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PREFACE

This report summarizes the technical activities conducted at the
Honeywell Radiation Center, 2 Forbes Road, Lexington, MA 02173
under Contract No. F33615-72-C-1556, from April 1972 through April
1975. This program was conducted under Project 2004, Task

200402. S

The technical monitor for the government was Mr. William C.
Schoonover of the Air Force Avionics Laboratory/RWI at Wright-
Patterson AFB, Ohio. The five-channel nonheterodyne optical
receiver using a linear array of photoconductor detectors at

10.6 micrometers was evaluated at the Air Force Avionics Laboratory
by Mr. C. Stevens, AFAL/TEA. This receiver has been extensively
and successfully used in an Alr Force sensor flight test program
at the Environmental Research Institute of Michigan. The con-
tractor's measurement of the detector quantum efficiency for the
five-channel heterodyne optical receiver has been confirmed at
the Air Force Avionics Laboratory by Mr. P. Schriber, AFAL/TEA.

A single (Hg,Cd)Te photovoltaic detector, with similar character-
istics to those described in this report, has been successfully

flight tested by Raytheon Company under a separate Air Force
Contract.

The prime Honeywell Radiation Center personnel which technically
contributed to the program were D. MacDonald, R. Pellar,

J.B. McCullough, T. Koehler, D. Shafer, R. Wespiser, M.C. Terrell,
and J. Wiley.
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SUMMARY

The objectives of the program were:

® The design and fabrication of a beam expander for a 250-

watt cw laser.

The design and fabrication of a five-channel nonheterodyne

optical receiver using a linear array of photoconductive
(Hg,Cd)Te detectors at 10.6 micrometers.

The design and fabrication of a rive-channel heterodyne

optical receiver using a linesr array of photovoltaic
(Hg,Cd)Te detectors at 10.6 micrometers.
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SECTION 1
INTRODUCTION

This report describes the design, fabrication and test of a beam
expander for a 10.6-micrometer laser, a nonheterodyne 10.6-micro-
meter five-channel receiver, and a heterodyne 10.6-micrometer
five-channel receiver.

The objective of the procurement was to evaluate the use of linear
arrays of closely spaced detectors with a mechanically scanned fan-
shaped 10.6-micrometer laser beam in both the heterodyne and non-
heterodyne modes for use in airborne vehicles. The fan-shaped
i1luminator beam used in conjunction with a matched detector array
permits lower cross-track scanning rates to be used with less
doppler spread from the scanning mirror. This is an advantage in
moving target indication of slowly moving target vehicles. The
beam expander converts a 0.25-inch diameter, CO2 laser beam into

a fan-shaped beam with an FOV of 5 milliradians by 1 milliradian,
and is capable of handling 250 watts cw.

The receiver channels of the nonheterodyne array haveé a video bandwidth
of 10 Hz to 1 MHz with dc restoration, while the heterodyne array
receiver channels have two outputs, an i-f output which can vary

from 7 MHz to 13 MHz and a video output with an upper limit of

1 MHz.
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SECTION 2
ANAMORPHIC LASER BEAM SHAPER WITH A PHASE SR

Some active infrared optical systems irradiate a scene with a

laser beam and image this onto a linear array of detectors. The
contractor has designed and bullt an active system which optically
modifies the output of the laser in order to irradiate the scene

in a more favorable fashion. ,

OPTICAL DESIGN ‘

The optical system described here shapes the far field intensity
pattern of a €Oy 10.6-um laser beam, but the same principles can
be used at any wavelength. The normal Gaussian pattern is altered
so that the energy falling within the field of view of a row of 5
square detectors is nearly equal on each detector, and yet the
energy which falls outside their total field of view is minimized.

The first step in the design of such a laser beam shaper is to
consider the effects of simple modifications to a laser beam upon
its far field intensity distribution. Let us consider five detec-
tors in a row, each corresponding to a 1.0 x 1.0 milliradian square
field of view when used in conjunction with some imaging optics.
Spacing between the detectors is 107 of their width, and the array
is shown in Figure 1.

Now the simplest possible approach would be to irradiate this

field of view with a Gaussian laser beam with a far field divergence
of, for example, 5 to 10 milliradians at the 1/e2 intensity points.
This is shown in Figure 2. In both cases it is clear that most

of the laser beam energy falls off the detectors and is wasted.

In the case of the 5.0-milliradian beam divergence, more energy
falls on the detector but less uniformly, with the end detectors
positioned in the weak tail of the Gaussian distribution.

The next step up in sophistication is to squeeze the Gaussian beam
in one direction by using an anamorphic optical system following
the laser. By this means, a 5.0-milliradian divergence beam can
be made to match more closely the detector array, as shown in
Figure 3. Most of the energy falls on the detectors, but the end
detectors are still very poorly jrradiated compared to the center
detector.
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Nothing more can be done as long as the Gaussian distribution is
retained. However, by introducing a phase step into the beam, the
far field distribution can be made to assume a variety of different
forms.* One type OI distribution in pasticular gives wzood unifor-
mity of energy from detector toO detector as will now be shown.

