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Read This First 

This book was written for an applications programmer who would 

like a tutorial description of the ILLIAC IV System before attempting to 

read the reference manual.    As a tutorial, the level of detail presented 

in this book is  fairly general; particular information can be found in 

the Burroughs Reference Manual "ILLIAC IV Systems Characteristics and 

Programming Manual." 

In order to use this book most effectively, the Chapters should 

be read in order.    The reader who wants a very quick look at the capabil- 

ities of ILLIAC IV may skim just the summaries of parts A, B and C of 

Chapter I and begin reading on page 1-55.    He may then read pages II-l 

Y? through 11-20, skipping the detailed description of the ILLIAC IV Array 

(pages 11-21 to II-4l).    Pages U-kl through 11-73 are optional; the 

9- reader should at least look at them and decide for himself.    As much of 

(V. Chapter III as possible should be read—the instruction repertoire, more 
'■■ 

than anything else,  defines the capabilities of a computer.    A valid answer 

to the question "What is ILLIAC IV?" would be to hand the questioner a 

description of each instruction in the repertoire. 

For a more complete understanding, however, the reader should 

come back and read the sections he skipped on the first pass.    It is the 

nature of ILLIAC IV, to a degree much greater than the conventional 

computers, that its hardware structure is bound up very closely with its 

^•:-.y.:<:x>fr^-^^ 



capabilities. It is therefore necessary that the reader spend the time 

necessary to understand the architecture of ILLIAC IV. 

The Table of Contents in the front of the book is in an 

abbreviated format while each chapter will be preceded by a finer Table 

of Contents. A Hardware Glossary which is essentially a glossary for 

Chapter II is at the end of the book. 

Chapter I presents the background concepts necessary for an 

understanding of ILLIAC IV. A short section is devoted to the historical 

development of digital computers and their evolution is described in 

terms of the problems that had to be solved. After conventional computer 

organizations are described, unconventional ones are presented as design 

options to speed up the operation of a computer. Two design philosophies, 

overlap and replication, represent two major methods used to increase the 

computer's operational speed. Overlap is effected by the buffer and 

pipeline mechanism and replication is embodied in the general multi- 

processor. ILLIAC IV is shown to be a variant of a general multiprocessor 

using buffering and a modified pipeline mechanism in the instruction 

execution section. 

Chapter II describes the architecture or the hardware structure 

of ILLIAC IV., Tiie ILLIAC IV Array is discussed in broad terms followed 

by some illustrative problems which point out some of the similarities and 

differences between problem-solving on sequential and parallel machirfes. 

The problems also serve to illustrate how the hardware components are tied 

11 
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together.    Following is a more detailed description of the ILLIAC IV Array, 

then another illustrative problem (Laplace's  equation describing steady- 

state temperature distribution in two-dimensions)  followed by some data 

allocation considerations; the ILLIAC IV I/O System is discussed briefly, 

and some conclusions and opinions  end the chapter. 

Chapter III presents the Assembly Language ASK in a functional 

03 and pragmatic way:    a problem is  described and then only those ASK I 
instructions necessary for the solution are described.    In this way the 

v, 
£ five problems introduce forty ASK instructions and the flavor of the 
mm 

assembly language which, from a programmer's standpoint, is an indication 

of the capabilities of ILLIAC IV itself. The five problems are: Summing 

an array of numbers, Finding the maximum value in an array of numbers, 

Matrix multiplication. Matrix transpose, and Laplace's equation described 

in Chapter II. 

This book will be issued in three volumes. The first three 

Chapters represent Volume 1, Chapters IV through VII will comprise Volume 2, 

I 
"• and Chapters VIII through XI will be Volume 3. Volumes 2 and 3 will be 

:••■ 

■ 

supplied as soon as they are available. 
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Abstract 

Written specifically for an applications programmer, the book 

presents a tutorial description of the ILLIAC IV System.    Volume 1 contains 

three chapters — Background, Hardware Structure, and The Assembly Language— 

ASK, as well as a Hardware Glossary.    Many illustrative problems are used to 

educate the beginner in the use of the ILLIAC IV System. 
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Foreword ><^ 

This book is based upon the many reports and documents generated 

at the University of Illinois and the Burroughs Corporation during the 

design and development of the ILLIAC IV computer. In addition, much of the 

content of the book was influenced by the material offered in the graduate 

level computer science course, CS i»91, "Architecture, Applications, and 

Languages for a Parallel Computer" as well as the many one-day, two-day and 

one-week seminars on ILLIAC IV. I learned a great deal from my "students". 

I would like particularly to thank Professor Daniel Slotnick 

and n^r friend Mr. George Westlund who provided the overall guidance for 

this book and whose idea it was to create it in the first place. Much 

specific help was given me by Walt Heimerdinger in the area of hardware 

structure, and Jim Stevens and John McMillan in the area of ASK. Mike Sher 

and Cal Corbin helped proofread and make final suggestions before this book 

when to press. I am also very grateful to Joyce Fasnacht who cheerfully 

typed and retyped the many versions of the text with incredible accuracy, 

and who drafted the original versions of all of the figures from my 

pencil scratchings. 

Any errors you may find are not only my responsibility but 

become yours also. If you inform me of them I will correct them in the 

next edition. 

Stewart A. Denenberg 
Urbana, Illinois 

1971 
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CHAPTER I 

BACKGROUND 

■ A. Summary 

,., Chapter I traces out some of the background concepts necessary 

& 
for an understanding of ILLIAC IV. A short section is devoted to the 

M historical development of digital computers, indicating how computer 

systems evolved to the Von Neumann state of organization. Also discussed 
f»" ' 
i •* 

H is the tendency computers have had in creating problems themselves. The 

first computers were designed to solve specific applications problems such 

as computing a table of values for a certain mathematical function or 

solving a differential equation which described the ballistic path of an 

artillery shell. As computers became more useful, they started to con- 

tribute problems of their own to be solved such as the need for easier- 

to-use programming languages. The most pressing of these problems was the 

need for faster and faster operating speeds. If the computer could be 

made to process information at a faster rate, and costs could be held 

constant, then the per-unit-tirae cost of processing information would 

be effectively lowered. The remaining sections of the Chapter describe 

how Von Neumann organization may be modified to increase operational 

speed. Two design philosophies to achieve increased speed are discussed: 

l) Overlapping the operation of two or more of the functional components 

of a conventional computer and 2) Replication of one or more of the 

functional components many times. Since these philosophies are not mutu- 

ally exclusive, a third option exists whereby both l) and 2) are effected. 

1-1 
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Overlap can be achieved by utilizing the Buffer and Pipeline mechanisms; 

however, the Pipeline is limited to the number of stages into which an V 

operation can be deconmosed, and ultimately by the speed of light. The 

replication philosophy s typifisd Tiy the gifleStel Multiprocessor, but the f> 

cost is extremely high. Various re-designs of the Multiprocessor are 

explored in order to reduce its high cost: Re-centralizing Memory, 

the Arithmetic and Logic Unit, or the Control Unit. ILLIAC I? is V 

represented as a Multiprocessor with the Control Unit re-centralized. 

This particular option was chosen for two main reasons: l) much of the £j 

cost t;f  a digital computer is tied up in the Control Unit and 2) there 

are large classes of problems that can be solved by a single instruction ■•J 

stream which operates on data that can be structured as a vector. 

ILLIAC IV also utilizes the Buffer and modified Pipeline mechanisms to 

overlap the operation of its instruction execution unit. 

B. A Review of Digital Computing Machines 

1. Summary 

Perhaps the first computer was a coin. If a computer is a tool 

used by man to solve a problem, then a coin fits the description. A coin 

was (and still is) vised as a tool to help men make decisions. It is a true 

binary decision maker: a flip of a coin and a decision is automatically 

made: heads, one course of action is taken—tails, another. Whether the 

first computer was a coin, an abacus, Pascal's Calculator or Jacquard's 

Loom is not argued here; instead the starting point is arbitrarily chosen 
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with Babbage's machines. The Automatic Sequence Controlled Calculator 

(Mark I), ENIAC, EDSAC, the University of Manchester Computers, and EDVAC 

are used to reiresent the major chain of machines which evolved to the 

Von Neumann organization. 

« 

y; 
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2.    Babbage's Difference Engine and Analytical Engine 

■''.! a. The Difference Engine 
M  

In 1812, when Charles Babbage was an undergraduate at Trinity- 

College, Cambridge, mathematical tables of functions were generated by 

'':'■ hand. The production of a table of values for Just one mathematical 

function was a tedious and cumbersome Job. A group of over 100 people, 

called "computers," were trained to follow a finite difference algorithm 

to compute values of the function over a specific range and for specific 

interval widths within the specified range. 

Let us consider how the function f(X) = JT + X + 1 would be 

calculated over the range 1 < X < 5 and for an interval width of 1.  (See 

Table 1-1.) 

It was known at the time that the nth differences of an n-degree 

polynomial are constant. By convention, the zero-differences (D ) are the 

values of the function. D. is the value of the function at X^ fU^^D^ 

For the simple example used here, when i = 3, Xi = 3, and D3 = 13. The 
-, 0 

first differences (D ) are found by subtracting previous values of D from 

succeeding values of D ; 
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Table 1-1.    Difference Method for Evaluating 

Polynomial Function JT + X + 1 

f(X) = X2 + X + 1 

i 

1 

3 

It 

5 

3 

1» 

5 

Contents of 

Step No. D0 

3 

D1 

k 

D2 

0  (Initial Value) 2 

1 7 k 2 

2 7 6 2 

3 13 6 2 

k 13 8 2 

5 21 8 2 

6 21 10 2 

7 31 10 2 
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P DIm fl3W - f[\} m Di+i - Di V]  = f(X^J - f(Xj = D°  - D? 

:'• 
The second differences are the differences of the first differences and 

are calculated the same way: 

i • ^i - i 
0  1     2 The top part of Table 1-1 shows D , D and D for the X values. Note that 

the second differences are constant (the value 2). Also shown is how we 

0  1     2 can work backwards if we are given D- , D1, and D1 by summing instead of 

subtracting: 

^i - M 

Therefore, if we have 3 registers to store the values of D , D   and D- as 
P Q 

we sequentially apply the above two equations we can generate D. for as 

long as we wish to compute. All we need are the 3 initial values 

m D° = 3, D^ = 1+ and D^ = 2 

*.'■ In Table 1-1, each step is numbered and the direction of addition indicated 
m 

by an arrow. 

i 
The lower part of Table 1-1 displays the contents of the three 

»£' registers, D , D and D after each step circled in the top part of the 

;•<>;        table. 
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It was Babbage's contention that not only coiald a mechanical 

machine be built to perform the finite difference algorithm, it would be 

faster and much more accurate. He had even designed his Difference 

Engine to print the results directly from the wheels which displayed the 

numbers, thus eliminating the possibility of a human transcription error. 

Babbage fabricated a small Difference Engine which could tabu- 

late a second degree polynomial (or any other function whose second 

differences were constant) to 8 decimal digits of accuracy. In 1823 he 

was given a grant by the British government to build a machine that could 

generate tables for a function whose seventh differences were constant to 

an accuracy of 20 decimal digits. His ambitious project was never com- 

pleted. Work stopped in 1833 when Babbage ran into financial difficulties 

with his engineer who resigned from the project taking with him all of the 

specially constructed tools for the building of the Engine (under English 

law at the time, the engineer had the right to do so). 

Babbage was probably the first computer designer to run into 

financial difficulties because the state-of-the-art of technology lagged 

too far behind the state-of-the-art of conception. His ideas were sound, 

but his funds were hopelessly inadequate to create the technology which in 

turn would be used to create his computer. 

The Difference Engine was more than Just an automatic calculator 

capable of addition, subtraction and multiplication—it could also perform 

a procedure or a program. There was only one program that it could 

perform, however, and that was the finite difference algorithm. From the 

1-6 
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point of view of modern computing, the Difference Engine was a single- 

purpose computer with no program software; the program was intrinsically 

JS part of the machine, imbedded into the configuration of the gears and 

shafts. 

b. The Analytical Engine 

The Difference Engine had failed, but Babbage had even greater 

'-■■        plans for a new machine, the Analytical Engine. Either he did not realize 

SQ        that his machines could not be built by the existing technology or he was 

optimistic enough to believe he could supply the ideas for both. 

* 

'/. 

.•• 

-'•. 

Babbage designed the Analytical Engine to be able to perform more 

than only one algorithm; so that the program as wel. as the data could be 

supplied to the machine as an input, and the machine would process the data 

^ according to the instructions of the program. 

In order to create a machine of this far-reaching capability, 

Babbage foresaw the four main functional sections of the modern-day 

computer: 

• Control Unit 

• Memory Unit 

• Arithmetic and Logic Unit 

RT • Input/Output Unit. 

I 
f.. The Control Unit was to act on the same principle as the Jacquard 

H 
"T.       Loom Controller: a sequence of plaques with holes punched in them drawn 

Ö 
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over a drum by chains. Where Jacquard's Loom used a particular combination 

of holes in a plaque to specify a weaving operation, Babbage's Difference 

Engine used each plaque to store an instruction which specified an arith- 

metic operation. The plaques were drawn over a drum one at a time and the 

pattern of the holes was sensed mechanically. Each plaque instructed the 

Engine to perform one well-defined operation and a set of plaques, 

therefore, constituted a program. Groups of sets of plaques represented a 

Program Library. 

Not only did Babbage design a machine that would execute a 

program of instructions, he also included the Test-and-Branch type of 

instruction which is at the very heart of using a program to solve a 

problem. In his plan, the Analytical Engine had the ability to roll the 

chain of instruction plaques forward or backward depending on whether the 

contents of a specified register turned negative during execution of the 

program. Rolling the chain in either direction is equivalent to a "Jump" 

in the opposite direction in the program. 

The Test-and-Branch instruction provides the programmer with an 

"alternate route" capability while his program is executing. Different 

sections of the program may be entered and executed based on the values of 

numbers that were computed in previous sect:" ms oi   the program. An addi- 

tional benefit of a Test-and-Branch capabili ■   that it affords the 

programmer a shorthand by which he can specify a large number of program 

operations with a small number of instructions. By decrementing or 

incrementing a register until it reaches a specified value, a section of 

1-8 
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the program can be executed repeatedly. Without the Test-and-Branch type 

of capability, a programmer would have to specify every operation with at 

least one instruction. 

;:> 

*. 
V 

■.-. 

V 

The Memory or "store" as Babbage referred to it,  consisted of 

wheels.    The position of a wheel denoted the value it was storing.    Numbers 

were transmitted to and from the "store" by means of racks.    The racks were 

cut to engage the gears of a wheel so that the position of one wheel could 

be transmitted to another.    The racks, of course, could be  connected to 

rods, shafts, or other racks to further transmit the motion.     (See Figure 

1-1.)    Since each wheel would store 1 decimal digit and Babbage proposed 

■ . 

'■■■■ 

■.■- 

Gear Gear 

Pii   ni-ii-ii-ir-if-irrnnr-if-innn   "^rfw 

Figure 1-1.    Transmission of Data in Babbage*s Machine 

that the "store" have a capacity of 100 numbers of 50 decimal accuracy, 

this meant the Engine would have 50,000 wheels.    Since the instructions 

were not stored in the memory but were punched into the plaques and thus 

would not be modified during program execution, Babbage's Analytical Engine 

was not a stored-program computer. 

1-9 
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The Arithmetic Ifait was called the "mill". Babbage went to great 

pains to optimize the design of the mill, particularly the problem of 

carrying when the sum of two numbers is greater than nine and a digit 

must be carried over to the next significant position. With customary 

fastidiousness and foresight, Babbage represented the algebraic sign of a 

number as a separate wheel which would not be connected to the other 

wheels during carries. 

The Input/Output was to be effected by punch cards much like the 

punch cards or plaques that supplied instructions to the Engine. Some of 

the input was to be done manually—the initial settings of the wheels of 

the "store" were to be done by hand. Babbage also considered the possi- 

bility of printing output directly from the wheels of the "store" as he had 

with the Difference Engine. By embossing the digits on each wheel, they 

could be inked at the end of a calculation and the results transferred 

directly to paper. This not only made the results neat and legible but 

completely bypassed the possibility of a human transcription error. 

Babbage estimated the following operation times: 

Addition/Subtraction 1 second 

Multiplication (50 decimals by 50 decimals)  60 seconds 

Division (100 decimals by 50 decimals)      60 seconds 

The description for the Analytical Engine prompted some 

scientifically-inclined people of the day to try their hand at programming. 

L. F. Menabrea, a General in the Italian Army, was at the Military Academy 

1-10 
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f-i/' in Turin when he heard Babbage speak on his Analytical Engine to the 

G 
"        Italian mathematicians. Menabrea demonstrated how one would solve two 

simultaneous equations in two unknowns with Babbage's Analytical Engine. 

m Lady Lovelace, Lord and Lady Byron's daughter, devised many 

'■' programs; among them, one to calculate Bernoulli numbers from a recurrence 

formula. In order to calculate the Bernoulli number B , n + 1 operations 

must be performed. Lady Lovelace described how she could store the 

/.•        quantity "n" in a register and decrease it by 1 each time an operation 

within the cycle was performed; when the number finally turned negative, 

the cycle had been repeated n + 1 times and control could be passed to the 

next part of the program. She had invented the concept of a loop. 

i 

Although Babbage did not build his Analytical Engine, he left the 

detailed drawings and notebooks which are currently in the Science Museum 

at South Kensington, England. He defined most of the concepts used in a 

modern computer, including the most important one which Jacquard had sensed 

before him: it was possible to build a machine that would automatically 

simulate a process if the process could be described in terms of a sequence 

of well-defined operations. 

3. Automatic Sequence Controlled Calculator (Mark l) 

Babbage's work was soon forgotten, because his Analytical Engine 

| y        was never completed. In 1937, Professor Howard Aiken designed and devel- 

oped an automatic calculator based on components currently available in IBM 

V 

t 

1-11 

I 
HS 



punched card equipment. In cooperation with IBM, Aiken huilt and presented 

the calculator to Harvard University in 19kk. Harvard named the calculator 

"Mark I". 

The Control Unit of Mark I was primarily a paper tape reader. 

Each instruction was punched into a paper tape that was 2k  holes wide and 

fed past a set of 2k  rods that made an electrical contact if a hole 

existed. The first version of Mark I had no Test-and-Branch capability; 

the best it could do was compare two numbers in different registers and if 

one was greater, the machine would stop. We might say the machine had a 

Test-and-Stop instruction. 

Mark I was later modified to include a conditional type of 

instruction. The conditional instruction caused control to be switched 

from the currently executing paper tape to any of three alternative tapes 

if the contents of a specified register were zero. Once control had 

passed to a specified alternative tape, the program was executed from 

instructions punched on that tape until either the program ended or 

control was passed back to the original or yet another tape. If control 

was passed back to the original tape, it would start executing where it 

left off by virtue of the fact that its physical position in the tape 

reader had not changed. Endless tapes were used for looping. This method 

of passing control to a new tape was faster than the method of rolling a 

set of cards backward or forward as Babbage had proposed, but Babbage's 

technique is still conceptually closer to the kind of program control that 

is used today. Neither Mark I nor Babbage's Analytical Engine were stored 

program computers. 
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The Storage section of Mark I consisted of wheels as did the 

Babbage Machine.    There were 72 Accumulator Registers each capable of 

holding a 23-digit computed value, plus 60 sets of switches for holding 

constants.    The switches were set manually and were not under program 

control. 

As with Babbage's Engine, numbers were transmitted to and from 

Storage by rotating shafts connected to the wheel storage. 

Input-Output consisted of a typewriter as well as punched-cards, 

-•. The operation speeds of Mark I were: 

■ 

Addition/Subtraction .3 seconds 

Multiplication (23 digits by 23 digits) 6 seconds 

Division 11.^ seconds 

There was also built-in hardware which computed: 

Sin (X) in 60 seconds 

10    in 6l.2 seconds 

and Log, 0 X in 68.it seconds * 

all to 23 decimals of accuracy. 

Mark I contained more than l60,000 parts and the sound of its 

thousands of electromechanical relays in operation has been likened to 

a roomful of ladies knitting. 

1-13 
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k'    Electronic Numerical Integrator and Calculator (ENTAH) 

In 19k6t  the first electronic computer was built by J. Presper 

Eckert and John W. Mauchly at the University of Pennsylvania. ENIAC was 

built for the U. S. Army to calculate ballistic tables by integrating a* 

ordinary differential equation. Another type of problem, the interaction 

of shock waves in a fluid, prompted John Von Neumann to modify some of the 

logical design of ENIAC. 

The Memory Storage section consisted of tubes-triodes and 

pentodes. The flip-flops were triodes and along with the pentodes 

(that were used as "AND" circuits and "OR" circuits), there were over 

18.000 vacuum tubes and about 1,500 relays in a 20 feet by 1*0 feet box 

for the entire machine. In addition there were about 6,000 switches for 

storing constants that could not be changed by the program. 

The Control section consisted of a 100 kc/sec oscillator which 

produced pulses 2 ^sec wide. As the clock generated pulses, the program 

was executed through the many wires that connected one part of the machine 

with the others. The programmer did the actual wiring through plugs, 

sockets, and switches; the various components of the machine were 

"stimulated" or not depending on whether a wire carrying a pulse reached 

that component. For example, if an accumulator received a program pulse 

it would be stimulated to add. Since both instructions and data were 

represented as trains of electronic pulses, a conditional operation on the 

sign of a number could easily be programmed by running the wire that 

carried the sign bit of that number to an accumulator. If a negative sign 

I-llt 
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Q is represented by the presence of a pulse, then the accumulator would be 
B 

"stimulated" if the number was negative; if the number was positive, no 

pulse would appear and the accumulator would not be "stimulated" and hence 

not enter into the program. Thus ENIAC had its program "wired" into its 

hardware. ENIAC also had external switches which caused certain opera- 

tions to be performed more than once, giving the programmer a looping 

capability (there were extra switches so that a programmer could loop 

■■•; 

EÜ within loops). 

i-: 
r» ENIAC had an advantage over Mark I in terms of speed; once 

.-. 
initial program wiring had been done, instructions could be executed at 

electronic speed rather than at the speed of a paper tape reader. 

Changing programs, however, meant a massive rewiring job. Many hundreds of 

wires had to be re-plugged in order to instruct the machine to perform a 

.-, 
;'•". different algorithm. At the time it was recognized that switch settingfs 

and plugged-wire connections could also be coded in the same way that 

IB 
ö numbers were coded. If a large capacity storage device were to become 

available, then the program as well as the data could be stored in the 

machine. Although ENIAC had only 20 storage locations, one must remember 

that ENIAC was a special purpose machine built to solve a specific 

problem—to compute values for ballistic tables, and it performed this 

function very well. 

Each of the 20 storage locations was also an accumulator which 

could add, subtract, store or fetch independently and simultaneously so 

that its effective calculating time was very creditable: 

i c 
■ 12 r. 
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Addition/Subtraction 200 us 

Multiplication (10 decimals by 10 decimals)   2.8 ms 

Division 6 ms 

The Input was 80 column IBM cards and the output was either cards 

or lights on a display panel. 

Although ENIAC actually had its program stored inside of it in 

the form of wire connections, it was not a stored program machine. The 

definitive characteristic of a stored program computer is not the fact that 

a program is stored internally in the computer as opposed to outside on 

paper tape, for instance. A stored program computer has the ability to 

modify its instructions as well as its data while it is executing the 

instructions since both the instructions and the data are "inside" the 

machine using the same sirorage medium. Looping and indexing can be done 

by modifying the address field of an instruction while the jitogram is 

executing. Instructions can modify, destroy or create other instructions 

as the program runs. (The stored program concept was responsible for the 

term "word" coming into use to describe what existed at a location in the v| 

memory store. In order to avoid specifying whethei" the content of a given 

storage location was to be regarded as a number or an instruction, it 

became convenient to refer to it as a word of storage.) 

1 

5. Electronic Delay Storage Automatic Calculator (EDSAC) 

i 
EDSAC was the first operational stored program, electronic com- 

Ü 
puter. EDSAC ran its first program at the University of Manchester in May •-* 

V' 
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of 19^9. The EDVAC, discussed in the next section, was the first stored 

program, electronic computer to be designed. (Design started on the EDVAC 

in 19^5, while design started on EDSAC at the end of 19^6.) 

A 

t* 

Both EDVAC and EDSAC are considered to be IAS computers since 

their development was guided by the reports generated at the Institute for 

Advanced Study (IAS) at Princeton, New Jersey by John Von Neumann and his 

colleagues in 19^5- IAS eventually put forth their own computer in 1952 

and the ILLIAC I (University of Illinois), Johniac (RAND Corporation), 

MANIAC (Los Alamos) and WEIZIAC (Woizman Institute of Israel) soon 

followed and were patterned after the IAS machine. They all had addition 

times of about 60 [is and multiplication times on the order of TOO [isec. 

•:■- 

r 
0 
l 

The storage device which permitted both data and instructions to 

be stored together in EDSAC was a mercury delay line or ultrasonic store. 

(See Figure 1-2.) 

mid0mm/\^^ 

Re-Shaper and Amplifier 

1 f 

Output 

Input 

Figure 1-2. Mercury Delay Line or Ultrasonic Store 
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A mercury delay line is a tube filled with meroury. A wire 

coming into the tube carries a train of electronic pulses which are trans- 

formed into mechanical vibrations by means of a piezo-electric crystal. 

The vibrations are transmitted through the column of mercury to another 

crystal at the other end of the tube which converts the mechanical vibra- 

tions into electronic signals. These signals are a bit distorted at this 

point, so they pass through an electronic network which reshapes and 

amplifies the pulses before sending them back through the tube again. 

The length of the tube and the velocity of a disturbance in 

mercury define the memory cycle time. The number of bits that can be 

stored depends on the pulse rate of the clock. A major disadvantage of 

ultrasonic storage is the long access time. The time required for an 

accumulator to access a bit in storage varies from near zero, to the time 

it takes a bit to travel the length of the tube. The access time is on 

the average, one half the time it takes for a bit pulse to travel from 

one end of the tube to the other. 

Another problem one encounters using the ultrasonic store is the 

interleaving of instructions and data in the pulse train so that the 

arithmetic and logic unit is waiting for data a minimum amount of time. 

(For example, it would not be wise to have an instruction that loaded the 

accumulator with a number that was stored ahead of the instruction; the 

accumulator would have to wait a whole memory cycle to get hold of that 

number.) The practice of laying out the instructions and data in the 

ultrasonic store in an optimal manner was called optimum programming. 

1-18 
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Although vacuum tube flip-flops would have provided a faster- 

access storage medium, they were not yet economical.    EDSAC had 30 mercury 

delay lines, each of which could hold thirty-two IT-bit numbers.    There 

were also short mercury "tanks" that held just one number and were used as 

registers.    The access time in these registers  containing only one number 

circulating through a tank was shorter than the access time to a number 

circulating in main memory.    For the main memory, the circulation time or 

memory cycle time was  1.1 ms.    The other operation times were: 

Addition/Subtraction 1.5 ms 

Multiplication k ms 

Division was a subroutine which had a variable operation time. 

EDSAC had a single-address  instruction format which necessitated 

the placing of an accumulator in the arithmetic and logic unit to accumu- 

late the results of the one-address  operations.    EDSAC had two types  of 

Test-and-Branch instructions; one which branched on the contents of a 

storage location being less than zero and the other which branched on the 

>.] contents being greater than or equal to zero.     It was admitted at the time 

__ that even though two tests were redundant, the extra one was included for 

programming convenience.    It must have been around this point in time that 

'v the programming profession began. 

Input and output were combined on a teleprinter unit which could 

both type and punch five-position paper tape.    Input data could be punched 

onto paper tape which in turn was  fed into EDSAC and output could be 

/•V- displayed via the typewriter part of the teleprinter. 
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6. University of Manchester Computers 

EDSAC was merely the name given to the world's first operational 

computer developed at the University of Manchester. As time passed, 

EDSAC evolved into a computer system with refinements that expanded the 

state-of-the-art of computing. 

The Williams Tube memory was developed at Manchester in order 

to increase the speed of memory access. Basically the tube was just a 

cathode ray tube (CRT) that could store an electrostatic pattern of bits 

on the face of the tube. Moreover, the bits could be fetched or changed 

by directing the cathode ray to the appropriate place on the tube. The 

tubes at Manchester held 102^1 spots and could therefore represent 1024 

bits of information; the access time was on the order of microseconds. 

One of the uses of the Williams tube was what we now call index- 

ing. A Williams tube, called the B-tube (presumably because the letters 

A and C were already used) was used to represent two registers. When the 

programmer wrote an instruction, he also referenced the contents of either 

one of these two registers. The contents of the specified register was 

added to the address field of the instruction. In practice, the contents 

of one of the registers was always zero so that when the programmer did 

not wish to modify bis address field, he could reference the register 

containing the zero value. At the time, some people felt the B registers 

were of little scientific value and that they were included merely for 

programmer convenience. It seems the hardware design philosophy was 

1-20 
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beginning to change—a problem that now deserved consideration was 

programming ease. Computers were still being built to solve specific 

problems, but they were starting to create problems of their own to be 

solved. The problem set had started to divide into "applications" 

problems and "systems" problems. 

