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Read This First

- This book was written for an applications programmer who would
like a tutorial description of the ILLIAC IV System before attempting to

) read the reference manual. As & tutorial, the level of detail presented
in this book is fairly general; particular information can be found in

rat

fﬁw the Burroughs Reference Manual "ILLIAC IV Systems Characteristics and

- Programming Manual."

In order to use this book most effectively, the Chapters should

&l. be read in order. The reader who wants a very quick loock at the capabil-

-, ities of ILLIAC IV may skim just the summaries of parts A, B and C of
Chapter I and begin reading on page I-55. He may then read pages II-1

AL through II-20, skipping the detailed description of the ILLIAC IV Arrsy
(pages II-21 to II-41). Pages II-L1 through II-T3 are optional; the

e reader should at least look at them and decide for himself. As much of

(s Chapter IIT as possible should be read--the instruction repertoire, more
than anything else, defines the capabilities of a computer. A valid answer

E? to the question "What is ILLIAC IV?" would be to hand the questioner a

description of each instruction in the repertoire.

For a more complete understanding, however, the reader should

ti come back and read the sections he skipped on the first pass. It is the
nature of ILLIAC IV, to a degree much greater than the conventional

b
o
&e computers, that its hardware structure is bound up very closely with its
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capabilities. It is therefore necessary that the reader spend the time

ot e

necessary to understand the architecture of ILLIAC IV.

<
-

l The Table of Contents in the front of the book is in an

:E abbreviated format while each chapter will be preceded by a finer Table _EL
~

; of Contents. A Hardware Glossary which is essentially a glossary for 9

i Chapter II is at the end of the book. .

3 ' 3

?: ‘Chapter I presents the background concepts necessary for an i
E; understanding of ILLIAC IV. A short section is devoted to the historical Zi
g development of digital computers and their evolution is described in M
g terms of the problems that had to be solved. After conventional computer E§
g organizations are described, unconventional ones are presented as design =
i options to speed up the operation of a computer. Two design philosophies, \ *‘
;: overlap and replication, represent two major methods used to increase the 3

] B
y
-
-,

computer's operational speed. Overlap is effected by the buffer and

B PR
-
-

pipeline mechanism and replication is embodied in the general multi-

. r
o3

processor. ILLIAC IV is shown to be a variant of a general nmultiprocessor

,

using buffering and a modified pipeline mechanism in the instruction

3
1 L]
)

execution section.
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Chapter II describes the architecture or the hardware structure

|

of ILLIAC IV., The ILLIAC IV Array is discussed in broad terms followed

I .
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by some illustrative problems which point out some of the similarities and

differences between problem-solving on sequential and parallel machires.

The problems also serve to illustrate how the hardware components are tied
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together. Following is a more detailed description of the ILLIAC IV Array,
then another illustrative problem (Laplace's eguation describing steady-
state temperature distribution in two-dimensions) followed by some data
allocation considerations; the ILLIAC IV I/0 System is discussed briefly,

and some conclusions and opinions end the chapter.

Chapter III presents the Assembly Language ASK in a functional
and pragmatic way: a problem is déscribed and then only those ASK
instructions necessary for the solution are described. In this wsy the
five problems introduce forty ASK instructions and the flavor of the
assembly language which, from a programmer's standpoint, is an indication
of the capabilities of ILLIAC IV itself. The five problems are: Summing
an arregy of numbers, Finding the maximum value in an array of numbers,

Matrix multiplication, Matrix transpose, and Laplace's equation described

in Chapter II.

This book will be issued in three volumes. The first three
Chapters represent Volume 1, Chapters IV through VII will comprise Volume 2,
and Chapters VIII through XI will be Volume 3. Volumes 2 and 3 will be

supplied as soon as they are available.
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Abstract

)

Written specifically for an applications programmer, the book

>
=

3]

presents a tutorial description of the ILLIAC IV System. Volume 1 contains

three chapters -- Background, Hardware Structure, and The Assenmbly Languege-- i

. |

ASK, as well as a Hardware Glossary. Many illustrative problems are used to %
Gt}

educate the beginner in the use of the ILLIAC IV System. tj
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Foreword eﬁl

o

This book is based upon the many reports and documents generated

DS

at the University of Illinois and the Burroughs Corporation during the

]

design and development of the ILLIAC IV computer. In addition, much of the

N |

content of the book was influenced by the material offered in the graduate

l_J‘

level computer science course, CS 491, "Architecture, Applicetions, and

5
el

Languages for a Parallel Computer" as well as the many one-day, two-day and

2

- g
.
'

z

one-week seminars on ILLIAC IV. I learned a great deal from my "students"

&S

I would like particularly to thank Professor Daniel Slotnick

and my friend Mr. George Westlund who provided the overall guidance for

st

s
i;r‘.l.a =2

this book and whose idea it was to create it in the first place. Much

specific help was given me by Walt Heimerdinger in the ares of hardware

structure, and Jim Stevens and John McMillan in the area of ASK. Mike Sher

L

and Cal Corbin helped proofread and make final suggestions before this book

when to press. I am also very grateful to Joyce Fesnacht who cheerfully

typed and retyped the many versions of the text with incredible accuracy,

and who drafted the original versions of all of the figures from my

=

L

pencil scratchings.
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Any errors you may find are not only my responsibility but

-
ol
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become yocurs also. If you inform me of them I will correct them in the

£

next edition.

Stewart A. Denenberg
Urbana, Illinois

1971
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CHAPTER I
. BACKGROUND
H A. Summary
él
c Chapter I traces out some of the background concepts necessary

for an understanding of ILLIAC IV. A short section is devoted to the
historical development of digital computers, indicating how computer
systems evolved to the Von Neumann state of organization. Also discussed
[} is the tendency computers have had in creating problems themselves. The
N first computers were designed to solve specific applications problems such

as computing a table of values for a certain mathematical function or

ﬁ“— solving a differential equation which described the ballistic path of an
, artillery shell. As computers became more useful, they started to con-
Z tribute problems of their own to be solved such as the need for easier-
. to-use programming languages. The most pressing of these problems was the
’ Ca need for faster and faster operating speeds. If the computer could be
E' made to process information at a faster rate, and costs could be held
N constant, then the per-unit-time cost of processing information would
=
y L be effectively lowered. The remaining sections of the Chapter describe
' -, how Von Neumann organization may be modified to increase operational
:' speed. Two design philosophies to achieve increased speed are discussed:
f' 1) Overlapping the operation of two or more of the functional components
S
- of a conventional computer and 2) Replication of one or more of the
‘ f: functional components many times. Since these philosophies are not mutu-
‘( ally exclusive, a third option exists whereby both 1) and 2) are effected.
g
[:’ I-1

) b

3
3
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'ﬁ Overlap can be achieved by utilizing the Buffer and Pipeline mechanisnms; ?%
i} however, the Pipeline is limited to the number of stages into which an § 
Y operation can be decomnosed, and ultimately by the speed of light. The ‘
£ replication philosophy :s typified "y the generrl Muitiprocessor, but the ?3
i cost is extremely high. Various re-designs of the Multiprocessor are ﬁ}
| explored in order to reduce its high cost: Re-centralizing Memory, ‘:
if the Arithmetic and Logic Unit, or the Control Unit. ILLIAC IV is Sg
Ei represented as a Multiprocessor with the Control Unit re-centralized. -
- This particular option was chosen for two main reasons: 1) much of the gg
ﬂ cost ©f a digital computer is tied up in the Control Unit and 2) there ?
‘i are large classes of problems that can be solved by a single instruction gﬁ
: stream which operates on data that can be structured as a vector. P ¢
E ILLIAC IV also utilizes the Buffer and modified Pipeline mechanisms to g,,»
:i overlap the operation of its instruction execution unit. zi'
-
D

B. A Review of Digital Computing Machines

>

v
¥ e
g &% B

2 l. Summary
|
: '-«n‘
[ |

; Perhaps the first computer was a coin. If a computer is a tool

used by man to solve a problem, then a coin fits the description. A coin

&
g ."l
."7’!

was (and still is) used as a tool to help men make decisions. It is a true

E binary decision meker: a flip of a coin and a decision is automatically o
. made: heads, one course of action is teken--tails, another. Whether the 3
- first computer was a coin, an abacus, Pascal's Calculator or Jacquard's _:f
s Anih
35 Loom is not argued here; instead the starting point is arbitrarily chosen '5333
3 g
- I-2
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|i with Babbage's machines. The Automatic Sequence Controlled Calculator
= (Mark I), ENIAC, EDSAC, the University of Manchester Computers, and EDVAC
&; are used to re;cesent the major chain of machines which evolved to the

Von Neumann organization.

-
o 2. Babbage's Difference Engine and Analytical Engine
&
3 a. The Difference Engine
- In 1812, when Charles Babbage was an undergraduate at Trinity
o]
College, Cambridge, mathematical tables of functions were generated by
;ﬁ hand. The production of a table of values for just one mathematical
function was & tedious and cumbersome job. A group of over 100 people,
- called "computers," were trained to follow a finite difference algorithm
Fo to compute values of the function over a specific range and for specific

interval widths within the specified range.

- Let us consider how the function f(X) = %2 + X + 1 would be
calculated over the range 1 < X < 5 and for an interval width of 1. (see

: It was known at the time that the nth differences of an n-degree
i: polynomial are constant. By convention, the zero~-differences (DO) are the
o

e~ values of the function. Dg is the value of the function at Xi: f(Xi)EIDQ.
e For the simple example used here, when i = 3, Xi = 3, and Dg = 13, The

f& first differences (Dl) are found by subtracting previous values of D0 from
7 succeeding values of DO:

A Y
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Teble I-1. Difference Method for Evaluating G|
5 Polynomial Function X2 +X+1

" I
" l,"
; 8

i ol e

£(X) = X2 +X+1 E}
0 :

i X, D p! p?

; — =k — 3
3 1 1 3 &3
3 ' 3
“ 2 2 T 2 o)

W'y
Wy

r.'\;q

|
&
- L L 21 2 }é
.: 10 ‘
" 5 5 2 -
. e
b, 23

"‘ ¢
: Contents of =
Step No. ¥ ot P -
d 3

1 0 (Initial Value) L 2
- z 4 2 i
te
- 2 6 2

3 13 6 2 :‘;
2 4 13 8 2 -
5 5 21 8 2 3
" 6 21 10 2 -
7 31 10 2
; 5
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0 0
)-f(Xi)=D. =D

1
D, = £(X 1ol

i i+l

The second differences are the differences of the {irst differences and
are calculated the same way:

? ek, -}

i iv1 ~ i

The top part of Tasble I-1 shows Do, Dl and D2 for the X values. DNote that

the second differences are constant (the value 2). Also shown is how we

can work backwards if we are given Do, D1 and Di by summing instead of

32 "’
subtracting:
0 _ .0 1
Di+l = Di + Di
g | 2
and Di+l = Di + Di

Therefore, if we have 3 registers to store the values of D., Dl and D2 as
we sequentially apply the sbove two equations we can generate Dg for as

long as we wish to compute. All we need are the 3 initial values

0 2 _
Dl=3, Di hanle-e

In Teble I-l, each step is numbered and the direction of addition indicated

by an arrow.

The lower part of Table I-1 displays the contents of the three
registers, Do, D1 and D2 after each step circled in the top part of the

table.

I-5
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It was Babbage's contention that not only could a mechanical
machine be built to perform the finite difference algorithm, it would be
faster and much more accurate. He had even designed his Difference
Engine to print the results directly from the wheels which displayed the

numbers, thus eliminating the possibility of a human transecription error.

Babbage fabricated a small Difference Engine which could tabu-
late a second degree polynomial (or any other function whose second
differences were constant) to 8 decimal digits of accuracy. In 1823 he
was given a grant by the British government to build a machine that could
generate tables for a function whose seventh differences were constant to
an accuracy of 20 decimal digits. His ambitious project was never com-
pleted. Work stopped in 1833 when Babbage ran into financiul difficulties
with his engineer who resigned from the project taking with him all of the
specially constructed tools for the building of the Engine (under English

law at the time, the engineer had the right to do §0).

Babbage was probably the first computer designer to run into
financial difficulties because the state-of--the-art of technology lagged
too far behind the state-of-the-art of conception. His ideas were sound,
but his funds were hopelessly inadequate to create the technology which in

turn would be used to create his computer.

The Difference Engine was more than just an automatic calculator
capable of addition, subtraction and multiplication--it could also perform
a procedure or a program. There was only one program that it could

perform, however, and that was the finite difference algorithm. From the

1-6
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point of view of modern computing, the Difference Engine was a single-
purpose computer with no program software; the program was intrinsically
part of the machine, imbedded into the configuration of the gears and

shafts.

b. The Analytical Engine

The Difference Engine had failed, but Babbage had even greater
pPlans for a new machine, the Analytical Engine. Either he did not realize
that his machines could not be built by the existing technology or he was

optimistic enough to believe he could supply the ideas for both.

Babbage designed the Analytical Engine to be able to perform more
than only one algorithm; so that the program as wel. as the data could be
supplied to the machine as an input, and the machine would process the data

according to the instructions of the program.

In order to create a machine of this far-reaching capability,

Babbage foresaw the four main functional sections of the modern-day

computer:

+ Control Unit
*  Memory Unit
+ Arithmetic and Logic Unit

« Input/Output Unit.

The Control Unit was to act on the same principle as the Jacquard

Loom Controller: a sequence of plaques with holes punched in them drawn

- o @ R R AN PRI TR Rt R P et A s, ] “'.-."'L'l.‘-h.‘.\‘.‘\.\“. .\.r."-‘_' ‘_'u._ -_. .\".
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of holes in a plaque to specify a weaving operation, Babbage's Difference
Engine used each plaque to store an instruction which specified an arith-
metic operation. The plagues were drawn over a drum one at a time and the
. pattern of the holes was sensed mechanically. Each plaque instructed the
j Engine to perform one well-defined operation and a set of plaques,
therefore, constituted a program. Groups of sets of plagues represented a

i Program Library.

Not only did Babbage design a machine that would execute a

program of instructions, he also included the Test-and-Branch type of

instruction which is at the very heart of using a program to solve a

i problem, In his plan, the Analytical Engine had the ability to roll the
~ chain of instruction plagues forward or backward depending on whether the
Ei contents of a specified register turned negative during execution of the

program. Rolling the chain in either direction is equivalent to a "jump"

in the opposite direction in the program.

v The Test-and-Branch instruction provides the programmer with an

"alternate route" capability while his program is executing. Different

3 sections ¢f the program may be entered and executed based on the values of
T% numbers that were computed in previous sect’ 'ns the program. An addi-
:; tional benefit of a Test-and-Branch capabili that it affords the

5 programmer a shorthand by which he can specify a large number of program
> operations with a small number of instructions. By decrementing or

incrementing a register until it reaches a specified value, a section of

over a drum by chains. Where Jacquard's Loom used a particular combination
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w3 the program can be executed repeatedly. Without the Test-and-Branch type
¥}
s of capability, a programmer would have to specify every operation with at
;3 least one instruction.
g: The Memory or "store' as Babbage referred to it, consisted of
= wheels. The position of a wheel denoted the value it was storing. Numbers
i% were transmitted to and from the "store" by means of racks. The racks were
;1 cut to engage the gears of a wheel so that the position of one wheel could
S be transmitted to another. The racks, of course, could be connected to
:{: rods, shafts, or other racks to further transmit the motion. (See Figure
o I-1.) Since each wheel would store 1 decimal digit and Babbage proposed

" Gear Gear

L. A M A MMM L NnoOonAaAnnNn

C ack

Figure I-1. Transmission of Date in Babbage's Machine

that the "store" have a capacity of 100 numbers of 50 decimal accuracy,
this meant the Engine would have 50,000 wheels. Since the instructions
were not stored in the memory but were punched into the plaques and thus
o would not be modified during program execution, Babbage's Analytical Engine

LIRS was not a stored-program computer.
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The Arithmetic Unit was called the "mill". Babbage went to great
pains to optimize the design of the mill, particularly the problem of
carrying when the sum of two numbers is greater than nine and a digit
must be carried over to the next significant position. With customary
fastidiousness and foresight, Babbage represented the algebraic sign of a
number as a separate wheel which would not be connected to the other

wheels during carries.

The Input/Output was to be effected by punch cards much like the
punch cards or plaques that supplied instructions to the Engine. Some of
the input was to be done manually--the initial settings of the wheels of
the "store" were to be done by hand. Babbage also considered the possi-
bility of printing output directly from the wheels of the "store" as he had
with the Difference Engine. By embossing the digits on each wheel, they
could be inked at the end of a calculation and the results transferred
directly to paper. This not only made the results neat and legible but

completely bypassed the possibility of a human transcription error.

Babbage estimated the following operation times:

Addition/Subtraction 1 second

Multiplication (50 decimals by 50 decimals) 60 seconds

Division (100 decimals by 50 decimals) 60 seconds

The description for the Analytical Engine prompted some
scientifically-inclined people of the day to try their hand at programming.

L. F. Menabrea, a General in the Italian Army, was at the Military Academy

:\""l'ﬁ'ﬁ"- '.'."



in Turin when he heard Babbage speak on his Analytical Engine to the

Ttalian mathematicians. Menabrea demonstrated how one would solve two

sirmultaneous equations in two unknowns with Babbage's Analytical Engine.

Lady Lovelace, Lord and Lady Byron's daughter, devised many
programs; among them, one to calculate Bernoulli numbers from a recurrence
formula. In order to calculate the Bernoulli number Bn’ n + 1 operations
must be performed. Lady Lovelace described how she could store the
quantity "n" in a register and decrease it by 1 each time an operation
within the cycle was performed; when the number finally turned negative,

the cycle had been repeated n + 1 times and control could be passed to the

next part of the program. She had invented the concept of a loop.

Although Babbage did not build his Analytical Engine, he left the
detailed drawings and notebocks which are currently in the Science Museum
at South Kensington, England. He defined most of the concepts used in a
modern computer, including the most important one which Jacquard had sensed
before him: it was possible to build a machine that would automatically
simulate a process if the process could be described in terms of a sequence

of well-defined operations.

3. Automatic Sequence Controlled Calculator (Mark I)

Babbage's work was soon forgotten, because his Analytical Engine
was never completed. In 1937, Professor Howard Aiken designed and devel-

oped an automatic calculator based on components currently available in IBM
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punched card equipment. In cooperation with IBM, Aiken built and presented

the calculator to Harvard University in 194k, Harvard named the caleculator
"Mark I".

The Control Unit of Mark I was primarily a Paper tape reader.
Each instruction was punched into a paper tape that was 24 holes wide and
fed past a set of 24 rods that made an electrical contact if a hole
existed. The first version of Mark I had no Test-and-Branch capability;
the best it could do was compare two numbers in different registers and if

one was greater, the machine would stop. We might say the machine had a

Test-and-Stop instruction.

Mark I was later modified to include a conditional type of
instruction. The conditional instruction caused control to be switched
from the currently executing paper tape to any of three alternative tapes
if the contents of a specified register were zero. Once control had
passed to a specified alternative tape, the program was executed from
instructions punched on that tape until either the progrem ended or
control was passed back to the original or yet another tape. If control
was passed back to the original tape, it would start executing where it
left off by virtue of the fact that its physical position in the tape
reader had not changed. Endless tapes were used for looping. This method
of passing control to a new tape was faster than the method of rolling a
set of cards backward or forward as Babbage had proposed, but Babbage's
technique is still conceptually closer to the kind of program control that

is used today. Neither Mark I nor Babbage's Analytical Engine were stored

program computers.
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2
2,
L
!! The Storage section of Mark I consisted of wheels as did the
e Babbage Machine. There were T2 Accumulator Registers each capable of
l_‘.‘
A holding a 23-digit computed value, plus 60 sets of switches for holding
g! constants. The switches were set manually and were not under program
~
\ control.
- As with Babbage's Engine, numbers were transmitted to and from
:4 Storage by rotating shafts connected to the wheel storage.
'ﬁ Input-Cutput ccnsisted of a typewriter as well as punched-cards.
[ o .
5 The operation speeds of Mark I were:
&
- Addition/Subtraction .3 seconds
-. Multiplication (23 digits by 23 digits) 6 seconds
-~ Division 11.4 seconds
. There was also built-in hardware which computed:
%t Sin (X) in 60 seconds
e 10% in 61.2 seconds
= and Log,, X in 68.4 seconds ‘
3 ‘we
e, all to 23 decimals of accuracy.
E Mark I contained more than 760,000 parts and the sound of its
g
lP: q"
b o thousands of electromechanical relays in operation has been likened to

re a roomful of ladies knitting.
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4. Electronic Numerical Integrator and Calculator (ENTAC)

In 1946, the first electronic computer was built by J. Presper

Eckert and John W. Mauchly at the University of Pennsylvania. ENIAC was

built for the U. S. Army to calculate ballistic tables by integrating an

ordinary differential equation. Another type of problem, the interaction

of shock waves in a fluigd

logical design of ENTAC.

The Memory Storage section consisted of tubes--triodes and

pentodes. The flip-flops were triodes and along with the pentodes

(that were used as "AND" circuits and "OR" circuits), there were over

18,000 vacuum tubes and about 1,500 relays in a 20 feet by 4O feet box

for the entire machine. 1In addition there were about 6,000 switches for

Storing constants that could not be changed by the program.

The Control section consisted of a 100 ke/sec oscillator which

produced pulses 2 psec wide. As the clock generated pulses, the program

was executed through the many wires that connected one part of the machine

with the others. The programmer did the actual wiring through plugs,

sockets, and switches; the various components of the machine were

"stimulated" or not depending on whether a wire carrying a pulse reached

that component. For example, if an accumulator received a program pulse

it would be stimulated to add. Since both instructions and data were
represented as trains of electronic pulses, a conditional operation on the

sign of a number could easily be programmed by running the wire that

carried the sign bit of that number to an accumulator. If g negative sign
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is represented by the presence of a pulse, then the accumulator would be

"stimulated" if the number was negative; if the nurber was positive, no

pulse would appear and the accumulator would not be "stimulated" and hexnce

not enter into the program. Thus ENIAC had its program "wired" into its
hardware. ENIAC also had external switches which caused certain opera-
tions to be performed more than once, giving the programmer a looping
capability (there were extra switches so that a programrer could loop

within loops).

ENIAC had an advantage over Mark I in terms of speed; once
initial program wiring had been done, instructions could be executed al

electronic speed rather than at the speed of a paper tape reader.

Changing programs, however, meant a massive rewiring job. Many hundreds of

wires had to be re-plugged in order to instruct the machine to perform a
different algorithm. At the time it was recognized that switch settings
and plugged-wire connections could also be coded in the same way that
numbers were coded. If a large capacity storage device were to become
available, then the program as well as the datas could be stored in the
machine. Although ENIAC had only 20 storage locations, one must remember
that ENIAC was a special purpose machine built to solve a specific
problem--to compute values for ballistic tables, and it performed this

function very well.

Each of the 20 storage locations was also an accumulator which
could add, subtract, store or fctch independently and simultaneously so

that its effective calculating time was very creditable:
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Addition/Subtraction 200 us -
Multiplication (10 decimels by 10 decimals) 2.8 ms

Division 6 ms

The Input was 80 column IBM cards and the output was either cards

or lights on a display panel.

Although ENIAC actually had its program stored jinside of it in &)
the form of wire connections, it was not a stored program machine. The

definitive characteristic of a stored program computer is not the fact that

a program is stored internally in the computer as opposed to outside on gg
paper tape, for instance. A stored program computer has the ability to ol
modify its instructions as well as its data while it is executing the t
instructions since both the instructions and the data are "inside" the e
machine using the same storage medium. Looping and indexing can be done =
by modifying the address field of an instruction while the yuiogram is §§
executing. Instructions can modify, destroy or create other instructions o
as the program runs. (The stored program concept was responsible for the §§
term "word" coming into use to describe what existed at a location in the 3
memory store. In order to avoid specifying whether the content of a given kj

storage location was to be regarded as & number or an instruction, it

became convenient to refer to it as a word of storage.)

5. Electronic Delay Storage Automatic Calculator (EDSAC) .
&
EDSAC was the first operational stored program, electronic com- e
A
puter. EDSAC ran its first program at the University of Manchester in May i
)
P
¥
b
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of 1949. The EDVAC, discussed in the next section, was the first stored
program, electronic computer to be designed. (Design started on the EDVAC

o in 1945, while design started on EDSAC at the end of 1946.)

;I Both EDVAC and EDSAC are considered to be IAS computers since
their development was guided by the reports generated at the Institute for
sl Advanced Study (IAS) at Princeton, New Jersey by John Von Neumann and his
s colleagues in 1945. IAS eventually put forth their own computer in 1952

and the ILLIAC I (University of Illinois), Johniac (RAND Corporation),

k% MANIAC (Los Alamos) and WEIZIAC (Weizman Institute of Israel) soon

~ followed and were patterned after the IAS machine. They all had addition
W times of about 60 us and multiplication times on the order of TOO usec.
,. The storage device which permitted both data and instructions to
o be stored together in EDSAC was a mercury delay line or ultrasonic store.
"_.

o (See Figure I-2.)

n
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Output
o Input

y:; Figure I-2. Mercury Delay Line or Ultrasonic Store
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A mercury delay line is a tube filled with mercury. A wire

coming into the tube carries a train of slectronic pulses which are trans-

formed into mechanical vibrations by means of a piezo-electric crystal.
The vibrations are transmitted through the column of mercury to another
crystal at the other end of the tube which converts the mechanicsal vibra-
tions into electronic signals. These signals are a bit distorted at this
point, so they pass through an electronic network which reshapes and

amplifies the pulses before sending them back through the tube again.

The length of the tube and the velocity of a disturbance in
mercury define the memory cycle time. The number of bits that can be
stored depends on the pulse rate of the clock. A major disadvantage of
ultrasonic storage is the long access time. The time required for an
accumulator to access a bit in storage varies from near zero, to the time
it takes a bit to travel the length of the tube. The access time is on
the average, one half the time it takes for a bit pulse to travel “rom

one end of the tube to the other.

Another problem one encounters using the ultrasonic store is the
interleaving of instructions and data in the pulse train so that the
arithmetic and logic unit is waiting for data a minimum amount of time.
(For example, it would not be wise to have an instruction that loaded the
accunulator with a number that was stored ahead of the instruction; the
accumulator would have to wait a whole memory cycle to get hold of that
number.) The practice of laying out the instructions and date in the

Wltrasonic store in an optimal manner was called optimum programming.
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- Although vacuum tube flip-flops would have provided a faster-
3 L‘ access storage medium, they were not yet economical. EDSAC had 30 mercury
:‘: :; delay lines, each of which could hold thirty-two 17-bit numbers. There
- were also short mercury "tanks" that held just one number and were used as
B registers. The access time in these registers containing only one number
) -‘ circulating through a tank was shorter than the access time to a number
;. circulating in main memory. For the main memory, the circulation time or
i r memory cycle time was 1.1 ms. The other operation times were:
: l'J Addition/Subtraction 1.5 ms
) = Multiplication L ms
: .- Division was a subroutine which hal a variable operation time.
" ‘,‘ EDSAC had a single-address instruction format which necessitated
4 W the placing of an accumulator in the arithmetic and logic unit to accumu-
Zf late the results of the one-address operations. EDSAC had two types of
R Test-and-Branch instructions; one which branched on the contents of a
S
j ) storage location being less than zero and the other which branched on the
J '. contents being greater thsn or equal to zero. It was admitted at the time |
. — that even though two tests were redundant, the extra one was included for |
- programming convenience. It must have been around this point in time that
L the programming profession began.
-
i "3 Input and output were combined on a teleprinter unit which could
g -
é “lj both type and punch five-position paper tape. Input data could be punched
¥ "‘-:l onto paper tape which in turn was fed into EDSAC and output could be
4 ;‘:‘-';} displayed via the typewriter part of the teleprinter.
v R
>
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6. University of Manchester Computers

EDSAC was merely the name given to the world's first operational
computer developed at the University of Manchester. As time passed,
EDSAC evolved into a computer system with refinements that expanded the

state-of-the-art of computing.

The ﬁilliams Tube memory was developed at Manchester in order
to increase the speed of memory access. Basically the tube was Just a
cathode ray tube (CRT) that could store an electrostatic pattern of bits
on the face of the tube. Moreover, the bits could be fetched or changed
by directing the cathode ray to the appropriate place on the tube. The
tubes at Manchester held 1024 spots and could therefore represent 1024

bits of information; the access time was on the order of microseconds.

One of the uses of the Williams tube was what we now call index-
ing. A Williams tube, called the B-tube (presumably because the letters
A and C were already used) was used to represent two registers. When the
programmer wrote an instruction, he also referenced the contents of either
one of these two registers. The contents of the specified register was
added to the address field of the instruction. In practice, the contents
of one of the registers was always zero so that when the programmer did
not wish to modify his address field, he coculd reference the register
containing the zero value. At the time, some people felt the B registers
were of little scientific value and that they were included merely for

programmer convenience. It seems the hardware design philosophy was
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' beginning to change~-a problem that now deserved consideration was

L W

h programming ease. Computers were still being built to solve specifie

s .

& ﬁf problems, but they were starting to create problems of their own to be
solved. The problem set had started to divide into "applications"

(-

X problems and "systems" problems.

i o The Manchester computers added a 128 word drum--each word was

g = 40 bits. The drum was slower than tube memory but it was cheaper in terms

F of cost per bit stored. Where the access time to tube memory was on the

SRS

LR order of microseconds, access to the drum was measured in milliseconds.

Therefore, the programmers at the University of Manchester were among

the first to contend with the problems of memory hierarchy and cost-

[Tt effectiveness in computer operations: if you have a larger, cheaper, and
slower memory and a smaller, more expensive, and faster memory, both of
i which can be accessed by the arithmetic unit, you must consider the
problem of making the most effective use of the total computer. If your

e criterion for effective use is to minimize the idle time of the arithmetic

L R e Yy N e e TR - Ve e T e T T SR
.’-
-

unit then you must keep it supplied with data as fast as you can. One
method of achieving this is to feed the small, fast storage from the large,

'i: slow one, transferring data in large blocks. The arithmetic unit then

TN O M
] T

¥ . Toe
£ S,

fetches from the faster storage. Results from the arithmetic unit are

LSRR
;

g stored to the faster memory, if possible, and eventually can be sent to

s the large, slow memory.
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7. Electronic Discrete Varisble Automatic Calculator (EDVAC)

EDVAC was the first stored program computer to be designed.
In 1945 a report, "Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument" by A. W. Burks, H. H. Goldstine, and
J. Von Neumann, was prepared under contract to the ENIAC project. This
report described the concept of the stored program computer, and made
the recommendation that instructions and data be coded using a binary

representation.

The report pointed out that although the ENIAC appeared to be a
decimal machine, the decimal capability was built up from binary components
grouped to respond as decimal components. It was recommended that numbers
and instructions be represented inside the machine in terms of the exist-
ing binary components and that conversion to a decimal representation be
performed in the Input/Output phase by means of a program. In other words,
it was proposed to use software rather than hardware to teke care of
converting from the binary to decimal system and back. The report was
distributed at a summer meeting at the University of Pennsylvania in 1946
and was a strong influence on the design of all future computers, in

particular EDSAC and EDVAC.

As its primary storage, EDVAC used ultrasonic delay tanks similar
to the mercury delasy lines used by EDSAC. A tank was 58 cm long and it
took 384 us for a disturbance to travel that length, thus the memory cycle
time was 384 ps. The clock rate was 1 Megacycle so that the tank could

hold 384 pulses or bits of information. Each number was ULl bits long
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followed by 4 "blank" pulses so that a tank stored 8 numbers. The total

EDVAC memory was 128 tanks and could store 1024 numbers.

A wire recorder acted as a secondary store with a capacity of

20,000 numbers. As with EDSAC, a memory hierarchy existed with a smaller,

£
: faster tank memory to be traded off against a larger, slower wire memory.
Q Numbers were transferred from the wire memory to tank memory in blocks of
~ 50 to 100 so as not to slow the arithmetic and logic unit.

\ EDVAC used a four-address instruction format. The address field
7 of an instruction, instead of denoting a single address, denoted four
< locations: the first two locations signified the addresses of the two

. operands to be used in a binary operation (a binary operation is an opera~
i tion such as addition, subtraction that involves the use of two operands),

the third address indicated where the result was to be stored and the
f
5 fourth address pointed to the location where the next instruction to be
executed was stored. The fourth address has proved to be superfluous if

: the computer has a fest and branch capability and otherwise executes its
{: instructions in sequence. (Assuming that the instructions are stored in a
- memory where the time to fetch an instruction is not dependent on where in
l_i the memory it is stored--this type of memory is sometimes called "random-
t} access".) EDVAC pointed the way to a three-address scheme whereby the
- instructions were executed in sequence and the three addresses were used
‘Ei in the same way as the first three addresses described sbove.

f A three-address scheme can be very powerful if the programs

5 involve many three-step operations such as A= B + C. However, the trend
e

i
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was to grow away from a three-address scheme which was more useful in
scientific problems than commercial ones (as well as being more costly
than a one-address scheme) and eventually settled into the familiar

one-address scheme we have on most current generation machines.