Figure &4 shows the effect on the far field intensity distribution
of increasing the diameter of a phase step which introduces a N2
phase retardation into the central part of the laser beam. The
transmission of the phase step is assumed to be 100%.

In case D, the pattern appears as a ring of radiation with a dark
center and a faint set of concentric side-lobes which are very

weak and will be ignored for the moment. If this ring of radiation
is compressed in one direction by an anamorphic optical system, it
can be matched with the detector array field of view in the manner
shown in Figure 5. The 1/e2 width of the radiation ring is indicated.
This case clearly shows a more uniform distribution of energy from
detector to detector than the simple Gaussian case shown in Figure
3. Because of the curvature of the ring's elliptical shape, more
length of the radiation ring falls on detectors No. 2 and No. &
than on the center one. By choosing the beam divergence properly,
the end detectors,No. 1 and No. 5,can be made to receive energy
equal to that on the center detector. Although this is only a
qualitative analysis, it 1s clear that the amount of energy each
detector receives is propcrtional to the length of the ring of
radiation that falls on it.

1+ turns out, however, that the optimum far-field pattern is that
of case C of Figure 4. It consists of a ring of radiation with a
central spot. The central spot increases the energy on the central
detector and by adjusting the divergency of the pattern in the far
field, the detector uniformity is better than that in case D.

A beam shaper based on a M2 phase step and an anamorphic optical
system has been built by the contractor for use with a high power 002
laser (250 watts). The design goal was that at least 75% of the
energy leaving the beam shaper should fall on the 5 detector

fields of view shown in Figure 1 and that the energy variation

from detector to detector be no more than 25%. Furthermore, the
transmission of the beam shaper was toO be maximized.

Je
Haskel H "Thermomagnetic Writing with Non-Gaussian Laser Beam Inten-
sity Distributions'  IEEE Vol. 58,No. 5, P. 80% 1970.
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The first part of the design consists of an all-reflective beam
expander; this is shown in Figure 6. Because of the high power
levels, refractive optics were not considered. The beam expander,
which is an 8-power telescope, consists of two spherical mirrors.
They are used with the input laser beam displaced from the optical
axis of the telescope so that there is no obscuration introduced
into the beam. By using long radii on the two mirrors, it was
easy to obtain a diffraction-limited (at 10.6 um) design, that

was reasonably compact. The contractor's design converts a 0.63-cm
diameter beam (measured at the 1/e2 points) from the COp laser
into a 5.l-cm diameter output beam within a length of 75 cm. The
mirrors are sized so as to truncate the Gaussian laser beam at the

1/e3 points. This results in a 5% energy loss.

A 7/2 reflective phase step is located on the surface of the second
mirror of the beam expander. It was deposited onto the mirror
before the final gold coating and has a diameter which is 45% of
the mirror diamater. An analysis indicated that if the Gaussian
beam is truncated at the 1/e3 intensity points, a A/ 2 phase step,
which is 45% of the diameter of the truncated beam,would give the
optimum performance (as defined earlier). Since the wavefront is
to have a M2 step introduced, the reflecting phase step on the

mirror must be A/4 thick.

The second part of the beam shaper is an anamorphic system which
squeezes the output of the 2-mirror beam expander in one direction.
This consists of a pair of cylindrical mirrors which make up an
8-power reducing telescope, as shown in Figure 7, where it is com-
bined with the preceding beam expander.

Now the beam size leaving the two-mirror beam exgander, if allowed
to travel out to the far field, would have a 1/e2 intensity level
diameter of 0.78 milliradian as compared to 0.34 milliradian for
the same beam diameter without the phase step, as shown in Figure 8.
Therefore, the 1.0-milliradian square fields of view of Figure 1
are matched in one direction. The beam spread in the other direc-
tion depends on the diameter compression ratio introduced by the
anamorphic telescope following the beam expander. Since this is

an 8-power telescope in one direction and has no effect at allin the
orthogonal direction, it follows that the far field pattern will
also be stretched by that ratio and will have a 1/e2 intensity
level contour that is 0.78 milliradian in the short direction and

6 .24 milliradians in the long direction.
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For the particular parameters of this system, it turned out that
the magnification required for the two-mirror beam expander (8X)
is the same as the reduction ratio (8X) of the two-mirror anamor-
phic beam compressor. The magnification and the anamorphic mini-
fication would not generally be the same, but since they are for
this design, it means that the first two mirrors are actually
superfluous - the two cylindrical mirrors alone would suffice if
used in reverse order and with the phase step placed on one of the
mirrors. This simpler one-stage system was not built because a
long thin elliptical shaped phase step would be required on the
large cylindrical mirror which would be difficult to deposit
accurately. On the small mirror, the phase step could be circular
but would have to withstand the high power density of the 250-watt
laser beam, which was thought to be risky. In actual tests, the
small mirrors easily withstood the high power densities with no
apparent damage, SO the phase step probably could have safely
been placed on a small mirror and the simpler one-stage design
used. Of course with different system parameters, the more gen-
eral two-stage design would usually be required.

