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PREFACE 

The work reported herein was performed by the Arnold Engineering Development 
Center (AEDC), Air Force Systems Command (AFSC) for the Chemical Research and 
Development Center (CRDC), U. S. Army Armament, Munitions, and Chemical Command 
(AMCCOM), Aberdeen Proving Ground, Maryland. These results were obtained by 
Calspan Field Services, Inc., AEDC Division, operating contractor for the aerospace flight 
dynamics testing at AEDC, AFSC, Arnold Air Force Station, Tennessee, Under Project No, 
D244PW. The CRDC Project Monitor was Dr. Jerold Bottiger; Capt. K. Leners was the 
AEDC Project Manager. The data analysis was completed on August 31, 1983, and the 
manuscript was submitted for publication on September 30, 1983. 
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1.0 INTRODUCTION 

Since 1981, the U. S. Army Chemical Research and Development Center 
(USAMCCOM) has sponsored research at AEDC to develop and test methods to invert the 
particle size distribution function (PSDF) from Mie scattering measurements on 
homogeneous, spherical particle, aerosol clouds. The two most successful inversion 
techniques developed during this effort were reported in Ref. 1. The present report describes 
improvements made in the inversion techniques during the current contract period. In 
addition, this report presents a more detailed description of one of the inversion techniques 
(nonlinear regression) than has been previously presented. Further, a graphical procedure to 
determine the size range over which the PSDF should be inverted and to localize the modes 
of the PSDF is demonstrated. Finally, examples of PSDF's recovered from noisy, synthetic 
Mie scattering data are presented to demonstrate the utility of these techniques for the 
development of practical particle diagnostics methods, 

2.0 LIGHT SCATTERING BACKGROUND 

The formalism by which light scattering measurements are related to calculable Mie 
scattering functions has been presented in Refs. 1 and 2. Here, it suffices to state the 
Fredholm integral equation which describes Mie scattering from a polydisperse distribution 
of uniform dielectric spheres. 

G(Yi) + E(Yi) = -L- fxxx.yi) f(X)dX (]) 
N    o 

where N0 =  f K<J(X)F(x)dX 
o 

In this equation the solution variable X denotes either particle diameter or size parameter 
(X = TD/X), and the functional parameter G(y) denotes a suitably normalized measurement 
or combination of measurements of the scattered light intensity as a function of the 
scattering angle, wavelength, and state of polarization of the light scattered by a localized 
distribution of particles, whose number normalized PSDF is f(X). The set of independent 
measurement variables (yj), i = 1,2,...N is finite and discrete, even though the PSDF is 
regarded as a continuous function of X. A more complete representation of Eq. (1), 
allowing for the notation associated with each of the three types of independent scattering 
variable is stated in Ref. 2, and all the PSDF inversion codes developed in this project 
conform to the variable ordering convention stated therein. 

Equation (1) is an example of what has been called the "ill-posed problem," both 
because of the pathological behavior of the Mie scattering kernels (differential scattering 
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cross sections, in the present context) and because of the presence of the residual errors 
E(yi). These are an inextricable combination of experimental and computationally induced 
errors. All successful solution procedures of which we are aware depend on the use of some 
kind of scheme to minimize a weighted sum of the squares of the residual errors. The 
constrained eigenfunction expansion procedure, which we reported in Ref. 1, uses formal 
variarional methods to obtain that solution of Eq. (L) which minimizes the squared residual 
errors (inversely weighted by the estimated standard deviations for each input channel) 
subject to specified constraints. The nonlinear regression procedure introduced in Ref. 1 and 
on which we elaborate further involves no explicit constraints, but implicitly incorporates 
constraints through the use of fitting functions of predetermined form. 

Except for the normalizing factor N0, Eq. (1) has been discussed extensively in previous 
work (Refs. 1 and 2). If N0 is regarded as a normalization constant, it can simply be 
absorbed into the definition of the scattering kernels, and the previous treatment of Eq. (1} 
and associated solution methods will then stand unamended. Two of the four solution 
techniques developed during the course of this project were originally predicated on the 
assumption that the normalization kernel K0(X) could be chosen in such a fashion as to 
minimize the dependence of the normalization factor N0 on the PSDF, thus permitting N0 to 
be regarded as a constant. Both the nonlinear (modified Towmey-Chahine) inversion 
method presented in Ref. 2 and the nonlinear regression procedure of Ref. 1 allow N0 to be 
evaluated numerically at intermediate steps during the iteration cycles on which these 
solution techniques are based; consequently, N0 is regarded, correctly, as a function of the 
PSDF in both these procedures. One of the accomplishments reported herein is the 
generalization of the constrained eigenfunction expansion method presented in Ref. 1 to 
allow retention of the functional dependence of N0 on the parameters which characterize the 
PSDF. Clearly, adoption of this point of view requires that one must abandon the notion 
that the PSDF inversion problem is linear, if one uses ratios of scattering measurements 
instead of absolute measurements. 

