

Version ..
Type
Level
Class
Inline ...

—

Subprogram Package Task
Simple Generic Schematic
Specification Body
Yes _ No _ N/A

Abstract .

Category .
Keywords .

Opera Mon Parameter Name In/Out

Development Status
Verification Status
Date Cataloged
Developed By
Developed for

In Progress Completed
None Internal External

Requirements Documentation
Design Documentation
Location of Code

Code Size (loc) Object Size (bytes)

Accuracy Characterization

Timing Characterizations

Hardware Dependencies ...

Other Restrictions

Wlthed Parts Wlthlng Parts

Remarks

Security Classification (of part)
Security Classification (of catalog) ...

Figure B-l. The Cataloging Form

105
The reverse of this page is blank)

'--•'• JS/- "_/*V-V*-/ Vv»*-V* /\/-W*>'_""".,,"">V-*V-\^V-V- >V*V«V-\>\%"."w"vV_-.\-.*\vv*> L'.\V, A".", V'\ L Ai * \ ->'. LV»*W\ • •_

Biyrro*v*yvyr<7Tsr^^^ mmmi

APPENDIX c

SAMPLE DBMS IMPLEMENTATION OF THE CAMP PARTS CATALOG

107

-'•- -- •^-••-'

V.V-///.V. • #- / J- .' .* -»•, -'„ . -•

^^iv^:v^:^:v>:>v :>-i^

r^T*"'»^ i» "* k""'y ai * > *T •'•'- ' '-'^ - "'- * - »V^l^V YyT."*Vv '7"' Vs T^ ^~" - ~ V V* V"* \."*"."^ Y^V*"V~

APPENDIX C

SAMPLE DBMS IMPLEMENTATION OF THE CAMP PARTS CATALOG

1. Database Schema 106

2. Database Usage 108

As a proof-of-concept, MDAC STL constructed a parts database using
TM

ORACLE , a state of-the-art relational database management system.

1. DATABASE SCHEMA

The parts database consists of 6 tables. They and their associated

attributes are shown in Figure C 1. Ihe purpose of each table Is described

In the following paragraphs.

The Parts Table contains the attributes unique to each cataloged part

(I.e., there exists a one-to one mapping between attribute values and

entitles). This Is the primary table In the database, containing the

majority of the Items described In Appendix A. Ihe Part ID and Version ID

together form the key for this relation.

The Developer Table contains Information about each engineer developing

software. The Developer ID Is the key for this relation. This Information

Is separated from the Parts Table because an engineer can develop more than

one part; data redundancy would result from Including this Information In the

Parts Table. Parts and Developers are bound together by means of the

Developer ID attribute In the Parts Table.

Ihe Project Table contains a list of parts which are In use by one or

more projects, and an Indication of which projects are using which parts.

There Is a many to-many relationship between parts and part users, thus, the

project Information Is kept separate from the Parts table to avoid data

redundancy.

.VL%.A _N

108

!^\'v\.T.w"y*\>'*wr*y* i"'VT^'-'*\T"»^i-.'"' I'TiT^ "9¥m.'^ -^i'«WTWTl''AT**v • L n • w"»u •ü1 PWPJIPt«j•JPJyjr WW

TABLES ATTRIBUTES

PARTS Id Version

Name Abstract

Category Type

Level Class

Date of Development Developer

Project Software

Development Status Verification Status

Security Class of Part Security Class of Entry

Source Size Object Size

Hardware Dependencies Documentation

Restrictions Remarks

Accuracy Timing

DEVELOPER Id Name

Department HOC Component

PROJECT Id Software

Part Version

USAGE Usage Mechanism Used Part

Used Part's Version Using Part

Using Part's Version

KEYWORD Word

Version

Part

NOISE Word

Figure C-l. Database Schema

The Usage Table tracks parts that either 'with' other parts In the

catalog, or are generated from another part In the catalog. This table Is

separated from the Parts Table because there Is a many-to-many relationship

between 'wlthlng' and 'wlthed' parts.

e

109

*. /.
- M. _ • ^ f> - - j_ * _V y*^st^Zvis*is*A v" vl •!* j-"v>.*>.->.-lv^*lvlvlv> j-j 1- >".v_%v.'0l

T . ». •• r" . * .», '.'. V V"1 v ** * i *l'^ •** '.^t * '• * «',•'.».<•'. * .^ '^^ ••.••;<••» i. • • • • .-•»•• ^i i ^^^yy^^^y^y^^T.

The Keyword lable contains a list of keywords found In the abstracts of

cataloged parts. Entries In the Keyword Table can be generated In two ways:

(1) Explicit entry: A user can specify a keyword to be Included 1n the

table by specifying that word In the 'Keywords' section of the

Missile Software Ada Parts Cataloging Form (see Appendix B).

(2) Automatic entry: A Keyword Table generation program will examine

the abstract of each cataloged part and make an entry for each

keyword found. A keyword Is any word which Is not found In the

Noise Table. The Noise Table Is a 11st of words which should not be

Included In the Keyword Table when found In an Abstract (e.g.,

"and\ "the", "a", "not").

2. DATABASE USAGE

Two primary Interfaces can be developed for database report generation.

The first Is a menu driven mechanism for generating standard reports, based

on ORACLE'S Interactive Application facility (1AF). The second Interface Is

command driven and uses Structured Query Language (SQL) commands to access

any Information In the database. The following are some examples of the use

of SQL to retrieve Information from the Ada parts catalog.

EXAMPLE 1. List all parts which are currently In development:

SELECT ID. VERSIONJO, NAME

FROM PARTSJTABLE

WHERE DEVELOPMENT_STATUS -- "IN DEVELOPMENT"

EXAMPLE 2. (.1st all parts which 'with' part called BINARY IRM :

SELECT USING__PART_ID, USING_VERSION_ID

FROM USAGE_TABLE

WHERE l'SF0_PART_I0"USED_VERSION_ID *

(SELECf 1D"VERSI0NJD

FROM PARTSJABLt

WHERE NAMt -- "BINARY IREE")

no

'-•"•-* J '-» -••--'-. •-. V-_» •.-" ^v-» -*'^•_-^ •--*•> -.•• »'*-> -'»-> ^' • _• . - . %'^»-> -.^ *'_.. -„--. .V.'. . -. . . . - . - ^ w- w- •_ _ • ^\'--. _\ ^-\ . t . ^

• "•• • •« ••—•••.• v y i-i.j • i,^Miyjpßmm •.•^ptv.^w.v.rffirtwyy^ff
1

9

APPENDIX D

THE FINITE STATE MACHINE CONSTRUCTOR

111

•V-%,.L..„ '.,••-• l' - - .-•.'.--.•••- •- -.'. . _.__«. ^*-^*v-*w-* . ^_^^_^^ *._*_»_»_»_*_*_* _^ . _._.__W

APPENDIX D

THE FINITE STATE MACHINE CONSTRUCTOR

1. Introduction

2. FSM Constructor Requirements

3. FSM Constructor Top-Level Design

4. Implementation of the Proof-of-Concept
114

112

110

FSM Constructor

1. INTRODUCTION

A finite state machine (FSM or finite automaton) Is an abstraction that
can be used to model software systems or portions of software systems that
consist of a number of distinct states and stimuli or events that cause a

change in or transition between those states. An FSM has one state that Is

designated as the initial or beginning state. This Is the state at which

processing begins. A terminal or end state is a state at which processing

ends (I.e., there are no transitions out of that state). Transitions between

the states of the FSM are caused by stimuli or events. A transition is

dependent upon the current state at the time the event occurs (i.e., the same

stimuli applied In two different states In the same FSM may result in two

different transitions). Figure D-l depicts a typical graphical

representation of a finite state machine.

S5

A1

Figure D-l. A Finite State Machine

112

j'^^^y^yT^^^^v/vr^^rir^^.^^ •« * -^ ^ •. ^^^^i^r

There are several variations of the basic finite state machine. For

example, actions can be associated with the transitions between states or

with the states themselves.

Finite state machines are a useful representation for a number of

different types of software that arise In the missile flight domain (e.g.,

launch control software, signal processing).

As part of the CAMP study, MDAC developed the requirements specification

and top level design of a prototype software parts engineering expert system

known as the Ada Missile Parts Engineering Expert (AMPEF) System (see

References 44 & 45). This system Incorporates a facility for component

construction that provides the user with the ability to construct (I.e.,

tailor or Instantiate) meta parts (I.e., schematic or generic parts) found In

the Ada missile software parts catalog. The Component Construction facility

Is intended to consist of a constructor for each schematic part and for some

generic parts (constructors will only be developed for generic parts that are

sufficiently complex). The Finite State Machine Constructor Is one

constructor that will form a part of the AMPEE System.

A number of reasons exist for developing a schematic part and part

constructor for a finite state machine.

Finite state machines occur frequently within the operational

missile flight software domain.

The part 1s very straight forward to build, but certain variations

cannot be captured via the Ada generic facility (e.g., actions

associated with state transitions).

Providing a schematic part relieves the software developer of the

tedium of building a fairly simple piece of software, and provides

an error free Implementation based on his specifications.

R.J.A. Buhr (Reference 39) summarized the need for a standardized implementa

tlon in the following way:

• finite state machines are ubiquitous In many types of

embedded systems. Accordingly, their explicit, consistent,

and uniform representation In the Ada program text seems

desirable, both for veriflability and readability."

113

{*<*-,.- »*. -•-.«-<--^ ^^ -, ^.^ .•-•--.>-.^^^^^•^^'•V^'-V-I.^ _^ •-^'v.>J'^>!J '^ -*± _ \^':L:.:1\L: •*_, i. !• 1* ; 1 -.- ilVLNit

••j 7 -_••> -» >_"VT~"^r,."v\^r\7V •"v^.'nWT.-^^'_'Hil"•. ~^~ J\"^~* ^r"v,„^-.""irv?-;."v\-; .-S.-ITI'V.^.^VV'.II-
 V> „"^V* tr« JW «T» \,-P VT" i,^ . ^ V* u^ir* V y^v^\.^Tr*>^>^jrvi ."TJ

The Implementation of the Finite State Machine Constructor served two

purposes:

It served as a proof-of-concept for providing a semi automated means

of generating missile flight software.

It provided a means for evaluating ART, the expert system

development tool discussed In Section V.

In the paragraphs that fcMow, the requirements, design. Implementation,

and efficiency considerations are discussed.

?. FSM CONSTRUCTOR REQUIREMENTS

The Finite State Machine Constructor forms a part of the Component

Generation function of the Ada Missile Parts Engineering Expert System. It

Is a domain-Independent schematic part that provides the user with an

automated means of generating a finite state machine software component. An

Ada package is created that contains a procedure to process Incoming

stimuli. A function Is also provided that allows the current state to be

determined.

The Finite State Machine Constructor requires the use of both the ART

programming language and LISP.

a. Interface Requirements

The FSM Constructor Is required to Interface to the VAX file system

In order to access the fixed portions of code used In the component

construction process, and write the FSM component that Is output from this

constructor. File access 1s handled via LISP Input/output facilities.

b. Functional Requirements

The functional requirements of the FSM Constructor are discussed in

the following paragraphs.

114

* * •. * •. •. * :«^A_j

i'itiW»ii«i«rv*^'^'^i^i^^^ 1BJ.^T^»W •" ' - -

(1) Inputs

The user supplied Inputs are enumerated below.

-- F1le Name: The name of the file where the component 1s to

be written; must be a valid file name.

- * Process Name: An Ada Identifier that will Identify the

package to be constructed.

Initial State: The Initial state of the finite state

machine.

- States: The valid states within the finite stfttt machine.

-• Transitions: Ihe transitions associated with each state.

- Stimuli: The stimuli that result in the transitions

associated with each state.

Actions: lhe actions (If any) that are associated with the

transitions between states; this Is In the form of a

package name and the procedure within the package that

performs the requested action.

All states, stimuli, and actions provided by the user must be

valid Ada Identifiers.

System supplied Inputs are as follow.

Ada Missile Parts Catalog: This Is used to determine the

location of the fixed portions of code that are used In the

construction of a component for the user.

• FSM Construction Rules: These are the rules that guide the

construction of the component.

(?) Processing

lhe FSM Constructor prompts the user to enter the required

inputs. Ihese Inputs are edited for conformance to format and other

constraints. If the Input data passes all consistency and format checks, an

Ada component Is constructed and written to the file specified by the user.

115

'"^'\»'i :y^i,'*^<*''y^ « -. * ^ M

7.TT-rr,^, y vTT'rTT.'r'T1. V^' ^."m^^m^'mmm J WI • IM ^m^fw^l* Ifl.*'.^».'^1^1 •!'.•! lUA'VAV- l'B" '

(3) Outputs

The FSM constructor outputs the Ada code that Implements the

FSM specified by the user. This output Is directed to the file specified by

the user.

c. Quality Factors

There are several areas that must be addressed when considering the

quality requirements for the FSM Constructor. Correctness of the Ada code

produced Is of the utmost concern In the development of part constructors

within the AMPEE System. As was pointed out In the main portion of this

report, a few encounters with bad parts could destroy much of the reusability

effort. This constructor must not only produce correct Ada code. It must do

so consistently. Although It Is Important that the FSM Constructor operate

efficiently. It Is of greater Importance that the code produced by the FSM

constructor be efficient.

Usability, flexibility, and maintainability are other quality

concerns that must be addressed. The Finite State Machine Constructor Is

designed to be easy to use; the user will be prompted for the required Inputs

and will be provided with the appropriate format. Flexibility and

maintainability are two concerns of the entire AMPEL System.

3. FSM CONSTRUCTOR TOP-LEVEL DESIGN

This paragraph discusses the top level design of the Finite State Machine

Constructor. A top level view of the architecture Is presented along with

the functional and data flow for this portion of the AMPEE System. Global

and local data are also discussed.

a. Architecture

Figure 0 2 depicts the top-level architecture for this portion of

the system. As can be seen In the diagram, the AMPEE System Executive (see

Reference 45), which 1s Invoked when a user logs Into the system, invokes the

Component Construction subfunctlon. At this point the user can Invoke any of

116

.^^•:vistNtvist\^w.'>i%^ yvA'jjtö^ i^i V.'-i\.V

m -•--•-."•• ••• • "• • —m ' " • • ' f ' •••••• "i ••• P P ' *^m^^^^

the available component constructors. Control Is transferred to the Finite

State Machine Constructor when the user requests this part and It Is verified

that a constructor exists.