Here is another example of the applications problems creating
systems problems concerning the shaping of the design of the machine.
It would not be useful to design a two-address machine if there were no
problems that could be solved with that kind of instruction format.

The repertoire of instructions has also evolved under the demands of
the problems to be solved. Character handling instructions would not

have been implemented so soon and so fully if all problems had been

scientific.

The average operation times for EDVAC were:

Addition/Subtraction 864 us
Multiplication 2.9 ms
Division 2.9 ms

EDVAC appears to have the unhappy distinction of being the first
computer to experience large time delays in fabrication even though the
proposed design was well within the technical resources available at that
time. EDVAC design was started in 1945, but was not considered to be a
working machine until 1952. M. V. Wilkes attributes the problems to the

much faster clock rate used in EDVAC which necessitated higher quality

circuitry that could handle pulses of shorter duration without degradation.
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It appears that there is a principle of natural selection that

applies to the evolution of computers. Computers are designed to respond

to the needs of the environment. If the environment changes too rapidly,

some classes of computers may be subject to the fate of the dinosaur.
More important, the environment is not a closed system outside of the
computer; the computer, as it responds to its environment becomes a part
of the environment, and creates new problems to be solved. Machines are
then created to solve these problems. We create tools to solve problems

that our tools have created.

C. Unconventional Digital Computer Organizations

1. Sumary

After EDVAC, in the early 1950's, the deluge began. Hundreds,
then thousands of computers were manufactured; still, they were generally
organized on Von Neumann's concepts. The conventional or Von Neumann
organization is shown and described in Figure I-3. Memories became
cheaper and faster, and the concept of archival storage was evolved;
Control and Arithmetic and Logic Units became more sophisticated; I/0
devices expanded from typewriters to magnetic tape units, disks, drum and
remote terminals. But the four basic components of a conventional com-
puter (Control Unit, Arithmetic and Logic Unit, Memory and I/0) were all

present in one form or another.

The turning away from the conventional organization came in the

middle 1960's when the law of diminishing returns began to take effect in

<
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CONTROL UNIT
(cu)

ARITHMETIC AND
INPUT/OUTPUT LOGIC UNIT
(170) (ALV)

L

MEMORY

Figure I-3. Functional Relations within & Conventional Computer

The Control Unit (CU) has the function of fetching instructions
which are stored in Memory, decoC .ng or interpreting these instructions,
and finally generating the microsequences of electronic pulses which cause
the instruction to be performed. The performance of the instruction mey
entail the use or "driving" of one of the three other components. The CU
may also contain a small amount of mewory called registers that can be
accessed faster than the main Memory. The ALU contains the electronic
circuitry necessary to perform arithmetic and logical operations. The ALU
may also contain register storage. Memory is the medium by which informa-
tion (instructions or data) is stored. The I/0 accepts information which
is input to or output from Memory. The I/0 hardware may also teke care of
converting the information from one coding scheme to another.

The CU and ALU taken together are sometimes called a CFU or
Central Processing Unit.
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the effort to increase the operational speed of a computer. Up until this
point the approach was simply to speed up the operation of the electronic
circuitry which comprised the four major functional components. (See

Figure I-3.)

Electronic circuits appear to be limited in their speed of
operation by the speed of light (light travels about one foot in a
nanosecond) and many of the circuits were already operating in the nano-
second time range. So, although faster circuits could be made, the amount
of money necessary to produce an increase in speed was not justifisble in

terms of the small percertage increase of speed.

At this stage of the problem two new approaches evolved:

1) Overlap. The hardware structure of the conventional organi-
zation was modified so that two or more of the major functional components
(or subcomponents within a major component) could overlap their operations.
Overlap means that more than one operation is occurring during the same

time interval and thus total operation time is decreased.

Before operations could be overlapped, control sequences between
the components had to be de-coupled. Certainly the Control Unit could at
least be fetching the next instruction while the Arithmetic and Logic Unit

was carrying out the present one.

2) Replication. One of the four major components (or

subcomponents within a major component) could be duplicated many times.
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(Ten black boxes can produce the result of one black box in one-tenth of &
the time if the conditions are right.) The replication of I/0 devices, -
i)
Y,
for example, was a step taken very early in the evolution of digital e
computers--large installations had more than one tape drive, more than r
one card reader, more than one printer. i
E‘;‘.‘j
Since the above two philosophies do not mutually exclude each <
other, a third approach exists which consists of both of them in a L;
o
continuously variable range of proportions.
w
o
-
The overlapping philosophy was implemented largely thivizh the
S
Buffer and Pipeline mechanisms. The Pipeline mechanism breaks down an J
operation into suboperations or stages and decouples these stages from i
each other. After the stages are decoupled they can be performed e
simultaneously or, equivalently, in parallel. The Buffer mechanism allows §§
&
an operation to be decoupled into parallel operation by providing a place
"
to store information. t}
The replication philosophy is exemplified by the general Multi- ﬁi
s
processor which replicates three of the four major components (all but
3
the I/0) many times. The cost of a general Multiprocessor is, however, &3
very high and further design options were considered which would decrease .
U_._)
the cost without seriously degrading the power or efficiency of the system. -
The options consist merely of re-centralizing one of the three major ?ﬂ
)
i
ad
oy
o
i
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components which had been previously replicated in the general Multi-
processor--the Memory, the Arithmetic and Logic Unit or the Control Unit.
Centralizing the Control Unit gives rise to the basic organization of a
Vector or Array Processor such as ILLIAC IV. This particular option was

chosen for two main reasons:

1) Cost. A very high percentage of the cost within a digital
computer is associated with Control Unit circuitry. Replication of this
component is particularly expensive and therefore centralizing the Control
Unit saves more money than can be saved by centralizing either of the other

two components.

2) Tnere is a large class of both scientific and business prob-

lems that can be solved by a computer with one Control Unit (one instrue-

tion stream) and many Arithmetic and Logic Units. The same algorithm is
performed repetitively on many sets of different data; the data is
structured as a vector and the vector processor of ILLIAC IV operates on
the vector data. All of the components of dats structured as a vector are

processed simultaneously or in parallel.

ILLIAC IV also utilizes the Buffer and Pipeline mechanism to
overlap the execution of instructions. This allows a further increase in
operational speed as both the replication and overlap design philosophies

are aprlied simultaneously.
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2. Overlap Mechanisms

a. Buffer

A buffer is a mechanism which allows a process to be broken
down into subprocesses so that the execution of the subprocesses can be

overlapped.

Let us use an analogy to demonstrate what a buffer is and why we

would like to use one:

Suppose you are mowing your front lawn and you have a bag
attached to your mower to collect the grass clippings. Each time this
bag fills up, you must stop the mower, detach the bag, and walk aroun® to
the back of your house where the trash barrels are. Ycu must then empty
the bag of accumulated clippings into the trash barrel, walk back to your

mower, attach the %ag, and continue mowing.

After scme time you come to the realization that you are spending
a lot of your time detaching the bag, walking to the trash barrels, empty-
ing the bag, walking back and re-attaching the bag. You remember that
you also own a large wheelbarrow that could hold many bag-loads of grass
clippings. You now recognize the option of placing the wheelbarrow on
the front lawn, and when the grass bag becomes full, you could walk over
to the nearby wheelbarrow and empty the bag into the wheelbarrow. When
the wheelbarrow became full, then you would have to push it to the trash
barrels behind the house, empty the wheelbarrow, and push the wheelbarrow

back to the froant lawn.
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Very naturally the question arises: How many bag-loads must

the wheelbarrow be able to hold to Justify its use? Fortunately, this

s
L I %
(S B by

problem is very easily solved. Let us look at the times associated with

T

gg each method.
G Method 1: No wheelberrow used
[
= Tl = Time to detach bag from mower
Eﬁ T2 = Mime to walk from iower to trash barrel
o T3 = Time to empty bag into trash barrel
) E: Th = T2 = Time to walk back from trash barrel to mower
} Fi T5 = Tl = Time to attach bag to mower
Gt
ﬁ_ Method 2: Wheelbarrow is used as a Buffer
: T6 = Tl = Time to detach bag from mower
;; T7 = Time to walk from mower to wheelbarrow
!l T8 = T3 = Time to empty bag into wheelbarrow
: p T9 = T7 = Time to walk from wheelbarrow to mower
t: T, = T, = Time to attach bag to mower
" T11 = Time to push wheelbarrow to trash barrel
i ;: T12 = Time to empty wheelbarrow into trash barrel
9 = 113 = 'I‘l1 = Time to push wheelbarrow from trash barrel to front lawn

(Even though the wheelbarrow or bag is lighter on the walk back from the

e
e

2

trash barrel, we are assuming it will teke the same time as the walk to

the trash barrel since grass clippings are very, very light. We also

-
L IFD
| O Y

: -_ equate the time to attach a grass catcher bag and the time to detach it--
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based on actual experience.) Finally, in order to relate all the times Eﬂ
(Tl through T13) to each other we assume that the wheelbarrow holds N

bag-loads. Therefore, repeating Method 1 N times is equivalent (in terms Eﬂ

of area of lawn mowed) to performing Method 2 once.

The question then becomes: When is

;
E~
!
)
E
4
t
(
?v
]
;L
]
'

_ [N
‘Total time for Method 1 > Total time for Method 2%
= D
A
LS
or for what value of N is
;‘:
a
(2 1Y
N(Tl+ To+ T3+ T, + Tl)_>_N(T1+T7+ T3+T7+Tl) *T L, + T, + T .
M
8

which reduces to

2T, + T
N o> 11 12

I.".J
= ¥l
2(T2 T7) 7

We can see from the diagram below that T2 > T7 and assuming T11 = T2 - T.,

R A I

T7 i T ]
|

1~ -2 -

Mower Wheelbarrow Trash barrel

we therefore arrive at

[
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so that in order for Method 2 to be feasible, the wheelbarrow must hold

N bag-loads where

T12

2Tl1

N>1+

We now see that the size of our buffer wheelbarrow depends only on Tll

and T12 or viewed somewhat differently, that the larger N is (the bigger

the wheelbarrow we have) the less we have to worry about the effect of

Iil and T12.

If we now enlist another person to help us by emptying the
wheelbarrow when it gets full and bringing it back in time to receive the
next bag-load, this will reduce the tctal time of Method 2 by making

Tll = T12 = 0 since these subprocesses are being performed simultaneously

with the other subprocess times.

Method 2 over Method 1 becomes: For what N is:
+
N(TJ + T, T3 + T, + Tl) 2N(Tl + T7 * T+ T, + Tl)
Using the same reasoning as before we see that
21\1('.1'2 - T,T) >0

This relation holds true for all N since T2 >>T7. Therefore, this scheme

of having a helper who runs the wheelbarrow is g better way to mow a lawn

than by yourself. oOne may have guessed that fact intuitively; however, it

is not always clear how & process can be broken down into autonomously

performed subprocesses as it is with this particular analogy.
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This analogy, although simple-minded, does illustrate what a ¥}

3

bulfer is and how it works: If a process consists of a series of sub- <

processes and this process takes "too long" from beginning to end, we can

W4 KT X T F s
]

speed up the process time by dividing the total process into at least two ﬁ'i

LR &

subprocesses each of which control themselves autonomously. Between the

b ol B o el
. Bty

o two subprocesses we place a buffer so that the output from subprocess 1 Ej
P goes into the buffer and the input to subprocess 2 comes from the buffer. ™
E Since the two subprocesses operate autonomously they speed up total process v
3’::: time by overlapping (in time) their performance. The buffer acts as a :1
?: decoupler of control between subprocess 1 and subprocess 2 and a place to
:- save things which must be passed between the subprocesses. E
» '
ﬁ It may usually turn out in practice that one process occurs at ;E-:J
E.‘\_ one rate of speed while another occurs at a greatly different rate of
N
E.j_*' speed. In this case, the processes already existed as separate and g
. distinect, and the placing of a buffer between them is necessary only to g
::*S insure that the high speed process is not held up by the low speed one. :
3

e The placing of a buffer between the processes again decreases the total

_,._.f
» 'l
% 5
.

P ]

p process time by overlapping operations. (See Figure I-k.)

L W s ¥ VP
LU 2
o . Y

Suppose, for example that subprocesses Pl’ P2 and P3 occur at a

Ep.g“,. very fast rate and that Ph and P5 occur slowly. A buffer could be placed
E“: between them as shown in the lower part of Figure I-4 and the P1P2P3

E_: process would not be held up vaiting on P) and P..

o

E 3 Buffers may have another effect on autonomous processes. They

-'.‘:: not only speed up the rate at which information flows through the -fi



two-process system, they may smooth out the rate of information flow.
Without the buffer, one process must wait on another and the outputs of
the first process appear and then must wait a varisble time until accepted
by the second process. This results in a "jerky" flow of information
through the system. The buffer acts to accept outputs from the first
process as soon as they are generated and will save these outputs until the

second process is ready to accept them.

Summing up: a buffer decouples control between a previously
sequential set of processes, transforming them into at least two parallel
or simultaneous processes; and provides a place to store information which

must be passed between the processes.

wi
R (WITHOUT BUFFER) _

INPUT OUTPUT
———=1 P, | Py | Py | Py | Pg ———u

(WITH BUFFER)
SUBPROCESS 1

BUFFER

INPUT OUTPUT 7

™| PL | P2 | P3|

SUBPROCESS glllllllllllll/l

VA

OUTPUT

TIME

Figure I-4. Froress Execution with and without Buffer
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b. Pipeline

i. Summary

A sequential process can be viewed as a black box that accepts
inputs and produces outputs with the added stipulation that the black box
cannot accept a new input until the output has been generated for the
previous input. In other words, the black box is tied up all of the time

in processing just one input.

As an example let us consider a black box (an Adder) that adds
twe numbers together. Say there are two inputs (the numbers to be added)
and one output (the result). If it takes M seconds for the Adder to perform
the operation it will teke N * M seconds to add N pairs of numbers. How-
ever, if the Adder would accept additional operands to be added while the
ones ahead were still in the box then the total time to add N pairs of
numbers would certainly decrease. We can do this if the add operation can
be broken down into independent stages; as soon as an operand passed through
the first stage, the next pair of operands could be accepted by the Adder.
This method of dividing the adder into stages and letting the stages run
independently is called a "pipeline." The total time to process N operands
is speeded up because, once all of the stages in the pipeline are full,
results appear out of the end of the pipeline in time increments equal to

the processing time of the slowest stage.
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ii. Background

The pipeline mechanism can be applied to a process that is able
to be broken down into two or more stages that can operate independently;
the only dependence between stages is that the output of a previous stage
becomes the input to a succeeding stage. For example, suppose we have a
process that upon closer inspection can be viewed as being made up of
three subprocesses. If each subprocess time is Pl’ P2 and P3 then it

takes P = P, + P, + P_ units of time to transform an input to an output of

1l 2 3
the process, and consequently if we have N inputs to process then it will

take N(P1 + P, + P3) units of time to complete the job. Figure I-5 shows

2
how two inputs Il and 12 proceed through our example three-stage sequential

process. The outputs O1 and 02 are both ready after 2P units of time.

Time P1 P2 P3
Zero I, I ;F E
P1 I2 E I1 E
P, + P, I, E : I
Py +Py + Py =P 125 ,: 0,
P+ Pl E 12 E o1
P+P +P, E E I, 0
P+P) +P, + Py=2P ] E 0, 0,

Figure I-5. Two Inputs Transformed to Two Outputs via
a Three-Stage Sequential Process
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Now let us apply the pipeline mechanism to our example. First
we decouple each subprocess by placing a one item "holding buffer" after
each subprocess; when a subprocess or stage has completed its Job, it
places its output into its holding buffer. When all stages are finished
they simultaneously pass their outputs to the input part of the next stage.
Although this slows the operation of the pipeline down to the rate of the
slowest stage, inputs do not have to wait outside the process until the
previous input is completely finished--inputs can enter into the process
as soon as the first stage has passed its results to the second stage.
Since the stages have been decoupled, they can be processing different
items or operands simultaneously. Each item moves through the stages of
the pipeline or pipe in a semi-finished state of completion (not holding
up & following operand) until it appears at the end of the pipe completely
processed. See Figure 1I-6 which shows how two inputs produce two outputs

in a three-stage pipeline.

Time PM PM PM
Zero I, I, l :
Py I, %:L I E

2Py v I E I,

3Py i j: I, 0,

4Py, } . 0, 0,

Figure I-6. Two Inputs Transformed to Two Outputs

via a Three-Stage Pipeline where
PM is the Maximum of Pl, P2, and P3
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It takes PM + PM +P

M

of the pipeline--after that a finished item appears at the end of the pipe

every PM units of tim@ where PM is the maximum of Pl’ P

units of time to make the initial filling ;

and P3. Thus the

time to process N items via the pipeline mechanism for our 3 stage example

is 3PM + (N-1) PM units of time.

We can now ask the question (as we did with the Buffer): for

what value of N is the sequential process time greater than the pipelined

process time, i.e., for what value of N is:

N(P1+P +P)>3PM+(N-1)P

2 3 M

or N(P1 + P2 + P3) > (N+2) PM
Let us say that PM = P2, then
N(Pl + P3) + N'PM > NPM + 2PM
2P 2P
or N > M = 2
P1+P3 P1+P3

That is, for the pipelined process to be faster than the sequential one,

N must be such that the relation N > 2P2/P1+P3

we are considering in Figure I-6, N = 2 so that

must hold for the pipeline to be quicker;

I-39

is true.

For the example
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then for this choice of subprocess times the pipeline would be faster.

=4
The larger N is, the greater the chance that the pipeline is i
faster than the sequential procass for & given set of subprocess times. S§
X5}

Let us devise a more general formula fur S stages and N items to be
EZ
pipeline processed: bk

The sequential process time to process N items through S stages is

‘ =4

e )
a1
Ll

] S

o % P, E~t§
i i ‘
i=1

¥l

The pipelined time is

[
-‘
',
we
sP), + (N-1) Py
™
o
So we ask: for what N does the following relation hold true? :
—
:;i‘
S v
N Y% P, >8P, + (N-1) B, E-
i=1 :
5 2
or N ) P, >NP, + (8-1) P ﬁig
. i M M
i=1
L~
T
.‘-{
[
w3
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Now, say PM = P, where 1 < J £S5, then

J

s

N ¥ By + NP, > NP, + (8-1) PJ
i=1
i#)

s

N 2 P, >(8-1) P
g 1
i=1

149

J

(s-1) P
or (1) N> ——d

Y P
i=1
i#)

i

Since the right hand side of the relation (1) is always greater
than 1, we can say that for the pipelined process to be faster than the
sequential one, the number of items, N, must be larger than one--again,

we might have guessed this intuitively.

Additionally, the gain of the pipeline approach over the
sequential one is a function of the number of stages, S, and the distri-

bution of the subprocess times, F Let us consider two possible

il

distributions for Pi: The best case (the one in which the pipeline out-

performs the sequential method by the highest time ratio) is when all of

the subprocess times are equal:

1, 2, ..., S

and the ratio of sequential time to pipelined time becomes:

"
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al .Z Pi NSK NS
R = i=l = =
SPM + (N-1) PM SK + (N-1) K S+ N-1

and lim R = S; so we see for this case the pipeline can be up to S times
N-»00

as fast as the sequential process (where S is the number of stages in the
pipeline) if we can keep the pipeline full all of the time (N - ). The
relationship (1) on page I-41 for this case becomes:

(s-1) K

N > -————— =1 or N>1

(s-1) K

which means all we need is for N to be greater than one (two items) for

the pipeline to be more effective; and the larger N is the better the

pipeline looks.

Now let us compare the pipelined and sequential times when the

Pi have a linear distribution, say

P, =i i S BePy nangis then P, = §

and the ratio of sequential time to pipelined time becomes:

s
! 121 i N(s/2) (s+1) N(S+1)

R = = =
SPy, + (§-1) B s? + (§-1) S 2(S+N-1)

and 1lim R = (S+1)/2. Comparing this ratio, R, to the constant distribution

N—

(P, = K) where the ratio is S:

i
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When is S >

The answer is whenever S > 1 or whenever there is more than one stage. So

we see that the pipeline outperforms a sequential process by a factor of S

when the subprocess times are all the same, and by a factor of (S+1)/2
(not quite as good) when the subprocess times are linearly distributed.
Both of these factors are based on the assumption that the , peline is

kept full all of the time.
The relationship (1) on page I-41 for this second case becomes

(s-1) s

(5-1)/2) 5

2 or N>2

which means all we need is for N to be greater than two (thres items) for
the pipeline to be more effective than the sequential process. Note that
this is a more stringent requirement than for the constant distribution

(Pi = K) case described first.

There is, however, a finite limit on the numbeér of autonomous
subprocesses g process can be broken down into, so that efficiency does
reach a maximum velue. It should also be clear that for the pipeline
mechanism to function at its best efficiency, it should be kept full as
much as possible. If the pipe ever drains (runs out of items to be
processed) the initial filling up time is very costly since each stage

operates at the rate of the slowest stage in the pipe.
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¢ iii. A Pipeline Adder b
] N
. We shall now apply the pipeline mechanism to the adder seection it
)
of the Arithmetic and Logic Unit of a computer. To illustrate the time -
speed-up, let us assume that we must add seven pairs of floating point )
3
numbers with rounding and normalization. First, let us briefly review the )
process by which two floating point numbers are added: g%
> Using a decimal notation we represent a number in the floating b
N )
h - i
E. point format as follows: ]
K 3]
L",
5 o
'- R
] :
E§ Mantissa|Exponent k.
i Sign of Sign of e
h Mantissa  Exponent o

o SR

We have allowed 3 significant digits in the Mentissa and two for the

LRl S
P o g
EAA] ’

s Dk
ol

Exponent. Thus ~.123 + Ol is the sams as =.123 x 101 in scientifie nota- =
tion or ~1.23. Also +.01k - 02 is the same as .0001k. We say that a i

number in floating point format is normalized when the Mantisssa is greater ;

than or equal to .1 but less than 1.
.1 < Mantissa < 1,

Thus +.01% - 02 is not normalized but -

+.140 - 03 is normalized. 3

In order to add two numbers in floating point format, we must é}
-l

first equalize their exponents so that their mantissas can be added. 3
\

I-4Y
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However, when equalizing the expunents we always take the number with the
smaller exponent and "promote" the smaller exponent up to the larger one
and adjust the mantissa of this number by right shifting by the difference
of the exponents. We could not »¢: .rm a left shift or a significant digit

or a normalized number would appear to the left of the decimal point.

After addition of the mantissas, we normalize the result if
necessary and finally we round the result so that it can be expressed

within 3 significant digits.

In order to perform the four operations

1. Adjust Exponents
2. Add Mantissas
3. Normalize (if necessary)

4. Round

we must have an accumulator in our adder that can hold more information
than the format we have specified for our floating point numbers. For our
3 significant digit case let us use an accumulator capable of holding

numbers of the form

+ X . XXX + XX

This accumulator has an extra position to the left of the decimal point to
temporarily store a digit which might overflow as a result of an addition,

and it has 6 significant digits to insure accuracy when rounding takes

place.
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numbers as operands.

Consider two examples of what steps can occur using actual

We assume that all operands enter into the floating

point addition process in normalized form and that the number with the

smaller exponent has been placed in the extra length accumulator.

Examgle 1

123. + 45,6

Add 123 to 45.6; that is, perform the operation:

In normalized form the numbers are:

1. Adjust Exponents:
2. Add Mantissas:
3. No Normalization
Necessary
4, Round Result:
Example 2 Add 9.99 to .

(+.123 + 03) + (+

9.99 + .01k7

U456 + 02)

.123 + 03

This number is in
the accumulator

Result in
accumulator also

+0.045600 + 03 @

+0.168600 + 03 @———————

Number is now back
+.169 + 03 @=———— in 3 significant
digit form.

0147; that is, perform the operation:

In normalized form the numbers are:

(+.999 + 01) + (+.

Adjust Exponents:

Add Mantissas:
Normalize:

Round:

147 - 01)
+.999 + 01

+0.001470 + 01

+1.000470 + 01

+0.10004T + 02

+.100 + 02
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Now suppose that the stages of the four step addition process

took 70, 100, 60 and 50 nanoseconds (ns) respectively, then the total time

to add our seven pairs of numbers in a sequential manner would be

7 x (70 + 100 + 60 + 50) = 1960 ns

Since each stage can perform its operation autonomously on

different operand-pairs, let us "pipeline" the four-stage addition process.

Since the slowest stage operates at 100 ns we have

Adjust Exponents Stage

Add Mantissas Stage

Normalize Stage

Round Stage

II In l

100 ns

100 ns

100 ns

100 ns

Out‘

At the end of 400 ns the first result appears at the end of the pipe;

after that results come out every 100 ns. (Note that in the sequential

process the first result appears after only 280 ns but they continue to

be created at that rate.) See Figure I-T for a snapshot of the pipelined

adder every 100 ns. We see from the figure that the total time to add

7 numbers using our four-stage pipeline adder takes only 1000 ns as

compared with the 1960 ns sequential addition.
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It is, of course, of primary importance to keep the pipe filled
with operands. If the pipe is used sporadically instead of continuously,
its purpose is defeeted. Other problems may arise if more than one pipe-
line unit exists--for example, an Arithmetic and Logic Unit may have a
Pipeline Adder and a Pipeline Multiplier. If one pipeline is performing
an operation that needs the result of another operation which is in another

pipe, then efficiency drops while one unit waits on another.

iv. A Pipeline Instruction Execution Unit

Arithmetic and Logic Unit components ére not the only sections of
a computer that can be pipelined to increase execution speed. It is also
possible (although a trickier proposition) to pipeline the instruction
execution section of the Control Unit. (This approach was taken by the

IBM STRETCH computer.)

The process of interpreting and executing an instruction can be
decoupled into several autonomous stages and therefore instructions can be
executed through a pipeline--each instruction in the pipe being in a
semi-finished state of execution. The tricky part of this proposition
comes in when one instruction in the pipe needs the results from the total
execution of another instruction in the pipe. At this stage, the pipe-
lining process must stop and all instructions ahead of the instruction
must be processed through the pipe so that the instruction which needed
the complete results can be given them. Another problem would be a Test-
and-Branch instruction proceeding through the pipe. From where do you

fetch the instructions following the Test-and-Branch? Also, instructions

I-k9
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which modify fields of other instructions (such as the address field)
could not both be allowed in the pipe at the same time. When certain
possibilities such as the ones described above do occur, the pipe must be

allowed to drain or is "flushed out" and the benefits of the pipeline

are temporarily wasted.

In the pipelined Instruction Look Ahead Unit of 'STRETCH,
instructions were fetched while their pPredecessors were being executed and
operands were made ready, if necessary. Each instruction was in a stage
of partial completion in the pipeline. The problem of how to handle a
Test-and-Branch or Conditional Branch instruction was solved very straight-
forwardly: the assumption was made that the test would always fail so that
succeeding instructions were fetched from the location contiguous to the
branch instruction. About half the time this guess would be right. Once
programmers were aware of this type of bias they could then write their

programs to take advantage of it.

Summing up: A Pipeline is a mechanism by which a previously
sequential process is broken down into stages, each of which can operate
independently of the other. When the slowest stage is finished, the
output from Stege i is passed on to become the input to Stage i + 1 for all
stages simultaneously. Once the pipe is full, output appears at the end of

the pipe at a time increment equal to the operation time of the slowest

stage.
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3. Replication--The Multiprocessor

The general Multiprocessor is the embodiment of the replication
design philosophy; thrée of the four components of a conventional computer
are replicated many (N) times resulting in a system that can be up to N
times as powerful. See Figure I-8. We can think of a general multi-
processor as N conventional computers in one system, all sharing the I/0
resources.of that system. There may be some information flow from Control
Unit to Control Unit but the main idea is that each Control Unit can
independently and simultaneously execute the program in its memory. Since
the multiprocessor can be executing N distinct streams of instructions
simultaneously, it can, under optimum conditions, effect a time speedup by

a factor of N.

1/0

MEMORY, MEMORY, MEMORY

Figure I-8. Functional Relations within a General Multipiocessor
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It is, of course, very expensive to build & true multiprocessor
as outlined by Figure I-8. There are N times as many Control Units,
N times as many ALUs and N times as many Memories as there are in s
conventional computer. In order to keep the cost at a minimum, the
following question is asked: Which of the functional components: Memory,

ALU, or Control Unit, could be centralized with little or no loss to the

power of the multiprocessing system?

a. Centralize Memory

Memory could be lumped into one large memory of N times as many
words instead of N separate memories but little savings in cost would
result-~you essentially still have to pay for the same number of bits of

storage. (See Figure I-9.) The most severe problem that comes from

CU]_ CUZ [ ]

MEMORY a———»1 1/0

Figure I-9. Multiprocessor with Common (Lumped) Memory
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sharing a common memory is the potential bottleneck that exists when more
than one Control Unit wants to store/fetch data or instructions at the same
memory location. Additionel hardware lines (at additional cost) can be
added to take care of the fetching problem but devising the software to
decide which unit will store first is relatively complicated. Keeping one
Control Unit out of the program instruction ares reserved for another
Control Unit requires that appropriate software or hafdware be produced to
maintain program integrity. Even if the manufacturer provides the hard-
ware and softwere, it costs money and that cost is usually passed on to

the customer. Sharing a common memory might end up costing more money

than distributing the memories among the CUs and ALUs.

b. Centralize the Arithmetic and Logic Unit (ALU)

Another approach is to centralize the ALU into an extremely
fast, high-quality ALU that could service sll N Control iUaits. This design

is called the Intrinsic Multiprocessor (see Figure I-10).

The ALU section of the Intrinsic Multiprocessor is comprised of
many specialized and powerful processing units--some of which may be
replicated (such as the Adder). (These units could be pipelined for a

further increase in speed.)

The Control Units (CUs) can each be executing independent streams
of instructions. When an instruction needs to use one of the processing
units in the ALU, a request is placed in the Selector. If the desired unit

is free, the operation requested is performed. If all of the units which
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Figure I-10. Functional Block Diagram of Intrinsic Multiprocessor

L.

Lo
could have performed the operation are currently busy, the request is

F
placed in a queue to be serviced when the requested unit(s) become free. g
If the latter is the case, the CU which requested a unit that was busy will

¥
be temporarily halted in its execution of instructions by the Selector.

:

Note that memory is also centralized in this version of the

Intrinsic Multiprocessor so that a common memory is shared by all CUs

-
.

for instruction and data storage. Since memory is centralized it is

necessary that this type of multiprocessor have a svecialized instruction

e &

SR
¥4

.,

e
,31",-:
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'[ repertoire. Results could not be stored temporarily in a register within

: the ALU, since it might hold up the results requested by another CU's

%] operation. A solution‘would be to design the instructions to be of the
three-address form: the two operands and the location in memory indicating

£ where to store the result.

The design is effective if all of the specialized units in the

P_
L

L ALU can be kept busy for a high percentage of the time. This means that |
¢ the instructions coming to the ALU from the CUs be mixed in roughly the ;
" same proportion as the processing units present in the ALU. For further
& efficiency, the same instruction type should not appear at the same time
E in all CUs. If all conditions are right, a speedup is gained since the

processing function (in the ALU) has been decoupled from the control

-.- function and both of these operations can proceed simultaneously--the ALU

E{ is not waiting on the CU to fetch and decode instructions. Rather than

have many ALUs not being 100% utilized (as is usually the case in the
‘ '! general multiprocessor) the one Super-ALU of the Intrinsiec Multiprocessor

shares its resources among the many CUs.

¢. Centralize the Control Unit (CU)

[5asi |
v |
(A |
!
o When the Control Unit is centralized (the design option taken |
-
Lo L)
w by ILLIAC IV) the array of ALUs is called an Array or Vector Processor.