What is gained, as a consequence of this acceptance of the inherent nonlinearity of the 
problem, is the assurance that the recovered PSDF is more accurate than the results obtained 
with N0 treated as a constant and, equally important, that the residual error associated with 
the recovered PSDF can be considered a fairly good approximation to the (unknown) actual 
experimental error in the scattering inputs. Retention of the functional dependence of N0 on 
the PSDF parameters has been a characteristic of our nonlinear regression algorithm since 
its origin; however, our constrained eigenfunction deconvolution procedure has only 
recently been generalized to incorporate this feature. 
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2.1 SOLUTION OF THE INTEGRAL SCATTERING EQUATION 

To solve Eq. (1), which is a Fredholm integral equation of the first kind if NQ is 
temporarily regarded as a constant, let us consider parametric forms of the PSDF 

f,(X) = f](X,C,,C2,...CN) (2) 

and 

f2(X) = f2(X,C1,C2)...Cr)P],P2...Ps) (3) 

where N is the total number of measurements and r + s < N 

In Eqs. (2) and (3) the constants Ci, C2, etc., are to be regarded as members of a set of linear 
expansion coefficients for the expansion of the PSDF in basis functions. Our first procedure 
considers the basis functions to be known functions of X, having no additional parameters. 
The linear expansion coefficients are determined by a formal variational procedure in which 
the sum of the squared residual errors is minimized subject to a specified constraint. This 
solution procedure was designated a "constrained eigenfunction expansion" in Ref. 1 
because the basis functions are eigenfunctions of the Mie scattering kernels. 

Our second solution procedure involves a linear expansion of the PSDF in basis 
functions which depend in a nonlinear fashion on X and on the parameters Pi, P2,...P5. The 
composite set of parameters {Cu C2. . .Cr} + {Pi,P2, ... Ps} is regarded as the set of 
regression parameters for a multivariate, nonlinear regression procedure which seeks to 
minimize the sum of the squared residual errors. We have used as basis functions lognormal 
distributions, cubic splines, Gaussians, and other functions whose height and width are 
taken to be parameters of the regression. 

In the next two sections we discuss the most significant characteristics of both these 
PSDF inversion procedures. Since the constrained eigenfunction expansion solution was 
derived in considerable detail in Ref. 1, we review in Section 2.2 only the most significant 
results of that derivation. The nonlinear regression technique is, however, discussed in 
considerable detail in Section 2.3. 

2.2 CONSTRAINED EIGENFUNCTION EXPANSION 

By a well known theorem, one can show that the optimum complete basis set for a linear 
expansion of the PSDF consists of eigenfunctions of the symmetric kernel operator 
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M(x'X) =     E   K(X'yi) K(X,yi} 
i= 1 

These eigenfunctions can be computed from eigenvectors of the kernel covariance matrix (in 
the input domain), which is defined as 

N (Yi.yj) =    r K(X,yi) K(X,yi) dX (4) 
o 

by use of the normalized transformation 

«MX) = \r!/l £    Ui (yj K(X,yk) (5) 
k=l 

where Ui and \ are, respectively the "ith" eigenvector and the "ith" eigenvalue of the 
kernel covariance matrix N. The direct solution of Eq. (4) which minimizes the residual 
errors without introducing anv solution constraints was published by Capps, et al. (Ref. 3). 
Recently we generalized this solution to incorporate variational constraints and inverse 
weighting of the kernels by the estimated imprecision values (square root of the estimated 
variances) for each input channel (Ref. 1). Our derivation shows that the solution expansion 
coefficients which incorporate a trial function constraint can be written as 

-2. 
r X> (C'T+ C?> (6) 

T T where the coefficients C,= j Fj (X) <fr (X)dX are the expansion coefficients for the trial 
function f^X) and the coefficients C° are the imprecision weighted direct solution 
coefficients 

CNxp     S    Ui(yt)   — (7) 
k-l AG(yk) 