AHPEE SYSTEM
EXECUTIVE

I
COMPONENT
CONSTRUCTION

TLCSC

I
FSM

CONSTRUCTOR

Figure 0-2. Architecture

b. Functional Control and Oata Flow

Figure 0-3 depicts the functional control flow and Figure D-4

depicts the data flow for this constructor.

c. Global Data

The following global data Is utilized by the Finite State Machine

Constructor:

Ada Missile Parts Catalog: This 1s used to obtain the location

of fixed portions of code used In the construction of the

component.

• * User Id: This Is used to tag the set of requirements provided

by the user.

117

•X-^L-JL . • _ m - -V »—*—«—
AJ>>>>V.

S
..
N

LV^V^V-VJVAIV.V-V-V^V* >.V. -.* ^ O o * ^* .* .
."**.- .v.

^..w • • •• • Jl . M. • J'L •• •-• ' - •

d. Local Oata

The Finite State Machine Constructor makes use of the following

local data:

FSH~User Requirements: This is a schema that is used to

capture and store the user's requirements for a specific

instance of the finite slate machine part. These requirements

are tagged with the user's id and are lime stamped In order to

facilitate their retrieval at a later lime (e.g., to perform

Component Regeneration see References 44 and 45).

Other local data Includes intermediate data structures used in

constructing the software component and local facts used to

control the firing of rules.

AMPFF SYSTFM

AMPEE SYSTEM

EXECUTIVE

I
COMPONENT

CONSTRUCTION

TLCSC
"^

v^ J
* '

FSM

CONSTRUCTOR
V *j

Figure D-3. Control Flow

118

«'. V i^^i^^^W^vi^^v _v ^.v».V^'

v J - . '

VALID
USERS AMPEE SYSTEM

EXECUTIVE Part Co bo
Conjtruec«d

COMPONENT
CONSTRUCTION

TLCSC

PARTS
CATALOG

Requirement*

FSM
CONSTRUCTOR

FSM
COHP

Figure 0-4. Data Flow

4. IMPLEMENTATION OF THE PROOF-OF-CONCEPT FSM CONSTRUCTOR

The purpose of this part constructor 1s to provide a standard design for

finite state machines. It was desired to build a part that Is flexible

(e.g., actions can be associated with the state transitions 1f the user

desires), efficient (e.g., dead code will not be Introduced), and simple to
use (e.g., the user doesn't have to learn a high-order specification language

in order to use this part constructor successfully). A proof-of-concept

implementation of this part constructor was undertaken to prove the

feasibility of both the approach (I.e., the use of an expert system) and the

tool (i.e., ART).

a. The Implementation

The implementation consists of both ART and LISP files. The
individual components are discussed below; Figure D-5 provides an overview of

the Implementation.

119

PARTS
CATALOG

> PROLOG

FSM

LISP
UTILITIES

Figure D-5. Overview of Proof-of-Concept
Implementation

PROLOG.ART: This Is an ART application file that encompasses a

bare-bones version of the AMPEE system executive. This

component assumes Initial control when the system 1s brought

up. It performs the following functions: »

(1) Verifies the validity of the user requesting AMPEE System

services
(2) Solicits Identity of the part to be constructed
(3) Verifies the existence of the part In the Ada missile parts

catalog
(4) Obtains the fixed code locations from the catalog entry

(5) Obtains the name of the file where the component Is to be

written

CATALOG.AR1: This component contains the Ada missile parts

catalog. For this Implementation, It contains only the basic

catalog schema and a schema for the Finite State Machine

schematic part. No processing 1s performed by this component.

120

« 4

~\ »\-v»>-•*".•*>•»',•-»/.•• •.•*—• v^1 ".-v" '.-u '_•- A '.'•'^ "V-1. i . J'.^1.^'.^1.^ A" ••'• •• ' 'flJlV.^L^' ,^'^?"^^^W^,^^,TO^?WWW^^ff^^P,^^^^!"'^*'^f

FSH.ART: This Is the ART file that contains the actual FSH

Constructor; It performs the following functions:

(1) Solicits user Input to construct an Instantiation of the

finite state machine part

(2) Creates a schema to store the component requirements

specified by the user

(3) Performs consistency checks and constructs Intermediate

data structures (through the Invocation of LISP routines)

(4) Generates the FSM component specified by the user

-- LFSH.LSP: This Is a LISP file that contains utilities that

construct various Intermediate data structures used In the

construction of the finite state machine component, perform

error checking of the data provided by the user, and write out

the majority of the Ada component.

b. Expert Features

The Finite Stale Machine Constructor Incorporates a number of

features (I.e., the smarts or optimizations) that contribute to the

efficiency and flexibility of the Ada code that Is produced. These features

contribute to the generation of Ada code that Is as good as that produced by

an expert Ada programmer.

The user Is provided with the expected format of the Input

data. This type of assistance makes the part usable by a wide

range of personnel.

Redundant state transitions are eliminated from the Input

(I.e., If the beginning state and ending states are the same

for two sets of transitions, then the stimuli will be combined

and only one state transition will appear). This Is one means

of preventing the Introduction of redundant code In the

component.

121

!«-V.V. ,:^:/:, .v..;.: ^ ^:v^:^ ^ .-•-?> v -'^-*"*-• ~-^N--"•!**-^o-^^^^^^

» r;\—T^^T^ •>»>«• TTfrp ;i '.f ^'..%• ^,.tl ','•''^ '.^ 'r1.'.1 •; ' " •,' '.•','.^ •'.' ''.' V1 * .'•".'T1*'" *'.'^ l" I * *.'

Checks are made for non determinism 1n the state transitions

(e.g.. If for two sets of state transitions, the beginning

states are the same and the stimuli are the same, but the

ending states are different, then a data error 1s signaled).

A decision to use a case statement or an If then else statement

1s based on the number of alternatives. Some work Is currently

1n progress to determine at what point a case statement becomes

more efficient than an If-then else statement. As yet, no

results have been obtained, but the decision point Is easily

changed.

A check Is made to determine If a stimuli does not result In a

transfer out of the present state. If a transfer does not

occur, then a re assignment of the current state will not be

made. This prevents the Introduction of extraneous code Into

the constructed component.

c. User-System Interaction

The following sections provide a sample of an Interactive session

with the system, and the output from that session (I.e., the generated

component). The compilation listing of the generated Ada component Is

provided In paragraph (3).

The scenario for this Interactive session Is as follows.

The user, desiring to build a finite stale machine

representation for missile firing, elects to use the AMPLE

System Finite State Machine Constructor lo facilitate the

Imp 1 omen tat ion.

lhe user logs in and is presented with a series of menus for

fad llty selection.

1/.

• . •- '. v _-- V l^i-i* -_ L •_ .J-.^.A. ^-%-

[s^~.vy^T^*..*uwi^i>^'^i^'jg^,rv^ •u'Bn»g'iPi'i'j

After selecting the Finite State Machine Constructor, the user

Is prompted to provide state-transition Information, I.e., the

beginning state, the stimuli that cause transitions from that

state, the ending state, and any actions associated with the

transition.

When the user has entered all the state-transition Information

associated with the FSH that he Is building, he enters 'quit1.

The Ada component Is then generated if all data checks are

passed.

123

T» V * - * * . ' V '.'^ ".^ "^ '^ W I »V '.^ ','1 ''.' ' ", » »..-.» •—- <• . >«>» 1 ' ••••!• •

1
(1) A Sample User Session

Dribbling to USERDISK3:(PALM03)FTR. LSP,1

Enter User Id: u2ü?215

Ada Missile Parts Engineering Expert Syst

1) Parts Catalog

2) Parts Identification
3) Component Const ruet ion

Please enter choice:

3

Component Construe t ion

1) Component Generation

2) Component Regeneration

Please enter choice:

1

Component Constructors

1) Finite State Machine

Please enter choice:

1

i

i

Part ID: aOOl

Revision ID: 0

Enter file name (pathname) for component: "missile.ada"

Enter Component Name: missile

Enter Initial State: s_0

Enter states and transitions as prompted below.
Events are to be entered in the following format:

(event_l event_2 ... event_n)

Actions are to be in the following format:
(<*ction_package> <action_procedure>)

If no actions are associated with the transition enter NIL

States are to be entered as symbols, e.g., state.!

Beginning State: s_0

Events: (intent_to_launch_cmd_recd)

Ending State: •_!

.•

124

---->•*-* **s* —• -f -- • -**•-> -'•-'• -> .•.••>''-'^^^'--' .V.-wVw %'•/-.' .L-\V. .;•/.-. -.._;.,. ' -•^,.kl

Action: (ap launch_countdo«m_aeq)

Beginning State: «_1

Events: (t e s t_ fa i luteal)

Ending State: s„n

Action: (ap »hutdown_abort_aeq)

Beginning State: »_i

Eventa: (al l_teats_paaaed_l)

Ending State: a_2

Action: (ap f irat_mot ion_aeq)

Beginning State: s_2

Eventa: (t e s t failure_2_
)

Error - Invalid Ada iden t i f i e r entered aa an event.
Eventa: (teat_fa i lure_2)

Ending State: a_n

Action: (ap ahutdovn_abort_aeq)

Beginning State: a_2

Eventa : (paaaed_launcher_clear_teat)

Ending State: a_3

Action: (ap f in_deploy_aeq)

Beginning State: a_3

Eventa: (all_teat_paaaes_2) r

Ending State: a„4

Action: (ap vings_out_early)

"•I inning State: a_4

Eventa: (thruat_decay_detected)

Ending State: a_5

Action: (ap ayaten_off_aeq)

125

, - . . . « • w . ' • -TJ «f v trj "" - * \ w j ii j j i ru w v wrj * . i r u ir-.> tt w w u BTU WX - r - *m ^ -" w - * - K_n «_ ».

Beginning S t a t e : qu i t

Data passed nd check
Data passed check f o r unreachable s t a t e * .
Construct ing conponent MISSILE
No app l i cab le r u l e s .
Ending run.
NIL
ART1.0 Lisp> (d r ibb l e)

126

<s- . /• / j - * v > . r . r - * wT *r ,
. - ' • A ' V f y r

I -.,.., ..
P » • • • » ' '"' vr."j'vvv JT»—»

(2) The Generated Ada Component

with AP.
package HIS5ILE it

type Statea U (S.2, S 3. S.O. S_5, S_4, S I, S_ll);
type Stinuli it (TEST.FAILURE.2, INTEWT.TC.LAUNCH.CHD.RJXD, PASSED,LAUNCHER. CLEAR.TEST, THRUST.DECAY

.DETECTED,
ALL. TESTS. PASSED. 1, TEST.FAILURE.1, ALL.TEST.PASSES.2);

function Current.State return Statte;
procedure Signal (Event I in Stimuli),
Invalid.Stituli i EXCEPTION;

end MISSILE;

package body MISSILE it
Pretent_Siate i Statet :• S.O;
r vent I St iaiul 1,
function Current,State return atatet ia

begin
return Pretent.State;

end Current.State;

procedure Signal (Event I in Stinuli) it
befein

caae Pretent.State ia
when S.O •>

if (event - INTENT.TO.LAUNCH.CMD.RECD) then
AP.LAUNCH.C01/N1DOWN_SEQ;
Pretent.State :- S_l;

elae
raiae Invalid.Stiauli;

end if;
when S_2 ->

if (event - PASSED.LAUNCHER.CLEAR.TEST) then
AH.FHl.DEPLOY.SEQ;
Present State :• S.3;

elaif (event - TEST.FAILURE.2) then
AP.SHUTXWN. ABORT. SEQ;
Pretent.State :- S.N;

else
raite Invalid. Stiauli;

end if;
when S_U •>

if (event - THRUST.DECAY.DETECTED) then
AP. SYSTEM.OFF.SEQ;
Preaent.State :• S.5;

else
raite Invalid.Stinuli;

end if;
when S. 1 •>

if (event - ALL.TESTS.PASSED.I) then
AP.FIRST.MOTION.SEQ;
Pretent.State :- S.2;

elsif (event - TEST.FAILURE.1) then
AP.SHUTDOWN.ABORT.SEQ;
Pretent.State :- S.N;

elte
raite Invalid.St iouli;

end if;
when S.3 ->

if («vent • ALL.TEST.PASSEa_2; then
AP. WINGS OUT EARLY";

127

•*£»A« *- .*». tm.••*+ *'m-''*.\^£M-ÄM^'MJ4MJ?M~ '^'.'*-'*«1\ J *- 1- «'- * *Jt- V .-.V "- V ,:.-VVS'A»>- ,<*:.;.

V* »T <* VV*"v wv w* ' - »'- r»' "*- ^ ** p''w" ^' "- ^ '-' '-*"!• ' '-* '-P "-•"T MMM^PKIM<IHHI"II|IHM ^T^^^;^^^^^^^f^W^^^y^^^^W|

Pr««tnt_St«te :- S_4;
else

t»i»e Itiv*Lid_StimuW

end if,

when others -> raiie invalid^ it imu 11;
end case;
end Signal;

end MISSILE;

128

'•-»"•^V'V •V*V'l',l>...'^''V'l^Vjt>V'L>*. '^'''* •?V-.Üfc - ^'.•'..^':Ä'-'/.-V-V-Vg'fc-' .'» .'• .'•. - --"-• l! .-IvV'-V^-Vr/'l**** -V'V-V- >VV^V V»"»l

- •%';• .v.- vv^ '.."V-TV •^.-» .'•AHLini'j'.'i.'.'|i.ti'''^1^'1 -,.'»• ywvrj'JV^vv'J.v r^.v1:** w*,*.«

(3) The Compiled Ad« Component

MISSILE

01
MÜ3]MISSILE.ADA;1

Page 1

(1)

lO-Sep-1985 08:57:44 VAX Ad« VI.