28 written to integrate the energy in the
pattern which falls within the 5 detector fields of view of 1.0

« 1.0 milliradian. The predicted results are shown in Figure 9.
There is a tradeoff involved in the optimum magnification choice
for the anamorphic telescope. The results of Figure 9 are for

a design where the energy uniformity and the energy efficiency
have been made equal. A slightly different value for the anamor-
phic magnification can result in an energy uniformity of 95%
from detector to detector with only 21% of the energy falling
outside the envelope of the 5 detectors. It is quite remarkable
that such a small change in the amount of energy received can make
a difference in the energy uniformity. The reason is that the
tail of the pattern shown in Figure 8 has very little energy in
it. Yet if the system 1s designed to bring that tail onto the
detectors, than the uniformity will obviously suffer, with very
1ittle energy gain to compensate for the energy nonuniformity

penalty.

A computer program W

To actually measure the true far field performance directly is
the far field doesnot begin until ranges of

impractical, because
500 meters or more. The presence of the phase step in the output

wavefront causes the beginning of the
much further away from the normal far field range, Or "Rayleigh

distance." For this reason, the intensity distribution at the
focus of a parabolic mirror was measure

13

far field region to be pushed

d with a mask having 5 slots

S SRS



-

iy

LytuwrogTup A319uy %18

£3TmzoyTun pue Adualdr3jjye A3aauxy 6 2an3d1d

cr b4 e ct +#
il
18°0 0°1 18°0 01 1870
el —» 1+

A8aauyg pleTd IBJ TBIOL FO %I8

I030939d Yyoed

uo AZ3asuyg
Pz 1EWION

Eeg
—




of appropriate size to simulate the detectors, and a power meter.
This arrangement simulates the far field behavior of the beam
shaper. A 3-watt COp laser was used far these measurements.

The diffraction pattern at the focus of the parabolic mirror, and
hence the far field pattern of the laser beam shaper, is shown in
Figure 10. The image is falling on an IR image plate which makes
the pattern visible. Because of the large aspect ratio of the
pattern, due to the anamorphic telescope, not much detail can be
seen when the radiation is focused perpendicularly onto the IR
image plate. For this reason, the IR plate was tilted by a large
angle so that the very elongated diffraction pattern was projected
onto the plate at nearly grazing incidence, thereby broadening out
the pattern to the nearly circular shape of Figure 10, so that the
detail can be seen. The ring of radiation with the central bright
spot (Figure 8) is clearly visible (the IR plate gives a negative
image). No sidelobes are visible.

The measured performance for uniformity, detector to detector, and
energy loss outside the envelope of the 5 detectors is:

Measured Results

Energy in envelope of
field of view

Energy uniformity from
detector to detector

17%
82%

The design goals were met, and in a high power test with a 250-watt
laser, none of the mirrors rose in temperature by more than a few
degrees, while the gold coatings were unaffected. An interesting
feature of the optical system is its lack of sensitivity to many
parameters. The mirrors can be misaligned by a considerable
amount, the input laser beam be somewhat off from the correct beam
diameter, the beam off-center on the mirror having the phase step,
and the laser have an output which is not very Gaussian in pro-
file, andyet the system still retains its good performance numbers.

A simple optical system has been described which shapes the far
field diffraction pattern of a 10.6-micrometer high power laser
into a particular desired shape. The measured performance numbers
agree closely with the predicted design performance, and the system
is not very sensitive to misalignment or defects with the input
laser beam. The basic idea of using a phase step in a laser beam
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Figure 10 Tar field pattern of the laser beam shaper
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to change the far field pattern in a desired fashion has, there-
fore, been proven both theoretically and experimentally to be a
valid, practical, and useful solution to efficient and uniform
laser beam illumination.

MECHANICAL DESCRIPTIGN

The beam shaper optics comprise four first surface reflector
mirrors. (See Optical Schematic 21010072, Figure 11.) These
mirrors, Ml through M4 are supported in end plates which are
separated by a tube, Mirrors M1 and M3 are mounted in the Output
Endplate, M2 and M4 in the Input Endplate.

Mirror M1 is mounted directly to the Endplate which serves as a

heat sink. This design successfully passed laboratory tests with
250-watt cw COp laser power impinging upon it. The remaining
mirrors are supported by spring mounts and positioned with adjusting
screws. These adjusting screws should not be tampered with unless
optical characteristics of beam are to be altered.

The two internal thermal shields shown on Assembly Drawing 21010062
(Figure 12) are furnished but not assembled since their use is con-
sidered unnecessary, The input shield, however, is considered nec-
essary until the input beam is properly aligned with the input
apertures.

All parts which could contribute to thermal instability are made
of aluminum. This will allow the assembly to expand and contract
uniformly and remain in focus.

The Assembly can be monitored in any attitude through the use of
the three mounting clamps. See Installation Drawing BK13A (Figure
13) for hole patterns.
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SECTION 3
NON-COHERENT FIVE-CHANNEL RECEIVER

ok L e s o S NI L L S

This section summarizes the technical effort expended in manufactur-
ing a 5-element linear PC 10.6-micrometer (Hg,Cd)Te array for non-
coherent operation. The specifications are delineated in Table 1.