In these equations AG(vi<) designates the estimated imprecision of the "kth" scattering 
measurement and the eigenfunctions, eigenvectors, and eigenvalues are calculated as 
previously indicated, but are based on the imprecision weighted kernels Kw(X,yi) = 
K(X,yi)/AG(yi). In addition, the normalization function ND = 5*K0(X)f(X)dX has, for 
the moment, been absorbed into the kernels as a normalization constant, restricting the 
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choice of the normalization kernel K0(X) to being slowly a varying function of X. This 
restriction will later be removed. The PSDF is expanded in terms of those coefficients as 

f(X) = Si d <fc(X) (8) 

and the residual errors are calculated from 

EjCjXf Uj(yi) - G(yi) 
E (yj =   (9) 

AG(vi) 

If one denotes the error-free PSDF by f°(x), then the solution error norm is bounded by 

2 E(yk) 
j   | f(X) - f°(X) I    dX < E    V1     E       ——- T C°) 
o i=l k=i       AG(yk) 

showing that the only solution components which contribute valid information to the 
recovered PSDF are those which satisfy 

\>>  £   i E(yk) i2 (ID 
k=l AG(yk) 

as was first shown by Twomey (Ref. 4). Invalid solution components must be suppressed, 
else the recovered PSDF will exhibit unphysical behavior. Suppression can be accomplished 
by deleting from the PSDF expansion those components which violate the above inequality 
(as was done in Ref. 3) or, by use of the constrained expansion coefficients presented here 
and in Ref. 1, or by a combination of the two methods. 

If one knew the actual errors in each measurement channel, the residual errors resulting 
from both smoothing and experimental errors could be computed from 

E(yi)   _      £ Ujta) E 
AG(yi) j = l      (1 + - 

h 
L xf 

(C7-C?)+    E   uj(ft)  
5G(yk)"|(i2) 

k = . AG(yk)J 

where 5G(yk)denotes the (unknown) actual error in the "kth" measurement. This equation 
shows that, as 7 increases, the effect of actual experimental error is damped at the expense of 
the introduction of error caused by smoothing. In actuality, since one doesn't know the 
actual experimental errors, the residual errors must be regarded as being entirely the result of 
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the smoothing process. If one can reliably estimate the optimum value of the smoothing 
parameter, the computed residual error will approximately equal the experimental error. 

Our solution procedure determines the optimum smoothing level by seeking a minimum 
in a parameter which is denoted the "Residual Relative Variance" (RRV) in Ref. 3. This 
parameter is a weighted average of the residual errors. Its minima are found to correspond 
to the values of 7 at which near equality is found between one or more pairs of the 
coefficients Q and 7/X(Q1). In practice, our solution technique employs a doubly iterative 
calculation sequence in which, at any stage of iteration, the smoothing parameter is 
increased until either a true minimum of the RRV is found (with respect to 7) or else the 
slope of the RRV is found to be negative and flat within a specified tolerance. The solution is 
then checked to see whether it differs from the previous iterate, within a specified tolerance. 
If the difference exceeds the tolerance, the current solution is taken to be the trial function 
for the next iteration cycle. The entire iteration sequence is begun by the specification of the 
initial trial function, and the sensitivity of the results to the choice of initial trial function is 
controlled by the specification of the "flat slope" criterion and the iteration convergence 
criterion. 

Once the PSDF has been determined, solution error bounds can be calculated, based on 
the assumption that the input errors are Gaussian. If the solution is based on the use of 
imprecision weighted kernels, the PSDF variance is rigorously expressed as 

|Af(X)P=       £     xr1     — (13) 

If the solution is based on unweighted kernels, the PSDF variance can be calculated, 
approximately, from 

N ,2 N                                          E    j u;(Yk)AG(Yk) _ 
|Af(X)|2   =      Z     Xj-'l^KX)!2  ^i  (14) 

i=i N 
"+jk2    I Uj (yk)AG(yk)| 

where the prime denotes eigenfunctions, eigenvectors, or eigenvalues of the unweighted 
scattering kernels. 

The equations presented in this section and in Ref. 1 reduce identically to those of Ref. 3 
when 7 — O and AG(y;) — 1. If the imprecision of each measurement is proportional to the 
magnitude of each measurement, weighting by input imprecision values is equivalent to 

10 
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weighting by the kernel norms, as was done in Ref. 3. In such a case» Eqs. (13) and (14) are 
also equivalent. 