-•r The Manchester computers added a 128 word drum—each word was 

'-'J kO  bits. The drum was slower than tube memory but it was cheaper in terms 
** I 

v 
of cost per bit stored. Where the access time to tube memory was on the 

order of microseconds, access to the drum was measured in milliseconds. 

Therefore, the programmers at the University of Manchester were among 

the first to contend with the problems of memory hierarchy and cost- 

effectiveness in computer operations: if you have a larger, cheaper, and 

slower memory and a smaller, more expensive, and faster memory, both of 

which can be accessed by the arithmetic unit, you must consider the 

problem of making the most effective use of the total computer. If your 

criterion for effective use is to minimize the idle time of the arithmetic 

unit then you must keep it supplied with data as fast as you can. One 

method of achieving this is to feed the small, fast storage from the large, 

slow one, transferring data in large blocks. The arithmetic unit then 

fetches from the faster storage. Results from the arithmetic unit are 

stored to the faster memory, if possible, and eventually can be sent to 

the large, slow memory. 
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7. Electronic Discrete Variable Automatic Calculator (EDVAC) 

EDVAC was the first stored program computer to be designed. 

In 19^5 a report, "Preliminary Discussion of the Logical Design of an 

Electronic Computing Instrument" by A. W. Burks, H. H. Goldstine, and 

J. Von Neumann, was prepared under contract to the ENIAC project. This 

report described the concept of the stored program computer, and made 

the recommendation that instructions and data be coded using a binary 

representation. 

The report pointed out that although the ENIAC appeared to be a 

decimal machine, the decimal capability was built up from binary components 

grouped to respond as decimal components. It was recommended that numbers 

and instructions be represented inside the machine in terms of the exist- 

ing binary components and that conversion to a decimal representation be ,,, 

performed in the Input/Output phase by means of a program. In other words, ■* 

it was proposed to use software rather than hardware to take care of 1 
i, ■ 

converting from the binary to decimal system and back.    The report was 
9 

distributed at a summer meeting at the University of Pennsylvania in 19^6 E 

and was a strong influence on the design of all future  computers, in 

particular EDSAC and EDVAC. - 

As its primary storage, EDVAC used ultrasonic delay tanks similar j^ 

to the mercury delay lines used by EDSAC.    A tank was  58 cm long and it 
t." 

took 384 |is for a disturbance to travel that length, thus the memory cycle 

time was  3öh |is.    The clock rate was 1 Megacycle so that the tank could S 
mm 

hold 384 pulses or bits of information.    Each number was  kk bits long /v 
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followed by k  "blank" pxilses so that a tank stored 8 numbers. The total 

EDVAC memory was 128 tanks and could store 1024 numbers. 

A wire recorder acted as a secondary store with a capacity of 

20,000 numbers. As with EDSAC, a memory hierarchy existed with a smaller, 

faster tank memory to be traded off against a larger, slower wire memory. 

Numbers were transferred from the wire memory to tank memory in blocks of 

50 to 100 so as not to slow the arithmetic and logic unit. 

EDVAC used a four-address instruction format. The address field 

of an instruction, instead of denoting a single address, denoted four 

locations: the first two locations signified the addresses of the two 

operands to be used in a binary operation (a binary operation is an opera- 

tion such as addition, subtraction that involves the use of two operands), 

the third address indicated where the result was to be stored and the 

fourth address pointed to the location where the next instruction to be 

executed was stored. The fourth address has proved to be superfluous if ,- 

the computer has a test and branch capability and otherwise executes its I' 

instructions in sequence. (Assuming that the instructions are stored in a '•'. 

memory where the time to fetch an instruction is not dependent on where in | 

the memory it is stored—this type of memory is sometimes called "random- 
i 

access".) EDVAC pointed the way to a three-address scheme whereby the i 
r. 
ir 

instructions were executed in sequence and the three addresses were used | 

in the same way as the first three addresses described above. S" 
N 
'. 
s 

A three-address scheme can be very powerful if the programs * 
I 

involve many three-step operations such as A = B + C. However, the trend 
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was to grow away ftom a three-address scheme which vas more useful in 

scientific problems than commercial ones (as well as being more costly 

than a one-address scheme) and eventually settled into the familiar 

one-address scheme we have on most current generation machines. 

Here is another example of the applications problems creating 

systems problems concerning the shaping of the design of the machine. 

It would not be useful to design a two-address machine if there were no 

problems that could be solved with that kind of instruction format. 

The repertoire of instructions has also evolved under the demands of 

the problems to be solved. Character handling instructions would not 

have been implemented so soon and so fully if all problems had been 

scientific. 

The average operation times for EDVAC were: 

Addition/Subtraction 86k us 

Multiplication 2.9 ms 

Division 2.9 ms 

EDVAC appears to have the unhappy distinction of being the first 

computer to experience large time delays in fabrication even though the 

proposed design was well within the technical resources available at that 

time. EDVAC design was started in 19J+5, but was not considered to be a 

working machine until 1952. M. V. Wilkes attributes the problems to the 

much faster clock rate used in EDVAC which necessitated higher quality 

circuitry that could handle pulses of shorter duration without degradation. 
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Cf It appears that there is a principle of natural selection that 

applies to the evolution of computers.    Computers are designed to respond 
. -• 

• '. 

S 

I 

;•-• 

to the needs of the environment. If the environment changes too rapidly, 

some classes of computers may he subject to the fate of the dinosaur. 

More important, the environment is not a closed system outside of the 

<M computer; the computer, as it responds to its environment becomes a part 

i 
of the environment, and creates new problems to be solved. Machines are 

then created to solve these problems. We create tools to solve problems 

that our tools have created. 

C. Unconventional Digital Computer Organizations 

1. Summary 

After EDVAC, in the early 1950's, the deluge began. Hundreds, 

then thousands of computers were manufactured; still, they were generally 

organized on Von Neumann's concepts. The conventional or Von Neumann 

organization is shown and described in Figure 1-3. Memories became 

cheaper and faster, and the concept of archival storage was evolved; 

Control and Arithmetic and Logic Units became more sophisticated; I/O 

devices expanded from typewriters to magnetic tape units, disks, drum and 

remote terminals. But the four basic components of a conventional com- 

puter (Control Unit, Arithmetic and Logic Unit, Memory and I/O) were all 

present in one form or another. 

L The turning away from the conventional organization came in the 

middle 1960^ when the law of diminishing returns began to take effect in 

C 
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CONTROL UNIT 
(CU) 

INPUT/OUTPUT 
(I/O) 

ARITHMETIC AND 
LOGIC  UNIT 

(ALU) 

MEMORY 

Figure 1-3. Functional Relations within a Conventional Computer 

The Control Unit (CU) has the function of fetching instructions 
which are stored in Memory, decoc* .ng or interpreting these instructions 
and finally generating the microsequences of electronic pulses which cause 
the instruction to be performed. The performance of the instruction may 
entail the use or "driving" of one of the three other components. The CU 
may also contain a small amount of memory called registers that can be 
accessed faster than the main Memory. The ALU contains the electronic 
circuitry necessary to perform arithmetic and logical operations. The ALU 
may also contain register storage. Memory is the medium by which informa- 
tion (instructions or data) is stored. The I/O accepts information which 
is input to or output from Memory. The I/O hardware may also take care of 
converting the information from one coding scheme to another. 

The CU and ALU taken together are sometimes called a CPU or 
Central Processing Unit. 

S3 
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the effort to increase the operational speed of a computer. Up until this 

point the approach was simply to speed up the operation of the electronic 

circuitry which comprised the four major functional components. (See 

figure 1-3.) 

JJ! 

■:■: 

i 
Electronic circuits appear to be limited in their speed of 

operation by the speed of light (light travels about one foot in a 

nanosecond) and many of the circuits were already operating in the nano- 

second time range. So, although faster circuits could be made, the amount 

of money necessary to produce an increase in speed was not justifiable in 

terms of the small percentage increase of speed. 

'.. 

iv 

,"-• 

^ 

v. 
r.' 

At this stage of the problem two new approaches evolved: 

w^ l) Overlap. The hardware structure of the conventional organi- 

|i> zation was modified so that two or more of the major functional components 

(or subcomponents within a major component) could overlap their operations. 

" Overlap means that more than one operation is occurring during the same 

time interval and thus total operation time is decreased. 
t$ 

Before operations could be overlapped, control sequences between 

the components had to be de-coupled. Certainly the Control Unit could at 

>. least be fetching the next instruction while the Arithmetic and Logic Unit 

■■ was carrying out the present one. 

\. 
v. . 
KM 2)    Replication. One of the four major components (or 

t 
subcomponents within a major component)  could be duplicated many times, 
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(Ten "black boxes can produce the result of one black box in one-tenth of 

the time if the conditions are right.) The replication of I/O devices, 

for example, was a step taken very early in the evolution of digital 

computers—large installations had more than one tape drive, more than 

one card reader, more than one printer. 

Since the above two philosophies do not mutually exclude each 

other, a third approach exists which consists of both of them in a 

continuously variable range of proportions. 

The overlapping philosophy was implemented largely thrc-i^h the 

Buffer and Pipeline mechanisms. The Pipeline mechanism breaks down an 

operation into suboperations or stages and decouples these stages from 

each other. After the stages are decoupled they can be performed 

simultaneously or, equivalently, in parallel. The Buffer mechanism allows 

an operation to be decoupled into parallel operation by providing a place 

to store information. 

The replication philosophy is exemplified by the general Multi- 

processor which replicates three of the four major components (all but 

the I/O) many times. The cost of a general Multiprocessor is, however, 

very high and further design options were considered which would decrease 

the cost without seriously degrading the power or efficiency of the system. 

The options consist merely of re-centralizing one of the three major 
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components which had been previously replicated in the general Multi- 

processor—the Memory, the Arithmetic and Logic Unit or the Control Unit. 

Centralizing the Control Unit gives rise to the basic organization of a 

Vector or Array Processor such as ILLIAC IV. This particular option was 

chosen for two main reasons: 

1) Cost. A very high percentage of the cost within a digital 

computer is associated with Control Unit circuitry. Replication of this 

component is particularly expensive and therefore centralizing the Control 

Unit saves more money than can be saved by centralizing either of the other 

two components. 

2) There is a large class of both scientific and business prob- 

lems that can be solved by a computer with one Control Unit (one instruc- 

tion stream) and many Arithmetic and Logic Units. The same algorithm is 

performed repetitively on many sets of different data; the data is 

structured as a vector and the vector processor of ILLIAC IV operates on 

the vector data. All of the components of data structured as a vector are 

processed simultaneously or in parallel. 

ILLIAC IV also utilizes the Buffer and Pipeline mechanism to 

overlap the execution of instructions. This allows a further increase in 

operational speed as both the replication and overlap design philosophies 

are applied simultaneously. 
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2. Overlap Mechanisms 

Buffer 

A buffer is a mechanism which allows a process to be broken 

down into subprocesses so that the execution of the subprocesses can be 

overlapped. 

Let us use an analogy to demonstrate what a buffer is and why we 

would like to use one: 

Suppose you are mowing your front lawn and you have a bag 

attached to your mower to collect the grass clippings. Each time this 

bag fills up, you must stop the mower, detach the bag, and walk aroun* to 

the back of your house where the trash barrels are. Ycu must then empty 

the bag of accumulated clippings into the trash barrel, walk back to your 

mower, attach the tag, and continue mowing. 

After seme time you come to the realization that you are spending 

a lot of your time detaching the bag, walking to the trash barrels, empty- 

ing the bag, walking back and re-attaching the bag. You remember that 

you also own a large wheelbarrow that could hold many bag-loads of grass ,\; 

clippings. You now recognize the option of placing the wheelbarrow on 

i 
the front lawn, and when the grass bag becomes full, you could walk over ■ 

to the nearby wheelbarrow and empty the bag into the wheelbarrow. When •.• 

the wheelbarrow became full, then you would have to push it to the trash 

barrels behind the house, empty the wheelbarrow, and push the wheelbarrow US 

back to the front lawn. v'o 

§ 
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l# Very naturally the question arises : How many bag-loads must 

the wheelbarrow he able to hold to Justify its use? Fortunately, this 

s w"J problem is very easily solved. Let us look at the times associated with 

• each method. i 
Ifethod 1:    No wheelbarrow used 

V;.  

T1 = Time to detach bag from mower 

[■'_. T_ = "ime to walk from luower to trash barrel 

T_ = Time to empty bag into trash barrel 

T. = T_ = Time to walk back from trash barrel to mower 

T^ = T1 = Time to attach bag to mower 

Method 2: Wheelbarrow is used as a Buffer 

T^- = T.. = Time to detach bag from mower 

T„ = Time to walk from mower to wheelbarrow 

To = T_ = Time to empty bag into wheelbarrow 

Tg = T„ = Time to walk from wheelbarrow to mower 

T..Q = T.. = Time to attach bag to mower 

T .= Time to push wheelbarrow to trash barrel 

T.. p = Time to empty wheelbarrow into trash barrel 

T. _ = T. = Time to push wheelbarrow from trash barrel to front lawn 

(Even though the wheelbarrow or bag is lighter on the walk back from the 

trash barrel, we are assuming it will take the same time as the walk to 

the trash barrel since grass clippings are very, very light. We also 

equate the time to attach a grass catcher bag and the time to detach it— 

r.i 

». - 
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based on actual experience.) Finally, in order to relate all the times 

(^ through T13) to each other we assume that the wheelbarrov holds N 

bag-loads. Therefore, repeating Method 1 N times is equivalent (in terms 

of area of lawn mowed) to performing Method 2 once. 

The question then becomes: When is 

Total time for Method 1 > Total time for Method 2? 

or for what value of N is 

P 

i 

N(T1 + T2 + T3 + T2 + T^ > NC^ + T7 + T3 + T7 + T^ + T11 + T^ + ^ 

Si 

which reduces to 

N > 
2T  + T 

11  X12 

2(T2 - T7) 

We can see from the diagram below that T > T and assuming T  = T - T , 
11 a 

0 

Mower 

In 

Wheelbarrow 

11 

Trash barrel u 

we therefore arrive at 

N > 
2T  + T 

11   12 

2T. 
11 
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so that in order for Method 2 to he feaslWa, the wheelherrov Bust hoW 

N bag-loads where 

• T 
N > 1 + —ü 

2T 11 

We now see that the size of our buffer wheelbarrow depends only on T^ 

and T12 or viewed somewhat differently, that the larger N is (the bigger 

the wheelbarrow we have) the less we have to worry about the effect of 

Tll «* T12- 

If we now enlist another person to help us by emptying the 

wheelbarrow when it gets full and bringing it back in time to receive the 

next bag-load, this will reduce the total time of Method 2 by making 

Tll = Tl2 = 
0 since these subprocesses are being performed simultaneously 

with the other subprocess times. Now the .uestion of what size N Justifies 

Method 2 over Method 1 becomes: For what N is: 

N(Ta+T2 + T3 + T2 + T1)>N(T1 + T7 + T3 + T2 + T1) 

Using the same reasoning as before we see that 

2N(T2 - T7) > 0 

j.    -Liici-ciore, zms scheme (•!>• Thle reletlon holds true for ell N since ^ ^    Therefore, this scheme 

of having a helper who runs the vheelharrow is a hotter vay to mow a le» I 

than by yourself.    One may have guessed that fact intuitively; however, it I 

is not always clear how a process can he broken do«, into autononously" I 

perfomed subprocesses as it is with this particular analogy. ' 
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This analogy, although simple-minded, does illustrate what a 

buffer is and how it works: If a process consists of a series of sub- 

processes and this process takes "too long" from beginning to end, we can 

speed up the process time by dividing the total process into at least two 

subprocesses each of which control themselves autonomously. Between the 

two subprocesses we place a buffer so that the output from subprocess 1 

goes into the buffer and the input to subprocess 2 comes from the buffer. 

Since the two subprocesses operate autonomously they speed up total process 

time by overlapping (in time) their performance. The buffer acts as a 

decoupler of control between subprocess 1 and subprocess 2 and a place to 

save things which must be passed between the subprocesses. 

It may usually turn out in practice that one process occurs at 

one rate of speed while another occurs at a greatly different rate of 

speed. In this case, the processes already existed as separate and 

distinct, and the placing of a buffer between them is necessary only to 

insure that the high speed process is not held up by the low speed one. 

The placing of a buffer between the processes again decreases the total 

process time by overlapping operations. (See Figure I-U.) 

Suppose, for example that subprocesses P^ P2 and ?3 occur at a 

veiy fast rate and that F^ and P5 occur slowly. A buffer could be placed j 

between them aü shown in the lower part of Figure 1-k  and the P-^Pg 

process would not bo held up waiting on P^ and P^. 

Buffers may have another effect on autonomous processes. They 

not only speed up the rate at which information flows through the 
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two-process system, they may smooth out the rate of information flow. 

Without the buffer, one process must wait on another and the outputs of 

the first process appear and then must wait a variable time until accepted 

by the second process. This results in a "Jerky" flow of information 

through the system. The buffer acts to accept outputs from the first 

process as soon as they are generated and will save these outputs until the 

second process is ready to accept them. 

Summing up: a buffer decouples control between a previously 

sequential set of processes, transforming them into at least two parallel 

or simultaneous processes; and provides a place to store information which 

must be passed between the processes. 

■v 

k 

PROCESS 

INPUT 
Pi P2 Ps P4 P6 

OUTPUT 

(WITHOUT BUFFER) 

SUBPROCESS 1 
{WITH BUFFER) 

INPUT OUTPUT 
BUFFER 

mmz 
w///////////. 
mmm vmm 

SUBPROCESS 2 

OUTPUT 
P5 

INPUT 

TIME 

Figure I-lt.    Pioness Execution with and without Buffer 
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b. Pipeline 

i. Summary 

A sequential process can be viewed as a black box that accepts 

inputs and produces outputs with the added stipulation that the black box 

cannot accept a new input until the output has been generated for the 

previous input. In other words, the black box is tied up all of the time 

in processing Just one input. 

As an example let us consider a black box (an Adder) that adds 

two numbers together. Say there are two inputs (the numbers to be added) 

and one output (the result). If it takes M seconds for the Adder to perform 

the operation it will take N * M seconds to add N pairs of numbers. How- 

ever, if the Adder would accept additional operands to be added while the 

ones ahead were still in the box then the total time to add N pairs of 

numbers would certainly decrease. We can do this if the add operation can 

be broken down into independent stages; as soon as an operand passed through 

the first stage, the next pair of operands could be accepted by the Adder. 

This method of dividing the adder into stages and letting the stages run 

independently is called a "pipeline." The total time to process N operands 

is speeded up because, once all of the stages in the pipeline are full, 

results appear out of the end of the pipeline in time increments equal to 

the processing time of the slowest stage. 
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11. Background 

The pipeline mechanism can be applied to a process that Is able 

to be broken down Into two or more stages that can operate Independently; 

the only dependence between stages is that the output of a previous stage 

becomes the input to a succeeding stage. For example, suppose we have a 

process that upon closer inspection can be viewed as being made up of 

three subprocesses. If each subprocess time is P.., P« and P., then it 

takes P a P. + Pp + P_ units of time to transform an input to an output of 

the process, and consequently if we have N inputs to process then it will 

take N(P + Po + P?) units of time to complete the Job. Figure 1-5 shows 

how two Inputs I. and !_ proceed through our example three-stage sequential 

process. The outputs 0 and 0- are both ready after 2P units of time. 

-N 

■0 

I 
r 
i 

Time 

Zero 

P1 + P2 

p + p + p - p 
1*2*3 

P + P, 

P + P1 + P2 

P + P1 + P2 + P3 = 2P 

P     P 
2   r3 

*x  1         1         1 

1   \ h \   1 
1         i          !  ^    1 

h i       i 

1   i ^ i 

:       : h 
02   Cl 

Figure 1-5. Two Inputs Transformed to Two Outputs via 
a Three-Stage Sequential Process 
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Now let us apply the pipeline mechanism to our example. First 

we decouple each subprocess by placing a one item "holding buffer" after 

each subprocess; when a subprocess or stage has completed its Job, it 

places its output into its holding buffer. When all stages are finished 

they simultaneously pass their outputs to the input part of the next stage, 

Although this slows the operation of the pipeline down to the rate of the 

slowest stage, inputs do not have to wait outside the process until the 

previous input is completely finished—inputs can enter into the process 

as soon as the first stage has passed its results to the second stage. 

Since the stages have been decoupled, they can be processing different 

items or operands simultaneously. Each item moves through the stages of 

the pipeline or pipe in a semi-finished state of completion (not holding 

up a following operand) until it appears at the end of the pipe completely 

processed. See Figure 1-6 which shows how two inputs produce two outputs 

in a three-stage pipeline. 

Time 

Zero 

PM 

2PM 

Figure 1-6 

P     P     P 
M     M     M 

h h i       i 

:2 i   ^  i 

: ^ ! h 
i   i h 0i 

1       ' o2 o1 

i.    Two 
via 

PM
1 

Inputs Transformed to 
a Three-Stage Pipeline 
s the Maximum of P.. , P 

Two Outputs 
where 

2, and P3 
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It takes PM + PM + PM units of time to make the initial filling 

of the pipeline—after that a finished item appears at the end of the pipe 

ÖJ every P.. units of time where P.. is the maximum of Pn, P0 and P_. Thus the ►.' M •       M 12     3 

time to process N items via the pipeline mechanism for our 3 stage example 

is 3P,,. + (N-l) P., units of time. 

We can now ask the question (as we did with the Buffer): for 

what value of N is the sequential process time greater than the pipelined 

process time, i.e., for what value of N is: 

| N(P1 + P2 + P3) > 3PM + (N-l) PM 

or      N(P1 + P2 + P3) > (N+2) PM 

Let us say that PM = P«, then 

N(P.  + P,) + NPM > NPM + 2PM 13 M M M 

2P               2P 
or N >    =   

r. P1+P3      P1+P3 

_ That is, for the pipelined process to be faster than the sequential one, 

*--' N must he such that the relation N > 2P /P +P    is true.    For the example 

fv we are considering in Figure 1-6, N = 2 so that 

r:-. 2P p 
2 > — or  ~ < 1 

p +p p +p 
1    3 1    3 

must hold for the pipeline to he quicker: 

». »-- •_ 
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thus if P1 = 3,    P2 = U and P3 = 2 so that 

p
2 —=- <1 

P +P 
1    3 

then for this choice of subprocess times the pipeline would be faster. 

The larger N is, the greater the chance that the pipeline is 

faster than the sequential process for a given set of subprocess times. 

Let us devise a more general formula fur S stages and N items to be 

pipeline processed: 

The sequential process time to process N items through S stages is 

S 
N ^ P 

i=l 1 

The pipelined time is 

SPM +  ^  PM 

So we ask:     for what N does the  following relation hold true? 

S 
N ^ Pi > SPM +  ^"^ PM 

s v3 
N ^  P.   > NPM +  (S-l)  PM tj 

I-itO 
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SNow, say PM ■ P. where 1 < j < S, then 

S 
8 N    Z   E,  + NPM > NPM + (S-l) P, 

m LA 

i=l 

or N   Z   P..  > (S-l) P 

m 
WX XI ^j x,   ,      ^-     \fcJ—J./      X   , 

(:'- (S-l) P 
or     (1)    N   >   —T i 

Z   P, 
i=l    1 

Since the right hand side of the relation (l) is always greater 

than 1, we can say that for the pipelined process to he faster than the 

sequential one, the number of items, N, must he larger than one—again, 

we might have guessed this intuitively. 

Additionally, the gain of the pipeline approach over the 

sequential one is a function of the number of stages, S, and the distri- 

bution of the subprocess times, P..    Let us consider two possible 

distributions for P, :      The best  case (the one in which the pipeline out- 

performs the sequential method by the highest time ratio) is when all of 

[■-' Hi the subprocess times are equal: 

P.   = K i = 1,  2,   ..., S then P.. = K i »     » » M 

and the ratio of sequential time to pipelined time becomes: 

1-kl 
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...  1 NSK NS 
R =      1~1 

SPM + (N-l) PM    SK + (N-l) K    S + N - 1 n 
•1 

and lim R = S; so we see for this case the pipeline can be up to S times W 
•• 

as fast as the sequential process (where S is the number of stages in the 

pipeline) if we can keep the pipeline full all of the time (N -» «>). The d 
m.i. 

relationship  (l) on page I-i4l for this case becomes: 
r'.; 

(S-l) K 
N   >        =1 or    N > 1 I? 

(S-l)  K £ 

TZ' 
which means all we need is for N to be greater than one (two items) for ^ 

the pipeline to be more effective; and the larger N is the better the 

pipeline looks. V«J 

Now let us compare the pipelined and sequential times when the Kl 

P. have a linear distribution, say ,,, 

Pi = i    i » 1, 2, ..., S    then Pj, = S 

and the ratio of sequential time to pipelined time becomes 

R =      i=1 

S 
N y p 

iti i        N(S/2)(Sfl)      N(S+1) 

SPM + (N-l) PM     S
2 + (N-l) S    2(S+N-l) 

and lim R = (S+l)/2. Comparing this ratio, R, to the constant distribution 
N~*» 

(P. = K) where the ratio is S: 
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When is S > S * 1 

The answer is whenever S > 1 or whenever there is more than one stage. So 

we see that the pipeline outperforms a sequential process by a factor of S 

when the subprocess times are all the same, and by a factor of (S+l)/2 

(not quite as good) when the subprocess times are linearly distributed. 

Both of these factors are based on the assumption that the j. peline is 

kept full all of the time. 

The relationship (l) on page 1-kl  for this second case becomes 

(S-l) S 
N >   =2    or N > 2 

((S-l)/2) S 

which means all we need is for N to be greater than two (thr^e items) for 

the pipeline to be more effective than the sequential process. Note that 

this is a more stringent requirement than for the constant distribution 

(P. -  K) case described first. 

There is, however, a finite limit on the numbesr of autonomous 

subprocesses a process can be broken down into, so that efficiency does 

reach a maximum value. It should also be clear that for the pipeline 

mechanism to function at its best efficiency, it should be kept full as 

much as possible. If the pipe ever drains (runs out of items to be 

processed) the initial filling up time is very costly since each stage 

operates at the rate of the slowest stage in the pipe. 
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iii. A Pipeline Adder 

We shall now apply the pipeline mechanism to the adder section 

of the Arithmetic and Logic Unit of a computer. To illustrate the time 

speed-up, let us assume that we must add seven pairs of floating point 

numbers with rounding and normalization. First, let us briefly review the 

process by which two floating point numbers are added: 

Using a decimal notation we represent a number in the floating 

point format as follows: 

+  . XXX + XX 

Exponent t      t   t I Mantissa I) 

Sign of   Sign of 
Mantissa  Exponent 

We have allowed 3 significant digits in the Mantissa and two for the 

Exponent. Thus -.123 + 01 is the san» as -.123 x 101 in scientific nota- 

tion or -1.23. Also +.0llt - 02 is the same as .00014. We say that a 

number in floating point format is normalized when the Mantissa is greater 

than or equal to .1 but less than 1. 

.1 < Mantissa < 1. 

Thus +.0lit - 02 is not normalized but 

+.1^0 - 03 is normalized. 

In order to add two numbers in floating point format, we must 

first equalize their exponents so that their mantissas can be added. 

I-1+It 

\,>-V %••.'•• •-'.•' •■,■.-. .- . v-. • .> ."»v" ,■-.'•• .^ .'•'.*-'.V,'- ."•."• .■•.'■--'•/■'»"■.■- .•-/•>"• v^V-V'.'-.■-*.■• ."-i."i.'-;"«V>.-j,"*V<--"'i"i-,> ."■; 
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However, when equalizing the exponents we always take the number with the 

smaller exponent and "promote" the smaller exponent up to the larger one 

and adjust the mantissa of this number hy right shifting by the difference 

of the exponents. We could not -•,  rm a left shift or a significant digit 

1 
Es or a normalized number would appear to the left of the decimal point. 

S 
After addition of the mantissas, we normalize the result if 

necessary and finally we round the result so that it can be expressed 

within 3 significant digits. 

In order to perform the four operations 

1. Adjust Exponents 

2. Add Mantissas 

3. Normalize (if necessary) 

k. Round 

we must have an accumulator in our adder that can hold more information 

than the format we have specified for our floating point numbers. For our 

3 significant digit case let us use an accumulator capable of holding 

numbers of the form 

+ X . XXXXXX + XX 

This accumulator has an extra position to the left of the decimal point to 

temporarily store a digit which might overflow as a result of an addition, 

and it has 6 significant digits to insure accuracy when rounding takes 

place. 

1-1+5 
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Consider two examples of what steps can occur using actual 

numbers as operands. We assume that all operands enter into the floating 

point addition process in normalized form and that the number with the 

smaller exponent has been placed in the extra length accumulator. 