Table 1
SPECIFICATIONS

Type detectors - Photoconductive (Hg,Cd)Te
Size detectors - 0.25 mm x 0.25 mm + 107%
Detector spacing < 0.025 mm

Cross talk < 5% (Design goal < 1%)
D¥y > 2 x 1010 cm Hzl/2/watt (Receiver - See note)

video bandwidth - 10 Hz to 1 MHz with dc restoration
Amplifier gain > 40 dB

Filter width - 0.2 micrometer

Peak transmission of filter > 65%

F number - 1

Coolant - LN2
Coolant hold time with receiver operating > 1 h

Note: This includes cold stop filter, window detector, ﬁrt
amplifier, etc, which are used in video channel of i

receiver.

MANUFACTURING

The manufacturing relied on the mature PC array technology capa-=
bility of the contractor which is well documented in engineering
specifications, fabrication inspection orders, inspection procedures,
and standard testing methods. Because the fabrication process is
defined in detail in other documents, this section will only refer-
ence the documents used and will dwell on modifications, discrepan-=
cies or problems encountered in the manufacturing process.

Rl e i el e LR i (T o




The extraordinary items to be discussed include:

Documentation Reference List

Material selection procedure

Special cold 10.6-um narrow band filter

Canting of cold filter to shift center frequency to
10.59 um

Evaporation mask problems

G-factor calculation

Inadequacy of PE-112 to resolve detector/filter response
Test results on final array

Documentation Reference List

Part Number Final Array 21009213-102
EPA 23638-06

FI0 (array fab) A40172-141
Engineering specification 23158-ES05
FIO (final assy) B40172-141
FI0 (array rework) RB40172-141
Engineering specification 23943-ES-2

Material Selection Procedure

Slab 40172-S141 was selected on the basis of data compiled and
maintained by Toivo Juvonen in a regular program of ingot evalua-
tion. The criteria for selection included:

Wavelength peak 10.6 um

High percentage of BLIP

BLIP improvement with reduced background

Mercury pit density

Resistivity

Ingot Hall data

Cold Filter

The filter was purchased from OCLI and exceeded specifications.
The actual figures were:

%o = 10.6057 pum

AN = 0.0982 um

T = 75%




Cold Filter Canting

Because the filter center wavelength was 0.0157 micrometer greater
than the desired wavelength of 10.59 micrometers, the filter was
canted with respect to the dewar axis by 3 degrees. The tilting was
accomplished by inserting a FOV aperture which was machined with a

3 degree bevel.

VIR BN R R

Evaporation Mask Problems

e

The design goal for element spacing in the array was 0.001 inch.
Extra material is usually allowed in the photomask to allow for
etch undercutting. This gives the element a bowed cross section.
The contact mask separations were exactly 0.001 inch. Problems i
occurred when the mask failed to cover the entire area to be ;
evaporated, thus causing indium metallization to short adjacent k-
elements. The problem can be solved by lapping elements thinner
in order to minimize etch time, or by making contact mask pads
undersize. A cleaning procedure which removed excess indium from

e

%55 the array spacing was used to fabricate the final array.

E G-factor Calculation 1

'; i;:‘. W
12 The g-factor is calculated on the basis of OCLI test data because 4

inhouse spectrometer could not resolve the filter spectrum, This i
calculation isshown in detail in the final acceptance test report.

<;k The factor was:
g = 182.17
where

D*p = & D¥gy

] i e e e T

PE-112 Test Station Spectral Results

The spectral response measured at HRC indicates a half width of %
0.46 micrometer (see Figures 14 and 15). Since the filter half ,
width is 0.0982 micrometer, the detector with cold filter has |
! resolved the slit width of the spectrometer. The slit width .
& could not be reduced further because the sensitivity of the spectral

test station is limited by the 6-Hz bandwidth of the HP 302 wave

2 analyzer.
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All the elements of the 5-element array met the
tion D*y (10.6 um, 10 kHz, 60°, 1) of 2 x 1010

Test Results

results are shown in Table 2.

design specifica-
cm Hzl/2/watt. The

Table 2
D%(10.6 pm, 10 KHz, 60°, 1)
vi3 vi3
R, (77°K) D*pp D 0
Element ohms cm Hzl/z/w cm Hz*/ =/y4 R% V/W
1 57.5 1.68 x 10° 3.06 x 100 25,120
2 1.1 2.14 x 10° 3.9 x 10'° 21,980
3 26 .9 1.9 x 10° 3.46 x 100 17,590
4 36 .8 3.33 x 10° 6.07 x 10°° 30,150
5 41.8 7.14 x 10° 1.3 x 10°% 21,360
10 1/2 =
Acceptance Criterion: D*K =2 x 1007 cm Hz ' ~/watt minimum

SIGNAL PROCESSING CIRCUITRY

Preamplifiers (Ref.