"Array" is perhaps not the best choice of words because it can bring to

—rr
2 )

mind a two-dimensional picture. In all further discussions it is very

important for the reader to understand that the term "Array" refers to a

‘f_'n::'-

wEm
) B o
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one-dimensional array--a row, a column, or still better, a vector. Now, B
what does it mean when we say a computer has an Array Processor or a ri
b

: o Y

Vector Processor? Before we answer this question, let us recall some ;J

history:

In the early days of computing (late forties and early fifties)
data was processed by the CPU in a serial mode. Pulses representing the
bits which in turn represented numbers went into the CPU "one-at-g—time"
and were processed (added, subtracted, etc.) sequentially. The process

could not be completed until after the last pulse had entered the CPU,

FES

In order to speed up the operation of the CPU, its design was

e
oleaasT

changed to accept data in a parallel mode or "all-at-once." Thus, if a

word was N bits long, the parallel CPU could operate N times as fast as

s b

D

a serial CPU. See Figure I-11,

Data

A 8

g

Serial CPU 010110001100 1—sCPU

[

Data

|
2

Parallel CPU 0101100011001

S

CPU

>
2

£

Figure I-11. Serial CPU vs. Parallel CPU

:"'[ 7

.
(3]

Lﬂ:'au !
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G{ﬂ If we now extend this concept from dealing with the N bits in a

word all-at-one-time to dealing with N words in a vector all-at-one-time

we have the gist of a vector processor. Although & conventional computer

t

i N,

can operate on the many bits within a word in parallel, the contents of

the word is just one single number, or a scalar. If we devise a computer

(e
s 4

with an Arithmetic and Logic Unit that can deal with N words simulta-

éé neously, then we can view each word as & component of a vector and say
. that the machine has & Vector or Array Processor. (See Figure I-12.)
‘i Each ALU within the ALU array deals with one component of the vector.
&

tﬁ Since an Arrey Processor performs its operations (+, -, x, =+,

3
.

AND, NOT, OR, etc.) on operands that are vectors, not scalar numbers, when

= w

i

you execute the instruction "Add A to B and store the result in C" what you

g’.‘;' cu 1/0
i
e 0 o -————“

E:

ALV, ALU2 e oo ALUn
i
1
[y
L, MEMORY; MEMORY; oo MEMORYy
E: P )
Ej Figure I-12. A Vector or Array Processor
(.."-‘..
b I-57
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are actually doing is adding the vector A to the vector B and storing the

result to a vector named C:

-]
]

(al, By +ees an)

B = (bl, Doy ey bn)

C= (al *b, 8, +by, waay B+ bn)

Since there is only one Control Unit, the ALU Array can only
respond in a "lock-stepped" mode to each instruction. For example, if the
instruction is ADD, then all N of the ALUs perform the ADD operation; there
is no instruction which can cause some ALUs to add while others are
multiplying. Every ALU of the Array performs the operation in this lock-
stepped fashion, but the operands are vectors whose components can be and

usually are different.

There is a nice distinction that can be drewn at this point
between the operation of a Pipeline Processor and that of an Array

Processor:

In a Pipeline, each stage performs a different operation simultaneously.

In an Array Processor, each ALU performs the same operation simultaneously.

4, ILLIAC IV

TLLIAC IV is a direct descendant of the SOLOMON Computer which
was designed by D. L. Slotnick and built by the Westinghouse Corporation
in prototype. Before we take our first look at ILLIAC IV, let us briefly

examine the SOLOMON Computer.
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SOLOMON has 1024 Processing Elements (PE) each element having

4096 bits of storage. However, since all operations performed within a PE -
are serial-by-bit (and not parallel as in current conventional machines)
the speedup factor is not 1024 but 1024/N where N is the number of bits in
a word. The serial-by-bit operation of the PEs decreases the speed of the
machine but it also lowers its cost and mekes possible variable word .

lengths.

Each PE has its own memory but can be instructed to reference
the memory of its four closest neighbors. What constitutes a neighbor is
shown by Figure I-13. If the PEs are viewed as a 32 x 32 arrsy, each PE

(except the border ones) has a closest North, East, South and West

NETWORK INSTRUCTION
SEQUENCER STORAGE
¥
]
[]
1
L ]

L
BUFFER 1/0

—{JQ{JQ{Aﬂ- 2. E _{éEF:——J

Figure I-13. Functional Block Diagram of SOLOMON
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A neighbor. Hardware connections between these PEs allow for the transfer Qé@

" -

or routing of information from PE to PE. ‘ ;

Also shown in Figure I-13 is the Network Sequencer or Control Unit

LI S b

“8,

-

vhich interprets the instructions stored from a special Instruction Storage

S

Memory. (Data is stored within an individual PE memory and so program and

3 data are not stored together on SOLOMON.) o
. The border PEs (Numbers 1, 2, 3, ..., 32; 33 and 64; 65 and 96; .
1

E cees 993, 994, 995, ..., 1024) all have at least one free ccnnection that o
; can, under program control be linked to other border PEs. This allows the EE:
; programmer to configure the PE memory routing connections to suit the "
! e
: problem. Eﬁ
; The Input/Output is handled by the L-Buffer which has direct 9
-

f

connections only to the rightmost column of PEs (Numbers 32, 64, 96, ...,

1024). Once data has been loaded into these PEs via the L-Buffer, it

Tean s B B _A_8_&

can be further distributed via the "I nearest neighbor" connections which

713

e
"

'; exists within the arrgy.

T3
203

Each PE also contains a programmable mode register which'deter- g§

mines whether or not that PE will or will not respond to an instruction ™
A

] t

.E.

generated by the Network Sequencer.

| N

A later version of SOLOMON, SOLOMON II, upgraded each PE to

parallel bit operation and added an index register so that each PE can

v
s

! access different locations within its memory as all PEs perform the same

operation simultaneously.
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Ej The original design of ILLIAC IV contained four Control Units:
each of which controlled a 64 ALU Array Processor. The version being built
by the Burroughs Corporation will have only one Control Unit which drives
tﬁ 64 ALUs as shown in Figure I-1k., It is for this reason that ILLIAC IV is

sometimes referred to as a Quadrant (one-fourth of the original machine)

b and it is this abbreviated version of ILLIAC IV that will be discussed for

:

‘ ¢

[ the remainder of this book.

.)
-
=

The Control Unit (CU) has been decoupled from the Arrsy Processor

-
" .

—_x

2 so that certain instructions can be executed completely within the

E; resources of the CU at the same time that the ALU is performing its vector

s TEE T

P
L

]I'ﬁ DA
¥
f

1/0 !
B (B6500) g
fr ‘
¥ DATA 1CONTROL E
MODET l TA1CONTR 1 ‘
] b
JEEEEE N S
o W
[T
¥y <
.Ej B PEo PE; e o0 PEg3
. a
&
{' =
n e
-
- gé
L E PEMo PEM, ° o0 PEMeg3
=
E; I I e o0 I J

,\'»
E: Figure I-1k. Functional Block Diagram of ILLIAC IV
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operations. In this way another degree of parallelism is exploited in

addition to the inherent parallelism of 64 ALUs being driven simultaneously.

Each ALU responds to appropriate instructions if the ALU is in
an active mode. (There exist instructions in the repertoire which can
activate or de-activate an ALU.) Each ALU performs the same operation
under command from the CU in the lock-stepped manner of an Array Processor.
Each element of the ALU Array is not called by its éeneric name (ALU) but

is called a Processing Element or PE.

Each PE has a full complement of arithmetic and logical circuitry
and under command from the CU will perform an instruction "at-a-crack" as
an Array Processor. Each PE has its own 2048 word 64-bit memory called a
Processing Element Memory (PEM) which can be accessed in about 350 ns.
Special routing instructions can be used to move data from PEM to PEM.
Additionally, operands can be sent to the PEs from the CU via a full-word
(64 bit) one-way communication line and the CU has eight-word one-way

communication with the PEM arrsy (for instruction and data fetching).

An ILLIAC IV word is 64 bits and data numbers can be represented
in either 6L-bit floating point, 6L4-bit logical, 48-bit fixed point, 32-bit
floating point, 24-bit fixed point, or 8-bit fixed point (character) mode.

By utilizing the first, fourth and sixth data formats listed eboveé the

64 PEs can hold a vector of operands with either 64, 128, or 512 components.

Since ILLIAC IV can add 512 operands in the 8 bit integer mode in sbout

66 nanoseconds, it is capable of performing almost 10 of these "short"
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additions per second. ILLIAC IV can perform approximately 150 million

6L4-bit, rounded, normalized floating-point additions per second.

The I/0 is handled by a B6500 Computer System. The Operating

System, including the assemblers and compilers, also reside in the B6500.

The specific option of centralizing the CU of the general

multiprocessor as a basis for ILLIAC IV was chosen for two main reasons:

1) Cost. A very high percentage of the cost within a digital
computer is tied up in the Control Unit circuitry. Replication of this
component becomes very expensive and therefore choosing the option of
centralizing the Control Unit can save more money than centralizing either

Memory or the ALU.

2) There exist large classes of problems where the data to be
manipulated can be expressed as vectors and not scalars. These problems
range from scientific ones dealing with matrices and the solution of
ordinary and partial differential equations to business problems as
practical as payroll. In a business problem such as payroll, the same
algorithm (payroll deduction) is applied to different data (each indi-
vidual in the company has a different base pay and has chosen different
deduction options). One Control Unit can apply the same algorithm
repetitively to the different data (each data pointlcan be thought of as
a component of a vector--each component is operated on by a different PE).
ILLIAC IV was designed especially to solve large problems wherein the
same algorithm is performed repetitively on data that can be structured

as components within a vector.
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HARDWARE STRUCTURE

A. Summary

The ILLIAC IV System can be organized as in Figure II-l. The
F ILLIAC IV System consists of the ILLIAC IV Array plus the ILLIAC IV I/O

System. The ILLIAC IV Array consists of the Array Processor and the

4 Control Unit. In turn, the Arrsy Processor is made up of 64 Processing
‘¢

o ILLIAC I¥ SYSTEM

[

5 ILLIAC IX ILLIAC IX

t—: ARRAY I/0 SYSTEM

E ARRAY CONTROL

PROCESSOR UNIT (Cu)

I‘J_l

e
[EEE EE N

64 64
[- PEs | |PEMs
DISK FILE
4 1/0 SUBSYSTEM SYSTEM (OFS) B6500 COMPUTER
) B6300
[ L PERIPHERALS
| I l I
CONTROL DESCRIPTOR BUFFER INPUT/OUTPUT INPUT/QUTPUT SWITCH
CONTROLLER {cDC) MEMORY (BIOM) (108)
E:, Figure II-1. ILLIAC IV System Organization
‘ot |
e ‘
'ty é
E; II-1 ' !
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Elements (PEs) and their 64 associated memories--Processing Element
Memories (PEMs). The ILLIAC IV I/0 System comprises the I/0 Subsystem,
the Disk File System and the B6500 computer. The I/0 Subsystem is
broken down further to the CDC, BIOM and IOS. The B6500 is actually a

large-scale computer system by itself.

The ILLIAC IV Array will be discussed first, in a general
manner, followed by some illustrative problems which ihdicate some of
the similarities and differences in approach to problem solving using
sequential and parallel computers. The problems also serve to illustrate
how the hardware components are tied together. Following is a more
detailed description of the ILLIAC IV Array, then another illustrative
problem, this time a more realistic one--solution of the temperature
distribution on a two-dimensional slab; some data allocation considera-
tions are then discussed. The ILLIAC IV I/0 System is discussed briefly,

and some conclusions and opinions end the chapter.

B. ILLIAC IV Array--General Description

Figure II-2 represents the ILLIAC IV Arrsy--the Control Unit plus

the Array Processor.

Control Unit (CU)

The Control Unit can be viewed as a small unsophisticated
computer in its own right. Not only does it cause the 64 Processing

Elements to respond to instructions, there is a repertoire of instructions
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that can be completely executed within the resources of the Control Unit, el
and the execution of these instructions is overlapped with the execution
of the instructions which drive the Processing Element Array. f:;i
— . =
The Control Unit contains 64 integrated circuit registers called Wy
% the ADVAST Data Buffer (ADB) which can be used as a high speed scratch-pad =
¥ p
, : o)
"‘ memory. ADVAST is one of the five functional components of the CU and s
:: will be described in greaster detail in section D 3 a. Each register of F}
-' ‘L‘.
§ the ADB (DO through D63) is 6L-bits long. The CU also has 4 Accumulator
.'~ .‘:',
registers called ACARO, ACARl, ACAR2, and ACAR3 each of which is also §
" 64 bits long. The ACARs can be used as accumulators for integer addition, :
y .
.: shifting, Boolean operations and holding loop control information--such as g
. the lower limit, increment and upper limit. In addition the ACARs can be Sl
ey
used as index registers to modify storage referemces within the memory
4 . .
. section (PEM). N
» 2
4
py
j 2. Processing Element (PE) &
: )
Each Processing Element (PE) is a sophisticated ALU capable of a 0
wide range of arithmetic and logical operations. There are 64 PEs numbered =
L‘.
; 5!
] 0 through 63. Each PE in the array has 6 programmable registers: the A -~
, register (RGA) or Accumulator, the B register (RGB) which holds the second ﬂ
: b
operand in a binary operation (such as Add, Subtract, Multiply or Divide),
vy
5 o
b the R or routing register (RGR) which transmits informetion from one PE to 03
. another, the S register (RGS) which can be used as temporary storage by -
A I3
1 the programmer, the X register (RGX) or index register to modify the ’,_-_:‘c"'
1 Sy
. L) \1

b, II-h
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address field of an instruction, and the D or mode register (RGD) which
controls the active or nonactive status of each PE independently. The
mode register determines whether a PE will be active or passive during
instruction execution. Since this register is under the programmer's
control, individual PEs within the array of 64 PEs may be set to enabled
(active) or disabled (passive) status based on the contents of one of the
other PE fegisters. For example, there are instructions which disable
all PEs whose RGR contents are greater than their RGA contents. Only

those PEs in an enabled state are able to execute the current instruction.

3. Processing Element Memory (PEM)

Each PE has its own 2048 word, 6L4-bits per word, random access
memory. Each memory is called a Processing Element Memory or PEM and they
are numbered O through 63 also. A PE and PEM taken together is called a

Processing Unit or PU. PEi may only access PEMi so that one PU cannot

modify the memory of another PU. Information can, however, be passed from

one PU to another via the Routing Network described next in section B 4 c.

4. Data Paths

Besides the Instruction Control Path which drives the 6L PEs
during the execution of an instruction there are four paths by which data
flows through the ILLIAC IV Array. These paths are called the Control
Unit Bus (CU Bus), the Common Data Bus (CDB), the Routing Network, and the

Mode Bit Line.
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a. Control Unit Bus (CU Bus)

Operands or data from the PEMs in blocks of eight words can be
sent to the CU via the Control Unit Bus (CU Bus). The instructions to
be executed are distributed throughout the PEMs and are also fetched in
blocks of eight words to the CU via the CU Bus as necessary. Some of the
instructions are completely executed within the CU; theselare called
ADVAST instructions. Most of the instructions, however, cause the 64 PEs
to perform an operation simultaneously or in parallel; these are called
FINST/PE instructions and are made ready for execution by the PE Array
in a section of the Control Unit called FINST. The operation of ADVAST

and FINST will be more fully described in section D of this chapter.

b. Common Dats Bus (CDB)

Information stored in the Control Unit can be "broadecast" to the
entire 64 PE Array simultaneously via the Common Data Bus (CDB). A value
such as a constant to be used as a multiplier need not be stored 64 times
ir each PEM; instead this value can be stored within s CU register and
then broadcast to each enabled PE in the array. In addition the operand

or address portion of an instruction is sent to the PE array via the CDB.

¢. Routing Network

Information in one PE register can be sent to another PE register

by special routing instructions. (Information can be transferred from PE
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300
‘!! register to PEM by standard LOAD or STORE instructions.) High speed rout- ;
ing lines run between every RGR of every PE and its nearest left and right ‘
A _
5 neighbor (distances of -1 and +1 respectively) and its neighbor 8 positions t
r. to the left and 8 positions to the right (-8 and +8 respectively). Other i
s routing distances are effected by combinations of routing -1, +1, -8, or i
. ¥
f{ +8 PEMs; that is, if a route of 5 to the right is desired, the software E

will figure out that the fastest way to do this is by a right route of 8

followed by three left routes of 1. See Figure II-3 for a picture of the

r"-'o»‘ll
Te®els
(7 B[ M e

connectivity which exists between PEs. As can be seen from Figure II-3,

>
lh g
PE9 is connected by routing lines to PE 10, 17, and PES' PEO is "
" ]
,Fv connected to PEsc, PE,, PEg, and PEg.. .

b d. Mode Bit Line

The Mode Bit Line consists of one line coming from the RGD of

Sl

each PE in the Arrgy. The Mode Bit Line can transmit one of the eight mode

(2
r':-
-

bits of each RGD in the array up to an ACAR in the Control Unit. Since !

each bit ¢ an ACAR holds one bit of each RGD for the PE array, special

l‘. .. -l’
D

Control Unit instructions can test and branch on the "mode pattern' in

the ACAR.

In a very gross fashion then, this is the ILLIAC IV Array. v
/
In order to illustrate how all of this hardware is tied together, we

shall next look at some simple problems which utilize the Arrsy Processor

|

l

|

of ILLIAC IV. ;
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| C. Some Illustrative Problems

— s —

LA

1. Adding Two Aligned Arrays

| ]
I Let us first consider the problem of adding two arrays of numbers |
.
L-
f' together. The FORTRAN statements for a conventional computer might look ]
like:

i)
Py !
et

D010I=1, N

10 A(I) = B(I) + c(1) {‘

L B 1'[> AL AN

The two FORTRAN instructions are compiled to a set of machine
language instructions which include initialization of the loop, looping
instructions, and the addition of each element of the B array to the
proper element in the C array, and storage to the A array. Except for the

initialization instructions, the set of machine language instructions are

a2 s K-t a_rF

executed N times. Therefore, if it takes M microseconds to pass once

through the loop, it will teke about N times M microseconds to perform the

above FORTRAN code.

e~
I

Now suppose the same operations are to be performed on ILLIAC IV.

|

Arrangement of the data in Memory becomes a primary consideration--the

P et e

.
&

| &

data must be arranged to exploit the parallelism of operation of the PEs

as effectively as possible. The worst way to use the PEs would be to

.

allocate storage for the A, B, and C arrays in Just one PE Memory. Then

[ e ]
2 e
B

- instructions would have to be written Just as they were in a conventional

machine to loop through an instruction set N times.

e

.
\. -
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Let us consider the problem as consisting of three cases:
N = 64, N < 64, and N > 64 and then see what each case entails in terms

of programming for ILLIAC IV.

To reflect the case where N = 64, we have arranged the data as

shown in Figure II-4. In order to execute the two lines of FORTRAN code,

P
AT
ot

i

P e—

O G e N R I R Ty L

- ‘d’”’."-." - v\f.\d" Pl
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pln - Svints

R R R G U, U

only the three basic ILLIAC IV machine language instructions are necessary: Ly
1) LOAD all PE Accumulators (RGA) from Location & + 2. in all PEMs. 5
2) ADD to the PE Accumulators (RGA) the contents of Location @ +1 in all PEMs. )
eug &
el
3) STORE result of all PE Accumulators to Location & in all PEMs. e
e
Sy
PEo. PE; PEqs @
RGA RGA RGA »
| —  n— ==
o
LOCATION O :'3
[ J ® ®
L ] L ] ® {...
° ° ° r_‘.
LOCATION a A(l) A(2) A(€4)
LOCATION a+1 B(1) B(2) B(64) ™
LOCATION a+2 | c(1) c(2) Cl64) e
L L=
L ] ® L ]
L] ® Y .
® L] ® g
LOCATION 2047
PEMo PEM, PEMg3 ;'3}
Figure II-4. Arrangement of Data in PEM to Accomplish =
DO 10 I =1, 64 B
—
10 A(I) = B(I) + c(1)
e
L
II-10 el
B
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Since every PE will execute each instruction at the same time or

in perallel, accessing its own PEM when necessary, the 64 loads, additions,
and stores will be performed while just three instructions are executed.

This is a speedup of 6L, for this case, in execution time.

The three instructions to perform the 64 additions in ILLIAC IV

Assembly Language (ASK) would actuelly look like:

LDA ALPHA + 2;
ADRN ALPHA + 1;

STA ALPHA;

(Note that since each instruction operates on a vector, a memory location

can be considered a row of words rather than a single word.)

N < 64

Since there are exactly 64 PEs to perform calculations, a proper
question is: what happens if the upper limit of the loop is not exactly
equal to 64?2 If the upper limit is less than 6L, there is no problem

other than the total PE array will not be utilized.

The trade-off the potential user of ILLIAC IV must consider here
is how much (or how often) is ILLIAC IV under-utilized? If the under-
utilization is "too much" then the problem should be considered for running
on a conventional ccmputer. However, the user should keep in mind that

he usually doesn't feel too guilty if he under-utilizes the resources of

T G g ——
e e N T
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a conventional system--he doesn't use every tape drive, every bit of
availeble core, every printer and every byte of disk space for most of

his conventional programs.

c. N>6h &
\

&3
When the upper limit of the loop is greater than 64, the pro- ;-3‘
i3
!
grammer is faced with a storage allocation problem. That is, he has various ]
4
options for storing the A, B and C arrays and the program he writes to L“
1
perform the 2 FORTRAN statements will vary considerably with the storage Q‘
allocation scheme chosen. To illustrate this let us' consider the special .
case where N = 66 with the A, B, and C arrays stored as shown in Figure II-5. H
7 PEo 7 PE;y ¢ .i;.
RGA RGA s
I |  m— i
3
LOCATION O k3
° ° L4 E2)
® ® ® L5
® ® ® ﬁ

LOCATIONa | A1) A(2) A(64)
LOCATION a+1 | _Al65) Al66) ? 'g
LOCATION a+2 B(1) 8(2) 8{64) é

LOCATION a+3 | _Bies) Bl66) e 2
LOCATION a+4 C{l1) C(2) C(64) =
LOCATIONa+5 | C(65) Cc(66) ? 3?

] ® ]
g ] ] ] -
5 ° o o i-%
1 LOCATION 2047 ' =
i PEMg PEM; PEMgs "n?i
Figure II-5. Arrangement of Data in PEM to Accomplish o
b1 DO 10 I =1, 66 |4
3 i
’ 10 A(I) = B(I) + c(1) o
. v
' 1=
5 -
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To perform the 66 additions on the data stored as shown in

Figure II-5, Six ILLIAC IV machine language instructions are now necessary:

LOAD RGA from Location o + L

ADD to RGA contents of Location o + 2
STORE result to Location &

LOAD RGA from Location O + 5

ADD to RGA contents of Location o + 3

STORE result to Location o + 1

The addition of two more data items to the A, B and C arrays not
only necessitates extra ILLIAC IV instructions but complicates the data
storege scheme. In this instance, the programmer might as well DIMENSION
the A, B and C arrays to 128 as 66. Note that the particular storage
schieme shown in Figure II-5 wastes almost 3 rows of storage (186 words).
The storage coiuld have been packed much closer so that B(1l) followed A(66)
in PE2 of row @ + 1, but the program to add the arrays together would have
to do much more shuffling to properly align the arrays before adding. An

ILLIAC IV program fs highly dependent on the storage scheme chosen.

2. Adding Two Unaliigned Arrays

Now let us consider how we would =~--form the following FORTRAN

statements using ILLIAC IV:

DO 10 I =2, 6L

10 A(I) = B(1I) + ¢(1I-1)

II-13
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This program could be effected in either of two ways: One way [
3 would be to store the C array "skewed" or offset one element to the right
- 2
; at compilation time; the other way is to store the C array normally and 2
perform the skewing at execution time. B |
; a. Store the C Array Skewed ;g
\ e 8
A When we choose this method to effect the FORTRAN program, we =
4 N
- store the data as shown in Figure II-6. Before executing the program, the
‘ ¥
user may wish to disable PEO. By storing the data skewed to begin with, we =
3
N r?

[l >
pPUET

PEo PEy PE2 PEgs ot
': RGA RGA RGA e o o RGA {:3
3 L L | | ks

0
—
A0 §

f LOCATION O
ol [ ] [ ] [ ] [ ]
1 o . . : W
LOCATION a [ A AR) AG) Al64) -
LOCATION a+1 | B(1) B(2) B(3 e oo B(64) -
LOCATION @a+2 | __— c(1) c(2) c(63 oy
i . . . . 3 E
[ ] ® L ] £
. . : o g
LOCATION 2047 = 34
PEM, PEM,; PEM, PES, il
o]
3 oy l
. Figure II-6. Arrangement of Data in PEM to Ac.omplizh i
- 3 {
- & !
! D0 10 I =2. 6k b4

10 A(1) = B(1) + c(1-1)

o3 .;'.
L]
!

&
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“?l l,

accomplish our goal at compilation time and the execution time instructions

would be of the form

DISABLE PE, (optional)
IOAD RGA from Location a + 2;
ADD to RGA contents of Location O + 1;

STORE result to Location «;

b. Skewing at Execution Time

The second way to effect this program is to store the data
"straight", i.e., exactly as shown in Figure II-4 but to have the ILLIAC IV
program skew the data using the ROUTE instruction; then the addition is

performed as sbove. The ILLIAC IV commands would be of the form:

1) All PEs LOAD RGR from Location a + 2.

2) All RGRs ROUTE contents one PE to the right (the route is
end-around so that RGR of PE63 goes to RGR of PEO).

3) All PEs LOAD RGA from RGR.
Note: After this third instruction is executed the
data is stored as shown in Figure II-T.

L) A1l PEs ADD to RGA the contents of Location o + 1.

5) All PEs STORE the result in RGA to Location «.

Note that after the execution of the sbove five instructions, A(1) will

contain B(1) + C(6L) if PEO was not disabled.

II-15




~oa

g

o]
4 =
{53
1: \‘s;‘
=
- PEo PE; PEg PEgs =
; RGA RGA RGA RGA w
N (cea])| |Ceg| (Cxer]| o ¢ °® o
i RGR RGR RGR RGR
Cea)| (e | 5
: l 1 1 I .
-
i LOCATION O et
- ?.-1
[ ] ] [ ] g [ ] *_n‘
4 [ [ [ ] [ ] i )
[ ] [ ] [ ] [ ]
LOCATION a | A(1) A(2) A(3) A(63) 3
2 LOCATION a+1| BID) B(2) B(3) o oo [ BEY i3
LOCATION a+2| c(1) c(2) c(3) c(64)
3 - : : : £
e [ ] [ ] [ ] -
i LOCATION 2047
j PEMg PEM; PEMg PEMg3 :
2 &
Figure II-T7. Status of Data in PEM, RGA and RGR while Executing e
D0 10 I=2, 6L g |
y 10 A(I) = B(I) + c(1-1) g
[a.by
The contents of PEM, RGA and RGR are shown after Step 3
of the program on page II-15. "
; oy
,.‘_" 3. Uncoupling Sequential Code ol
Finally let us consider the FORTRAN code: 8
- DO 10 I =2, 6L
i il
10 A(I) = B(I) + A(I-1)
p &
Iy
0 |
E How would we do the above instructions on a parallel computer such as
3 ILLIAC IV? At first, it appears we cannot perform the above algorithm %
4 ".~'
t ?Q‘;.-iz
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n on ILLIAC IV because it is inherently sequential. If we recognize that the
. 2 FORTRAN statements above are only a shorthand for 63 FORTRAN statements:
D A(2) = B(2) + A(1)

3 A(3) = B(3) + A(2)

o

<

> A(63) = B(63) + A(62)

A(64) = B(6L) + A(63)

and that each of the 63 statements is executed sequentially, we see that

* each statement in the sequence relies on the result computed from the
previous statement. That is, A(3) cannot be computed until the statement
above it has computed A(2). Therefore the 63 additions cannot be done in

‘ parallel, if we literally try to apply the two FORTRAN statements as they

stand. However, using mathematical subscript notation:

A,=B, +A
2”27 "1
|

A3 = B3 + A2 = B3 + 32 + Al

.. A)4=B)++A3=B)4+B3+32+Al

AN = BN + BN-l + ... 32 + Al

We see that the elements of the A array can be computed independently using
:E the formula
o N
[ Ay=A + ¥ B, for 2 < N < 6k
Q:n i=2
r‘.‘-""
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The FORTRAN code to perform the above formula would be:

S = A(1)
DO 10 N =2, 6k
S =S + B(N)

10 A(N) = 8

The above FORTRAN code is equivalent to the original code (its end results
are the same) but now the computation of the A array has been decoupled so

that each value of A in the array can be computed independently.

An arrangement of data to effect this program is shown in

Figure II-8 and the progrsm might be as follows:

Al

1) Ensble all PEs. (Turn ON all PEs,)

2) All PEs LOAD RGA from Location Q.

3) i< 0.

4) All PEs LOAD RGR from their RGA. (This instruction is performed

by all PEs, whether they are ON (enabled) or OFF (disabled).)

All PEs ROUTE their RGR contents a distance of 21 to the right.

(This instruction is also performed by all PEs, regardless of
whether they are ON or OFF.)

J<2t -1,
Disable PEs numbered O through j.

5)

6)
7)
8)

(Turn them OFF.)

All enabled PEs ADD to RGA the contents of RGR. (Figure II-8
shows the state of RGR, RGA and RGD (the MODE STATUS)--which
PEs are ON and which are OFF--after this step has been

executed when i = 2.)
9) i+« i+1,
10) If i <6 go back to STEP 4, otherwise go to STEP 11.
11) Ensble all PEs.
12) All PEs STORE the contents of RGA to Location o + 1.
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Note that this same algorithm can be applied to the solution

of problems where the recurrence is of the form: Fi = Ci * Fi- which

1
N
decouples to FN =(1I Ci) Fl' All that need be done is that Step 8 be
i=2

changed to MULTIPLY rather than ADD. Note also that if Ci =i i=1, 2,
... 64 and F. = 1 we have an algorithm for computing N! on ILLIAC IV;
1

that is, vhen the algorithm is complete PE_ will contain (N+1)!

N

This example tries to illustrate that it is not always immedi-
ately clear if an algorithm can be decoupled so that it can operate in
parallel or is so dependent on what happened before that it can only be
executed sequentially. In this example, it appears that the algorithm
is sequential, but upon closer inspection, the parallelism appears.
Potential ILLIAC IV users will probably need much practice in analyzing
problems using a parallel viewpoint, especially if they have already been
conditioned to viewing their problems only in terms of solving them on a
sequential conventional computer. The tool, for better or for worse,

shapes the uses it is put to.

D. ILLIAC IV Array--A More Refined Description

Section B presented a general description of the functional
components of the ILLIAC IV Array. This section will expand on that

description.
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Processing Element (PE)

The Processing Element (PE) is shown in Figure II-9. For the

sake of clarity, all of the interconnections between the six registers

have not been shown in Figure II-9.

n ~: y{_‘-:'.“.:_::\.’-:...’ ae .x- i

4 LINE 268 LINE
COMMON OATA BUS INSTRUCTION CONTROL
DATA FROM (COB) FROM CU PATH FROM CU
THS PEM {OPERANO OR AOORESS) {OPERATION CODE)
!
]
MODE REGISTER
(RGO)
MODE BIT
] [ * 10 cu
SELECT GaTES
TO ANO FROM R REGISTER A "(‘:éf)'" 8 REGISTER S REGISTER NIREGIaER ADORESS
OTHER RGO (mom) idcolitUsToR (nG8) (rGs) INDEX REGISTER] e
ADDRESS TO
THIS PEM
ARITHMETIC LOGIC/SHIFT
umT uNT
b
To THIS PEM
or
Y0 CU VIA CU BUS
Figure II-9. Processing Element (PE)
I1-21
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Note that information enters a PE either from its own PEM, from :
another PE (via RGR) or from the Control Unit (CU). The CU sends the E'
electrical pulses down the Instruction Control Path which are the micro-
Sequences that define the operation code of the instruction to be executed Lﬁ
by the PE Array. The Instruction Control Path consists of 266 control o
lines which drive the 64 PEs simultaneously; i.e., all PEs execute the Ei
same instruction in parallel. The microsequences pass through the Mode F@
Register (RGD) before going on to the Select Gates of the PE. The Mode i
Register is an eight-bit register which contains (in addition to other g%
information) the status of the PE. 1In section B 2 it was pointed out
that if the PE is in the enabled status or mode, then the instruction is Eg
completely executed (the proper gates will be selected); if the PE is in 43
a disabled mode, then it will not respond to the instruction. As a b

general description, this is true but it presents an incomplete picture

of the operation of the mode registar. Following is a more complete

wy
description: y.
=
3
a. Mode Register (RGD)
i?g‘
The mode register (RGD) has eight bits called the E, E1, F, F1, 6
G, H, I and J bits. The E and El bits are used to reflect the status of f?r
@
a PE. ,
If both E and El are zero then writes (storing of information) g
to RGS, RGA, RGX and PE Memory are prohibited or locked out; writes to :ﬁ
]
RGR, RGB, and RGD are allowed--they are not locked out. When both E and i:ﬁ
b
5]
I1-22
&

- y W T 8 g
= - - S T AT R e T BT R AT A BT T %] B TSR R T A
2T AT TG AT G Tt BT T Rty e T T Ry R T BT R e N -.‘/ TR TR e R s -'J'.'..‘ s " A AP s - e
s B Sk el s Y, AT i esb e BIR ket o " e Nyl 2y Wy . 5 i . e
D o M L o G e Y gl T Y I e = 85 Uaiy e Y . - .
e L "y > " o Sk "



T T ok O e e e e e e

e ]
P
Caaea

ny
i
L}

rAr LA
&

L o= T T

Pttt

El are zero we refer to the PE as being in the disabled state even though
RGR, RGB and RGD can be changed by an instruction that references these
registers; however, any part of an instruction which seeks to modify

RGS, RGA, RGX or a PE Memory location will not be performed. Reads of all

registers and PE Memory are not locked out when a PE is disabled.

