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THE HYDRODYNAMIC WAKE OF A SURFACE SHIP: 
THEORETICAL FOUNDATIONS 

INTRODUCTION 

A model for describing the hydrodynamic wake of a surface ship is developed. The model 
accounts, in some manner, for all significant wake flow processes. Simultaneously, the model is formu- 
lated to be computationally realizable. This is necessary because small scale flow behavior on a large 
spatial domain is characteristic of the wake. 

During the course of the derivation, we observe that several approximations must be made to 
obtain the model. The approximations result from a lack of firm theoretical foundations in certain 
areas. Besides turbulent flow dynamics, these areas include descriptions of multiphase flows, 
turbulence/free-surface interactions, and ambient background characteristics. 

Other assumptions and constraints are required to achieve computational realizability. These 
include the decomposition of the flow field into potential and viscous dominated parts, limits on allow- 
able ship motions, and certain linearizations and simplifications of boundary conditions. 

The model does not include several flow phenomena considered of secondary or intermittent 
importance. These phenomena are associated with ambient stratification and ambient surface films. 

EQUATIONS OF MOTION ,, i *      > ' 

Visually, the wake of a surface ship contains, among other things, a foamy mass of white water 
caused by sprays, turbulent entrainment of air, and bubbles. To the modeler, the wake is a multiphase 
flow field consisting of a gas-water mixture. This leads to immediate modeling difficulties because a 
firm theoretical foundation for multiphase flow dynamics does not exist [1,2]. As noted in Ref. 1, this 
results partially from the particle/continuum dichotomy of multiphase flows and partially from the in- 
abiUty to ascertain fluid constants in multiphase flow systems. 

Therefore, to make any progress in describing the wake of a surface ship, we must develop an 
approximate treatment of the multiphase flow field. To this end, we adopt an "inertialess particle" 
hypothesis [3]. For our problem, the validity of this hypothesis requires, first, that the gas particles 
(bubbles) entrained in the water column be dispersed enough to be essentially noninteracting, and 
second, that the inertia of the gas particles be much less than the inertia of the entraining water. In 
ship wakes, the first requirement is observed empirically to be met away from boundaries. The satisfac- 
tion of the second requirement then follows from the satisfaction of the first because of the relative 
density ratio between gas and water. 

In addition to the above requirements, the inertialess particle hypothesis presumes, from the con- 
tinuum viewpoint, that any infinitesimal volume of water is still large enough to allow a meaningful 
specification of gas particle distribution in that volume. We denote this specification by the gas particle 
(or bubble) volume distribution function favg which gives the number of bubbles per unit of water 
volume, per unit of bubble volume increment rfKjj.  Here, Vg represents the volume of a gas particle. 

Manuscript approved March 12, 1984. 
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From the definition of foy , certain useful quantities related to the bubble population can be 
B 

obtained directly.  In particular, the number of bubbles per unit of water volume having a gas volume 
between Vgi and VB2 is 

JB2 

and the total gas volume per unit of water volume, or void fraction, is 

705 = Jo   foyg^BdVg. 

(1) 

(2) 

Within the inertialess particle hypothesis, the velocity WQB, of the gas particle is assumed to be the 
velocity «o/ of the entraining water, plus the rise velocity UR^ of the gas particle in otherwise undis- 
turbed water. Here, we have adopted indicial notation and defined the "3" direction as upwards. We 
find 

"OS/ =  "0/ + «/?36;3 (3a) 

where 8,, is the Kronecker delta.   The rise velocity itself is calculated independently of the water ve- 
locity by methods such as those discussed in Ref. 4. 
obtained from the integral of 

A   R        - 

The position vector RQBI of the gas particle is 

"OS/- (3b) 

The equations of motion for the water in the inertialess particle limit are developed straightfor- 
wardly by noting that inertialess implies that no mass or momentum fluxes are carried by the gas parti- 
cles. Hence, the primary influence of the gas particles is to change the density of the water from its 
true value p to an apparent value p(l - yos)- Substituting this apparent value for the density in the 
flux (or conservation) forms of the continuity and Navier-Stokes equations [5], we obtain the equations 
of motion for the water as 

l?'"-^«'''''^it: [(1 - ■yoB)p"oJ = 0 (4a) 

and 

|^[(1-WP"0,]+3|^ 

(1 - yoB)p^8/3 + 

[(1 -yoB)p"o,"ot] 

d 
9^0* 

(1 - -yofl) M 
9"o,   ^   9"0fc       2 g    9"oy 
9xot       bxQi       3        bxQj 

(4b) 

In Eq. (4b), Ilo denotes the total pressure, g the acceleration due to gravity, and /u. the viscosity of the 
water. The appearance of the factor (1 - -yofl) modifying /u, follows from the inertialess particle 
hypothesis [1, Eq. (6.16)]. 

BOUNDARY CONDITIONS 

Consider the two coordinate systems shown in Fig. 1. The 00X01^02X03 system is fixed in the fluid 
and is the coordinate system in which Eqs. (1) to (4) have been derived. The undisturbed free surface 
coincides with the X03 = 0 plane. The 05x^1X52X53 system is fixed in the ship. With respect to this 
latter system, RsHi denotes a vector from O5 to a point on the surface of the ship. For those points 
that have motions in addition to the rigid body ship motions (for example, propellors and control sur- 
faces), RsHi is time dependent. 
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^i2,   "s2 

Xs:, «si 

Fig. I — Coordinate systems and notation 

We also define the vector from OQ to Os by RQSI-  Then, with respect to the O0X01X02X03 coordi- 
nate system, the vector RQ^I from OQ to the same point on the surface of the ship is obtained [6], 

J^OHi = J^osi + TjjRsHj. (5) 

from the noncommutative set of rotations—yaw 9si about 
csi—with positive senses, as indicated in Fig. 1.  From Ref. 

The transformation matrix T is determined from the noncommutati\ 
Xy3, pitch 9SI about xsi, and roll 9s\ about xji—with positive senses, 
6, we find 

T = 

cos 6Si cos ^52 cos ^53 sin 9s2 sin ^^i     cos 9si sin 9s2 cos 9s\ 
- sin 053 cos 9s\ + sin 653 sin 9s\ 

sin ^53 cos ^52     sin 6si sin 652 sin 651      sin 653 sin 9si cos 
+ cos 053 cos 9si — cos 053 sin 9s\ 

- sin 052 cos 052 sin 051 cos 052 cos 051 

(6) 

The velocity USHI of this point on the surface of the ship is given, with respect to the ship fixed 
coordinate system [6], by 

UsHi = Usi + etj^qsjRsHk + dRsHildt, (7) 

where  M5, and ^ are, respectively, the linear velocities along, and angular velocities about,  the 
O5A51X52X53 coordinate system, and e^^ is the permutation symbol defined by 

^k = 1 

0, if any two of /, j, k are the same 

1, if ijk is an even permutation of 1, 2, 3 

-1, if ijk is an odd permutation of 1, 2, 3. 
(8) 

In standard terminology, qsx is the roll rate, qsi is the pitch rate, and ^53 is the yaw rate.  The relation- 
ship between the angular rates and rates of change of the heading angles is determined [6] from 

(9) 

where the rotational matrix R is 

R = 

te = R,j d9sjldt, 

1        0 —sin 052 

0   cos 051    cos 052 sin 051 

0  —sin 051   cos 052 cos 051 

(10) 
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The transform of the velocity USHI from the ship fixed to the fluid-fixed coordinate system gives 
the velocity «o/// in the latter system as 

"0///=  TijUsHj. ■ (11) 

Applying the no-slip condition over the surface of the ship then yields the boundary condition on the 
fluid 

■     "0/="0/// for {xoi,Xo2,Xo3) = {/?0//1.^0//2.-'?0//3}- (12) 

In addition, assuming infinitely deep and unrestricted waters, we have 

"0/^ "o~, as V^o/^o/ -" °°. (13) 

where wo<=o, is the velocity of the fluid at infinity referenced to the O0X01X02X03 coordinate system. 