Example 1    Add 123 to 1*5.6; that is, perform the operation: 

123. + 45.6 

In normalized form the numbers are: 

(+.123 + 03) + (+.U56 + 02) 

1. Adjust Exponents; 

2. Add Mantissas: 

3. No Normalization 
Necessary 

h.    Round Result: 

.123   + 03 

+O.0456OO + 03 

+0.168600 + 03 

+.169 + 03 

This number is in 
the accumulator 

Result in 
accumulator also 

Number is now back 
in 3 significant 
digit form. 

Example 2    Add 9.99 to .0147; that is, perform the operation; 

9.99 + .OlltT 

In normalized form the numbers are: 

(+.999 + 01) + (+.lltT - 01) 

1. Adjust Exponents:     +.999   + 01 

+0.001470 + 01 

2. Add Mantissas; 

3. Normalize: 

1+. Round: 

+1.0001+70 + 01 

+0.10001+7 + 02 

+.100 + 02 -:>i 
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Now suppose that the stages of the four step addition process 

took 70, 100, 60 and 50 nanoseconds (ns) respectively, then the total time 

to add our seven pairs' of numbers in a sequential manner would be 

7 x (70 + 100 + 60 + 50) = I960 ns 

Since each stage can perform its operation autonomously on 

different operand-pairs, let us "pipeline" the four-stage addition process, 

Since the slowest stage operates at 100 ns we have 

Adjust Exponents 

Add Mantissas 

Normalize 

Round 

Stage 1 

Stage 2 

Stage 3 

Stage k 

In 

100 ns 
I 

100 ns 

100 ns 

100 ns 

Out i 

u 

u 

e 
s 

iC 

At the end of hOO  ns the first result appears at the end of the pipe; 

after that results come out every 100 ns. (Note that in the sequential 

process the first result appears after only 280 ns but they continue to 

be created at that rate.) See Figure 1-7 for a snapshot of the pipelined 

adder every 100 ns. We see from the figure that the total time to add 

7 numbers using our four-stage pipeline adder takes only 1000 ns as 

compared with the i960 ns sequential addition. 

I-U7 

.<--^Vv^V>A/V-.V.'-.'.^V-.S^ 
• "."."%" I 



I 

911 
c 
0 

o 

to I 
c 

0\ 

CO 
e 
o o 
00 

J h- 
"   >i 
'   r 

s^ 

t- vo 
~ s 

m >i 
r 

^^ ^ ^^ 
s - 

vo 
>> ^1 

o 
X £ 

_» *-^ ^^ ^^ 
s >> 

VO 
- 

O o »r ^ ~ irv 
X tf vo s*"# ^-^ >^ '-' 

>> 

X i0 
X 

- 
- 

o 
o 

4- vo 

VO 
X 

IA 

m 
X 

cvi 

OJ 
X 

KH VO IA .* s n s ^ s 
+ + + + + + + 
»r H^ 

IA 
X 4* X K~ 

f» 
M 

^ >> 
CO cvi 

K 
+ + + + + + 

X^ 
IA 

X X* x<n xw ►r 

>> sw sH 

+ + + + + 
IA 

X X^ X X^ ►r 

>f tn 
th, s01 sH 

+ + + + 

X X x^ >r 

ww sH 

+ + + 
x00 xw ►r 

sw 
WH 

+ + 
cvi 

X »r 

+ bD-H 

• 
CQ 
Ö 

l^            VO              IA 
h        >l        >i f»              at              # 

t—           VO            IA 
XXX x-* 

- 
n 

S * 
X 

- 
C\l 

X 

- 

I» ^ 

x^ 

IA 

X 

-3- 

-3- 
X 

^^ r^ ^, 
00 CVI H 

S -<,- s >> 
M A 

CO 
X xw 

^ 

VO 

x^ 

IA 

X 
CVI 

X 

•H 
0) K 8 
^J Si H 
W >t u a) U 
<L So (1) 
& ^s > 

(1) 
jg 1 ■P 

Vi & .H 
o o w 

PM Pt 
tu 

trt 
•H CQ 

Ä •H 

a ^3 ti 
a) 0) a) 
> -a TD 

Ä < < 

• 

H 

s ^ 

x^ 

IA s 
IA 

X x* on 

cvi 
>> 

cvj 
h 

k^l 

1 
1-48 

^>^-^^r:--N S>>>v^>^:^-^>:b>Vv . -.S^ M >S^^^^L^^^>^:O^^>:^^>:S :• 



1 y's 

It is, of course, of primary importance to keep the pipe filled 

with operands. If the pipe is used sporadically instead of continuously, 

• ^ 
& its purpose is defeated. Other problems may arise if more than one pipe- 

line unit exists—for example, an Arithmetic and Logic Unit may have a 

Pipeline Adder am" a Pipeline Multiplier. If one pipeline is performing 

an operation that needs the result of another operation which is in another 

pipe, then efficiency drops while one unit waits on another. 

.-~ 

iv. A Pipeline Instruction Execution Unit 

i 
Arithmetic and Logic Unit components are not the only sections of 

W a computer that can be pipelined to increase execution speed. It is also 

possible (although a trickier proposition) to pipeline the instruction 

execution section of the Control Unit. (This approach was taken by the 

IBM STRETCH computer.) 

fib 

5 
•.■ 

The process of interpreting and executing an instruction can be 

decoupled into several autonomous stages and therefore instructions can be 

executed through a pipeline—each instruction in the pipe being in a 

semi-finished state of execution. The tricky part of this proposition 

comes in when one instruction in the pipe needs the results from the total 

execution of another instruction in the pipe. At this stage, the pipe- 

lining process must stop and all instructions ahead of the instruction 

must be processed through the pipe so that the instruction which needed 

the complete results can be given them. Another problem would be a Test- 

and-Branch instruction proceeding through the pipe. From where do you 
/) %• 

JJS'        fetch the instructions following the Test-and-Branch? Also, instructions 

1 
i 

E 
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which modify fields of other instructions (such as the address field) 

could not both be allowed in the pipe at the same time. When certain 

possibilities such as the ones described above do occur, the pipe must be 

allowed to drain or is "flushed out" and the benefits of the pipeline 

are temporarily wasted. 

In the pipelined Instruction Look Ahead Unit of STRETCH, 

instructions were fetched while their predecessors were being executed and 

operands were made ready, if necessary. Each instruction was in a stage 

of partial completion in the pipeline. The problem of how to handle a 

Test-and-Branch or Conditional Branch instruction was solved very straight- 

forwardly: the assumption was made that the test would always fail so that 

succeeding instructions were fetched from the location contiguous to the 

branch instruction. About half the time this guess would be right. Once 

programmers were aware of this type of bias they could then write their 

programs to take advantage of it. 

Summing up: A Pipeline is a mechanism by which a previously 

sequential process is broken down into stages, each of which can operate 

independently of the other. When the slowest stage is finished, the 

output from Stage i is passed on to become the input to Stage i + 1 for all 

stages simultaneously. Once the pipe is full, output appears at the end of 

the pipe at a time increment equal to the operation time of the slowest 

stage. 
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3. Replication—The Multiprocessor 

The general Multiprocessor is the embodiment of the replication 

design philosophy; three of the four components of a conventional computer 

are replicated many (N) times resulting in a system that can be up to N 

times as powerful. See Figure 1-8. We can think of a general multi- 

processor as N conventional computers in one system, all sharing the I/O 

resources of that system. There may be some information flow from Control 

Unit to Control Unit but the main idea is that each Control Unit can 

independently and simultaneously execute the program in its memory. Since 

the multiprocessor can be executing N distinct streams of instructions 

simultaneously, it can, under optimum conditions, effect a time speedup by 

a factor of N. 
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It is, of course, very expensive to build a true multiprocessor 

as outlined by Figure 1-8.    There are N times as many Control Units, 

N times as many ALUs and N times as many Memories as there are in a 

conventional computer.    In order to keep the cost at a minimum, the 

following question is asked:    Which of the functional components:    Memory, 

ALU, or Control Unit, could be centralized with little or no loss to the 

power of the multiprocessing system? 

a.    Centralize Memory 

Memoiy could be lumped into one large memory of N times as many 

words  instead of N separate memories but little savings in cost would 

result—you essentially still have to pay for the same number of bits of 

storage.     (See Figure 1-9.)    The most severe problem that comes  from 

CUi 

ALUi 

CU; 

ALUz 

XI ^X 

•  •  • 

•   •   • cu» 

• • • ALUN 

MEMORY I/O 

Figure 1-9. Multiprocessor with Common (Lumped) Memoiy 
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m sharing a common memory is the potential bottleneck that exists when more 

than one Control Unit wants to store/fetch data or instructions at the same 

M» memory location. Additional hardware lines (at additional cost) can be 

added to take care of the fetching problem but devising the software to 

decide which unit will store first is relatively complicated. Keeping one 

Control Unit out of the program instruction area reserved for another 

Control Unit requires that appropriate software or hardware be produced to 

maintain program integrity. Even if the manufacturer provides the hard- 

ware and software, it costs money and that cost is usually passed on to 

if the customer. Sharing a common memory might end up costing more money 

than distributing the memories among the CUs and ALUs. 

;> 

£ 

y\ 

♦ ■ 

b. Centralize the Arithmetic and Logic Unit (ALU) 

Another approach is to centralize the ALU into an extremely 

fast, high-quality ALU that could service all N Control Units. This design 

is called the Intrinsic Multiprocessor (see Figure 1-10). 

The ALU section of the Intrinsic Multiprocessor is comprised of 

many specialized and powerful processing units—some of which may be 

replicated (such as the Adder).  (These units could be pipelined for a 

further increase in speed.) 

The Control Units (CUs) can each be executing independent streams 

KS of instructions. When an instruction needs to use one of the processing 

RD units in the ALU, a request is placed in the Selector. If the desired unit 

L 
*-•• is free, the operation requested is performed.    If all of the units which 
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Figure 1-10. Functional Block Diagram of Intrinsic Multiprocessor 

could have performed the operation are currently busy, the request is 

placed in a queue to be serviced when the requested unit(s) become free. 

If the latter is the case, the CU which requested a unit that was busy will 

be temporarily halted in its execution of instructions by the Selector. 

Note that memory is also centralized in this version of the 

Intrinsic Multiprocessor so that a common memory is shared by all CUs 

for instruction and data storage. Since memory is centralized it is 

necessary that this type of multiprocessor have a specialized instruction 
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repertoire. Results could not be stored temporarily in a register within 

the ALU, since it might hold up the results requested by another CU's 

operation. A solution-would be to design the instructions to be of the 

three-address form: the two operands and the location in memory indicating ■ 
HI where to store the result. 

fffl 
(V The design is effective if all of the specialized units in the 
023 

ALU can be kept busy for a high percentage of the time. This means that 

K        the instructions coming to the ALU from the CUs be mixed in roughly the 

same proportion as the processing units present in the ALU. For further 

efficiency, the same instruction type should not appear at the same time 

K' in all CUs. If all conditions are right, a speedup is gained since the 

processing function (in the ALU) has been decoupled from the control 

function and both of these operations can proceed simultaneously—the ALU 

Hffl        is not waiting on the CU to fetch and decode instructions. Rather than 

have many ALUs not being lOOjS utilized (as is usually the case in the 

jP        general multiprocessor) the one Super-ALU of the Intrinsic Multiprocessor 
(•V 

shares its resources among the many CUs. 

c. Centralize the Control Unit (CU) 

When the Control Unit is centralized (the design option taken 

Ö by ILLIAC IV) the array of ALUs is called an Array or Vector Processor. 

>. "Array" is perhaps not the best choice of words because it can bring to 

mind a two-dimensional picture. In all further discussions it is very 

I important for the reader to understand that the term "Array" refers to a 
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one-dimensional array—a row, a column, or still better, a vector.    Now, 

what does it mean when we say a computer has an Array Processor or a 

Vector Processor?    Before we answer this question, let us recall some 

history: 

In the early days of computing (late forties and early fifties) 

data was processed by the CPU in a serial mode.    Pulses representing the 

bits which in turn represented numbers went into the CPU "one-at-a-tirae" 

and were processed (added, subtracted, etc.)  sequentially.    The process 

could not be completed until after the last pulse had entered the CPU. 

In order to speed up the operation of the CPU, its design was 

changed to accept data in a parallel mode or "all-at-once." Thus, if a 

word was N bits long, the parallel CPU could operate N times as fast as 

a serial CPU.    See Figure 1-11. 

Data 

Serial CPU 0101100011001 CPU 

Data 

Parallel CPU 0101100011001 

n * * i i i i 
CPU 

L 0 0 1 

E5 
Figure 1-11. Serial CPU vs. Parallel CPU 
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If we new extend this concept from dealing with the N bits in a 

word all-at-one-time to dealing with N words in a vector all-at-one-time 

we have the gist of a vector processor.    Although a conventional computer 

can operate on the many hits within a word in parallel, the contents of 

the word is just one single number, or a scalar.    If we devise a computer 

with an Arithmetic and Logic Unit that can deal with N words simulta- 

neously, then we can view each word as a component of a vector and say 

that the machine has a Vector or Array Processor.    (See Figure 1-12.) 

Each ALU within the ALU array deals with one component of the vector. 

Since an Array Processor performs its operations  (+, -, x, T, 

AND, NOT, OR, etc.)  on operands that are vectors, not scalar numbers, when 

you execute the instruction "Add A to B and store the result in C" what you 

I 
I 
g 
B 

I: 

i 
t 
(ft • . ■ r 

ALUi 

MEMORY! 

ALU2 

I 
MEMORYg 

CU 

•  •  • 

• •  • 

E-*——} 
ALUN 

I 
MEMORYN 

I/O 

Figure 1-12. A Vector or Array Processor 
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are actually doing is adding the vector A to the vector B and storing the 

result to a vector named C: 

A = la., a-j • • • i 81 / 

B= (b^ b2, ....bj 

C = (aj^ + bj^, a2 + b2, ..., an 
+ t^) 

Since there is only one Control Unit, the ALU Array can only 

respond in a "lock-stepped" mode to each instruction. For example, if the 

instruction is ADD, then all N of the ALUs perform the ADD operation; there 

is no instruction which can cause some ALUs to add while others are 

multiplying. Every ALU of the Array performs the operation in this lock- 

stepped fashion, but the operands are vectors whose components can be and 

usually are different. 

There is a nice distinction that can be drawn at this point 

between the operation of a Pipeline Processor and that of an Array 

Processor: 

In a Pipeline, each stage performs a different operation simultaneously. 

In an Array Processor, each ALU performs the same operation simultaneously. 

k.    ILLIAC IV 

ILLIAC IV is a direct descendant of the SOLOMON Computer which 

was designed by D. L. Slotnick and built by the Westinghouse Corporation 

in prototype. Before we take our first look at ILLIAC IV, let us briefly 

examine the SOLOMON Computer. _. 11 
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SOLOMON has 102k Processing Elements  (PE)  each element having 

U096 bits of storage.    However, since all operations performed within a PE 

are serial-by-bit (and not parallel as in current conventional machines) 

the speedup factor is not 102li but 1024/N where N is the number of bits in 

a word.    The serial-by-bit operation of the PEs decreases the speed of the 

machine but it also lowers its cost and makes possible variable word 

lengths. 

v 
Each PE has its own memory but can be instructed to reference 

the memory of its four closest neighbors. What constitutes a neighbor is 

shown by Figure 1-13. If the PEs are viewed as a 32 x 32 array, each PE 

(except the border ones) has a closest North, East, South and West 

m 

I; 

r~ 

NETWORK 
SEQUENCER 

INSTRUCTION 
STORAGE 

1   - 2-5 

IIZE 
S3    -    34   -    3S     

65-66-1   67      

1 993 994 H 995 

32 

—ir]s=—■ 

L 

BUFFER I/O 

1024 

Figure 1-13. Functional Block Diagram of SOLOMON 
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neighbor. Hardware connections between these PEs allow for the transfer 

or routing of information from PE to PE. 

Also shown in Figure 1-13 is the Network Sequencer or Control Unit 

which interprets the instructions stored from a special Instruction Storage 

Memory. (Data is stored within an individual PE memory and so program and 

data are not stored together on SOLOMON.) 

The border PEs (Numbers 1, 2, 3, .... 32; 33 and 6U; 65 and 96; 

..., 993, 99^, 995, .... 10210 all have at least one free connection that 

can, under program control be linked to other border PEs. This allows the 

programmer to configure the PE memory routing connections to suit the 

problem. 

The Input/Output is handled by the L-Buffer which has direct 

connections only to the rightmost column of PEs (Numbers 32, 6U, 96, ..., 

102k).    Once data has been loaded into these PEs via the L-Buffer, it 

can be further distributed via the "4 nearest neighbor" connections which 

exists within the array. 

Each PE also contains a programmable mode register which deter- 

mines whether or not that PE will or will not respond to an instruction 

generated by the Network Sequencer. 

A later version of SOLOMON, SOLOMON II, upgraded each PE to 

parallel bit operation and added an index register so that each PE can 

access different locations within its memory as all PEs perform the same 

operation simultaneously. 
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The original design of ILLIAC IV contained four Control Units: 

each of which controlled a 6k  ALU Array Processor. The version being built 

by the Burroughs Corporation will have only one Control Unit which drives 

6k ALUs as shown in Figure 1-lk.    It is for this reason that ILLIAC IV is 

sometimes referred to as a Quadrant (one-fourth of the original machine) 

and it is this abbreviated version of ILLIAC IV that will be discussed for 

the remainder of this book. 

::■; 

The Control Unit (CU) has been decoupled from the Array Processor 

so that certain instructions can be executed completely within the 

resources of the CU at the same time that the ALU is performing its vector 

& 
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Figure 1-1^. Functional Block Diagram of ILLIAC IV 
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operations.    In this way another degree of parallelism is exploited in 

addition to the inherent parallelism of 6k ALUs being driven simultaneously. 

Each ALU responds to appropriate instructions if the ALU is  in 

an active mode.     (There exist instructions in the repertoire which can 

activate or de-activate an ALU.)    Each ALU performs the same operation 

under command from the CU in the lock-stepped manner of an Array Processor. 

Each element of the ALU Array is not called by its generic name (ALU) but 

is called a Processing Element or PE. 

Each PE has a full complement of arithmetic and logical circuitry 

and under command from the CU will perform an instruction "at-a-crack" as 

an Array Processor.    Each PE has its own 20^8 word 6U-bit memory called a 

Processing Element Memory (PEM) which can be accessed in about 350 ns. 

Special routing instructions  can be used to move data from PEM to PEM. 

Additionally, operands  can be sent to the PEs  from the CU via a full-word 

{6k bit)  one-way communication line and the CU has eight-word one-way 

communication with the PEM array (for instruction and data fetching). 

An ILLIAC IV word is 6k bits and data numbers  can be represented 

in either 6it-bit floating point, 6^-bit logical, U8-bit fixed point,  32-bit 

floating point,  24-bit fixed point, or 8-bit fixed point (character) mode. 

By utilizing the first, fourth and sixth data formats  listed above the 

6k PEs can hold a vector of operands with either 64, 128, or 512 components. 

Since ILLIAC IV can add 512 operands in the 8 bit integer mode in about 

66 nanoseconds,  it is  capable of performing almost 10      of these "short" 
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^N       additions per second. ILLIAC IV can perform approximately 150 million 

t        6^-bit, rovinded, normalized floating-point additions per second. 

The I/O is handled by a B6500 Computer System. The Operating 

System, including the assemblers and compilers, also reside in the B6500. 

m The specific option of centralizing the CU of the general 

H multiprocessor as a basis for ILLIAC IV was chosen for two main reasons: 

l) Cost. A very high percentage of the cost within a digital n 
computer is tied up in the Control Unit circuitry. Replication of this 

component becomes very expensive and therefore choosing the option of 

centralizing the Control Unit can save more money than centralizing either 

Memory or the ALU. 

n 

2)    There exist large classes of problems where the data to be 

manipulated can be expressed as vectors and not sealers.    These problems 

« range from scientific ones dealing with matrices  and the solution of 

■ ordinary and partial differential equations to business problems as 
I 

practical as payroll.    In a business problem such as payroll, the same 

k; algorithm (payroll deduction)  is applied to different data (each indi- 

vidual in the company has  a different base pay and has  chosen different 
m 
II deduction options). One Control Unit can apply the same algorithm 

fv repetitively to the different data (each data point can be thought of as 

a component of a vector—each component is operated on by a different PE). 

/-' ILLIAC IV was designed especially to solve large problems wherein the 

same algorithm is performed repetitively on data that can be structured 

as components within a vector. i 
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CHAPTER II 

HARDWARE STRUCTURE 

A.    Summary 

The ILLIAC IV System can be organized as in Figure II-l. The 

ILLIAC IV System consists of the ILLIAC IV Array plus the ILLIAC IV I/O 

System. The ILLIAC IV Array consists of the Array Processor and the 

Control Unit. In turn, the Array Processor is made up of 6k  Processing 

iy 
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Figure II-l.    ILLIAC IV System Organization 
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Elements (PEs) and their 6k associated memories—Processing Element 

Memories (PEMs). The ILLIAC IV I/O System comprises the I/O Subsystem, 

the Disk File System and the B65OO computer. The I/O Subsystem is 

broken down further to the CDC, BIOM and I0S. The B6500 is actualOy a 

large-scale computer system by itself. 

The ILLIAC IV Array will be discussed first, in a general 

manner, followed by some illustrative problems which indicate some of 

the similarities and differences in approach to problem solving using 

sequential and parallel computers. The problems also serve to illustrate 

how the hardware components are tied together. Following is a more 

detailed description of the ILLIAC IV Array, then another illustrative 

problem, this time a more realistic one—solution of the temperature 

distribution on a two-dimensional slab; some data allocation considera- 

tions are then discussed. The ILLIAC IV I/O System is discussed briefly, 

and some conclusions and opinions end the chapter. 

B. ILLIAC IV Array—General Description 

Figure II-2 represents the ILLIAC IV Array—the Control Unit plus 

the Array Processor. 

1. Control Unit (CU) 

The Control Unit can be viewed as a small unsophisticated 

computer in its own right. Not only does it cause the 6U Processing 

Elements to respond to instructions, there is a repertoire of instructions 
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that can be completely executed within the resources of the Control Unit, 

and the execution of these instructions is overlapped with the execution 

of the instructions which drive the Processing Element Array. 

The Control Unit contains 6k  integrated circuit registers called 

the ADVAST Data Buffer (ADB) which can he used as a high speed scratch-pad 

memory. ADVAST is one of the five functional components of the CU and 

will be described in greater detail in section D 3 a. Each register of 

the ADB (DO through D63) is 6J+-bits long. The CU also has k  Accumulator 

registers called ACARO, ACAR1, ACAR2, and ACAR3 each of which is also 

6k  bits long. The ACARs can be used as accumulators for integer addition, 

shifting. Boolean operations and holding loop control information—such as 

the lower limit, increment and upper limit. In addition the ACARs can be 

used as index registers to modify storage references within the memory 

section (PEM). 

2. Processing Element (PE) 

Each Processing Element (PE) is a sophisticated ALU capable of a 

wide range of arithmetic and logical operations. There are 6^ PEs numbered 

0 through 63. Each PE in the array has 6 programmable registers: the A 

register (EGA) or Accumulator, the B register (RGB) which holds the second 

operand in a binary operation (such as Add, Subtract, Multiply or Divide), 

the R or routing register (RGR) which transmits information from one PE to 

another, the S register (RGS) which can be used as temporary storage by 

the programmer, the X register (RGX) or index register to modify the 
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address field of an instruction, and the D or mode register (RGD) which 

controls the active or nonactive status of each PE independently. The 

mode register determines whether a PE will be active or passive during 

instruction execution. Since this register is under the programmer's 

control, individual PEs within the array of 6k  PEs may be set to enabled 

(active) or disabled (passive) status based on the contents of one of the 

other PE registers. For example, there are instructions which disable 

all PEs whose RGR contents are greater than their RGA contents. Only 

those PEs in an enabled state are able to execute the current instruction. 

3. Processing Element Memory (PEM) 

Each PE has its own 20^8 word, 6U-bits per word, random access 

memory. Each memory is called a Processing Element Memory or PEM and they 

are numbered 0 through 63 also. A PE and PEM taken together is called a 

Processing Unit or PU. PE. may only access PEM. so that one PU cannot 

modify the memory of another PU. Information can, however, be passed from 

one HJ to another via the Routing Network described next in section B 4 c. 

k.    Data Paths 

Besides the Instruction Control Path which drives the 6^ PEs 

during the execution of an instruction there are four paths by which data 

flows through the ILLIAC IV Array. These paths are called the Control 

Unit Bus (CU Bus), the Common Data Bus (CDB), the Routing Network, and the 

Mode Bit Line. 
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a. Control Unit Bus (CU Bus) 

Operands or data from the PEMs in blocks of eight words can be 

sent to the CU via the Control Unit Bus (CU Bus). The instructions to 

be executed are distributed throughout the PEMs and are also fetched in 

blocks of eight words to the CU via the CU Bus as necessary. Some of the 

instructions are completely executed within the CU; these are called 

ADVAST instructions. Most of the instructions, however, cause the 6k  PEs 

to perform an operation simultaneously or in parallel; these are called 

FINST/PE instructions and are made ready for execution by the PE Array 

in a section of the Control Unit called FINST. The operation of ADVAST 

and FINST will be more fully described in section D of this chapter. 

b. Common Data Bus (CDB) 

Information stored in the Control Unit can be "broadcast" to the 

entire 6k  PE Array simultaneously via the Common Data Bus (CDB). A value 

such as a constant to be used as a multiplier need not be stored 6k  times 

in each PEM; instead this value can be stored within a CU register and 

then broadcast to each enabled PE in the array. In addition the operand 

or address portion of an instruction is sent to the PE array via the CDB. 

c. Routing Network 

Information in one PE register can be sent to another PE register 

by special routing instructions, (information can be transferred from PE 
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■ register to PEM by standard LOAD or STORE instructions.) High speed rout- 

ing lines run between every RGR of every PE and its nearest left and right 

^ neighbor (distances of -1 and +1 respectively) and its neighbor 8 positions 

M to the left and 8 positions to the right (-8 and +8 respectively). Other 
I 

routing distances are effected by combinations of routing -1, +1, -8, or 

•'■! +8 PEMs; that is, if a route of 5 to the right is desired, the software 
• * 

will figure out that the fastest way to do this is by a right route of 8 

••! followed by three left routes of 1. See Figure II-3 for a picture of the 

,■ • connectivity which exists between PEs. As can be seen from Figure II-3, 

I ** PEQ is connected by routing lines to PE , PE10, PE17, and PEg. PE. is 

k connected to PE.-g, PE , PEn, and PEg.,. 

^ d. Mode Bit Line 

& The Mode Bit Line consists of one line coming from the ROD of 

each PE in the Array. The Mode Bit Line can transmit one of the eight mode 

bits of each ROD in the array up to an ACAR in the Control Unit. Since 

each bit of an ACAR holds one bit of each ROD for the PE array, special 

Control Unit instructions can test and branch on the "mode pattern" in 

the ACAR. 

In a very gross fashion then, this is the ILLIAC IV Array. 

In order to illustrate how all of this hardware is tied together, we 

shall next look at some simple problems which utilize the Array Processor 

of ILLIAC IV. 
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C. Some Illustrative Problems 

1. Adding Two Aligned Arrays 

Let us first consider the problem of adding two arrays of numbers 

together. The FORTRAN statements for a conventional computer might look 

like: 

DO 10 I = 1, N 

10 A(I) = B(I) + 0(1) 

The two FORTRAN instructions are compiled to a set of machine 

language instructions which include initialization of the loop, looping 

instructions, and the addition of each element of the B array to the 

proper element in the C array, and storage to the A array. Except for the 

initialization instructions , the set of machine language instructions arr 

executed N times. Therefore, if it takes M microseconds to pass once 

through the loop, it will take about N times M microseconds to perform the 

above FORTRAN code. 

Now suppose the same operations are to be performed on ILLIAC IV. 

Arrangement of the data in Memory becomes a primary consideration—the 

data must be arranged to exploit the parallelism of operation of the PEs 

as effectively as possible. The worst way to use the PEs would be to 

allocate storage for the A, B, and C arrays in Just one PE Memory. Then 

instructions would have to be written just as they were in a conventional 

machine to loop through an instruction set N times. 
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Let us consider the problem as consisting of three cases: 

N = 61|, N < 6it, and N > 61+ and then see what each case entails  in terms 

of programming for ILLIAC IV. 

a.    N = 64 

To reflect the case where N = 64, we have arranged the data as 

shown in Figure 11-h.    In order to execute the two lines of FORTRAN code, 

only the three basic ILLIAC IV machine language instructions are necessary: 

1) LOAD all PE Accumulators (RGA) from Location a +  2 in all PEMs. 

2) ADD to the PE Accumulators (RGA) the contents of Location a +1 in all PEMs. 

3) STORE result of all PE Accumulators to Location a in all PEMs. 

LOCATION 0 

LOCATION a 
LOCATION a+1 
LOCATION a+2 

LOCATION 2047 

Figure 11-k. 