If E and E1 are one then we refer to the PE as being in the
enabled state and all instructions are completely executed--no PE registers

or part of PE Memory is locked out.

In brief then, when a PE is disabled, its RGS, RGA, RGX and
PE Memory are protected--vwhen a PE is enabled, its RGS, RGA, RGX and

PE Memory are unpiotected.

Let us now teke a closer look at what it means when a PE is
disabled: When a PE is disabled (E = E1 =.0) RGR, RGB and RGD are

unprotected and one of two things may occur:

1) An instruction which directly modifies only RGR, RGB, or

RGD will be completely executed. For example, the following types of

instructions will be executed when a PE is disabled:

LOAD RGR from RGA

ROUTE RGR N PEs to the Right (or Left)

LOAD RGB from RGA

LOAD RGD from RGB (the eight high order bits of RGB
go into RGD)

SET one of the eight bits of RGD.
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2) An instruction which indirectly modifies RGR, RGB or RGD
will be partially executed. (An indirect instruction is taken to mean one
that is intended to change the contents of RGS, RGA, RGX or PE Memory, but
in doing so must use and change the contents of RGR or RGB.) For example,
if an ADD instruction is sent to a disabled PE, the PE will actually
perform all of the microsequences necessary for addition, changing the
value of RGB, but RGA will not be changed--the answer will not appear in
the accumulator. Since the second operand of a binary cperation is

fetched to Register B, RGB gets modified (indirectly) during an ADD

operation in a disabled PE.

For example, the following types of instructions cause indirect

modification of either RGB or RGR:

ADD to RGA the contents of PEM location X (RGB is modified)

MULTIPLY the contents of RdA by the contents of PEM
location X (RGB and RGR are modified)

DIVIDE the contents of RGA by the contents of PEM

location X (RGR is modified)

However, none of the above instructions modify RGS, RGA, RGX or PE Memory,

since we are considering the case when a PE is disabled (E = El = 0).

There are no ILLIAC IV instructions which modify RGD indirectly,
so the programmer does not have to worry about inadvertently changing the
mode pattern of the PE Array (the mode pattern is just the 64 states of the

E and El1 bits in the PE Array). The programmer must, however, have the

II-24
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capability to modify the mode of a disabled PE, else after he turned it off
he could never turn it back on. Since RGD can be modified directly when a
PE is disabled, the programmer is afforded this capability by various

instructions in the ILLIAC IV repertoire.

The general rule which always holds true is: When a PE is
disabled (E = E1 = 0) RGS, RGA, RGX and PE Memory are protected (writes are
locked out). When a PE is enabled (E = E1 = 1) RGS, RGA, RGX and PE Memory

are not protected (writes are not locked out).

If the programmer remembers this rule he can understand better
the operation of each instruction in the repertoire. Another way to say
the rule is: "Not all parts of a PE are disabled in a disabled PE; RGR,
RGB and RGD can still respond to an instruction in a disabled PE. The

PE is disabled, not dead when its E and El bits of RGD are zero".

Still this is not yet the complete story for up to now we have
only been considering instructions which process operands in the 6L-bit
mode. (The word "mode" here has nothing to do with the mode register RGD--
it is used only to be consistent with other literature; "code" or "format"
in place of the word "mode" would be a better choice.) Actually the El bit

protects the inner part of a word (bits 8-39) in RGS, RGA, RGX or PE Memory

and the E bit protects the outer part of a word (bits 0-T and 40-63) in RGS,

RGA, RGX or PE Memory. The convention described above still holds: If E
or El is zero the appropriate bits within RGS, RGA, RGX or PE Memory are

protected; if E or El is one the appropriate bits are unprotected.
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In the 6L-bit mode where all 64 bits are necessary to represent 6
\ I8
o one number, E and El work together to protect the word in which the number
0 :
{ is stored. Since it makes no sense to protect the inner part of 64 bit E
v
floating point numbers and not protect the outer part, we always have -
. E equal to El when executing instructions in the 64-bit mode. However, 2
f: there are instructions which assume that their operands are in the 32;bit ;:
3 e
mode in which case we have two numbers per ILLIAC IV word. In this case
foo
.“ [
.: the E and El operate independently and can be of opposite values. This 5
:: type of operation and the operation of the E and El bits with the fault ‘«
: ’

bits, F and F1, is described more fully on pages 4-14 through 4-16 of

j Reference 1. P
"~ 3
Y
.d ‘/».-\“’:‘F
r b. The Rest of the PE et
X 3
:
ﬁ The Common Data Bus (CDB) carries the address portion of the }1
L] 1 E‘
- instruction to be executed and is 64 bits wide (consists of 6L lines).
iy
)
o The signals on these 64 lines go to every PE in the 64 PE array. As is o
'
'?: the case with a conventional computer, the operand may be an address, a 8]
g
) count, or a number.
5 3
\? Depending on the type of instruction, either the Arithmetic Unit %
sl
;? or the Logic/Shift Unit is actuated and the result is sent to PEM, to the Eq'

appropriate PE register, or to the CU via the CU Bus.

v
r -
g

Ia ‘l.yl’-

RGA is the Accumulator and acts like an accumulator on a conven-

Es tional machine, RGB can be used to hold the second operand in a binary

PO IS

* operation or act as an extension to RGA for double length operands. RGS is &

L
2
x
Lo .Y
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a temporary storage register and may be used as the programmer sees fit.

g _¥

Since RGR, RGR and RGD can be modified in disabled PEs, RGS is a good, safe

i_ P J

place for the programmer to store intermediaste results. RGR is called the

F’ Routing Register and can be viewed as a port to transfer data to and from
other PEs., Every PE has four bi-directional lines from its RGR to the

F: RGR of the PEs a distance of +1, -1, +8 and -8 away. RGX is an index

register and is used to modify the address portion of an instruction in the

same manner as on a conventional computer. All registers are 64 bits long

o except for RGX which is 16 bits long and RGD which is 8 bits long.

The Mode Bit Line consists of & unidirectional one-bit line

running out from the RGD of each PE to the register storage section of the

b CU. Using this path, the programmer can load an ACAR register with a
pattern of 64 bits, each one coming from the same mode register bit from

ﬁg each of the 64 PEs. Conversely, the contents of an ACAR can be used to set
a specified bit within the mode register of each PE in the array: bit O

E! of the ACAR is transmitted to the specified bit of RGD of PEO ... bit 63 of

rg the ACAR is trensmitted to the specified bit of RGD of PE63' A special

version of this instruction exists whereby bit i of the ACAR is transmitted

E: to both the E and El1 bits of RGD of PEi so that the entire array can take

on & specified mode pattern in just one instruction. The transmission of a

| JEAT

mode pattern stored in an ACAR down to the PE array does not teke place

over the one-bit mode line (which is unidirectional from the PE to the CU);

P i
F e

this transmission comes via the CDB.
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Processing Unit (PU)

Figure II-10 depicts a Processing Unit (PU). A Processing Unit

(PU) consists of three components: 1) a PE, 2) a Memory Logic Unit (MLU)

and 3) a PE Memory (PEM). The PE has already been described.

time.

a. Processing Element Memory (PEM)

The 2048 word PEM has an effective 350 nanosecond (ns) access

This 350 ns effective access time is comprised of a 250 ns Read or

Write Cycle Time and a 100 ns delay due to the additional logical checking

PROCESSING
ELEMENT p——& MODE BIT TO CU
(PE)
TO CU BUS
MEMORY SERVICE UNIT MEMORY > (DATA OR INSTRUCTIONS
(MSU) == ~--- - LOGIC UNIT TO COMTROL UNIT)
CONTROL PATH {(MLU) s 1 /0
PROCESSING
ELEMENT
MEMORY
(PEM)
Figure II-10. Processing Unit (PU)

II-28

-l ‘- ™ ". ;‘-‘*’" 4“’ .“ b"‘ -
» LR e A )
o

—
+ .
X ‘D
= -

i
lt

v
.rnl
b

)

e
.

re
[

; b

3 NG

=®

o

A

ok ;‘

ot

&

A

[‘
G AR LR S |

s e |

-

1

T RO Y R RO S S Y g L R e e ) -}
AT LS SIS .!..ﬂ'.-}l FON G G PRI



-
[ s

W 0 M B

b o

P g -"' LR

e A ma T
' Car
el et al

circuitry of the MLU. The 250 ns Read or Write Cycle time consists of
188 ns data access time and up to 62 ns to complete the cycle. READ and

WRITE work in the following manner:

READ: Data can be accessed (sent on its way to the PE or else

where) in 188 ns but it takes 62 more ns for the memory to complete the

cycle, during which time, memory is locked out or is not interrogatible,.

WRITE: The data word is written into memory in 188 ns and
control can return to processing. However, memory cycle is not over for

another 62 ns, so memory cannot be interrogated for 250 ns as above.

In general, this means that if the next instruction after a
memory reference does not also reference memory, it can be performed
188 ns later; however if that instruction does reference memcry, it will

be performed up to 350 ns later.

b. Memory Logic Unit (MLU)

The MLU acts as a "switch" in that it resolves conflicts involv-

ing simultaneous accesses to the PEM, The MLU of each PE in the Array
receives signals from the Memory Service Unit (MSU) in the Control Unit
which allows one of the three possible users of PEM to gain access to the

PEM. The three users are:

II-29

e e W

RO AL AL

>N 5 gy . » Joged 9 P g o i M aih e -
PR I X T B P ca P B o s Vi Ml W i3 N B TG I b Fine B e P Vi Vs B SSBNw I I O R S LA N L T e e e AR R

A N 8 B e N T T T X TN K T K e T T % e e W € e e
T AT AN AR '.r_"-'*'-"\"-"’-’-??' o -.}-.‘.!\.'b T e S B

P T kY



oy

N
AR
NV

1) CU Bus to fetch instructions to the Instruction Look-Ahcad

_, Section (ILA) of the CU, or to fetch data to the register
~§ storage of the CU. E'
‘ 2) PE itself (Loading - -E register from PE Memory). &
i 3) Input/Output devices (1/0}. 9
9 |
X Note that Figure II-10 has an arrow coming out of the MLU with »
5 the caption "To CU Bus". This is meant to imply that this line is not the r§
'§ CU Bus itself but is just a 64 bit line to the éU Bus. The CU Bus carries |
3 eight 6h-bit words at a time from a PU to register storage in the CU. The E;
CU Bus fetches words (in blocks of 8) from PE Memory, through the MLU, up P
{ to 8 specified locations in the ADB of the CU (there does exist another G
b instruction whereby only one word is fetched and can therefore be stored =
- in a CU register other than the ADB) when a certain ILLIAC IV instruction ™
55 called BIN is executed. The CU Bus is also used by the Operating System f%
A to fetch instructions (which are also stored in PE Memory) up to ILA, ol
5 the instruction execution section of the CU. The eight words (data or Eg
5 ‘
:E instructions) that are transmitted via the CU Bus are in contiguous PUs Eg
; and always start at a PU number that is an exact multiple of eight. .
?E
2 Since there are 64 PUs and only 8 of them can use the CU Bus at b
i; one time, there is a switch which selects which group of 8 PUs will be ég
: connected to the CU Bus. There are eight PU Cabinets (PUCs) in the -
73 ILLIAC IV Array, each of which holds 8 PUs as shown in Figure II-11. The ES
3 figure shows how groups of 8 words in contiguous PUs but at the same row Eg
4
- memory location are connected to the CU Bus. f{;:
, R

VI
N~
"
ng
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LOCATION 1000 ¥ 7 _j'__
{:;: LOCATION 7~ ( V
LEVEL 1} PUg {iPU; PUz | Pus | Pus | PUs PUs | PUT
LEVEL 2| PUg | PUs | PU | PUiy | PU2 | PUIs | PUs | PUss '- vs;
i > LEVEL 3| PUig PUi7 | Puis | Puig | PU2o | PU2) PU22 | PU23 ' .'I, m
" LEVEL 4| PUpe | PUas | Puxs | PU2z | PUsg | PUsg | PUso | PUsy $
f LEVEL 5| PUsz | PUss | PUzq | PUss | PUse | PUs7 | PUsg | PUsg [
v LEVEL 6| PUso | PU4 | PUs2 | PUss | PUss | PUss | PUss | PU4r
w LEVEL 7| Pusg | PUsg | PUso | PUs1 | Pusa | Puss | Puss | PUss
b LEVEL 8| PUse | Pusy | PUsg | Puss | PUso | PUs1 | PUe2 | PUes
PUCo PUC; PUC, PUCs PUCy PUCs PUCg PUCy

Figure II-11. PU Cabinets (PUCs) and CU Bus

Eight PUCs contain the 64 PUs in the ILLIAC IV Array. PE

Memory is displayed in the depth dimension of each PU. The switeh which
is between the CU Bus and the PUCs selects (under program control) one of
the eight levels (each level cuts across the 8 PUCs) and the same location
of PE Memory for each of the 8 PUs within that level is sent to the CU Bus.
Q: The CU Bus then transmits these 8 words to the CU. The figure is drawn

e to depict location 1000 of level 1 (PUs numbered O, 1, ..., 7) to be sent
to the CU Bus.

ag

3. Control Unit (CU)

v

The Control Unit may be viewed as consisting of five functional

sections: ADVAST, FINST, MSU, TMU, and ILA.

a. ADVAST

ADVAST, the Advanced Station of the CU, is shown in Figure II-12,

Its main area of responsibility is to execute instructions that do not

;’FE?

rES
)

" reference information in the PUs as well as to pre-process the instructions

v
Mg
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Figure II-12. Advanced Station (ADVAST) Section of the Control Unit
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:a that do drive the PE Array. The instructions that drive the PEs are sent '
?: on to FINST which sends out the microsequences to the PE Array. y
::: The ADVAST Section of the Control Unit may be viewed as a small ;
L computer by itself. It has four 6h-bit accumulator registers--ACARO,

-* ¥
a0 ACARL, ACAR2, and ACAR3 and a 6l-word, 60 nanosecond integrated circuit 3

'

4 memory called the ADVAST data buffer (ADB); each word in ADB is also
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*
64 bits long. In addition it contains a simple arithmetic and logic unit

(ALU) capable of instruction indcxing, 2b-bit integer addition and 64-bit
logical operation on data from CU registers. ADVAST also has its own
instruction repertoire (CU instructions) and is capable of execu .ing them

while the 64 PEs are simultaneously executing their own instructions.

As previously mentioned in section D1 b, a special instruction
executed by ADVAST can load up the bits of any ACAR to match a mode bit of
RGD for each PE in the array at any time during program execution.

Another instruction allows the programmer to set a mode bit in each RGD
of the total PE array to match the contents of an; specified ACAR. These
two instructions allow the programmer to set up patterns to control which
PEs will be enabled and which will be disabled during program execution.

These instructions will be covered in Chapter III.

As Figure II-12 indicates, there are three sources of iuput to
ADVAST: +the instruction to be executed, the Mode Bit Line, and the CU Bus.
The CU Bus brings in data in blocks of eight words from PE Memory. Since
the Control Unit has access to PE Memory via the CU Bus, reference is
sometimes made to "CU Memory'"--this should not be confused with CU
register storage (four ACARs, 64 ADB locations, thirteen other registers).
CU Memory is actually part of PE Memory which is accessed by two ADVAST
instructions which move the contents of PE Memory to the ADB or one of the

four ACARs (or several of the other thirteen registers) via the CU Bus.

*

There are thirteen other CU registers that can be accessed by the
programmer; these are more fully described in Reference 1.
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Instructions are also fetched via the CU Bus but they go to ILA, the

instruction look-ahead section of the CU, not ADVAST.

The Mode Bit Line (one line from each RGD of each PE in the

array) comes into ADVAST where a mode pattern can be stored in one of the

four ACARs.

Instructions are sent from ILA to the ADVAST instruction
register (AIR) where the instruction is interpreted. If it is an instruc-
tion that can be executed entirely by the CU, then it is executed; if it

is not, it is sent on to FINST for execution.

Another possible input source to ADVAST is output from the ALU

which can return as input to any of the four ACARs.

b. FINST

FINST is the Final Station of the Control Unit and receives only

those instructions that require PE action. See Figure II-13.

Since ADVAST controls the instruction stream, all instructions
pass through it for decoding first. If the operation involves only
ADVAST hardware, then ADVAST completely executes the instruction so that
the instruction never reaches FINST. If the instruction is a PE instruc-
tion, ADVAST decodes it, provides any indexing operations necessary at the
Control Unit level (the address portion of an instruction can be indexed

by the contents of one of the ACARs in the CU), and passes the recoded
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: |
! FINAL FINAL '
i | INSTRUCTION DATA |
! QUEUE QUEUE | FINQ=FIQ+FDQ
i (FI1Q) (FDQ) 1
} 16 BITS 64 BITS |
1 |
g (R y———— E—— 4

TO ADDRESS DECODER
IN MSU

COMMON DATA BUS (CDB)
(DATA OR ADDRESSES

TO PEs)

PE INSTRUCTION
MICROSEQUENCE
GENERATOR

T
'
INSTRUCTION CONTROL PATH

Figure II-13. Final Station (FINST) Section of the Control Unit

instruction on to FINST. Thus, some instructions may be entirely processed
by ADVAST while others may pause in ADVAST only long enough for decoding
before being sent to FINST for execution. To avoid situations where either
ADVAST or FINST is idle waiting for the other section, the instructions

are passed from ADVAST to FINST through an eight word first-in, first-out
Final Queue named FINQ.* FINQ, in turn, consists of two parts. The
operation code part of the instruction resides in the Final Instruction
Queue (FIQ) and the address or operand is in the Final Data Queue (FDQ).
FIQ consists of eight 16-bit words and FDQ of eight 6L-bit words. FINQ

allows FINST and ADVAST to be executing instructions concurrently.

¥

See Figure II-14. FINQ is a buffer as described in Chapter I which
allows two processes to proceed autonomously and which effects a speedup
by overlapping time.
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Figure II-1k. FINQ Acts as a Buffer between ADVAST and FINST;
ADVAST and FINST Act as a Pipeline

ADVAST and FINST, whose operation is decoupled by the holding
buffer FINQ, also acts as a modified two-stage pipeline. Inputs (instruc-
tions) come into the first stage (ADVAST) and are partially processed,
then they are passed on to the second stage, FINST, via FINQ if the
instruction was a FINST/PE type instruction. If the instructinn was an
ADVAST instruction, it is completely processed in ADVAST d exits out the

"side" of the pipe never making it to the second stage.

From Figure II-13, we see that two taps come off the FDQ. One of

these is the CDB, already discussed in section D 1 b. The address of an
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ek
li operand also goes to the MSU which controls the 64 MLUs of the 64 PUs.

: (The instruction to be executed may be such that an operand in FDQ want;
§i to be stored in a location in one specific PE Memory, in which case it is
.5 the MSU's job to signal all the MLUs but the correct one to lock out
& writes to PE Memory.)
5

F Occasionally a situation will arise that will stall the overlep
?: between ADVAST and FINST: Suppose an ADVAST instruction wants to read

= a value from (or write a value into) an ACAR, but ahead of that ADVAST
g; instruction, waiting in FINQ, is an instruction that FINST will cause to
e write a value from PE Memory (or a PE Register) into just that ACAR.
%: Certainly the ADVAST instruction should not be executed until the instruc-
" tion ghead of it in FINQ has had & chance to be fully executed. In this

i case, the operation of ADVAST is automatically halted (ADVAST is stalled)
;S until FINQ drains and FINST causes the valﬁe tp be written into the ACAR.
After FINST has executed the last instruction in the FINQ, the operation

’ of ADVAST continues and the ADVAST instruction which waited to read a
?{ value from (or write a value into) the ACAR is executed in its proper
= order. There are only four instructions which will cause ADVAST to stall.
r
Li In all other cases, FINQ makes possible an execution overlap of
;i ADVAST and FINST/PE instructions. This overlap capability provided by
- FINQ makes program timing estimation difficult, since the total execution
EE time is rarely the sum of ADVAST and FINST/PE time, although it cannot

exceed this sum.
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From the above discussion, it appears as if PE instructions

are not really executed in the PE but in the FINST section of the Control
Unit. This is partially true: The microsequences which will actually
drive the PEs are set up in FINST--however, the actual "happening" of the
instruction takes place within the PEs as the microsequences pulse
through the appropriate PE gates. Together, ADVAST and FINST act very
similarly to a pipelined instruction execution unit as described in
Chapter I. ADVAST and FINST can be viewed as a two-stage pipeline
operating on different instructions simultaneously. However, ADVAST

instructions never reach the second stage (FINST).

At this point, the reader should refer back to Figure II-9 and
note that two of the outputs from FINST (Instruction Control Path and

Common Data Bus) are two of the possible inputs to a PE.

c. MSU

The Memory Service Unit (MSU) acts as an arbitrator in the
various requests for access to the PEMs. PE Memory can be accessed by
FINST in the execution of a PE instruction, by the ILA section of the
CU which fetches the program instructions from memory (via the CU Bus),
by an ADVAST instruction which fetches data from PEM (via the CU Bus),
or by the I/0 System. (These are the same "users" mentioned under the
description of the MLU, in the PU description of section D 2 b.) The MSU
in a four-quadrant ILLIAC IV consists of an address decoder and three

registers which reference the other quadrants. Since we are only

II-38

ALY O USRI S N SO PN S O L

L

i,

TEZ

b 0
L e Y]

e 527
2

3

~

[ L

s
Y
"y e

[




7 ne S o o
e

TA ]
i ]
| > SRR

B T A A A S A S AR T A TG LAY SR O PP T

considering a one-quadrant ILLIAC IV, we may view the MSU as a memory

access arbitrator with only one address decoder.

The MSU controls the 64 MLUs of the PU array, locking out or
allowing access to individual PEMs according to the instruction being

executed (see Figure II-10).

d. U

T1e Test and Maintenance Unit (TMU) is the section of the CU that
comunicates with the operator's maintenance panel and display and with the
I/0 System. The TMU Section has two registers TRO and TRI. If Input from
the I/0 System is to be performed, a TMU instruction can place a request
for such an action in the TRI register; if Output, then the request is
placed in TRO. A hardware component of the I/0 subsystem is constantly
monitoring the TRO and TRI registers, waiting for an I/0 request to appear.
When this occurs, the I/0 subsystem is interrupted, the I/0 request is
honored, and a response code may be placed back in TRO or TRI. The program
executing on the ILLIAC IV Array can then test TRO or TRI and take &n

appropriate action.

e. ILA

The Instruction Look-Ahead (ILA) section is responsible for
maintaining a steady flow of instructions to the ADVAST Instruction
Register, AIR, in ADVAST. (See Figure II-12.) To accomplish this, ILA

is arranged as shown in Figure II-15.
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REGISTER (ICR) i
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<
Figure II-15. Instruction Look-Ahead (ILA) Section of the Control Unit =
-:’
Instructions which are stored in PE Memory are fetched to the el
Control Unit Buffer in blocks of 8 words via the CU Bus; since each =ﬁ
s
instruction is 32 bits and there are 64 bits in a word, there are two Jv
instructions per word. These 8 word (16 instructions) blocks are relayed F{
¥
to the Instruction Word Stack (IWS) wntil it is full. The IWS holds
;‘\:_J’
8 blocks of 8 words or 128 instructions. [
T
After an instruction is sent to AIR from IWS, the contents of E:
ICR, the Instruction Counter Register, are replaced by the proper amount. -
(If the previous instruction was rot a branch instruction, then the ]
contents of ICR are increased by one.) ICR then contains the location ]
of the next instruction to be executed by AIR in ADVAST. 1ICR sends the C$§
Vet
2
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location of the next executable instruction to the ILA Associative Memory
(IAM) which continuously monitors the contents of IWS. IAM is a hardware
table-look-up device or "scoreboard" that can sense the locations of the
instructions stored in IWS. If IAM senses that the instruction pointed
to by the contents of ICR is in the IWS, then that instruction is sent

on to AIR for decoding and interpretation. If the next instruction is
not in IWS, then the Control Unit Buffer fetches the block of 8 words

(16 instructions) from that part of PE Memory that contains the next
instruction to be executed. (If the programmer can keep his program loops
to within 128 machine language instructions, he can execute his program
at the most efficient rate.) The Control Unit Buffer then places its
block of 16 instructions over that block that has resided in IWS the

longest time.

In all cases, whenever the eighth instruction in a block of
16 instructions within IWS has been executed, IAM will check IWS to see
if the next block of 16 instructions is in IWS--if it is, then operation
continues normally; if it is not, then the Control Unit Buffer fetches that
block of 16 instructions and writes it over the block of IWS that is the

oldest in time,

Both the Control Unit Buffer and IWS are buffers that smooth and

speed up the instruction execution rwi.e.

E. Another Illustrative Problem

Since ILLIAC IV is an array or vector processor, it is clear

that problems involving matrix computations are ready-made for solution.
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There is, however, another very large class of problems whose calculation
can be performed in an "all-at-once" fashion and that is the ares of

Ordinary and Partial Differential Equations.

As another example of how the functional parts of ILLIAC IV can
be used to solve problems, let us work through a solution of Laplace's
equation describing temperature distribution on a slab. The reader
who does not have a background in mathematics should not shy away from
this example since the method for solution reliés completely on the
common sense notion that the value of any temperature on the slab tends

to become the average of the surrounding temperatures,

Laplace's equation

describes the temperature U as a function of the position (x and y) on a
two-dimensional slab. That is, if we take a two-dimensional slab of
material and keep the edges at certain temperatures (see Figure II-16)
then, after a sufficiently long time the interior of the slab will reach
a specific temperature distribution. This distribution is called the
steady-state temperature distribution. The reason we talk about a

temperature distribution is that the temperature U at any position within

the interior of the slab is not constant but is a function of where it is
within the slab. The temperatures on the edge of the slab are called

boundary conditions and do remain constant. If we impose an x,y
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Figure II-16. Steady-State Temperature Distribution on a Slab

coordinate system over the sleb we can say that the temperature at any
point is a function of x and y or U = U(x,y). See Figure II-17 which
assumes the slab is a units by b units. Thus every point (x,y) within the

slab has associated with it a temperature U(x,y).

When we meke this problem ready for solution on a digital
computer we can no longer represent the temperature U as a function of the
continuous variables x and y. We must discretize or digitize the problem

so that instead of obtaining solutions over a continuous range for x and

¥y, namely:

0<x<a, 0Ly<hb

we obtain solutions only on a finite set of points. See Figure II-18

where the variables x and y have been digitized every h units--we say h is
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: 3

the mesh size. In Figure II-18, for simplicity, we let b = a and digitize o~

Serel

the slab into a set of 6l x,y values or mesh points. :

&

N

I
2

The method of solution for the problem may now be stated very

simply: The temperature at any interior mesh point (this excludes the

5 B

28 points along the edges which must remain at constant temperatures) is

cr CO L LRSS R T

7d

=2

the average of the temperatures of the four closest mesh points. See

' ol
.

L

E Figure II-19 for a blow-up picture of this property. -3
%! s
-]‘ L]
tf Thus in order to obtain a solution we apply the equation =
3 el
E =
J + + <h) + -

q (1) U(x.y) = U(x,y+h) + U(x+h,y) + U(x,y-h) + U(x=h,y) =
1 il
;: to all interior points on our digitized slab until equation (1) is true. i
- 3
, This method is called relaxation. @
. (A
3 4
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(x,y+h) + U(x+h,y) + U(x,y=h) + U(x~h,y)
M

U(x’y) = &
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The manner in which relaxation is usually applied on a ﬁ:%
Y
[
sequential or conventional computer is to start at the top left of the K

digitized slab and apply equation (1) at each interior point proceeding

from left to right along each "row" of points and proceeding downward row

by row. Since the boundary points do not enter into the calculation,

R

equation (1) is applied 36 times--once at each of the interior points.

|

~=
3

For the sample case of 6l points, 36 applications of equation (1) is one

il

N

relaxation of the relaxation method. As enough relaxations are performed

'
G ]

=
b

on the set of 64 mesh points, equation (1) will tend to become true (the

L

L} 3¢
-3 1
Va1

equation will be exact within a specified error tolerance) for all of the
36 interior points. When this stage in the calculation has been reached,

the steady state solution has been achieved.

Y|

5]

There is one more change of notation that is usually applied

\
7

to the problem before it is actually run on a digital computer. Since
x and y have been discretized they can be viewed as indices within a two-

dimensional U array. That is, x and y are merely positional indicators

21 sEs |

that can be replaced by the more familiar i and J notation of FORTRAN

L4

arrays.

’,

ie s
e o]

I
[

)

’

i r'.y—;i"""

Therefore if we replace x by i and y by J and further let i

i By

A sy

0

increase downward we can represent the mesh points as in Figure II-20.

T

o e
L YD ey T

Y i i ke

i: If we use the i,j notation then equation (1) becomes 9]
Py + o
t- (2) U = Ui'laj ¥ UisJ+1 Ui+1s3 * Uiaj'l ?E
o 1, " i
IL'.. -
; We apply this equation for 2 <i <7, 2<J<T. (3
& ==
- (s
. s <
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Figure II-20. Temperature as a Function of i and }J

We are now ready to solve a real problem. We shall use integer
values for the boundary values chosen so that the exact solution for
the interior values will also be integers. These values are shown in
Figure II-2l. Note that the values of the boundary temperatures are
constant (0°) along the bottom and right edges, but vary with position
along the top and left edges. The val-2 of the temperatures at the
interior points are to be solved using equation (2)--they are initially
set to 0° before the calculation begins. We will solve for the temperature
distribution given the initial conditions as shown in Figure II-21 in two
ways: first the sequential solution as described above will be obtained,
then a method of parallel solution will be described and executed. The

exact solution to the problem is shown in Figure II-22.

II-47

R 1 T . e Tk T

-y
-

. b TR SRR P e Y Ul S, J IO B R o T e e Tt ke R R T e A R R o e
RPN B AL A SCTCR N IR AR O R 8 L S G G R RS LG G 7 S LG G S SO K X




A N i I L i N T i e . e L R e

-
n!

20|

)
;"; .'; \
\:,n:» v
<oal

R -

e

",

",

fl

4 i
: B
i td
: 3
!:: =y
»

i W
‘
g g
u

v‘l

-

A e
i | S
: B
- &)
1 i
5

5 3
:"5 i
o &
Figure II-21. Specific Interior and Boundary Conditions

- for Sample Problem )
lfn: el
E:- The boundary or edge temperatures vary with position along the .
:f left and top edges and are constant along the lower and right edges. The ,»:.}'
j.'_j boundary temperatures do not change during the calculation. The interior —’
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Exact Solution for the Interior and Boundary
Conditions given in Figure II-21

Figure II-22,

1. A Sequentisl Solution to the Problem

Step 1: Start at the top left interior point (i =2, J =2) of row 2 and

calculate its new value using equation (2):

. -l K Tl -l

2,2 L

2,1

or using the numbers given in Figure II-21:

=l¢2+0+0+l¢2=
2,2 L

U 21
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Step 2:

Moving to the right along the same row calculate the new value of

U2 3 using the new value of U2 5 calculated in the previous step:
9

H

U - U1,3 * Uz,h + U3,3 * U2,2 35 +0+0+21 _

%43 u b

1

(Note U, o = 21 not 0 since it was previously computed as such in
=9

Step 1.)

Steps 3-6: Continuing to move to the right along row 2 we calculate the

new values of Uz,h’ U2,5’ U2,6’ and U2,7 using previously

computed values:

. st U3 U g h0 4041l
oy = = = 10.5
? h )4
= Ul,S & U2,6 * U3,5 v Uz,h _ 21 +0+0 +10.5 _
Up 5 = = =T7.9
2,5 L L
e U1,6 * qg,? * U3,6 * U2,5 _1h + 0 +0+ 7.9
Vo B ™ - =35
L) h )-l-
= U1,7 * U2,8 * U3,7 * U2,6 _7+0+0+5.5 _
U = = = 3.1
2’7 h ).l.