The preamplifier is a special design o
(Hg,Cd)Te photoconductive detectors.

bias supply with bias current capabi
by potentiometer R3. The input stage is a dual common emitter, ac

F21010013)

ptimized for high speed
It contains a well regulated
lity from 0 to -6 mA determined

coupled stage consisting of transistors Q2 and Q3 and capacitors

e
i

o

e

e




C4, C5 and C6. Transistor Ql provides a low impedance load for

the input stage thus minimizing the Miller capacitance effects,

L1l & R5 determine the peaking provided in the frequency response
with C10 controlling the major part of the upper -3 dB point. The
frequency response is set at -3 dB at 20 Hz and 2 MHz with +3 dB

of peaking at 1.2 MHz to compensate for optical spatial MIF and
detector temporal responses. Transistor Q4 provides level shifting
to transistor Q5 which is the output emitter follower stage. Over-
all preamplifier gain is controlled by R6 and can be varied from

0 to 2000 to account for detector responsivity and dynamic range
capability. The output signal range is approximately 6 volts, ac
coupled to the load by capacitor 69. Due to large gr noise of the
detector, the preamplifier noise figure is negligible.

Clamp and Buffer Stage (Ref F21010011)

For channel number 1, R4 provides impedance buffering from the
preamplifier during clamping and sets the clamp frequency response,
Resistor R5 determines low frequency cutoff of this stage with C9
of the preamplifier when the clamp is open. The operational ampli-
fier HA-2602, AR3 provides output signal buffering, with R6 pro-
viding impedance matching for long cable loads.

FINAL ACCEPTANCE TEST

This section covers the acceptance test data on the Non-coherent
Receiver, LK128Al, provided as item 0001AC of contract F33615-72-

C-1556.
APPLICABLE DOCUMENTS

21009110 - Detector Assembly (Non-coherent), Figure 16
21009212 - Dewar and Detector Assembly, Figure 17

21009213 - Housing, Dewar and Detector Assembly, Figure 18

21009215 - Preamplifier Assembly, Figures 19 and 20
21010011 - Clamp and Buffer, Figure 21

21010012 - Power Distribution, Figures 22 and 23
21010013 - Preamplifier, Figures 24 through Al

LK128A - Installation - Non-coherent Receiver, Figure 28

TEST RESULTS

Mechanical Inspection

All dimensions and electrical wiring were verified to be in
accordance with the drawings specified above.
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Figure 17 Dewar and detector assembly (21009212)
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Coolant Hold Time

The coolant hold time was measured to be in excess of 2 hours and
45 minutes with the detectors biased.

Acceptance Criterion: 1 hour minimum

Maximum Bias

The maximum bias applied to any detector element is 10 milliamperes.
The current is limited by the preamplifier bias circuit (21010013).

Acceptance Criterion: 20 milliamperes maximum per element

Spectral Response

The spectral response of the receiver was checked on a Perkin-Elmer
Spectrometer using an £/4.0 cone of radiation. The response of
elements 1 and 3 were checked and found to be as shown in Figure

14. The slit width of 0.46 micrometer was the smallest slit
possible to maintain good signal to noise ratio on the spectrometer.
This test showed the relative response of the receiver and that no
spectral leaks were present between 4 and 12 micrometers. However,
the actual response of the receiver is determined by the cold filter
and proper adjustment of the cold filter angle. The cold filter was
built and tested by OCLI and the data are shown in'Figure AL e
data are shown for . room ambient and 77°K.

3 ¥ 1
D BB to D \ Conversion Factor

The conditions of measurement were:

Detector Temperature 77°K

Chopping Frequency 1,000 Hz

Detector Area (AD) 0.0625 mm2

Orifice Diameter (dB) 0.050 inch

Blackbody Temperature (Tg) 500 °K

Background Temperature (T¢) 300°K

Emissivity s
Blackbody (€B) 1.0 :
Chopper (ec) 1.0

Noise Bandwidth (Af) 6 Hz

Chopper rms Factor (Kqp) 0.35

Detector to Orifice Distance 15 cm

(D)
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Stefan-Boltzmann Con- 5.67 x 10_12watt cm % (°K)
stant (K,)

Rms Noise COrrection (K3) 1.12

Amplifier Gain (same for ~2,000
signal & noise)

D* Formula:

Seulic IR
P S AR

402 (Af)l/z

BB
T 4 4
K, K, Ky dp ¥ &g (e T'p = ¢¢ Tg )

Detector Readout Circuitry

»
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D¥*

T T T S
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The detector Setup was as shown in Figure 29.
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Figure 29. Detector test setup
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assume transmission (T) = 1.

For a narrow spectral range:

H%m ?F"" oA
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4.05 x 10~ 2w/ cmZ-um
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Hy = 10.6/Hy, = 0.49
;i g = 182.17
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v
>
i
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Test Results
The test results of the 5 elements are given in Table 3

Table 3

D*(10.6 um, 10 kHz, 60°, 1)

R o i

R.(77°K) D*pR D#*)
Element dohms cm Hzl/z/w cm Hzl/z/w R% V/W
1 57.5 1.68 x 10° 3.06 x 10M° 35,120
2 31.1 01, e B 3.9 x 10-0 21,980
3 26 .9 1.9 x 10° 3.46 x 100 17,590
4 36.8 3.33 x 10° 6.07 x 1020 30,150
5 41.8 7.14 x 10° 1.3 x 10%t 21,360

10 1/2 s
Acceptance Criterion: D*% =99= W0 cm Hz / /watt minimum

Frequency Response

The noise bandwidth of each detector element was measured from

1 kHz to 5 MHz and is shown in Table 4. Table 5 depicts the signal

response of each element from 125 Hz to 10 kHz.