The preceding equations were all derived under the assumption that the normalization 
kernel K0(X) varied sufficiently slowly to permit the normalization function N0 = 
J0K0(X)dX to be treated as a constant. This restriction is easily removed if the normalizing 
kernel is representable as a member of or a linear combination of members of the set of 
kernels which correspond to the input channels. Thus, if 

N 

K0(X) =      .E,    ajKfX.Vi) (15) 

where the a-, are arbitrary expansion coefficients, the normalization function can be 
evaluated, approximately, as 

N N 

cfx^Uj(yi) (16) 

since the trial coefficients are the PSDF expansion coefficients for the previous iteration 
cycle. When this form of the normalization function is used, the PSDF expansion 
coefficients must be modified in Eq. (6) by replacing each direct solution coefficient C, by 
the product N0Cj. Similarly, the smoothed expansion coefficients Q in Eq. (9) must be 
replaced by the ratio Cj/N0 to calculate the residual errors correctly. We refer to the use of 
N0 as a functional dependent on the properties of the PSDF in the solution procedure as 
"active normalization," whereas "passive normalization" indicates the consideration of N0 

as a constant which can be absorbed into the definition of the kernels. The solution 
procedure is sometimes less rapidly convergent when active normalization is employed, but 
it is more stable in the presence of experimental errors than when passive normalization is 
used. Further, the residual error corresponding to convergence of the iteration sequence has 
been found to be a fairly good estimate of the experimental error in the inputs when 
deconvolutions of simulated scattering data containing known levels of Gaussian-distributed 
noise have been performed. 

2.2 NONLINEAR REGRESSION 

Our second inversion procedure was originally developed for the Naval Air Test Center, 
Trenton, New Jersey. This technique has been extensively modified for application to the 
particle diagnostics needs of CRDC and the AEDC, This inversion procedure seeks to 
determine the PSDF by a nonlinear regression involving numerical application of the 
principle of least squares. 

11 
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Assuming that f(X) can be adequately expressed as a function of the parameters (Pj) and 
that the errors, E(y[), in Eq. (1) are normally distributed, the principle of least squares states 
that the best approximation to f(X) is that function f{X,{Pj}) in which the choice of the set 
of regression parameters {PJ minimizes the sum of the squares of the residuals between the 
calculated and measured scattering inputs G(yj), weighted by the inverse of each input's 
associated standard deviation. The selection of the fitting function, f(X,{Pj}) is a 
fundamental part of the regression procedure and is based on several considerations. If f(X) 
is known to be of a certain type (such as a lognormal), then the fitting function should be of 
the same type. Usually, however, nothing is known beforehand about the characteristics of 
f(X). In this case a wide range of fitting functions can be selected and the regression 
technique should specify the best set of parameters, given the functional form of the Fitting 
function and the measured inputs G(Yj). Since each independent parameter lends the fit an 
additional degree of freedom, the maximum number of parameters should be used for the 
most flexible fitting function, subject to limits which will now be stated. 

Three major factors limit the number of usable, independent regression parameters: 

1 . The number of independent parameters must be no more than the number of 
independent inputs G(Vj). 

2. As the fitting function becomes more flexible, more of the noise in the inputs 
will be incorrectly interpreted as good data. A judgment must be made (based 
on the signal-to-noise ratio of the data) regarding how much flexibility the 
Fitting function can have and still remain acceptably free of the influence of 
noise. 

3, Computer limits restrict one's flexibility in finding a minimum in the surface 
representing the residual errors as a function of the regression parameters. As 
more parameters are added, the time required to find a minimum in the residual 
error hypersurface increases rapidly, and the hypersurface tends to develop 
secondary minima, sometimes causing the nonlinear regression algorithm to 
converge to a local minimum instead of the absolute minimum of the residual 
error hypersurface. 

Before development of the current procedure, several standard nonlinear regression 
algorithms were used to determine f(X,{Pj}) for various case studies of synthetic data. 
During these studies, it became apparent that the heavy coupling among the parameters of 
f(X,{Pj}) made convergence very difficult for the standard iterative procedures. 
Consequently, a new nonlinear regression procedure was developed which was expected to 
be more stable when dealing with highly coupled parameters. The procedure starts with 

12 
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initial values for the parameters of f(X,{Pj}), yielding an initial value for Q, the sum of the 
squared residual errors. Each succeeding step of the iteration seeks the minimum of Q with 
respect to a multiplet of parameters of increasing order. For each multiplet, the minimum is 
sought repeatedly with respect to each member of the multiplet (with all other members held 
constant) until no further reduction in Q is found. The program then repeats this process 
with the next higher order multiplet until the order of the last convergent multiplet equals 
the number of parameters. The procedure used to minmize Q with respect to each parameter 
is quadratic minimization. Three Q's are calculated corresponding to three initial values of a 
parameter. The vertex of the parabola through these three points is used as the next estimate 
of the minimum and replaces one of the three initial points. The process continues until 
there is no further reduction in Q. Since this nonlinear regression technique seeks the 
minimum closest to the starting point, the regression must be started with several different 
sets of initial parameters to determine whether there are any other minima in the Q 
hypersurface within the region of interest. 