Let us now consider conditions at the free surface of the water. We designate by i7o(xoi,xo2,f) the 
elevation of this surface above the undisturbed reference plane X03 = 0. Two conditions prevail at the 
free surface: the first relating to continuity of stress across the air-water interface and the second relat- 
ing to continuity of the interface itself. Neglecting the presence of any ambient surface films, the 
former condition can be written [5] as 

(Ho - PA 

-(1- 

2a//o)«o,- 

9"0<r 
dxok   '   Bxoi 

+ Is  ^ 
3    " dxoj] nok O-Qik "Ok at ^03 = T)o- (14) 

Here, P^ is the ambient atmospheric pressure and a^^l' are the components of the wind stress tensor at 
the surface. The coefficient of surface tension is denoted by a. Also, «o, and HQ are, respectively, the 
outward normal to the free surface and the local mean curvature of the free surface. The latter quan- 
tity is taken as positive if the center of curvature is within the water.  From Ref. 7, we have 

"0/ = 
dxoi 9X02 

8/2 + 8/3 

1 + 
9T/fl 

9xoi 
+ 9i?o 

9X02 

VT 

and 

2//n = 

9'^o 

9^01 
1 + 9TJO 

9X02 

2 
^  9-170    9i7o      9 T)o          9 T)o 

9xoi   9xo2   9x016x02       9Xo2 
1  + 9i7o 

9x01 

1 

1 -t- 
9T)O 

9xoi 

2 

-1- 
9T)O 

9X02 

2 3/2 

,       _., 

(15a) 

(15b) 

The second condition, relating to continuity of the air-water interface, is obtained as 

M03 = 0 at Xo3 = TJo- 
9TJO   , 9i7o    , 9170 

+ "01 -7, + "02 
9? 9xoi 9xo2 

TRANSFORMATION TO MOVING COORDINATES 

(16) 

Suppose that, in some mean sense, the origin O5 of the ship fixed coordinate system is moving in 
the negative xoi direction with velocity U. It is then desirable to refer the governing equations of fluid 
motion to a coordinate system more closely aligned with the position of the ship than the O0X01X02X03 
system. We define this system as the 0x1X2X3 system with 

X, = xo; + U8nt (17) 
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and we have taken the origins of the two systems to coincide at / = 0.   The relationships between the 
derivatives in the fixed and moving systems are found as 

d_ 
dt fixed at dxi 9x0/      9x,' 

We also have that any quantity Qo in the fixed system is given in the moving system as 

Qo(xoi,t) = Qoixi - UbaU) = Q(xi.t) 

and, conversely, 

Qixi.t) = Qixoi + USatj) = QoU/.')- ' I' . 

(18) 

(19a) 

(19b) 

If, in addition to the above transforms, we write the total pressure IT as the sum of its hydrostatic 
and dynamic components or 

the equations of fluid motion in the moving coordinate system are obtained from Eq. (4) as 

(20) 

(21a) 

and 

|- {(1 - ys)u,] + f/ -^ {(1 - y^)«,.} + /-{(!- yi,)«,«,} 
at ox\ axif 

1   9P   ,  „    .    ,   1     9 
= — 1— + sysSij + — T— p   9x, p   dxk (1 - yB^fj- 

9 M,       du),       2        9"/ 

9^ ^ 9^ ~ y ^'* 9^ 
From Eq. (2), the void fraction y^ is 

yB=r fy.VsdV, 

(21b) 

(22) 

The gas particle velocity UBI and location Rg, = i?0B; + t^^nt   in the moving coordinate system 
are determined from Eqs. (3a) and (3b) as 

Usi =  W, + URi8i3 

and 

dt RBI = U8n + "*• 

(23a) 

(23b) 

To resolve the boundary condition over the surface of the ship, it is convenient to first define 

0s, = 7rS,3 + .^5,      ' (24) 

so that the ship-fixed x^i axis is basically aligned with the negative xi axis.   The transformation and 
rotational matrices, Eqs. (6) and (10), become 

- cos <^53 cos <I>S2     - cos <t>s3 sln <f)s2 sln (/15,     - cos (t>si sin <ps2 cos <^5i 
+ sin <l>s3 cos 051 - sin (^53 sin <l>si 

- sin <f>s3 cos 4>s2     - sin (^53 sin (^52 sin ^51      - sin ^53 sin ^52 cos <ttsi (25a) 
— cos <^53 cos <f>si                + cos (^53 sin <t>si 

- sin <f>s2 cos (f>s2 sin ^^i cos 4>s2 cos <f>si 

T = 
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and 

Further, we write 

R = 

1        0 —sin 052 

0     cos 051      COS 0S2 sin 05i 

0 —sin 051 cos 0S2 cos 0^1 

"5/ = - UTy'Sji + vsi = - UTn' + V5, 

(25b) 

(26) 

to separate the basic motion of the ship in the negative XQI direction from the remaining linear velocity 
components v^, along the ship-fixed axes. The velocity of a point on the surface of the ship then is 
found from Eq. (7) as 

usHi = -UTa^ + V5,. + eijkQsjRsHk + dRsw/dt. ill) 

From Eqs. (11) and (12), the boundary condition over the surface of the ship with respect to the 
0x1X2X3 coordinate system is obtained as 

where, from Eq. (5), 

"/ = TijUsHj        for {xi,X2,X3} = [RHi.RHi.Rm) 

^Hi - Rsi + TijRsHj 

(28a) 

(28b) 

and where Rs, is the vector from O to Os- In addition, we have from Eqs. (13) and (19a) 

w, ~* «0oo,(x, — USjityt)        as^XiXj —' (29) 

At the free surface, the condition on continuity of stresses is found from Eqs. (14) and (20) as 

{P - pg-q - 2aH)ni - (1 - -yjg)/^ 
9",      ^_ 2        Buj 
9x^       9x,       3    '* Bxj "k =-o-Ik'^ ti/,        atX3 = i7 (30a) 

where, from Eqs. (15a) and (15b), 

and 

9T) 

9x] 8/1 
Bf] 
9X2 

8/2 + 8,3 

1 + BT) 

Bxi 
+ Bri 

9X2 

VT (30b) 

2// = 

9^^ 
9x1^ 

1 + [97,1 
9X2 

. T  9T)    9T)      9^17         9^T} 

j         9xi   9x2   9xi9x2      9x2 
1 + 9T7 

9x1 

! 