&

ELECTRONIC RESPONSE
Preamplifier Low Frequency Response

The preamplifier low frequency response was verified by a pulse
input and noting the low frequency response of one halt cycle.
The results are shown in Figure 30, As can be seen from Figure
30, 7 = 0.01 second

A e S e
c 2nr

Dc Restoration Check

The dec restoration circuit was checked as shown in Figures 31 and
32. Figure 31 shows the sinusoidal output of the preamplifier
clamped to ground at the negative peak. Figure 32 shows the same
signal with and without dc restoration.
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Table &4

NOISE BANDWIDTH

Frequency Element Number (noise mV)
(iz) 1 2 3 4 5
1 150 64 50 20 80
. 150 64 50 19 80
3 150 64 50 19 70
A 150 64 50 19 70
5 140 64 46 18 66
10 140 58 44 17 60
20 140 56 44 17 58
40 130 52 44 17 56
60 130 52 42 17 56
80 120 52 40 157 56
100 110 50 39 17 56
200 110 50 36 17 52
400 110 60 46 20 61
600 110 62 46 20 62
800 140 66 46 16 72
1000 145 70 48 14 .64
1200 130 64 44 11 64
1400 110 52 38 8 52
1600 90 46 32 5.2 46
1800 78 36 26 3.9 36
2000 65 32 23 3.3 30
2500 50 23 18 343 23
3000 38 18 16 388 18
3500 30 15 12 313 13
4000 15 8.0 8 3.3 2.6
4500 7.4 3.3 4.8
5000 3.6 2= o 3.3 1.8
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Figure 30 Preamplifier low frequency response
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Table 5
SIGNAL RESPONSE

Frequency Element Number (output mV)

(Hz) T Z 3 1 5
125 0.4 0.34 0.28 0.48 0.34
600 0.4 0.34 0.28 0.48 0.34

1000 0.4 0.34 0], el 0.48 0.34

2000 0.4 0.34 0.28 0.48 0.34

3000 0.4 0.34 0.28 0.48 0.34

5000 0.4 0.34 0.28 0.48 0.32

9000 0.4 0.34 0.28 0.47 0=82

10000 0.4 0.34 ) 0.46 0.32
Cross Talk

The cross talkbetween detector was measured to be significantly
less than the design goal of 1%.

Acceptance Criterion: 5% maximum

LASER RESPONSE

The receiver was excited with a Sylvania model 941E COp laser
operating in the TEMyo mode on the P20 line. The test setup is
shown in Figure 33 . The test showed that the receiver cold

filter was correctly adjusted to give response toO the laser. The
detector was then flooded with energy using a black aluminum

plate as a diffuser. A reference detector of known D* was com-
pared to the non-coherent receiver elements. The reference de-
tector D%, at 10.6 micrometers was measured using standard blackbody
techniques. The data is listed below:

D*X 11O 6™ 1), =N 1010

Area = 5.04 x 10-4 cm2 which is essentially the same as
the non-coherent elements.

The detector noise bandwidth was measured and the data is shown
in Table 6 . The detector noise -3 dB point is at 20 kHz.
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Table 6

REFERENCE DETECTOR NOISE BANDWIDTH

Frequency (kHz)

Output (mV)

60

25

15

306




The signal output of reference detector when excited by the
diffused laser beam was 3 volts peak-to-peak. The wideband
noise was 100 mV rms. This yields a signal to noise ratio of 05

Each element of the non-coherent receiver was then excited by the
diffused laser beam. All of the signals and rms noise were mea-
sured to be approximately the same and as shown below:

rms noise = 8 mV
Signal = 150 mV pk-pk

The bandwidth of the reference detector must be considered and
corrected for a bandwidth of 1.2 MHz.

S/N at 20 kHz = 30

S/N at 1.2 MHz = ——30——" = 3.9

dI.Z MHz
20 kHz
The signal to noise ratio of the non-coherent array is approxi-

mately 18.5. Then the comparative D*) of the non-coherent receiver
elements may be calculated.

0 10

18.0 = Ty e 1)

A 3.9

This compares with the data shown in the section entitled Test Results.

D* x L 101

The laser tests were witnessed by the Air Force Avionics Labora-
tory representative, Mr. William Schoonover.

DETECTOR GEOMETRY

The detector geometry is shown on outline drawing LK128A and in
Figure 34.
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Figure34 Photoconductive array
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SECTION 4
COHERENT FIVE-CHANNEL RECEIVER

This section discusses the coherent five-channel Receiver.
receiver specifications are presented in Table 7%

Table 7
SPECIFICATIONS

Type 5 E1 (Hg,Cd)Te PV array
Size 0.25 mm x 0.25 mm £ 20%
Spacing < 0.070 mm

Cross talk < 107 (design goal < 5%)
Quantum Efficiency > 25% at 10.6 pm

Video Bandwidth (after second Dc to 1 MHz
detector)

FOV £/1 (53°) min
Receiver Amplifier Gain > 40 dB

Receiver Sensitivity (NEP) <6 dB £ 3 dB above
theoretical limit

Coolant LN2

Coolant hold time with > 1 hour
receiver operating

DETECTOR RESULTS

Figure 35 shows the five-element linear array of photovoltaic
(Hg,Cd)Te detectors showing the gold wire leads. Figure 36 shows
the test results for the array. Listed are the series and shunt
resistances, the peak and cut-off wavelengths, quantum efficiencies,
responsivities and cross talk. The I-V curves are shown in Figure
37 and the spectral response of two elements in Figure38. Figure
39 shows spot scan results for three elements of a different array
taken from the same slab. The conditions of measurement are shown
in Table 8, and the detector readout circuitry in Figure 40.