2.3 RESIDUAL ERROR CONTOUR ANALYSIS 

The choice of initial regression parameters is greatly expedited by use of a graphical 
procedure adapted from Ref. 5. Assuming for the moment that the PSDF can be represented 
by a two-parameter, single mode basis function (we have used expeditious computer 
approximations to zeroth order lognormal basis functions and Gaussian basis functions), 
one can plot the contours of constant residual error (VQ expressed as percent) versus the two 
regression parameters. The minima of such a plot suggest approximate values for the modal 
diameter and width of each mode of the PSDF. Further, one can immediately see which 
limits should be chosen for the minimum and maximum diameters of the inversion. This 
feature is quite significant for the constrained eigenfunction technique, but less important 
for the nonlinear regression technique. 

The use of error contour plots does not assure a unique choice of regression parameters, 
given a stated imprecision level for the scattering inputs. It does suggest, however, which 
parameter sets are more likely to represent a correct inversion of the scattering data and 
which sets are merely artifices of the scattering kernels. The discrimination between correct 
and incorrect parameter sets is made on the basis of the depth of the relative minima in the 
residual error surface, assuming that the input errors are normally distributed about zero. 

The above described procedure is not conclusive, since the shape of the error surface 
depends, to some extent, on the choice of basis function used for the plot. In addition, we 
have found that the residual error associated with the PSDF obtained by the nonlinear 
regression method is always equal to or less than the minimum error contour for a single 
mode basis function, since the regression method can use multi-mode basis functions. 
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Although it should not be solely relied upon to determine the PSDF regression parameters, 
we have found that the residual error contour analysis is a valuable adjunct to both PSDF 
inversion procedures described in this report. 

3.0 INVERSION OF THE PSDF FROM 
NOISY, SYNTHETIC MIE SCATTERING DATA 

The two previously described inversion techniques are here applied to the recovery of the 
PSDF from computer simulated Mie scattering data containing stated levels of Gaussian 
distributed noise. Since we have previously presented many recovered PSDF's (Ref. 1), we 
shall here be concerned with three specific situations: (1) multiwavelength scattering from 
nearly transparent droplets at a single scattering angle slightly less than the "rainbow angle" 
for the droplets; (2) multiwavelength backscattering (180 deg) from transparent particles; 
and (3) multiangle, single wavelength forward scattering from absorptive particles (carbon 
spheres). 

The first situation illustrates the difficulty encountered when the kernels introduce 
artifices into the regression procedure. Figure 1 shows an assumed particle size distribution 
for a spray of n-butanol droplets, whose refractive indices are stated in Ref. 6. Figure 2 
shows the set of spectral inputs (normalized by the mean of all inputs) which corresponds to 
the scattering of unpolarized light by these droplets into a spectrometer located at 135 deg 
scattering angle. The spectrometer's collection optics are assumed to subtend an angle of 6 
deg for these calculations. Residual error contours for the recovery of the PSDF of Fig. 1 
from the scattering spectrum of Fig. 2 are shown for the cases of zero and 6.7-percent input 
noise levels in Figs. 3 and 4, respectively. The recovered number normalized and mass 
normalized PSDF's for 10 sets of error-laden inputs (6.7-percent noise level) are shown in 
Figs. 5 and 6, respectively. 

Figures 3 - 6 show that, in addition to the correct mode at 0.34 fim (with full width at half 
maximum (FWHM) of 0.25 jim), the properties of this set of scattering kernels introduce 
false modes at other modal diameters. Particularly apparent is the erroneous mode near 1.2 
fim. 

Significantly, the scattering inputs corresponding to single mode PSDF's at modal 
diameters of 0.34 pm and 1.2 ^m, a bimodal PSDF with modes at 1.06 fim and 1.3 um, and a 
trimode with modes at 0.34 fim, 1.06 /xm, and 1.3 urn are almost indistinguishable from the 
scattering spectrum of Fig. 1. In fact, avoiding nonuniqueness in inverting PSDF's in the 
stated size range for this geometry requires experimental accuracy better than 2.3 percent. 
Attempts to deconvolve these PSDF's using the constrained eigenfunction expansion 
method with 12 optimally chosen wavelengths from the original set of 18 wavelengths were 
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totally unsuccessful, yielding modes near each of the four modal diameters suggested by 
Figs. 3 and 4, regardless of whether the scattering inputs corresponded to single mode, 
bimodal, or trimodal PSDF's in the size range shown. 