PEo. 
R6A 

1 1 

PEi 
ROA 

1 1 
R6A r-i 

1 ) 1 

• • • 

• 
• 
• 

• 
• 
• 

• 
• 
• 

AU) A(2) A(64) 
B(l) B(2) B(64) 
C(l) C(2) C(64) 

• 
• 
• 

• 
• 
• 

• 
• 
• 

PEMo 

Arrang 

10 

am« 

DO 

A 

PEMi 

snt of 

10    I 

[I)  = B 

Data in PEM to l 

= 1, 6k 

(I)  + C(I) 

PEMM 

Iccomplj .sh 

.•■■:•. 
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Since every PE will execute each instruction at the same time or 

in parallel, accessing its own PEM when necessary, the 6k  loads, additions, 

and stores will he performed while just three instructions are executed. 

This is a speedup of 6^, for this case, in execution time. 

The three instructions to perform the 6^ additions in ILLIAC IV 

Assembly Language (ASK) would actually look like: 

LDA ALPHA + 2 ; 

ADEN ALPHA + 1; 

STA    ALPHA; 

(Note that since each instruction operates on a vector, a memory location 

can be considered a row of words rather than a single word.) 

b. N < 6U 

Since there are exactly 6k  PEs to perform calculations, a proper 

question is: what happens if the upper limit of the loop is not exactly 

equal to 6U? If the upper limit is less than 6U, there is no problem 

other than the total PE array will not be utilized. 

The trade-off the potential user of ILLIAC IV must consider here 

is how much (or how often) is ILLIAC IV under-utilized? If the under- 

utilization is "too much" then the problem should be considered for running 

on a conventional computer. However, the user should keep in mind that 

he usually doesn't feel too guilty if he under-utilizes the resources of 
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a conventional system—he doesn't use every tape drive,  every bit of 

available core, every printer and every byte of disk space for most of 

his  conventional programs. 

c.    N > 61t 

When the upper limit of the loop is greater than 64, the pro- 

grammer is  faced with a storage allocation problem.    That is, he has various 

options  for storing the A, B and C arrays and the program he writes to 

perform the 2 FORTRAN statements will vary considerably with the storage 

allocation scheme chosen.    To illustrate this let us  consider the special 

case where N = 66 with the A, B, and C arrays stored as shown in Figure II-5. 

PE0 

R6A 
1        1 

1 
LOCATION 0 

• 
• 
• 

LOCATION a A(l) 
LOCATION a+l A(66) 
LOCATION a+2 B(l) 
LOCATION o+3 B(65) 
LOCATION a+4 CU) 
LOCATIONa+S C(65) 

• 
• 
• 

LOCATION 2047 

PEMQ 

R6A 
I 1 

A(2) 
A(66) 
B(2) 

B(66) 
C(2) 

C{66) 

PEMi 

•  •  • 

PEes 
ROA 

A(64) 

B(64) 

C(64) 

PEMss 

Figure II-5.    Arrangement of Data in PEM to Accomplish 

DO    10    I = 1, 66 

10    A(I)  = B(I)  + 0(1) 
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To perform the 66 additions on the data stored as shown in 

Figure II-5» Six ILLIAC IV machine language instructions are now necessary; 

LOAD RGA from Location a + k 

ADD to RGA contents of Location a + 2 

STORE result to Location a 

LOAD RGA from Location a + 5 

ADD to RGA contents of Location a + 3 

STORE result to Location a + 1 

The addition of two more data items to the A, B and C arrays not 

only necessitates extra ILLIAC IV instructions but complicates the data 

storage scheme. In this instance, the programmer might as well DIMENSION 

the A» B and 0 arrays to 128 as 66. Note that the particular storage 

sdEüeme shown in Figure II-5 wastes almost 3 rows of storage (l86 words). 

Tfce storage could have been packed much closer so that B(l) followed A(66) 

in PE_ of rcw a + 1, but the program to add the arrays together would have 

to do much more shuffling to properly align the arrays before adding. An 

ILLIAC IV progrjsn Is highly dependent on the storage scheme chosen. 

2. Adding Two Uiiall^'f Jrroys 

Now let us consider how we would -"-"form the following FORTRAN 

statements using ILLIAC IV; 

DO 10 I = 2, 6k 

10    A{1)  = B(I) + C(I-1) 
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This program could be effected in either of two ways: One way- 

would be to store the C array "skewed" or offset one element to the right 

at compilation time; the other way is to store the C array normally and 

perform the skewing at execution time. 

a. Store the C Array Skewed 

When we choose this method to effect the FORTRAN program, we 

store the data as shown in Figure II-6. Before executing the program, the 

user may wish to disable PE-. By storing the data skewed to begin with, we 

PEM, PEM, 

PEo 

RGA 

PEl 

ROA 

PE2 

ROA 

1             1 1             1 1             1 
4 i 

i < 

► 

p 

i 

> 
LOCATION 0 

• 
• 
• 

• 
• 
• 

• 
• 
• 

LOCATION a A(l) A(2) A(3) 

LOCATION a+1 B(l) B(2) B(3) 
LOCATION a-I-2 — C(l) C(2) 

• 
• 
• 

• 
• 
• 

• 
• 
• 

LOCATION 2047 

PEM, 

• • • 

PE«3 

RGA 

• • • 
A(64) 
B(64) 
C(63) 

* 

PtM, «« 

Figure II-6.    Arrangement of Data in PEM to A' ^omplish 

DO    10    I = 2.  61+ 

10    A(I)  = B(I)  + 0(1-1) 
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accomplish our goal at compilation time and the execution time instructions 

would be of the form 

DISABLE PE0 (optional) 

LOAD RGA from Location a + 2; 

ADD to RGA contents of Location a + 1; 

STORE result to Location a; 

h. Skewing at Execution Time 

B The second way to effect this program is to store the data 

SS        "straight", i.e., exactly as shown in Figure 11-k but to have the ILLIAC IV 
6 

program skew the data using the ROUTE instruction; then the addition is 

performed as above. The ILLIAC IV commands would be of the form: 

1) All PEs LOAD RGR from Location a + 2. 

2) All RGRs ROUTE contents one PE to the right (the route is 

jg end-around so that RGR of PEg_ goes to RGR of PEQ). 

,-.                 3) All PEs LOAD RGA from RGR. 

Note: After this third instruction is executed the 

W data is stored as shown in Figure II-7. 

1+) All PEs ADD to RGA the contents of Location a + 1. 

5) All PEs STORE the result in RGA to Location a. 

I 

K        Note that after the execution of the above five instructions, A(l) will 

t 
contain B(l) + 0(610 if PE. was not disabled. 
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3. Uncoupling Sequential Code 

Finally let us consider the FORTRAN code: 

DO 10 I = 2, 6k 

10 A(I) = B(I) + A(l-l) 

How would we do the above instructions on a parallel computer such as 

ILLIAC IV?    At first, it appears we cannot perform the above algorithm 
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on ILLIAC IV tecause it is inherently sequential.    If we recognize that the 

2 FORTRAN statements above are only a shorthand for 63 FORTRAN statements: 

A(2) = B(2) + A(l) 

A(3)  = B(3)  + A(2) 

s 
A(63)  = B(63) + A(62) 

A(6U) = 3(610 + A(63) 

and that each of the 63 statements is executed sequentially, we see that 

each statement in the sequence relies on the result computed from the 

previous statement. That is, A(3) cannot be computed until the statement 

above it has computed A(2). Therefore the 63 additions cannot be done in 

parallel, if we literally try to apply the two FORTRAN statements as they 

stand. However, using mathematical subscript notation: 

i 
A2 = B2 + A1 

A3 = B3 + A2 = B3 + B2 + Al 

A^ = B^ + A3 = B^ + B3 + B2 + A1 

it 

I 

hS^ + h-l+   '•• B2 + Al 

We see that the elements of the A array can be computed independently using 

the formula 

N 
AN = Al + 4 Bi for 2 < N < 61+ 
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S = A(l) 

DO 10 N = 2, 6U 

S = S + B(N) 

10 A(N) = S 

The above FORTRAN code is equivalent to the original code (its end results 

are the same) but now the computation of the A array has been decoupled so 

that each value of A in the array can be computed independently. 

An arrangement of data to effect this program is shown in 

Figure II-8 and the program might be as follows: 

1) Enable all PEs.  (Turn ON all PEs.) 

2) All PEs LOAD RGA from Location a. 

3) i *- 0. 

k)    All PEs LOAD RGR from their RGA. (This instruction is performed 
by all PEs, whether they are ON (enabled) or OFF (disabled).) 

5) All PEs ROUTE their RGR contents a distance of 21 to the right. 
(This instruction is also performed by all PEs, regardless of 
whether they are ON or OFF.) 

6) J - 2i - 1. 

T) Disable PEs numbered 0 through j.  (Turn them OFF.) 

8) All enabled PEs ADD to RGA the contents of RGR.  (Figure II-8 
shows the state of RGR, RGA and ROD (the MODE STATUS)~which 
PEs are ON and which are OFF—after this step has been 
executed when i = 2.) 

9) i - i + 1. 

10) If i < 6 go back to STEP h,  otherwise go to STEP 11. 

11) Enable all PEs. 

12) All PEs STORE the contents of RGA to Location a + 1. 
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Note that this same algorithm can be applied to the solution 

of problems where the recurrence is of the form:    F.  = C.  * F.   , which 
N iii-l 

decouples to F    = ( IT    C.) F .    All that need be done is that Step 8 be 
a        i=2    i      J. 

changed to MULTIPLY rather than ADD.    Note also that if C.   = i      i = 1,  2, 

...6k and F-  = 1 we have an algorithm for confuting N!  on ILLIAC IV; 

that is, when the algorithm is  complete PE.. will contain (N+l)! 

This  example tries to illustrate that it is not always immedi- 

ately clear if an algorithm can be decoupled so that it can operate in 

parallel or is so dependent on what happened before that it can only be 

executed sequentially.    In this example,  it appears that the algorithm 

is sequential, but upon closer inspection, the parallelism appears. 

Potential ILLIAC IV users will probably need much practice in analyzing 

problems using a parallel viewpoint, especially if they have already been 

conditioned to viewing their problems  only in terms of solving them on a 

sequential conventional computer.    The tool,  for better or for worse, 

shapes the vises it is put to. 

D.    ILLIAC IV Array—A More Refined Description 

Section B presented a general description of the functional 

components  of the ILLIAC IV Array.    This  section will expand on that 

description. 
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1. Processing Element (PE) 

The Processing Element (PE) is shewn in Figure II-9. For the 

sake of clarity, all of the interconnections between the six registers 

have not been shown in Figure II-9. 

MTA FROM 
THtt KM 

•4 LINE 
COMMON OAT* SUS 

(CM) FROM CU 
(OPEMNO OR ADDRESS) 

tM LINE 
INSTRUCTION CONTROL 

MTH FROM CU 
{OPERATION CODE) 

MODE REGISTER 
(ROM 

.MODE BIT 
^TOCU 

SELECT OATES 

TO AND FROM . 
OTHER RORi 

R REOISTER 
(ROR) 

A REGISTER 
(RGA) 

ACCUMULATOR 

B REGISTER 
(RGB) 

S REOISTER 
(R6SI 

X REGISTER 
(WX) 

INDEX REGISTER 

ARITHMETIC 
UNIT 

ADDRESS 
ADDER 

ADDRESS TO 
THIS FEM 

LOOIC/SMIFT 
UNIT 

TO THIS FEM 
OR 

TO CU VIA CU BUS 

Figure II-9. Processing Element (PE) 
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Note that information enters a PE either from its own PEM, from 

another PE (via RGR) or from the Control Unit (CU). The CU sends the 

electrical pulses down the Instruction Control Path which are the micro- 

sequences that define the operation code of the instruction to be executed 

by the PE Array. The Instruction Control Path consists of 266 control 

lines which drive the 6h  PEs simultaneously; i.e., all PEs execute the 

same instruction in parallel. The microsequences pass through the Mode 

Register (ROD) before going on to the Select Gates of the PE. The Mode 

Register is an eight-bit register which contains (in addition to other 

information) the status of the PE. In section B 2 it was pointed out 

that if the PE is in the enabled status or mode, then the instruction is 

completely executed (the proper gates will be selected)j if the PE is in 

a disabled mode, then it will not respond to the instruction. As a 

general description, this is true but it presents an incomplete picture 

of the operation of the mode regisv-r. Following is a more complete 

description: 

a. Mode Register (ROD) 

The mode register (RGD) has eight bits called the E, El, F, Fl, 

G, H, I and J bits. The E and El bits are used to reflect the status of 

a PE. 

If both E and El are zero then writes (storing of information) 

to RGS, RGA, RGX and PE Memory are prohibited or locked out; writes to 

RGR, RGB, and RGD are allowed-they are not locked out. When both E and 

11-22 

■ ■-'.--..-•.-•  '. -•...■•.'.■•- •-  ^  .•■..•.  .  . V '. -.  .  .  .  .  .  - '-  .  -  -  .  .  .  ...  -  -  .  -  . V - - ^. N.  . %■ . ■v.^ <- «- ^- •- t. 



33E3G3!!*33I**??3E»^^^^^^^^^^^^^^^^^^^^^^^^™*»^^S^5^*5M5!Ä«iH^^S^^^S^5^?B^^^^^^^^^ 

SEI are zero we refer to the PE as "being in the disabled state even though 
■ 

RGR, RGB and RGB can he changed hy an instruction that references these 

K registers; however, any part of an instruction which seeks to modify 

RGS, RGA, RGX or a PE Memory location will not he performed. Reads of all 

I B»        registers and PE Memory are not locked out when a PE is disabled. 
i - 
yj If E and El are one then we refer to the PE as being in the 

I 
■ 

i 
I» 

enabled state and all instructions are completely executed—no PE registers 

or part of PE Memory is locked out. 

In brief then, when a PE is disabled, its RGS, RGA, RGX and 

PE Memory are protected—when a PE is enabled, its RGS, RGA, RGX and 

PE Memory are unprotected. 

Let us now take a closer look at what it means when a PE is 

ft        disabled; When a PE is disabled (E = El ='o) RGR, RGB and RGD are 

unprotected and one of two things may occur: 

■ 
l) An instruction which directly modifies only RGR, RGB, or 

fes        RGD will be completely executed. For example, the following types of 

instructions will be executed when a PE is disabled: 

LOAD RGR from RGA 

ROUTE RGR N PEs to the Right (or Left) 

LOAD RGB from RGA 

LOAD RGD from RGB (the eight high order bits of RGB 

f.; go into RGD) 

/-■;. SET one of the eight bits of RGD. 
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2) An instruction which indirectly modifies RGR, RGB or RGD 

will be partially executed. (An indirect instruction is taken to mean one 

that is intended to change the contents of RGS, RGA, RGX or PE Memory, hut 

in doing so must use and change the contents of RGR or RGB.) For example, 

if an ADD instruction is sent to a disabled PE, the PE will actually 

perform all of the microsequences necessary for addition, changing the 

value of RGB, but RGA will not be changed—the answer will not appear in 

the accumulator. Since the second operand of a binary operation is 

fetched to Register B, RGB gets modified (indirectly) during an ADD 

operation in a disabled PE. 

For example, the following types of instructions cause indirect 

modification of either RGB or RGR: 

ADD to RGA the contents of PEM location X (RGB is modified) 

MULTIPLY the contents of RGA by the contents of PEM 

location X (RGB and RGR are modified) 

DIVIDE the contents of RGA by the contents of PEM 

location X (RGR is modified) 

However, none of the above instructions modify RGS, RGA, RGX or PE Memory, 

since we are considering the case when a PE is disabled (E = El = 0). 

There are no ILLIAC IV instructions which modify RGD indirectly, 

so the programmer does not have to worry about inadvertently changing the 

mode pattern of the PE Array (the mode pattern is just the 61* states of the 

E and El bits in the PE Array). The programmer must, however, have the 
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capability to modify the mode of a disabled PE, else after he turned it off 

he could never turn it back on. Since RGD can be modified directly when a 

PE is disabled, the programmer is afforded this capability by various 

instructions in the ILLIAC IV repertoire. 

The general rule which always holds true is: When a PE is 

disabled (E = El » 0) RGS, EGA, RGX and PE Memory are protected (writes are 

locked out). When a PE is enabled (E = El = l) RGS, EGA, RGX and PE Memory 

are not protected (writes are not locked out). 

If the programmer remembers this rule he can understand better 

the operation of each instruction in the repertoire. Another way to say 

the rule is: "Wot all parts of a PE are disabled in a disabled PE; RGR, 

RGB and RGD can still respond to an instruction in a disabled PE. The 

P        PE is disabled, not dead when its E and El bits of RGD are zero". 

[• 

» 

i 

y 

i 

f 
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Still this is not yet the complete story for up to now we have 

only been considering instructions which process operands in the 6U-bit 

k;        mode. (The word "mode" here has nothing to do with the mode register RGD— 

it is used only to be consistent with other literature; "code" or "format" 

(-■".        in place of the word "mode" would be a better choice.) Actually the El bit 

protects the inner part of a word (bits 8-39) in RGS, RGA, RGX or PE Memory 

and the E bit protects the outer part of a word (bits 0-7 and kO-63)  in RGS, 

RGA, RGX or PE Memory. The convention described above still holds: If E 

or El is zero the appropriate bits within RGS, RGA, RGX or PE Memory are 

protected; if E or El is one the appropriate bits are unprotected. 
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In the 6U-bit mode where all 6k  bits are necessary to represent 

one number, E and El work together to protect the word in which the number 

is stored. Since it makes no sense to protect the inner part of 6k  bit 

floating point numbers and not protect the outer part, we always have 

E equal to El when executing instructions in the 64-bit mode. However, 

there are instructions which assume that their operands are in the 32-bit 

mode in which case we have two numbers per ILLIAC IV word. In this case 

the E and El operate independently and can be of opposite values. This 

type of operation and the operation of the E and El bits with the fault 

bits, F and Fl, is described more fully on pages k-lk  through k-l6  of 

Reference 1. 

b. The Rest of the PE 

The Common Data Bus (CDB) carries the address portion of the 

instruction to be executed and is 6k  bits wide (consists of 6k  lines). 

The signals on these 6k  lines go to every PE in the 6k  PE array. As is 

the case with a conventional computer, the operand may be an address, a 

count, or a number. 

Depending on the type of instruction, either the Arithmetic Unit 

or the Logic/Shift Unit is actuated and the result is sent to PEM, to the 

appropriate PE register, or to the CU via the CU Bus. 

RGA is the Accumulator and acts like an accumulator on a conven- 

tional machine. RGB can be used to hold the second operand in a binary 

operation or act as an extension to RGA for double length operands. RGS is 
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I. 
^        a tenrporary storage register and may be used as the programmer sees fit. 

Since RGR, RGB and RGD can be modified in disabled PEs, RGS is a good, safe 

tH        place for the programmer to store intermediate results. RGR is called the 

n 

'':■ 

I 
I 

i 
,■-■ 

I 

Routing Register and can be viewed as a port to transfer data to and from 

other PEs. Every PE has four bi-directional lines from its RGR to the 

RGR of the PEs a distance of +1, -1, +8 and -8 away. RGX is an index 

register and is used to modify the address portion of an instruction in the 

same manner as on a conventional computer. All registers are 6k bits long 

except for RGX which is 16 bits long and RGD which is 8 bits long. 

The Mode Bit Line consists of a unidirectional one-bit line 

running out from the RGD of each PE to the register storage section of the 

CU. Using this path, the programmer can load an ACAR register with a 

pattern of 6k bits, each one coming from the same mode register bit from 

each of the 6k PEs. Conversely, the contents of an ACAR can be used to set 

a specified bit within the mode register of each PE in the array: bit 0 

of the ACAR is transmitted to the specified bit of RGD of PE ... bit 63 of 

the ACAR is transmitted to the specified bit of RGD of PE/-.,. A special 

version of this instruction exists whereby bit i of the ACAR is transmitted 

to both the E and El bits of RGD of PE. so that the entire array can take 

on a specified mode pattern in just one instruction. The transmission of a 

mode pattern stored in an ACAR down to the PE array does not take place 

over the one-bit mode line (which is unidirectional from the PE to the CU); 

this transmission comes via the CDB. 
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2. Processing Unit (PU) 

Figure 11-10 depicts a Processing Unit (PU). A Processing Unit 

(PU) consists of three components: l) a PE, 2) a Memory Logic Unit (MLU) 

and 3) a PE Memory (PEM). The PE has already been described. 

a. Processing Element Memory (PEM) 

The 20^8 word PEM has an effective 350 nanosecond (ns) access 

time. This 350 ns effective access time is comprised of a 250 ns Read or 

Write Cycle Time and a 100 ns delay due to the additional logical checking 

MEMORY SERVICE UNIT 
(MSU)- 

CONTROL PATH 

PROCESSING 
ELEMENT 

(PE) 

MEMORY 
LOGIC UNIT 

(MLU) 

PROCESSING 
ELEMENT 
MEMORY 
(PEM) 

MODE BIT TO CU 

TO CU BUS 
-► (DATA OR INSTRUCTIONS 

TO CONTROL UNIT) 
-»>I/0 

Figure 11-10. Processing Unit (PU) 
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C circuitry of the MLU. The 250 ns Read or Write Cycle time consists of 

188 ns data access time and up to 62 ns to complete the cycle. READ and 

WRITE work in the following manner: 

READ: Data can he accessed (sent on its way to the PE or else- 

where) in 188 ns but it takes 62 more ns for the memory to complete the 

cycle, during which time, memory is locked out or is not interrogatible. 

WRITE; The data word is written into memory in 188 ns and 

control can return to processing. However, memory cycle is not over for 

another 62 ns, so memory cannot be interrogated for 250 ns as above. 
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In general, this means that if the next instruction after a 

memory reference does not also reference memory, it can be performed 

188 ns later; however if that instruction does reference memory, it will 

be performed up to 350 ns later. 

■ 
C-' b. Memory Logic Unit (MLU) 

The MLU acts as a "switch" in that it resolves conflicts involv- 

ing simultaneous accesses to the PEM. The MLU of each PE in the Array 

receives signals from the Memory Service Unit (MSU) in the Control Unit 

which allows one of the three possible users of PEM to gain access to the 

PEM. The three users are: 
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1) CU Bus to fetch instructions to the Instruction Look-Ahead 

Section (ILA) of the CU, or to fetch data to the register 

storage of the CU. 

2) PE itself (Loading g- ?E register from PI Memory). 

3) Input/Output devices (1/0), 

Note that Figure 11-10 has an arrow coming out of the MLU with 

the caption "To CU Bus". This is meant to imply that this line is not the 

CU Bus itself but is just a 6k  hit line to the CU Bus. The CU Bus carries 

eight 61|-bit words at a time from a PU to register storage in the CU. The 

CU Bus fetches words (in blocks of 8) from PE Memory, through the MLU, up 

to 8 specified locations in the ADB of the CU (there does exist another 

instruction whereby only one word is fetched and can therefore be stored 

in a CU register other than the ADB) when a certain ILLIAC IV instruction 

called BIN is executed. The CU Bus is also used by the Operating System 

to fetch instructions (which are also stored in PE Memory) up to ILA, 

the instruction execution section pf the CU. The eight words (data or 

instructions) that are transmitted via the CU Bus are in contiguous PUs 

and always start at a PU number that is an exact multiple of eight. 

Since there are 6k  PUs and only 8 of them can use the CU Bus at 

one time, there is a switch which selects which group of 8 PUs will be 

connected to the CU Bus. There are eight PU Cabinets (PUCs) in the 

ILLIAC IV Array, each of which holds 8 PUs as shown in Figure 11-11. The 

figure shows how groups of 8 words in contiguous PUs but at the same row 

memory location are connected to the CU Bus. 
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PUCJI      PUC4     PUC6      PUC6 

PU Cabinets  (PUCs)  and 

PUC7 

CU Bus 

Eight PUCs contain the Gk  PUs in the ILLIAC IV Array. PE 
Memory is displayed in the depth dimension of each PU. The switch which 
is between the CU Bus and the PUCs selects (under program control) one of 
the eight levels (each level cuts across the 8 Pl'Cs) and the same location 
of PE Memory for each of the 8 PUs within that level is sent to the CU Bus. 
The CU Bus then transmits these 8 words to the CU. The figure is drawn 
to depict location 1000 of level 1 (PUs numbered 0, 1, .... 7) to be sent 
to the CU Bus. 

3. Control Unit (CU) 

The Control Unit may be viewed as consisting of five functional 

sections: ADVAST, FINST, MSU, TMU, and ILA. 

a. ADVAST 

ADVAST,  the Advanced Station of the CU,  is shown in Figure 11-12. 

Its main area of responsibility is to execute instructions that do not 

reference information in the PUs as well as to pre-process the instructions 
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INSTRUCTION 
FROM ILA 

MODE BIT LINE 
(64 MODE BITS FROM PEl) 

CU BUS 
(DATA IN BUCKS OF 8 

WORDS FROM PE MEMORY) 
i 
i 

ACARO ACAR 1 ACAR 2 ACAR 5 

i r i > ' ' 

1 •                             1 * i 

ADVAST 
INSTRUCTION REGISTER 

(AIR) 
SIMPLE ALU 

ADVAST 
DATA BUFFER 

(AD8) 

i > 1 • i ( 
TOFXO 

IN FINST 
TO FDQ 
IN FINST 

BACK TO 
THE ACARS 

Figure 11-12. Advanced Station (ADVAST) Section of the Control Unit 

that do drive the PE Array. The instructions that drive the PEs are sent 

on to FINST which sends out the microsequences to the PE Array. 

The ADVAST Section of the Control Unit may be viewed as a small 

computer by itself. It has four Gk-Toit  accumulator registers—ACARO, 

ACAR1, ACAR2, and ACARS and a 6it-word, 60 nanosecond integrated circuit 

memory called the ADVAST data buffer (ADB); each word in ADB is also 
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# 
& 6k bits long.  In addition it contains a simple arithmetic and logic unit 
" ... 

(ALU) capable of instruction indfcjdng, 2U-bit integer addition and 64-bit 

W        logical operation on data from CU registers. ADVAST also has its own 

_        instruction repertoire (CU instructions) and is capable of executing them 

m while the 6k  PEs are simultaneously executing their own instructions. 

;W 
>; As previously mentioned in section D 1 b, a special instruction 

executed by ADVAST can load up the bits of any ACAE to match a mode bit of 

RGD for each PE in the array at any time during program execution. 

Another instruction allows the programmer to set a mode bit in each RGD r 
of the total PE array to match the contents of an; specified ACAR. These 

(.•. two instructions allow the programmer to set up patterns to control which 

PEs will be enabled and which will be disabled during program execution. 

These instructions will be covered in Chapter III. m 
Qs As Figure 11-12 indicates, there are three sources of input to 

■        ADVAST: the instruction to be executed, the Mode Bit Line, and the CU Bus. 
I 

The CU Bus brings in data in blocks of eight words from PE Memory. Since 

K" the Control Unit has access to PE Memory via the CU Bus, reference is 

sometimes made to "CU Memory"—this should not be confused with CU 

m register storage (four ACARs, 6k  ADB locations, thirteen other registers). 

[--. CU Memory is actually part of PE Memory which is accessed by two ADVAST 

instructions which move the contents of PE Memory to the ADB or one of the 

four ACARs (or several of the other thirteen registers) via the CU Bus. 

'..'■> 

v-'" 

There are thirteen other CU registers that can be accessed by the 
(.•.'/        programmer; these are more fully described in Reference 1. 
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Instructions are also fetched via the CU Bus but they go to ILA, the 

instruction look-ahead section of the CU, not ADVAST. 

The Mode Bit Line (one line from each ROD of each PE in the 

array) comes into ADVAST where a mode pattern can be stored in one of the 

four ACARs. 

Instructions are sent from ILA to the ADVAST instruction 

register (AIR) where the instruction is interpreted. If it is an instruc- 

tion that can be executed entirely by the CU, then it is executed; if it 

is not, it is sent on to FIKST for execution. 

Another possible input source to ADVAST is output from the ALU 

which can return as input to any of the four ACARs. 

b. FIHST 

FINST is the Final Station of the Control Unit and receives only 

those instructions that require PE action. See Figure 11-13. 

Since ADVAST controls the instruction stream, all instructions 

pass through it for decoding first. If the operation involves only 

ADVAST hardware, then ADVAST completely executes the instruction so that 

the instruction never reaches FINST.  If the instruction is a PE instruc- 

tion, ADVAST decodes it, provides any indexing operations necessary at the 

Control Unit level (the address portion of an instruction can be indexed 

by the contents of one of the ACARs in the CU), and passes the receded 

I 
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INSTRUCTION 

QUEUE 
(FIQ) 

16 BITS 

L  

FROM ALU 
IN ADVAST 

---b;- 
FINAL 
DATA 
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(FDO) 
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PE INSTRUCTION 
MICROSEQUENCE 

GENERATOR 

T 

INSTRUCTION CONTROL PATH 

FING« FIQ+ FOO 

TO ADDRESS DECODER 
IN MSU 
COMMON DATA BUS (CDB) 

> (DATA OR ADDRESSES 
TO PEt) 

Figure 11-13. Final Station (FINST) Section of the Control Unit 

instruction on to FINST. Thus, some instructions may be entirely processed 

by ADVAST while others may pause in ADVAST only long enough for decoding 

before being sent to FINST for execution. To avoid situations where either 

ADVAST or FINST is idle waiting for the other section, the instructions 

are passed from ADVAST to FINST through an eight word first-in, first-out 

Final Queue named FINQ.  FINQ, in turn, consists of two parts. The 

operation code part of the instruction resides in the Final Instruction 

Queue (FIQ) and the address or operand is in the Final Data Queue (FDQ). 