00705

Figure 35 Photo of 5-element array
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ELEMENTS

1 2 3 4 5
Rq 16 O 13 Q 13 Q 14 0 14 O
Ry, 255 Q 245 0O 190 O 205 0O 400 Q
xpeak % 11 um ¥ 10.5 um %
Al % 11.78 um % 11.83 um %
e 62% 68% 61% 58 349,
R % 5.3 A/W 5.8 A/W 5.2 A/W 4.95 A/W 2.9 A/W
Cross
talk (%) 6.3 5.3 6.9 6.8 3.5

% Two spectrals show uniformity; data for elements 1, 3 and 5
calculated with this data.

**Bias voltage =

Detector Temperature
Chopping Erequency
Detector Area (Ap)
Orifice Diameter (dg)

100 mV.

Figure 36 Test results
Table 8

CONDITIONS OF MEASUREMENTS

77°K

1,000 Hz

See Figure 17
0.088 inch

Blackbody Temperature (Tg) 500 °K
Background Temperature (Tc) 300°K
Emissivity Blackbody (€g) 1.0
Chopper (ec) 1.0

Noise Bandwidth ( f) 6 Hz
Chopper rms Factor (K1) 0.35
Detector to Orifice Distance(D) 26.4 cm 12 -2 9
Stefan-Boltzmann Constant (Kp) SE 671 10 watt cm “(°K)
Rms Noise Correction (K3) 1.12
Amplifier Gain (same for signal & 4,000
& noise)
D* Formula:

i 4D2 (Afl}/z s

BB 4 N
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Elements # 1-5

Elements # 1-3

Figure 37 1I-V curves showing the change in dc current as the
background is changed from 300°K to 77°K
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I-V Curves

Elements # 4,5

Figure 37 I-V curves showing the change in dc current as the
background is changed from 300°K to 77°K
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PREAMPLIFIER DESIGN

A block diagram of the preamplifier is shown in Figure 41 and the
schematic in 42.

Each detector is coupled to its preamplifier by an impedance match-
ing transformer T1. The use of transformer coupling provides both
ground loop isolation and optimization of receiver noise figure by
matching the detector impedance to RS opt of Ql.

The Standard Cascode Pair configuration (Figure 43) is dc stabilized
and transformed to an inverted cascode pair as in Figure 44 .

+15V

Figure 43 Standard
cascade pair

Figure 44 Inverted cascade pair

In the second stage the input impedance to the Bandpass Filter is
1000 Q, the output impedance is 866 Q. An emitter follower acts
as a unity voltage gain buffer to transform to a low impedance.
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Dc conditions

As the base of Q; is referenced to ground, R in emitter of Q1
establishes an emitter current

- L5 - Vbe
e R

Since Q has a minimum beta of 10, then

The Q2 collector current is established by RLI

15V- (7'3V-er)
IC(OZ) = R-LI i IC (Ql)

The signal gain of the complete cascode is to a first approximation

RL2 Ie (Ql)

26

The cascaded cascodes comprising Q1 through Q4 provide a voltage
gain of 60 dB.

The four-pole Cauer Bandpass Filter controls the overall frequency
and phase response i-f channel of the preamplifier. 1Its passband
is from 7 MHz to 13 MHz centered at 10 MHz.

The Emitter Follower Q5 and buffer amplifier ARI provide a unity
voltage gain buffer with a low impedance output to drive a 70-ohm
coaxial fm output.

a-m Channel

The i-f signals are obtained from the output of Emitter Follower
Q5 and fed to current driver transistor Q6. T2 operates as a
broadband phase splitting transformer.

The outputs of T, are full-wave rectified and filtered by the
network comprising R28, L5, C32 and C33. Voltage divider R26
and R27 provide a forward bias to both detector diodes CR2 and

66
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CR3. The low pass characteristics of the a-m channel are determined
by the LP filter and provide a passband of dc to 1 MHz 3 dB cut-
off with an approximately &40 dB/decade roll-off.

Unity gain buffer AR2 transforms the filter output impedance to
the low impedance required to drive a 70-ohm coaxial output cable.

Preamplifier Test Results

The effect of input resistance on typical preamplifier noise figure
is shown in Figure 45 while the dynamic ranges of all five pre-
amplifiers are shown in Figure 46 through 50.
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FINAL RECEIVER RESULTS

Before final assembly each of the five amplifiers was tested with £
swept r-f input signal covering thlie frequency range 7 MHz to 13 MHz.