10-S«p-1985 08:43:51 USERDISK3:[

1 with AP;
2 package MISSILE i«
3 type Statei is (S_2, S_3, S_0, S_5, S_4, S_l, S_N);
4 type Stimuli is (TEST„FAlLURE_2, INTENT.T0 LAUNCH CMD RECD, PASSED.LAUNCHED.CLEAR TEST, T

ST_DECAY_DETECTED,
5 ALL_TESTS_PASSED_1, TEST_FAILURE_1, ALL_TEST_PASSES_2);
6 function Current_State return States;
7 procedure Signal (Event : in Stimuli);
8 Invalid.Stimuli : EXCEPTION;
9 end MISSILE;

X

PStCT MAP

Psext Hex Size Dec Size Name
0 00000006 6 MISSILE,.SCODE
i oooooo?o 16 MISSILE'.SCONSTANT

XADAC-I-CL.ADDED, Package specification MISSILE added to library

LIBRARY SUMMARY

USERDISX3;1 PAL':03. CAIIP. LIB]

Unit name

AP

Nodes Percent Blocks Unit kind
read read

4 40 4 Package specification

129

J ^ \r _-. -• - -- *^_
j V V • ,^>^>^VLV>XvIWrf?d\WifVNs'''iit*i''i "n ' *.l-\ • . «\V/.\\\V VvA\

• •» • • • • i , s • . • inii.ii j• iill n \u. • iv• • j •wmwjwij^^^ryypy^^P^l'py.il J • !*V^^^^^^*^^^^^^^^^^^^^

hl»IU: 10-Sep-19P5 08:57:47 VAX Ad* VI.,
Page 2

U 10-Sep-1985 08:43:51 USERDISK3:(>
M031MISSILE.ADA;1 (1)

10
11 package body KISSILE is
12 Present_State : States :• S_0;
13 Event : Stimuli;
14 function Current_State return states is
15 begin
16 return Preeent_State;
17 end Current_State;
18
19
20 procedure Signal (Event : in Stimuli) is
21 begin
22
23 case Preeent_State is
24 when S_0 ->
25 if (event •= INTENT_TO_LAUNCH_CMD RECD) then
26 AP.LAUNCH_COUNTDOWN_ SEQj
27 Preaent.State :- s/l;
28 else
29 raise Invalid^Stimuli;
30 end if;
31 when S_2 ->
32 if (event - PASSED LAUNCHER CLEAR TEST) then
33 AP.FIN_DEPLOY_SEQ;
34 Present_State :- S_3;
35 elsif (event - TEST_FAILURE_2) then
36 AP.SHUTDOWN_ABORT_SEQ;
37 Present State :- S N;
38 else
39 raise Invalid_St imuli;
40 end if;
41 when S_4 ->
42 if (event - THRUST_DECAY_DETECTED) then
43 AP. SYSTEM, 0FF_SEQ;
44 Present State :- S 5;
45 else
46 raise Invalid Stimuli;
47 end if;
48 when S_l ->
49 if (event - ALL_TESTS_PASSED,1) then
50 AP.FIRST_MOTIÖN_SEQ";

51 Presentjstate :• S_2;
52 elsif (event - TEST_FAILURE,!) then
53 AP.SHUTDOWN,AB0RT_SEQ;
54 Present State :• S N;
55 else
56 raise Invalid Stimuli,
57 end if;
58 when S,3 ->
59 if (event • ALL_TEST_PASSES,2) then
60 AP. WINGS_OUT_EARLY;
61 Present_State :• S_4;
62 else
63 raise Invalid_Stimuli;
64 end if;
65
66

130

;

i

L-S---_vV.->i:-i;v:v:A\-:vi'-i"i*•-> :^"->>io" ., *•>:>•:'.>;/ >>> vcSv v >:>v- >*.•*. •v-v-v.ivSv»\\>.">-x-ivN•:%•:%•:%v:>

^-v^'^'.v v *j * '*T"*'.^"*V- ^\,^''^"'^m''w'"^"^': y/y 777*'.—; •' '?• ",^ y "J* '.** V '.*.".* "y-yT"1*"^ T' * ' .* .- .* . " • " • l • *.i 'i? 'in «y*> '.^ y^

MISSILE 10-Sep-1985 08:57:47 VAX Ada VI.I
'«f 3 •

01 10-SeP-1985 08:43:51 USERDISK3:[i *
M03jMISSlLE.ADA;l (1) \

67 when others •> raise invalid_atinuli; .i
68 end case; . J
69 end Signal; /
70
71 end MISSILE;

PSECT MAP

Paect Hex Sise Dec Size Naae
Ü 00U00154 340 MISSILE. SCODE
1 00000004 4 MISSILE.SDATA

ZADAC-I-CL.ADDED, Package body MISSILE added to library
Corresponds to package specification MISSILE compiled 10-Sep-1985 08:57

LIBRARY SUMMARY

USE1DISK3:(PALM03.CAMP.LIB)

Unit naae Nodea Percent Blocks Unit kind
read read

MISSILE 27 100 Packes« specification
AP 10 100 10 Package specification

a

-'i
' •

j

fcj

131

^•.•••.'••.'•'-•A' -•-•-*•-•'•.V.' ^-V-^' •-" - -•_-.•''- 'w\ - ^^''-•'>.''w'^Wi.,.'*.-.V''^i.''^'i'>t3V% f^r', wV-V.V.VJV-V. i.VJiVi1,' a- '•"• V

T~7 rr-*T7. •VIJT*.-*:tf": ^-'^'jw'j *V r. *•: •>•>• • / »?r: T *T »r •.-«.' v •» T.T^ ,I '.* 'r* rJ"^".IJ"i" ' J fvra

MISSILE
Page 4

01 Ada Compilation Statistics
K03JHISSIL£.ADA;1 (1)

COMMAND QUALIFIERS

ADA/LIS MISSILE.ADA

10-Sep-1985 06:57:47 VAX Ada VI.

10-Sep-1985 08:43:51 USERDISIC3: [

i
QUALIFIERS USED

/CHECK/C0FY_SOUKCE/DEBUG«ALL/ERROR_LIMIT-30/LIST/NOMACHINE CODE
/NODIACNOSTICS/LIBRARY-ADASLIB
/N0TE_SOURCE/0KriMIZE-TIME/N0SH0W/N0SYNIAX.0NLY
/WARKINCS-CNOCOMPIUTION^NOTES,STATUS-LIST» SUPPLEMENTAL-ALL, WARNINGS-ALL, WEAK WARJUNGS-ALL)

COMPILER INTERNAL TIMING

Phase CPU Elapsed Page 1/0
seconds seconds faults count

Initialization 0.16 1.44 368 24
Parier 0.15 0.18 167 1
Stat ic aenant ics 0.16 0.89 183 6
IL generation 0.25 1.47 242 21

Segment tree 0.13 1.11 130 21
Annotate tree 0.02 0.02 11 0
Flow analysis 0.02 0.02 7 0
Linearize tree 0.07 0.31 86 0

Code generation 0.37 1.06 337 0
Optimizer 0.11 0.37 120 0
Data allocation 0.01 0.01 1 0
Generate code list 0.08 0.27 98 0
Register allocation 0.01 0.01 8 0
Peephole optimization 0.04 0.17 29 0
Write object module 0.05 0.07 35 0
DST generation 0.05 0.06 17 0

Listing generation 0.07 0.43 28 7
Compilat ion library 0.33 2.JZ1 202 69
Compiler totals 1.52 7.78 1547 129

*

COMPILATION STATISTICS

Weak warnings: 0
Warnings: 0
Errors: 0

Peak working set: 2418

Virtual pages used: 4797
Virtual pages free: 6 5203
CPU Time: 00:00:01.52
Elapsed Time: 00:00:07.78
Compilation Complete

(2802 Lines/Minute)

132

C'^'-'y/y^'^y^^^ !af*^a^!4*I*?aJlVaV*!»*^X A_,i_ t. • * »-*- *~1 *_!__*_

d. Source Code

The following sections provide the source code for the components
that comprise the proof-of-concept Implementation of the FSM Constructor.

133

(1) CATALOG.ART

This component contains the template for entries In the Ada missile softwa

parts catalog. It 1s also Intended to contain all of the catalog entries,

however, for the proof-of-concept Implementation, only one partial catalog
entry 1s provided.

134

^ ^wm*r*?xw*r**w"rrr."vv• «»•*vTr-y'* vv• •• J ww ^ WJWWr.HHJ'Miii'ijMw^vninuiin»nn\

,0*\AX (in-package *L'art-uaer)

(def-viewpoint-lev«1»)

CATALOG SCHEMA

Template for catalog entries

(defschema part-entry
(part-id)
(revision-id)
(name)
(version)
(security-claasification-part)
(security-classification-entry)
(type)
ilevel)
(class)
(inline)
(category)
(keywords)
(fixed-code-location)
(operation

(slot-how-nany multiple-values))
(verification-status)
(date-cataloged)
(developed-by)
(developed-for)
(requirement•-documentation)
(design-documentation)
(sise-source)
(eise-object)
(accuracy)
(timing-characterizations)
(hardware-dependencies)
(other-restrictions)
(cats log-units-vithed)
(withing-catalog-units)
(abstract)
(remarks)
(timestamp-last-revision))

Catalog entries for softwsre parts

(dcfecheae s99
(instance-of part-entry)
(part-id aOOl)
(revision-id 0)
(type subprogram)
(fixed-code-location "faml.ada"))

135

i^&i&ilvS^^

•%T^ '."*• T."^' ".^•" V- • v •-?;-.• ^i.-M'.^.T?rT.v.v^'.V1JT.'^v> vv',^1 g* g« F* >';^V^ '^l^'A Pi FH .•»' '•"- l> JW I* V»'.^' ^ IT.'-"'"'.'.''.^.^^^'^ ".U ">l

(2) PROLOG.ART

This component contains ART code that handles 'front-end' processing that 1s

required regardless of the facility selected by the user. It 1s from here

that control Is transferred to the selected facilities.

136

K v' v'.v.i.-. ^-^V^V^-w'^-^JLwV^-^ u"r_^\ji_"i»-*' - '^^'
»* *'*_• ".• • * * • *-* *.*"-»*.* *^ *>"^ *.*•

' •- *. '. "*"

•.' KT O.*.- »-• ÜÖ ^•\ ^>^<ä^O;

^«•••^l'V«MU^'H'«,Wl«lW^^

;#*VAX tin-package #L'art~user)

(def-viewpoint-levels)

A**-**********

PROLOG for AMPEE System

Relations

(defrelation build-response-link
(7part-id ?revision-id Tresponse-schema))

(defrelation state
(?level-l 71evel-2))

(defrelation user-id
(Tuid))

(defrelation user-verified)

(defrelation part-available
(?PI til»

Facts to link parts to schemata that will store user inputs

(deffscts initial-links
(build-response-link aOOl 0 fsm-user-responees))

Vslid users

(defschema valid-user
(haa-instances u200538 u20196 5 u203093 u207215)
(access-privileges

(slot-datatype sequence)))

Schema to keep track of which part is to be built

(defschema part-to-build
(part-id)
(revision-id)
(to-build-from) ;sequence of files from which fixed portions of eode

;in component being built will be copied
(to-build-at))

137

'—>--ivl-'i--->^^^

V.' •", ^r:9\\f\ r. »jwutifHv v • it- •/ «,- • •• v. •*' .'v IJ* •i'.iy^i'iv w • •> i't'1'in-wv^ v»',.^ . * . T'.I •vv TT^"

Clears the screen and prompts user to log in

(defrule initial ire-system
->

(call-out erase-page 1 1)
(assert (user-id -(prompt-and-resd #L*:expression

"Enter User Id: "))))

Verifies that that user code used as log-in is valid.

(defrule verify-user
(user-id ?uid)

->
(schema Tuid (inatance-of valid-user))

(assert (user-verified)))

This vill eventually be replaced by a complete menu; it currently
goea directly to the 'Component Construction' function.

(defrule vhich-function
?x <- (user-verified)

•>
(retract ?x)
(call-out erase-page 1 1)
(main-menu))

Prompts uaer for the identity of the part that he wants to construct.
At a later date it ia anticipated that the uaer will have been
provided with a liat of parts a will aelect one rather than being
prompted in this fashion.
Two rules are used to get the part id and revision id becauae with
Beta 3, the compilation resulted in the order of the prompte being
changed.

(defrule which-part-1
(state component-construction component-generation)

•>
(tcrpri)
(assert

(schema -(genaym)
(instance-of part-to-build)
(part-id -(prompt-and-read #L':exprteeion "Part ID: ")))))

138

. - \ • -J ' ' • 1%- \-\±\-\\.J - ' - ' hJawmi Aa^mmmA

(defrule which-part-2
(schema Tx (in»t»nce-of part-to-build) (part-id TPI))

•>
(tcrpri)
(assert

(schema Tx ,
(reviaion-id "(prompt-and-read #L':expreasion "Revision ID:))>))

Verifies that the part identified does indeed exist in the parts
catalog.
If the part does not exist, the user should be taken back to the
prompt for part id/revision id or be allowed to exit.

(defrule werify-e~istance
(declare (salience 100))

(achcma Tx
(instance-of part-to-build)
(part-id TPI)
(revision-id TRI))

(case
((schema Ty

(instance-of part-entry)
(part-id TPI)
(rev i s ion- id TRI))

•>
(assert (per t - svs i l ab l e TPI ?RI)))

(otherwise •>
(printout t t "Specified part does not exist in the parts catalog.")
(retract ?x))))

(defrule get-fixed-code-and-place-to-build
7x <- (part-available TPI ?RI)

(schema TY
(inatance-of part-to-build)
(part-id ?PI)
(reviaion-id TRI))

(case
((schema T

(instance-of part-entry)
(part-id TPI)
(revision-id TRI)
(fixed-code-location Tfile-names))

->
(aasert (schema TY (to—build-from Tfile-names)))))

139

r^> TgwTTVTVTV^TTTTTT^ "A',.".T,^,A"5'A".V.Vy V ^'VA" I"'.' V V -.' '.**" W v" •" *" J." •>.' ' * •'.* '•'."'•', •'"•'•"•'•'

->
(retract Tx)
(aaeert (achema ?Y (to-build-at -(prompt-aod-read #L' rexpreaiion

"Enter file name (pathname) for component: **)))))

140

' . *.* ..%*•-'% -V -N SW.s^^W^jfcTwv^V.VV.J>W^%>IV,»:>1V,V* N . - J% *. '. .N. .N -. .% .*.

v v»*w m r'j»1.••i»y ••.•••. •• • • ,». • •tf^y^ii""" • •• '.' p • • i n, •. ni|iii^y»^^p^»^WFy

(3) FSK.ART

This ART component 1s the central portion of the proof-of-concept

Implementation. It contains the code necessary to carry on a dialog with the

user to elicit requirements and construct the required Ada Implementation of

a finite state machine.

141

^L^^M^j^y^ •'-.:• -_ -' *-*'• •_"»A^

V .v . - ;v:^-^^-'L ."•_<. *.vv-^--^^. i

'• • •-• • - j .-'.- • r !*>wv V W _W'W> »_ W'W w -^, I •• |1 If 1. •••»••• • •

;#+VAX (in-package #L'art-uaer)

Finite State Machine Part Constructor

This part constructor aolicta information from the user concerning Che
specific finite state machine that is to be built* The user's input is
stored in a 'response' schema. In the prototype implementation, the user
requirements knowledge base will be updated by this 'response* schema in
order to facilitate component regeneration. Once all input ia received
from the user, the fsm component is constructed«

; Relations: Facts asserted into the knowledge base are treated as relations.
; Undeclared relations generate warnings at compile time, thua they are
; declared here.