Steps 1 through 6 are now repeated for rows 3, 4, 5, 6 and 7. After new
values have been computed for every interior point on all rows, we have
finished one relaxation of the relaxation method. The values of the
temperatures converge to the exact solution as shown in Figure II-22 as

more and more relaxgtions are performed.
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If we denote the value of Ui j at the nth relaxation as U? j then
) )

we say a solution has been reached and we can stop the relaxation process

when

for 2

+1
(3) gy -u; gl se

IA

i<

2<<T

where ¢ is our tolerance or desired degree of accuracy. Therefore, in
our computer program which performs the sequential relaxation described
above we save the old and new values of the U array, compare them, and

if every interior temperature in the array satisfies equation (3), we end

the computation. Figure II-23 shows a FORTRAN program that performs the

READ IN BOUNDARY AND INITTAL VALUES FOR TEMPERATURES (U)

READ IN NUMBER OF ROWS (NROWS), NUMBER OF COLUMNS (NCOLS)
AND EPSILON CONVERGENCE VALUE (EPS)

M = NROWS - 1

N = NCOLS - 1

IFLAG =

DO 9 I=2,M

DO 9 J=2, N

TEMP = (U(I,J+1) + U(I-1,J) + U(I,J-1) + U(I+1,J)) * 0.25
IF (ABS(TEMP - U(I,J)) . LE . EPS) GO TO 9

IFLAG =

u(I,J) = TEMP

IF(IFLAG . EQ . 1) GO TO 3

END

O -1 O Fw i H O QO

E 5

Figure II-23. A FORTRAN Program for a Seguential Solution
to the Sample Problem
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relaxation algorithm described above and Figure II-24 shows the values of

the U array after one, ten and fifty relaxations; the exact solution is

LA i)

also shown in Figure II-22.

Let us briefly consider the FORTRAN program as shown in

Figure II-23:

The

indicate that

three COMMENT statements at the beginning of the program

the initial values of the temperature U (see Figure II-21),

One
Relaxation

Ten
Relaxations

Mty
Relaxations

Figure II-2L.

ko k2 35 28 21 1 7T o
b2 21.00 14.00 10.50 T.88 5.7 3.2 0
35 1400 7.00 L4.38 3,06 2,13 1.31 0
28 10.50 4.38 2,19 1.31 0.8 0.5 0
22 7.88 3.06 1.31 0.66 0.38 0.23 0
1 547 2.3 0.86 0.38 0.19 0.11 O
7 312 1.31 o0.54 0.23 0.11 0.05 O
0 o 0 0 0 0 )
b9 42 35 28 21 14 7T o
b2 35.37 29.01 22.90 17.03 11.31 5.66 0
35 29.01 23.41 18,24 13.44 8.88 4.4 o
28 22.90 18.24 14.05 10.26 6.75 3.38 O
21 17.03 13.k4 10.26 T.44 L.B8 2.4k O
1k 1.31 8.88 6.75 L4.88 3.19 1.60 0O
7 5.66 444 3,38 2,44 1,60 0.80 0O
0 o o 0 0 o 0 0
L2 35 28 21 14 7 o0
b2 36.00 30.00 24.00 18.00 12.00 6.00 0
35 30.00 25.00 20.00 15.00 10.00 5.00 ©
28 2L.00 20.00 16.00 12.00 8.00 L.00 ©O
21 18.00 15.00 12.00 9.00 6.00 3,00 0
14 12,00 10.00 8.00 6.00 L4.,00 2.00 O
7 6.00. 5.00 L4LOC 3.00 2.00 1.00 0
0 o 0 0 0 0 v 0

Values of the Temperature after One,
Relaxations using Sequential Method

Ten, and Fifty
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the number of rows, NROWS (for our case NROWS = 8), the number of colums, é.

" NCCLS (for our case NCOLS = 8), and the epsilon convergence value, EPS E
|E have all been read in through the appropriate input statements. ;i
‘ :
Jﬂ Statements 1 and 2 compute values for M and N to be one less %%
- than the number of rows and columns respectively, and the calculation ??
EE starts at 2 not 1 since the edge values will not change throughout the :i
= computation. Eﬁ
- 2
‘ At statement 3 a flag, IFLAG, is set to zero. IFLAG will act as Ei
:' a signal to the program indicating whether convergence has been reached éj
FB after each relaxation (each relaxation consists of 36 applications of E
2 equation (2)): If IFLAG is still zero after a relaxation then all of the é’i
B U values are within epsilon of their previous value; if IFLAG has been set ;%
to one, then at least one U value was not within the convergence criterion Fi

i and another relaxation must be made. Lq

r<
ey

Statements 4 and 5 initialize the DO LOOP counters I and J

»

that step us through the rows and columns starting at the top left and

Pt

.“ ., ."-i

proceeding to bottom right.

L

‘_“"". A
IJA >

Statement 6 is equation (2).

[}
_— N,

’ _...

T
2

s T2 pT Y TR

Statement 7 is equation (3). If the statement is true (TEMP is
within epsilon (EPS) of the last value of U), IFLAG is not changed and

control jumps to Statement 9 where U assumes its new value of TEMP. If

| LR

TN

gy

the statement is false (TEMP is not within epsilon of the last value of U)

TS 0T P,

;.1.5,, '."‘)_ !;.. ¥
l. A a
LR

o

. "TEE:

I1-53

4
K

Ry TR 10 AR R Lk SRR R L% L A TR PRty
A P A A A A A A AN AT A A T



SR il O ke e B N B oL W gt a Ry iy o R T e P e
SEER N WP ERH N AL B REL, YL SO IR WESS SRt e e S WO R R,

Le
calal]

.
L]

e
<’
5 e

i

o )iy

IFLAG is set to 1 and control falls to Statement 9, where U assimes its

new value of TEMP,

~ o——

o

Statement 8, if control reaches it, sets the value of IFLAG

.

equal to 1.

e |

Statement 9 replaces the old value of U with TEMP--the new value

| RN

of U.
K
Statement 10 tests IFLAG. If it is true (IFLAG = 1) then at .
[
least one value of U has not yet reached convergence and control is Ppassed ;3
[
to Statement 3 where IFLAG is re-initialized back to zerc. If it is
v
false (1lLAG # 1), then IFLAG must be equal to zero and there exists noU Ej
that was not within epsilon of convergence and therefore convergence has s
Ny
been attained. Control then drops to Statement 11.
&
.
Statement 11 is reached only when convergence has been reached )
and the program ends. i

R0

This program is still very primitive; it makes no allowance for

A

the possibility that an overly stringent choice for EPS might result in an

infinite amount of looping between Statements 10 and 3, but it illustrates E§
X
a sequential solution to our sample problemn.
&
.Hi
2. A Parallel Solution to the Problem 79
o3
o
-

Let us next consider how this same problem could be solved in

parallel on ILLIAC IV:
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If each value for U were placed in a separate Processing Element

Cl

Memory or register, then the calculation of equations (2) and (3) could

St QT W L

proceed in parallel for all 36 inner values in the U array. A program

gn? WA

could be written to compute new values for U, 2<i<T, 2<3< T

i,d
not from top left to bottom right but all at once. As we did with the

o
s
e

sequential solution let us write down the steps for a parallel solution:

Py
Pl . 9
e %l
—_—

Step 1: Assume the initial conditions are as shown in Figure I1-21.

—
[
2*s

ph s

Step 2: Disable all edge or border PEs. (These PEs contain the boundary

-
e

0

values for U and must not change during the calculation.)

Step 3: Simultaneously calculate:

CUagt Y tYie gt Y
i’J )4

S
[

T
..IIL‘

for 2<i< T, 2<J<T.

&

Rather than write out the values for all 36 interior points, let .

us just look at the interior points of the second row (i = 2,

——
¥
lele

3J=2,3, 4,5, 6, T) after equation (2) is applied simultaneously

to all 36 interior points:

.;l
o 2

Ei y o2t Y%3* 9% % kesosorle
2,2 l I
+

U3ttt 3s+0+040 |
v U = = = 8.8 !

i" 2,3 L L
N |
] |
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¥
v 5% Y%e* U5t p1+o04040 H
2 5 o - - 503
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U = Y6t Y7t U6t U5 _hrororo .. 1
2,6 h h
N Ul,T * U2,8 * U3,7 & U2,6 _7+0+0+0 _
) = = =1.8
“ul b b

Note that the value for U2 > = 21 was not used in calculating
L]

) because U and U were calculated at the same time and
2,3 2,2 2,3

a new value for U2 > is not ready until all of the 36 values for
3

U have been calculated.
Step L: Repeat Step 3 until convergence is satisfied.

Figure II-25 shows values of the temperature U after one, ten,

and fifty relaxations using this parallel method of sclution.

Not only are the two algorithms different, but the way the
temperatures converge is also different (as can be seen by comparison of
Figures II-2h and II-25), although the end result approsches the same
steady-state temperature distribution. When we use the sequential method
of sweeping from left to right along rows and proceeding from the top to
bottom row, the temperatures at the bottcm right converge faster to the

exact solution than those at the top left. This type of convergence
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occurs because in sweeping from top left to bottom right we always use
more of the data we just computed as we reach the end of the sweep, i.e.,
the bottom right. The computations at the bottom right contain more new

information since they are computed at the end of the sequence of

calculations.

-

When we use the parallel algorithm of computing a set of new

values at one crack, the values closest to the boundary (the edge values)

W b2 35 28 21 1% T 0
b2 21, 8.75 7.00 5,25 3.50 1.75 ©
35 8.7 O 0 0 0 o o
One 28 7.00 "] 0 0 0 0 0
Relaxation 2 s.25 0 0 0 o o o
1 3.50 "] 0 0 0 0 0
7 1.7 © 0 0 0 o o0
0 0 0 o 0 0 0 o0
b9 k2 35 28 21 14 7 o0
b2 3.3 27.1 2.5 1.8 9.6 LT 0O
36 271 19.9 1.1 9.5 59 2.8 0
Ten 28 20.5 1b4.1 9.1 5.6 3.2 1,5 o0
Relaxations |, .8 9.5 56 31 1.6 0.7 0
v 96 S.9 3.2 1.6 0.7 0.3 O
7 47 2.8 1.5 07 0.3 01 O
0 0 0 0 0 0 0 0
49 b2 35 28 21 1k T 0
42 35.98 29.96 23.96 17.96 11.96 5.98 ©
35 29.96 24.94 19.92 14,92 9.9% L.,96 O
Fifty 28 23.96 19.92 15.90 11.90 T.92 3.96 0O
Relaxatton; 21 17.96 14.92 11.90 8.90 5.92 2.96 0
14 1.96 9.9% T.92 5.92 3.9 1.96 0
7 5.98 4,96 3.96 2.96 1.96 0.98 0O
(] 0 0 0 0 0 0 o
Figure II-25. Values of the Temperature after One, Ten and Fifty
Relaxations using Parallel Method
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converge faster than the values in the center of the mesh. This tyre of
convergence occurs because the outer values are closest to the boundary
values and have more new data to use sooner than the inner values. Since
a4 relaxation consists of 36 computations done at once, the inner values
do not get to use previously computed values until several relaxations
have been performed. After each relaxation more inner values have more

new data to use to compute their next value.

If we liken the convergence process to freezing, we can say that
the sequential algorithm begins freezing at the bott.m right and proceeds

to the top left; the parallel algorithm begins freezing around the edges

and proceeds towards the center.

The savings in time of the parallel method over the sequential
one is dependent upon the number of relaxations necessary to produce
convergence. If the same number nf relaxations to convergence are
necessary for both the sequential and parallel algorithms and each
processes P interior values, then the parallel process is faster by a
factor of P. However, since the parallel algorithm uses less new informa-
tion for each relaxation, it may take more parallel relaxations (which
consist of one application of equation (2)) to produce the same degree of
accuracy as a sequential relaxation (which consists of 36 applications of
equation (2)). That is, if a solution can be reached in 10 sequential
relaxations, it could take more than 10 parallel relaxations to reach
a solution of the same accuracy. On ILLIAC IV, though, the parallel

relaxation is 36 times as fast as a Sequential one and this speedup far
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outweighs the few extra relaxations necessary for equal accuracy in the

- solution (for our particular sample problem).
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F. Some Data Allocation Considerations

»
oo
-

= If we divide our slab into an 8 x 8 arrsy of mesh points to solve

i Laplace's equaiion governing heat distribution on a slab, the data alloca-

PN

tion scheme to be used on ILLIAC IV is straightforward--one value of U can

-
1
-

L)
e

be assigned to each PEM (see upper portion of “igure II-26). 5.

&

by
By &
%

3 o

&

PEM; PEM; PEMy; PEM; PEM, PEMg PEMg PEM, PEM, PEMgy .

b [ [ [ L ] [ ] [ ) . [ [ ) b.d
— . . : . . 3 : . . . .
i U1,1 U2 Ui Use Uy,s Uis U7 Uis Ugi| ®© @ o |Use Fﬂ
Ii . . . . . . . . . . CQ
,‘:' . . . . O ° O . . . \.‘
: 2

.
.

l
- PEM; PEM; PEM; PEMs PEMy PEMg PEMg PEM;  PEM. PEMgs 5
L- : L4 [3 (3 [ [3 [ [3 [ [3 3 :":
' L] L ] [ [ L ] L] L ] ] ] ) ;-.-‘
. . . 'Y . . . . . . »
| U1,1 U2 U13 Us,e U8 Use U7 Uis = - g
}[ Us,1 Us,2 Uz 3 Uz,e U s Use Ugy Uz.e - s p:;
L‘\ “ . . . . . O . . ® 0 e . !:‘?l
L] L] [ ] L] L] L ] L ] L] L] L] [}
° . . . . . . . . . P']
. ! o '. ;{
\ Usa| [Use| [Ue3]| [UVss| [Vss| [Uss] {Usr] |Uss! v
ey L) [ ] ) . L) L) . . . P ¥ ‘
. ° . . . . . . . . ﬁ":
[ ] L] [ L] [ L] [ ] [ L L]
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Figure I1I-26. Comparison of Storage: Upper portion shows .

8 x 8 U array stored one value per PEM, 5

Lower portion shows 8 x 8 U array stored b

8 values per PEM rq

3

Py

II-59 -,

i

-

b -
o ]
l. :

T e o g T 7 g LT BT @ T AT 8T T T AT AT BT e WY ¢ T R AT NS T e T T TR T @IT R N W T @ T e et T 2 . . L RaY S '1:
AN N e e e d e s g o e e e T T e T T N e L Y




LR I

S TNl e I

'y

- By "%

ty

a
k-

Another possible data allocation scheme is shown in the lower

portion of Figure II-26. This scheme allocates 8 values of U per PEM,

Although this lower scheme is not as efficient in terms of execution time

necessary to solve the problem, it is very similar to the way a 64 x 64

U array would be stored. The program for the two data allocation schemes

shown in Figure II-26 will be developed in Chapter III and it will be seen
that these programs are substantially differént--indicating that the form

of an ILLIAC IV program is highly depeundent on the data allocation scheme

chosen.

Let us now consider what to do if we wish to impose a finer grid

over the slab. There is certainly no value in using a 50 x 50 grid if we

can use a 50 x 64 just as cheaply. That is, since IILIAC IV has exactly

64 PEs, this physical fact might as well be capitalized upon when choosing

8 mesh size. If the mesh size is arbitrary within defined limits, the

user should choose the closest multiple of 6L4~-it costs no more and may

actually speed up the calculation, since less code will be generated.

Suppose we have divided our slab into g 6l x 64 set of mesh

points. We could store these 4096 values of Ui j 88 shown in Figure II-27.
H]

Each PEM holds 64 values of U. For this case, one parallel calculation of

equation (2) could process only one row at a time. Since the border

values do not enter into the celculation, 62 parallel calculations of
equation (2) would have to be performed to effect one relaxation of

the entire U array. This is s speedup of 62 over the 3844 calculations

necessary for one sequential relaxation of a 6L x &l U array.
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&i PEMg PEM; PEM2 PEMg3 1
B ° o ° ] }
° ° ® ' |
: [ ] ] ® ® ‘
\l
* U1 Uy,2 U3 Us,ee
F, Uz,1 Uz,2 Uz,3 Uz,64
T [ ] [ ] [ J . . . ®
[ ] [ ] [ [ ]
g ° ° . °
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[ ] ® [ ] [ ]
o ® ® [ ®
4 E ® ® [ J ®
(e
A"u
o Figure ITI-27. Storage Allocation of U Array for
64 x 64 Set of Mesh Points

(Vs ':;

It is very important for the reader to understand that the
’. ILLIAC IV program to solve a problem is very much dependent on the data
- allocation scheme chosen by the -ogrammer. This is true also, but to

a lesser extent, for a conventional sequential computer.

by
o 02
. .

E? G. ILLIAC IV Input/Output (I/0) System
t& The ILLIAC IV Array is an extremely powerful information
processor, but it has of itself no I/0 capability. The I/O capability

EE along with the supervisory system (including compilers and utilities)

E% reside within the ILLIAC IV I/0O System. The ILLIAC IV I/O System

e consists of the I/0 Subsystem, a Disk File System (DFS) and a B6500

s

E‘
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Corntrol Computer (which in turn supervises a large Laser Memory, a Data
Communications Processor, and the ARPA Network Link). See Figure II-28.
The total ILLIAC IV System consisting of the ILLIAC IV I/O System and the
ILLIAC IV Array is shown in Figure II-29. The reader is warned that all
system configurations shown are transitory, and more than likely will have

changed several times before this book is published.

TERMINALS

DATA
COMMUNICAT IONS
l PROCESSOR

ARPA
INETWORK

LINK

B6500 CONTROL COMPUTER

1
DISK FILE 1/0
SYSTEM [* — | SUBSYSTEM

Figure II-28. ILLIAC IV I/0 System
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86599 Peripherals: Card Reader, Card Punch,
Line Printer, 4 Magnetic Tape Units, 2 Disk Files,
Console Printer and Keyboard

'
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C"\-\'.';“ Figure II-29. ILLIAC IV System
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1. I/0 Subsystem 21
The I/0 Subsystem consists of the Control Descriptor Controller Ea

(CDC), the Buffer Input/Output Memory (BIOM) and the Input/Output Switch

e
e

(10s).

a. Control Descriptor Controller (CDC)

3
The CDC is that component of the I/0 Subsystem (mentioned in &

> "fi_

section D 3 d) which monitors the TMU section of the CU waiting for an

I/0 request to appear. The CDC can then interrupt the B6500 Control

i

Computer which can, in turn, try to honor the request and place a response

=
-

code back in the TMU section of the CU via the CDC. This respons= code

indicates the status of the I/O request to the program in the ILLIAC IV

Array.

The CDC causes the B6500 to initiate the loading of the PE
Memory Array with programs and data from the ILLIAC IV Disk (also called
the Disk File System or DFS). After PE Memory has been loaded, the CDC

can then pass control to the CU to begin execution of the ILLIAC IV

Programn.

b. Buffer Input/Output Memory (BIOM)

The B6500 Control Computer can transfer information from its ﬁl
memory through its CPU at the rate of 80 x 106 bits/second. The ILLIAC IV §

Disk (DFS) accepts information at the rate of 500 x 106 bits/second. This

II-6k4
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factor of over six in information transfer rates between the two systems
necessitates the placing of a rate-smoothing buffer between them. The
BIOM is that buffer. A buffer is also necessary for the conversion of
k8-bit B6500 words to 6k-bit ILLIAC IV words which can come out of the
BIOM two at a time via the 128 bit wide path to the Disk File System.
See Figure II-29. The BIOM is actually four PE memories providing 8192

words of 6h-bit storage.

In addition to the data link to the B6500 CPU, the BIOM is also
connected to the B6500 Multiplexor which, in turn, is linked to the B6500
Peripheral set. A typical path for a user's program and data might be:
Magnetic Tape through the B6500 Multiplexor to BIOM to ILLIAC IV Disk to

I0S to the PE Memory Array.

c¢. Input/Output Switch (IOS)

The I0S performs two functions. As its name implies, it is a
switch and is responsible for switching information from either the Disk
File System or f¥om a port which can accept input from a real time device.
All bulk dats transfers to and from the PE Memory Array are via IOS. As
a switch it must insure that only one input is sending to the :Array at a
given time. In addition, the IOS acts as a buffer between the Disk File
System and the Array, since each channel from the ILLIAC IV Disk to the
f0S is 256 bits wide and the bus from the I0S to the PE Memory Array is

1024 bits wide.
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2. Disk File System (DFS) ) ” - %

&

The Disk File System (DFS) consists of two Storage Units, two §
Electronics Units and two Disk File Controllers. The DFS is also called E%
the ILLIAC IV Disk or simply, the Disk. The Disk is of 109-bit capacity, L
having 128 heads, with one head per track. The DFS has two channels, each q
of which can transmit or receive data at a ratr of .5 x 109 bits/second ‘
over a path 256 bits wide; however, if both channels are sending or E

9

receiving simultaneously the transfer rate is 107 bits/second.

4 29

The Disk revolves once every 40 milliseconds and thus has an

Lo st avea |
sl

L)

average access time of 20 milliseconds. Processing of I/0 requests to

the Disk is enhanced by the operation of the Disk Queuer hardware. The

Nk

Disk Queuer can store up to 24 I/0 requests in a hardware table. This

table is constantly monitored as the disk spins under its heads. If a g?
¥
block of I/O comes under a head that is referenced in the fueuer table--

-’1'.
regardless of its position in the table--then that block is t."ansferred ob]
as per the request¥ As an example see Figure II-30. & |

‘w

&

The DFS has data paths to the Array via the I0S and with the

e
B6500 via the BIOM; there is also a control path from the CDC to the DFS &j
which is used in the last stages of initiating Disk to Array transfers EE
of programs or data.

£

&)
* &n
Data transfer to and from the Disk can also be effected in the conven- f
tional first-come, first-serve manner when so specified by the programmer. il

o
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Figure II-30. Example of Disk Queuer Function

Even though the I/0 request for Block A was entered into the
Teble before the I/0 request for Block B, the request using Block B will
be performed first in the above situation since it will pass under the
Disk heads sooner than Block A.

3. B6500 Control Computer

The B6500 Control Computer consists of a Central Processing Unit
(cpu), Memory, a Multiplexor and a set of Peripheral Devices (Card Reader,
Card Punch, Line Printer, 4 Magnetic Tape Units, 2 Disk Files and Console
Printer and Keyboard). It is the function of the B6500 to manage all
programmers' requests for system resources. This means that the Operating
System will reside on the B6500. Managing requests includes scheduling

and eventually instituting the process which utilizes the resource.
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All compiling and assembling of programs is performed on the

g

iy B6500, Utilities, such as Card-to-Disk, Card-to-Tape, etc. are also

A

% executed on the B6500. From a total System standpoint, the ILLIAC IV

»

Array can be considered as a special-purpose peripheral device of the

!kl

3 B6500 capable of solving certain classes of problems with extremely high
.ﬁ speed.

: a. B6500 Central Processing Unit (CPU)

J

4

;; The B6500 CPU provides the Control and the Arithmetic and

f Logical processing capability to the B6500 Control Computer. The B6500
..'.

- CPU operates at 5 megacycles.

b. B6500 Memory

& The B6500 memory contains 65,536 48-bit words and has a memory
7 cycle time of 1.2 psecs. The B6500 Memory can be considered tertiary

f memory (over 3 million bits) in the total system, with the ILLIAC IV Disk
ié being secondary memory (one billion bits) and the PEMs of the ILLIAC IV
) Array being primary memory (over 8 million bits).

N c. B6500 Multiplexor

3 The B6500 Multiplexor is the heart of the B6500 I/0 System as
N

‘3 can be seen by the number of lines coming into and going out of it in

b Figure II-29. It is linked to the BIOM, the B6500 CPU, B6500 Memory,

o)
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the CDC, and the B6500 Peripheral Set a&s well as the ARPA Network Link,
the Data Communications Processor and the Laser Memory. The Multiplexor
may be viewed as a switching network or a small I/0 control computer which

operates asynchronously with the B6500 CPU.

d. B6500 Peripherals

The B6500 Control Computer has a standard set of input and

output peripheral devices:

1 Card Reader (800 cards per minute)
1 Card Punch (300 cards per minute)
1 Line Printer (132 print positions; 1100 lines per minute)
4 Magnetic Tape Units (9 channel; 1600 bits per inch;
45 inches per second)
2 Disk Files (5 million 48-bit words, 20 milliseconds
average access time per disk file)

1l Console Printer and Keyboard.

e. Data Communications Processor

The Data Communications Processor will supervise a set of remote
terminals. The terminals are devices such as Teletypes or CRT displays that
allow the user access to the ILLIAC IV System. Users will be able to enter
their Jobs into the system in either a batch or interactive mode via the
terminals. The terminals can also be used to monitor jobs while in

execution and to scan the ILLIAC IV Disk or Laser Memory which will contain
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o the output from a job. If the user decides he needs a hard copy of his 2
& output, he can then signal the system from his terminal to activate a E
= printer.

K e T
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f. Laser Memory

'e

A o $EE T
G

The B6500 supervises a 1012-bit réad—only Laser Memory developed

by the Precision Instrument Company. The beam from an argon laser records

«,
»

binary data by burning microscopic holes in a thin film of metal coated on

i
Cha i I

a strip of polyester sheet, which is carried by a rotating drum. Each data

y strip can store some 2.9 billion bits. A "strip file" provides storage for
5 400 data strips containing more than a trillion bits. The time to locate

e

;: data stored on any one of the 400 strips is five seconds. Within the same

" = e
,

\ strip data can be located in 200 milliseconds. The read and record rate is
four million bits a second on each of two channels. A projected use of

this memory will allow the user to "dump" large quantities of programs and

I R

data into this storage medium for leisurely review at a later time; hard

e

copy output can optionally be made from files within the Laser Memory.

L)

~*

The laser memory can be considered fourth~order memory in the ILLIAC IV

System (one trillion bits).

e, o

‘.f'l
£

g. ARPA Network Link

- B
B Pl

u.“.
| VOO

The ARPA Network is a group of computer installations separated

" 3
? geographically but connected by high speed (50,000 bits/second) data )
-
;: communication lines. On these lines, the members of the "Net" can transmit 4
¥ -
: information—-usually in the form of programs, data, or messages. The "
; ..',!:}:
P
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link performs an information switching function and is handled by an IMP

(Interface Message Processor) and a Network Control Program stored within.
each member installation's "host" computer. Each IMP operates in a

"store and forward mode", that is, information in one IMP is not lost until

[ a".
il -.l,

the receiving IMP has signalled complete reception and retention of the

message. The IMP interfaces with each member's computer system ana converts

Y =84

LY S

information into standard format for transmission to the rest of the Net.

Conversely, the IMP accepts information in a standard format and converts

it to the particular data format of the member installation. In this veay,

the ARPA Network is a form of a computer utility with each contributing
member offering its unique resources to all of the other members. See

Reference 2 for a complete description of the ARPA Network.

{ll[?

H. Conclusions and Opinions

e B . A

It is useful to view the ILLIAC IV System as a set of resources;

each member of the set having special capabilities. If the programmer can

1B
=

define his problem in terms of the unique capsbilities of this set of

resources he has effected a computer solution to his problem.

The set of resources afforded by the ILLIAC IV System is:

« A B6500 Computer System which also supervises

+ A Laser Memory
« The ARPA Network
+ A Terminal System

* A very fast Disk Storage System

e * An extremely fast Array Processor.

»
.
L

e
:
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If the problem to be solved on the ILLIAC IV System involves _ &

vector manipulation or systems of differential equations to be approximated Eﬂ
by finite difference schemes, then the Arrey Processor resource can be '

. o

utilized. Many applications in Numerical Weather Prediction, Linear *

Programming, Hydrodynamics, Signal Processing and the response of coupled

mechanical and electrical systems are in this category. £

Information Storage and Retrieval processes can be performed
using the B6500, the ILLIAC IV Disk and the huge Laser Memory. - Large data -
bases can be accumulated on the large slow Laser Memory and car be sent via o

the ILLIAC Disk to either the B6500 or the ILLIAC IV Array for processing. b
-

Computer Aided Instruction (CAI) is another area of application P
that can be exploited using the large Laser Store coupled to the terminals.
A remote file editing capability including interactive compiling facilities
and job monitoring during execution is afforded via the terminals. Pro-
grammer convenience is further enhanced by possible <iebugging systems using -3

the terminals. Also, the B6500 can provide a full range of compilers,

assemblers and utilities for programming support. At present, no one is =
sure how to use ILLIAC IV to assemble or compile programs. ?q
&3

As mentioned previously, the ARPA network represents a potential o

broad range of resources within itself.

A satisfying Artificial Intelligence model has not yet been

produced by any availasble computer resource. Hopefully the 1012 bit E}
-
pre
e -
>
| !
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F Laser Memory will encourage a grander, more comprehensive approach to
. intelligence models.
i
Perhaps it is too glib to say that the ILLIAC IV System is a
g? set of resources; if the user is resourceful, he car - them. Unfor-
a tunately the statement is partly true--there are no recipes yet for
&i solving the large, the important and interesting problems. There is no
E: computer science out on the edge of research. The answer to the question
) "How do you use ILLIAC IV?" cannot be answered by a statement, but with
Eé another question:
&ﬁ You know the resources, the tools you have to work with, the
) next time a problem passes close by, ask yourself "Can this problem be
. described in terms of the resources which are now available to me?"
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CHAPTER IIT

THE ASSEMBLY LANGUAGE -- ASK

.};J. ]

A. Summary

The ILLIAC IV Assembler is called ASK. It is a two-pass

PR
L
R

assembler that accepts a program written in the ASK language and converts
g it to an TLLIAC IV binary object code. Although there are almost 300 ;
( ,
instructions in the ILLIAC IV repertoire only those few ASK instructions I

required to write simple programs will be described here.

¢
L The approach taken in this chapter will be to state a problem,
t.
then to learn only those instructions necessary for the solution of that
b problem. The first problem is that of summing an array of numbers. After

the instructions for the solution of the first problem are learned oniy a

2% rx'J

few more are needed to solve the second problem: finding the largest

F. value in an array of numbers. Problem three describes a parallel algo- |
!
) rithm for matrix multiplication that differs from the standard sequential

&; algorithm. The ASK instructions to implement this parsllel algorithm are o
= then developed. The fourth problem, transposing a matrix, is used to '
ié develop the concept of skewed storage which is one solution to the problem 1
"y of accessing the columns of a matrix as efficiently as the rows. The E
- fifth and final problem develops the ASK instructions necessary to solve F
FE Laplace's equation which models the steady-state temperature distribution i
) on a slab as discussed in Chapter II. Two cases are considered illus- ;
- f
E trating two possible data allocations; the first case allocates the
&l :
['; III-1
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d s
i =

64 temperatures so that one temperature is stored in one PEM, the second _ k5

"

N allocates eight temperatures per PEM and is representative of all alloca- o
L L

~ S

i tions requiring a finer mesh spacing up to and including a 64 x 64 mesh. &
After the five problems have been programmed, the programmer has learned

.; ¢

~ L0 ASK instructions and some useful programming techniques.

d 8
- £ ]
. B, Review =
£ T
&
f: Let us review the registers that are programmable:

: 3
>
! In the CU, we have four 64-bit registers named ACARO, ACAR1,

A ACAR2, and ACAR3. There is also a 6h-word scratch pad memory called the %&

1 ADB. Each word is 6k bits long. 1

=

i e
o In each PE, we have six programmable registers:

- N
L E.a
.‘l t-:.
L RGA, the A register and Accumulator, is 64 bits
- -

RGB, the B register is 6L bits =
3 ta!

! RGR, the R register or routing register is 6L bits |
g RGS, the S register or temporary storage register is 64 bits .;‘
- RGX, the X register or index register is 16 bits =
" S
:~ RGD, the mode register is 8 bits.

b )
There are two basic types of instructions, FINST/PE and ADVAST. w
L ADVAST instructions are executed in the ADVAST section of the Control Unit N

5]

Y (CU) and are of the type that can be fulfilled within the resources of the '
= 1y

1N

“ CU. FINST/PE instructions may be partially processed within ADVAST but Ef
2 )
A III-2 t
~
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»

e

g
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to be fully executed they are sent on to FINST which sends out the micro-
sequences necessary to drive the PE arrsy. Since there exists other |
literature which refers to FINST/PE instructions as PE instructions and
to ADVAST instructions as CU instructions, that naming will be used

alternatively in this chapter.

C. Notation
ASK instructions will be described using the following format:
Label: Opcode Operand;

Metalinguistic symbols or symbols which stand for other symbols are
written in script, i.e. Labef. A value that the variable symbol Label may
be is LOC or LOOP. Symbols which stand only for themselves (reserve¢

symbols) are written in upper case type and are underlined, for example:
STA Operand;

(STA is a possible value for Opcode.) Reserved symbols will usually be

Operation Codes or Opcodes and must be written exactly as they appear.