■ - •■    1 -1- 
9T, 

9xi 

2 

+ iBr,   '■ 
9X2 

-13/2 (30c) 
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The condition on continuity of the free surface is obtained from Eqs. (16) and (18) as 

|l + (a + „,)|^ + „,^_„3.o      .,,, = ,. 'o„ 

Within the limits of the inertialess particle hypothesis and the neglect of ambient stratification and 
ambient surface films, Eqs. (21) through (31) represent an exact description of the hydrodynamic flow 
field about a surface ship. The set of equations is unsolvable. 

DEVELOPMENT OF THE MODEL 

Part 1: Decoupling the Fluid and Gas Particle Flow Fields 

The first step in constructing a solvable model for the hydrodynamic wake of a surface ship is to 
decouple the water and entrained gas particle flow fields. This entails approximating the void fraction 
by rs = 0 in the equations of motion and boundary conditions. Though this decoupling step is not 
absolutely essential, it does greatly simplify the numerical work involved in the flow field calculations. 
If higher order approximations are necessary, an iterative scheme such as outlined in Ref. 2 can be 
used. However, since the equations of motion in the inertialess particle limit are valid only for 
ys « 1, the error introduced by setting y^ = 0 is generally small. This is especially true at distances 
removed from strong sources of gas particles. 

With JB = 0, Eqs. (21a) and (21b) reduce to the standard continuity and Navier-Stokes equations 
for an incompressible fluid, or - ■   . 

and ' 

,     . dt dx,        Bx, p   Bx^^ p   dx.Bx,- ^^^^' 

Part 2: Converting the Ship and Free Surface Boundary Conditions to Known Surfaces 

A fundamental difficulty preventing the solution of Eqs. (21) through (31) is that the ship and 
free surface boundary conditions are applied at surfaces whose locations are not known "a priori." 
Hence, the second step in constructing a solvable model for the hydrodynamic wake of a surface ship is 
to convert these boundary conditions to surfaces whose locations are known "a priori." 

a.  Ship Boundary Conditions 

■ Referring to Eqs. (28b) and (25a), we see that both Rsn the vector from O to O5, and T^j, the 
transformation matrix, contain terms dependent on the instantaneous location of the ship hull. If we 
stipulate that the time-averaged (mean) motions of the ship about its equilibrium motion in the nega- 
tive xoi direction are zero and that these motions are themselves suitably small, then the boundary con- 
dition on the ship hull can be applied at the mean location of the hull. For those points on the ship 
hull that have motions in addition to the rigid body ship motions, the boundary condition is to be 
applied at some appropriate mean location of the points (for example, the equivalent actuator disc of a 
propeller [8] or the zero deflection location of a control surface). 
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Taking the time averages of Eqs. (28b) and (25a) and imposing the above stipulations, we find 
the mean location of the ship hull as 

RH, = Rsi + %RsHj. (33a) 

where overbars denote time averages (means), and where ,- - 

'       ■■ ■ ■   ■ '        fij = -8ij + 28,38^3. (33b) 

To the same order of approximation, the boundary condition at the mean location of the ship hull is, 
from Eq. (28a), 

", =   TijUsH, for {xi,X2,X3) =  {R„I,RH2.R Hil (34a) 

where, from Eq. (27), ■  ■, i-,-^ . ■.   ■. 

"SH, = t^S,i + vs, + eijkQsjRsHk + vs///- (34b) 

Here, dRsHi/dt = vf/^, indicates that effective, as opposed to actual, velocities may be required at those 
points having motions in addition to the rigid body ship motions. (See again Ref. 8 for a discussion of 
propeller flow problems.)   Combining Eqs. (34a) and (34b), we obtain 

«/ = -t^8/i + Tijivsj + eji,,qskRsHi + vj/^) for (xi.Xj.Xs) = {RffuRnL^Hj}- (35) 

This expression is equivalent to the standard linearized ship hull boundary condition. Higher 
order boundary conditions, based on Taylor series expansions about this mean condition, have been 
developed [9]. However, the flow fields calculated using these higher order boundary conditions do not 
differ significantly from those calculated using the mean condition while the numerical work involved 
does. Hence, we take Eq. (35) as the appropriate ship hull boundary condition in our model for the 
hydrodynamic wake of a surface ship. 

b.   Free Surface Boundary Conditions . 

The exact free surface boundary conditions, taken at the unknown surface X3 = 17, are given by 
Eqs. (30) and (31). If we stipulate that 17 is suitably small, these boundary condtions can be approxi- 
mated by a Taylor series expansion about X3 = 0. To model the hydrodynamic wake of a surface ship, 
we retain only the lowest order terms of these expansions—again noting that higher order boundary 
conditions lead to significant increases in numerical complexity while not significantly affecting the cal- 
culated results. 

To obtain the appropriate boundary conditions to be applied at XT, = 0, we let TJ = er\' where e is a 
small dimensionless parameter. Expanding the kinematic free surface boundary condition given by Eq. 
(31) about X3 = 0 and substituting for TJ, we have 

«f- U + Ux +€7)' -—L + 0(e2) 
9X3 

QT}' + 

«3 + 6T,' 1^ + 0(6^) 
0X3 

9xi 

= 0        at X3 = 0. 

U2 + et,' 1^ + 0(6^) 
9X3 

br)' 
9X2 

We see that for a consistent expansion W3 = ei/3 and, with this substitution, find the kinematic free sur- 
face boundary condition to lowest order in e as 

^+(^+«,)^  +  «2-^-- = bt 9xi 9X2 
«3 = 0 at X3 = 0. (36) 
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Consider now Eq. (30a). With ys = 0, this boundary condition becomes 

iP — pgf] — 2aH)nj — cru^ni^ = —(rli^^ni^ at ^3 = TJ 

where we have put ..   .'. 

9 «,       9 W/t 
o",* = M 

9x^       9x, 

(37a) 

(37b) 

To estimate cr,^ near the free surface, we note that from continuity, Eq. (32a), both bujbxi and 
bu^Jbxi are of the order du^/Bxi = edu^/dx^. Hence, cru = eo-n, 0-22 = eo-22, and 0-33 = €0-^3. Simi- 
larly, since there is no reason for one horizontal direction to be preferred over the other, 0-12 = eo-i2. 
Also, since we have stipulated small surface displacements, both dui/dx^ and du^dx^ must be small; 
or, 0-13 = ecri3 and 0-23 = €0-23.  Thus, we find cr,vt = eo-,^.  Further, from Eq. (30c), we have 

2//=-« 
2„') d^v' ,  d'-n 

dxi       9x2 
+ 0(6^). 

Expanding Eq. (37a) about X3 = 0 and substituting the above results, we find 

eP' + 6^7,' 1^ + 0{€^) - pger,' + ae 
9X3 

'     1      2 

2„' dW  I  B'v 
9xi       9x2^ 

+ 0(6^) 

9X3 
+ 0(c3) "k = -o-lk^k at X3 = 0 

where, for a consistent expansion, we have set P = eP'. Taking the / = 1, 2, and 3 components of this 
expansion and observing from Eq. (30b) that «i, ^2, and «3 are of orders e,c, and 1, respectively, we 
obtain, to lowest order in e, the conditions on continuity of stress across the free surface as 

9«i       9«3 + 
9x3      9xi 

M 
9«2 9W3 

= -^f 

. (w) 

at X3 = 0, 

P — pgr\ + a 

9X3 9X2 

9x? 

= a^r   at X3 = 0, and 

9«3 

dxi 2^~--.k' at X3 = 0. 