This situation arose in an actual Mie scattering experiment recently carried out at the 
AEDC. The experiment was intended to obtain visible scattering data at 135 deg and 
infrared scattering data at 180 deg. The complete failure of the infrared portion of the 
experiment effectively prevented the PSDF from being recoverable for particles with 
diameters greater than 2 /xm in the presence of an overwhelming number of small droplets. 
In addition, the previously described nonuniqueness in obtaining the PSDF for small 
particles was attributable to the lack of the infrared scattering channel. 

Situation 2 involves simulated scattering by small latex spheres suspended in water using 
the refractive indices stated in Table 1. Since the absorption coefficients for latices are 
unknown at infrared wavelengths, the corresponding values in Table 2 are Fictitious and are 
used here merely to complete the set of available scattering inputs. Simulated scattering data 
were generated for these wavelengths at 180-deg scattering angle (zero subtended angle) for 
the three PSDF's shown in Figs. 7, 11, and 15. The error free scattering inputs for these cases 
are listed in Tables 2-4. The number normalized PSDF's recovered from these inputs with 10 
sets of noise added at 3-percent level are shown in Figs. 8, 12, and 16, respectively. Residual 
error contours for a single set of noisy inputs are shown for each case in Figs. 9, 13, and 17, 
respectively. Mass normalized recovered PSDF's are shown in Figs. 10, 14, and 18. 

The number normalized PSDF shown in Fig. 11 strongly resembles a Junge power law 
distribution. It is, however, a truncated Gaussian distribution, centered on zero size. Note 
that the error contour plot in Fig. 13 exhibits a deep minimum near zero modal diameter, 
conforming fairly well to the recovered number normalized PSDF's shown in Fig. 12. The 
difference between this distribution and a true Junge distribution becomes apparent only 
when the mass normalized recovered PSDF's shown in Fig. 14 are considered. Similarly, 
although the number normalized, PSDF's in Figs. 15 and 16 are clearly bimodal, the 
equivalent mass normalized PSDF's in Fig. 18 are almost unimodal. 

Efforts to deconvolve the scattering data of situation 2 using the constrained 
eigenfunction expansion were unsuccessful because of the lack of sufficient information 
content in the 180-deg backscattering kernels at the wavelengths of Table 1. Successful 
results were obtained when phase functions (ratios of differential scattering cross sections to 
extinction cross sections) were substituted for differential cross setionsin both the scattering 
kernels and the simulated scattering inputs (integrated over the assumed PSDF). Back- 
scattering phase functions have much more information at small particle sizes (below about 
2.0 urn) than do back scattering cross sections; consequently, nonlinear regressions obtained 
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using phase functions were also considerably more accurate than those which were based on 
backscattering cross sections. Unfortunately, these observations are only of academic 
interest, since in any practical experiment the light scattering signal is proportional to a 
suitably defined, scattering cross section. Consequently, the inversion kernels chosen for use 
in Eq. (1) must also be proportional to scattering cross sections, not to ratios of cross sections. 

The third situation considered here is that of scattering at small forward angles by very 
absorptive aerosols (carbon). Because of the dipolar surface plasmon resonance (which 
occurs for carbon spheres at about 0.22 jim wavelength), carbon is very strongly absorptive 
at all wavelengths from the ultraviolet to the infrared. Consequently, little is gained by using 
additional wavelengths for particle size inversion experiments. The work of Ref, 1 suggests 
that the optimal scattering configuration for carbon aerosol size inversion experiments is a 
multiangular configuration whose smallest angle is about 5 deg (polarization information is 
lost at smaller angles) and whose wavelength is as small as the smallest particles of interest. 
Figure 19 shows the result of regression of the PSDF from ten sets of scattering inputs 
containing 5 percent noise level for a bimodal PSDF. The noise free inputs are stated in 
Table 5. Figure 20 shows the corresponding mass normalized PSDF's. The same scattering 
data have been deconvolved using the constrained eigenfunction expansion method. The 
recovered number normalized PSDF (corresponding to the average of 10 sets of noisy input 
data at 5 percent noise level) and the associated 68-peTcent confidence limits are shown in 
Fig. 21. Figure 22 shows the corresponding mass normalized PSDF. The constrained 
eigenfunction method yields good deconvolutions in this situation because the scattering 
kernels are much more sensitive to submicron particles than are those of the two previous 
situations. If success is to be assured using the constrained eigenfunction expansion method, 
it is imperative that the scattering inputs be optimally chosen for the size range spanned by 
the PSDF. In contrast, the choice of inputs is much less critical for the nonlinear regression 
method. 