Symbols which are partly variable and partly reserved will have
the reserved part written in upper case type and will be underlined, and

the variable part will be denoted by a lower case Greek letter, for example,

LDo  Operand;

ITI-3
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where 0 can be A, B, S, X, R or D. This means that LDA, LDB, LDS, LDX,

LDR, or LDD are all possible variations for the LDQ operation code.

The Label field is optional and represents a symbolic location

or address within the program; Labelf must be followed by a colon (:).

o7

The Opcode is the operation code portion of the instruction,

i.e., ADD is an Opcode. A blank must follow the Opcode.

AL

The Operand is the address or operand portion of the instruction

S
i 0

and may be an address, a count, or data. If it is an address, it denotes

the location in memory where data resides.

2 T
£

A semicolon (;) must follow the Operand and indicates the end of

an ASX instruction.

£ o

!

D. Operands a?
wd

ot

With each instruction type, PE and CU, there is associated a

]

e
i
o

permissible set of operands.

ST
|

_E:.‘é

l. PE Operands

£

G
O

A PE Operand may be a PE Memory Address, PE Register, Literal,

ACAR, Routing Operand, or Mode Setting Operand:

<
=

i

Py
a. PE Memory Address 3

=)
A PE Memory Address (PEM Address) refers to the contents of a il

e |
Row of PE Memory locations. The name of a PEM Address must be symbolic N

AT
ITI-4 e
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and is created by the programmer. Symbolic names consist of alphameric
characters (letters and digits); they can be up to 63 characters in length

but the first character must be a letter.

Examples of PEM addresses:

X
LOCATION

L123

A PEM Address will alternatively be called a "Row", "Row location",

"PE Memory location", "PEM location", or "PEM Row location" in the follow-

ing text. Note also that PEM is short for PE Memory.
b. PE Register

A PE Register has the following format:

$ Register Name

where Register Name can be A, B, R, S, or X and

$a
$B
$R
$s
$x

stands for RGA

stands for RGB
stands for RGR
stands for RGS

stands for RGX

(The total mode register, RGD, can never be a PE operand, except in one

special case which will not be covered here.)
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‘ c. Literal : 5

n..‘-‘

-
? A Literal is usually a value that stands for itself, not a E

location where the value can be found. It is of the form:
= Literal

where Literal (for the purposes of this brief explanation) is a number,

i.e., . o

= 12:8 is a Literal of value twelve in the base 8

number system (and is equal to ten in base 10).

10 is an integer ten in the base ten number sysil.em.

PE Literals are constrained to be representable within 16 bits

so that floating point numbers (which require 32 or 64 bits) are not

|
b
2
4

ailowea as PE Literals. Integers which zan be represented within 16 bits

are allowed however:

R - 3

2 ]
d 215 .
D = ;
F? 65535 &
! 2o
&

Eﬁ are all valid integers which can be used as PE Literals. 3
&':y &'

-

*r AL

d. ACAR £
& B .t
‘. >
E: Only one of the four ACARs in the CU can be used as s PE i
” ,
F Operand; they are referenced by the names $CO, $C1, $C2, and $C3. (The &
i LR
“-.\, -ty
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4
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contents of the specified ACAR is transmitted or "broadcast" to all PEs via

the Common Data Bus.)

e. Routing Operand

A Routing Operand is a highly specialized type of Operand that
is only used with one PE instruction (the Route instruction, RTL). This

Operand will be discussed when the Route instruction is discussed.

f. Mode Setting Operand

The Mode Setting Operand is another specialized Operand which is
used with a certain class of instructions which set bits within the mode
register (RGD). This operand will be discussed when an instruction of

this class is encountered.

g. Indexing

PE Operands can be indexed in two ways: either by RGX or RGS

within a PE, or by one of the four ACARs in the CU.

Usually the PE Operand to be indexed is a PEM Address or location.

An indexed location is in one of two forms:

¥ location
or

# Location

ITI-7
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where the asterisk (*) means the Location is indexed by the contents of '.é
- RGX and the sharp (#) means that the Location is indexed by the contents '
_': -
o of RGS. The contents of the specified index register is added to the value hg
i |
By of Location and that sum is used as the effective PEM Address or location. f
02
i
> LDA *A;
- 5
., 'Ln.)
- &

would load the RGA of every PE with the contents of location (A + contents

e R L

) of RGX). RGX may contain a different value in every PE, in which case the f]
~ A A
55 bod,
}_: RGA of every PE in the array will be loaded from s different location in |
' PEM. This situation is shown in Figure III-2 on page III-17 and will be gi
) discussed later. =
:‘ The contents of one of the four ACARs in the CU can also be -
used to index a location or PEM Address. The ACAR which contains the s
] indexing value is specified in parentheses after the location, i.e. =
2 &
i LDA A(1); -
" would load the RGA of every PE with the contents of location (A + contents
3
of ACAR1l). Since the contents of ACAR]1 is a scalar (and not a vector or @*
) row) quantity, the RGA of each PE will be loaded from the same location-- oo
i B
} A + contents of ACARl. This is not necessarily the case when indexing is =
done using RGX or RGS within each PE. ﬁ
5 I
2 2. CU Operands X
% 2
: A CU Operand may be a CU Memory Address, CU Register, Literal,
] —
; or Skip Operand. (-‘t::-,’
3 s
- ok
:; III-8
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a. CU Memory Address

A CU Memory Address refers to the contents of a single location
in PE Memory (whereas a PE Memory Address refers to the contents of a row
of locations in PE Memory). CU Memory is not to be confused with CU
Register Storage (the 64 ADB locations, the 4 ACARs and thirteen other
CU registers). CU Memory lies within PE Memory. There are CU instructions
vwhich reference a single word stored in CU Memory which means that the
single word resides in a specific Row and a specific PEM within that row.
As we shall see, it takes two coordinates to specify a CU Memory Address:

the Row number and the PEM number.

b. CU Register

The availeble CU registers are the four ACARs ($CO, $C1, $c2,
or $C3) or any of the 64 locations within the ADB ($DO through $D63).
Additionally, there are thirteen other CU registers that cen be used as a

CU Operand, but they will not be covered here.

¢. Literal

A CU Literal Operand is usually in one of two forms. One format

is the same as the PE Operand, i.e.,
= Literal

where Literal can be a number or an address. When a CU Literal is an

address, it refers to a single location in PE Memory.
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For example =X refers to the word in PEM, of Row X in PEM; while 3

f =X+1 would refer to the word in PEM1 of Row X in PEM. More will be said o
about this when tne Matrix Multiplication problem is discussed. J

J The other format is used for loop control and looks like: :

‘h
Increment, Limit, Stanting Value L

) where Starting Value is the Initial value of the loop counter Eg
IE Limit is the upper limit of the loop counter -
y and  Increment is +the increment for the loop. ﬁé
-
5 Unlike PE instructions, there are CU instructions which can Ej
; create literals. These instructions and the loop control literal will be T
; discussed later. Sees

(o’ P

)
d. BSkip Opersnd .
-_n
- A Skip Operand is a special CU operand used to transfer control =
. @
3 to another location with the program. It is usually of the form: I
: Y
- » Location

where Location is the location in the program that will be skipped to

l",_;. S e i

=%
(] ‘. L)
I :..;..;

based on the results of a test defined by the Opcode. There is a strong

g constraint on the value of Tocation; it is limited to be within +l27 E§
g instructions from the transfer instructior being executed. There is

. -
| )
d another instriction which can Jump to any location in the program that LI
: )
q . ';: \
I III-10
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P,

has as its Operand Just the location and is not preceded by a comma. This
instruction, called JUMP will not be discussed since it is not necessary

for the solution of any of the problems.

E. CU (ADVAST) Imnstructions

If an accumulator is needed for the execution of a CU instruction
one must be specified since there are four accumulstors to choose from.
Accordingly, the Opcode of many CU instructions is followed by & number in
parentheses that specifies which ACAR is to be the accumulator for that

instruction. The format is:
Opcode {ACAR Number) Operand;

An example might be
LDL(3)  $D1k;

which means: Load $C3 (ACAR3) from $D14 (Location 14 of the ADB).

F. PE (FINST/PE) Instructions

PE Instructions may be partially processed by the Control Unit
but they are not completely executed until the PE arrasy performs the
operation. It is very important to remember that one PE instruction does
not cause only one action to occur as is the case with CU instructions,

it causes 64 actions to occur.
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: IDA  X; .
3. causes the RGA of 64 PEs 4o be loaded from location X of each PEM or,

! %
>, equivalently, from Row X of PEM.

by
<" L 9
b~ G. Convention
b =
3 X
L: The following convention will be observed in the prose descrip- )

. tion of the operation of the instruction types: The words "enabled" and gﬂ
" "disabled" will not be mentioned. For example, if an instruction is

- &
ﬁ described as loading the RGA of all PEs, this description is meant to '
lf;,‘

v imply all enabled PEs and certainly not the disabled ones. However if |
- % |
- an instruction is described as loading the RGB of all PEs, then this is

- meant to imply all PEs, disabled or enabled. All of the rules which '{ﬁ
o describe the operation of enabled and disabled PEg previously described

s v, >
t@ in Chapter IT are in effect. E*
e,

‘h o
" §
5

& H. Warning

-

N £
. The description of PE and CU Operands and Instructions will be &

necessarily incomplete to avoid getting bogged down in details. Also
discussion of a third class of instructions (TMU instructions) which are

used primarily by the Systems Programmer will be skipped entirely. The

L |
Sslas

v o

[

intent is to present the minimum amount of detail which will allow the

>
> -
;: programmer to use a small instruction repertoire to solve the sample gj
E problems. This method allows the user to gain a "feel" for how the 9
s

‘ -
“f language works without having to learn all of the intricacies of the ]
:; language. u&%
\: ITI-12
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I. Sample Problems

1. Summing an Array of Numbers

The first problem a programmer usually solves is to write the

algorithm that sums an erray of numbers. The problem is stated as follows:

Given an array of numbers Xl, X, X3, o XN’ find

and store the result in S.

If we were to solve this problem on a conventional machine, we

might use a language like FORTRAN:

S=0’
D0 10 I =1, N

10 s =8 + X(I)

Now let us consider the instructions in the ILLIAC IV repertoire

that we will use to solve this problem.

The first instruction we need is a "load" instruction; one that
loads the contents of a PE Register from a PE Memory location or from

another PE Register. It is of the form

Lba  Operand;

T

(' l\-l

’:.--\.

- ?

)

L.-l
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@
=
where @ = A, B, S, X, R or D, and specifies RGA, RGB, RGS, RGX, RGR, or £3
RGD respectively. &
-
Operand is usually a PE Memory Address or location, a PE register, &
or an ACAR. ﬁ?

LDo is a FINST/PE or a PE instruction.
i
! :!

Examples :

I
LDA X; ad
a3
means all PEs load their RGA from the contents of PEM location X, or Row X. |~
LDB  $R; b

means all PEs load their RGB from their RGR.

(k

LDA  X(1); %
&3
means: 1) The contents of ACARL ($C1) are added to Row location X. Call -
-
this value Y. h
2) RGA is loaded from the contents of Row Y. ;22
Once again it is stressed that PEM location X is at the same place in iy
e

every PEM and can therefore be viewed as a vector or "Row" of PEM locations
%
(see Figure III-1). This concept is, of course, at the very heart of the ﬁg
ILLIAC IV, a memory or register access does not access only one operand, a
e
it accesses a vector-full of operands. ot
i;
Associated with the "load" instruction is the "store" instruc- wl
At
tion. Its format is similar to the "load" but its operation is Just the ‘Qﬂ%
&
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PEo PE} o © o PEga

LOCATION O LOCATION O LOCATION O

ROW X—— LOCATION X m LocaTioN X 777 LOCATION X 4

LOCATION 2047 LOCATION 2047 LOCATION 2047
PEMo PEM, PENG3

Figure III-1. Symbolic Location X is a "Row" of
Processing Element Memory (PEM)

reverse: the contents of a PE register are stored to PE Memory. PE stores
are always to PE memory, and never to another PE register; register to
register transmission is effected by the load instruction. The store

instruction is of the form:

ST Operand;

where 0 = A, B, 8, X, or R and specifies RGA, RGB, RGS, RGX or RGR
respectively.
Operand is always a PE Memory location.

Like LD, ST is a PE instruction.
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Examples :

STA X;
means all PEs store the contents of their RGA in their PEM Row location X.
STS *A,

means: 1) The contents of RGX of each PE is added to PEM location A
call this new location Y (Y may.have a different value in
each PE).

2) The contents of RGS of each PE is stored in PE Memory location

Y of each PEM,

See Figure III-2 for a picture of how Y can vary within PEM if RGX holds a
different value for each PE. Row A has a variable offset specified by the

contens of RGX which results in a different location being referenced in

each PEM.

Another instruction we need to solve our first problem is one

that will add:

ADRN Operand;

where Operand is usually a PEM Address, a PE Register or an ACAR which
contains the value of operand to be added to the accumulator RGA. The

result appears in RGA.
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PEo PE, PEQ PEgy
" ° RGX 1 RGX 2 RGX|] €3
e %
) ® e o
g
o
e
G
i L'."u
. LOCATION Y = LOCATION A LOCATION A LOCATION A LOCATION A
Y 2
% wocation Y77
o w0 e e e
o
-"
LOCATION Y= LOCATION A+ 63
;: PEMg rEN, PEM, PENgy

Figure III-2. Indexing by RGX can cause Different Locations within

e PEM to be Referenced

2;, RGX in PEj is O

P RGX in PE, is 1
. RGX in PE2 is 2

IS o
-

p- RGX in PEi is 1

N ,

& RGX in PE63 is 63.

o STS *A causes the contents of RGS to be stored in
.5 location Y.

;’H

('-’:'d
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ADRN is one variation of the PE add instruction; it adds two

64 bit floating point mumbers using rounding (R) end normalization (N).

Examples :
ADRN X,

means: to the contents of the RGA of every PE add the contents of PEM

Row location X and place the result back in RGA.

ADRN  X(0);

means: 1) Add the contents of ACARQ ($C0) to PEM location X; call this
location Y.
2) The contents of location Y are added to RGA in every PE

simultaneously and the result is placed back in the RGA of
each PE.

In order to use ILLIAC IV effectively we must use ﬁhe "ROUTE"
instruction in programming a solution to our problem. (The total array of
numbers to be summed could be stored entirely within the PEM of one PE,
but the computational power of the rest of the PEs in the array would be
totally wasted. The scheme we shall use to sum the numbers will attempt

to use as many PIs as possible.)

The Route instruction is used to send data from some PE register

(RGA, RGB, RGX, or RGS) to the routing register, RGR, and from there route

that data a specified distance to another PE's routing register. One form

of the Route instruction is:
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by
i) E
u.'. ,-‘i
Cx-’ RTL Source Register, Routing Distance; i
: o
1 | | :
where Sowrce Register can be $A, $B, $X, $R or $5. If Sowrce Registen and F—
P y
;ﬁ the following comma are not present, the source register is g
assumed to be $R. i.
; . y v,
tg Routing Distance is a number indicating how many PEs to the left or g'
v
f{ right the data should be routed. o
- A positive number denotes a route to the right. 4
Y :
&} A negative number denotes a route to the left. &
% i
. The "L" in RTL stands for "Local" and not for "Left". E
3 s
LY
éi RTL is, of course, a FINST/PE Instruction. Y
E b
o M
tﬁ Example: ]
i
b RIL  $A, -3; '
| i
'&{ would cause the following to happen: ;*
L) »
1) For all PEs, the contents of RGA are placed in RGR. t
2) The contents of RGR of each PE is routed 3 PEs to the left. The D
2
= results always end up in the R register, RGR; the contents of RGA 5{
‘. vPl'
3 -
Eﬁ are unchanged. The Route is always end-around so that, in this lax
f! case, the contents of RGR of PEO would end up in the RGR of PE61' &
..4‘ r?.-
&
{* Since a Route Instruction only changes RGR, it is always executed b
¥ L4
o "

by the entire PE array, regardless of whether or not a PE is ensbled or

.-
wta
eI

disgbled.

=
-

o

'-
&

The second operand, the Routing Distfance can be indexed by an

a2,

. ACAR. If this is the case, the contents of the specified ACAR is added to

.‘]’ ;—‘i : y
‘:
'] ’." L
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the Routing Distance and the route is then performed. The general form

18

RTL Source Registen, Routing Distance (ACAR Numbexr);

where ACAR Number is 0, 1, 2 or 3 specifying $co, $c1, $Cc2 or $C3.

Examples:

RIL 95, 12(1);

would place the contents of RGS in RGR then route RGR a distance of

(12 + contents of $C1) to the right.
RIL $s, 0(0);

To the Routing Distance, in this case zero, is zdded the contents of $CO;
This distance is then used to route the contents of RGR after it has been
loaded from RGS. If an ACAR is used to index the Routing Distance it is
extremely .mportant (for reasons too complicated to describe here) that

the number in the ACAR be positive.

We may now program a solution to our problem. For ease of
illustration let us assume that we have an eight PE (rather than a 64 PE)
machine and that N = 8 (we have 8 numbers to sum) and that they are
given to us stored across one Row of PEM at location X. Also, since PE
numbering begins at zero let us label our arrsy X., Xl, X2, X3, Xh’ X5’
X6 and XT'
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5
i
L9
A2
i"" The ASK program to perform the sum might look like
- LDA  X;
i
o RIL  $A, -1;
r ADRN  $R;
2%
h RTL $A.s -2;
i::: ADRN  $R;
RIL  $A, -
'S
& ADRN  $R;
4
£ STA S;
¢ o
-~ Table III-1 shows the first seven steps of the above assembly languege
£5 program. The contents of RGA and RGR of each PE are also shown after the
Fb execution of each step. After Step T has been execut=d
Ii}' g
" X
> 1=0 1
E! is in the RGA of each PE of our 8 PE array. The last instruction,
Ej STA S; stores this recult to location S as the problem requires.
s It should be clear now that we could sum 64 numbers on our
l“ 64 PE ILLIAC IV using the following instructions:
&
s
o

B \! 2" d
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o zx‘ rd

P,
18 iy
L
e

LDA X;

|

RTL $A, -1,

ADRN  $R;

RTL $A, -2,

é
W e W W L EEEE TSR N R RO vy

(T |
|

ADRN  $R;

YQ RIL  $a, -4 ;
. s ADRN . $R;

&E RIL  $A, -8; ?
ADRN  $R;

>
..
4

RTL $A, -16;

fr ADRN  $R;

RTL $A, -32;

i'.' ADRN  $R;

STA S;

-

The general rule for routing using this kind of algorithm to sum

’ numbers is: ,
ki To sum N numbers where N = 2I and I is a positive integer, we b

perform I routes using a routing distance starting at 20 and ending at 2I-l.

e

3
i 'l q
T

P —
13
‘

This method of summing numbers is sometimes called a "Logsum"

- gy g ST

v e
e
P

since the routing distance increases as a power of 2. The reader should

o

also check for himself at this point that the Logsum algorithm will work

oD,

when the Routing Distance is positive and all routes take place to the

right. The algorithm is independent of the direction of the routes; the

result will be the same since routing is end-around in both cases.
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Unfortunately the solution to the problem presented above is nct "
_::: very eleganti, nor is it concise. It could be made more concise and elegant
e
-\ by using looping instructions. i:
'y
e
o Of the fourteen instructions needed to sum 64 numbers six pairs I
iy of them are of the form: 4
o %)
RTL $4, D;
‘-‘, L=l
X ADRN  $R; - 2
[
i (5
o If we could set up instructions around the above instruction pair which -4
bt !
would cause the pair to be executed 6 times and would cause the value of "
- S
E.‘_:- D to take on the values 1, 2, 4, 8, 16 and 32 consecutively, then the l'
o ]
5 solution would not only be better--it would be a representative method for o2
F_: summing arrays. )
E,:: There are many looping instructions in the ILLIAC IV repertoire; &
W/
. one of them is TXLTM. Before we discuss the operation of TXLTM we must %,
¥ )
h first describe the LIT instruction which will place the starting value,
ht
£t increment, and upper limit of our loop into a specified ACAR, (This ACAR el
= Vs
gy
D is then referenced by the TXLTM instruction.) For looping purposes, the
= g
{' LIT instruction loads up a specified ACAR with an increment, a limit, and Lo
A a starting velue. It is of the form: 7
I3
LIT (ACAR Numbenx) Increment, Limé/t, Starnting Value; <
f‘}‘
s
where ACAR Number 1is either a 0, 1, 2, or 3 specifying $C0, $C1, $C2 or J
X $c3. o
r..:‘ »:'“t"‘ ]
%S 1
::\| ::.:"
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Increment, Limit and Starnting Value have already teen briefly t«

-

discussed and they work in the following way :,;

iy

b

J : 0
E.» if Increment = 2 A
: :
Limit = 11 -

", . E:‘
5 Stanting Value = 1 4
&:; then the sequence 1, 3, 5, T, 9, 11 can be generated while a loop is being :
a -
executed 6 times when TXLIM is used. (The TXLTM will "bump up" the value of ’é

[

) [
[t Stanting Value by the value of Increment each time the loop is traversed.) i:
La Examples : -
&

.ﬂ .i

% LIT(3) 1, 3, O;

b will cause an increment of 1, a starting value of O and an upper limit of

3 to be placed in $C3 to be used as loop control variables.

LIT can also be used in a less sophisticated manner to load an

ACAR with Just one number:

'r":- “v’f.'-

~»,
?

.
A'.A".

LIT(0) =l ;

B, M NIy WaTalsta i s Y W T T v

will place the integer 4 (right-adjusted and zero-filled) into $CO. LIT

2

o
e 3
e b

= is a CU or ADVAST instruction which is eXecuted completely in ADVAST. 5%{
f

g i
The TXLTM instruction is of the form: ;y‘

=

E‘ TXLTM (ACAR Number) , Location; /
#

r .
== where ACAR Number is either a 0, 1, 2, or 3 specifying $CO, $C1, $C2 or $C3. r
\,(:;:.':' "

;
- ’
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Location is the symbolic location within the program (somewhere
in the program is a Labelf that is the same symbol as Location) to which a
Jump is made if the Starting Value is less than the Limit in the ACAR
specified by ACAR Number. If the Stanting Value is not less than the
Limit, the next instruction is executed. 1In either case, the Starting

Value is increased by Increment and placed back in the Stanting Value.

IXLTM is also an ADVAST instruction and the operand ,Location is

a Skip Operand.

Warning: Location cannot refer to any location within the program--only

to a position within 127 instructions of the TXLTM instruction.
Examples:
TXLTM( L) LALPHA ;

means "transfer to location ALPHA if the Starting Valfue in ACARL is less than
the Limit in ACARl. If not, execute the next instruction. In either case,

replace the Starting Value in ACAR1 by the value: Starting Value + Increment."

Let us consider how we would set up a summation loop using the

LIT and TXLTM instructions:

LIT(0) 1, 3, 0;

LIT(1) =03

LDA $c1;
LOOP: ADRN $R;

TXLTM(0) ,LOOP;
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The first instruction sets up an Increment of 1, a Limit of 3 and a
Stanting Value of 0 in $CO. The second instruction places a zero in ACAR1
which is then loaded into RGA in the third instruction. The fourth
instruction at location LOOP adds the contents of RGR to the accumulator
(RGA). The last instruction checks to see if the Starnting Value (0)

is less than the Limif (3) and then increments the Starting Value by
Incnement (1). The condition will be true the first three times sending
control back to LOOP.* After $R is added for the fourth time, the Starting
Value will be 3, and will not be less than the Limit, and so control will
drop to the sixth instruction, whatever that may be. The loop is executed

four times and a value of U times the contents of RGR will be in RGA at

the completion of the loop.

The LIT and TXLIM instructions can provide the loop control for

our summation problem but we will need one more instruction to double the

routing distance each time through the loop. (We want D in the instruction

pair

RIL  $A, U;

ADRN  $R;

to start at the value 1 and double each time through the loop.) Since D,
the routing distance, can be a constant indexed by an ACAR (remember the

example: RTL  $S,12(1)) we can place the value 1 into some ACAR, say $CO,

*
Since ILLIAC IV has a single instruction stream and a multiple data stream,
it is convenient to think of locations holding data as Rows, but locations

in the instruction stream are considered as scalars--just like they are on
a conventional computer.
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using a LIT(0) =1; instruction and double it by shifting the contents of

$CO left one bit each time we pass through the loop. All we need is a

shift instruction:

CSHa (ACAR Number) Operand;

where @ = L or R denoting a left (L) or right (R) shift
ACAR Number is either 0, 1, 2, or 3 and specifies which ACAR is to
be shifted.
Operand is a number or count which specifies how many bits the
specified ACAR is to be shifted. This shift is end-off. Operand

can be ACAR indexed. CSH( is an ADVAST instruction.
Example:
CSHL(0) k4
will shift the contents of $CO four bits to the left end off.

We now have enough instructions to set up a loop for our Logsum

program:

LDA X;
LIT(0) =1;

LIT(1) 1, 6, 1;

LOOP: RTL $A, 0(0);
ADRN $R;

CSHL(0) 1,
TXLTM(1) ,LOOP;
STA S
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This represents one possible solution to the problem; there
are many others which use different ASK instructions. As an example of
a slightly different solution, let us learn one more type of looping

instruction.

LESST (ACAR Number) CU Registen, Location;

will cause a jump to Location if the contents of the ACAR specified by
ACAR Number (0, 1, 2 or 3) are less than the contents of the Control Unit
Register specified by CU Registen (CU Register can be $CO, $c1, %02, $C3

or $DO through $D63). LESST is an ADVAST instruction.

Warning: Location cannot refer to any location within the program--only

the position within 127 instructions of LESST.

Example 3
LESST(0) $C1, LOOP;

means that a jump to location LOOP will be made if the contents of $CO
are less than the contents of $C1. If this is not the case, the next

instruction will be executed.

Now we may rewrite our Logsum program as follows :
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LDA X3
LIT(0) =13
LIT(1)  =33;

LOOP: RIL $A, 0(0);
ADRN $R;

CSHL(0) 1;
LESST(0) $c1, LOOP;

STA S3

Note that ACARO is being used in dual role: it contains the Routing

Distance varieble and also helps control the loop.

2. Finding the Maximum Value in an Array of Numbers

The problem is to find the largest value in a given arrasy of

numbers Xl, X2 X6h and place that value in RGA of every PE.

Before attempting to program the solution in ASK, let us look at
the top of Table III-2 which lists the steps for solution for 8 specific
values assuming an 8 PE array. The lower part of Table III-2 displays the
contents of RGR, RGA, and bits E and E1 of RGD after each step. For this

example we have used the following specific values for the array of 8

numbers :
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Table III-2. Solution to Problem #2--Finding the Maximum Value
in an Array of Eight Numbers

The 8 values are in RGA of each PE; PEi - Xi’ i=0,1, «o. Ts
Enable all PEs. N+« O,
Route RGA 21 to the right (end around).

Compare RGR to RGA; If RGA > RGR, disable PE (Set E = E1 = 0).
If RGA < RGR, leave PE enebled.

For all enabled PEs: RGA « RGR.

Fnable all PEs (Set E= E1 = 1); then N« N + 1.

If N < 3, Go back to Step 2.
If N > 3, STOP, the largest value is in RGA of every PE.

Step No.
and Value Contents
of N of PE, PE, PE),

1. RGA 1
N=o0 RGR =
E, E1 1,1

RGA 1
RGR 7
E, E1 1,1

RGA 1
RGR 7
E, E1 1,1

RGA T
T
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When we are operating on 6lU-bit floating point operands, both
the E and El1 bits must be on or set (equal to 1) for the PE to be enabled.
(In the 32 bit mode the E bit ensbles one 32-bit floating point word and

the E1 bit enables the other.)

Note that at Step 4 and N = 0, when the contents of RGR are
placed into RGA of enabled PEs, two values of the largest number (7)
appear in RGA of the PEs; at Step 4 and N = 1, four values of the largest
number appear, and at Step 4 and N = 2 all eight PEs contain the largest
value. Since we use routing distances which are powers of 2, this solution

to the problem is sometimes called "Logmax."

In order to code this problem in ASK we will need two more
instructions: SET, to set the E and El bits and thus enable a PE, and
IAL which will set the I bit of RGD based on the results of an arithmetic
comparison of the contents of two registers. Unfortunately the E and El
bits cannot be set directly on the result of an arithmetic comparison;
however, another bit of RGD (called the I bit) can be, and E and E1 can be
set equal to the I bit. Thus, the E and El bits can finally be set based

on an arithmetic comparison of the contents of two registers.

i F\; i
LW

e

ﬁ‘
The SET instruction can set any bit (E, E1, F, F1, G, H, I or J) <
of RGD, the mode register. It is of the form: 12
SETo Mode Bit . Logic . E Bit; IC_’
WA
w3
ke
-
PO
L
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i wvhere .Y can be E, E1, F, F1, G, H, T or J.
¥ ngd

"

Mode B{t can be E, E1, F, F1, G, H, I or J also.
) Logic is a logical or Boolean operator and can either be OR or AND.
E B{t can only be E or El.
The AND end OR operations operate on Boolean variables that can
{;. only take the values 0 or 1. The tables below define the AND and OR
&
i operations: F
:
n
. ap| o 1 orR| o 1 N
- k.
i)
0 0 0 0 0 1
1 1 0 1 1 1 1
]a. For example: G AND i =0
i OOR1l =1

L‘.‘ The eonstruction: Mod¢ Bit . Logic . E Bit is a Mode Setting
-’. Operand as described in sec¢tion D 1 f.

fﬁ Either the Mode B(t or the E Bit can be preceded by a minus (-)

¥ sign denoting the logical "NOT" or complement function, i.e., if E is zero
E: then -E is one; if E is one then -E is zer:,

s The bit of RGD specified by & is set to 1 if the sult of

Mode Bit . Logic . E Bit equals 1; the bit specificd by o is set to zero

i- if the result is zero.

E; SET is a FINST/PE instruction.
(- W...:
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‘ Examples : fa
5 SETE  I.OR.E; a
Suppose I was 1 and E3
: | &
o Ewas 0O
o
before the execution of the above instruction. After the above instruction m?
is executed c“!
- )
. E will be equal to 1 because ]
N -
3 I.OR.E results in 1.0R.0 = 1 ‘ d
:‘ 15
The instruction then says to "Set the E bit equal to 1". Ef
5
5 SETEL  I.OR.E; -t
5 N
would result in El being set to 1. | R
: o
' If the programmer wished to ensble (set equal to 1) the E and El1 -
! bits for all PEs so that he could do 64-bit floating point arithmetic he )
b
- could do so with the following pair of instructions: ﬁq;
szni
- SETE E.OR.-E o~
}- 4
E SETEL  E.OR.-E o
k iy
The first instruction insures that the E bit will te set to 1 %
A since the logical expression ]
; &
. E.OR.-E 1
. Yot
, "
# has the value 1 regardless of whether E is O or 1: e 4
» ‘
F . ] *
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if E

0 E.OR.-E becomes 0.0R.1

n
=

if E

1 E.OR.-E becomes 1.0R.0 =

|
=

The same reasoning applies to the setting of the El bit in the second

instruction.

Next we need an instruction that can set the I bit of RGD

based on the results of an arithmetic comparison:

IAL  Operand;

where Operand can be a PE Register, a PE Memory Address, or an ACAR.

When Operand specifies a PE Memory Address the IAL instruction arithmeti-
cally compares the contents of RGA to the contents of the PE Memory
Address and sets the I bit to one if the contents of RGA are less; or sets

the I bit to zero if the contents of RGA are not less.

IAL is a FINST/PE instruction.

Examples :

IAL LOC,

if contents of RGA < contents of LOC, then set I to 1

if contents of RGA > contents of LOC, then set I to O

Although the comparison is done in every PE simultaneously, the
results can vary between different PEs; that is, the I bit in each PE is

one or zero depending on the arithmetic comparison after IAL is executed.
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There is another instruction: b4
gl i
p
y IAG  Operand; i;
w )
“
o which works just like IAL but it uses a "greater than" test rather than a g?
less than test, i.e., the I bit is set to one if the contents of RGA are Ff
‘ b
finde
greater than the contents specified by Openrand. =
- g?
- Since the IAL instruction sets the I bit and it is the E and El i
A bits which enasble or disable a PE we must devise a method to set the E g*
-]
and El bits based on the value of the I bit. Assume the E bit has been
X set to one, what instruction will cause the E bit to take on the value of ﬁ%
y i
4 the I bit?
- > ‘b ’

SETE I.AND.E;

f
o

—,
Py

o e

will set the E bit to the value of the I bit assuming the E bit has been

13

(O

S

L~ CFG

previously set to one. !
Consider the following instructions: E
f
1 SETE E.OR.-E;
2 SETEL E.OR.-E; L
3 IAG $R; )
4 SETE I.AND.E; '
. t
{ 5  SETEL  I.AND.E; |
: 6 A om ,
A
% II1-36
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] Instructions 1 and 2 enable all of the PEs, setting their E and El bits E
,_{ to 1. Instruction 3 sets the I bit equal to 1 for every PE whose RGA &;
&E contents is greater than its RGR contents. If RGA < RGR then the I bit E
is set to 0. Instructions 4 and 5 disable all PEs whose I bit is zero, ?