(38a) 

(38b) 

(38c) 

Equations (36) and (38) are the desired free surface boundary conditions for our model of the 
hydrodynamic wake of a surface ship. 

Part 3: Decomposing the Flow Fields 

To proceed with the development of our model, we next wish to decompose the flow field into 
ship-induced and interaction-induced components. This decomposition allows us to both visualize and 
calculate the overall flow field as two basically different, but interacting, components. 

Let us write 

«,- = V,. + v; + Wi,. (39) 

where we define v, and v,', respectively, as the mean and randomly fluctuating flow velocities induced 
by the ship motions in otherwise still water and w, as the flow velocities induced by the background and 
background/ship flow interactions. Several assumptions are implicit in the decomposition of the flow 
field represented by Eq. (39). 
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First, we have assumed, through the introduction of v,', that turbulence modeling will be incor- 
porated into our description of the hydrodynamic wake of a surface ship. 

Second, we have assumed that the turbulent velocity fluctuations v,' produced by the ship motions 
are significantly larger in magnitude than fluctuations occurring on the same time scale in the back- 
ground. Hence, the term w,' has been neglected in the velocity decomposition given by Eq. (39). This 
assumption is physically reasonable since oceanic sources of turbulence are normally weak compared to 
the sources resulting from the presence of a ship. 

Third, we have assumed that the time scale of the turbulent fluctuations v,' is small compared to 
the time scales of both the mean ship-induced flow v, and the mean interaction flow Wj. This assump- 
tion permits the unambiguous decomposition of the velocity field given by Eq. (39). The fundamental 
limit on this assumption is the time scale of the shortest gravity-capillary waves present in the back- 
ground. For example, for 3.5-cm waves, we find that the turbulent fluctuations must occur with a fre- 
quency > > 20 Hz which is near the limit of strict validity of the assumption. For much shorter waves, 
the assumption clearly fails though certain mitigating factors possibly are present because of the very 
small depth of penetration of such waves. 

In a manner similar to the decomposition of the velocity field, we write the dynamic pressure P 
and surface elevation TJ as 

P = P, + P' + P^ (40a) 

and 
v Vv + vi + Vw (40b) 

where the subscripts v and w refer, respectively, to quantities induced by the ship motions in otherwise 
still water and to quantities induced by the background and background/ship flow interactions. The 
three assumptions applicable to the decomposition of the velocity field are applicable also to the decom- 
positions of P and Tj. 

Proceeding to substitute Eqs. (39) and (40) into Eqs. (32) governing the fluid motions and Eqs. 
(29), (35), (36), and (38) governing the fluid behavior at the boundaries of the flow, and time averag- 
ing the resultant expressions, the turbulent equations of motion and the turbulent boundary conditions 
are obtained. We separate these equations of motion and boundary conditions into sets of terms 
identified, respectively, with the flow field induced by ship motions in otherwise still water and the flow 
field induced by the background and background/ship flow interactions. Setting these sets of terms 
individually to zero, since they are individually separable and equal to zero at infinity, produces the 
governing equations of motion and boundary conditions for the two components of the decomposed 
flow field. 

a.   Ship-Induced Flow Field 

We find the continuity and turbulent Navier-Stokes equations for the ship-induced flow field to be 
given by 

and 

dxi, 

dt       "^9x1         dxi, 
I   9^v 

P   9^/ 
+ d IL 

dxit  i p   dxi^ 

The boundary conditions applicable to this flow field are obtained as 

V, —' 0        as -yJx.Xj —* °°, 

9v,      ^ 

(41a) 

(41b) 

(41c) 

10 



NRL REPORT 8833 

V, = -1/6,1 + fiji^sj + eji^iqskRsHi + vj//,) for {xi.Xi.x^] = {RHuRH2.RHi]> (41d) 

+ 

M 

9^3      dxi 

9V2 dV3 

and 
9T7 

9X3 9X2 

9Sv _|_ 9Sv 
9xf       9x2^ 

+ cri'3v = 0        at X3 = 0, , 

+ (^liv = 0        at X3 = 0, 

~~r         9v3     — 
+ o-^v - 2;u, 0-33V = 0        at X3 = 0, 

+ U ~ + ^ (v^T,, + v>^) - V3 = 0        at X3 = 0. 

(41e) 

(4 If) 

(41g) 

(41h) 9/    '  ~   9xi   '   9x, 

In developing Eqs. (41e) through (41g), we have allowed for the possibility that the average values of 

both the fluctuating stresses alj^ and fluctuating surface tension a^^ are not zero.   Also, Eq. (41 h) has 
been developed by writing Eq. (36) in the equivalent form 

d-q + U 
9TJ        9»,T7 

W3 = 0 
9?      "9x1'    9x, 

which follows from Eq. (32a) and the fact that TJ is independent of JC3. 

b.  Interaction-Induced Flow Field 

For the interaction-induced flow field, the governing equations of motion and boundary conditions 
are found as 

9w^ 
9xfc 

= 0, 

9^, bWi 

9r -^ ^ 9x, 
1   9/'H, 

{WiW,, + w,v^ + v,^^) -^ + B. d\ 
9xt      '  "       ' "       ' "'        p    Bxj   '   p   dx^dxi^ 

^i ■"* «ooo,(x, - U8iit,t)        as VxiJ^ -^ °°. 

w, - 0        for {x,,X2,X3) = [RHURH2.RH3). 

^ ,, M 
Bwi   _   9w3 

9x3       9xi - ^r.S-^ at X3 - 0. 

fi 
9^2   1   9^3 

9X3          9X2 - <rk' at X3 - 0. 

p -pg-nw + a 
9S..      9S, 

-  -l,x 
9X3 

(w) 'w 9x?        9x1 = -0-3T' at X3 = 0, 

and 

at JC3 = 0. 

(42a) 

(42b) 

(42c) 

(42d) 

(42e) 

(42f) 

(42g) 

(42h) 

Part 4: A Matched Asymptotic Expansion for the Ship-Induced Flow Field 

Equations (41) describing the ship induced flow field in otherwise still water are, with currently 
available techniques, unsolvable on large domains regardless of the turbulence model used. The princi- 
pal difficulties preventing a solution are the nonlinear free surface boundary condition given by Eq. 

11 
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(41h) and the second order viscous derivative terms in Eq. (41b). These derivative terms, which are 
influential only in the vicinity of the ship hull and the ship turbulent wake, give Eqs. (41) the charac- 
teristics of what Van Dylce [10] terms a singular perturbation problem. For such problems, further 
progress can be made by applying the method of matched asymptotic expansions [10] to the solution 
procedure. Before applying this method, we must nondimensionalize Eqs. (41) to identify the relevant 
governing parameters, and before this, introduce the rudiments of a turbulence model. 

For our present purposes, it is sufficient to use isotropic eddy viscosity and diff"usivity models for 
the turbulent stresses and diff"usivities appearing in Eqs. (41). More complex models can be readily 
incorporated without changing the basic results of this section. Following Rodi [11], we write 

-V,Vt =  — V, 
9v,  ^ 9v^ 

dxk       dx. 

2 

where v, is the turbulent viscosity, and k is the turbulent kinetic energy per unit mass, 

k=yv;v;. 