FIQ consists of eight l6-bit words and FDQ of eight 61+-bit words. FINQ 

allows FINST and ADVAST to be executing instructions concurrently. 

Civ 

See Figure U-lk.    FINQ is a buffer as described in Chapter I which 
allows two processes to proceed autonomously and which effects a speedup 
by overlapping time. 
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INSTRUCTIONS 

i 
AOVAST 

PROCESSED 
AOVAST 
INSTRUCTIONS 

FINQsFIQ+FDQ 

FINST 

MICROSEQUENCES—TO DRIVE THE PE ARRAY 

Figure II-lU.  FINQ Acts as a Buffer between ADVAST and FINST; 
ADVAST and FINST Act as a Pipeline 

ADVAST and FINST, whose operation is decoupled by the holding 

buffer FINQ, also acts as a modified two-stage pipeline. Inputs (instruc- 

tions) come into the first stage (ADVAST) and are partially processed, 

then they are passed on to the second stage, FINST, via FINQ if the 

instruction was a FINST/PE type instruction. If the instrud !on was an 

ADVAST instruction, it is completely processed in ADVAST  id exits out the 

"side" of the pipe never making it to the second stage. 

From Figure 11-13, we see that two taps come off the FDQ. One of 

these is the CDB, already discussed in section D 1 b. The address of an 
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PL operand also goes to the MSU which controls the 6h  MLUs of the 6k  PUs. 

(The instruction to be executed may be such that an operand in FDQ wants 

■ V. to be stored in a location in one specific PE Memory, in which case it is 

the MSU's Job to signal all the MLUs but the correct one to lock out 

•^        writes to PE Memory.) 
«/ 

k^ Occasionally a situation will arise that will stall the overlap 

|g between ADVAST and FINST: Suppose an ADVAST instruction wants to read 

a value from (or write a value into) an ACAB, but ahead of that ADVAST 
-••, 

':; 

B instruction, waiting in FIHQ, is an instruction that FINST will cause to 
i 

write a value from PE Memory (or a PE Register) into Just that ACAR. 

Eft Certainly the ADVAST instruction should not be executed until the instruc- 

tion ahead of it in FINQ has had a chance to be fully executed. In this 

case, the operation of ADVAST is automatically halted (ADVAST is stalled) 

until FINQ drains and FINST causes the value to be written into the ACAR. 

After FINST has executed the last instruction in the FINQ, the operation 

of ADVAST continues and the ADVAST instruction which waited to read a 

value from (or write a value into) the ACAR is executed in its proper 

order. There are only four instructions which will cause ADVAST to stall. 

In all other cases, FINQ makes possible an execution overlap of 

ADVAST and FINST/PE instructions. This overlap capability provided by 

FINQ makes program timing estimation difficult, since the total execution 

time is rarely the sum of ADVAST and FINST/PE time, although it cannot 

... exceed this sum. 
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From the above discussion, it appears as if PE instructions 

are not really executed in the PE but in the FINST section of the Control 

Unit. This is partially true: The microsequences which will actually 

drive the PEs are set up in FINST—however, the actual "happening" of the 

instruction takes place within the PEs as the microsequences pulse 

through the appropriate PE gates. Together, ADVAST and FINST act very 

similarly to a pipelined instruction execution unit as described in 

Chapter I. ADVAST and FINST can be viewed as a two-stage pipeline 

operating on different instructions simultaneously. However, ADVAST 

instructions never reach the second stage (FINST). 

At this point, the reader should refer back to Figure II-9 and 

note that two of the outputs from FINST (instruction Control Path and 

Common Data Bus) are two of the possible inputs to a PE. 

c. MSU 

The Memory Service Unit (MSU) acts as an arbitrator in the 

various requests for access to the PEMs. PE Memory can be accessed by 

FINST in the execution of a PE instruction, by the ILA section of the 

CU which fetches the program instructions from memory (via the CU Bus), 

by an ADVAST instruction which fetches data from PEM (via the CU Bus), 

or by the I/O System.  (These are the same "users" mentioned under the 

description of the MLU, in the PU description of section D 2 b.) The MSU 

in a four-quadrant ILLIAC IV consists of an address decoder and three 

registers which reference the other quadrants. Since we are only 
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The MSU controls the 6k  MLUs of the PU array, locking out or 

n 
g allowing access to individual PEMs according to the instruction being 

i 
^ 

• 

i 

considering a one-quadrant ILLIAC IV, we may view the 1SU as a memory 

access arbitrator with only one address decoder. 

executed (see Figure 11-10). 

d.    TMU 

T*m  Test and Maintenance Unit (TMJ) is the section of the CU that 

communicates with the operator's maintenance panel and display and with the 

I/O System. The TMU Section ha« two registers TRO and TRI. If Input from 

the I/O System is to be performed, a TMU instruction can place a request 

for such an action in the TRI register; if Output, then the request is 

placed in TRO. A hardware component of the I/O subsystem is constantly 

monitoring the TRO and TRI registers, waiting for an I/O request to appear. 

When this occurs, the I/O subsystem is interrupted, the I/O request is 

honored, and a response code may be placed back in TRO or TRI. The program 

L-       executing on the ILLIAC IV Array can then test TRO or TRI and take an 

appropriate action. 

ft e. ILA 

[/ The Instruction Look-Ahead (ILA) section is responsible for 

maintaining a steady flow of instructions to the ADVAST Instruction 

I        Register, AIR, in ADVAST.  (See Figure 11-12.) To accomplish this, ILA 

''/•      is arranged as shown in Figure 11-15. 

«a 11-39 

i 
> .•• .v.v ■ 

;:V:V:V:V^;.>>AV::\-^ 



CONTROL UNIT 
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8-WORD BLOCKS 
OF INSTRUCTIONS 

FROM PEM 

ILA ASSOCIATIVE 
MEMORY (IAM) 

H  ICR I 
INSTRUCTION COUNTER 

REGISTER (ICR) 

INSTRUCTION WORD STACK (IWS) 
8 BLOCKS OF 8 WORDS OR 
8 BLOCKS OF 16 INSTRUCTIONS 
(128 INSTRUCTIONS) 

INSTRUCTION TO BE 
EXECUTED TO AIR 
IN ADVAST 

Figure 11-15. Instruction Look-Ahead (ILA) Section of the Control Unit 

Instructions which are stored in PE Memory are fetched to the 

Control Unit Buffer in blocks of 8 words via the CU Bus; since each 

instruction is 32 bits and there are 64 bits in a word, there are two 

instructions per word. These 8 word (l6 instructions) blocks are relayed 

to the Instruction Word Stack (IWS) until it is full. The IWS holds 

8 blocks of 8 words or 128 instructions. 

After an instruction is sent to AIR from IWS, the contents of 

ICR, the Instruction Counter Register, are replaced by the proper amount. 

(If the previous instruction was not a branch instruction, then the 

contents of ICR are increased by one.) ICR then contains the location 

of the next instruction to be executed by AIR in ADVAST.  ICR sends the 
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location of the next executable instruction to the ILA Associative Memory 

(JAM) which continuously monitors the contents of IWS. IAM is a hardware 

table-look-up device or "scoreboard" that can sense the locations of the 

instructions stored in IWS. If IAM senses that the instruction pointed 

to by the contents of ICR is in the IWS, then that instruction is sent 

on to AIR for decoding and interpretation. If the next instruction is 

{->        not in IWS, then the Control Unit Buffer fetches the block of 8 words 

(16 instructions) from that part of PE Memory that contains the next 

1-'        instruction to be executed.  (If the programmer can keep his program loops 

to within 128 machine language instructions, he can execute his program 

at the most efficient rate.) The Control Unit Buffer then places its 

block of 16 instructions over that block that has resided in IWS the 

longest time. 

In all cases, whenever the eighth instruction in a block of 

l6 instructions within IWS has been executed, IAM will check IWS to see 

if the next block of l6 instructions is in IWS—if it is, then operation 

continues normally; if it is not, then the Control Unit Buffer fetches that 

JÄ        block of 16 instructions and writes it over the block of IWS that is the 

oldest in time. 

P 
y 

Both the Control Unit Buffer and IWS are buffers that smooth and 

£.        speed up the instruction execution rat-e. 
Hi 

E. Another Illustrative Problem 

Since ILLIAC IV is an array or vector processor, it is clear 

that problems involving matrix computations are ready-made for solution. 

II-ia 
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There is, however, another very large class of problems whose calculation 

can be performed in an "all-at-once" fashion and that is the area of 

Ordinary and Partial Differential Equations. 

As another example of how the functional parts of ILLIAC IV can 

be used to solve problems, let us work through a solution of Laplace's 

equation describing temperature distribution on a slab. The reader 

who does not have a background in mathematics should not shy away from 

this example since the method for solution relies completely on the 

common sense notion that the value of any temperature on the slab tends 

to become the average of the surrounding temperatures. 

Laplace's equation 

4 + nr = o 5x öy 

describes the temperature U as a function of the position (x and y) on a 

two-dimensional slab.    That is,   if we take a two-dimensional slab of 

material and keep the edges  at certain temperatures   (see Figure II-16) 

then,  after a sufficiently long time the interior of the slab will reach 

a specific temperature distribution.    This distribution is  called the 

steady-state temperature distribution.    The reason we talk about a 

temperature distribution is that the temperature U at  any position within 

the interior of the slab is not constant but is  a function of where it is 

within the slab.    The temperatures  on the edge of the slab are called 

boundary conditions  and do remain constant.     If we impose an x,y 
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Figure II-16.    Steady-State Temperature Distribution on a Slab 
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coordinate system over the slab we can say that the temperature at any 

point is a function of x and y or U = U(x,y).    See Figure 11-17 which 

assumes the slab is a units by b units.    Thus every point (x,y) within the 

slab has associated with it a temperature U(x,y). 

When we make this problem ready for solution on a digital 

computer we can no longer represent the temperature U as a function of the 

continuous variables x and y.    We must discretize or digitize the problem 

so that instead of obtaining solutions over a continuous range for x and 

y, namely: 

O^x^a, 0<y<b 

we obtain solutions only on a finite set of points.    See Figure II-18 

where the variables x and y have been digitized every h units—we say h is 
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Figure 11-17. Temperature on a Slab a Units by b Units 
is a Function of x and y 

the mesh size.    In Figure 11-18, for simplicity, we let b » a and digitize 

the slab into a set of 6k x,y values or mesh points. 

The method of solution for the problem may now be stated very 

simply:    The temperature at any interior mesh point (this excludes the 

28 points along the edges which must remain at constant temperatures) is 

the average of the temperatures of the four closest mesh points.    See 

Figure 11-19 for a blow-up picture of this property. 

Thus in order to obtain a solution we apply the equation 

(1) U(x,y) = U(x.y»-h) * U(x+h,y) » U(x.y-h) •»• U(x-h.y) 

to all interior points on our digitized slab until equation (l) is true. 

This method is called relaxation. 
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Figure 11-18. Digitized Slab: 64 x,y valueJ with a mesh size 
of h in the x and y directions 
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Figure 11-19. Graphical Description of Solution: Temperature 
at any point is average of temperatures 
at four closest mesh points: 

^x v) = U(x,y+h) + U(x+h.y) + U(x.y-h) + U(x-h.y) 
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The manner in which relaxation is usually applied on a 

sequential or conventional computer is to start at the top left of the 

digitized slab and apply equation (l) at each interior point proceeding 

from left to right along each "row" of points and proceeding downward row 

by row. Since the boundary points do not enter into the calculation, 

equation (l) is applied 36 times—once at each of the interior points. 

For the sample case of 6k  points, 36 applications of equation (l) is one 

relaxation of the relaxation method. As enough relaxations are performed 

on the set of 6k  mesh points, equation (l) will tend to become true (the 

equation will be exact within a specified error tolerance) for all of the 

36 interior points. When this stage in the calculation has been reached, 

the steady state solution has been achieved. 

There is one more change of notation that is usually applied 

to the problem before it is actually run on a digital computer. Since 

x and y have been discretized they can be viewed as indices within a two- 

dimensional U array. That is, x and y are merely positional indicators 

that can be replaced by the more familiar i and j notation of FORTRAN 

arrays. 

Therefore if we replace x by i and y by j and further let i 

increase downward we can represent the mesh points as in Figure 11-20. 

If we use the i,j notation then equation (l) becomes 

(2) n   = i-iiJ Lfal+A I    1+1i.1 U1-1 
^ ui,J k 

We apply this equation for 2<i<7.    2<J<7. 
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We are now ready to solve a real problem. We shall use integer 

values for the boundary values chosen so that the exact solution for 

the interior values will also be integers. These values are shown in 

Figure 11-21. Note that the values of the boundary temperatures are 

constant (0°) along the bottom and right edges, but vary with position 

along the top and left edges. The val: '..' of the temperatures at the 

interior points are to be solved using equation (2)—they are initially 

set to 0° before the calculation begins. We will solve for the temperature 

distribution given the initial conditions as shown in Figure 11-21 in two 

ways: first the sequential solution as described above will be obtained, 

then a method of parallel solution will be described and executed. The 

exact solution to the problem is shown in Figure 11-22. 
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Figure 11-21.    Specific Interior and Boundary Conditions 
for Sample Problem 

The boundary or edge temperatures vary with position along the 
left and top edges and are  constant along the lower and right edges.    The 
boundary temperatures do not change during the calculation.    The interior 
temperatures are enclosed by dotted lines  and they are initially set to 
zero before the calculation begins. 
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Figure 11-22.    Exact Solution for the Interior and Boundary 
Conditions given in Figure 11-21 
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1. A Sequential Solution to the Problem 

Step 1; Start at the top left interior point (i = 2, j = 2) of row 2 and 

calculate its new value using equation (2): 

TT   - 1,2  u2,3   3.2  "2,1 
2,2 ■ ,, 

or using the numbers given in Figure 11-21; 

1*2 + 0 + 0 + 42  p U2,2- -- 
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Ste£_2: Moving to the right along the same row calculate the new value of 

U2 3 using the new value of V^      calculated in the previous step: 

n    "1.3 ! "g.l. *  "^ : %g      33*0*0.21      „ 

(Note U2 2 = 21 not 0 since it was previously computed as such in 

Step 1.) 

Steps 3-6: Continuing to move to the right along row 2 we calculate the 

new values of U^, U^, U2 6, and U2  using previously 

computed values: 

„   - "l.- * V2.5 * "l.k * V^      28 . 0 . 0 . 11.  laz 
Oh "' ~   -Ll-' • P 
^'4 k k 

U   - Ul^ ! U2.6 + U3.5 + U2.U  21 + 0 + 0 + 10.5  - Q 
,:>        i. i. 

U   ■■ "l.S ! "2.7 ! ^.6 ^ "2.3      lk .0*0. 7.9      ,r "2,6"-"     t-7-J J 5.5 

U    "1.7 ! "2.8 ^ "3.7 " "2.6  7 ^ 0 ^ 0 . 5.5  ,, 
2,7 „ I -3-1 

Steps 1 through 6 are now repeated for rows 3, h,  5, 6 and 7. After new 

values have been computed for every interior point on all rows, we have 

finished one relaxation of the relaxation method. The values of the 

temperatures converge to the exact solution as shown in Figure 11-22 as 

more and more relaxations are performed. 
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If we denote the veilue of U.  at the nth relaxation as Uv . then 

we say a solution has been reached and we can stop the relaxation process 

when 

(3) Kli-^j^ for 2 < i < 7 

2 < j < 7 

■;■ 

g 

i 

i 

<•• 

v - • ■ r 

when  € is our tolerance or desired degree of accuracy.    Therefore, in 

our computer program which performs the sequential relaxation described 

above we save the old and new values of the U array,  compare them, and 

if every interior temperature in the array satisfies equation (3), we end 

the computation.    Figure 11-23 shows a FOETRM program that performs the 

c 

• 
• 
• 

READ IN BOUNDARY AND INITIAL VALUES FOR TEMPERATURES  (U) 

c READ IN NUMBER OF ROWS (NROWS), NUMBER OF COLUMNS  (NCOLS) 

c AND EPSILON CONVERGENCE VALUE (EPS) 

1 M = NROWS - 1 

2 N = NCOLS - 1 

3 IFLAG = 0 

k DO    9    I = 2, M 

5 DO    9    J - 2, N 

6 TEMP = (U{I,J+1)  + U(I-1,J)  + U(I,J-1)  + U(I+1,J))  * 0.25 

7 IF (ABS(TEMP - U(I,J))   .  LE .  EPS)  GO TO 9 

8 IFLAG = 1 

9 U(I,J) = TEMP 

10 IF(IFLAG  .   EQ  .   1)   GO TO  3 

11 END 

Figure 11-23.    A FORTRAN Program for a Sequential Solution 
to the Sample Problem 
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relaxation algorithm described above and Figure II-2lt shows the values of 

the U array after one, ten and fifty relaxations; the exact solution is 

also shown in Figure 11-22. 

Let us briefly consider the FORTRAN program as shown in 

Figure 11-23: 

The three COMMEMT statements at the beginning of the program 

indicate that the initial values of the temperature U (see Figure II-21), 

I 

One 
Ralaxatlon 

Ten 
Hel« ations 

Fifty 
Relaxations 

k9 1)2 35 28 21 1U 7 0 

ki a.oo lU.OO 10.50 7.88 5M 3.12 0 

35 lU.OO 7.00 1..38 3.06 2.13 1.31 0 

28 10.50 U.38 2.19 1.31 0.86 0.5l» 0 

21 7.88 3.06 1.31 0.66 0.38 0.23 0 

Ik 5.1.7 2.13 0,86 0.38 0.19 0.11 0 

7 3.12 1.31 0.5U 0.23 0.11 0.05 0 

0 0 0 0 0 0 0 0 

k9 1)2 35 28 21 lb 7 0 

1)2 35.37 29.01 22.90 17.03 11.31 5.66 0 

35 29.01 23.1)1 18.21) 13. Ul) 8.88 l).l)l) 0 

28 22.90 18.21) 11).05 10.26 6.75 3.38 0 

21 17.03 13.1)1) 10.26 7.1*1) l).8e 2.1)1) 0 

1U U.31 8.88 6.75 1).88 3.19 1.60 0 

7 5.66 U.Ul) 3.38 2.1)1) I.60 0.80 0 

0 0 0 0 0 0 0 0 

1)9 1)2 35 28 21 Ik 7 0 

1)2 36.00 30.00 21). 00 18.00 12.00 6.00 0 

35 30.00 25.00 20.00 15.00 10.00 5.00 0 

28 21) .00 20.00 16.00 12.00 8.00 U.OO 0 

21 18.00 15.00 12.00 9.00 6.00 3.00 0 

11) 12.00 10.00 8.00 6.00 1).00 2.00 0 

7 6.00 5.00 U.OO 3.00 2.00 1.00 0 

0 0 0 0 0 0 Ü 0 

Figure 11-2^. Values of the Temperature after One, Ten, and Fifty 
Relaxations using Sequential Method 
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^■' the number of rows, NROWS (for our case WROWS = 8), the number of columns, 

NCQLS (for our case NCOLS =8), and the epsilon convergence value, EPS 

§ have all been read in through the appropriate input statements. 

^ Statements 1 and 2 compute values for M and N to be one less 

than the number of rows and columns respectively, and the calculation 

■'J starts at 2 not 1 since the edge values will not change throughout the 

computation. 

At statement 3 a flag, IFLAG, is set to zero. IFLAG will act as 

■ a signal to the program indicating whether convergence has been reached 

after each relaxation (each relaxation consists of 36 applications of 
•'I 

equation (2)): If IFLAG is still zero after a relaxation then all of the 

U values are within epsilon of their previous value; if IFLAG has been set 

to one, then at least one U value was not within the convergence criterion 

SI and another relaxation must be made. 

" Statements h  and 5 initialize the DO LOOP counters I and J 

that step us through the rows and columns starting at the top left and 

S proceeding to bottom right. 

,; Statement 6 is equation (2). 

n Statement 7 is equation (3). If the statement is true (TEMP is 

within epsilon (EPS) of the last value of U), IFLAG is not changed and 

■-! control jumps to Statement 9 where U assumes its new value of TEMP. If 

the statement is false (TEMP is not within epsilon of the last value of U) 

p 
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1FLAG is set to 1 and control falls to Statement 9. where U assmes its 

new value of TEMP. 

Statement 8, if control reaches it, sets the value of IFLAG 

equal to 1. 

Statement 9 replaces the old value of U with TEMP~the new value 

of U. 

Statement 10 tests IFLAG. If it is true (IFLAG = l) then at 

least one value of U has not yet reached convergence and control is passed 

to Statement 3 where IFLAG is re-initialized back to zero. If it is 

false UiLAG * 1), then IFLAG must be equal to zero and there exists no U 

that was not within epsilon of convergence and therefore convergence has 

been attained. Control then drops to Statement 11. 

Statement 11 is reached only when convergence has been reached 

and the program ends. 

This program is still very primitive; it makes no allowance for 

the possibility that an overly stringent choice for EPS might result in an 

infinite amount of looping between Statements 10 and 3, but it illustrates 

a sequential solution to our sample problem. 

2'    A Parallel Solution to the Problem 

Let us next consider how this same problem could be solved in 

parallel on ILLIAC IV: 
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If each value for U were placed in a separate Processing Element 

Memory or register, then the calculation of equations (2) and (3) could 

proceed in parallel for all 36 inner values in the U array. A program 

could be written to compute new values for U.     2<i<7» 25<'5^' 

not from top left to bottom right but all at once. As we did with the 

sequential solution let us write down the steps for a parallel solution: 

Step 1; Assume the initial conditions are as shown in Figure 11-21. 

Step 2; Disable all edge or border PEs.  (These PEs contain the boundary 

values for U and must not change during the calculation.) 

r-;        Step 3: Simultaneously calculate; 

jH (2) „    "i-i.^uiWW^I'i..i-i 

i 
k 

for 2 < i < 7,    2 < j < 7. 

Rather than write out the values for all 36 interior points, let 

us just look at the interior points of the second row (i = 2, 

J = 2,  3, ^,  5,  6, 7)  after equation (2) is applied simultaneously 

to all 36 interior points: 

U        = "1.2 * U2,3 + U3,2 * U2a u U2 + 0+0 + lt2 = 21 

'2,2 

u 
U1.3 + U2^ + U3,3 + U2,2      3. + 0 + 0 + 0 . 3 g 

g 2.3 u k 
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U        . Ul^ + U2.3 ! J3.4 + U2^      28 + 0 + 0 + 0      7 

2^ 1» ' k =7 

U2      - U1.3 + U2.6 + U3.5 + U2.1i      21 + 0 + 0 + Q      .^ 

,   ^ _ Ul,6 + U2.T + U3.6 + u2.5     1W n + n + n     ^ 
2'6 k ;      ■3-5 

U2 

Un   ,, + tU  o + U„      + U 
-    1.7      "2.8 : u3.7 T u2.6      7+0+0+0      , 

Note that the value for U2 2 = 21 was not used in calculating 

u
2j3 because U2 2 and U2  were calculated at the same time and 

a new value for U2 2 is not ready until all of the 36 values for 

U have been calculated. 

StejDjK Repeat Step 3 until convergence is satisfied. 

Figure 11-25 shows values of the temperature U after one, ten, 

and fifty relaxations using this parallel method of solution. 

Not only are the two algorithms different, but the wa^ the 

temperatures converge is also different (as can be seen by comparison of 

Figures II-2lt and 11-25), although the end result approaches the same 

steady-state temperature distribution. When we use the sequential method 

of sweeping from left to right along rows and proceeding from the top to 

bottom row, the temperatures at the bottom right converge faster to the 

exact solution than those at the top left. This type of convergence 
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I 
occvirs because in sweeping from top left to bottom right we always use 

more of the data we just computed as we reach the end of the sweep, i.e., 

the "bottom right. The computations at the bottom right contain more new 

information since they are computed at the end of the sequence of 

calculations. 

r.- 
When we use the parallel algorithm of computing a set of new 

values at one crack, the values closest to the "boundary (the edge values) 

W 

U9       1)2          35         26         21         lU          7       0 

1)2     21.          8.75      7.00      5.25      3.50    1.75    0 

35       8.75        0           0           0           0         0        0 

On* 
Raluutlon 

28       7.00        0           0           0           0         0       0 

21       5.25        0           0           0           0          0       0 

ll)       3.50        0           0           0           0         0       0 

7       1.75        0           0           0           0         0        0 

00            0           00000 

1>9       1)2          35          28         21         lU          7       0 

1)2     31).3     27.1     20.5     llt.8       9.6     U.7     0 

36     27.1     19.9      lU.l       9.5       5.9      2.8      0 

Ttn 
tteluatlons 

28     20.5     lU.l        9.1       5.6        3.2      1.5      0 

21     ll).8       9.5       5.6       3.1       1.6     0.7     0 

ll)       9.6        5.9        3.2       1.6       0.7     0.3     0 

7       l).7       2.8       1.5       0.7       0.3     0.1      0 
00            0           00000 

1)9       1)2          35         28         21         lU          7       0 

1)2     35.98   29.96   23.96   17.96   11.96   5.98   0 

35     29.96   2U.9U   19.92   ll).92     9.91»   l).96    0 

fifty 
Rtlurtliuj 

28     23.96   19.92   15.90   11.90     7.92    3.96    0 

21     17.96    1U.92   11.90     8.90      5.92    2.96    0 

ll)     11.96     9.91)     7.92     5.92     3.9lt    1.96   0 

7       5.98     U.96     3.96     2.96     1.96   0.98   0 

00             0            0            0            000 

Figure 11-25.    Values 
Relaxat 

of the Temperature after One, Te 
ions using Parallel Method 

n and Fifty 
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converge faster than the values in the center of the me.h. This ty?e of 

convergence occurs because the outer values are closest to the boundary 

valuer and have more new data to use sooner than the inner values. Since 

a relaxation consists of 36 computations done at once, the inner values 

do not get to use previously computed values until several relaxations 

have been performed. After each relaxation more inner values have more 

new data to use to compute their next value. 

If we liken the convergence process to freezing, we can say that 

the sequential algorithm begins freezing at the bott. m right and proceeds 

to the top left; the parallel algorithm begins freezing around the edges 

and proceeds towards the center. 

The savings in time of the parallel method over the sequential 

one is dependent upon the number of relaxations necessary to produce 

convergence. If the same number of relaxations to convergence are 

necessary for both the sequential and parallel algorithms and each 

processes P interior values, then the parallel process is faster by a 

factor of P. However, since the parallel algorithm uses less new informa- 

tion for each relaxation, it may take more parallel relaxations (which 

consist of one application of equation (2)) to produce the same degree of 

accuracy as a sequential relaxation (which consists of 36 applications of 

equation (2)). That is, if a solution can be reached in 10 sequential 

relaxations, it could take more than 10 parallel relaxations to reach 

a solution of the same accuracy.  On ILLIAC IV, though, the parallel 

relaxation is 36 times as fast as a sequential one and this speedup far 
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outweighs the few extra relaxations necessary for equal accuracy in the 

solution (for our particular sample problem). 

F.    Some Data Allocation Considerations 

If we divide our slab into an 8 x 8 array of mesh points to solve 

Laplace's equation governing heat distribution on a slab, the data alloca- 

tion scheme to be used on ILLIAC IV is straightforward—one value of U can 

be assigned to each PEM (see upper portion of figure 11-26). 

KM« KMj PEM, PEM! PEM« PEM, PEM, PEMr PEM, PEMa 

• • • • • • • • • • 
• • • • • • • • • • 
• • • • • • • • • 

•  •   • 
• 

Ul.i Uy Uy 01,4 1)1,8 Uy 01,7 U»J» Ul.l "•■• 
• • • • • • • • • • • • • • • • t • • • 
• • • • • • • • • • 

PEMo PEM! PEMt PEMj PEM4 PEMS PEM, PEMr PEM, PEMM 

• « • • . • • • • • • • • • • • • • • 
• • • « • • • • • 

•  • ■• 

• 
uM u»ti Ul,» Ul.4 Ul.5 Uif. ui.r Uij, - - 

• 
Ut.l ULS U».4 u«.» UM UI.T u«.i - — 

• • • • • • ■ • • 
• • • • • • • • • • • • • • • • • • • • 

Ue,! UM %% UV U.,8 UV UV u... 
■ 

- - 
• • * • • • • • • 
• • • • • • • • • t 
• • • • • • • • • • 

Figure 11-26.     Comparison of Storage:    Upper portion shows 
8 x 8 U array stored one value per PEM, 
Lower portion shows 8 x 8 U array stored 
8 values per PEM 

11-59 



Another possible data allocation scheme is shovn in the lower 

portion of Figure 11-26. This scheme allocates 8 values of U per PEM. 