4.0 CONCLUDING REMARKS 

This report has presented the characteristics of two particle size inversion methods: (1) a 
constrained eigenfunction expansion deconvolution technique, and (2) a nonlinear 
regression technique. Although both these methods were first presented in Ref. 1, the 
nonlinear regression method has not previously been described in the detail given in this 
report. In addition, the constrained eigenfunction expansion procedure has been improved 
by the incorporation of "active normalization" as described in Section 2.1. 

The addition of this feature permits the constrained eigenfunction expansion 
deconvolution technique and the nonlinear regression technique to be compared on an equal 
footing. The results of that comparison are the following conclusions: 
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1. The nonlinear regression technique is more stable and less sensitive to choice of inputs 
than is the constrained eigenfunction expansion technique. In some scattering 
geometries, the nonlinear regression technique can recover a fairly accurate PSDF 
using kernels with insufficient information content for deconvolutions based on the 
constrained eigenfunction expansion technique. This conclusion was stated in Ref. 1, 
but, until the incorporation of "active normalization" in the constrained 
eigenfunction expansion method, it was uncertain whether the greater stability of the 
nonlinear regression technique was due to the use of "passive normalization" in the 
contrained eigenfunction expansion method. Although "active normalization" does 
improve the deconvolution in some respects, it does not, apparently, reduce the 
threshold of kernel information content required for successful recovery of the PSDF. 

2. The nonlinear regression technique is less versatile than the constrained eigenfunction 
expansion technique. Currently, only bimodal PSDF complexity can be treated, using 
completely free parameters. A trimodal PSDF can be recovered by a multi step 
approach in which the three modal diameters are frozen at the values suggested by the 
residual error contour analysis described in Section 2.3. The widths and relative 
heights of these three modes are then treated as free parameters. This approach 
permits the regression to be reduced in scope from eight free parameters to five free 
parameters. The latter is the same as the number of free parameters required for 
regression of a bimode. In contrast, the use of twelve scattering inputs in the 
constrained eigenfunction expansion deconvolutions is equivalent to regression of a 
tetramodal PSDF. In general 3N-1 free parameters are required by either procedure to 
recover a PSDF whose complexity is represented by N modes. 

3. The nonlinear regression method currently runs on a large mainframe computer. In 
contrast, the constrained eigenfunction expansion method can be run on 
minicomputers and microcomputers. Although some reduction in program 
complexity is anticipated, it is unlikely that a small computer version of the nonlinear 
regression algorithm described in this report will be developed for recovery of PSDF's 
with greater than single mode complexity. Thus, future Mie scattering-based particle 
sizing instrument package development must either include provision for remote 
terminal access to a mainframe computer or else incorporate into an onboard small 
computer PSDF inversion algorithms whose computational requirements are less 
demanding than the nonlinear regression technique. If the latter choice is made it 
must, of necessity, be made with the full recognition that the determination of a 
nearly optimal scattering geometry is a corollary requirement for the design of a self- 
contained particle sizing system. 
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Figure 1. Number normalized particle size distribution function used to generate 
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Figure 5. Number normalized PSDF recovered from the scattering inputs of 
Fig. 1 with 6.7-percent Gaussian noise level. 
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Figure 6. Mass normalized PSDF recovered from the scattering inputs of 
Fig. 1 with 6.7-percent Gaussian noise level. 
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Figure 7. Number normalized PSDF used to generate the scattering inputs in Table 2. 
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Figure 8. Number normalized PSDF recovered from the scattering inputs of 
Table 2 with 3-percent Gaussian noise level. 
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Figure 9. Residual error contours for recovery of the PSDF of Fig. 7 
from the scattering inputs listed in Table 2. 
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Figure 10. Mass normalized PSDF recovered from the scattering inputs of 
Table 2 with 3-percent Gaussian noise level. 
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Figure 11. Number normalized "zero centered" PSDF used to generate the 
scattering inputs in Table 3. 
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Figure 12. Number normalized PSDF recovered from the scattering inputs of 
Table 3 with 3-percent Gaussian noise level. 
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Figure 13. Residual error contours for recovery of the PSDF of Fig. 11 from the 
scattering inputs listed in Table 3. 
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Figure 14. Mass normalized PSDF recovered from the scattering inputs of 
Table 3 with 3-percent Gaussian noise level. 
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Figure 15. Number normalized bimodal PSDF used to generate 
the scattering inputs in Table 4. 
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Figure 16. Number normalized PSDF recovered from the scattering inputs of 
Table 4 with 3-percent Gaussian noise level. 
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Figure 17. Residual error contours for recovery of the PSDF of Fig. 15 from 
the scattering inputs listed in Table 4. 
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Figure 18. Mass normalized PSDF recovered from the scattering inputs of Table 4 
with 3-percent Gaussian noise level. 
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Figure 19. Number normalized bimodal PSÜF regressed from the scattering inputs 
of Table 5 with 5-percent Gaussian noise level. 
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Figure 20. Mass normalized bimodal PSDF regressed from the scattering inputs 
of Table 5 with 5-percent Gaussian noise level. 
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Table 1. Refractive Indices used to Generate the Scattering Inputs Listed in Tables 2-4 