By analogy with Eq. (43a), we also take 

(Trv = a, 
9 17v 9 T)v 

dxf       bxi 

(43a) 

(43b) 

(44a) 

where a., denotes the coefficient of turbulent surface tension.  Further, in analogy with eddy diffusivity 
models for turbulent heat or mass transport, we put 

-!-, 9i1v 

where a-^ is a dimensionless number.  We also set 

ML. 

(44b) 

(45a) 

and 
a = (T„a, (45b) 

Here, v is the kinematic viscosity of the water; cr^ is the ratio between this and the turbulent viscosity; 
and (Ta is the ratio between the coefficient of surface tension and the coefficient of turbulent surface 
tension. 

Since our primary interest is in the hydrodynamic wake produced by the ship, we choose nondi- 
mensionalizing parameters associated with this wake. As a length scale, we use the dominant Kelvin 
wavelength [12] ITT t/V.? and, as the time scale, the dominant Kelvin frequency lirUlg. This choice of 
scaling parameters renders the wake Froude number equal to unity. The dimensional quantities appear- 
ing in the ship wake problem then are given, in terms of their dimensionless counterparts, as 

ITTU 
Xi = —-— ii V, = f/v„ 

P, = pU^P,. Vs,= Uvsi. SHi f/v SHi- 

„     --I-n R        -  2EU1   6 R      -   2,7f/2    - 
ITTU g s Hi' 

D 27r6/^   = . 2TTU^  . 
Ksi = —-— K si> and 7}^ = —:— Vy 

g g 
(46a) 

12 
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For the turbulent kinetic energy, we take 

k=-^k (46b) 

which insures that both dimensionless components of Eq. (43a) are of the same order of magnitude, as 
required for dimensionless analysis. 

Substituting Eqs. (43) through (46) into Eqs. (41), we obtain the dimensionless equations govern- 
ing the ship-induced flow field problem as 

9v^ 

9^/ 
= 0, (47a) 

av,       9v,       9v,v^ 
—- + —- -I —^ 

9Pv        9 1 av,     av,    avjt 2 -- 
0-,  + -r-^ + "T^ - ■~  "^ KO ,i- 

9^,       dh [J<K, " 9^,      9^,       9f, 3      '* J (47b) 

0        asVi^-''". (47c) 

V, = -6,1 + Tij(\sj + ejkihkRsHi + ^*SHi)        for {f i,^j.^3} = (^H\'RHI.RHi) (47d) 

9vi    av3 
0        at f 3 = 0. (47e) 

9V2 9V3 

9?7^ 9?7 
= 0        at I3 = 0, (47f) 

P, - Inv, + (o-„ + 1) 
OlKr 

R Ki 

d% ^ d'v 

911'        9^1 

and 

9T?V      9^     _9_ 

97       9f,       6f, V/T7v 

^A:/        9^3       3   RK, 

^^,   91, 
V3 = 0 at ^3 = 0. (47h) 

In   these   expressions,   Rj(,   and  Ufc,   are,   respectively,   the   turbulent-flow   Reynolds   number   and 
turbulent-flow inverse capillary number, both based on the Kelvin wake.  We have 

RK, = — = o-,. —z = o-^«/r 

01 Kt 

gv, '     gv 

a^ 

(48a) 

(48b) 

where  R]^  and a,i^  are,  respectively,  the  laminar-flow Reynolds number and laminar-flow  inverse 
capillary number.  Typical values of R]^ and a^ for water are 

R^ = 6,4 X \Q''U\   aK = lilU •     , 

with Urn m/s (1 m/s ~ 2 knots). 
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As explained in Ref. 10, the method of matched asymptotic expansions is a solution technique for 
problems such as given by Eqs. (47) where the higher order derivatives have only limited influence on 
the flow field. The technique consists of developing two series solutions, one governed by an outer 
flow parameter that takes into account the unimportance of the higher derivatives for this flow; the 
other governed by an inner parameter that recognizes the limited influence of these higher derivatives. 
The final or composite solution is obtained by an appropriate combination of the two series that is valid 
over the entire flow field. 

The terms outer and inner have arisen historically because of the application of the method to 
boundary layer and wake flows in infinite domains. For these problems, it is easy to visualize two dis- 
tinct flow regions. For the ship wake problem, as we shall see, this analogy falters, because both outer 
and inner solutions occupy the flow region aft of the ship. However, the formalism of the method does 
not depend on defining specific flow regions, and we retain the terms outer and inner only for historical 
consistency.    , ,,     . 

a.  Ship-Induced Outer Flow Field 

Following the formalism laid out in Ref. 10, we seek an outer asymptotic solution to Eqs. (47) for 
large /?jf (=/?jf,/cr,,) since the inverse of this parameter multiplies the highest order derivatives in the 
equations. We write 

(49a) v,(r,f,;/?jf) ~ r lini^ ^{RK)} ^f(r,^i). 

Py(T,^r,RK) - f lim  8{RK)\ PUr.i,). 
Rr^°° 

k(T.^;;/?jf) ~ f lim  8{RK)] F(T,^,), 

and 

fi,iT.^i.^2,RK) ~ f lim 8(/?A:)1 vH-r.^uh) 

(49b) 

(49C) 

(49d) 

where a superscript t denotes the flow variables associated with the outer flow field, and where 8{Rx) 
is an expansion parameter to be determined. Substituting these expansions into Eqs. (47) and taking 
the limits as/?jf—♦ oo, we find 

^.0. 

sv/   dv/ dv/v;     BP: 

BT       BU      [R^-^ \   dlk B^i 

yf- 

t,T. lim 
8 (/?*.) 

0       asv^ —oo, 

[-8/1 + %iysj + ejkihkRsHi + vj/zp] 

(50a) 

(50b) 

(50c) 

av,^    av/ 
af3    3^1 

-0 atfj-O, 

av/    av/ 
3^3          3^2 

-0 at ^3 - 0. 

P/ - lirii. r-0 at |3 - 0. 

(50d) 

(50e) 

(50f) 

(50g) 

14 
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and 

c; 1^       a^ ^ Af, ^n^ J* 

9r   Q^r 
lim 8(i?^) 

9v/^v 

9^, 
- V3^= 0        at ^3 = 0. (50h) 

We see from Eq. (50b) that the highest order derivatives have been lost in the outer asymptotic 
expansion as has k^. The outer problem is thus reduced to an inviscid flow problem (we set ^''= 0 
since it is indeterminate). Having lost the highest order derivatives, the boundary conditions on the 
ship hull given by Eq. (50d) cannot be identically satisfied nor can the entirety of free surface stress 
conditions given by Eqs. (50e) through (50g). We instead specify zero fluid penetration through the 
hull or, equivalently, zero normal velocity and continuity of the normal stress component across the 
free surface. Hence, Eqs. (50e) and (50f) are ignored in the outer flow approximation. Additionally, 
we drop v*sfjj from the outer problem since these effective velocities are associated with vorticity pro- 
duction, which is inconsistent with the inviscid nature of the outer problem. 

Defining the normal to the ship hull with respect to the ship fixed coordinate system by nsn,, the 
normal «, in the 0x1X2X3 coordinate system becomes, consistent with the suitably small restrictions 
already imposed on the ship motions, 

"i = TijnsHj- (51) 

The appropriate outer flow boundary condition on the ship hull then is obtained as 

1 
v/«, = lim    ^,„ X [-«! + nj,j{vsj + ej^iQskRsHi^^ 

for {f 1,^2,13) = [RHX.RHi.RHii- (52) 

From this equation, we note that the only nondegenerate outer flow problem results from assigning a 
finite, nonzero value to   lim 8(Rj().  Without loss of generality, we can set this limit to unity. 