Although this lover scheme is not as efficient in terms of execution time 

necessary to solve the problem, it is very similar to the way a 6* x 61* 

U array would be stored, ^e program for the two data allocation schemes 

shown in Figure 11-26 will be developed in Chapter III and it will be seen 

that these programs are substantially different-indicating that the form 

of an ILLIAC IV program is highly dependent on the data allocation scheme 

chosen. 

Let us now consider what to do if we wish to impose a finer grid 

over the slab. There is certainly no value in using a 50 x 50 grid if we 

can use a 50 x 6U Just as cheaply. That is, since ILLIAC IV has exactly 

6h  PEs. this physical fact might as well be capitalized upon when choosing 

a mesh size. ^ the mesh size is arbitrary within defined limits, the 

user should choose the closest multiple of 61,-it costs no more and may 

actually speed up the calculation, since less code will be generated. 

Suppose we have divided our slab into a 6k x 6k  set of mesh 

points. We could store these 4096 values of U^ as shown in Figure 11-27. 

Each PEM holds 6k  values of U. For this case, one parallel calculation of 

equation (2) could process only one row at a time. Since the border 

values do not enter into the calculation, 62 parallel calculations of 

equation (2) would have to be performed to effect one relaxation of 

the entire U array. This is a speedup of 62 over the 38kk  calculations 

necessary for one sequential relaxation of a 61» x 64 U array. 
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Figure II- ■27.    Stoi 
6U > 

•age 
: 61 

! Allocation of U Array for 
l. Set of Mesh Points 

It is very important for the reader to understand that the 

ILLIAC IV program to solve a problem is very much dependent on the data 

allocation scheme chosen by the -ogrammer. This is true also, but to 

a lesser extent, for a conventional sequential computer. 

6; 
t.-. I 
I 
B 
I 

G. ILLIAC IV Input/Output (I/O) System 

The ILLIAC IV Array is an extremely powerful information 

processor, but it has of itself no I/O capability. The I/O capability 

along with the supervisory system (including compilers and utilities) 

reside within the ILLIAC IV I/O System. The ILLIAC IV I/O System 

consists of the I/O Subsystem, a Disk File System (DFS) and a B65OO 
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Control Computer (which in turn supervises a large Laser Memory, a Data 

Communications Processor, and the ARPA Network Link). See Figure 11-28. 

The total ILLIAC IV System consisting of the ILLIAC IV I/O System and the 

ILLIAC IV Array is shown in Figure 11-29. The reader is warned that all 

system configurations shown are transitory, and more than likely will have 

changed several times before this book is published. 

TERMINALS 

rTF^ 
I ARPA 
^NETWORK 
| LINK 

DATA 
COMMUNICATIONS 

PROCESSOR 

B6500 CONTROL COMPUTER 

DISK FILE 
SYSTEM 

I 
1/0 

SUBSYSTEM 

Figure 11-28.     ILLIAC IV I/O System 
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B6500   Perlpherols' Cord Reader, Card  Punch, 
Line Printer, 4 Magnetic  Tape Units, 2 Disk Files, 
Console  Printer   and    Keyboard 

Ft. 

»or-- 
t-; 

G 

Figure 11-29.    ITJLIAC IV System 
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1. I/O Subsystem 

The I/O Subsystem consists of the Control Descriptor Controller 

(CDC), the Buffer Input/Output Memory (BIOM) and the Input/Output Switch 

(IOS). 

a. Control Descriptor Controller (CDC) 

The CDC is that component of the I/O Subsystem (mentioned in 

section D 3 d) which monitors the TMU section of the CU waiting for an 

I/O request to appear. The CDC can then interrupt the B6500 Control 

Computer which can, in turn, try to honor the request and place a response 

code back in the TMU section of the CU via the CDC. This responsa code 

indicates the status of the I/O request to the program in the ILLIAC IV 

Array. 

The CDC causes the B6500 to initiate the loading of the PE 

Memory Array with programs and data from the ILLIAC IV Disk (also called 

the Disk File System or DFS). After PE Memory has been loaded, the CDC 

can then pass control to the CU to begin execution of the ILLIAC IV 

Program. 

b. Buffer Input/Output Memory (BIOM) 

The B65OO Control Computer can transfer information from its 

memory through its CPU at the rate of 80 x 10 bits/second. The ILLIAC IV 

Disk (DFS) accepts information at the rate of 500 x 10 bits/second. This 
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factor of over six in information transfer rates "between the two systems 

necessitates the placing of a rate-smoothing buffer between them. The 

BIOM is that buffer. A buffer is also necessary for the conversion of 

48-bit B65OO words to 61t-bit ILLIAC IV words which can come out of the 

BIOM two at a time via the 128 bit wide path to the Disk File System. 

See Figure 11-29. The BIOM is actually four EE memories providing 8192 

words of 64-bit storage. 

In addition to the data link to the B65OO CPU, the BIOM is also 

connected to the B65OO Multiplexor which, in turn, is linked to the B65OO 

Peripheral set. A typical path for a user's program and data might be: 

Magnetic Tape through the B6500 Multiplexor to BIOM to ILLIAC IV Disk to 

IOS to the PE Memory Array. 

c. Input/Output Switch (IOS) 

The IOS performs two functions. As its name implies, it is a 

switch and is responsible for switching information from either the Disk 

File System or from a port which can accept input from a real time device. 

ALI bulk data transfers to and from the PE Memory Array are via IOS. As 

a switch it must insure that only one input is sending to the Array at a 

given time. In addition, the IOS acts as a buffer between the Disk File 

System and the Array, since each channel from the ILLIAC IV Disk to the 

IOS is 256 bits wide and the bus from the IOS to the PE Memory Array is 

102h  bits wide. 
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2.    Disk File System (DFS) . t* 
'■3x,0£ 

(V, 
The Disk File System (DFS)  consists of two Storage Units, two ft! 

Electronics Units  and two Disk File Controllers.    The DFS is also called 

o P 
the ILLIAC IV Disk or simply, the Disk.    The Disk is of 10 -bit capacity, w 

having 128 heads, with one head per track.    The DFS has two channels, each fTi 

o to 
of which can transmit or receive data at a ratf: of .5 x 10    bits/second 

over a path 256 bits wide; however, if both channels are sending or kl 
Q 

receiving simultaneously the transfer rate is 10 bits/second. 

I 
The Disk revolves once every ho  milliseconds and thus has an 

average access time of 20 milliseconds. Processing of I/O requests to 

the Disk is enhanced by the operation of the Disk Queuer hardware. The 

Disk Queuer can store up to 2k  I/O requests in a hardware table. This 

table is constantly monitored as the disk spins under its heads. If a K* 

block of I/O comes under a head that is referenced in the Queuer table— 
mm 

regardless of its position in the table—then that block is transferred ^ 

as per the request^ As an example see Figure 11-30. _, 

i 
The DFS has data paths to the Array via thf. I0S and with the 

B6500 via the BI0M; there is also a control path frum the CDC to the DFS 0 

which is used in the last stages of initiating Disk to Array transfers p 

y of programs or data. 

b 

*■ 

li- 

es 

Data transfer to and from the Disk can also be effected in the conven- H 
tional first-come, first-serve manner when so specified by the programmer. * 

n 
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NOTATION 

-HEADS 
I/O 

REQUEST •< 
NUMBER 

1 

2 

24 

• 
• 
• 

LOCATION OF BLOCK A 

LOCATION OF BLOCK B 

• 
• 
• 

DISK QUEUER TABLE 

ROTATION 

ILLIAC S DISK 

Figure 11-30. Example of Disk Queuer Function 

Even though the I/O request for Block A was entered into the 
Table before the I/O request for Block B, the request using Block B will 
be performed first in the above situation since it will pass under the 
Disk heads sooner than Block A. 

B 

r 

3. B6500 Control Computer 

The B65OO Control Computer consists of a Central Processing Unit 

(CPU), Memory, a Multiplexor and a set of Peripheral Devices (Card Reader, 

Card Punch, Line Printer, k  Magnetic Tape Units, 2 Disk Files and Console 

Printer and Keyboard). It is the function of the B65OO to manage all 

programmers• requests for system resources. This means that the Operating 

System will reside on the B6500. Managing requests includes scheduling 

and eventually instituting the process which utilizes the resource. 
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All compiling and assembling of programs is performed on the 

B65OO. Utilities, such as Card-to-Disk, Card-to-Tape, etc. are also 

executed on the B65OO. From a total System standpoint, the ILLIAC IV 

Array can be considered as a special-purpose peripheral device of the 

B65OO capable of solving certain classes of problems with extremely high 

speed. 

a. B65OO Central Processing Unit (CPU) 

The B65OO CPU provides the Control and the Arithmetic and 

Logical processing capability to the B650O Control Computer. The B65OO 

CPU operates at 5 megacycles. 

b. B63OO  Memory 

The B65OO memory contains 65,536 li8-bit words and has a memory 

cycle time of 1.2 usecs. The B65OO Memory can be considered tertiary 

memory (over 3 million bits) in the total system, with the ILLIAC IV Disk 

being secondary memory (one billion bits) and the PEMs of the ILLIAC IV 

Array being primary memory (over 8 million bits). 

c. B6500 Multiplexor 

The B65OO Multiplexor is  the heart of the B65ÖO I/O System as 

can be seen by the number of lines coming into and going out of it in 

Figure 11-29.  It is linked to the BIOM, the B65OO CPU, B65OC Memory, 
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t 
V' 

^       the CDC, and the B6500 Peripheral Set as well as the AEPA Network Link, 

"        the Data Communications Processor and the Laser Memory. The Multiplexor 

may be viewed as a switching network or a small I/O control computer which 

operates asynchronously with the B65OO CPU. I 
■. 

d. B6$00 Peripherals 

The B65OO Control Computer has a standard set of input and 

output peripheral devices: 

1 Card Reader (800 cards per minute) 

1 Card Punch (300 cards per minute) 

1 Line Printer (132 print positions; 1100 lines per minute) 

k  Magnetic Tape Units (9 channel; l600 bits per inch; 

^5 inches per second) 

[v 2 Disk Files (5 million it8-bit words, 20 milliseconds 

average access time per disk file) 

W 1  Console Printer and Keyboard. 

m 

I 

1. " . 

e. Data Communications Processor 

t>" The Data Communications Processor will supervise a set of remote 

terminals. The terminals are devices such as Teletypes or CRT displays that 

allow the user access to the ILLIAC IV System. Users will be able to enter 

their jobs into the system in either a batch or interactive mode via the 

terminals. The terminals can also be used to monitor jobs while in 

y        execution and to scan the ILLIAC IV Disk or Laser Memory which will contain 

11-69 

K--:;>>>:;^^^ 



the output from a job.    If the user decides he needs a hard copy of his 

output, he can then signal the system from his terminal to activate a 

printer. 

f•    Laser Memory 

The B6500 supervises  a 1012-bit read-only Laser Memoiy developed 

by the Precision Instrument Company.    The beam from an argon laser records 

binary data by burning microscopic holes  in a thin film of metal coated on 

a strip of polyester sheet, which is  carried by a rotating drum.    Each data 

strip can store some 2.9 billion bits.    A "strip file" provides storage for 

kQO data strips  containing more than a trillion bits.    The time to locate 

data stored on any one of the 400 strips is five seconds.    Within the same 

strip data can be located in 200 milliseconds.     The read and record rate is 

four million bits  a second on each of two channels.    A projected use of 

this memory will allow the user to "dump" large quantities of programs and 

data into this storage medium for leisurely review at a later time; hard 

copy output can optionally be made from files within the Laser Memory. 

The laser memoiy can be considered fourth-order memoiy in the ILLIAC IV 

System (one trillion bits). 

g.    ARPA Network Link 

The ARPA Network is a group of computer installations  separated 

geographically but  connected by high speed (50,000 bits/second)  data 

communication lines.    On these lines, the members  of the "Net"  can transmit 

information-usually in the form of programs,  data,  or messages.    The 
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link performs an information switching function and is handled by an IMP 

(Interface Message Processor) and a Network Control Program stored within 

each member installation's "host" computer. Each IMP operates in a 

"store and forward mode", that is, information in one IMP is not lost until 

the receiving IMP has signalled complete reception and retention of the 

message. The IMP interfaces with each member's computer system and converts 

information into standard format for transmission to the rest of the Net. 

Conversely, the IMP accepts information in a standard format and converts 

it to the particular data format of the member installation. In this way, 

the ARPA Network is a form of a computer utility with each contributing 

member offering its unique resources to all of the other members. See 

Reference 2 for a complete description of the ARPA Network. 

H. Conclusions and Opinions 

It is useful to view the ILLIAC IV System as a set of resources; 

each member of the set having special capabilities. If the programmer can 

define his problem in terms of the unique capabilities of this set of 

resources he has effected a computer solution to his problem. 

The set of resources afforded by the ILLIAC IV System is: 

• A B65OO Computer System which also supervises 

• A Laser Memory 

• The ARPA Network 

• A Terminal System 

• A very fast Disk Storage System 

• An extremely fast Array Processor. 
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If the problem to be solved on the ILLIAC IV System involves 

vector manipulation or systems of differential equations to be approximated 

by finite difference schemes, then the Array Processor resource can be 

utilized. Many applications in Numerical Weather Prediction, Linear 

Programming, Hydrodynamics, Signal Processing and the response of coupled 

mechanical and electrical systems are in this category. ;.i 

Information Storage and Retrieval processes can be performed 

using the B65OO, the ILLIAC IV Disk and the huge Laser Memory. Large data _ 

bases can be accumulated on the large slow Laser Memory and car. be sent via "~ 

the ILLIAC Disk to either the B65OO or the ILLIAC IV Array for processing. R 

Computer Aided Instruction (CAI) is another area of application 

that can be exploited using the large Laser Store coupled to the terminals. 

A remote file editing capability including interactive compiling facilities 

and job monitoring during execution is afforded via the terminals. Pro- 
Mm 

grammer convenience is further enhanced by possible debugging systems using M 

the terminals. Also, the B65OO can provide a full range of compilers, «o 

assemblers and utilities for programming support. At present, no one is ^ 

sure how to use ILLIAC IV to assemble or compile programs. *% 

broad range of resources within itself. 

A satisfying Artificial Intelligence model has not yet been 
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fcs. 

H        Laser Memory will encourage a grander, more comprehensive approach to 

K 
m 

i 

i-.- 
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intelligence models. 

Perhaps it is too glih to say that the ILLIAC IV System is a 

set of resources; if the user is resourceful, he car   them. Unfor- 

tunately the statement is partly true—there are  no recipes yet for 

solving the large, the important and interesting problems. There is no 

N' computer science out on the edge of research. The answer to the question 

"How do you use ILLIAC IV?" cannot be answered by a statement, but with 

CM another question: 

You know the resources, the tools you have to work with, the 

next time a problem passes close by, ask yourself "Can this problem be 

described in terms of the resources which are now available to me?" 
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CHAPTER III 

THE ASSEMBLY LANGUAGE — ASK 

■> A.    Summary I 
The ILLIAC IV Assembler is called ASK.    It is a two-pass 

■■•> 

B        assembler that accepts a program written in the ASK language and converts 

r.        it to an ILLIAC IV binary object code. Although there are almost 300 

instructions in the ILLIAC IV repertoire only those few ASK instructions 

required to write simple programs will he described here. 

The approach taken in this chapter will be to state a problem, 

then to learn only those instructions necessary for the solution of that 

|P       problem. The first problem is that of summing an array of numbers. After 

the instructions for the solution of the first problem are learned only a 

™        few more are needed to solve the second problem: finding the largest 

H        value in an array of numbers. Problem three describes a parallel algo- 
tt ■ 

rithm for matrix multiplication that differs from the standard sequential 

tV 
& algorithm.    The ASK instructions to implement this parallel algorithm are 

^ then developed.    The fourth problem, transposing a matrix, is used to 

►"". develop the concept of skewed storage which is one solution to the problem 

OS of accessing the columns of a matrix as efficiently as the rows.    The 

fifth and final problem develops the ASK instructions necessary to solve 

■> Laplace's equation which models the steady-state temperature distribution 

on a slab as discussed in Chapter II.    Two cases  are considered illus- 

trating two possible data allocations; the first case allocates the 
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Sk temperatures so that one temperature is stored in one PEM, the second 

allocates eight temperatures per PEM and is representative of all alloca- 

tions requiring a finer mesh spacing up to and including a 6it x 61+ aesh. 

After the five problems have been programmed, the programmer has learned 

1+0 ASK instructions and some useful programming techniques. 

B.     Review 

Let us review the registers that are programmable: 

In the CU, we have four 61+-bit registers named ACARO, ACAR1, 

ACAR2,  and ACAR3.    There is also a 61+-word scratch pad memory called the 

ADB.    Each word is 61+ bits long. 

In each PE, we have six programmable registers: 

RGA, the A register and Accumulator, is Sh bits 

RGB, the B register is 61+ bits 

RGR, the R register or routing register is 61+ bits 

RGS, the S register or temporary storage register is 61+ bits 

RGX, the X register or index register is 16 bits 

RGD, the mode register is 8 bits. 

There are two basic types  of instructions, FINST/PE and ADVAST. 

ADVAST instructions are executed in the ADVAST section of the Control Unit 

(CU)  and are of the type that can be fulfilled within the resources of the 

CU.    FINST/PE instructions may be partially processed within ADVAST but 
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M to "be fully executed they are sent on to FINST which sends out the micro- 

sequences necessary to drive the PE array. Since there exists other 

;-; literature which refers to FINST/PE instructions as PE instructions and 

m to ADVAST instructions as CU instructions, that naming will be used 

P v~ alternatively in this chapter. 

P s 

ir 

m 
i 

r » m w I 

C. Notation 

ASK instructions will be described using the following format: 

LabeZ:    Opcode Opesumd; 

Metalinguistic symbols or symbols which stand for other symbols are 

written in script, i.e. LaboJi.    A value that the variable symbol Lotbtt may 

he is LOC or LOOP. Symbols which stand only for themselves (reserved 

symbols) are written in upper case type and are underlined, for example: 

■ STA OpeJumd; 
• w. 

oe (STA is a possible value for Opcode..)    Reserved symbols will usually be 

ft 
Operation Codes or Opcodes and must be written exactly as they appear. 

. ^ ■ 

>> Symbols which are partly variable and partly reserved will have 

K the reserved part written in upper case type and will be underlined, and 
SB 

the variable part will be denoted by a lower case Greek letter, for example, 

i LDa     Optnand; 
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where a can be A, B, S, X. R or D. This means that LM, LDB, IJ^, LDX, 

LDR, or LDD are all possible variations for the LKX operation code. 

The LabeZ field is optional and represents a symbolic location 

or address within the program; LabeZ must be followed by a colon (:). 

The Opcode is the operation code portion of the instruction, 

i.e., ADD is an Opcode. A blank must follow the Opcode. 

on The Operand is the address or operand portion of the instructi 

and may be an address, a count, or data. If it is an address, it denotes 

the location in memory where data resides. 

A semicolon (;) must follow the Operand and indicates the end of 

an ASK instruction. 

D. Operands 

With each instruction type, PE and CU, there is associated a 

permissible set of operands. 

1. PE Operands 

A PE Operand may be a PE Memory Address, PE Register, Literal, 

ACAR, Routing Operand, or Mode Setting Operand: 

a. PE Memory Address 

A PE Memo^ Address (PEM Address) refers to the contents of a 

Row of PE Memory locations. The name of a PEM Address must be symbolic 
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S 
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and is created by the programmer. Symbolic names consist of alphameric 

characters (letters and digits); they can be up to 63 characters in length 

n but the first character must be a letter. 

Examples of PEM addresses: 

X 
[•:■ 
m LOCATION 

L123 

A PEM Address will alternatively be called a "Row", "Row location", 

IT' "PE Memory location", "PEM location", or "PEM Row location" in the follcw- 

SB ing text. Note also that PEM is short for PE Memory. 

b. PE Register 

A PE Register has the following format: 

$ Reg^AteA Wowie 

where RzgiAteA. Warne can be A, B, R, S, or X and 

$A stands for RGA 

$B stands for RGB 

$R stands for RGR 

$S stands for RGB 

$X stands for RGX 

(The total mode register, RGD, can never be a PE operand, except in one 

special case which will not be covered here.) 
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c. Literal 

A Literal is usually a value that stands for itself, not a 

location where the value can be found. It is of the form: 

= LiteAaZ 

where LiteAal  (for the purposes of this brief explanation) is a number, 

i.e., 

= 12:8 is a Literal of value twelve in the base 8 

number system (and is equal to ten in base 10). 

= 10 is an integer ten in the base ten number system. 

PE Literals are constrained to be representable within 16 bits 

so that floating point numbers (which require 32 or 61+ bits) are not 

allowed as PE Literals. Integers which can be represented within 16 bits 

are allowed however: 

= 0 

= 15 

= 65535 

are all valid integers which can be used as PE Literals. 

d. ACAR 

Only one of the four ACARs in the CU can be used as a PE 

Operand; they are referenced by the names  $00, $01, $02,  and $03.     (The 
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contents of the specified ACAR is transmitted or "broadcast" to all PEs via 

the Common Data Bus.) 

e. Routing Operand 

A Routing Operand is a highly specialized type of Operand that 

is only used with one PE instruction (the Route instruction, RTL). This 

sa Operand will he discussed when the Route instruction is discussed. 

f. Mode Setting Operand 
Ü 

fa The Mode Setting Operand is another specialized Operand which is 

used with a certain class of instructions which set bits within the mode 

register (ROD). This operand will be discussed when an instruction of 

this class is encountered. 

.-■: a.. 

M g. Indexing 

PE Operands can be indexed in two ways:    either by RGX or RGS 

within a PE, or by one of the four ACARs in the CU. 

Usually the PE Operand to be indexed is a PEM Address or location. 

An indexed location is in one of two forms: 

* Location 

or 

£. # Location 
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where the asterisk (») means the Location is indexed by the contents of 

RGX and the sharp (#) means that the Location is indexed by the contents 

of RGS. The contents of the specified index register is added to the value 

of Location  and that sum is used as the effective PEM Address or location. 

LDA  *A; 

would load the EGA of eveiy PE with the contents of location (A + contents 

of RGX). RGX may contain a different value in eveiy PE, in which case the 

RGA of every PE in the array will be loaded from a different location in 

PEM. This situation is shown in Figure III-2 on page 111-17 and will be 

discussed later. 

The contents of one of the four ACARs in the CU can also be 

used to index a location or PEM Address. The ACAR which contains the 

indexing value is specified in parentheses after the location, i.e. 

LDA  A(l); 

would load the RGA of every PE with the contents of location (A + contents 

of ACAR1). Since the contents of ACAR1 is a scalar (and not a vector or 

row) quantity, the RGA of each PE will be loaded from the same location— 

A + contents of ACAR1. This is not necessarily the case when indexing is 

done using RGX or RGS within each PE. 

2. CU Operands 

A CU Operand may be a CU Memory Address, CU Register, Literal, 

or Skip Operand. 
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a. CU Memory Address 

A CU Memory Address refers to the contents of a single location 

in PE Memory (whereas a PE Memory Address refers to the contents of a row 

of locations in PE Memory). CU Memozy is not to be confused with CU 

Register Storage (the 6^ ADB locations, the k ACARs and thirteen other 

I 
Si        CU registers). CU Memory lies within PE Memoiy. There are CU instructions 

m which reference a single word stored in CU Memory which means that the 

single word resides in a specific Row and a specific PEM within that row. 

H>        As we shall see, it takes two coordinates to specify a CU Memory Address: 

the Row number and the PEM number. 

i 
r^ b. CU Register 

The available CU registers are the four ACARs  ($C0, $C1, $C2, 

«> or $C3) or any of the 6k locations within the ADB ($D0 through $D63). 

■ Additionally, there are thirteen other CU registers that  can be vised as a 

CU Operand, but they will not be covered here. 

i 
c.    Literal 

i 
A CU Literal Operand is usually in one of two forms.    One format 

^ is the same as the PE Operand, i.e., 

M where LitdAal can be a number or an address.    When a CU llta/iat is an 

u.-"; address, it refers to a single location in PE Memoiy. 

r 
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For example =X refers to the word in PEMQ of Row X in PEM; while 

=X+1 would refer to the word in PEI^ of Row X in PEM. More will be said 

about this when tne Matrix Multiplication problem is discussed. 

The other format is used for loop control and looks like: 

IncAmznt, Limit, Stavting Valuz 

where StaMlng Vatuz  is the Initial value of the loop counter 

L-imit is the upper limit of the loop counter 

and IncAmtnt is the increment for the loop. 

Unlike PE instructions, there are CU instructions which can 

create literals. These instructions and the loop control literal will be 

discussed later. 

d. Skip Operand 

A Skip Operand is a special CU operand used to transfer control 

to another location with the program. It is usually of the form: 

j Locaution 

where LooaUon  is the location in the program that will be skipped to 

based on the results of a test defined by the Opcode. There is a strong 

constraint on the value of Location; it is limited to be within +127 

instructions from the transfer instruction being executed. There is 

another instruction which can Jump to any location in the program that 
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fei 

C. 

C" 

fe 

has as its Operand Just the location and is not preceded by a comma. This 

instruction, called JUMP will not be discussed since it is not necessary 

for the solution of any of the problems. 

E. CU (ADVAST) Instructions 

If an accumulator is needed for the execution of a CU instruction 

one must be specified since there are four accumulators to choose from. 

Accordingly, the Opcode,  of many CU instructions is followed by a number in 

KS        parentheses that specifies which ACAR is to be the accumulator for that 

ß! 
instruction. The format is: 

Opcode (ACAR Wuwbe/t)   Operand; 

An example might be 

LDL(3)  $Dllt; 

which means: Load $C3 (ACAR3) from $Dlk  (Location Ik  of the ADB). 

(v        F- PE (FINST/PE) Instructions 

PE Instructions may be partially processed by the Control Unit 

but they are not completely executed until the PE array performs the 

fci        operation. It is very important to remember that one PE instruction does 

S        not cause only one action to occur as is the case with CU instructions, 

it causes 6k  actions to occur. 
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LDA  X; 

causes the RGA of 64 PEs to be loaded from location X of each PEM or, 

equivalently, from Row X of PEM. 

G. Convention 

The following convention will be observed in the prose descrip- 

tion of the operation of the instruction types: The words "enabled" and 

"disabled" will not be mentioned. For example, if an instruction is 

described as loading the RGA of all PEs. this description is meant to 

imply all enabled PEs and certainly not the disabled ones. However if 

an instruction is described as loading the RGB of all PEs. then this is 

meant to imply all PEs, disabled or enabled. All of the rules which 

describe the operation of enabled and disabled PEs previously described 

in Chapter II are in effect. 

H. Warning 

The description of PE and CU Operands and Instructions will be 

necessarily incomplete to avoid getting bogged down in details. Also 

discussion of a third class of instructions (IMJ instructions) which are 

used primarily by the Systems Programmer will be skipped entirely. The 

intent is to present the minimum amount of detail which will allow the 

programmer to use a small instruction repertoire to solve the sample 

problems. This method allows the user to gain a "feel" for how the 

language works without having to learn all of the intricacies of the 

language. 
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I.    Sample Problems 

1.    Svimmlng an Array of Numbers 

The first problem a programmer usually solves is to write the 

algorithm that sums an array of numbers.    The problem is stated as follows; 

Given an array of numbers X^ X2, X-,  ... XN, find 

N 
g Z   x. 
i i=l 

and store the result in S. 

If we were to solve this problem on a conventional machine, we 

might use a language like FORTRAN: 

S = 0. 

DO 10 I = 1, N 

10 S = S + X(I) 

Now let us consider the instructions in the ILLIAC IV repertoire 

that we will use to solve this problem. 

The first instruction we need is a "load" instruction; one that 

loads the contents of a PE Register from a PE Memory location or from 

another PE Register. It is of the form 

LDa       Opvuind; 
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m 
where a = A, B, S, X, R or D, and specifies RGA, RGB, RGS, RGX, RGR, or fif 

RGD respectively. _ 
ft 

Opznand is usually a PE Memory Address or location,  a PE register, 

or an ACAR. "t 

LDa is a FINST/PE or a PE instruction. 

Examples: 

LDB  $R; 

means all PEs load their RGB from their RGR. 

LDA  X(l); 

Once again it is stressed that PEM location X is at the same place in 

every PEM and can therefore be viewed as a vector or "Row" of PEM locations 

(see Figure III-l). This concept is, of course, at the very heart of the 

ILLIAC IV, a memory or register access does not access only one operand, 

it accesses a vector-full of operands. 

tion. Its format is similar to the "load" but its operation is just the 

lll-lh 

C-1 

LDA  X; '■■ 

means all PEs load their RGA from the contents of PEM location X, or Row X.        fe 

DTJ 

means: l) The contents of ACAR1 ($Cl) are added to Row location X. Call 

this value Y. 