(defrelation create-states-slot
(Ttime))

(defrelation init-st-input
(Ttime))

(defrelation prompt
(7PI 7RI 7TIME TSCH))

(defrelation get-begimiing^time)

(defrelation initial eequence)

(defrelation nd-check
(7PI ?RI TTIME))

(defrelation get-component-name
(?PI TRI TTIME))

(defrelation get-initial-state
OPI TRI TTIME))

(defrelation get-beginning-state)

(defrelation beginning-state
(TBS))

(defrelation get-eventa)

(defrelation events
(7EVENTS))

(defrelation get-ending-*tate)

(defrelation ending-atate
(TES))

(defrelation get-actiona)

(defrelation action
(7ACTIOM))

142

^;^;^^^v:l^^>:v^^v;;v:v^^>v :-;-;->-,• ^. .-.•

TT1 '^ • .^V^V»'^ ^~ • -•^•-"'- • •••• *-*-*'*• w-w-ww-w* i ^ mm ^wr*rw^^^r^^^f^*?

(defrelation error
(TERROR-TYPE))

idefrelation eheck-for-unreachable)

(defrelatior extract-eea

(?PI Til TTIHE))

(dcfrclation build-part
(TPI TR1 TTIHE))

(dcfrclation act ion-pt :kaa,ee
(Tap))

(dcfrclation beginning-etatee
(Tall-beginning-etatea))

Thia achema template ia uaed to store uacr input for the conatructioo of a
particular fan component. The information provided ia atored for future uae
(e.g., if the component conatructcd ia not aa the uaer wanted, he can sake
cbangea to hia input without having to re-enter all of it.

h

(defechema fam-uaer-reapooaea
(part-id)
(rcviaion-id)
(uaer-id)
(tiaeetamp)
(file-name)
(component-name)
(initial-atate)
(atatca)
(etate-tranaitioue))

;neme of file where component will be written
;name of component to be built

Eetabliahee a achema for the uaer'a requirementa, and aaaerte a fact to
initiate oolicitation of thoac requirementa. It ia initiated only after
verification that a part conatructor exiate for the part requeated by the
uaer.

(dcfrule eolicit-inpute-fem
(achema T

(inatance-of part-to-build)
(part-id Tpi)
(reviaion-id Tri)
(to-build-at Tfo))

(build-reeponee-link Tpi Tri fem-meer-rceponaea)

(uaer-id TOID)

Vi

->
(bind Ttime (get-uaiv*rt4'»-time))

143

'''-'«'-'' - «"-«"-'« -.v't'Jj-'.v .r^V.V '. _ •Ia>^»'-l'-V->>l/^/-^'-i>!»>^

^|iT'i'l.VT't",p" " ' " '' ' v P?T F '-' '! t'l'M.n^i'UJ• I1 »_m'i I«J imI*'*'.i1 ^^?^^^T^,y^TWT,Wfii^

(aaaert (schema "(genaym)
(mstance-of fsm-ueer-reaponees)
(part-id ?PI)
(revision-id ?RI)
(user-id ?UID)
(timestamp ?time)
(file-name 7fn)))

(inert (get-component-name TPI ?RI TTIME)))

(defrule get-component-name
Tx <- (get-component-name TPI TRI TTIME)

(acbema Tach
(inatancc-of fem-uaer-reaponeee)
(part-id TPI)
(revision-id TRI)
(timeatarap TTIME))

->
(retract Tx)
(terpri)
(bind Tcomponent-name (prompt-and-read #L':express ion

"Enter Component Name: **))
(if (symbolp ?component-name) then

(if (valid-ada-identifier Tcomponent-name) then
(aaaert

(achema Tach (component-name Tcomponent-name))
(get-initial-atate TPI TRI TTIME))

else
(printout t t "Invalid Ada identifier entered for component
(aaaert (get-component-name TPI TRI TTIME)))

tin
(printout t t "Component name must be a symbol.")
(aaaert (get-component-name TPI TRI TTIME))))

(defrule get-initial-state
Tx <- (get-initial-atate TPI TRI TTIME) fc

(achema Tach
(inatance-of fsm-user-respooses) ,\
(part-id TPI) v*
(revision-id TRI)
(timeatamp TTIME)) \

(retract Tx) V
(terpri) ^
(bind Tinitial-atate (prompt-aod-read #L'expression *

"Enter Initial State: *')) C
(if (aymbolp Tiaitia1-state) then ^,

(if (valid-ada-identifier Tinitial-atate) them J
(bind Taeq-atatt (seq$ (liat Tinitial-atate))) V
(aaaert |

(achema Tach (initial-atate Tinitial-atate) I

144 :;

-<*-'"»-•' • • ._V'!J[-V-"»lr".- - • _ _ • - . ^^.>.V*V^<A'.'«'. s'.V^Jj'-.V^.V. i \.-'1I-'^-\I-V<^"V'V-Vr/^r^r"^r ^-r^»l'"»l'^»'»".»V"Tr."-\ _-"0"»V.V.

r.-^-..^-..v^.^ . .,. ..M.^M^i • ¥T^ mmpmm^mmw^mmwmwm^^^^m^^^w^^^^m^^f

(•tatet Tseq-state))
(init-et-input 7TIME))

tin
(printout t t "Initial state must be a valid Ada identifier.")
(assert (get-initial-etate TPI TRI TTIME)))

tlac
(printout t t "Initial state must be a symbol.")
(assert (get-initial-state 7P1 TRI TTIHE))))

Initiatea State-Transition input from the user.

(defrule initiate-state-trans-input
Ta <- (init-st-input Ttime)

(scheme T
(instance-of part-to-build)
(part-id TPI)
(revieion-id TRI))

->

(schema Tech
(ioatance-of fsm-user-responses)
(part-id TPI)
(revision-id TRI)
(timestamp Ttime))

(retract Ta)
(printout t t
(printout
(printout
(terpri)
(printout
(printout
(printout
(terpri)
(printout t t "Statea arc to be entered as symbols, e.g.. atate_l")
(terpri)
(aasert

(prompt TPI TRI TTIME TSCH)
(get-beginning-state)
(ini tia1-sequence)))

"Enter statea and transitions as prompted below.")
"Events are to be entered in the following format:")
" (event. 1 «vent_2 ... event_n)")

"Actions are to be in the following format:")
" (<action_package> <action_procedure>)")
"If no actions are associated with the transition enter MIL")

Cets the beginning state for a atate-tranaition
Data and error checking ia performed on the input supplied by the uaer

(defrule get-beginning-state
fl <- (prompt TPI TRI TTIHE TSCH)
Ta <- (get-beginning-atate)

->
(retract Tx)
(terpri)
(printout t t "Beginning State:

145

•^v.lv'Lvlv Ih&t&j ^:>^:%v. v-»y_.-

K • . > •>. if ii. • i*yw:w_:*i*m>_mv<*.\mi_ L j» | ••, •;'•.••,'••. • •. i T^STVT^YTt* H '•"•t"* '•"* ""^ V '• * V* '.^'. • '. *» • •'"' '. « •.•'.'• V * '. •'. - • Wf^Wj ••

(bind ?BS (read))
(if (equalp ?BS rL'quit) then

(retract ?z)
(UMtl (nd-check ?PI ?RI TTIHE))

• lie
(if (and (symbolp TBS) (not (null TBS))) then

(if (valid-Ada-identifier TBS) then
(assert (beginning-state ?BS)

(get-events))
elfte

(printout t t "Invalid Ada identifier entered for Beginning State")
(aasert (get-beginning-state)))

elfte
(printout t t "Beginning State must be a «ymbol - i.e.. not • list")
(assert (get-beginning-»tate)))))

Gets the stimuli associated vith a state-transition

(defrule get-events
(declare (salience 100))
Tx <- (get-events)
(beginning-state T)

•>

(retract Tx)
(printout t t "Events: ")
(bind TEVENTS (read))
(if #L(lisp:listp TEVENTS) then

(if (valid-list-of-Ada-identifiers TEVENTS) then
(bind Tseq-events (aeq*$ TEVENTS))
(assert (events Tseq-events)

(get-ending-state))
else

(printout t t "Error - Invalid Ada identifier entered as an event,N)
(assert (get-events)))

else
(printout t t "Events nust be entered a« a list of symbols (e.g., (a b c))")
(aaaert (get-events))))

Obtains the ending state for a state-transition

(defrule get-ending-state
(declare (aaliencc 100))
Tx <- (get-ending-state)
(beginning-state TBS)
(prompt TFI TRI TTIHE TSCH)

(echeoa TSCH
(inatance-of fem-user-responses)
(initial-state TIS))

•>
(retract Tx)
(printout t t "Ending State: ")

146

-/*. -
\d.v':*• .*-y^'»y:.••••"• M>,/-.-, -^>^"-^'->'^'--»-^vAJ:--k>ly,''lv.vl,-l'>'.^'rAV• V» v»V»'-V.w-'.V.VAVV.V~.-*W_^UV-.>. .v-.\-w v _ v_ ^

j m ^WPjUliH^ffi.V.TWVM'l ^lA,^V^'MVM"i^U"imPViHLlTT^PJfUf,'PP

6

(bind 7ES (read))
(if (and (aymbolp YES) (not (null ?ES))) then

(if (valid-Ada-identifier ?ES) then
(assert (ending-state TES)

(get-actions))
else
(printout t t "Error - Invalid Ada identifier entered.*1)
(aasert (get-ending-state)))

else
(printout t t "Ending atate must be a symbol.")
(aasert (get-ending-state))))

i

n-f«4r.s tlA ecticr.s associate vith the transition
Tl i- rser mat specify the Ada package that contains a routine to perform the
desired action, and the name of the routine. The specification ia in the
form of a LISP list,

e.g.. (prepare.for.launch ignite.engines)

(defrule get-actions
(declare (salience 100))
Ts <- (get-action«)
(ending-state ?)

->
(retract ft)
(printout t t "Action: M)
(bind TACTtON (read))
(if #L(lisp:listp 7ACTI0N) then

(if (valid-list-of-Ada-idcntifiers TACTION) then
(bind ?aeq-action (stq*S faction))
(aaaert (action Taeq-action))

else
(printout t t "Invalid Ada identifier entered for a component of ACTION,
(assert (get-actions)))

else
(printout t t "Actions must be entered as a liat in the following form: ")
(printout t t " (<action_package> <action_routine>) or MIL")
(assert (get-actions))))

'.">

Updates the state-tranaition information vith the latest atate-transiti«
that has been provided by the user.

(defrule update-state-transitions
(prompt tPI TRI ?TIME Tsch)
Ta <- (beginning-state ?BS)
Tb <- (events TEVENTS)
Tc <- (ending-state ?ES)
Td <- (action TACTION)

'- •

(-> (bind Tlist-evcnts (list*$ TEVENTS))
(bind Tliet-action (list*) TACTION)))

147

^>^^y •V»V>VTV» *& >^;-\>; ^i^^v^viv:^

 M

!
'A

$

i
A!

(MM ;-;
(?x <- (initial-sequence)

•>

(retract Tx) ^^
(bind 7SEQST <teq*$ (litt (litt 7BS TEventt ?ES 7ACTI0N)))) W
(assert (schema ?tch (tttte-trtntitions 7SEQST))))

((tchema ?sch (state-transitions ?R))
->

(bind 7ST (litt TBS ?litt-eventt 7ES ?list-action))
(bind Tlittr (litt*$?R))
(bind ?seqst (teq*$ (redundancy-elimination 7tt ?littr)))
(modify (schema ?tch (tttte-trtntitiont Tteqtt)))))

»>
(retrtct ?t 7b 7c 7d)
(tssert (get-beginning-sttte)))

Verifies that the same stimuli applied to the ease tttte doet not result in
2 different transitiont.

(defrule check-for--nondeterminism
7x <- (nd-check 7PI 7RI 7TIHE)

(tchema 7
(insttnce-of ftm-uter-respontes)
(ptrt-id 7PI)
(revition-id 7RI)
(tinetttmp 7TINE)
(sttte-trtnsitiont 7ST)) A.

(retract 7x)
(if (signal-nondeterminitm-error (liat*$ 7ST)) then

(printout t t ***** Invalid State-Tranaition Data Entered **•**)
(printout t t ***** Unable to continue proceeiing for thia part ***")
(attert (error input-data))

elte (printout t t "Data patted nd check") - *
(attert (extract-tea 7PI 7*1 TTIME))))

Extractt state«, events, and actions from an embedded aequence and forma a
tequence for each of the three. This data it used when generating the Ada _
code for the component under conttruction. It it simpler to prepare the W
information ahead of time.