"E: thus if ¥

o

)l
. e

RGA > RGR PE remains enabled

y; RGA < RGR PE is disabled ;
: | :
- Instruction 6 is executed only by those PEs which are in the enabled 9
ﬁﬁ state. Thus L
_E}l if RGR < RGA  RGA is loaded from RGR ',
D if RGR > RGA RCA remains unchanged ;

The above set of six instructions will compare the contents of

-y RGA to the contents of RGR for every PE in the array and the lesser of the

two will appear in RGA.

_—

Note that instruction 5 uses the value of E in its Mode Setting f

T
L
LS S

P

Operand that was calculated in instruction 4, so that instruction 2 is

really not necessary.

)
woa
e

We may now write the ASK code necessary to select the largest

|

number from an array of 64 values. Assume the 64 values are stored at

Row X and the largest value is to appear in RGA of every PE:

I
b PO M)

‘L.a

el e
L)
* -

>
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6 LOOP:

10
11

12

14

PRI B S ey’ i S

SETE
SETEL
CSHL(0)

TXLTM(1)

E-OR-"E;

E.OR.-E;

I.AND.E;
I.AND.E;
$R;
E.OR.-E;
E.OR.-E;
13

,LOOP;

Instructions 1 and 2 enable the entire PE array.

Instruction 3 brings the array of numbers from PE Memory Address

X to the RGA of each PE.

Instruction 4 initializes $CO (which will be used to control the

routing distance) to 1.

Instruction 5 sets up loop control in $Cl1.

Instruction 6 performs the route.
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- Instructions 7, 8, 9, and 10 are the heart of the program:

Instruction T sets the I bit to one of all PEs whose RGA < RGR. Instruc-~-

Y-y
"_n",l',l

tions 8 and 9 disable all PEs whose RGA > RGR and leave enabled those that

have RGA < RGR. Instruction 10 loads the RGA of every enabled PE from

RGR. Therefore, only those PEs whose RGA < RGR will have their RGA loaded

N il L N B T e TR Y - - . CERALTELAS T L TS ST e T TR T TR R SRS
e DRI o e B A B L R VO e SO A DO A S S el T - e Y et AR T i e T R TR R LTI TR TR TR R T T - ‘1
|

F ‘.
l‘l E

from RGR and RGA will contain the larger of RGA and RGR or Max (RGA, RGR).

After this process is repeated six times through the loop the largest value

———
s

’
e God

in the array will appear in the RGA of every'PE.

c Instructions 11 and 12 re-enable the entire PE array previous to
&i the next pass through the loop.

s

h Instruction 13 doubles the routing distance.

Instruction 1k transfers control back to Instruction 6 if the

e

loop is not finished.

| 1 e | il B B bob e

It is very important to understand the operation of Instructions

T, 8, 9 and 10:

X 4 r
L]
Tl

=

F T IAL $R;

"\

to 8 SETE I.AND.E;
E:' 9 SETE1 I.AND.E;
-

10 LDA $R;

b ) |
e trlal
P e

They perform the following logic:

:'..l 2 .‘\'} l ;_‘-'
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If the contents of RGA < contents of RGR, set I to 1. &
then I.AND.E has the value 1 also ’E
thus E and El1 are set to 1 and the PE is enabled.
If the contents of RGA > contents of RGR, set I to 0.
then I.AND.E has the value O also
thus E and El are set to O and the PE is disabled. }{g
Instruction 10 is only executed by enabled PEs and this means the i
lar;er of RGR and RGA ends up in RGA--which is Just what we want.
o
3. Matrix Multiplication 91
Given a 4 x 4 Matrix X = —kll X5 X5 X)),
B
Yo ) *o3 Xol
5 e Yz Eg !
b'd b'd b'd b'd o
N L1 42 43 bl | i
%
! . = r - “'
and a U x 4 Matrix Y Y11 Y10 Y13 Y &
Vo1 Yoo Y23 Yol i
- Y31 Y32 Y33 Y3y ol
- i Yie Yaz Vi

we can compute the matrix Z = X + Y using the definition:

L ')

-

,
Epi’
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2 o = i = )4

244 § Xk Vig fori=1, 2, 3,

!I k=1

= J = 1’ 2’ 3’ h
{2 The FORTRAN Program to compute the product of X and . based on the above
r. definition might look like

- DO 20 I =1, 4

o
ig DO 80 Jm= 1, L
E\ SUM = 0,

'4

DO 10 K=1, 4
i 10 SUM = SUM + X(I,K) * ¥(K,J)

20 Z(I,J) = suM

[ o ) i s
et o 4 L

g! Therefore, consider the following algorithm

gu multiplication:

1. Take Xqy and multiply it times the

2. Take X0 and multiply it times the

3. Take x13 and multiply it times the

L., Take x;), end multiply it times the

i
W
-l

o

* ..l
=
.

rows we have the lst row of Z:

,.._.A
i
- £ ..
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for

1st
2nd
3rd

Uth

The method using the definition of matrix multiplication is not
the best algorithm for ILLIAC IV, however. Since ILLIAC IV can handle
a whole row or vector of values simultaneously, a matrix multiplication

program should take advantage of that fact to be efficient.

matrix

row of Y

row of Y

row of Y

row of Y

Each of the sbove 4 operations is multiplying a scalar value (x) times a

vector (Y) resulting in a vector or row quantity. If we sum the above
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* = Y
Xy, * (1st Row of ¥) (x1,99; T X11913 X,197),) ",
+ + {
* = g
X, * (2nd Row of Y) (x) ¥ *12¥20 *12¥23 %1 o) &
+ o 2
* = q
X5 (3rd Row of Y) (xl3y3l X) 30 X) Y33 x13y3h)
+ + e
* : = i
gy PN BOW St ) (%)% e X3 *10¥ ) 1
5
(1st Row of Z) = Z xlkykl Z xlkka Z'. xlkykS Z xlkykh
To get the 2nd row of Z we take the second row of X and multiply »
‘J “:

each element by the lst, 2nd, 3rd and bth rows of Y and sum the rows agein.

Similarly for the third and fourth rows of Z.

as:

o R R T '_..". ;r',&'r*
‘ 18 R

The algorithm might appear

1. i« 1 (set i equal to 1)

2. Take x,, and multiply it times the lst row of Y E?

3. Take X5 and multiply it times the 2nd row of Y

L, Take X; 3 and multiply it times the 3rd row of ¥ é;

5. Take x,;) and multiply it times the 4th row of Y 0

6. Take sum of the sbove 4 rows and store in i'® Row of Z <

T. i+« i+ 1 (Bump up i) ??
k3

8. If i > L STOP, otherwise go back to Step 2.

TS ORI N,

L

3
.
»
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=
;-#
R
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The flow chart for performing Z =

“ where X is M rows by N columns
t“ Y is N rows by K columns

and Z is M rows by K columns is:

Ej Notation: [Y]J = jth row of Matrix Y

[S] = row or vector of values

: s [EERE NI o D

™ In order to write the ASK code for the matrix multiplication

problem we must learn a few more instructions.

SLIT (ACAR Numben) =Litenak;

SLIT is called a "short literal" instruction and it works Just like the

literal instruction LIT except that the value of =Li{teral is placed in the

4 III-43
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low order 24 bits of the ACAR specified by ACAR Number. The other 40 bits
of the specified ACAR are unchanged--as opposed to the LIT instruction
which operated on the entire 64 bits of the specified ACAR. SLIT is an

ADVAST instruction.

Example:
SLIT(0)  =15;

will place the binary integer 15 in the lcw-ordér 24 bits of $CO.
SLIT(1)  =X;

will place the location of the variable X into the low-order 24 bits of
$C1. In the above example (X) is a symbolic CU Memory Address and refers
to one word of storage in PE Memory, not to a whole row. This will be

discussed in further detail shortly.

ALIT (ACAR Numben) =Liternal;

The ALIT instruction adds the value of =L{teral to the low-order
24 bits of the ACAR specified by ACAR Number. The other 40 bits of the

specified ACAR are unchanged. ALIT is an ADVAST instruction.

Example:
ALIT(3) =1;

will increase the low-order 24 bits of $C3 by 1.
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] !l It can now be pointed out that when a LIT instruction of the
..J

form:

[l

LIT(3) 1, 6, 0;

Pl

is used the Starting Value of O is placed in the low-order 24 bits of $C3.

1

0 Therefore if the programmer wishes to modify the Starting Value, he can

4"

do so with an ALIT or a SLIT instruction. ACAR indexing is also done with

T
L R

only the Stanting Value field of the ACAR so. that offsets from a particular

Row can increase (or decrease) as a loop is traversed. More will be said

ﬂ:,_“)

about this point later.

We will, of course, also need a multiply instruction:

Rt il
r..l‘.’

"7 MIRN  Operand;

k' where Operand can be a PE register, a PE Memory Address or an ACAR.

E! The value specified by Operand is multiplied by the contents of
- RGA and the result of the multiplication appears back in RGA. (Lower

Ef significant bits also appear in RGB but we will not use this information.)
E? Rounding and normalization will occur. MLRN is a FINST/PE instruction.

(e Examples :

)

LDA X,

A MLRN ¥;

causes the product XY to appear in the RGA of every PE.
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LIT(2) =2.0;

MLRN $c2,

causes the contents of every RGA in the PE Array to be doubled. The

constant 2.0, stored in $C2 is sometimes called a "broadcast" Operand

s

since it is a scalar value that is transmitted or broadcast to all PEs

kﬁ for multiplication via the Common Data Bus.

f"; The method we shall use to perform the matrix multiplication ﬂ
E" algorithm will transmit the appropriate X values to an ACAR in the Control ‘
ﬁ Unit, which in turn will be "broa( ast" to the PE array as part of the g
H multiply instruction (_MI.iN_). It is easy enough to get a scalar constant a
e .
!'; into a specified ACAR using a LIT instruction as above, but how can we !

"get" the scalar elements within the X matrix? We need an instruction

0

ud

LK
3 “n

that will LOAD a specified CU register from a single location of a single

A s
.
5% W

PE memory. We do this with the LOAD instruction:

Sl s

F

ESIR @FrEe

LOAD (ACAR Number) CU Registen;

LR A
oA 2L

#de} _

where ACAR Number can be 0, 1, 2 or 3 and specifies the ACAR ($cO, $c1,
$C2 or $C3) which contains the CU Memory Address whose contents is to be

loaded into CU Registern. CU Registen can be $CO, $C1, $c2, $C3 or $DO

€2 @S0

through $D63, and can be ACAR indexed.

,ﬁ...,_-g-,...w
DAY e S T e e

?
—~s

Example:

T

i

™
i

"

sLIT(2)

U
>

oo
.
]

LoAD(2)  $cC3; o

f
(XA

.

LLELE
L
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[Ea
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The SLIT instruction will load $C2 with the CU Memory Address of X. The

!‘._ U

LOAD instruction will then load the contents of CU Memory Address X into
$c3.

l" N
A

As was pointed out in section D 2 a, a CU Memory Address

S
« el

references a single word in PE Memory (ahd not a row of words as is the

F,',. ‘l‘)

case with a PE Memory address). This single word referenced by a CU Memory

Address resides in a specified row and in a specified PE within that row

Lo
e 2]

and so it requires two coordinates to specify a CU Memory Address. The

scheme for presenting the two coordinates is as follows:

A CU Memory Address consists of two varts, a PE row address

IRTTN

followed by an offset which indicates how many PEs to the right or left
ﬁ is the single word referenced. For example, if X + 5 is a CU Memory

Address then the specified row is PE Memory Row X, the plus sign indicates

& <
i*as =
v A

the direction of offset is to the right and precedes the offset distance
> so that the word referenced by CU Memory Address X + 5 is the word in

PEM5 of Row X in PE Memory. The general form is:

Row Address + Ofgset

3 .'i'
e
ale

If the sign is positive the offset is to the right, if negative

the offset is to the left.

o

If X - 1 is a CU Memory Address then the offset is 1 to the left

LS }.l_ '_;. A

so that the word referenced by CU Memory Address X - 1 is in PEM63 of the

i Y
-

Row preceding X or Row X - 1 (see Figure III-3).

4

]
e
"

e e
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CU MEMORY ADDRESS X+64)
2' 3
s (Cu MEMORY ADDRESS X-1) ‘
3 PEM, PEM, PEM, PEMs PEM¢3 k:
i [ ] [} [ ] [ ]
< . ° o . E;‘»
:: [ ] [ ] [ L ] / t_&
')5 ROW X | X1 X12 X13 X14 =
i X X -
i, ROWX+1| Xz X22 23 24 =
ROW X+2 | Xa3 X32 X33 X34 T 5
ROW X+3| X4y X42 Xe3 Xaa o
N 3 ' . . g
", o [ [ o !
N o [} [ [} ]
ROW Y i Yi2 Yi3 Yie 3
ROW Y+1 ¥21 Y22 Y23 Y2a o &% { -
ROW Y+2 ¥z Y32 Ya3 Y34 ;
ROW Y43 | VYa1 Ya2 Ya3 Yas :
[} ® [ [ ] E
[ ] [ ] [ ] [ ] -
[ ] [ ] [ ] [ ]
ROW Z 211 212 2u Z“ E
ROW Z+1 221 222 Zo3 Zoq o
ROW 242| 13, 232 Z33 Z34 "
ROW Z43| 24 Z42 243 Zss f:
o o [ ] [ = 1
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ n
I3
o
L : Fa N
3 N
. Figure III-3. Memory Storage for Matrix Multiply Problem &y
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If X is a CU Memory Address then the offset is presumed to be

zero and the word referenced by CU Memory Address X is in PEMO of Row X.

If X + 64 is a CU Memory Address then the offset is 64 to the
right so that the word referenced by CU Memory Address X + 64 is in PEMO
of the Row following X or Rew X + 1 (see: Figure III-3).

There is no problem in ascertaining whether an address is a PE
or CU Memory Address since a CU Memory Address can only appear as an

"perand for the CU (or ADVAST) instructions LIT, SLIT or ALIT.

Summarizing: Operands which are part of CU instructions are
called CU Operands, and if this Operand is a Memory Address then the
Operand is called a CU Memory Address and it refers to a single word
(and not a row) in PE Memory. Operands which are part of PE instructions
are called PE Operands and if this Operand is an address then the Operand

is called a PE Memory Address or a Row and it refers to a Row of PE

Memory .

Let us now see how CU Memory Addressing works within the context

of our Matrix Multiplication Problem:

Suppose the X, Y, and Z Matrices are stored as shown in Figure

III-3. The following pair of instructions:

SLIT(2) =X+1;

LoAD(2)  $c3;

IIT-49
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would cause X, which is stored in PEMl to be loaded into $C3. Note that
IOAD is a CU instruction which loads one word from PE Memory (called

CU Memory) into $C3.

Now consider how the following sequence of instructions operate:

1 SLIT(2) =X-1;

2 LIT(1) 1y 35 03
3 LOOP: ALIT(2) =1;

4 LOAD(2) $C3;

5 TXLTM(1) ,LOOP ;

Instruction 1 places the location of CU Memory Address X - 1
into the low order 2k bits of $C2. The location referred to is CU Memory
Address X - 1 which i. indicated by the shaded portion of PEM63 of Row
X - 1 in Figure III-3. Note that CU Memory Address X - 1 is one word back
from CU Memory Address X. Since SLIT is a CU instruction, CU Memory

Address X - 1 is not back one whole row but only one word.
Instruction 2 sets up the loop control using $C1.

Instruction 3 increases the low order 2k bits of $C2 by 1. In
other words, the location now refererced by $C2 is CU Memory Address X

which contains xll'

Instruction 4 will load $C3 from CU Memory Address X, i.e., X,

will be transmitted to $C3.
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Instruction 5 will loop us back up to LOOP until we have

executed our loop U times.

The second time through the LOOP we start at instruction 3 where
$C2 is increased again by 1. The location now referenced by $C2 is CU |

Memory Address X + 1 which contains Xype
Instruction 4 will now load $C3 with Xp0

The third time through the loop instruction 4 will load $C3 with

x The fourth time through the loop instruction U will load $C3 with X)),

13°
It will be in this way we shall transmit the appropriate value

of xij to ACAR3 to be "broadcast" as a multiplier.
i

Let us again review the convention of referencing one value that

is stored in PE Memory by a CU Memory address:

When a PE instruction references memory location X + 1 it is
referring to a whole Row of values (in our example the second row of the
X matrix as shown in Figure III-3). Since the PEs are an array this type
of referencing is possible. However, when a CU instruction references a
location in PE memory it can only refer to the contents of one location
(a scalar value) since it has no capability to store a row or vector.
Therefore when X + 1 appears as a CU Memory Address.it must be interpreted
differently: the first location of Row X is found in PE Memory. X+1
then refers to the next word in row X which is in PEMl and contains X5

Similarly X + 3 as a CU Memory Address refers to xlh' Finally, and most

important:
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X + 64 as a CU Memory Address refers to the first location in

PE row X + 1 which contains x,,. (See Figure III-3.)

For our problem since we are multiplying a 4 x 4 matrix by a
4 x 4 matrix we shall have to remember to skip 60 locations to bring us

to the beginning of the next row of X. We can do this with an
ALIT(2) =60;
instruction whenever we are ready to reference the next X Row of PE Memory.

Before we write the Matrix Multiply program, there is one more

fine point that we must cover. Consider the following ASK instructions:

LIT(0)  2,5,1;

LDA Y(0);

The first instruction sets up a Starting Value of 1, a Limit of 5 and an
an Increment of 2 in $C0. The second instruction loads the RGA of all

PEs in the array from PE Memory Address Y indexed by the contents of $co.
But $CO contains three values--which one is used to index location Y?

The answer is that only the low-order 16 bits of an ACAR are used to index

a PE Memory Address. Since the Starting Value resides in the low-order

2Lk bits of $C0, it is the Stanting Value that is used to index Y and

therefore the

N A NGIE S RIS AR et T e e T N G L g e e, e L S A M L
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instruction will cause Row Y + 1 to be loaded into RGA of all PEs in the

array, since $CO contains a Starting Value of 1.

I s
.I 'a 'r~'

The following ASK instructions:

C LIN(1)  1,3,0;
LOOP: LDA Y(1);

LI
[“,-.

TXLTM(1)  ,LOOP;

D ]
Ve
oo,

would cause RGA of each PE in the array to be loaded consecutively with

ROW Y, ROW Y + 1, ROW Y + 2 and ROW Y + 3 as the loop is traversed.

We are now ready to write the Matrix Multiply program. We

gy 0
L B}

assume the X and Y matrices are given and the storage of their elements

i is as shown in Figure III-3.
. 1 LIT(0) 1, 3, 0;
L 2 SLIT(2) =X~1;
3 LooP2: LDS =0;
f 4 LIT(1) 1, 35 04
' ol [ 5 moer: aurr(z) =1,
£ T| [V 6 LoAD(2) $C3;
. el Iz ¢ LDA Y(1);
i 8 MLRN $03;
e [ I ADRN $s;
of Jo =
- of [o 10 LDS $A;
& FIE n TXLTM(1)  ,LOOPI1;
12 STS z(0);
. 13 ALIT(2) 605
) 1k TXLTM(0)  ,LOOP2;
i
& III-53
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Note that the outer loop (LOOP2) is controlled by $CO and that
RGS is used to accumulate the sums. $CO also indexes Z at instruction 12
where the contents of RGS are stored in ROW Z, ROW Z + 1, ROW Z + 2 and
ROW Z + 3 as the Sfarnting Value in $CO takes on the values 0, 1, 2 and 3

as LOOP2 is traversed.

$C1 is used in much the same way. It controls the inner loop
(LOOP1) and indexes Y at instruction T. As is the case with Z, using $C1
to index Y makes reference to succeeding rows of Y, i.e., the first time
through the loop instruction T loads RGA of every PE from Row 1 of the

Y matrix, the second time through from Row 2, ete.

Table IITI-3 presents the nontents of pertinent registers as the

ASK code executes through LOOPl and LOOP2.

The method used here to muitiply two 4 x 4 matrices is, of
course, only a choice from many possible algorithms. For larger matrices

there are more efficient methods which utilize the BIN instruction:

BIN (ACAR Numben) ADB Location;

The BIN works just like the LuAD cxcept that it moves eight values from

PE Memory instead of one. ACAR Number specifies the ACAR (0, 1, 2, or 3)
which contains the CU Memory Address of the first of the eight values to be
moved. The eight values must be stored contiguously. The ADB Location
denotes the starting location in the /DB where the eight values are to be

stored. The ADB Location can also be ACAR indexed. BIN is an ADVAST

instruction.
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Examples :

SLIT(2) =X;

BIN(2)  $D8;

would cause the first eight values stored starting at CU Memory Address X
(the values in PEM,, PEM, ... PEM7 of row X) to be placed in $D8, $D9 ...

$D15 respectively.

LIT(1)  =8;
SLIT(2) =X;

BIN(2)  $DO(1);

would cause the first eight values starting at CU Memory Address X to be

placed in $D8, $D9 ... $D15.

The BIN instruction allows us to send eight values from PE
Memory to a section of the ADB. With reference to our Matrix Multiplica-
tion problem, we would next need an instruction that could transfer the
values from the ADB into an ACAR so that they could be broadcast as
multipliers. The ADB locations $DO through $D63 cannot be used as

PE operands (see section D 1 d), only one of the four ACARs is permissible.

LDL could be used in this case to transfer information between CU Registers:

LDL (ACAR Numbenr) CU Registen;

LDL loads the specified ACAR Number (0, 1, 2 or 3) from the specified
CU Register ($co, $c1, $C2, $C3 or $DO through $D63). The CU Register

can be ACAR indexed. LDL is an ADVAST instruction,
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would load $C3 from $D8. The LDL instruction would have to be executed
8 times (within a loop) to transmit the contents of $D8 through $D15

(which we previously transmitted from PE Memory via the BIN instruction).
The instruction pair

LIT(1) =2

LDL(3) $D0(1);
would load $C3 from $D2, since $DO0 is indexed by $C1.

If we were multiplying two 64 x 64 matrices the combination of
BIN and LDL in & loop would be more efficient than LOAD which transmits

Just one value at a time.

L, Matrix Transpose

We obtain the transpose of a matrix by switching the rows for

the columns and the columns for the rows, that is,

if A is N x M matrix comprised of elements aiJ
and B ir M x N matrix comprised of elements biJ
then B is the trenspose of Ajor B = AT if and only if
b,, = a,, for 1<i<M
i) Ji ==
Lg 5 &4
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A FORTRAN SUBROUTINE to transpose A and store the result in B

might look like:

SUBROUTINE TRANS(A, B, M, N)
DIMENSION A(N,M), B(M,N)

DO 10 I

1,M
W I &= LN

10 B(1,J) = A(J,I)
RETURN

END

Note that the FORTRAN program moved only one element of A at a
time to the appropriate position within the B matrix. Using ASK we will

be able to move a whole row at a time.

There is a problem in data storage we must consider before we
even attempt to write down the algorithm to transpose a matrix. Within
the transpose program we will be accessing the rows of matrix A and
storing them to the appropriate column of B. Now, if we store a matrix
in PE Memory as we did in the Matrix Multiply problem then rows can be
accessed very easily and efficiently with one ASK instruction. For example,
since the rows of the matrix are stored across Rows of PE Memory, the
instruction LDA =X+l would access the second row of matrix X (see Figure
III-3). Getting hold of columns in a simultaneous manner is more difficult
when we use this "straight” (no change to the topology of the matrix--rows
are stored as rows and each element is in its proper location) storage

scheme as shown in Figure III-3. Since column J of the matrix is completely
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contained within PEM’J_l there is no single ASK instruction which can access

a column simultaneously.

Since we will be wanting to access (read or write) columns as
well as rows with equal facility for our Matrix Transpose problem, we
must first develop a storage scheme which will allow us to.do this. What
we want is a storage allocation such that each element of a column is also
in a different PEM. One such allocation is called "skewed storage" and
is shown for a 4 x 4 Matrix in Figure III-L. For simplicity we assume a

4 PE ILLIAC until we actually code the problem for & 64 x 64 matrix.

Note that the skewed storage scheme as shown in Figure III-L
accomplishes our goal: each element of each row is in a different PEM and
each element of each column is in a different PEM. Now let us look at how

this type of storage can be used to access columns as efficiently as rows:

[ ] [ ] [ J [ ]

[ ] [ ] [ ] [ ]

L ] [ ] [ ] [ J
ROWA | a;, a,, 0, a, lst ELEMENT SKEWED O TO RIGHT
ROWA+1 | Qg a;, a5, [P 1st ELEMENT SKEWED 1 TO RIGHT
ROW A +2 - 1Y a3, ay a3 1st ELEMENT SKEWED 2 TO RIGHT
ROW A +3 " 7Y " P " Y a4, 1st ELEMENT SKEWED 3 TO RIGHT

[ J L ] [ ] L ]

L ] L ] [ ] [ ]

[ ] [ ] [ ] [ ]

PEMo PEM, PEM, PEMs

Figure III-4. Example of Skewed Storage. The 4 x 4 Matrix A
is stored skewed in a 4 PE ILLIAC.
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Suppose RGX has been loaded with the values 0, 1, 2 and 3 as
shown in Figure III-5(a). If our 4 x 4 matrix A is stored skewed, what

will appear in RGA if we execute the ASK instruction?
LDA *A .

Since the asterisk (*) denotes indexing by RGX, we can view the
value in RGX as an offset to Row A so that RGA will appear as shown in
Figure III-5(a) after LDA *A; has been executed. 'A closer look at RGA

shows that it now contains the 1lst column of the matrix A.

Now suppose that we rotate the values in RGX one place to the

right so that they appear as

54 05 1; 2 as shown in Figure III-5(b)
Now if we perform the same instruction
LDA *A;

the offsets are different so that the 2nd column of Matrix A will appear
in RGA after the instruction has been executed. However, the 2nd column
is not in the right cider; it must be rotated one place to the left before

storing it as a row in our transpose problem.

Figure III-5(c) shows how the 3rd column is accessed after we
rotate RGX one more place to the right so that it contains the pattern
2, 3, 0, 1. However the 3rd column must be rotated two places to the left

to get it back in the proper order.
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Figure III-5(a)

RGA conteins Column 1 of Matrix A
(which has been stored skewed)
after the instruction LDA ¥A; has
been executed. Circled elements
are accessed by the instruction.

Figure III-5(b)

RGA contains Column 2 of Matrix A
after LDA ¥*A; has been executed.
RGA must be rotated ome place to
the left if the column is to be
used in a transpose.

[

Figure III-5(c)

RGA contains Column 3 of Matrix A
after LDA *A; has been executed.
RGA must be rotated two places to
the left if the column is to be
used in a transpose.

o0
.;.

Figure III-5(d)

RGA contains Column 4 of Matrix A
after LDA *A; has been executed.
RGA must be rotated three places
to the left if the column is to be
used in a transpose.

Figure III-5. Skewed Storage is Used to Simultaneously
Acc 'ss Columns as well as Rows
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Finally the 4th column is accessed as shown in Figure III-5(d) :'
A
J when the pattern in RGX is rotated once more to the right (so that it
5 w
. contains 1, 2, 3, 0) and the LDA ¥7p: is executed. As might be expected, tg
the bth column must be rotated three places to the left to restore the E%
IR
3 proper order. -
~ ¢
’ Now that we have a method of storing our matrix so that both e
columns and rows can be accessed simultaneously let us consider the flow- i
8
.;‘
chart necessary to transpose our 4 x U4 matrix A, storing the transpose in B:
&
s
Wesa

ot

Load RGX with the
‘ I«0
pattern: 0,1,2,3

Rotate the accessed
Column I places to the
left (to get column
in right order)

{k

Store column to
——= first Row (offset =
by I) of Matrix B

Execute

LDA *A,

mammmn _ |

]
Fren

g:;
9 Rotate RGX - i
;‘ pattern 1 place——E ::)
E to the right '
3 R
. 1
. >
- 3
' Let us now write the ASK code to transpose the 64 x 64 matrix A
[.‘ Y.\z
* . . . . .v’
&. and store the result in the matrix B. The flow chart indicates that there s
E'
- are five basic instructions we want to loop through: ,4 3
e
: 4
R 0
A !L"i
; g
3 4
: III-66
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1. LDA
2. RIL
3. SR
4. RIL
5. LDX

where we wish D to take on the values 0, 1, 2 ... 63 as we traverse the

loop.

the first instruction accesses a column of Matrix A.

tion routes the column back to the proper order.

stores the column to the appropriate Row of B.

Assuming that we have already loaded RGX with the proper pattern,

The second instruc~
The third instruction

Instructions 4 and 5 rotate

RGX one place to the right by Routing, then reload RGX with the routed

pattern.

(Remember the result of a ROUTE appears in RGR only.)

The following ASK instruction will transpose Matrix A and store

the result in Matrix B assuming A has been stored skewed as shown in

Figure III-6.

O o~ O\ oBFow N

=
o

BEGIN:

LDX
LI7(0)
wIT(1)
LDA
RTL
STR
ALIT(1)
RTL

LDX
TXLTM(0)

XROW 3
1,63,0;
=64,

*A-,
$4,0(1);
B(0);

=TTT7T777:8;

$X,1;
$R;
,BEGIN;
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XROW —» (0] 1 63 =
h‘ 5
&
ROW A —» 9,1 9,2 A MATRIX 0; 64 o
J264 Q2,1 02,63 ;‘..4
: : : 1y
® [ ] [ ]
Ggq,2 94,3 Og4,1 B
® @ o M
ROWB —| 01 9,2 B MATRIX Tes,1 B
(%
a2 022 0642 5}
. . s
) ] L4 e
9;,64 92,64 964,64 -
PEM, PEM, PEMgy gﬁ
3
-
r" o
! Figure III-6. Storage Scheme to Transpose the 64 x 6k X
. Matrix A (A is stored skewed) and [
Store Result to Matrix B -
i

Instruction 1 loads up RGX with the initial pattern of values
(0, 1, 2 ... 63) to be used to offset the reference to Row A at instruc—
tion b. Instruction 2 sets up the loop control variables in $C0 so that
the 64 columns of A are stored to the 64 rows of B. Instruction 3 Ei

initializes the Routing Distance to be used in Instruction 5. PSince we 194

>
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wish to perform left routes and we should never do this by using negative -
numbers in an ACAR to be used as an index (see warning on page III-20)
we use the fact that Routes are end-around so that a left Route of I can

be accomplished by a right Route of 64 - I. Specifically:

A Left Route of 0 is equivalent to a Right Route of 6k

A Left Route of 1 is equivalent to a Right Route of 63

A Left Route of 63 is equivalent to a Right Route of 1

Since we wish to start with a left Route of 0 (the first column is already
in proper order) and then increase the Routing Distance by one each time
through the loop, we start with a Right Route of 64 and decrease that

value by one (at Instruction T) each time we traverse the loop.
Instruction 4 accesses a column of Matrix A.
Instruction 5 puts the column in proper order.
Instruction 6 stores the column to the appropriate Row of B,

Instruction 7 decreases the Routing Distance stored in $C1 by
one. (An ALIT(1) =-1 would not work since the -1 would be generated in
the sign-magnitude representation. What we need for our problem is a
minus one in two's complement notation so that as it is added to the
low order 2k bits of $Cl, the integer 64 will become 63 then 62, etc. as

the loop is traversed.)
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Instruction 8 rotates RGX one place to the right.
Instruction 9 places that new pattein back in RGX.

Instruction 10 loops the program back to Instruction k& where the

next column is accessed.

After control has passed through Instruction 10, the 64 x 6k

Matrix A has its transpose stored in the Matrix B.

Now that we know how to use skewed storage to access columns as
well as rows of a matrix, a new matrix multiplication algorithm could be
designed: If one of the two matrices to be multiplied were stored skewed,
then a column of that matrix could be accessed and multiplied by a row of
the other matrix. The result would be in RGA of the PE array and if
these values were summed (using a Logsum algorithm) then one element in
the product matrix has been formed. This approach to matrix multiplica-
tion is not as efficient as the one we developed in section I 3; however,
the reader should attempt by himself to write the ASK instructions that

will perform this algorithm.