The outer flow problem, since it is inviscid and irrotational, can be simplified considerably by 
introducing a dimensionless outer flow velocity potential 4>^ related to its dimensional counterpart 4>^ 
through 

^t=22LUL^f, (53,) 

Then 

v/=^.       ' (53b) 

and Eq. (50a) yields Laplace's equation for the potential as 

63" 
ht at   "^ ^' (54a) 

while Eq. (50b) can be integrated to give Bernoulli's equation 

P/ + ^ + v/+-i-v/v/=0. (54b) 

The appropriate boundary conditions, which all can be cast in terms of 0\ are given by Eqs. (50c), 
(50g), (50h), and (52). .. .. 

The above problem is, essentially, still unsolvable because of the nonlinearities appearing in Eqs. 
(50h) and (54b).   However, as pointed out by Newman [12], neglecting these nonlinearities is necessary 

15 
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for consistency with the approximations already made in reducing the free surface boundary condition 
to the plane ^3 = 0. This is easy to verify. Recall that for this reduction, we took ?)/ — erj^' where e 
was a small dimensionless parameter. This gave V3'' ~ ev3''' and P^ — eP^' in the vicinity of the free 
surface. The free surface boundary condition was then expanded about ^3 = 0, and all terms of higher 
order than e were neglected. Referring to Eq. (54b), we see also that, for the outer flow problem, 
y( — evj' in the vicinity of the free surface. Hence, 4>^ and, consequently, V2'' are, respectively, of 
order e0^' and €v{' in the vicinity of the free surface. Thus, the nonlinear terms in Eqs. (50h) and 
(54b) are of order e^ for the outer flow problem and must be dropped to ensure consistency with our 
previous approximations. 

Returning to dimensional quantities via Eqs. (46a) and (53a), we can summarize the ship-induced 
outer flow field problem as 

dxiBxi 

and 

v/^0 

together with the prognostic relations 

dxl       ^   9X3 

for {X\,X2,X3] — {Rf{i,Rff2,RH3l' 

at Xi = 0, 0 

M!+ f/M! 
dt Bxi 

and 

v! = ± 
g 

B<f>^ 
dt 

+ U b^ 
bx\ 

at X3 = 0. 

(55a) 

(55b) 

(55c) 

(55d) 

(55e) 

(55f) 

(55g) 

Equations (55) are recognized as being the traditional Kelvin-Neumann problem [12] for determining a 
ship's Kelvin and radiated wave systems.  This problem, while nontrivial, is solvable. 

One cautionary note is in order. For the outer problem to he fully consistent over the entire flow 
domain, it is necessary that the rii component of the ship normal be everywhere small (of order e). 
For, if at some points on the huU it is of order unity, we find from_ Eq. (52) that, at those points, 
vi ~ 0(1) as opposed to order e. Hence, the consistency of the outer flow approximation breaks down 
at such singular points. Physically, such points give rise to the nonlinear bow wave problem [12] which 
must, in itself, be treated by other expansions and then incorporated within the traditional Kelvin- 
Neumann problem. 

b.  Ship-Induced Inner Flow Field •  . 

Having lost the viscous derivatives in the outer asymptotic expansion, we have been forced to 
neglect ship boundary layer and propeUer effects and the ship turbulent wake generated by these effects. 
These viscous phenomena, which are confined to thin regions adjacent to the ship hull and circum- 
ferential to a line (the resultant thrust axis) running aft of the ship, must be recouped in the inner 
asymptotic solution. The technique leading to this solution uses the thin nature of the viscous regions, 
and the concomitant knowledge that flow quantities vary much more rapidly across these regions than 

16 
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along Other regions, to rescale and simplify the equations and boundary conditions governing the gen- 
eral ship-induced flow field. 

Since our interest is in the hydrodynamic wake of the ship, we begin by considering the inner 
asymptotic solution for the region aft of the ship.   Before starting, however, one more cautionary note 
is in order.   The subsequent developments restrict the resultant thrust axis to be parallel to the direction of 
motion of the ship, that is, canted neither significantly towards nor away from the free surface. 

Following again the formalism laid out in Ref. 10, we introduce an inner expansion parameter 
A{RK) that represents, in dimensionless terms, the circumferential extent of the viscous wake region 
about the resultant thrust axis. This parameter requires the property 

MRK) -"0 asRK^ °°. (56) 

Since the region is thin, a nonuniform scaling of coordinates is necessary to ensure that derivatives 
across and along the region are a uniform length scale. We accomplish this by modifying the dimen- 
sionless global coordinates ^, as 

^1 = 5,, h = MRK)s2, h=^(RK)s3 (57) 

where the s, give the required uniform inner coordinates. We have, here, tacitly assumed that the wake 
axis parallels |i, from which assumption the above-noted restriction on the direction of the resultant 
thrust axis has been obtained. 

Based on the scaled coordinates, we seek an inner asymptotic solution to Eqs. (47). By definition, 
the dimensionless velocity Vi along the wake axis must exist if a long, thin, viscous region running aft 
of the ship is to exist. Hence, vj must be relatively independent of the circumferential extent of the 
wake, and we write 

Vi(T,5,;i?jf) ~ vt(T,s,) (58a) 

where a superscript * denotes the flow variables associated with the inner flow field. The velocities V2 
and V3 transverse to the wake axis are taken, more generally, in terms of the inner expansion parameter 
as 

and 

V2(T,S,;i?jf)  ~ 

V3(T,5,;/?jf)  ~ 

lim AHRK) 
Rr~' 

lim AM^/f) 

vf(T,S,), 

V5(T,S,.). 

(58b) 

(58c) 

where the nonnegative exponent \ is to be determined. 

Substituting Eqs. (57) and (58) into Eq. (47a), we obtain the continuity equation for the inner 
flow field as 

9vt 
bs\ 

+ lim L'^-KRK) 
Svf      Qvf 
Bsj       9s3 

= 0. (59) 

Thus, for the fundamental property of conservation of mass to be preserved in the inner flow field, we 
must take X = 1. Employing this result and Eqs. (57) and (58) in the dimensionless version of Eq. 
(43a), we then find 

k{T,Si\R,() - k*(T,s,) (60) 

if both components of the inner form of Eq. (43a) are to be of the same order of magnitude, as 
required for dimensionless analysis. 