2) RGA is loaded from the contents of Row Y. •/! 
P 

v.1 

i 
■. 

Associated with the "load" instruction is the "store" instruc- W 

»*. • 
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LOCATION 0 

X ►LOCATION X WMM* 

LOCATION 2047 

PEi 

It 

LOCATION 0 

LOCATION X Wffltfo 

LOCATION 2047 

•  •  • «63 

LOCATION 0 

•    •    • 

LOCATION X 

LOCATION 2047 

^ 

PEM0 PEMx KMe, 

Figure III-l. Symbolic Location X is a "Row" of 
Processing Element Memory (PEM) 

reverse: the contents of a PE register are stored to PE Memory. PE stores 

are always to PE memory, and never to another PE register; register to 

register transmission is effected by the load instruction. The store 

instruction is of the form: 

STa  OpeAand; 

i 

i: 

where a = A, B, S, X, or R and specifies RGA, RGB, RGS, RGX or RGR 

respectively. 

OpeAand  is always a PE Memory location. 

Like LDCK, STa is a PE instruction. 
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Examples: 

STA  X; 

means all PEs store the contents of their EGA in their PEM Row location X. 

STS  *A; 

means: l) The contents of RGX of each PE is added to PEM location A; 

call this new location Y (Y may have a different value in 

each PE). 

2) The contents of RGS of each PE is stored in PE Memory location 

Y of each PEM. 

See Figure III-2 for a picture of how Y can vary within PEM if RGX holds a 

different value for each PE. Row A has a variable offset specified by the 

contents of RGX which results in a different location being referenced in 

each PEM. 

Another instruction we need to solve our first problem is one 

that will add: 

ADRN  Operand; 

where Operand is usually a PEM Address, a PE Register or an ACAR which 

contains the value of operand to be added to the accumulator RGA. The 

result appears in RGA. 
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LOCATION Y'LOCATION A 

«1 

N6X 1 

11 

LOCATION A 

LOCATION Y mm. 

_«2_ 

MX 2 

LOCATION A 

LOCATION Y 

KMQ 

msx 
^6» 

•s 

•  • 

LOCATION A 

•    •    • 

LOCATION YiLOCATION A+S5 

PEN! KMt KM«, 

Figure III-2. Indexing by RGX can cause Different Locations within 
PEM to be Referenced 

RGX in PE0 is 0 

RGX in PE is 1 

RGX in PE2 is 2 

RGX in PE. is i 
i 

i 
RGX in PEg is 63. 

STS *A causes the contents of RGS to be stored in 
location Y. 

^ 
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ADRN is one variation of the PE add instruction; it adds two 

6k  bit floating point numbers using rounding (R) and normalization (N). 

Examples; 

ADEN  X; 

means: to the contents of the RGA of every PE add the contents of PEM 

Row location X and place the result back in RGA. 

ADRN  X(0); 

means 1) Add the contents of ACARO ($C0) to PEM location X; call this 

location Y. 

2) The contents of location Y are added to RGA in every PE 

simultaneously and the result is pieced back in the RGA of 

each PE. 

In order to use ILLIAC IV effectively we must use the "ROUTE" 

instruction in programming a solution to our problem.  (The total array of 

numbers to be summed could be stored entirely within the PEM of one PE, 

but the computational power of the rest of the PEs in the array would be 

totally wasted. The  scheme we shall use to sum the numbers will attempt 

to use as many PEs as possible.) 

The Route instruction is used to send data from some PE register 

(RGA, RGB, RGX, or RGS) to the routing register, RGR, and from there route 

that data a specified distance to another PE's routing register. One form 

of the Route instruction is: 
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RTL   Source Reg-c4teA, RoiUlng Vütancz; 

where SouAce KzgütoJL can be $A, $B, $X, $R or $S. If Source KzqlbtVi and 

the following comma are not present, the source register is 

assumed to he $R. 

Roi^ttng ViAtancz is a number indicating how many PEs to the left or 

right the data should be routed. 

A positive number denotes a route to the right. 

A negative number denotes a route to the left. 

Tho "L" in RTL stands for 'Local" and not for 'Left". 

RTL is, of course, a FINST/PE Instruction. 

Example: 

RTL  $A, -3; 

would cause the following to happen: 

1) For all PEs, the contents of RGA are placed in RGR. 

2) The contents of RGR of each PE is routed 3 PEs to the left. The 

results always end up in the R register, RGR; the contents of RGA 

are unchanged. The Route is always end-around so that, in this 

case, the contents of RGR of PE0 would end up in the RGR of PEg,. 

Since a Route Instruction only changes RGR, it is always executed 

by the entire PE array, regardless of whether or not a PE is enabled or 

disabled. 

The second operand, the Routing Vi&tancz can be indexed by an 

ACAR. If this is the case, the contents of the specified ACAR is added to 
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the Routing ViAtancz and the route is then performed. The general form 

is: 

RTL   Soatce RzglitzA, Routing Vl&tancz  (ACAR WtunbeA); 

where ACAR WumbeA is 0, 1, 2 or 3 specifying $C0, $C1, $C2 or $C3. 

Examples: 

RTL  $S, 12(1); 

would place the contents of RGS in RGR then route RGR a distance of 

(12 + contents of $Cl) to the right. 

RTL  $S, 0(0); 

To the Routing Vt&tancz,  in this case zero, is added the contents of $C0. 

This distance is then used to route the contents of RGR after it has been 

loaded from RGS. If an ACAR is used to Index the Routing Vütancz it is 

extremely important (for reasons too complicated to describe here) that 

the number in the ACAR be positive. 

We may now program a solution to our problem. For ease of 

illustration let us assume that we have an eight PE (rather than a. 6h  PE) 

machine and that N = 8 (we have 8 numbers to sum) and that they are 

given to us stored across one Row of PEM at location X. Also, since PE 

numbering begins at zero let us label our array X , X , X , X , X, , X , 

X/- and X™. 

111-20 



K 
m ■A 

The ASK program to perform the sum might look like 

LDA X; 

RTL $A> -i; 

ADRN $R; 

RTL $A, -2; 

ADRN $R; 

RTL $A. -hi 

ADRN $R; 

STA S; 

Table III-l shows the first seven steps of the ahove assembly language 

program. The contents of RGA and RGR of each PE are also shown after the 

execution of each step. After Step 7 has been executed 

m 1 

is in the RGA of each PE of our 8 PE array. The last instruction, 

STA  S; stores this result to location S as the problem requires. 

It should be clear now that we could sum 6h  numbers on our 

6k  PE ILLIAC IV using the following instructions: 
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LDA X; 

RTL M. -i; 
ADRN $R; 

RTL $A, -2; 

ADRN $Ri 

RTL $A, -hi 

ADRN $R; 

RTL $A> -8; 

ADRN $R; 

RTL $A, -16; 

ADRN $R; 

RTL $A, -32; 

ADRN $R; 

STA S; 

The general rule for routing using this kind of algorithm to sum 

numbers is: 

To sum N numbers where N = 2 and I is a positive integer, we 

perform I routes using a routing distance starting at 2 and ending at 2  , 

This method of summing numbers is sometimes called a "Logsum" 

since the routing distance increases as a power of 2. The reader should 

also check for himself at this point that the Logsum algorithm will work 

when the Routing dlbtmcz  is positive and all routes take place to the 

right. The algorithm is independent of the direction of the routes; the 

result will be the same since routing is end-around in both cases. 
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Unfortunately the solution to the problem presented above is net 

very elegant, nor is it concise. It could be made more concise and elegant 

by using looping instructions. 

Of the four-teen instructions needed to sum 6h  numbers six pairs 

of them are of the form: 

RTL   $A, Vi 

ADRH  $R; 

If we could set up instructions around the above instruction pair which 

would cause the pair to be executed 6 times and would cause the value of 

V  to take on the values 1, 2, it, 8, 16 and 32 consecutively, then the 

solution would not only be better—it would be a representative method for 

summing arrays. 

There are many looping instructions in the ILLIAC IV repertoire; 

one of them is TXLTM. Before we discuss the operation of TXLTM we must 

first describe the LIT instruction which will place the starting value, 

increment, and upper limit of our loop into a specified ACAR,  (This ACAR 

is then referenced by the TXLTM instruction.) For looping purposes, the 

LIT instruction loads up a specified ACAR with an increment, a limit, and 

a starting value.  It is of the form: 

LIT (ACAR NmbeA] IncAzmznt,  L-vnlt, Stantlng Vaiuz; 

where ACAR Numbe/t is either a 0, 1, 2, or 3 specifying, $C0, $C1, $C2 or 

$C3. 

ig lll-2k 
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Incfumznt,  LLnit and Sta/cting Value, have already teen briefly 

discussed and they work in the following way 

if IncA.me.nt = 2 

Limit = 11 

Stasvting Vatue. = 1 

then the sequence 1,  3,  5»  7> 9> 11 can be generated while a loop is being 

executed 6 times when TXLTM is used.     (The TXLTM will "bump up" the value of 

StaAting VaZue. by the value of IncA.eme.n-C each time the loop is traversed.) 

Examples: 

LIT(3) 1,  3, C; 

will cause an increment of 1, a starting value of 0 and an upper limit of 

3 to be placed in $C3 to be used as loop control variables. 

LIT can also be used in a less sophisticated manner to load an 

ACAR with Just one number: 

LIT(O)   "ki 

will place the integer h (right-adjusted and zero-filled)  into $C0.    LIT 

is a CU or ADVAST instruction which is executed completely in ADVAST. 

The TXLTM instruction is  of the form: 

TXLTM (ACAR NmbeA) tioccJUion; 

where ACAR Numfaet is either a 0, 1,  2,  or 3 specifying $C0, $C1, $C2 or $C3. 
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Location is the symbolic location within the program (somewhere 

in the program is a LabeZ that is the same symbol as Location) to which a 

jump is made if the Starting Value, is  less than the Limit in the ACAR 

specified by ACAR NumbeA.    If the StoAting Value, is not less than the 

Limit, the next instruction is executed.    In either case, the Starting 

Value is increased by Increment and placed back in the StantLng Value.. 

TXLTM is also an ADVAST instruction and the operand  ^Location is 

a Skip Operand. 

Warning:    Location cannot refer to any location within the program—only 

to a position within 127 instructions of the TXLTM instruction. 

Examples; 

TXLTM(I) .ALPHA; 

means "transfer to location ALPHA if the StaAting Value  in ACAR1 is less than 

the Limit  in ACAR1. If not, execute the next instruction. In either case, 

replace the Starting Value in ACAR1 by the value: StoJvting Value. + Increment" 

Let us consider how we would set up a summation loop using the 

LIT and TXLTM instructions: 

LIT(O) 1.  3, 

LIT(l) =0; 

LDA $C1; 

LOOP: ADEN $R; 

TXLTM(O) ,L00P; 
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W 
■        The first instruction sets up an JncAmzrut of 1, a Umit of 3 and a 

Sta/Uing VaZwi  of 0 in $C0. The second instruction places a zero in ACAR1 

Ü k which is then loaded into RGA in the third instruction.    The fourth 

instruction at location LOOP adds the contents of RGR to the accumulator 

S (RGA).    The last instruction checks to see if the StoJvUnQ Value. (0) 

C\' is less than the UmX (3)  and then increments the Starting Value by 

IncnrnZYlt (1).    The condition will be true the first three times sending 

K;' control back to LOOP.*   After $R is  added for the fourth time, the StaAtinQ 

Value, will be  3, and will not be less than the Limit, and so control will 

drop to the sixth instruction, whatever that may be.    The loop is  executed 

four times and a value of k times the contents of RGR will be in RGA at 

the completion of the loop. 

§ 

* 

i 
A \y 

The LIT and TXLTM instructions can provide the loop control for 

our summation problem but we will need one more instruction to double the 

routing distance each time through the loop. (We want V  in the instruction 

pair 

RTL   $A, Ci 

ADRN  $R; 

to start at the value 1 and double each time through the loop.) Since V, 

the routing distance, can be a constant indexed by an ACAR (remember the 

example: RTL  $S,12(l)) we can place the value 1 into seme ACAR, say $C0, 

,.-.. Since ILLIAC IV has a single instruction stream and a multiple data stream, 
I it is convenient to think of locations holding data as Rows, but locations 
4 %k in the instruction stream are considered as scalars—just like they are on 

S$ a conventional computer. 
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using a LIT(O)      =1; instruction and double it by shifting the contents of 

$C0 left one bit each time we pass through the loop.    All we need is a 

shift instruction: 

CSHa (ACAR Wumfae/t) 0p2Jumd; 

where a = L or R denoting a left  (L)  or right (R) shift 

ACAR UimbeA. is either 0, 1, 2,  or 3 and specifies which ACAR is to 

be shifted. 

OpeAand is a number or count which specifies how many bits the 

specified ACAR is to be shifted.    This shift is end-off.    OpeAand 

can be ACAR indexed.    CSHa is  an ADVAST instruction. 

Example: 

CSHL(O) ki 

will shift the contents of $C0 four bits to the left end off. 

We now have enough instructions to set up a loop for our Logsum 

program: 

LDA X; 

LIT(O) =1; 

LIT(l) 1,  6,  1; 

LOOP:    RTL $A, 0(0); 

ADRN $R; 

CSHL(O) 1; 

TXLTM(l) ,L00P; 

STA S; 
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%j$ This represents one possible solution to the problem; there 

are many others which use different ASK instructions. As an example of 

a slightly different solution, let us learn one more type of looping 

instruction. i 

I 

15 

i 
I 
I 

K 

!■:■■ 

t:-: 

g 

E 

LESST (ACAR NumbeA)   CU Reg-cite^, Location; 

will cause a Jump to Loattion  if the contents of the ACAR specified by 

ACAR Numfae-t (0, 1, 2 or 3) are less than the contents of the Control Unit 

Register specified by CU RzgüteA  (CU Rtglbtcn.  can be $C0> $C1, $C?, $C3 

or $D0 through $D63). LESST is an ADVAST instruction. 

Warninp; Location cannot refer to any location within the program—only 

the position within 127 instructions of LESST. 

Example: 

LESST(O)   $01, LOOP; 

means that a jump to location LOOP will be made if the contents of $C0 

are less than the contents of $01. If this is not the case, the next 

instruction will be executed. 

Now we may rewrite our Logs urn program as follows: 
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LDA X; 

LIT(O) =i; 

LIT(l) =33; 

LOOP: RTL $A, 0(0); 

ADEN $R; 

CSHL(O) i; 

LESST(O) $01, LOOP; 

STA S; 

X0 =2,     X1 = 0.    X2 =5.    X3 =  7, 

xk - 1,    x5 = 3,    x6 = 4,    X   = 6 

111-30 

Note that ACAEO is being xtsed in dual role:    it contains the Routing tlj 

P-ci-tonce variable and also helps control the loop. Q 

2.    Finding the Maximmn Value in an Array of Numbers '*^* 

The problem is to find the largest value in a given array of ^J 
Ö 

numbers X^^, X2  ...  Xg^ and place that value in RGA of every PE. 

Before attempting to program the solution in ASK, let us look at 

the top of Table 111-2 which lists the steps  for solution for 8 specific '; 

values assuming an 8 PE array.    The lower part of Table III-2 displays the 

contents of RGR, RGA, and bits E and El of ROD after each step.    For this 

example we have used the following specific values for the array of 8 

numbers: 

M 

-3 
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£ 
Table III-2.    Solution to Problem #2~Findlng the Maximum Value 

in an Array of Eight Numbers 

Step 1.    The 8 values  are in RGA of each PE; PEi «- X^ i = 0, 1,  ...  7. 
Enable all PEs.    N «- 0. 

Step 2.    Route RGA 2N to the right (end around). 

Step 3.    Compare RGR to RGA; If RGA > RGR, disable PE  (Set E = El = 0). 
m If RGA < RGR, leave PE enabled. 

I 

i 

i 
i 

i 
i 
i 

m 

Step k.    For all enabled PEs:    RGA*- RGR. 

Step 5.    Enable all PEs (Set E = El = l); then N - N + 1. 

Step 6.    If N < 3, Go hack to Step 2. 
If N > 3, STOP, the largest value is in RGA of every PE. 

Step No. 
and Value 
of N 

Contents 
of 

PEo 

2 

PE, 

0 

PE2 

5 

PE? 

7 

PE,, 

1 3 

PE6 

1. 

PE7 

1. RGA 6 
N • 0 RGR 

E, El 1.1 1.1 1.1 1.1 1,1 1,1 1.1 1.1 

2. 
N " 0 

RGA 
RGR 

E, El 

2 
6 

1.1 

0 
2 

1.1 

5 
0 

1.1 

7 
5 

1.1 

1 
7 
1,1 

3 
1 
1,1 

3 
1.1 

6 
li 

1.1 

3. 
N - 0 

RGA 
RGR 

E, El 

2 
6 

1.1 

0 
2 

1.1 

5 
0 
0,0 

7 
5 

0.0 

1 
7 

1,1 

3 
1 

0.0 

U 
3 

0,0 

6 
k 

0.0 

U. 
H • 0 

RGA 
RGR 

E, El 

6 
6 

1.1 

2 
2 

1.1 

5 
0 
0.0 

7 
5 

0,0 

7 
7 
1.1 

3 
1 

0.0 

u 
3 

0.0 

6 
u 

0,0 

5 and 6 
N • 1 

RGA 
RGR 

E, El 

6 
6 

1.1 

2 
2 

1.1 

5 
0 

1.1 

7 
5 

1,1 

7 
7 

1.1 

3 
1 

1,1 

It 
3 

1,1 

6 
1) 

1.1 

2. 
N » 1 

RGA 
RGR 

E, El 

6 
li 

1.1 

2 
6 

1.1 

5 
6 

1.1 

7 
2 

1,1 

7 
5 

1.1 

3 
7 

1.1 

k 
7 

1.1 

6 
3 

1.1 

3. 
H ■ 1 

RGA 
RGR 

E. El 

6 
k 

0.0 

2 
6 

1.1 

5 
6 

1.1 

7 
2 
0,0 

7 
5 

0,0 

3 
7 

1.1 

li 

7 
1.1 

6 
3 

0.0 

H « 1 
RGA 
RGR 

E, El 

6 
It 

0.0 

6 
6 

1.1 

6 
6 

1.1 

7 
2 
0,0 

7 
5 

0,0 

7 
7 

1.1 

7 
7 

1.1 

6 
3 

o.o 

5 and 6 
N « 2 

RGA 
RGR 

E, El 

6 
1. 

1.1 

6 
6 
1.1 

6 
6 

1,1 

7 
2 

1,1 

7 
5 

1.1 

7 
7 

1.1 

7 
7 

1.1 

6 
3 

1.1 

2. 
H « 2 

RGA 
RGR 

E. El 

6 
7 

1.1 

6 
7 

1.1 

6 
7 

1.1 

7 
6 

l.l 

7 
6 

1,1 

7 
6 

1,1 

7 
6 

1.1 

6 
7 

1.1 

3. 
N - 2 

RGA 
RGR 

E, El 

6 
7 

1.1 

6 
7 

1.1 

6 
7 

1.1 

7 
6 

0,0 

7 
6 

0,0 

7 
6 
o.o 

7 
6 

0,0 

6 
7 
1.1 

1». 
N > 2 

RGA 
RGR 

E, El 

7 
7 

1.1 

7 
7 

1.1 

7 
7 

1.1 

7 
6 

0,0 

7 
6 

0,0 

7 
6 

0.0 

7 
6 

0,0 

7 
7 

1.1 

5 and 6 
B » 3 

RGA 
RGR 

E. El 

7 
7 

1.1 

7 
7 

1.1 

7 
7 

1.1 

7 
6 
1,1 

7 
6 

1,1 

7 
6 

1,1 

7 
6 
l.l 

7 
7 

1.1 
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When we are operating on Sk-hit  floating point operands, both 

the E and El bits must be on or set (equal to l) for the PE to be enabled. 

(in the 32 bit mode the E bit enables one 32-bit floating point word and 

the El bit enables the other.) 

*U' 

Note that at Step k  and N = 0, when the contents of RGR are 

placed into RGA of enabled PEs, two values of the largest number (7) 

appear in RGA of the PEs; at Step k  and N = 1, four values of the largest 

number appear, and at Step k  and N = 2 all eight PEs contain the largest 

value. Since we use routing distances which are powers of 2, this solution 

to the problem is sometimes called "Logmax." 

In order to code this problem in ASK we will need two more 

instructions: SET, to set the E and El bits and thus enable a PE, and 

IAL which will set the I bit of RGD based on the results of an arithmetic 

comparison of the contents of two registers. Unfortunately the E and El 

bits cannot be set directly on the result of an arithmetic comparison; 

however, another bit of RGD (called the I bit) can be, and E and El can be 

set equal to the I bit. Thus, the E and El bits can finally be set based 

on an arithmetic comparison of the contents of two registers. 

The SET instruction can set any bit (E, El, F, Fl, G, H, I or J) 

of RGD, the mode register. It is of the form: 

SETq    Mode Bit  . Logic . E Bit; 
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where x  can be E, El, F, Fl, G, H, I or J. 

Mode Bit can be E, El, F, Fl, G, H, I or J also. 

Logic  is a logical or Boolean operator and can  either be OR or MD. 

E Bit can only be E or El. 

The AND and OR operations operate on Boolean variables that can 

only take the values 0 or 1. The tables below define the MD and OR 

operations: 

mo 0 1 

0 0 0 

i 0 1 

OR 0 1 

0 0 1 

1 1 1 

(V 

For example;    Q> ASD 1 «■ 0 

0 OR 1    =1 

The instruction:    Modi. Bi4 . Logic . E Bit is a Ifode Setting 

Operand as described in section D 1 f. 

Either the Mode Bit ör Ifoe E Bit can be preceded by a minus  (-) 

sign denoting the logical  "NOT" or cs^lement function,  i.e.,  if E is zero 

then -E is one; if E is one then -E it Z3K< * 

The bit of RGD specified by a is set to 1 if the      suit of 

Mode Bit .  Logic .  E Bit equals 1; the bit specified by o is  set to zero 

if the result is zero. 

SET is a FINST/PE instruction. 
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Examples; 

SETE   I.OR.E; 

Suppose I was 1 and 

E was 0 

before the execution of the above instruction. After the above instruction 

is executed 

E will be equal to 1 because 

I.OR.E result? in 1.0R.0 = 1 

The instruction then says to "Set the E bit equal to l". 

SETE1   I.OR.E; 

would result in El being set to 1. 

If the programmer wished to enable (set equal to l) the E and El 

bits for all PEs so that he could do 61t-bit floating point arithmetic he 

could do so with the following pair of instructions : 

SETE    E.OR.-E 

SETE1   E.OR.-E 

The first instruction insures that the E bit will be set to 1 

since the logical expression 

E.OR.-E 

has the value 1 regardless of whether E is 0 or 1: 
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if E = 0   E.OR.-E becomes 0.OR.1 = 1 

if E = 1   E.OR.-E 'becomes 1.0R.0 = 1 

The same reasoning applies to the setting of the El bit in the second 

instruction. 

Next we need an instruction that can set the I bit of ROD 

based on the results of an arithmetic comparison: 

IAL  Operand; 

where Operand can be a PE Register, a PE Memory Address, or an ACAR. 

When OpeAand specifies a PE Memory Address the IAL instruction arithmeti- 

cally compares the contents of RGA to the contents of the PE Memory 

Address and sets the I bit to one if the contents of RGA are less; or sets 

the I bit to zero if the contents of RGA are not less. 

IAL is a FINST/PE instruction. 

Examples: 

IAL   LOG; 

if contents of RGA < contents of LOC, then set I to 1 

if contents of RGA > contents of LOC, then set I to 0 

Although the comparison is done in every PE simultaneously, the 

results can vary between different PEs; that is, the I bit in each PE is 

one or zero depending on the arithmetic comparison after IAL is executed. 
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There is another instruction: 

IAG  Opznjxnd; 

which works just like IAL but it uses a "greater than" test rather than a 

less than test, i.e., the I hit is set to one if the contents of EGA are 

greater than the contents specified by OpeAand. 

Since the IAL instruction sets the I bit and it is the E and El 

bits which enable or disable a PE we must devise a method to set the E 

and El bits based on the value of the I bit. Assume the E bit has been 

set to one, what instruction will cause the E bit to take on the value of 

the I bit? 

SETE   I.MD.E; 

will set the E bit to the value of the I bit assuming the E bit has been 

previously set to one. 

Consider the following instructions: 

.- 

1 

2 

3 

5 

6 

SETE 

SETE 

E.OR.-E: 

SETE1   E.OR.-E; 

TAG     $R; 

I.MD.E: 

SETE1   I.MD.E; 

LDA     $R; 
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Instructions 1 and 2 enable all of the PEs, setting their E and El bits 

to 1. Instruction 3 sets the I bit equal to 1 for every PE whose RGA 

contents is greater than its RGR contents. If RGA < RGR then the I bit 

is set to 0. Instructions k  and 5 disable all PEs whose I bit is zero, 

thus if 

RGA > RGR   PE remains enabled 

RG4 < RGR   PE is disabled 

Instruction 6 is executed only hy those PEs which are in the enabled 

state. Thus 

". 

if RGR < RGA   RGA is loaded from RGR 

if RGR > RGA   RGA remains unchanged 

The above set of six instructions will compare the contents of 

RGA to the contents of RGR for every PE in the array and the lesser of the 

two will appear in RGA. 

Note that instruction 5 uses the value of E in its Mode Setting 

Operand that was calculated in instruction kt  so that instruction 2 is 

really not necessary. 

We may now write the ASK code necessary to select the largest 

number from an array of 6k  values . Assume the 6k  values are stored at 

Row X and the largest value is to appear in RGA of every PE: 

&*:• 
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E.OR.-E; 

E.OR.-E; 

X; 

=i; 

1, 6,1; 

$A, 0(0); 

$R; 

I.MD.E; 

I.AND.E; 

$R; 

E.OR.-E; 

E.OR.-E; 

i; 

.LOOP; 

Instructions 1 and 2 enable the entire PE array. 

Instruction 3 brings the array of numbers from PE Memory Address 

X to the RGA of each PE. 

Instruction k  initializes $C0 (which will be used to control the 

routing distance) to 1. 

Instruction 5 sets up loop control in $01. 

Instruction 6 performs the route. 

1 

2 

SETE 

SETEl 

3 LDA 

k LIT(O) 

5 LIT(l) 

6   LOOP:  RTL 

7 IAL 

8 SETE 

9 SETEl 

10 LDA 

11 SETE 

12 SETEl 

13 CSHL(O) 

Ik TXLTM(l) 
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Instructions 7, 8, 9, and 10 are the heart of the program: 

Instruction 7 sets the I bit to one of all PEs whose RGA < RGR. Instruc- 

tions 8 and 9 disable all PEs whose RGA > RGR and leave enabled those that 

have RGA < RGR. Instruction 10 loads the RGA of every enabled PE from 

RGR. Therefore, only those PEs whose RGA < RGR will have their RGA loaded 

from RGR and RGA will contain the larger of RGA and RGR or Max (RGA, RGR). 

After this process is repeated six times through the loop the largest value 

in the array will appear in the RGA of every PE. 

Instructions 11 and 12 re-enable the entire PE array previous to 

the next pass through the loop. 

Instruction 13 doubles the routing distance. 

r-f, Instruction 1^ transfers control back to Instruction 6 if the 

loop is not finished. 

It is very important to understand the operation of Instructions 

7, 8, 9 and 10: 

f>: 

N" 

tv 

7 IAL $R; 

8 SETE I.AND.E; 

^ 9 SETE1 I.MD.E; 
■I 

10 LDA $R; 

ß 

They perform the following logic: 
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If the contents of EGA < contents of RGB, set I to 1. 

then I.AKD.E has the value 1 also 

thus E and El are set to 1 and the PE is enabled. 

If the contents of RGA > contents of RGR, set I to 0. 

then I.MD.E has the value 0 also 

thus E and El are set to 0 and the PE is disabled. 

Instruction 10 is only executed by enabled PEs and this means the 

lar:«r of RGR and RGA ends up in RGA—which is just what we want. 

3. Matrix Multiplication 

Given a 4 x 4 Matrix X = All 

X21 

X31 

A12 

X22 

X32 

Xl|2 

Ä13 

X23 

X33 

^3 

Xll| 

'2k 

'Ik 

%h 

and a ^ x 4 Matrix Y = yll y12 y13 ylk 

y21 y22 y23 y2k 

y31 y32 y33 y3k 

yia yk2 yk3 ykk 

we  can compute the matrix Z = X •  Y using the definition: 
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ZiJ = 4 Xik ^j    for i = 1. 2. 3. ^ 

J = 1, 2, 3, 4 

The FORTRAN Program to compute the product of X and I' based on the above 

definition might look like 

DO 20 I = 1, It 

DO 20 J = 1, 4 

P» SUM = 0. 