(defrule extrtct-ttttet-eventt »*J
tx <- (extract-tea 7PI 7KI 7TIME)

(schema ?tch /" >
(intttnce-of ftm-uter-rctpootet) I
(part-id 7PI) I

148

Si

t^tVL%i'-V--.\.,,-.^,»v/-V--.v,-,V-vl-,'A':---\v. . .. j >V/->--!>V'/V7^ ^y»yv:ww>^w^

•V.v.v.v.vv.v.v v \ivr v ."••' •.' *:* -.• «.• »:r -v«-* -•-'•- ^J • .•*».»v r. rj *.• y.'f^.1 '^. »*. *• *. r - r1'. t»j *•. •" PJ *. »M t1. • J f MU w r.• wjPC1

J

(revision-id ?RI)
(timestamp ?TIME)
(state-tranaitions
(states Tststes))

?R)

(assert (check-for-unreachable ?PI ?RI ?TIM£))
(retract ?x)
(bind Tlistr (list*$ TR))
(bind Tseqstatea (seq$ '*ake-statee tlistr (listS Tststes))))
(bind Tseqevents (seq$ (make-events Tlistr nil)))
(bind Tseqactione (eeq$ (make-actions Tlistr nil)))
(bind Taeqbstates (seq$ (make-batates Tlistr nil)))
(assert (action-packages Taeqactiona))
(aasert (beginning-states Tseqbstatca))
(aasert (events Tseqevents))
(modify

(scheme ?sch
(statea Taeqatates))))

i

Checks state-tranaitions for unreachable states

(defrule theck-unreachable-state
Tx <- (check-for-unreachable TPI ?RI TTIME)
(beginning-states 7BSTATES)

->

(schema T
(inatance-of fam-uaer-responses)
(part-id TPI)
(revision-id TRI)

. (timestamp TTIHE)
(initial-atate T1S)
(atate-transitions TR))

(retract Tx)
(bind Tlist-bstatea (liat*$ Tbstates))
(bind Tlistr (list*$ TR))
(bind Tno-uoreachablea (signal-unreachable-etate TIS Tlist-bstates Tliatr))
(if Tno-unreschables then

(printout t t "Data paaaed check for unreachable statea.")
(aaaert (build-part TPI TRI TTIHE))

elae
(printout t t N*** Invalid State-Tranaitioo Data Entered ***••)
(printout t t "Unreachable state detected in fsm: " Tno-unrcachables)
(aaaert (error input-data))))

s

Generates the FSM component specified by the user

(defrule build-fsm
(not (error T))
Ta <- (build-part TPI TRI TTIME)

149

•>-:.^^t-.t\ '.'i.^.'i'.i.V..';.V.V.';.',',V • * •* k • - • ^^

V

Tx <- (action-package» Tact ions)
Ty <- (events Tevents)
?i <- (beginning-states Tbatates)

(schema Tsch
(instance-of fsm-user-responses)
(part-id TPI)
(revision-id ?RI)
(timestamp ?TIME)
(initial-state ?IS)
(file-name Tfile-name)
(component-name ?CN)
(states TSTATES)
(state-transitions ?ST))

(schema ?b
(instancc-of part-to-build)
(part-id ?PI)
(rcvision-id TRI)
(to-build-fron Tfrom))

i>

(printout t t "Constructing component ** TCN)

(bind Toutput #L(open Tfile-name :direction :output
:if-exists :nev-version
:i f-dots-not-exist :crtatt))

(vrite-fsn-header Toutput (liatS Tactiona) Ten (Hat5 Tstates) (iistS Teventa) Tie)

(bind ?input #L(open Tfrom :dircction :input))
(read-loop ?input Toutput)

(vrite-selection-code Toutput (list$ Tbstates) (list*$ T8T))

(princ " end Signal;'* Toutput)
(terpri Toutput)
(terpri Toutput)

(princ "end • Toutput)
(print Ten Toutput)
(princ *';" Toutput)
(terpri Toutput)

(close Toutput)

(retract ffl Ty Tx Ta Tb))

150

•- L.%

itv.« v-V»vÜ^Mr^ -lr.0»%V •L'/^I^'M ifldafrjfr^klau^ ^"•^•^'•1>VCm'-V-'o-^> »S VgLvVaVi ^ A>1 "-•-»*-%'!•'EV-v-*- V-v*"> -• -•.-•>-% •."»• jwi.". -

r_"\7V TVT7 .T.Tr* -^s v* '/* T*v» ir*k»-^ V\.T»r-¥ " > •»-«-* '-*Tjir^ r.* -^

(4) LFSH.LSP

This component contains the LISP utilities. Many of these routines are quite

general, and can be used by other functions within the AMPEE system.

151

3Lb • . . .'» -'» _'- ^ • -V . V «-••-•• v. - -- * • « -V« '-A " -A. '•* . -A •-* -f ^'- -' -

~ ^-T-V-, .• -v'.-' - ••••»••••• • • s •' —e S • PM P P^FT^PT^^Fy^^^^^^^^^^

External routine to clear the screen - DEC extension to Common Lisp

(define-externsI-rout ine
(erase-page :image-name "acrehr"

:entry-point "lib$era»e_page'
:check-etatus-return t)

(line :lisp-type integer
:vax-type :vord)

(col :lisp-type integer
:vsx-type :word))

Name: read-loop
Alpha * beta must be bound to stream names
Processing: This routine reads from stream 'alpha' and vritts to stream

'beta'» The input atream ia closed after end-of-file is reached, but it
ia left to the calling rountine to close the output stream.

(defun read-loop (alpha beta)'
(cond ((vrite-line (read-line alpha nil) beta) (read-loop alpha beta))

(t (close alpha))))

Name: write-event-or-list
Writes disjunction of event elements in 'liste' to 'output-strei
Example: liste :- (a b c)

output: (event a) or (event b) or (event c)

(defun vrite-event-or-list (output-stream list« line-length)
(cond ((> (length liste) 0)

(setq line-length (• line-length
(• 14 (length (string (car liste))))))

(cond ((> line-length 119)
(terpri output-stream)
(princ " M output-stream)
(aetq line-length 6))

(T nil)))

(T nil))

(cond ((> (length liste) 1) (princ "(event • " output-stream)
(princ (car liste) output-stream)
(princ ") or " output-stream)
(write-eveot-or-list output-stream

(edr liste)
line-length))

(t (princ "(event • " output-stream)
(princ (car liste) output-stream)
(princ H)H output-stream))))

152

kdmml
•J>j&&>« v-*"-* - ' • ...-.v^-V^-V-ä-.V •r -• -•--• *- ̂ a^JJ' »VAV) *>:.\>v .*..•..-• -s..

Name: write-alteration-liat .
Write* disjunction of elements in 'liste' to output-stream with
the alteration symbol instead of 'or*
Example: liste :- (a b c)

output: a I b I c

(defun write-aIteration-list (output-stream liste line-length)
(cond ((> (length liste) 0)

(setq line-length <• line-length . . . *\\\\\
(• 3 (length (string (car Hate))))))

(cond ((> line-length 119)
(terpri output-atream)
(princ " " output-atream)
(setq line-length 6))

(T nil)))

(T nil))

icond ((> (length l i s t e) 1) (princ (car l i s t e) output-stream)
(princ " I " output-stream)
(write-aIteration-list output-atream

(cdr liste)
line-length))

(t (princ (car liste) output-stream))))

; Name: write-comma-list
; Write* 'cot«a l i s t ' of elements in LISTE to OUTPUT-STREAM
; Example: LISTE : • (a b c)
; OUTPUT: a. b, c

(defun write-conma-liat (output-»tream l i a t e l ine - l ength)
; firat decide if output ahould be written on current line or if •
; linefeed ia needed.

(cond ((> (length licte) 0)
(*etq line-length (• line-length

(• 2 (length (*trxng (car U*te)))))/
(cond ((> line-length 119)

(terpri output-ctream)
(princ " " output-*tream)
(setq line-length 6))

(T nil)))
(T nil))

(cond ((> (length l i * t e) 1) (princ (car l i a t e) output-atream)
(princ " output-atream)
(write-comma-liat output-*tream

(cdr l i s t e)
l ine - l ength))

(t (princ (csr liste) output-stresm))))

Name: make-states
extracts the ititti frcm the embedoed lists of state-transitions (i.e..

153

forms t liat of all of the states found in the input data. The list ia
uaed to declare an enumeration data type in the Ada component being
n a n a r a t c H . generated.

SEQ i s in the form: ((BS (events) ES (ac t ion)) . . .)
ST/TTS i s in t i e f o n c (R! S2 . . . Sn)

(defur. make-states (seq Gtates)
(cond ((> (length seq) C)

(setq states (union
(remove-duplicate* (liat (caar seq) (caddar seq)))
states))

(make-states (cdr seq) states))
(t state*/))

Name: make-bstates
Extracts only the beginning states from the embedded lists of
state-transitions; SEQ is of the same forti as above

(defun make-batates (seq batatas)
(cond ((> (length aeq) 0)

(setq bstates (union (list (caar aeq)) bstatca))
(make-bstates (cdr aeq) bstatea))

(T bstates)))

Name: make-events
Extracts a l l of the events from the embedded l i s t s of *tate- tran*i t ioa*

(i . e . , i t forms a l i s t of a l l eventa found in the input data provided by
the uaer).

SEQ ia of the aarne form as above
EVENTS ia in the form: (El E2 . . . En)

(defun make-events (seq events)
(cond ((null events) (setq eventa (cadar acq))

(make-events (cdr seq) events))
((> (length seq) 0) (setq events (union (cadar aeq) event*))

(make-events (cdr aeq) eventa))
(t events)))

Nsme: make-actions
Extracta all of the action package* from the embedded li*t* of atate-tranai-
tions; if the action is NIL, it is not added to liat of action*. The
action* are WITHed into the Ada component that ia to be generated.

SEQ i* the *ame form a* above.
ACTIONS i* of the form: (Al A2 ... An)

(defun make-actions (seq actions)
(cond ((and (null (car (last (car aeq)))) (> (length aeq) 0))

(make-actions (cdr aeq) action*))

154

*•• *^ ^ •* •* ^ -••*'•"•—— -^_^_ r—r-
""• ' ,!• ,.. , m „ ^,1 ^My , i , , M „,,, ,, u , t « j «y ,T ,-. , , . tn9p

((null actions) (eetq actions (lilt (caar (late (car atq))))>
(make-actions (cdr seq) action»))

((> (length seq) 0) (tttq actions (union (list (caar (last (car aaq)))) aCtitfas))
(•akc-actions (cdr saq) actions))

(T actions)))

'

Bast: vrite-fem-header
Vritee the initial portion of Ada code for the fan part
OUTPUT-STREAM: Hue of output streea
WITH-ACTION List of p«ck«gc• to be VITHcd into the Ada component that ia

under construction. It is of the for» (Al A2 ... An)
CM: The name of the component under construction. This eaiat be a valid Ada

identifier
STATES List of states used In declaration of enumeration data type

. representing all possible states.
EVENTS: List of events used in the declaration of enumeration data type

representing all possible events.
IS: Initial ststc

(defue vrite-fem-header (output-stream vith-actiona en states events ia)
(cood ((> (length W1TH-ACTI0NS) 1)

(princ "with " output-stream)
(vritc-cemma-liet 0»JTPuT-«TtEAM VIM-ACTIONS 5)
(princ *';" output-stream))

((and (- (length VITM-ACTIONS) 1)
(not (equalp (car VITH-ACTIONS) nil)))

(princ Mvith • OUTPUT-ST*EAM)
(princ (car VITH-ACTIONS) OUTPUT-STREAM)
(princ **," output-stream))

(T nil))

(terpri output-stream)

princ "package • OUTPUT-STREAM)
princ CM OUTPUT-STREAK)
princ B is" OUTPUT-STREAM)
terpri OUTPUT-STREAM)

princ • type States is (M OUTPUT-STREAM)
vrite-comma-list OUTPUT-STREAM STATES 18)
princ ");" OUTPUT-STREAM)
terpri OUTPUT-STREAM)

princ • type Stimuli is (" OUTPUT-STREAM)
vrite-cosms-Ust OUTPUT-STREAM EVENTS 19)
princ ");* OUTPUT-STREAM)
terpri OUTPUT-STREAM)

princ " function Current State return Statte;" OUTPUT-STREAM)
terpri OUTPUT-STKEAH)
princ " procedure Signal (Event : in Stimuli);" OUTPUT-STREAM)
terpri OUTPUT-STREAM)

princ " Invalid St imili
terpri OUTPUT-STREAM)

EXCEPTION;" OUTPUT-STREAM)

155

L _. A ^••v'^'^-^iv,: '^•,VkS^'„-^-^w,\,> iViv,,' \; „y^/f ;.-^ v^ \L\r- -'^••',\i:»\;--i>; /•;.;-;;•-•: ••:
•— «-->»•

T ^~r~ v -.—»—*

(princ "end " OUTPUT-STREAM)
(princ CN OUTPUT-STREAM)
(princ V OUTPUT-STREAM)
(terpri OUTPUT-STREAK)
(terpri OUTPUT-STREAM)

(princ "package body "
(princ CN
(princ • la "
(terpri OUTPUT-STREAM)

OUTPUT-STREAM)
OUTPUT-STREAK*
OUTPUT-STREAM;

(princ " Preeent.State : States
(princ IS OUTPUT-STREAM)
(princ ";" OUTPUT-STREAM)
(terpri OUTPUT-STREAM))

* OUTPUT-STREAM)

Name: vrite-eelection-code .
Determines whether the fsm component should be written vitb a
'case' statement or with an 'if-then-elae'; the crittria ia the
number of atatea that were specified (i.e.* tbe length of STATES).

(defun write-aelection-code (output-stream ststes state-traneitiona)
(cond ((> (length statea) 2)

(write-atate-caee output-stream ststes stste-trensitioos))

((and (<- (length atatea) 2) (> (length atatea) 0))
(write-state-if-eleif output-atream atatea etate-tranaitiooa))

I

(T 'ERROR)))

i

Name: write-state-caae
Processes the use of a 'caae* statement for the major state selection
criteria (baaed on total number of atataa)
OUTPUT-STREAM: the name of the output atream
STATES: A liat of all 'beginning' atatea
STATE-TRANSITIONS: A liat of all etate-tranaitiooa entered by the uatr

1
(defun write-state-caae (output-stream atatta atata-tranaitiona)

(princ " -ase Preaent.State ia " output-stream)
(terpri output-atream)

(loop
(setq state (car ststes))
(princ *' whan " output-atraaa)
(princ atate output-atream)
(princ " •>" output-atream)
(tarpri output-atream)

(aetq atate-i-tranaitiona
(make-state-tranaitiona atate '() atata-tranaitiona)) I

156

----- «--«-**-•-»- •«--•«-' .-• ^ V. .- "'*- "—'V/'.^-'- - ..t» - > l".-. V- V. V. -, . i'^^_ V. - -'--'^

T">VvrTrT^j^r^w^T^i'r^w»trkri»o^F»avLfM'i'f'F'vvvM'>v"i'f lyy^ jwm •• • yjgijyj|pip, mj p Jljminiuynpi

(proceii-tranaition» output-itrean ttate-i-tr«n»ition»J

(setq statt» (cdr states))

(cood ((- (length statee) 0) (return))
(T nil)))

(terpri output-stream)
(ttrpri output-stream)

(princ " when others -> raise iovtLid_stimuli;M output-streaa)
(terpri output-stream)
(princ " end case;*' output-stream)
(terpri output-stream))

Name: vrite-state-if-elsif .
Processes the use of an 'if-then-el»e' statement for the 'state'
selection criteria (based on the total number of states)

(defun vrite-state-if-elsif (output-stream states state-transitions)
(princ " If • output-stream)

;;; LOOP
(loop

(setq state (car states))
(princ "prescnt_state - " output-stream)
(princ state output-atrtam)
(princ " then" output-stream)
(terpri output-stream)

(setq state-i-transitions
(makc-state-transitions state *() state-transitions))

(procesa-tranaitiona output-atream atate-i-transitiona)

(setq states (cdr atatea))

(cood ((- (length atates) 0) (return))
(T (terpri output-atream)

(princ " elsif " output-stream))))
;;; END LOOP

(princ ** else " output-streaa)
(terpri output-atreaa)
(princ " raise Invalid_8tiauli;" output-streaa)

(terpri output-streaa)
(princ " end if;*' output-streaa)
(ttrpri output-streaa))

; Naae: aake-atate-tranaitiona

157

^/^/V^?^^>^

'."•^— "—". •-
,-v.„.,.... ,_. , •" -.- T. —F

8

\T'•>",••"'T'.T^.1 ";i -J^v«v• /^-'/v"vpr^\-t -l \Trw'.^"l^ VV VTI VP711 V Ü* l*» ^ W^ EP» I

is
s

Extracts one state-transition set from the entire set of state-transitions.
For a given state» this routine makes a list whose car is that state and
whose cdr is a list of stimuli, transitions, and aaaociated actions that
originate at 'STATE*.