Wavelength, Refractive Index 
jam (real) 

0.222 1.381 
0.266 1.299 
0,524 1 202 
0.782 1.191 
1.04 1 191 
1.55 1.203 
2.33 1,340 
2 59 1.133 
2.85 1.153 
3 63 1.178 
3.88 1.186 
4.14 1.201 
4.91 1.173 
6.20 1 213 
8.99 1 329 

Table 2. Error-Free Scattering Inputs for the PSDF in Fig. 7 

Wavelength, Scattering 
pm Inputs* 

0.222 4,85 
0.266 5.89 
0.524 1.60 
0 782 0.426 
1.04 2.28 
1.55 0.172 
2.33 0.969 
2.59 0.0518 
2.85 0.0761 
3 63 0.100 
3 88 0.107 
4.14 0 122 
491 0,075 
6.20 0109 
8.99 0 223 

Normalized by the mean of all inputs. 
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Table 3. Error-Free Scattering Inputs for the PSDF in Fig. 11 

Wavelength, Scattering 
\im Inputs* 

0 222 6 26 
0.266 5 40 
0.524 0.911 
0.782 0.317 
104 0.227 
155 0 225 
2.33 0 836 
2.59 0 0615 
2.85 0.0838 
3.63 0.105 
3.88 Olli 
4 14 0 125 
4.91 0 0835 
6.20 0.103 
8 99 0.154 

Normalized by the mean of all inputs. 

Table 4. Error-Free Scattering Inputs for the PSDF in Fig. 15 

Wavelength, Scattering 
pm Ratio* 

0.222 4.40 
0.266 6.03 
0.524 1.64 
0.782 0.411 
1.04 0 272 
1.55 0.134 
2.33 1.14 
2.59 0 0597 
2.85 0 0888 
3.63 0 115 
3.88 0.122 
4.14 0.140 
4.91 0.0711 
6 20 0.0899 
8 99 0.286 

Normalized by the mean of a]] inputs. 
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Table 5. Error-Free Scattering Inputs for the PSDF in Fig. 19 

Angle, deg 

Polarized Scattering Inputs* 

Perpendicular Parallel 

5 
10 
15 
20 
25 
30 

3.19 
164 
0713 
0 625 
0.305 
0.271 

2 96 
I 17 
0 520 
0.335 
0.128 
0.141 

•Normalized by the mean of all inputs. 
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NOMENCLATURE 

as Arbitrary expansion coefficients [see Eq. (15)) 

Q Constrained solution PSDF linear expansion coefficient 

C° Direct solution linear expansion coefficient 

C| Trial PSDF linear expansion coefficient 

D Particle diameter 

E(yi) Residual error associated with the"ith" scattering channel 

f(X) Number normalized particle size distribution function (PSDF) 

f°(X) Error-free PSDF 

fT(X) Trial PSDF 

G(yO Scattering input ratio associated with the"Uh" scattering channel 

K(X,yj) Scattering kernel associated with the"ith" scattering channel—[see Eq. (1)] 

Ko(X) Reference scattering kernel 

M(X/X) Symmetric kernel operator 

N Total number of scattering inputs 

N(yi,yj) Kernel covariance matrix element 

N0 Normalization function—[see Eq. (1)] 

Ui(yit) Element of the"ith" eigenvector of the kernel covariance matrix 

P, Nonlinear regression parameter 

X Particle size parameter 
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Yj Independent scattering variable (wavelength, angle, polarization, etc.) 

y Smoothing  parameter  (Lagrange  multiplier)  used  in  the  constrained 
eigenfunction expansion procedure 

Af(X) Recovered PSDF uncertainty associated with stated input imprecision values 

AG(yO Estimated imprecision associated with the"ith" scattering input ratio 

ÖG(Vj) Actual error in the'Mth" scattering input ratio 

<fo(X) Eigenfunction of the symmetric kernel operator 

X Incident light wavelength 

Xj Eigenvalue of the kernel covariance matrix 
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