17 
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Using Eq. (48a), Eqs. (47b) become 

9v*      9v*      9viv* 
-r— + -— + —T =   lim 

OT       a Si aSj        RK~°° a;,R, 
(o-„ + 2) 

ovt       2  ■ 
05i 3 

+ 
dS2 

1 

cr,R^,^HRK) 
(cr.+ 1) ^ + AHRK)  ^"^ 

By] 

dS2 ds 

+ 
dSi 

1 

a,Rf:AHRK) 
(.. + 1)|^+A^(/..)|^ 

0 53 a Si 
(61a) 

Sv*      Qv*      9v*v* 
"S~ + "a— + ~a '"" OT 0S\ OS, ^A:~°° 

1       9^v  ,    9 

A2(/?A:)   952       9si 

1 

<T,RKAHR„) 
^2^R^ncr^ + l)^+^^* 

dsi 952 

+ 
952 

1 

<T,R„AHR,C) 
(o-,, + 2) — k 

952 3 

953     \(T,RKAHRK) 
v.o-„ + 1) -:: 1- 

953 952 

9v5      9v|      9v?vr       ,. 
+ -r— H : =   lim 

BT BS\ Bsj 

1  a^v , 9 
A2(i?^)   953      951 

1 
cr,i?^A2 (/?;,) 

AHRK)(<T, + 1)^ + 

(61b) 

9vl 
9si       953 

952 

1 

CT^RKAHRK) 

, ,, 9v?      9v5 
(o-„ + 1) -^ + 

952 953 

+ 
9 S3 

1 

^,Rt,A\Rtd 
icr^ + 2) —k* 

953        3 
(61c) 

Examining these expressions in the limit R/c —* °o, we see that, for the inner asymptotic expansion to 
be both well behaved and to retain viscous flow effects,    lim Rj(A^{R/() must be a finite, nonzero 

R^^oo 

number.  Hence, without loss of generality, we set 

which yields 

lim RK^HRK) = 1 

MRfc) = l/R^^. 

(62a) 

(62b) 

18 



NRL REPORT 8833 

With this limiting value for Rf^^^iRf-), we see, in addition, that, to eliminate singular terms from the 
inner asymptotic equations. 

P,iT.sr,RK) - lim AHRK) P:(T,S,). (63) 

Using the identities 

and 

9 1 9vr _ 9v*    a 1 
ds^ 0-,     952 952     95, o-^ 

9 1    9v* B^J   9 1 
95, o-^    9S3 953     95, 0^. 

(64a) 

(64b) 

which follow from Eq. (59) and assuming (soon to be demonstrated) that the wake region is steady in 
the frame of reference moving with the ship, the inner flow equations for describing this region reduce 
to 

9v] 
= 0. (65a) 

dsi 

1       9vfv7 
+ 

95, 
9 

952 

o-„ + l   9vl 

952 
+ 

953 

0-, + 1   9vt 

o-„ 953 
(65b) 

dsi 

*2 ^ 9vivr 
95, 

dP*      9v7    9 + 
952 952    95, 

+ 
952 

O". 

0-. + 1   9v5 

952 
1  Ji! 
3   o-„ 

+ 
953 

0-, + 1   9v5 

o-„ 953 
(65c) 

9v 

95i 
 ^_^ + ^ _9_ 
95, 953        953   95, 

3 _|_ 9v5v7 

+ 
9S2 

0-, + 1   9vf 

952 
+ 

953 
0-. + 1 9vf 2   k 

O"^ 953 3   o- (65d) 

We note that all second order derivatives involving 5i, along with axial gradients of the pressure and 
turbulent kinetic energy, have disappeared from the inner flow problem. Hence, Eqs. (65) are hyper- 
bolic in the Si direction and elliptic in the (52,53) cross plane (i.e., parabolic overall). Mathematically, 
this means that the values of the inner flow variables on some plane sy + dsi are determined entirely 
from their values on the plane 5i together with the boundary conditions on the plane 5i + ^5]. Physi- 
cally, this implies that if the values of the inner flow variables are steady on some plane 5i aft of the 
ship, they remain steady as we progress further downstream from the ship. Since we have already re- 
stricted the unsteady motions of the ship about its mean motion to be small, the primary sources of the 
wake are the boundary layer of the ship in uniform motion and the commensurate propeller effects. 
Both of these sources are nominally steady; thus, our assumption that the wake region is steady in the 
frame of reference moving with the ship has been validated. 
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Let us turn our attention now to the boundary conditions for the inner flow problem. We assume 
that somehow (computationally, experimentally, or parametrically) the values of the inner flow vari- 
ables on a plane aft of the ship have been specified. Hence, as follows from the parabolic construction 
of the inner flow problem, the boundary conditions on the ship, given by Eqs. (47d) are irrelevant 
regarding the subsequent downstream values of these variables. Substituting Eqs. (57), (58), and (63) 
into the remaining boundary conditions [Eqs. (47c) and (47e) through (47h)], using Eqs. (48) and 
(62), and invoking the steady nature of the wake region, we find 

v?-*0        as V52 + si — °o (66a) 

dvt 
= 0        at S3 = 0 (66b) 

953 

dvt + Bvt 

7    k* 
P* + — — 

3     <T„ 

+ 

- 2 
+ 1 

a-. 

dS3 dS2 

+   lim 

= 0        at S3 = 0 (66c) 

a S3 
R \-K -27rii* + 

o-„ + 1 
"A: 

B'vt 
dsi 

+ 1 
cr„ 

Ufc   d^ij* 

+ Vf — h Vj 
9si 9si dS2 9^2 

= 0   at 53 = 0 (66d) 

Bvt 
9S2 

—   lim   1— — 
«A:-~ I RK   9SI 

o-^   Bfit 

<T^    9si 
+ R7^n = 0        at S3 = 0. 

In arriving at the latter two boundary conditions, we have taken 

T)^{T ,SX,S2\RK)  — lim A^H/JA:) 
Rjf—'00 

TJJ(S1,S2) = lim     T)Xis\,S2) 

(66e) 

(67) 

where the nonnegative exponent K is to be determined. 

Consider Eq. (66d).   For K less than, equal to, and greater than unity, respectively, we have in 
the limit /?jf —♦ 00 

'o-„-(- 1 
K < 1,     — lirri* + 

<T„ + 1 

ajc -7—5- = 0     at S3 = 0 

3   o-„ 

9v| 

9 S3 
-lTTil% + «A: 

9^ 
9s| 

7     k* 
K>\.     P; + 4 — - 2 

3   o-.. 

o-„-l- 1 9vS 
9 S3 

= 0    at S3 = 0. 

(68a) 

= 0    at S3 = 0  (68b) 

(68c) 

The condition obtained for K < 1 is independent of the inner flow field and, except for the solution 
■^* = 0, gives a continuously increasing elevation for S2 > 0 since [(CTO + l)/cr„]ajt is positive. 
Hence, we determine either K ^ 1 or K < 1 with ■^ J = 0. With either constraint, Eq. (66e) yields, in 
the limit J?jf—► 00,   , ,, 

v?=0        atS3 = 0. (69) 

Together with this result, Eq. (68c) overspecifies the boundary conditions on the inner flow problem. 
Thus, we require for a well-stated problem either K = 1 or K < 1 with TJ J = 0. Since the former con- 
straint is less restrictive, we conclude K = 1. 
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Summarizing, the boundary conditions for the inner flow problem are ascertained to be 

V^-^O as yjS2   + Si    —oo 
and 

v! = 
9v1 

953 9S3 
= 0        at 53 = 0 

(70a) 

(70b) 

along with the prognostic relation for ij* given by Eq. (68b). We note from Eq. (70b) that the free 
surface acts as a plane of symmetry for the inner flow field. Hence, we arrive at the important result 
that the solution to the ship-induced inner flow problem is identical to the lower half space 63 < 0) solution 
that would be obtained by solving the inner flow problem for the ship and its image (about S3 = 0) in an 
irifinite fluid. . , 

Returning to uniform dimensionless quantities via Eqs. (57), (58), (60), (63), and (67) and, 
thence, to dimensional quantities via Eqs. (46), we obtain, with the aid of Eqs. (45) and (48), the 
dimensional form of the ship-induced inner flow field problem as 