STATE: A single initial state; all tranisitions that begin with thia «täte
will be found

ONE-STATE: The set of transitions associated with a particular state; it ia
in the following form:
(STATE (<(event_listl) ESI (actionsl)) ((event_list2) ES2 (actions2)) ...)
When passed in, this variable should be a null liat; it is then initialized
to a list containing the value of "STATE".

STATE-TRANSITIONS: In the form ahovrn below:
((sO (event_listO) esO aO)) (si (event, listl) esl al) ...)

(defun make-stste-transitions (stste one-state state-transitions)
(cond ((and (> (length state-transitions) 0)

(equal (caar state-transitions) state))
(setq one-state (append one-state (liat (cdar atate-transitions))))
(make-state-transitions state one-state (cdr state-transitions)))

((> (length state-transitions) 0)
(make-state-transitions state one-state (cdr state-transitions)))

(T (append (list state) one-atate))))

Name: process-trsnsitions

(defun process-trsnsitions (output-stream state-i-transitions)
(cond ((> (length (cdr state-i-tranaitiona)) 2)

(write-event-case output-stream state-i-transitions))

((> (length (cdr state-i-transitiona)) 0)
(write-event-if-elsif output-stream atate-i-trsnsitioos))

(T 'ERROR)))

Name: write-event-case
Processes the use of a 'case' statement for the «vents; i.e., if there art

multiple conditions thst cauae transition, the total number will determine
whether they will be handled with a 'case' statement or an 'if-then-else'

OUTPUT-STREAM: The name of the output-stream
STATE-1-TRANSITIONS: The aet of transitions aaaociated with a particular
atate; this is obtsined vis the 'HAKE-STATE-TRANSITIONS' function

Internal variables:
STATE: A beginning atate (for a atate tranaition)
TRANSITIONS: The set of all tranaitiona (stimuli, ending atate, and

associated actions) associated with 'STATE'
CASE-I: One particular transition associated with 'STATE' (it conaiata of

the following: ((event, liat) ending_state actions)

L

158

'•..•.- L'F -.v.i. <V'Av'_.% >. ..V^-. 1
- "- •**• --^ >-'•»--• '• i-i'-1 •• awaOl --- -v ^y ..-v.-» ..-. .'-•.^". i .--~_» ^A„

V "^."T"*.' .« IP/'.«. V ».« • * • P T ^ I PTl • F • 1 • 1 ^ V" v'\ '•-•^•^l^•^*l•^TlT*v'*^^^^^^^,^.pvl^v^.r^^^'^••"^^•r^, in.'vwtj'r^

(defun vrite-event-csse (output-stream siate-i-transitions)
(prioc " case Event is " output-stream)
(ttrpri output-stream)
(setq state (car stste-i-trsnsitions))

(setq tranaitiona (cdr state-i-transitions))

(loop
(aetq case-i (car transitions))
(princ " " output-stream)
(write-caee-atandard output-stream (car caae-i))

(fasvaction-update output-stream state caae-i)

(aetq transitions (cdr transitions))
(cond ((- (length tranaitiona) 0) (return))

(T nil)))

(princ " when others -> raise Invalid.Stimuli;" output-stream)
(terpri output-stream)
(princ " end case;" output-stream)
(terpri output-stream)).

; Name: vrite-case-standard
• •""••"••-••••• ••-• •-•••---• • n • i i rir.--« •• i••BI•••

(defun write-case-standard (output-stream case-of)
(princ " when " output-stresm)
(cond ((> (length caae-of) 1)

(write-altcration-liet output-stream caae-of ?))

(T (princ (car case-of) output-stream)))

(princ " ->M output-stream)
(terpri output-stream))

Name: vrite-event-if-eleif
Processes the use of an *if-then-else' statement for handling
multiple events that cause the same transition

(defun write-event-if-elslf (output-stream »ute-i-transitions)
(aetq state (car atate-i-tranaitiona))
(setq transitions (cdr atate-i-tranaitiona))

(princ if " output-stream)

(loop
(aetq caac-i (car transitions))
(cond ((> (length (car case-i)) 1)

(writ«-event-or-liat output-stream (car case-i) 11))
(T (princ "(event - " output-stream)

(princ (caar caae-i) output-stresm)
(princ ")" output-stream)))

159

-;> ^ -^ ~> j»,--- .-• .' '-e -« -• v*.V-vV.\^ -%\a>_\T v
•"aI-i tllllll IIJIH* • -*• -* -*• *L^^— .•^>^>^^>>i^>>:;^

lyJ TB-* mß M "J » • ^F-V.^"* "JTVJFJ WfJ P.' r; wvj PJ t \, \> •, \sn • vWII • UP V « V '!»» « V '." ••"•A*' .tW If Iff If W'T •JSJP*W»»*"JJ "jiu^.v«if

(princ " then" output-stream)
(terpri output-stream)

(fsm-action-update output-stream state case-i)

(setq tranaitions (cdr transitions))
(cond ((- (length transitions) 0)

(princ " else" output-stream)
(terpri output-stream)
(princ " raise lnvalid_Stinuli," output-stream)
(terpri output-stream)
(return))

(T (princ " elsif " output-strtsm))))

(princ " end if;" output-stream)
(terpri output-stream))

Name: f sm-ac t i on -upda t e
Processing: Writes the Ada code to (1) call the routines that perform the
actions associated vith the transition, and (2) update the current state.
Note that the current state is not updated if the stimuli does not result in
an actual change in atate.

(defun fsm-action-update (output-stream state case-i)
(setq action-i (caddr case-i))
(cond ((not (null action-i))

(princ " " output-atream)
(princ (string-append (car action-i) "." (cadr action-i)) output-atream)
(princ ";" output-atream)
(terpri output-atream))

(T oil))

(cond ((equalp atate (cadr caae-i)) nil)
(T (princ " Present.State :• " output-stream)

(princ (cadr case-i) output-streai-)
(princ ";" output-etretti?
(terpri output-strean)))

(cond ((and (null action-i) (equrlp state (cadr ces*-i)))
(princ M ROLL:" output-streeo)
(terpri out put-stress.))

(T nil)))

Kane: si£,no l-riomVtcn.ini sn-error
Frocessing; This routine determines if there exist* tv<> sets of transitions

MC] tK't lie IfllilfeiPt Rtr>te for both arc- the sat«*» tl.i tfasttf% Mate fui
ci»c!t lrat»lllcf 1» «'if JVn-M» 1*1 tl»j l-evc ft lfast one at it «• 1 i in roe-ton
i.e., (I looks for situation* vhere the seue stiiuli at a tiven state
results in trsnsitions to 2 different states.

ST is the collection of state-tranaitions input by the user

160

I

'<«*&&& -JCvCV ^i^L^^i^^^i-^vüi>i-.ü *a_-"<LkV»"»V Atv^Af>

W TOTO^TOTT'W JS A VP.'^J J v/i.", -\ ITJ --,1 .•.' -• rr - w v—• ' " ' » TT I .• F I.» - • I! _• ,• ,J J | p, y| ,J , p , p|, p,,r |

Cdefun signa 1-nondete;uiinism-error (ST)
(aetq error nil)
(aetq state (cur at))
(•etq ending-state Ccaddar at))
(•Ctq event-aeq (cadar it))
(«etq action (car (cddar at)))
(actq reuae-at (cdr at))
(actq nev-et '())

;LOOP
(loop

(cond

if the beginning atatea and ending atatea are the atme
then proceed by getting the next state-transition (don't Deed to
examine the stimuli for thia condition)

((and (> (length reuae-at) 0)
(equal atate (caar reuae-at))
(equal ending-state (caddar reuae-at)))

(cond
((list-equal action (car (cdddar reuae-at)))

(aetq reuae-at (cdr reuae-at)))
(T (aetq error T)

(return))))

if the beginning atatea are the same, but tbe ending atatea are
different, and the tvo transitions have atinuli in c owe on

then tignAl an error

((and (> (length reuae-at) 0)
(equal atate (caar reuae-at))
(not (equal ending-atate (caddar reuae-at)))
(not (null (interaection event-aeq (cadar reuse-st)))))

(aetq error T)
(return))

if there are no sore atate-tranaitiona to examine
then exit the loop

((- (length reuae-at) 0)
(return))

otherwise
add the atate tranaition juat looked at to nev-st
proceed with the examination of the next state-transition in the

list reuae-at

(T (aetq new-at (append (liat (car reuae-at)) nev-at))
(aetq reuae-at (cdr reuae-at)))))

;EMD LOOP

(cond
((equal error T) error)

((> (length at) 1)

161

-^«L •j ••-*•_• •-••-»• s* s" -,* V «_* * %." «v* *• v* * *. "% •*» -\ •*- »"..«•' «fc «* .

(setq at new-st)
(signal-nondetenninism-error »t))

(1 NIL)))

Name: redundancy-elimination
Processing: As the user enters a atate-tranaition, thia routine elininatea
the following redundancy:
if (bsO - bsl) and (esO - esl) and (actionaO • actional)
then event-seq " (event-seqO + event-aeql)

(defun redundancy-elimination (one-atate-tranaition aeq-of-atate-tranaitiona)
(aetq beginning-state (car one-atate-tranaition))
Xaetq event-seq (cadr one-atate-tranaition))
(aetq ending-atate (caddr one-atate-tranaition))
(aetq action (car (cdddr one-atate-tranaition)))
(aetq new-st '())

;LOOP
(loop

(cond
((and (> (length aeq-of-atate-tranaitiona) 0)

(equal beginning-atate (caar aeq-of-atate-tranaitiona))
(equal ending-atate (caddar aeq-of-atate-tranaitiona)))

(aetq event-seq
(remove-duplicates

(append event-aeq (cadar aeq-of-atate-tranaitiona))))
(aetq seq-of-atate-tranaitiona (cdr aeq-of-atate-tranaitiona)))

((- (length aeq-of-state-tranaitiona) 0)
(return (append #

(list (liat beginning-atate event-aeq ending-atate action))
new-st)))

;END LOOP

(T (setq new-at (append (liat (car aeq-of-atate-tranaitiona)) Mvlt))
(aetq seq-of-atate-tranaitiona (cdr aeq-of-atate-tranaitiona))))))

; Name: l i s t - e q u a l
; Procesaing: Given two l ia t a, determinea if they are equal. Teat-elmanta la
; cal led to check the l i a ta element by element.

(defun list-equal (A B)
(cond

((not (" (length A) (length B))) NIL)

(T (test -e lements A B))))

162

'.V.pJ.V,T»V*.TPJrV. T y.'^'»V *-' r. r.»»fcrv7u;v» •_«f7•,• •_ IJ• •;i» •.• 1 •. •.• >_•. 1 T•,">p-i : »y •»• «ww 1 » .• i• ;i fy^y ii_mit.Rj.il. II^IJ

(defun test-elements (A B)
(cond

((and (> (length A) 0)
(equal (car A) (car B)))

(test-elements (cdr A) (cdr B)))

((- (Ungth A) 0) T)

(T NIL)))

Naae: ligna l-unrenchable-itate
Output: return« the unreachable state if one is found» otherwise returns T

defun signal-unreachable-atate (initial-state bstates state-transitions)
(aetq error nil)
(setq bs (car bstates))
(aetq reuse-st state-transitions).

; LOOP
(loop

(setq single-st (car reuse-st))
(setq reuse-st (cdr reuse-at))
(cond

if beginning state is the initial state then don't look for
transitions into it

((equslp bs initial-state)
(return nil))

if the beginning state - the ending state of some other state
transition, and the beginning state of that transition is not
iirf as bs, then there is a transition into bs and it is not
unreachable

((and (equalp (caddr aingle-at) ba)
(not (equalp (car single-st) bs)))

(return nil))

if all state-tranaitions have been checked, but no tranaitiona
have been found into the state, theo it is unreachable

((eaual (length reuse-st) 0)
(aetq error T)
(return error))

(T oil)))
.END LOOP

(cond

163

^_^_ v^.'---'^.w-y«: ._.-.-*>
SM - •-'- •-*- - - na ^

^.V.V."

(error bs)

((> (length batates) 1)
(signal-unreachable-state initial-state

(cdr batatea)
atate-tranaitions))

(T T)))

Name: valid-list-of-Ada-identifiera
Inputs: liat of identifier» to be checked for validity «a Ada identifier»
Proceaaing: Each element of the liat ia tested for validity aa a valid

Ada identifier
Output«: T if each clement of the liat ia a valid Ada identifier;

Nil otherwise

(defun valid-liet-of-Ada-identifiera (liet-of-identifiere)
(cond ((and (> (length liat-of-identifiera) 0)

(valid-Ada-identifier (car liat-of-identifiera)))
(valid-list-of-Ada-identifiers (cdr liat-of-identifiera)))

((« (length liat-of-identifiera) 0) T)

(T nil)))

Name: valid-Ada-identifier
lnputa: An symbol that ia to be teated «a a valid Ada identifier
Proceaaing: The symbol ia firat 'exploded' to form a liat of each of the

conatituent elements of the symbol, e.g., compute_north_velocity becomes
(«c» "0»' "m» "p» ••„•' »t» »e» mj **_!• •«_ M li-.lt »in II ll *•..•• •• —" Mill •'_"

,11 M , tl n. II l)„H c i" -t" "'y").
After exploding the symbol, varioua teata are applied to determine if it
conforms to the requirements for a valid Ada identifier.