The a-m channel output signals were photographed and are displayed

in Figures 51, 53, 55, 57 and 59. The response of each amplifier

to a 10-MHz pulsed signal of one microsecond nominal duration was

recorded showing both the i-f and a-m outputs. These are displayed

in Figures 52, 54, 56, 58 and 60,

After assembly as a five-channe' receiver with each detector con-
nected to its amplifier the receiver was tested on an optical

bench shown in Figure 61. The output of a 3-watt cw COy laser

was amplitude modulated by a GaAs modulator crystal driven by

the r-f sweep generator, through an ENI power amplitier. The
modulation frequency was swept through 7 MHz to 13 MHz and the
total receiver passband, both i-f and a-m outputs, recorded.

They are displayed in Figures 62, 64, 66, 68 and 70. Then the optical
input signal was pulsed at 10 MHz with a one-microsecond nominal
pulse and the i-f and a-m response of each channel recorded. These
are displayed in Figures 63, 65, 67, 69 and 71.

The unit was then shipped to the Avionias Lab at WPAFB for final
meagsurement of Noise Equivalent Power (NEP).
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AMPLIFIER NO, 1

Center
=10 MHz
1 Miz
Markers ‘lesponse to
-1 dB swept Micro-

wave Input

signal
-3 dB g

A.M. Output

Signal
-12 dB
Al
20 mV/cm
Input
50 mV/cm

Input

10 MHz Pulse

1 us Nom.
IF Out
200 mV/cml ;

IF Output l
A.M. Out j
50 mV/cu

A.M. Output
Al
0.2 us/cm

Figure 52 Amplifier output
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Center
10 MHz

L MHz
Markers
-1 dB

-3 dB

-12 dB

A2
20 mV/cm

Input
50 mV/cm

IF Out
200 mV/cm

A.M. Out
50 mV/cm

Figure 54

Amplifier output
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Response
to Swept
Microwave
Input Signal
A.M. Output

Input
10 MHz Pulse
1 ps nom.

IF Output

A.M. Output



Center
10 MHz
1 MHz
Markers
-1 dB
Response to
-3 dB Swept Micro-
wave Input
‘ignal A.M.
Output
-12 dl)
A3
20 mV/cm
Figure 55 Amplifier output
Input
50 mV/cm
Input
10 MHz
Pulse
1 us nom.
IFF Out IF Output
200 mV/cm
A.M. Out
50 mV/cm
A3 A.M. Output
0.2 Ws/cm

Figure 56 Amplifier output
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Center
LO MHz

Ll MHz
Markers

-1 dp

-3 dB

-12 dB

A
20 mV/cm

Input
50 mV/cm

[FF Out
200 mV/cm

A.M. Out
50 mV/cm

A4
0.2 ps/cm

Figure 57

Figure 58
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Amplifier output

Amplifier output

Response

to Swept
Microwave
Input
Signal

A.M. Output

Input

10 Mz
Pulse

1 4s nom.

IF Output

A.M. Output



AMpLIFIER NO, V

Center
10 Miz
1 Mz
Markers
-1 dB
Response
to Swept
Microwave
-3 dB Input Signal
A.M. OUC_DUC
-12 dp
A5

20 mV/cm

=
g
o
R
@
W
O
g
T
—
=
Hh
.
[}
La}
o}
«
(s
el
[
rr

Input
50 mV/cm
Inpu
10 MHz
Pulse
1 us nom.
IF Out IF Output

200 mV/cm

A.M. Out A.M. Output

50 mV/cm
A5
0.2 us/cm

Figure 60 Amplifier output
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RECETVER CHANNETL 1

Swept
Response to
Modulated
10.6 - m
Signal Output

IF Output

AM Output

Figure 62 Receiver output

RESPONSE TC 1 us (NOM,) OPTICAL PULSE

IF Output
10 MHz

AM Output

Figure 63 Receiver output

0.2 us/cm
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RECEIVER CHANNEIL TI

Swept
Response

to Modulated
10.6 um Input
Signal

IF Input

AM Output

Figure 64 Receiver output

RESPONSE TO 1 us (NOM.) OPTICAL PULSE

IF Output
10 MHz

AM Output

Figure 65 Receiver output

0.2 us/cm
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Ri:CFIVER CHANKYL [TI

wpesy iy 7

MHzZ
10 1 10 13

Swept
Response tc
Modulated
10.6 m
Input Signal

IF Output

Figure 66 Recelver output

RESPONSE TO 1 us (NOM. ) OPTICAL 2ULSE

IF OUTPUT
10 MHz

AM OUTPUT

Figure 67 Recelver output

0.2 ups/cm
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RECEIVER CHANNEL [V

Sweot
Response to
Mcdulated
10,6 m

Input Signal
[F Output

AM Output

Figure 68 Receiver output

RESPONSE TO 1 us (NOM,) OPTICAL PULSE

' l IF Output
Il 10 MHz

AM Qutput

Figure 69 Receiver output

0.2 us/cm




RECELIVER CHANNEL V

Swept
Response to
Modulated
10.6 m

Input Signal

IF Output

AM Outrut

Figure 70 Receiver output

RESPONSE TO 1 us (NOM.) OPTICAL PULSE

IF Output
10 MHz

AM Output

Figure 71 Receiver output
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