■ ^-     9v* 

bxj 
= 0 

U -—^ + 
9xi 9x, 9X2 

{v + V,) 
9vt 

9X2 
+ 

9X3 
{.V  + I/,) 

9vl 

9X3 

(71a) 

(71b) 

^ 9v5_ ^ 9v|v* 

9xi 9x, 

j_ bP^      9v| bvj_ 

p   9x2       9x2   9x, 

U 

+ 

'* ^ 9vfv; 

9X2 

1   dP 

iv + v,) 
9v' 

9xi 9x, 

+ 

P     9X3 

9 
9X2 

+ 

9X2 

9v*  dv, 
9x3   9x, 

9X2 

as 

+ 
9X3 

+ 
9x3 

ij^ + 

(v + V,) 

9v5 

VX2^   + W 

9X3 

9X3 

3  ^ 

(71c) 

(71d) 

(71e) 

9vl 9v' 
v5 = 

9x3       9x3 

together with the prognostic relation for TJ * 

(a + a,) 
9x| 

- Pgrit = 2p(i^ + V,) 
9v| 

9X3 

at X3 = 0 

- P* pk* at X3 = 0. 

(7 If) 

(71g) 

c.  Ship-Induced Composite Flow Field 

The ship-induced composite flow field is derived most straightforwardly by the method of additive 
composition detailed in Ref. 10. Basically, to obtain the uniform, first order, composite solution, we 
sum the first order outer and first order inner solutions and subtract the part they have in common so 
that it is not counted twice. Formally, this procedure translates into summing the first order outer and 
inner solutions and subtracting either the outer expansion of the inner solution or the inner expansion 

21 



R. A. SKOP 

of the outer solution. Because we have developed a matched asymptotic solution, these latter two 
expressions are, by construction, equal and, in our case, identically zero. 

To see this, let us rewrite the inner problem in terms of the independent outer variables ^,. Sub- 
stituting Eqs. (57) into Eqs. (65) and (70) and taking the limit as R^ —^ °°, we find the outer represen- 
tation of the inner flow problem as 

.:      :r7- = 0, (72a) 

vf-0        asVi?Ti|-~, (72b) 
and . ' ^^ 

^*'=^=^ = «        ^^^3 = 0 (72c) 

where the superscript * t denotes the outer value of the inner variable. Hence, the outer expansion of 
the inner solution—that is, the solution of Eqs. (72)—is 

■ ^      vfi^i) = 0.      . (73) 

For completeness, let us also rewrite the outer problem in terms of the independent inner variables s,. 
Substituting Eq. (57) into the nondimensional versions of Eqs. (55) and taking the limit as JRA: "" °°) 
we find the inner representation of the outer flow problem as 

- + ^ = 0' (74a) 

-^-0        as^si +si -oo, (74b) 
OS, 

and 
Alt* 

= 0        atS3 = 0 (74c) 
953 

where the superscript t * denotes the inner value of the outer variable. Here, the boundary condition 
on the ship hull has been neglected since the matched asymptotic solution encompasses fully only the 
region aft of the ship. Thus, the inner expansion of the outer solution satisfies a two-dimensional 
Laplace's equation with zero gradient boundary conditions.  From Ref. 13 and Eq. (74b), we obtain 

4>^*i.T,Sj) = constant, (75a) 
■ * it 

or 

V/*(T,S,) = 0. (75b) 

Consequently, the method of additive composition, together with Eqs.  (58), yield the ship- 
induced composite flow velocities aft of the ship as 

vi(T,|,) = v/(T,f,.)+vt(|,), (76a) 

V2(T,^,) = V2''(T,^,)+/?j^i/2^f(|,.),   ■ (76b) 

and 

V3(T,^,.)  = V3^T,f,)-^/?jF'^'v*3(|,), (76c) 

or, in dimensional terms, as 

v,.(f,x,) = v/(tx,) + vf(x,). '   (77) 
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Let US now turn our attention to the ship-induced composite pressure and surface elevation fields. 
From Eqs. (63) and (67), both the inner pressure and elevation are of second order in the inner 
expansion parameter MRK). Hence, they do not contribute to the uniform, first order, composite 
pressure and elevation fields. However, the inner flow velocities do have a first order corrective effect 
on the outer elevation field and, as a result, on the outer pressure field. 

To demonstrate this, we return to the dimensionless statement of the kinematic, free surface 
boundary condition for the ship-induced flow field given by Eq. (47h). Substituting Eqs. (76) into the 
kinematic condition, dropping the products of vf and rjv since they are of order e^ in the surface eleva- 
tion, and using Eq. (70b), we find, in the limit 7?^^ — oo, 

This expression represents the uniform, first order, kinematic free surface boundary condition. Setting 

^v = 'fi/ + ^v (79) 

where ^v gives the correction to the outer elevation field, we obtain, with the aid of Eq. (50h), the 
governing relation for l^ as 

_ + (l+vt)—= -vt-^        ^t^3 = 0. (go) 

This correction to the outer dynamic head leads to a proportionate correction in the outer pressure 
field. We have 

' V Vv 

or, fromEq. (79), "^ 

K=P! + ^P: (81) 

which, since P^/fi^ is well behaved, is itself well behaved. 

Returning to dimensional variables via Eqs. (46), we find ■■   .■ 

'n^ = vS + C^/ (82a) 
and 

where Cv satisfies 

P,^pf + ^pt (82b) 
1?v 

_ + (C; + vT)—= -vr^        ^^-3 = 0. (82c) 

SUMMARY 

A model for the hydrodynamic wake of a surface ship has been developed. Neglecting only 
ambient stratification and ambient surface films, we have begun with the general equations and bound- 
ary conditions for the flow field and, through a series of rational approximations, reduced the problem 
to a solvable one. 
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The approximations are: .  ,. 

• The fluid dynamics are independent of the gas particle (bubble) dynamics. 

• The ship undergoes only small motions about a uniform mean motion. 

• The free surface elevations are small. ,,  . ,. , 

• The ship-induced turbulence is significantly stronger than the ambient turbulence. 

With these approximations, the overall problem becomes separable into one governing the ship-induced 
flow in otherwise still water and one governing the interaction of the background with the ship-induced 
flow. 

The former problem was examined further by applying the method of matched asymptotic expan- 
sions. We found that the ship induces an outer flow field that satisfies the traditional Kelvin-Neumann 
problem for calculating a ship's Kelvin and radiated wave systems. This outer flow field is determined 
by Eqs. (55). We found also that the ship induces an inner flow field—its turbulent wake. This flow 
field is governed by the steady, three-dimensional, parabolic Navier-Stokes equations with plane of 
symmetry boundary conditions at the free surface. The inner problem is given by Eqs. (71). The 
overall, or composite, ship-induced flow field is derived from these two asymptotic flow fields via Eqs. 
(77) and (82). 

Besides the plane of symmetry boundary conditions at the free surface for the turbulent wake 
problem, the more significant results of this paper include: 

• Surface tension eff'ects are unimportant in determining the uniform, first order, ship- 
induced flow field in otherwise still water; and 

::. • The inner flow field produces a first order modification to the traditionally calculated ship 
wave elevations. This result could explain the experimentally observed diff"erences 
between the transverse wave systems of model and full-scale ships. ;,; 
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