Outputs: T if the symbol represents a valid Ada identifier
NIL otherwise

defun valid-Ada-identifier (identifier)
(aetq character» '("AM "B" "C" "DM "EM MF" MC" "H" "I" BJ* "I" V "MM "IT

"Q" *• p >• "r\" "U" "c" *>TM "ll" "V" "W" "X" **V** M7"))

(aetq numbera 'CO" 1m M2" "3" "4" -5" "6" ',7,, "8" *9M))

(aetq list-identifier (explode identifier))

(cond ((member (car list-identifier) characters :test #'equ«lp)
(parae-identifier (cdr list-identifier) characters numbera))

(T NIL)))

164

A*V^%<V>X;^

. '. r. -.•.".<""*.* ".* '»* "-v *.* T1" T^T^ -•.."-• v V" -.^v* '-•«• '.•« '.-*' ^'. ^ •• -.-I '•. •. .T< ^' - - »r • • »r v »• *• •.• r •• • • s»mwmmymmmm»m|smmmmmmmmmmmmmmmj

; Name: parse-identifier
; Inputs:
; list-identifier: a lilt sad« up of the constituent elements of the
; identifier (all elements must be in the same order as in the
; original symbol
; characters: a list consisting of all ilpha charactcra (order is not
; important)
; numbers: a list consisting of the numbers from 0 to 9 (order is not
; important)

(defun parse-identifier (list-identifier charactera numbers)
(cond ((null list-identifier) T)

((member (csr list-identifier) (union characters numbers)
:test f'equalp)

(parse-identifier (cdr list-identifier) characters numbers))

((equalp (car list-identifier) "_")
(cond ((member (cadr list-identifier)

(union chsracters numbers) :test #'equalp)
(parse-identifier (eddr list-identifier)

charactera numbers))

(T nil)))

((equalp (car list-identifier) "•")
(cond ((member (cadr list-identifier) characters :test #*equalp)

(parse-identifier (eddr list-identifier)
characters numbers))

(T nil)))

(T oil)))

Name: explode
Inputs: A symbol that is to be transformed into a list of its consituent

elements
Outputs: A list of the elements (in the same order as they appear in the

identifier) that comprise the identifier. Duplicates are not removed as
they are significant to proper parsing.

(defun explode (identifier)
(cond ((> (length (string identifier)) 1)

(make-identifier-liat (string identifier)
*()
(length (string identifier))))

((- (length (string identifier)) 1)
(list (string identifier)))

(T MIL)))

165

V*.

JsV - v. -:^i. t", «*.' >•-';.'.'. J^: • •--•-« - •

T\ "V ^% V» V* T» \~w T~» V \ v; .vr. '.^^.•--•V» -> •. - » - . ' IT

I

Name: make-identifier-list
Inputs:

string-identifier: the string repreaentation of the original identifier
list-identifier: the liat repreaentation of string-ldentifler
index: used to index elements in the string in order to break the« out

separately in the list

(defun mske-identifier-list (string-identifier list-identifier index)
(setq list-identifier

(append (list (subseq string-identifier (- index 1) index))
list-identifier))

(cond ((> index 1)
(aetq index (- index 1))
(make-identifier-list string-identiKer

list-identifier
index))

(T list-identifier)))

I
Name: msin-menu
Processing: This routine cleara the screen, established menu entries for

the AHPEE System main menu» and calls routines to display that menu. The
users response is processed. If an unimplemented feature ia eelected, th«
routine is called again.

Output: The menu ia displayed

(defun main-menu ()
(call-out erase-page 11)

(setq psth '(lAda Missile Parta Engineering Expert Systeml))

(setq meou_list (add_numbers '((iParte Catslogl)
(iParta Identification!)
((Component Construction!))))

(aetq anever (menu_read path menu_list ail nil))

(cond ((equalp (car anaver) "iParts Catalog!)
(terpri)
(pprint "The Parts Catalog facility ia mot yet available.")
(pprint "Please hit 'return' to continue.H)
(read-line)
(terpri)
(main-menu))

((equalp (car anaver) 'IParts Identification!)
(terpri)
(pprint HThe Parts Identification facility is not yet available.")
(pprint "Pleaae hit 'return' to continue.H)
(read-line)

166

--.

S5 s i
m
73

rlviv^v/.v^-'^-Iy^*^ :-^^- '- •'-* ."* A
faJÜJ ̂

si

(ttrpri)
(main-menu))

((equalp (ear answer) 'IComponent Construction I)
(eon*truction-menu))

(T nil)))

Name: construction-menu
Processing: Ihia routine diaplaya the menu for conatructa and displays the
•enu for the Component Construction faciltiy of the AKPEE Syatea.
Output: The aenu is displayed

(defun construction-menu ()
(call-out eraae-page 1 1)

(setq path '(IComponeot Construction!))

(aetq menu liat (add_numbera '(((Component Cenerationl)
(I Component Regeneration!))))

(aetq answer (menu—read path menu_liat nil ail))

(cood ((equalp (ear answer) "IComponent Cenerationl)
(part-conatructor-menu))

((equalp (car anawer) 'IComponent Regeneration I)
(terpri) ..
(pprint "The Component Regeneration facility ia not yet available. I
(pprint "Please hit 'return' to continue.")
(read-line)
(terpri)
(conatruction-menu))

(T nil)))

Name: part-constructor-menu ()
Processing: This routine conatructs and diaplaya a menu for the P»rt
constructors that comprise the AMPEE System Component Generation facility.
Output: The menu ia displayed. ____________________

(defun part-constructor-menu ()
(call-out erase-page 1 1)

(aetq path '(IComponent ConatructorsI))

(aetq menu.liat (add_numbera '((iFinite State Hachinel))))

(aetq answer (menu_read path menu_liat nil nil))

(cond ((equalp (ear answer) 'IFinite State Hachinel)

167

wmammamam • v » w * - • . • - .- i» -•* JI - > -%.» v . •r «r_ «r. * . w • * - ».r *.* > i i v - - "• • . • « *;« -

i

(assert
(state component-construction component-generation)))

(T nil)))

168

L' t \ . • V < - A -

.,..,. ^.. .^ «,••_• .- ,,,.,..,-,-,-, ,-«•.•,-,-,- ,„, ,i ,, I j.n i-rt-i; ji i»n •• j^f >,'f F*VU»I • V W.» V.««.'V.*'.**'

REFERENCES

[1] Lanergan, Robert G., and Denis K. Ougan, "A Successful Approach to

Managing, Developing, and Maintaining Software", IEEE8? Trends and

Applications: Advances In Information Technology, 1982.

[2] Lanergan, Robert G., and Denis K. Dugan, "Software Engineering with

Reusable Designs and Code", IEEE 1981 Compcon Fall, pp 296-303.

[3] The Hartford Insurance Group, The Productivity Challenge, March

1982.

[4] The Hartford Insurance Group, The Productivity Challenge II, March

1983.

(5] National Bureau of Standards, Software Summary for Describing

Computer Programs and Automated Data Systems, Federal Information

Processing Standards (FIPS) Publication 30, June 30, 1974.

[6] American National Standards Institute, American National Standard

for Computer Program Abstracts (ANSI X3.88-1981).

[7] Promotional material from DACS

[8] NTIS, A Directory of Computer Software, National Technical

Information Service, Springfield, Virginia, 1984.

[9] NTIS, NTIS Subject Classification (A Guide for SRIM Users),

National Technical Information Service, May, 1980.

[10] IMSL, IMSL Library Reference Manual, 1979, International

Mathematical and Statistical Library, Houston, TX

[11] Promotional material from NAG, Inc.

169

% -. -"V .%.
wZ.'-VISy-'^'->!»-V'>''l"-V'l>v*>>:/-^MV.>v.yc----i*v«^ »VA-..•»^A±^_i^-^'^^i^^-^^^v.\^*^_^-.

r

[12] ACM, Collected Algorithms from CACM, ACM, New York, New York, 1980.

[13] Datapro Research Corporation, Datapro Directory of Micro Computer

Software, 2 volumes, Datapro Research Corporation, Delran, New

Jersey, 1984.

[14] International Computer Programs, ICP Software Directory, 52nd

edition, 7 volumes. International Computer Programs, Indianapolis,

Indiana, 1984.

[15] Parker, Robert A., Kathryn L. Henlnger, David L. Parnas, and John E

Shore, Abstract Interface Specifications of the A-7E Interface

Module, Information Systems Processing Branch, Communications

Division, Naval Research Lab, Nov. 20, 1980.

[16] Clements, Paul C, R. Alan Parker, David L. Parnas, and John Shore,

A Standard Organization for Specifying Abstract Interfaces, Naval

Research Laboratory, Computer Sciences and Systems Branch,

Information Technology Division, June 14, 1984.

[17] Neighbors, J.M., Software Construction Using Components, Ph.D.

Dissertation, Department of Information and Computer Science, Univ.

of California, Irvine, Technical Report 160, 1980.

[18] De Roze, Barry C, Defense System Software Management Plan,

Defense Technical Information Center, Defense Logistics Agency,

March 1976.

[19] Jones, Capers, "A Survey of Programming Design and Specification

Techniques", Proceedings of Conference on Specifications of

Reliable Software, 1979.

--. /. -V

170

•.•..•/•'•.•• «2ij>5>iv2>y/ /-:.•-.- •.--.• .--J->.- >i>J>#>^>V.

t

'TT«.T *»>' « I »v M' « WJJ «1 M mF Mß V ** mF 'UW W.'Ji"'1." ."JTJ> TV W A'W »U FJ rj W

[20] Biermann, Alan W., "Approaches to Automatic Programming", Advances

In Computer Science, vol. 15, Morris Rublnoff and Marshall C.

Yovlts, eds.. Academic Press, 1976.

[21] Brown, John R., "Getting Better Software Cheaper and Quicker",

Practical Strategies for Developing Large Software Systems, Ellis

Horowitz, ed., Addlson-Wesley, 1975.

[22] Prywes, Noah S., "Automatic Generation of Computer Programs",

Advances In Computer vol. 16, Morris Rublnoff and Marshall C.

Yovlts, eds., Academic Press, 1977.

[23] Barr, Avron and Edward A. Felgenbaum (eds.), The Handbook of

Artificial Intelligence, vol. 2, William Kaufmann, Inc., Los Altos,

CA 1982.

[24] Rawllngs, Terry L., "A Technological Approach to Automating Software

Maintenance", Proceedings of the 1st Software Maintenance

Workshop, IEEE, 1983.

[25] Rawllngs, Terrv L., "A Discussion of Knowledge Representation within

the DARTS Technology", Proceedings of the 17th Aslmolar Conference

on Circuits, Systems, and Computers, IEEE, 1984.

[26] McFarland, C. and Rawllngs, T., "DARTS - A Software Manufacturing

Technology", Proceedings of the AIAA 21st Aerospace Sciences

Meeting, Jan. 10-13, 1983, Reno, Nevada.

[27] Promotional material from HOS

[28] Hamilton, M. and S. Zeldln, "The Functional Life Cycle Model and Its

Automation: USE.IT", The Journal of Systems and Software, vol 3,

1983.

171

•-•"'-*-•-• -'-V-V-V-V- •. {* <'--*.FV W'V. •*..•", tldi«'-"«"- **• •vf-V-jr-V- <-l~- I'-V-V-V. «*
\ .-•

r^pryg •^ i^ ip/ivvv", ' •• L • *T - r^'.'*•" *''.* .•g'vv ^v* '.^•": *J.^ 7i»"fT-/-;Tr|Ti
i»;;".>||l,"t ^HIVI^^'TJ.'TT-T^'TV^ * 5"*J'""yy>"".v'w.'-"",v"y,t"."".1,^-!L^y

[29] Hendrlx, Gary G. and Earl D. Sacerdotl, "Natural Language Processing

- The Field 1n Perspective", Byte, Sept. 1981.

[30] Barr, Avron and Edward A. Felgenbaum (eds.). The Handbook of

Artificial Intelligence, vol. 1, William Kaufmann, Inc., Los Altos,

Ca., 1981.

[31] Stoegerer, J.K., "A Comprehensive Approach to Specification

Languages", The Australian Computer Journal, vol. 16, no. 1,

February 1984.

[32] McDonnell Douglas Astronautics Company, "SEP 2.205: Software

Requirements Engineering Tools", Software Engineering Practices

Manual, McDonnell Douglas Corporation, January, 1982.

[33] Prywes, Noah and Amir Pnuell, "Compilation of Nonprocedural

Specifications into Computer Programs", IEEE Transactions on

Software Engineering, vol. SE-9, no. 3, May, 1983.

[34] McOonnell Douglas Astronautics Company, Ada Oeslgn Language (ADL)

Reference Manual, McDonnell Douglas Corporation, 1983.

[35] Using Ada (TM) as a Design Language, Draft Version 2.2, IEEE

Working Group on "Ada as a Program Design Language", July 31, 1984.

[36] Biermann, Alan W., etal (eds.), Automatic Program Construction

Techniques, Macmllllan Publishing, 1984.

[37] MIT Laboratory for Computer Science, Laboratory for Computer

Science Progress Report, Massachusetts Institute of Technology,

July 1982-June 1983./

172

^ ^„.A, -* '^-.^-.'•- ."-.^V .>-*'."•- -'.-. L-'.VI •1
,
.1

,
.'J. , ..V ...:: 1 ..\\A'A', '., «', ••" :.\^i , i •k -. ;-\~>-±i.:,m\u.^.±\-* .a. hifc fc.'* • - -,* n».'«k

- r -J-T^.^1 *-. TV w.' tf?—:T-' *V'-'-' -'-''•vy.Twyri'"?*•."»:".• "-**H.w «;• • •.'• •"".« ••• ».» M M • • •.» • * • * • T» y» V» I
P
*'."*t * imim»*i* i1* • ••' v •« •.• K* *« ^

[38] Booch, Grady, Software Engineering with Ada, The Benjamln/Cummlngs

Publishing Company, Inc., 1983.

[39] Buhr, Raymond, System Design with Ada, Prent1ce-Hall, 1984.

[40] Partsch, H., and R. Stelnbruggen, "Program Transformation Systems",

ACM Computing Surveys, vol. 15, no. 3, Sept., 1983.

[41] Rich, Charles, and Howard E. Shrobe, "Design of a Programmer's

Apprentice", Artificial Intelligence: An MIT Perspective, vol. 1,

Patrick Henry Winston and Richard Henry Brown, eds.. The MIT Press,

Cambridge, MA, 1979.

[42] Green, Cordell, et al, Report on a Knowledge-Based Software

Assistant, Kestrel Institute, June, 1983.

[43] Osborn, S.L., 1n a review of "SOFSPEC: A Pragmatic Approach to

Automated Specification Verification", Erika Nyarl and Harry M.

Sneed, Computing Reviews, vol. 25, no. 10, p. 465.

[44] McDonnell Douglas Astronautics Co., Ada Missile Parts Engineering

Expert System Software Requirements Specification, Final,

September, 1985.

[45] McDonnell Douglas Astronautics Co., Ada Missile Parts Engineering

Expert System Software Top-Level Design Document, Final, September,

1985.

TM
[46] Inference Corporation, ART Reference Manual, April, 1985.

173

WAY- '— •-»•*-»> ~* --• m ' V ->« '-. ."-.1» S * • . * _ , - ^ • - > -• -- -«-•-• •' ' ---- -» -» * ^'.»'/•wV^vl'•*-.>-»'»-•' f ,NV»\% »•>'*.>•*> .*» .'