5. Temperature Distribution on a Slab

In Chapter II we discussed a method of solution to the boundary
value problem of temperature distribution on a slab (see Section E of
Chapter II). On page II-46 the basic equation for the relaxation method

is given:
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which tells us that the temperature at any point should be equal to the

OIS .

average of the temperatures at the 4 closest neighbors.

P

"l‘) r

We shall develop the ASK code necessary to provide a solution

for two cases: The first case will relax an 8 x 8 array of mesh points

o]

STy
A,

with initiel conditions as shown in Figure II-21 on page II-U8, using

g; only one Row of PE Memory. For the second case, we will solve the same
1 8 x 8 array with the same initiasl conditions, but we shall use 8 Rows of
&f PE Memory. (See Figure 1II-7.) Figure III-8 shows the exact solution
b for either case. Case 1 represents the most efficient solution to the

problem since it utilizes all 64 PEs but Case 2 is presented to show how
[:‘ the date allocation influences the program necessary to process the data;
i.e., the program that processes the data as allocated in Case 1 cannot
: E! be used to process the data as allocated in Case 2. Casé 2 is also
representative of the type of solution necessary for a problem with more

than 64 mesh points.

-

a, Case 1. One Temperature per FEM

ey
4

o=

Before presenting the ASK program, we shall have to learn a few

more ASK instructions. We will need a method of disabling the "border"

RPN

PEs during the calculation since they represent the boundary values for

the temperatures and must remain at a constant value throughout the
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Figure III-8. Exact Solution for both Case 1 and Case 2
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relaxation process. For Case 1 we are allocating the two~-dimensional array

of temperatures across one PE Row, thus the following PE numbers must be

disabled:

8, 15
16, 23
2k, ‘ g
32, 39
Lo, L7
48, 55

56, ST, 58, 59, 60 61, 62, 63

The LDEE] instruction will load the E and El bits with the bit pattern

which was previouély stored in a specified ACAR by a LIT instruction:

LDEEL ACAR Numben;

where ACAR Number can be $c0, $01, $C2, or $C3 and specifies which ACAR
contains the bit pattern that is used to set the E and El bits of RGD for

every PE in the array.

An ACAR contains 6L bits and there are 64 PEs in the array. If
bit i of the specified ACAR is one then the E and El bits of RGD of PEi are
set to one, enabling that PE. If bit i is zero then the E and Fl bits of

PEi are set to zero, disabling that PE. LDEEl is a FINST/PE instruction
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and uses the Common Data Bus to transmit information from the specified

ACAR to each RGA of the array as described in Chapter II section B 4 b,

Example:

LIT(0) =00TETETETETETE00:16;

LDEE1 $co;

The LIT instruction will load the hexadecimal (base 16) constant shown
sbove into $CO. That hexadecimal constant can be written in binary and it
becomes clear that the pattern of ones and zeros is the one we need to

disable the border PEs for Case 1:

/This pattern repeats six times

00000000011111100111111001111110021111110011111100111111700000000

Bit 0 Bit 31 Bit 63
for PEo for PE for PE63

31
then execution of
LDEE1 $co;

uses the above bit pattern within $CO to set the E and El bits.

If the programmer wished to enable all PEs he could use

LIT(0) =LTTTTTTTTITTTITTTTTTT777:8;5

LDEE1 $co;

or
SETE E.OR.-E;
SETE1 E.OR.-E;
1II-75
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We shall also want to apply the epsilon convergence criterion as

described on page II-51.

| <e for2<ic<7t

+1
'”?,J - Uril,J

2<3<T

This means that we will stop the iteration when succeeding values of

calculated temperatures differ by only a prescribed €. This condition must

be true for all temperature values simultaneously. We choose € to be

1l degree as we did in Chapter II. Also, to insure that we fianish the
program within a finite time, we shall include a loop control that will
end the calculation after 50 iterations regardless of whether the epsilon
convergence criterion is met. In order to apply the epsilon convergence

criterion we learn the following instructions:

SBRN Operand;

SBRN will subtract from the contents of RGA the value specified by Openrand
and place the result, rounded and normalized back in RGA. Operand is

usually a Literal, a PE register, an ACAR, or a PE Memory Address. SBRN

is a FINST/PE instruction.

Example:

SBRN $s;
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will subtract the contents of RGS from RGA and place the result back in

RGA'

In order to take the absolute value of & quantity we have the

simple instruction:

SAP g

which sets the sign bit of RGA to positive (+).

Example:

SAP 2

If RGA contained a negative number before execution of this instruction,
it will be made positive. If RGA contained a positive number, it will be

unchanged.

Finelly we shall require an instruction that can simultaneously
sense the contents of a specified bit of RGD for all PEs and branch if they
are all zero. We will need then an instruction of this type to implement
the € convergence criterion. This instruction is ZERT. First, however
we must take all 64 of the specified bits and place them in an ACAR before

ZERT can test them; we do this with the SETC instruction:

SETC (ACAR Numben) Mode Bit;
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where ACAR Number can be 0, 1, 2 or 3 denoting $C0, $C1, $C2 or $(7 and

specifies which ACAR will be set with the values of Mode Bit for all PEs

in the arrsy.

Mode Bit specifies one of the eight mode bits of RGD and can be

b E, E1, F, Fi, G, H, I or J.

SETC works somewhat like LDEEl in reverse: If the Mode Bi{t of

< PE; is one, then bit i of the specified ACAR is set to one; if the Mode Bit

of PEi is zero, then bit i of the specified ACAR is set to zero. SETC is

an ADVAST instruction and uses the Mode Bit Line discussed in Chapter II

section B 4 4.

Example:

i)

»
=41

- SETC(3) Ej

T

P

will set the 64 bits of $C3 to the corresponding 64 values of the I bit in

‘i,

1

RGD of all 64 FEs in the array.

r—
W

st g e

s

4 ZERT can now test the contents of the ACAR set by SETC and branch bt}
b

: if all bits are zero: -
3 9
p ZERT (ACAR Number) ,Location; o
- B
: == g
%: will cause a jump to Location if every bit of the ACAR specified by ACAR i
: i
" Number is zero. Location must be +127 of the ZERT instruction. ZERT is an

ﬁ ADVAST instruction.
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Exgggle:

IAG $Co3
SETC(3) 1I;
ZERT(3)  ,OUT;

and will execute the next instruction otherwise.

every PE in the array, Instruction 3 will jump to OUT.

The first instruction, IAG, will set the I bit to one for every PE whose
RGA is greater than the contents of $CO and set the I bit to zero other-
Instruction 2 will then transmit the I bits of the PE array to $C3.
Instruction 3 will jump to location OUT if all of the I bits vere zero,

Thus, if RGA < $CO for

The ZERT instruction sometimes necessitates the writing of a

HALT instruction if the jump is to be made to the last statement of the

program. HALT is of the form:
' P HALT
E: and stops the program from executing. HALT is an ADVAST instruction.
ES Example:
8 ZERT(3)  ,0UT;
-
TXLTM(1) ,LOOP;
&: OUT: HALT;
E%
)
| E\
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If the contents of $C3 are all zero then a Jump is made to location OUT

where the program ends; otherwise a transfer is made to LOOP based on the

contents of $C1.

We shall introduce one more notation before writing the ASK code

for Case 1: The percentage sign (%) in an ASK statement signifies that a

comment to the reader is sbout to follow. The ASK assembler will not

interpret any character on a card following a %vsign. We assume the

initial value of the temperatures are stored in location TEMP as shown in

the upper portion of Figure III-T.

SETE
SETEL
LIT(0)
LDS

LIT(1)

LDA

LDEEL
LOOP:  RTL
LDA
RTL
ADRN

RTL

ADRN

E.OR.-E;
E.OR.-E; % Enables all PEs

=00TETETETETETEQC0:16;

TEMP ; % Do this before disabling
b, 50,1, % Set up max of 50 relaxations
=0, % Mske sure that PEs to be disabled have

a number less than EPS in their RGA
so ZERT will work right later

$Co; % Disable border PEs
$s,1; % Get value from left neighbor
$R; % Place in RGA
$s,-1; % Get value from right neighbor
$R; % Add to RGA
$s,8; % Get value from top neighbor
$R; % Add to RGA
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RTL $s,-8; % Get value from bottom neighbor
- ADRN  $R; % Add to RCA :
LIT(3) =0.25; % Place constant of 1/4 in $C3

:

$C3; % Divide by U4; relaxation done.
(New value is in RGA)

e

F? LDR $4; % save new value in RGR

g SBRN $s; % Subtract cld value in RGS from
}.' new value in RGA

SAP 3 % Take absolute value of New - 01d

LI LIT(0) =1.0; % Set up EPS value of one degree
>, IAG $Co; % Set I to one if ABS (New - 01d) is
g‘ greater than one degree

, SETC(3) I; % Transmit I bit pattern to $C3
b ZERT(3) ,OUT; % Jump out if no I bits are one

5 STR TEMP; % Otherwise store new value back

X in TEMP

LDS $P; % Also place new value in RGS

g

TXLTM(1) ,LOOP; % end jump back to LOOP for start of
next relaxation.

Lt

OuT: HALT;

Y

Although the comments attempt to explain the operation of our

program there are a few points that should be discussed:

Px e

‘I .
B DRSS LA N LA AR e ot S R PRIR PGS S O i i e s L St et T B3R R S i i N S U

The reader may have noticed that we multiplied by 0.25 rather

=
KA Y

than dividing by 4. This is a good programming trick to remember since

T ILLIAC IV can multiply two 64 bit floating point values about 6 times

1
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as fast as it can divide them. Another apparent inefficiency may have

caught the reader's attention in this same area of the program:

Why is the constant 0.25 being created in this particular part

of the program--it is in the middle of a loop of calculations; shouldn't

the
LIT(3)  =0.25;

be performed outside this loop so that it is done once and not up to

50 times?

Although this is a valid argument for a conventional computer
it is not for ILLIAC IV, because CU instructions in ADVAST can be executed
concurrently with PE instructions and since LIT is a CU instruction
imbedded in a loop of PE instructions it is actually more efficient to
leave it where it is because it requires literally no time for execution
within a PE instruction loop (its execution is completely overlapped with
PE instructions); it would require a small amount of time to execute if
it were at the beginning of the program in a place where there was no

opportunity for overlap of instruction execution.
Another programming hint to remember is the following:

Occasinnally a programmer will write a set of instructions that
modify fields of other instructions (usually the address field). That
type of code must be used with extreme care on ILLIAC IV because of the

128 word Instruction Word Stack (IWS) which acts as a buffer to store
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impending instructions to be executed. The instruction to be modified
will have its image in memory modified but will not be affected itself by
the instruction if it is already in the IWS. The next time through that
set of instructions, however, it will be modified causing possible strange
behavior of the program. The programmer can not modify an instruction
within 128 instructions of the modifier instruction and expect it to work

when control reaches the modified instruction the first time.
Two final comments on the program:

The LDA =0; (the sixth instruction) is necessary since the
IAG $CO; instruction later acts on &ll of the I bits in the array, since
RGD is not protected. We can insure that the I bits in the disabled FEs
(the ones which contain the edge temperatures) get set to zero by placing
any value less than 1.0 (such as 0) in their RGA before the calculation

begins.

It was not necessary to store the newly computed values back in

]

TEMP (using the STR TEMP; instruction) until OUT is reached, however, :
that choice was made so that TEMP could be displayed as the calculation

progressed. (See Case 1 of Table III-k4.) '

k

b. Case 2. Eight Temperatures per PEM "

.

5

For this approach to the problem, the data is allocated starting i

at Row TEMP as shown in the i~wer portion of Figure III-T7. The main 3

differences i this approach are: .

!

I
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1) The PE disebling pattern must be changed to reflect the

different storage allocation of the temperature values.

2) The left and right neighboring values can be received using
the ROUIE instruction but the above and below values must be handled
differently since they will be in the same PE Memory. If we are referring
to Row TEMP then TEMP - 1 and TEMP + 1 as PE Memory Addresses will

reference the above and below values respectively.

3) Since we have allocated the data as 8 PE rows we shall have
to perform 6 iterations (the top and bottom rows contain boundary tempera-
tures and do not change) to complete one relaxation instead of Just 1
iteration for 1 relaxation as we did with Case 1. This means that we
shall need 2 loops; one to step us down from row 2 to row 7 (TEMP + 1
to TEMP + 6) for a given relaxation, and one to step us to the next

relaxation.

4) We shall leave out the epsilon convergence test in the
interest of simplicity (it can be done in exactly the same way as we did

it for Caese 1).

An explanation of the finer points will follow the ASK code for

Case 2:

SETE E.OR.-E;
SETEl E.OR.-E;

LIT(0) =TE00000000000000:16; % Set up enable bit pattern
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! LIT(2) 1,50,1; % Set up max of 50 relaxations
! LAAP: LIT(1) 1,6,1; % Set up iteration counter I to step
= from row I = 2 (TEMP + 1) to
2 row I = 7 (TEMP + 6)
. LDEEL $co; % Disable border PEs and rest of PEs
> not in calculation
[ﬁ LOOP: LDR TEMP(1); % Load RGR from Row I of TEMP
- RTL $R,1; % Get value from left neighbor
{ LDA $R; % Place in RGA
, RTL $R,-2; % Get value from right neighbor
Eﬁ ADRN $R; % Add to RGA
" ADRN TEMP-1(1); % Add in value of top neighbor
ﬁé (Row I - 1)
. ADRN TEMP+1(1); % Add in value of bottom neighbor
b (Row I + 1)
. LIT(3) =0.25; % Place constant of 1/U in $C3
{:-_ MLRN $c3; % Divide by 4. Iteration on Row I
i comzlete
e! STA TEMP(1); % Store Row values in RGA back to
7l Row I of TEMP
t& TXLTM(1) ,LOOP; % Go back and pick up next row
§ TXLTM(2) ,LAAP; % One relaxation (all rows done) is
- complete. Perform next
g: relaxation.
‘:-\.; Comments :
E-’. 1) The 3rd instruction
X
. LIT(0) =TEO0000000000000:16;
‘L‘ III-85
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sets the bit pattern which will be used to disable PEO, enable PEs 1 through .

6 and disable PE7. The rest of the PEs do not enter into the calculation

roriea)

but are disabled in case of an arithmetic fault (underflow or overflow)

occurring in a PE that is not used in the calculation but might contain

strange data from a previous user.

IR |

2) The Tth instruction

i
Y WY

LOOP: LDR TEMP(1);

will load the Row specified by $C1 into the RGR of all the PEs (regardless
of whether or not they are enabled at this point in the execution). The
starting value field of $C1 acts as an index register to step down through

the rows of TEMP--the first time through the LOOP, $C1 has a value of 1

U

and Row TEMP + 1 (the second row) is referenced by this instruction.

[

Since we use RGR as a temporery storage register and as the
Routing register, it is necessary to route values a little differently than
we did in Case 1. The first route of one %0 the right allows each PE to
receive a value from its left neigrinr; but when a PE needs the value from
its right neighbor it has alread, been shifted one to the right by the
first ROUTE so that a left shift of two is necessary. This type of routing

could also have been used to implement the algorithm for Case 1.

3) Note that PEO and PE7 are disabled using the LDEE1l $C0;

]

instruction but the 1st row and 8th row are effectively "disabled" (they

III-86
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do not change during the calculation) by stepping the row counter from

Row 2 to Row T instead of from Row 1 to Row 8.

o f—’.- T

4) The 12th and 13th instructions

ADRN TEMP-1(1) ;

ADRN TEMP+1(1);

also use $C1 to pick the appropriate Row. Note that the Operands are

i

PE Memory Addresses and specify a Row. The ACAR indexing appears after

the Operand.

Table III-4 shows intermediate values of the temperatures at

one, ten and fifty relaxations; the exact solution is shown in Figure III-8

' Lol o S il Fi S

and at the bottom of Table III-4. As expected Case 2 shows a closer

convergence to the exact solution for the same number of relaxations since

[ o
]
ol it Sl

it iterates one Row at a time and each new Row gets the benefit of values

computed in the Row above it, while Case 1 relaxes the whole array in one

iteration. Even closer would be the sequential solution for a conven-

b Y i |
=

: tional computer as shown in Chapter II. However, Case 1 performs 6 times

fewer calculations and is therefore about 6 times as fast as Case 2 and

r;*z—r'
s
toe

is about 36 times as fast a sequential method.
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Case 2

Case 1

[SR=N=N-N-N-N. ¥}

N 2y M+ O
P.-ﬂ QQOO

HOOOOO

©
:V\DNOSQO
HmMooooo

(=N N=NoNeNeNoNa]

I‘_o.a N;:aha
mmN-—loO
Nohowm

2o ~ Mo

[ ]

[SR=N=N-N-N.¥-N}

3883828
\o.:mNHH

Q8RS

ﬂO\FU’\MNo

A2

35

9

L
9 9.9
0 5

6.0
0

k2 36.00 29.9
7
0

35 29.99 24,
28 23.99 1
21 17.99 1k,
14 11.9

ko k2

Coooocooo

5

P OOOOOO

[=N=N=NoNoNoNoNol

FCD U\FMH
~ o

OCOooo0oo0o0©O

@ \D \D\D\D ®
O\O\O\O\O\O\

[=N=N=NeNoNeNal.]

~ONFNNHO

2
0
8
6
N
2
0

ﬁO\\DMO

5 28 21 1k
8
y
0

2 36 30 24 18 1
5
0

6
0

35 30 25 20 15
T
0

L9 ko 3
28 2b 20 16
21 18 15 12
i 12 10

N

H -#NHOQO U'\-#MNHO
8358338
28585650 |L2auenn | | 202334
) 2 0y g - )
~ M FaANnNmMmMHOO :‘
NOO NV
L QN A0 0 0650
* O o S AANMNAHO i~ Ingq
o S E [4Y) N -~
VANOO AW
g .. NH O QN QARG
DD 00 o o) A NN DD M NIN M~
N - c SAS Nan-l NNHHq
Ao JF= B SV VI BV.)
!IL\ A P O\ N\ O_\O.\O\O\O\O.\o
U\'QQQQOQ "o ¥ vpd = nao n = - -~
[\ N-o] MNO\p-{O\ m%mg‘c.-co‘
garg =t R B gtz e YRB B SR
A N~ SN~ JMNNHq
NN -t N @ MO AN IND [
288/ ~°] [9y8R73 2388730
g a g
[+ [+] [+
2 & 2
[} ] ]
3 b 2
8 1 g
& & =] od

NN TN

Exact
Solution

!




B T ———

:

language and is now

A Py | S ———

completely described in many cases.

confident enough to try to master the complete language.

T ————

X problems demanded them and not in any functional order.
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! J. Conclusion
E“' The instructions presented in this chapter
N
" LDA ADRN SETG LoL
4 . ms RIL SETH LDEEL
ki LDR LIT SETL SBRN
; LDS TXLTM SETJ. SAP
- | LD CSHL L sETC
A LDD SSER 146 ZZRL
STA LESST SLIT HALT
: STB SETE ALIT
b STR SETEL  MLRN
i i & R
A 5TX SETFL BIN
o
5

They were presented only as the

N "\ " \q}_n‘n\ ‘1.;\‘

are not the comprehensive set of ILLIAC IV instructions; neither are they

I hope, however,

that the reader has acquired some of the flavor of ILLIAC IV assembly
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HARDWARE GLOSSARY
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ACAR -- See Accumulator Register

Accumulator Register (ACAR) -- There are 4 ACARs in the ADVAST section of

e T b]
¢ )

the Control Unit. Each is 64 bits long. They ¢ called ACARO,

ACAR1l, ACAR2, and ACAR3, and each acts like an accumulator on a

RO

conventional computer.

ADB -- See ADVAST Data Buffer

Advanced Station (ADVAST) -- ADVAST is one of the five sections of the
Control Unit and processes all instructions as an ILLIAC IV

program executes. If the instruction can be exem:iued completely

> '; [ ': ¥

within the resources of the Control Unit it never leaves ADVAST;

-.‘.

if however, the instruction involves driving the €i#-PE Array

it passes on to FINST. ADVAST consists of 4 ACARs, the ADB, a

simple ALU and the ADVAST Instruction Register as well as thirteen

e

other registers not dealt with in this book.

ADVAST -- See Advanced Station

-

~ ADVAST Data Buffer (ADB) -- The ADB consists of 64 registers within the
ADVAST Section of the Control Unit. Each word in the ADB is

64 bits long and access time is about 60 ns. Each word in the

htle '; P

ADB is labelled: DO, D1 ... D63.
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ADVAST Instruction Regizter (AIR) -- AIR is the 32-bit ingtruction execution
register of the ADVAST Section of the Control Unit. AIR causes
instructions which can be completely executed within the resources
of the Control Unit (ADVAST instructions) to happen. If the
instruction invoives driving the 64 PE Array,_it is sent on to

FINST.
AIR -- See ADVAST Instruction Register
ALU -- See Arithmetic and Logic Unit

Arithmetic and Logic Unit (ALU) -- That set of circuitry within an electronic
computer that performs arithmetic (+, -, +, x) and logical (AND,

NOT, OR) operations.

ARPA Network -- The ARPA Network js a group of computer installations

located throughout the country but connected via high-speed

(50,000 bits/sec) telephone lines. Member installations will share E?

!

hardware and software resources of other members on the "Net". J

(3

Array Processor -- The Array Processor comprises 64 PEs and 64 PEMs. See O

Figure II-1.

BIOM -- See Buffer Input/Output Memory

C=2 &3

Buffer Input/Output Memory (BIOM) -- The BIOM is a rate smoothing buffer

ok
S 2 o

2

placed between the B6500 Computer and the Disk File System. It

consists of four PE Memories and provides 8192 words of 6L4-bit

[ 13

Storage. See Figure II-1.
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I.‘l
| BJ500 -- See B6500 Computer
Lo

B6500 Computer (B6500) -- The B6500 is the control computer for the
I: ILLIAC IV System. It holds part of the Operating System as well
as the utilities, compilers, and assemblers for ILLIAC IV. See

P
2 Figure II-1.
E: CDB -- See Common Data Bus
&: CDC -- See Control Descriptor Controller
9 Common Data Bus (CDB) -- The CDB is one of the four paths by which data
| flows through the ILLIAC IV array. It is one word (64 bits) wide
{? and runs in one direction from the Control Unit to the 64 PEs.

It may be used to "broadcast" operands to the 64 PEs.

I &

Control Descriptor Controller (cDC) == The CDC is part of the I/0 Subsystem

P o _'l‘

and controls the transmission of data and programs between the

Disk File System and the ILLIAC IV Array. See Figure II-1.

.

Control Unit (CU) -- That part of the ILLIAC IV Arrasy responsible primarily

; N ]

for driving the 64 PEs in their instruction execution but mey be
A viewed as a small unsophisticated computer in its own right
capable of executing ADVAST instructions. The CU consists of

A five functional sections: ADVAST, FINST, MSU, TMU and ILA.

Control Unit Buffer -- The Control Unit Buffer is part of the ILA section

i;l l.:-

of the Control Unit. It is an 8 word (64 bits per word) buffer

gL

which feeds the Instruction Word Stack (IWS).

(e
2
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Control Unit Bus (CU Bus) -- The CU Bus is one of the 4 paths by which data :’
LAY}
flows through the ILLIAC IV Array. It is 8 words (512 bits) wide
.
and runs in one direction from the 64 PEMs to the CU. The CU Bus

m
il

can fetch instructions (not under programmer control) or data

e |

(under programmer control).

|3

CU -~ See Control Unit

,,

CU Bus =-- See Control Unit Bus

Data Communications Processor -- The Data Communications Processor super-
vises a set of remote terminals and is supervised by the B6500
Computer. The remote terminal capability will allow users to run

ILLIAC IV programs remotely.

éﬁ]ﬁ 3o | I e

E DFS -- See Disk File System ol
3 L
A Disk -- See Disk File System

-
4 i
L‘C Disk File System (DFS) -- The DFS, as part of the ILLIAC IV I/0 System, has
P~ 2

-
e o

the main responsibility in transmitting and receiving data and

programs to and from the ILLIAC IV Array. Its capacity is 109 bits
9

and its effective transmission rate is 107 bits/sec over 2 channels.

*E A I, s,

4

See Figure II-1.

A

< 4

1w

i FDQ -- See Final Data Queue o8
K I
2] ;
3 Final Data Queue (FDQ) -- FDQ is part of the Final Queue (FINQ) of the
J E.‘“
£
P Final Station (FINST) of the Control Unit. It is 64 bits long -
7'. -t :\ 1
- e
-: .’ i
4
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™ and holds the address or operand part of instructions which

:;\}‘; T

~

&

o

drive the 64 PEs.

Final Instruction Queue (FIQ) -- FIQ is part of the Final Queue (FINQ) of

LY
N O ¥

o

the Final Station (FINST) of the Control Unit. It is 16 bits

long and holds the operation code of instructions which drive

LG '
LR

the 64 PEs.

Final Queue (FINQ) -- FINQ is an 8 word, 80 bits per word, buffer in the

FINST section of the Control Unit. FINQ consists of the Final

f e 7w |
fe'v'a
W e X

Instruction Queue (FIQ) which is 16 bits long and the Final Data
Queue (FDQ) which is 64 bits long. It stores instructions on a

first-in, first-out basis which are to drive the 64 PE Arrsy.

Final Station (FINST) -- FINST is one of the five sections of the Control

Unit. If an instruction involves the driving of the 64 PE arrsy,

FINST generates the microsequences necessary for the instruction

=ET
it

to happen. FINST consists of the Final Instruction Queue (FIQ)

-~ and the Final Data Queue (FDQ) collectively called the Final
'Ei Queue (FINQ) and a PE Instruction Microsequence Generator.

FINQ -~ See Final Queue

FINST -- See Final Station

FI1Q =~ See Final Instruction Queue

»

vl
Lol

W

IAM -~ See ILA Associative Memory

=

ICR -- See Instruction Counter Register

—_
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ILA -- See Instruction Look Ahead

ILA Associative Memory (IAM) -- The IAM is a hard-wired device within the

ILA section of the Control Unit which senses if the next instruc-

tion to be executed (pointed at by ICR) resides in the Instruction

Word Stack (IWS).

ILPIAC~IV Arrgy -=- The ILLIAC IV Arrey comprises the'Array.Processor and

the Control Unit. See Figure II-1l.
ILLIAC IV Disk =-- See Disk File System

ILLIAC IV I/0 System -- The ILLIAC IV I/0 System comprises the I/0
Subsystem, the Disk File System (DFS) and the B6500 Computer.

See Figure II-1.

ILLIAC IV System == The ILLIAC IV System comprises the ILLIAC IV Array

and the ILLIAC IV I/O System. See Figure II-1l.

Input/Output Switch (I0S) -- The I0S is a switch which insures that only
one device (the DFS or the possible Real Time Device) is
transmitting to or from the ILLIAC IV Array. It is also a buffer

between the DFS and the ILLIAC IV Array. See Figure II-l.

Instruction Control Path -- The 266 line Instruction Control Path comes
from the FINST Section of the Control Unit and drives the 64 PEs

in the execution of their instructions.

Glossary-6
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@fy Instruction Counter Register (ICR) -- ICR is a 25 bit register in the
1 ILA section of the Control Unit which holds the address of the

next instruction to be executed.

Instruction Look-Ahead (ILA) -- The ILA is one of the five sections of the

) &

Control Unit. It is responsible for maintaining a steady flow of

instructions to the ADVAST Instruction Register (AIR) in ADVAST.

Instruction Word Stack (IWS) -- The IWS is a buffer which is fed by the

o tatA

Control Unit Buffer in the ILA Section of the Control Unit. The

IWS holds 128 ILLIAC IV instructions.

|

I0S -- See Input/Output Switch

AI‘I.-A

I/0 Subsystem -- The I/0 Subsystem comprises the Control Descriptor

%'If

Controller (CDC), the Buffer Input/Output Memory (BIOM), and the

Input/Output Switch (IOS). See Figure II-1.

L o
[ L]

IWS -- See Instruction Word Stack. (IWS is also called "ILA Instruction

i-.lz.

Word Storage".)

i .
Bt

Laser Memory -- Laser Memory is supervised by the B6500 Computer and cen be

considered as fourth-order storage in the ILLIAC IV System. It

"

holds 1012 bits and access time ranges from 200 ms to five seconds.

Transmission rate is 8 x 106 bits/second over two channels.

';i(l
a’ e

Memory Logic Unit (MLU) -- Each PE Memory has an MLU that resolves conflict-

ing accesses to that memory. There are 64 MLUs and they are

driven from the MSU Section of the Control Unit.

FFTE;:>E'5?
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Memory Service Unit (MSU) -- The MSU is one of the five sections of the

o

Control Unit. The MSU resolves PE Memory access conflicts and

sends appropriate signals to the 64 MLUs.

MLU ~-- See Memory Logic Unit

)

f Mode Bit Line -~ The Mode Bit Line is one of the four paths by which dat.a .
4 flows through the ILLIAC IV Arrey. It is one bit wide and rums E
. in one direction from the RGD of each PE to the ACARs in the o
A Control Unit. "

1 0

MSU -~ See Memory Service Unit

Lo
- l. ’:";‘v‘

PE -~ See Processing Element

‘ : '
PE Instruction Microsequence Generator -- That part of FINST responsible N
for generating the microsequences for instructions which drive <
# ' '
M i
n the 6L PE array. l':?
k) L]
- o
e PEM -- See Processing Element Memory 4
: -
% PE Memory -- See Processing Element Memory 18
. .
5
{ Processing Element (PE) -- There are 64 PEs in the Array Processor of the -

“

-
L

ILLIAC IV Arrgy. Each PE is a sophisticated Arithmetic and

Logic Unit capable of performing a wide range of arithmetic and

G L B

:-f logical operations. A PE has six programmeble registers but is -
v o
- devoid of control logic (except for certain data-dependent o
il

% conditions) being driven by the Control Unit. b
2 |
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Processing Element Memory (PEM) -- There are 64 PEMs in the Array Processor
of the ILLIAC IV Array. Each PEM consists of 2048 words at

64 bits per word. Average access time is approximately 350 ns.

Processing Unit (PU) -- A Processing Unit consists of a Processing Element
(PE) plus & Memory Logic Unit (MLU) plus a Processing Element
Memory (PEM) i.e. PU = PE + MLU + PEM. There are 64 PUs in the

Array Processor of the ILLIAC IV Array.

Processing Unit Cabinet (PUC) -- Each PUC holds 8 PUs. They are called

C L N ] PUC

PU -- See Processing Unit

PUC -- See Processing Unit Cebinet

RGA -- RGA is the Accumulator Register of a PE and acts like an accumulator
on a conventional computer. RGA is 6L bits.

RGB -- RGB is the B register of a PE and can be used for temporary storage,
however it usually holds the second operand in a binary operation
so it is not a safe place to stors data. RGB is 6k bits.

RGD -- RGD is the D register or Mode Register of a PE and reflects the

active or non-sctive status of the PE in one or two of its 8 bits.
The bits are called E, E1, F, F1, G, H, I and J. Certain Mode
Bits can be set based on arithmetic comparisons. Other bits can

reflect fault and overflow conditions .

Glossary-9
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RGR -- RGR is the R Register or Routing Register of a PE and can be used for Ej

temporary storage; however RGR is also a port to exchange informa-

I AN Sl v DA BN S D

tion between PEs, so it is not a safe place to store information.

The RGR of PEi is connected by routing lines directly to the RGR

=1

g of PE,_,, PE, ., PE, g, and PE,_g. RGR is 6k bits.

o

RGS -- RGS is the S Register of a PE and its intended use is for temporary

_—

» '.)

'~ Pu
PSS

storage. RGS is 6k bits.

-

RGX -- RGX is the X Register or Index Register of a PE and operates like
g an index register on a conventional machine, modifying the

& address field of an instruction. RGX is 16 bits.

Routing Network -- The Routing Network is one of the four paths by which

g data flows through the ILLIAC IV Array, and consists of the

-

. 64 RGRs. Each RGR is connected to the RGR immediately to the left
"'l

and right as well as to the RGR eight to the right and eight to

the left. The connection is end-around so that the RGR of PEO is

connected to the RGR of PE63 and vice-versa.

FeE

-

Test and Maintenance Unit (TMU) ~- The TMU is one of the five sections of

o
tata

the Control Unit. It is connected to the operation maintenance

Lo B
[
ol 28

panel and via the CDC of the I/0 Subsystem can cause communication

. to occur between the B6500 and the ILLIAC IV Arrsy.

C
el

L
= Lra.

g

? TMU -- See Test and Maintenance Unit

o
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£:€ Written specifically for an applications programmer, the book
Y presents a tutorial description of the ILLIAC IV System. Volume 1

et

% contains three chapters -- Background, Hardware Structure, and The

Assembly Language--ASK, as well as a Hardware Glossary. Many illustrative
. problems are used to educate the beginner in the use of the ILLIAC IV
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