TDT - ^ ^•J^rir^,PMMVl^^yv^^^M•^•^l,'f•M'y.lwww•lJ^^^,^wnl^

TM
[47] Clayton, Bruce 0., ART Programming Primer, Inference Corp.,

April, 1985.

TM
[48] Clayton, Bruce 0., ART Programming Tutorial, Volume 1:

Elementary ART Programming, Inference Corp., March, 1985.

TM
[49] Clayton, Bruce 0., ART Programming Tutorial, Volume 2: A First

Look at Viewpoints, Inference Corp., March, 1985.

[50] Dym, Cllve M., "Expert Systems: New Approaches to Computer-Aided

Engineering!' Xerox PARC, April, 1984.

[51] HNIS0 to Introduce Software Numbering System", Advanced Technology

Libraries, vol.13, no. 9, Sept. 1984, Knowledge Industries

Publications, Inc.

174

s '.' '»•_>. -

v.v. >»», :^^>:^:v-::v:v^^^:v^^^
<v --. / V.^VfrAsV.V,

,• • w F. n , ^P p p ^ m^w'P *,'T;P.IF.-• i", j. * *,^ py'ji^ j .• jvjf.y.'f. j • p_i .••••• y - •• • i i •• •••

INITIAL DISTRIBUTION

OTIC-DDAC
AUL/LSE
FTD/SDNF
HQ USAFE/INATW
AFWAL/FIES/SURVIAC
AFATL/DOIL
AFATL/CC
AFCSA/SAMI
AFATL/CCN
AFATL/FXG
ASD/RWX
SPAKAr. (814AB NC #1)
SPAWAR (CODE 613)
NRL (CODE 5150)
ASD/XRX
AFWAL/AAA-2
HQ AFSC/PLR
INST OF DEFENSE ANALYSES
STARS JOINT PROGRAM OFFICE
USA MATERIEL CMD/AMCDE-SB
NAVAL SEA SYS CMD (SEA 61R2)
NAVAL AIR DEVELOPMENT CTR (CODE 50C)
BMDATC
NSWC/CODE N20.
NAVAL UNDERSEA SYS CTR (CODE 3511)
NOSC/CODE 423
AFWAL/AAAF-2
USA EPG/STEEP-MT-DA
AFSC/DLA
USA MSL CMD/AMSMI-OAT
SPAWAR (CODE 06 NC #1)
ASD/EN
AD/ENE
SD/ALR
RADC/COEE
NRL/CODE 7590
AFSC/SDZD
HQ USAF/ROPV
AD/ENSM
BMO/ENBE
ESO/ALS
ESD/ALSE
AJPO
AFATL/AS
;?ATL/SA
AO/XR
..IS JPHO/AOT
AFWAL/AAAF

NASA (CODE RC)
NSA
NTSC/CODE 251
AD/XRB
LOCKHEED (DR SURY)
HUGHES (MR BARDIN)
IBM (MS VESPER)
RAYTHEON (WILLMAN)
SOFTECH INC (MS BRAUN)
MITRE CORP (MR SYLVESTER)
AEROSPACE CORP (MR HOGAN)
TEXAS INSTRUMENTS (MR FOREMAN)
RATIONAL (MR BOOCH)
ROCKWELL INTERNATIONAL (MR GRIFFIN)
MITRE CORP (MS CLAPP)
NOSC (CODE 423)
GENERAL DYNAMICS (MR MURRAY)
HONEYWELL INC (MS GIDDINGS)
HONEYWELL INC (DR FRANKOWSKI)
HUGHES DEFENSE SYS DIV (S.Y. WONG)
NOSC (MR WASILAUSKI)
NAC (N)
TASC (MR SERNA)
MARTIN MARIETTA (MR CUDDIE)
TASC (DR CRAWFORD)
SYSCON CORP (DR BRINTZINHOFF)
ADA TRAINING SECTION
COMPUTER SCI CORP (MR FRITZ)
LINKABIT (MR SIMON)
RAYTHEON (MR GINGERICH)
UNIVERSITY OF COLORADO
MCDONNELL AIRCRAFT (MR MCTIGUE)
HUGHES AIRCRAFT (MR NOBLE)
GENERAL DYNAMICS (MR PRZYBYLINSKI)
AJPO (MS CASTOR)
NWC (CODE 3922)
NAVAIRSYSCOM HQS
ASD/ENASF
ASD/ENA
UNIVERSITY Of TEXAS
MARTIN MARIETTA (MR SORONDO)
MCDONNELL DOUGLAS (DR MCNICHOLL)
GENERAL DYNAMICS (MR SCHNELKER)
TRW (MR SHUGERMAN)
RATIONAL (MR HAKE)
WESTINGHOUSE (MR GREGORY)
GENERAL DYNAMICS (DR TABER)
BOEING COMMERCIAL AIRPLANE CO ffi

175

VJvlVlvl" •. v. .-.v.v-v_v_v_ •.•_•-• v_v ''J-'S _• ->1**>-. l->10l^l- V^y IH V'>!» • .v,'•"_." <1 •'. ->"i^V-V-*>'>_/•>">* A";.*' ** jVLV.%\VLi

INITIAL DISTRIBU ION (CONTINUED)

ROCKWELL INTERNATIONAL (MIKULSKI)
BOEING AEROSPACE (MR HADLEY)
IBM (MR MCCAIN)
FSU (DR BAKER)
AEROSPACE CORP (MR LUBOFSKY)
DATA GENERAL (MR DAMASHEK)
SDC (MR HERMANN)
WINTEC (MR CONNEL)
NORTHROP (MR OHLSEN)
ARC (MR ROBERSON)
GRC (DR ALBRITTON)
AFWL/NTSAC
USA MSL CMD/SCI INFO CTR ,
NSWC/TECH LIB
NWC (CODE 343)
OO-NAVAL RESEARCH (CODE 784DL)
NAVAL POSTGRAD SCHOOL (CODE 1424)
DEFENSE COMMUNICATIONS AGENCY
NASA AMES RESEARCH CTR (CHAPMAN)
NASA LANGLEY RESEARCH CTR (MOTLEY)
RAND CORP/AFELM
AVCO SYS DIV/RESEARCH LIB
AVCO-EVERETT RES LAB/TECH LIB
FAIRCHILD IND/INFO CTR
GENERAL DYNAMICS, CONVAIR DIV
GENERAL DYNAMICS, FT WORTH DIV
HONEYWELL/TECH LIB
HUGHES AIRCRAFT/TECH LIB
HUGHES AIRCRAFT/MSL SYS GP/TECH LIB
LOCKHEED/TECH LIB
LOCKHEED/TECH INFO CTR
MARTIN MARIETTA/TECH LIB
MCDONNELL DOUGLAS/TECH LIB
MCDONNELL DOUGLAS/LIB SVCS
NORTHROP CORP/AIRCRAFT DIV
RAYTHEON/TECH LIB
VOUGHT CORP/LIB
SDC (MR MILLAR)
INTERMETRICS (MR ZIMMERMANN)
ROCKWELL/TECH INFO
TRW (MR MUNGLE)
AT&T (MR MAY)
AVCO SYS TEXTRON (MR SOHN)
BOEING ELECTRONICS (MR MEDAN)
USA CECOM/DRSEL-TCS-MCF
USA CECOM/DRSEL-TCS-ADA
UNIVERSITY OF WASHINGTON
AFATL/GRC
USA-ARDC

ROCKWELL (MS KIM) 1
SCIENCE APPLICATIONS INTERNATIONAL

(MR STUTZKE) 1
Nswf (11-331 1
COMPUTER SOFTWARE & SYSTEMS 1
GRUMMAN DATA SYSTEMS (MR MARKMAN) 1
AFWAL/FIGL 1
AFWAL/FIGX 1
AFWAL/AARI-1 1
EMERSON ELECTRIC (MR BYRNES) 1
TASC (MR JAZMINSKI) 1
E-SYSTEMS (MR SNODGRASS) 1
NTSC (CODE 742) 1
UNIVERSITY OF ALABAMA 1
MCDONNELL DOUGLAS (MR VILLACHICA) 1
SANDERS ASSOCIATES (MR FRY) 1
AFSC/PLR 1
AFSC/DLA 1
WESTINGHOUSE (MR SQUIRE) 1
NAVAIR SYSCOM (AIR 54662) 1
BOEING AEROSPACE (MR BOWEN) 1
GOULD INC (DR ARORA) 1
LOCKHEED (MR PINCUS) 1
INTERMETRICS (MR BROIDO) 1
GENERAL ELECTRIC (MS MICKEL) 1
HUGHES AIRCRAFT (DR HUANG) 1
SYSTEMS DEVELOPMENT (MR SIMOS) 1
GENERAL DYNAMICS (MR WARNER) 1
CARNEGIE-MELLON UNIVERSITY 1
COMPUTER TECH ASSOCIATES (HEYLIGER) 1
NORTHROP CORP (MR SWAN) 1
CNI SOFTWARE (SINGER KEARFOTT DIV) 1
LOCKHEED (MR COHEN) 1
MCDONNELL DOUGLAS (SANDY COHEN) 2
DRAPER LABORATORY (MR DAVID) 1
DRAPER LABORATORY (DR DEWOLF) 1
GOULD INC (MR WILLIS) 1
ADVANCED TECHNOLOGY (MR COOPER) 1
HQ USAF/RDST 1
AFPRO/EN 1
AFPRO/TRW/EPP 1
LOCKHEED (MR DORFMAN) 1
HONEYWELL (MR LANE) 1
SPERRY A&MG (MR ROSS) 1
UNITED TECHNOLOGIES (STOLZENTHALER)l
LTV AEROSPACE & DEFENSE 1
EL66 B 4610 (MR FREEMAN) 1
SYSTEMS DEVELOPMENT CORP (ATCHLEY) 1

176

^^V^^Tl'Hn^ri'iyr.iy^^ U^ HlUi I • ULiJijiJ ypii

INITIAL DISTRIBUTION (CONCLUDED)

ROCKWELL (DILLHUNT)
IBM FED SYSTEMS DIV (MR ANGIER)
JET PROPULSION LAB (MR KRASNER)
MARTIN MARIETTA ORLANDO AEROSPACE
GENERAL ELECTRIC (MR DELLEN).
AFWAL/POFIC
LOCKHEED (READY)
BOEING AEROSPACE (MR DOE)
FORD AEROSPACE (DR FOX)
LOCKHEED SOFTWARE TECH CTR (LYONS)
IBM (MR BENESCH)
MITRE CORP (MR SHAPIRO)
MITRE CORP (MR MAGINNIS)
GRUMMAN AEROSPACE (MR POLOFSKY)
MCDONNELL DOUGLAS (KAREN L SAYLE)
MCDONNELL DOUGLAS (GLENN P LOVE)
POME AIR DEVELOPMENT CTR (CHRUSCICKI
RAYTHEON EQUIPMENT DIV (MS SILLERS)
AT&T BELL LABS (MS STETTER)

f-j|

w\1

K
C

177
(The reverse of this page is blank)

*.

r.\i

^A ;,.'-:/ j iv!'-*lvjXvlvlvI*Xvlvl v^v; ^Ivitelviii-iv".' -j"-. •"• V'"-. •'•.•*«.**. -'. •'.•-v-r.'. -\ .--. **-•*, •*•»'. •_*. •".

IHIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELEASE

UNDER DOD DIRECTIVE 5200,20 AND

NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A
t

APPROVED POR PUBLIC RELIASE;

DISTRIBUTION UNLIMITED,

*

«

ERRATA

AFATL-TO-85-93

WLUMSS I, II, and III

CX*MON ADA MISSILE PACKAGES (CAMP)

FINAL REPORT

AIR FORCE ARMAMENT IABORATORY

E3LIN AIR FORCE BASE, FLORIDA

32542-5434

1. DD Form 1473:

In Block 16, add the following:

"Methodology used in this report does not constitute conputer
software as defined in AFR 300-6."

2. This errata is unclassified.

S. MARRS
Chief, Technical Reports Section

fi

SUPPLEMENTARY

INFORMATION

DEPARTMENT OF THE AIR FORCE
WRIGHT LABORATORY (AFSC)

EQUN AIR FORCE BASE, FLORIDA, 32542-5434

MNOI mfi&70& &3* 13 Feb 92

SUBJECT: Removal of Distribution Statement and Export-Control Warning Notices

REPLY TO
ATTNOF:

TO: Defense Technical Information Center
ATTN: DTIC/HAR (Mr William Bush)
Bldg 5, Cameron Station
Alexandria, VA 22304-6145

1. The following technical reports have been approved for public release by
the local Public Affairs Office (copy attached).

2.

Technical Report Number

1. 88-I8-V0I-4
z 88-18-Vol-5
3. 88-I8-V0I-6

-A. 88-25-Vol-l
5. 88-25-V01-2

fe- 88-62-Vol-l
1. 88-62-Vol-2
*. 88-62-V01-3

<)• 85-93-Vol-l
*0. 85-93-Vol-2
Ü 85-93-Vol-3

At. 88-18-Vol-l
«S. 88-18-Vol-2
14. 88-I8-V0I-7
*S. 88-I8-V0I-8
14. 88-I8-V0I-9
(7. 88-18-Vol-lO
1fc,88-18-Vol-ll
19 88-18-V01-12

AD Number

ADB 120 251
ADB 120 252
ADB 120 253

ADB 120 309
ADB 120 310

ADB 129 568
ADB 129 569
ADB 129-570

ADB 102-654 »-
ADB 102-655
ADB 102-656

ADB 120 248
ADB 120 249
ADB 120 254
ADB 120 255^
ADB 120 256
ADB 120 257i
ADB 120 258
ADB 120 259

If you have any questions regarding this request call- me at DSN 872-4620

LYNNFS.
Chief, Scientific and Technical

Information Branch

1 Atch
AFDTC/PA Ltr, dtd 30 Jan 92

ERRWR

HEADQUARTERS AM FORCE DEVELOPMENT TEST CENTER (ArtC)

EOUN AM FORCE BASE, FLOROA 3254*6000

REPLY TO
ATTNOF: PA (Jim Swinson, 882-3931) 30 January 1992

SUBJECT: clearance for Public Release

T<* WL/MNA

/
The following technical reports have been reviewed and are approved for
public release: AFATL-TR^88-18 (Volumes 1 & 2), AFATL-TR-88-18 (Volumes
4 thru 12), AFAIL-TRr88-25 (Volumes 1 & 2), AFAIL-TR-88-62 (Volimes 1 thru 3)
and AFAXI>TR^85-93 (Volumes 1 thru 3).

/Os %
EDipt N. PKLBYLA, Lt Col,

Chief of Public Affairs

A^

AFDTC/PA 92-039