DO 10 K = 1, It 

10 SUM = SUM + Xd.K) * Y(K,J) 

20 Z(I,J) = SUM 

The method using the definition of matrix multiplication is not 

the best algorithm for ILLIAC IV, however. Since ILLIAC IV can handle 

a whole row or vector of values simultaneously, a matrix multiplication 

program should take advantage of that fact to be efficient. 

Therefore, consider the following algorithm for matrix 

multiplication: 

_ 1. Take x  and multiply it times the 1st row of Y 

P-" 2. Take x12 and multiply it times the 2nd row of Y 

fy. 3. Take x  and multiply it times the 3rd row of Y 

It. Take x . and multiply it times the Itth row of Y 

I Each of the above k operations is multiplying a scalar value  (x) times  a 

p vector (Y) resulting in a vector or row quantity.    If we sum the above 

f"'-', rows we have the 1st row of Z: 
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x^ Mist Row of Y)    =      (Xliyil x^y^ x,^ x^y^) 

+ + 

x12 M2nd Row of Y)    =      (3^^ ^^ x^^ x^^) 

+ + 

x13M3rdRowofY)    =      (^^ x^ ^^^ x^) 

+ + 

x^ * (4th Row of Y)    =      (x^y^ x^y^ x^y^ x^) 

k k k h 
(1st Row ofZ) sZxn,y Zxv Fxv Fxv. 

^ ll/kl        kf
J
1
xlkyk2        k^1

XUcyk3        ^i^^k 

To get the 2nd row of Z we take the second row of X and multiply 

each element by the 1st,  2nd,  3rd and itth rows  of Y and sum the rows  again. 

Similarly for the third and fourth rows  of Z.    The algorithm might appear 

as : 

1. i ♦- 1 (set i equal to l) 

2. Take x^ and multiply it times the Ist row of Y 

3. Take x±2  and multiply it times the 2nd row of Y 

k. Take x  and multiply it times the 3rd row of Y 

5. Take x^ and multiply it times the 4th row of Y 

6. Take sum of the above 1+ rows and store in i*11 Row of Z 

7. i ♦- i + 1 (Bump up i) 

8. If i > 4 STOP, otherwise go back to Step 2. 
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The flow chart for performing Z = X • Y 

where X is M rows by N columns 

Y is N rows by K columns 

and  Z is M rows by K columns  is; 

Notation: [Y] ■ Jth row of Matrix Y 
J 

[S] = row or vector of values 

fV 

& 

u 

m 

G 

[S] -   [S]   + 3C       *   [Y] J -  J  + 1 -»(j > my j > N? y~-   Yes * 

In order to write the ASK code for the matrix multiplication 

problem we must learn a few more instructions. 

SLIT (ACAR WuwifaeA) =lvteAaZi 

SLIT is called a "short literal" instruction and it works just like the 

literal instruction LIT except that the value of =LitzfiaZ is placed in the 

111-1+3 
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low order 2k bits of the ACAR specified by ACAR UimteA.    The other hO  bits 

of the specified ACAR are unchanged—as opposed to the LIT instruction 

which operated on the entire 6h bits of the specified ACAR. SLIT is an 

ADVAST instruction. 

Example; 

SLIT(O)   =15; 

will place the binary integer 15 in the low-order 2h bits of $C0. 

SLIT(l)   =X; 

will place the location of the variable X into the low-order 2k bits of 

$C1. In the above example (X) is a symbolic CU Memory Address and refers 

to one word of storage in PE Memory, not to a whole row. This will be 

discussed in further detail shortly. 

ALIT (ACAR Umbzn.) 'UteJial; 

The ALIT instruction adds the value of =Llt<lAaZ to the low-order 

2k bits of the ACAR specified by ACAR Umbzfi.     The other kO bits  of the 

specified ACAR are unchanged.    ALIT is  an ADVAST instruction. 

Example: 

ALIT(3)        =1; 

will increase the low-order 2k bits  of $C3 by 1. 
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It can now be pointed out that when a LIT instruction of the 

form: 

LIT(3)        1, 6,  0; 

is used the StoAting Vcuiuz of 0 is placed in the low-order 2k  bits of $C3. 

Therefore if the programmer wishes to modify the Starting VaJiue.,  he can 

do so with an ALIT or a SLIT instruction. ACAR indexing is also done with 

only the StoMting VaZae.  field of the ACAR so that offsets from a particular 

Row can increase (or decrease) as a loop is traversed. More will be said 

about this point later. 

We will, of course, also need a multiply instruction: 

MLRN   OpoAand; 

where OpQAand  can be a PE register, a PE Memory Address or an ACAR. 

The value specified by OpeAand  is multiplied by the contents of 

RGA and the result of the multiplication appears back in RGA. (Lower 

significant bits also appear in RGB but we will not use this information.) 

jT Rounding and normalization will occur. MLRN is a FINST/PE instruction. 

m Examples 

LDA   X; 

MLRN  Y; 

causes the product XY to appear in the RGA of every PE. 
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LIT(2)  =2.0; 

MLRN    $C2; 

causes the contents of every EGA in the PE Array to be doubled. The 

constant 2.0, stored in $C2 is sometimes called a "broadcast" Operand 

since it is a scalar value that is transmitted or broadcast to all PEs 

for multiplication via the Common Data Bus. 

The method we shall use to perform the matrix multiplication 

algorithm will transmit the appropriate X values to an ACAR in the Control 

Unit, which in turn will be "broat ist" to the PE array as part of the 

multiply instruction (MLRN). It is easy enough to get a scalar constant 

into a specified ACAR using a LIT instruction as above, but how can we 

"get" the scalar elements within the X matrix? We need an instruction 

that will LOAD a specified CU register from a single location of a single 

PE memory. We do this with the LOAD instruction: 

LOAD (ACAR NmbeA] CU RzgliteA; 

where ACAR Nmbzi  can be 0, 1, 2 or 3 and specifies the ACAR ($C0, $C1, 

$C2 or $C3) which contains the CU Memory Address whose contents is to be 

loaded into CU RtgliteA.    CU RuglbtQA  can be $C0, $C1, $C2, $C3 or $D0 

through $D63, and can be ACAR indexed. 

Example: 

SLIT(2)   =X; 

L0AD(2)   $C3; 
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The SLIT instruction will load $C2 with the CU Memonr Address of X. The 

IßAD instruction will then load the contents of CU Memory Address X into 

$C3. 

As was pointed out in section D 2 a, a CU Memory Address 

references a single word in PE Memory (and not a row of words as is the 

case with a PE Memory address). This single word referenced by a CU Memory 

Address resides in a specified row and in a specified PE within that row 

and so it requires two coordinates to specify a CU Memory Address. The 

scheme for presenting the two coordinates is as follows: 

A CU Memory Address consists of two parts, a PE row address 

followed by an offset which indicates how many PEs to the right or left 

is the single word referenced. For example, if X + 5 is a CU Memory 

Address then the specified row is PE Memory Row X, the plus sign indicates 

the direction of offset is to the right and precedes the offset distance 

5 so that the word referenced by CU Memory Address X + 5 is the word in 

PEM5 of Row X in PE Memory. The general form is: 

If the sign is positive the offset is to the right, if negative 

the offset is to the left. 

,-. If X - 1 is a CU Memory Address then the offset is 1 to the left 

^        so that the word referenced by CU Memory Address X - 1 is in PEM. of the 
63 

B        Row preceding X or Row X - 1 (see Figure 111-3). 
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ROW X 
ROW X+l 
ROWX+2 
ROW X+3 

ROWY 
ROWY+1 
ROW Y+2 
ROW Y+3 

ROWZ 

ROW Z+l 
ROW Z+2 
ROW Z+3 

PEMQ 

*11 
KZl 
KSl 

*41 

hi 
yzi 
hi 
Ul 

«11 

221 

«31 

'41 

fcu MEMORY ADDRESS X+64) 

(CU MEMORY ADDRESS X-^j) 

f    PEMx PEMg PEM3 

• 
• 
• 

• 
• 
• 

• 
• 
• 

x18 X13 X14 
xM «« »24 
XS2 X33 X34 
X42 X43 X44 

• 
• 
• 

• 
• 
• 

• 
• 
• 

hz y« y« 
ht y23 y24 

hz ^33 y34 

fn y43 y44 
• 
• 
• 

• 
• 
• 

• 
• 
• 

«12 «IS «14 

222 «23 «24 

«32 «33 «34 

«42 «43 «44 
• 
• 
• 

• 
• 
• 

• 
• 
• 

PEM„ 

mm 

• • • 

i 

Figure III-3.    Memory Storage for Matrix Multiply Problem 
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If X is a CU Memory Address then the offset is presumed to be 

zero and the word referenced by CU Memory Address X is in PEM of Row X. 

s If X + 64 is a CU Memory Address then the offset is 6k  to the 

right so that the word referenced by CU Memory Address X + 64 is in PEM 

of the Row following X or Rcw X + 1 (see-Figure III-3). 

£' 

K 

I 

i 

There is no problem in ascertaining whether an address is a PE 

or CU Memory Address since a CU Memory Address can only appear as an 

operand for the CU (or ADVAST) instructions LIT, SLIT or ALIT. 

Summarizing: Operands which are part of CU instructions are 

^ called CU Operands, and if this Operand is a Memory Address then the 

Operand is called a CU Memory Address and it refers to a single word 

(and not a row) in PE Memory. Operands which are part of PE instructions 

are called PE Operands and if this Operand is an address then the Operand 

is called a PE Memory Address or a Row and it refers to a Row of PE 

■ Memory. 
m 

[•'■ Let us now see how CU Memory Addressing works within the context 

of our Matrix Multiplication Problem: 

| 

Suppose the X, Y, and Z Matrices are stored as shown in Figure 

III-3.    The following pair of instructions: 

SLIT(2)      =X+1; 

L0AD(2)       $C3; 

111-49 

Sffiüii^^^-^^iv^^^ A •v-^sto;ifö>>:>v:^^ 



would caiase x     which is stored in PEM   to be loaded into $C3.    Note that > 

IßAD is a CU instruction which loads  one word from PE Memory (called 

CU Memory) into $C3. Ü 

Now consü'-^r how the following sequence of instructions  operate: ly 

1 3LIT(2i           =X-1; f" 

2 LIT(1) 1,  3, 0; 

3 LOOP: ALIT(2) =1; ">; 

k L0AD(2) $C3; rc 

5                      TXLTM(l)         ,L00P; 

I Instruction 1 places the location of CU Memory Address  X - 1 " 

into the low order 2k bits  of $C2.    The location referred to is CU Memory r*^ 

Address X - 1 which i^ indicated by the shaded portion of PEM^,, of Row 
D3 

ex 

X - 1 in Figure III-3. Note that CU Memory Address X - 1 is one word back [C? 

from CU Memory Address X. Since SLIT is a CU instruction, CU Memory 

Address X - 1 is not back one whole row but only one word. & 

Instruction 2 sets up the loop  control using $C1. $ 

Instruction 3 increases the low order 2k bits of $C2 by 1. In H 

other words, the location now referenced by $C2 is CU Memory Address X 

which contains x..... ^ 

^'« 
Instruction It will load $C3 from CU Memory Address X, i.e., x «'I' 

'11 "> 

will be transmitted to $C3. 

\) 
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tfSr. Instruction 5 will loop us back up to LOOP until we have 

executed our loop h times. 

The second time through the LOOP we start at instruction 3 where 

$C2 is increased again by 1. The location now referenced by $C2 is CU 

£ Memory Address X + 1 which contains x^. 

I;-; Instruction k will new load $03 with x12. 

[;■; The third time through the loop instruction h will load $03 with 

I 

i 
I 

x _. The fotorth time through the loop instruction k will load $03 with x^. 

It will be in this way we shall transmit the appropriate value 

of x. to A0AR3 to be "broadcast" as a multiplier. 
^-J 

Let us again review the convention of referencing one value that 

is stored in PE Memory by a CU Memory address: 

When a PE instruction references memory location X + 1 it is 

referring to a whole Row of values (in our example the second row of the 

X matrix as shewn in Figure III-3). Since the PEs are an array this type 

of referencing is possible. However, when a CU instruction references a 

location in PE memory it can only refer to the contents of one location 

(a scalar value) since it has no capability to store a row or vector. 

Therefore when X + 1 appears as a CU Memory Address it must be interpreted 

differently: the first location of Row X is found in PE Memory. X + 1 

then refers to the next word in row X which is in PEM1 and contains x^. 

Similarly X + 3 as a CU Memory Address refers to x , . Finally, and most 

important: 
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X + 6U as a CU Memory Address refers to the first location in 

PE row X + 1 which contains x21.  (See Figure 111-3.) 

For our problem since we are multiplying & k x k matrix by a 

U x U matrix we shall have to remember to skip 60 locations to bring us 

to the beginning of the next row of X. We can do this with an 

ALIT(2)   =60; 

instruction whenever we are ready to reference the next X Row of PE Memory. 

Before we write the Matrix Multiply program, there is one more 

fine point that we must cover. Consider the following ASK instructions: 

LIT(O)   2,5,1; 

The first instruction sets up a StaAting VaZue. of 1, a Limit of 5 and an 

an Inclement of 2 in $C0.    The second instruction loads the RGA of all 

PEs in the array from PE Memory Address Y indexed by the contents of $C0. 

But $C0 contains three values—which one is used to index location Y? 

The answer is that only the low-order 16 bits of an ACAR are used to index 

a PE Memory Address.    Since the Starting VaZue. resides in the low-order 

2k bits of $C0, it is the StaAtlng Vaiue. that is used to index Y and 

therefore the 

LDA        Y(0); 
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instruction will cause RCJW Y + 1 to be loaded into RGA of all PEs in the 

array, since $C0 contains a StaMlng VaZuz of 1. 

The following ASK instructions: 

LIT(l) 1,3,0; 

LOOP:    LM Y(l); 

TXLTM(l)       ,L0OP; 

would cause RGA of each PE in the array to be loaded consecutively with 

ROW Y, ROW Y + 1, ROW Y + 2 and ROW Y + 3 as the loop is traversed. 

We are now ready to write the Matrix Multiply program.    We 

assume the X and Y matrices are given and the storage of their elements 

is as shown in Figure III-3. 

»■", 

(0 

r 

1 LIT(O) 1.  3, 0; 

2 SLIT(2) =X-1; 

1 3 L00P2:    LDS 1 
1+ LIT(l) 1.  3, 0; 

0 
u 

T" 
N 5 L00P1:     ALIT(2) =i; 

T N 6 L0AD(2) $03; 

R 
E 
R 7 LDA Y(l); 

L 
0 

L 
0 

8 

9 
MLRN 

ADRN 

$03; 

$S; 

0 0 10 LDS $A; 
P P 11 TXLTM(l) ,L00P1; 

12 STS Z(0); 

13 ALIT(2) 60; 

11+ TXLTM(O) ,L00P2; 
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Note that the outer loop (L00P2)  is  controlled by $C0 and that 

RGS is used to accumulate the sums.    $C0 also indexes   Z at instruction 12 

where the contents of RGS are stored in ROW Z, ROW Z + 1, ROW Z + 2 and 

ROW Z + 3 as the Starting  Valuz in $C0 takes  on the values  0, 1,  2 and 3 

as L00P2 is traversed. 

BIN  (ACAR Nimibzi) AVB LocaUon; 

i 

$C1 is used in much the same way. It controls the inner loop 

(IDOPI) and indexes Y at instruction 7. As is the case with Z, using $01 

to index Y makes reference to succeeding rows of Y, i.e., the first time 

through the loop instruction 7 loads RGA of every PE from Row 1 of the jjjj 

Y matrix, the second time through from Row 2, etc. 

i 
*** 

Table III-3 presents the contents  of pertinent registers  as the 

ASK code executes through L00P1 and IJOOP2. t*** 

The method used here to multiply two k x k matrices is, of R 

course,  only a choice from many possible algorithms.     For larger matrices 

there are more efficient methods which utilize the BIN instruction: r*" 

n 
u The  BIN works just like the UJAD  except that it moves eight values from 

PE Memory instead of one. ACAR HwvbcA specifies the ACAR (0, 1, 2, or 3) F 

which contains the CU Memoiy Address of the first of the eight values to be ** 

moved. The eight values must be stored contiguously. The KVB Location 

denotes the starting location in the /DB where the eight values are to be 

stored. The AP8 location  can also be ACAR indexed. EIN is an ADVAST 

instruction. 

W 

•-•; 
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Examples; 

SLIT(2) =X; 

BIN(2)   $D8; 

would cause the first eight values stored starting at CU Memory Address X 

(the values in PEM , PEM ... PEM™ of row X) to be placed in $08, $D9 ... 

$D15 respectively. 

LIT(l) =8; 

SLIT(2) =X; 

BIW(2)   $D0(1); 

would cause the first eight values starting at CU Memory Address X to be 

placed in $D8, $D9 ... $D15. 

The BIN instruction allows us to send eight values from PE 

Memory to a section of the ADB. With reference to our Matrix Multiplica- 

tion problem, we would next need an instruction that could transfer the 

values from the ADB into an ACAR so that they could be broadcast as 

multipliers. The ADB locations $D0 through $D63 cannot be used as 

PE operands (see section Did), only one of the four ACARs is permissible. 

LDL could be used in this case to transfer information between CU Registers: 

LDL (ACAR NuirheA] CU RzgüteA; 

LDL loads the specified ACAR Wumfae-t (0, 1, 2 or 3) from the specified 

CU ZzglbteA  ($C0, $C1, $C2, $C3 or $D0 through $D63). The CU Re.g-Ü>tzi 

can be ACAR indexed. LDL is an ADVAST instruction. 
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Example; 

LDL(3)  $D8; 

LV would load $C3 from $D8. The LDL instruction would have to be executed 
iv'   

8 times  (within a loop) to transmit the contents of $D8 through $D15 
P 
t/ (whicih we previously transmitted from PE Memory via the BIN instruction). 

The instruction pair 

LIT(l)        =2; 

LDL(3)        $D0(l)j 

would load $C3 from $D2, since $D0 is indexed by Id. 

If we were multiplying two 6k x 6k matrices the combination of 

BIN and LDL in a loop would be more efficient than LOAD which transmits 

Just one value at a time. 

k.    Matrix Transpose 

We obtain the transpose of a matrix by switching the rows for 

the columns and the columns for the rows, that is, 

[/• if A is N x M matrix comprised of elements a 

■n and B ir M x N matrix comprised of elements b. 
t^ T then B is the transpose of A, or B = A    if and only if 

b.    = a,.  for 1 < i < M 

1 < j < N 
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A FORTRAN SUBROUTINE to transpose A and store the result in B 

might look like: 

SUBROUTINE TRANS(A, B, M, N) 

DIMENSION A(N,M), B(MJN) 

DO 10 I = 1,M 

DO 10 J = 1,N 

10 B(I,J) = A(J,I) 

RETURN 

END 

Note that the FORTRAN program moved only one element of A at a 

time to the appropriate position within the B matrix. Using ASK we will 

be able to move a whole row at a time. 

There is a problem in data storage we must consider before we 

even attempt to write down the algorithm to transpose a matrix. Within 

the transpose program we will be accessing the rows of matrix A and 

storing them to the appropriate column of B. Now, if we store a matrix 

in PE Memory as we did in the Matrix Multiply problem then rows can be 

accessed very easily and efficiently with one ASK instruction. For example, 

since the rows of the matrix are stored across Rows of PE Memory, the 

instruction LDA =X+1 would access the second row of matrix X (see Figure 

III-3)• Getting hold of columns in a simultaneous manner is more difficult 

when we use this "straight" (no change to the topology of the matrix—rows 

are stored as rows and each element is in its proper location) storage 

scheme as shown in Figure III-3. Since column J of the matrix is completely 
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contained within PEM   there is no single ASK instruction which can access 

a column simultaneously. 

Since we will be wanting to access (read or write) columns as 

well as rows with equal facility for our Matrix Transpose problem, we 

must first develop a storage scheme which will allow us to do this. What 

we want is a storage allocation such that each element of a column is also 

in a different PEM. One such allocation is called "skewed storage" and 

is shown for a 1* x 4 Matrix in Figure 111-1+. For simplicity we assume a 

k PE ILLIAC until we actually code the problem for a 61t x 64 matrix. 

Note that the skewed storage scheme as shown in Figure III-U 

accomplishes our goal: each element of each row is in a different PEM and 

each element of each column is in a different PEM. Now let us look at how 

this type of storage can be used to access columns as efficiently as rows: 

I 
E 

• 
• 
• 

ROW A an 
ROW A + I a24 

ROW A +2 033 

ROW A+3 a« 
• 
• 
• 

PEMQ 

"12 

•21 

'34 

"43 

• 
• 
• 

013 
aZ2 
a
3i 

a44 
• 
• 
• 

PEMi PEM2 

• 
• 
• 

014 

o« 
a32 

a41 

■ 
• 
• 

PEMS 

Ist ELEMENT SKEWED 0 TO RIGHT 

Ist ELEMENT SKEWED I TO RIGHT 

1st ELEMENT SKEWED 2 TO RIGHT 

1st ELEMENT SKEWED 3 TO RIGHT 

Figure III-1+.    Example of Skewed Storage.    The k x k Matrix A 
is stored skewed in a 4 PE ILLIAC. 
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Suppose RGX has been loaded with the values 0, 1, 2 and 3 as 

shown in Figure III-5(a). If our k x k  matrix A is stored skewed, what 

will appear in RGA if we execute the ASK instruction? 

LDA   *A; 

Since the asterisk (*) denotes indexing by RGX, we can view the 

value in RGX as an offset to Row A so that RGA will appear as shown in 

Figure III-5(a) after LDA  *A; has been executed. A closer look at RGA 

shows that it now contains the 1st coluirn of the matrix A. 

Now suppose that we rotate the values in RGX one place to the 

I right so that they appear as 

3, 0, 1, 2    as shown in Figure III-5(b) 7^ 

Now if we perform the same instruction 

LDA   *A; 

Figure III-5(c) shows how the 3rd column is accessed after we 

rotate RGX one more place to the right so that it contains the pattern 

2, 3, 0, 1. However the 3rd column must be rotated two places to the left 

to get it back in the proper order. 

iLtt 

the offsets are different so that the 2nd column of Matrix A will appear 

in RGA after the instruction has been executed. However, the 2nd cnlumn 

is not in the right urder; it must be rotated one place to the left before ~ 

storing it as a row in our transpose problem. 

!V 
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ti 
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E 
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ROX 

R6A 

ROW A 

PEo 

024 
033 
042 

PEMr 

R6X rrn 
R6A 042     I r 

• • • 
ROW A On 

024 
a33 

OI4Ö 
• • • 

PEl 

021 

012 

312 
^4 
043 

PEMi 

PEt no 
osx 

013 
022, 

3iS 
044 

PEMg 

022 

& SSI 
031 sir 

pti 

014 
023 

^ 

PEM, 

TD 
53 

o» 

^ 

Figure III-5(a) 

RGA contains  Column 1 of Matrix A 
(which has been stored skewed) 
after the instruction LDA    *A; has 
been executed.    Circled elements 
are accessed by the instruction. 

Figure III-5(b) 

RGA contains Column 2 of Matrix A 
after LDA *A; has been executed. 
RGA must be rotated one place to 
the left if the column is to be 
used in a transpose. 

* 

r.« 

R6X rrn in- 1 rr n i~n 
RGA 1   o» i «n i 013     1 'a   1 r nr r y 

• • • • • 
• 

• • 
ROW A on 012 CJJ13^ 014 

024 021 022 Ctzfr 
fflssy 034 031 o,r 

042 CSi) 044 041 
• 
• 
• 

• • 
• 

• • 
• 

• • 
• 

Figure III-5(c) 

RGA contains  Column 3 of Matrix A 
after LM    *A; has been executed. 
RGA must be rotated two places to 
the left if the column is to be 
used in a transpose. 

t: 

RGX 

RGA 

ROW A 

024 

On 
3iS 

033 
042 

034 

0l2 
021, 

3^ 
043 

044 

013 
'22 
iiiT 
52 

031 

Figure 111-5(4) 

RGA contains Column k of Matrix A 
after LDA    *A; has been executed. 
RGA must be rotated three places 
to the left if the column is to be 
used in a transpose. 

^ 

•.-. 
^ 

i 

Figure III-5. Skewed Storage is  Used to Simultaneously 
Ac'   3S  Columns  as well as Rows 
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Finally the kth  column is accessed as shown in Figure III-5(d) 

when the pattern in RGX is rotated once more to the right (so that it 

contains 1, 2, 3, 0) and the LDA  *A; is executed. As might be expected, 

the i+th column must be rotated three places to the left to restore the 

proper order. 

2 

m 

-.1 

Now that we have a method of storing our matrix so that both 

columns and rows  can be accessed simultaneously let us  consider the flow- 

chart necessary to transpose our k x k matrix A, storing the transpose in B; 

START 
Load RGX with the 

pattern:    0,1,2,3 I •- 0 

ft 
MB 
tmal 

ff] 

Execute 

LDA    *A; 

Rotate the accessed 
Column I places to the 
left  (to get column 
in right order) 

Store column to 
first Row  (offset 
by I)  of Matrix B n 

Rotate RGX 
pattern 1 place 
to the right 

a 

Let us now write the ASK code to transpose the 6k  x Gh  matrix A 

and store the result in the matrix B. The flow chart indicates that there 

are five basic instructions we want to loop through: 
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1. LM        *A; 

2. RTL $A,-P; 

3. STR        B+P; 

■ I,    m.       $X,1; 

5.     LDX        $R; 

where we wish V to take on the values 0, 1, 2  ... 63 as we traverse the 

K; loop.    Assuming that we have already loaded RGX with the proper pattern, 
B 

the first instruction accesses a column of Matrix A. The second instruc- 

£|        tion routes the column back to the proper order. The third instruction 

stores the column to the appropriate Row of B. Instructions It and 5 rotate 

r 1 •'        RGX one place to the right by Routing, then reload RGX with the routed 

pattern. (Remember the result of a ROUTE appears in RGR only.) 

The following ASK instruction will transpose Matrix A and store 

the result in Matrix B assuming A has been stored skewed as shown in 

Figure III-6. 

r. i 

3 

h    BEGIN: 

5 

6 

7 
8 

9 

10 

LDX XROW; 

LIT(O) l563,0i 

MT(1) =6it; 

LDA *A; 

RTL $A,0(1); 

STR B(0); 

ALIT(l) =77777777:8; 

RTL $X,1; 

LDX $R; 

TXLTM(O) .BEGIN; 
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XROW —»■ 0 1 63 

ROW A—► «1.1 a1.2 A MATRIX 
al,64 

02,64 az.i 02,63 
• • • 

• 
• 
• 

• • 
• 

06*,Z a64,3 a64.I 

•    «   • 

ROW B —►• al.l a1.2 B MATRIX 
a64,l 

01.2 
a2,2 a64I2 

• • 
• 

• • 
• 

• • 
• 

al,64 a2,64 a64,64 

PEMf PEM. PEM, 63 

Figure III-6.    Storage Scheme to Transpose the 6h x 6k 
Matrix A (A is  stored skewed)   and 
Store Result to Matrix B 

re 

,rjtr 

i 

Instruction 1 loads  up RGX with the  initial pattern of values 

(0,  1,  2   ...  63)  to be used to offset  the  reference to Row A at instruc- 

tion k.    Instruction 2 sets up the loop control variables  in $C0 so that 

the 6^ columns  of A are stored to the 6h rows of B.     Instruction 3 

initializes the Routing Distance to be uaed in Instruction 5.    Since we 
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wish to perform left routes and we should never do this by using negative 

numbers in an ACAR to be used as an index (see warning on page 111-20) 

we use the fact that Routes are end-around so that a left Route of I can 

f* 'be accomplished by a right Route of 64 - I. Specifically: 
L" 

I? 

I 
i 

r 

3 

'i 

A Left Route of 0 is equivalent to a Right Route of 6k 

A Left Route of 1 is equivalent to a Right Route of 63 

K A Left Route of 63 is equivalent to a Right Route of 1 

Since we wish to start with a left Route of 0 (the first column is already 

in proper order) and then increase the Routing Distance by one each time 

through the loop, we start with a Right Route of 6k  and decrease that 

value by one (at Instruction 7) each time we traverse the loop. 

Instruction k  accesses a column of Matrix A. 

Instruction 5 puts the column in proper order. 

Instruction 6 stores the column to the appropriate Row of B. 

t'- Instruction 7 decreases the Routing Distance stored in $C1 by 

one. (An ALIT(l) =-1 would not work since the -1 would be generated in 

the sign-magnitude representation. What we need for our problem is a 

minus one in two's complement notation so that as it is added to the 

low order 2k  bits of $C1, the integer 6k will become 63 then 62, etc. as 

the loop is traversed.) 
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Instruction 8 rotates RGX one place to the right. 

Instruction 9 places that new pattern back in RGX. 

Instruction 10 loops the program hack to Instruction k where the 

next column is accessed. 

After control has passed through Instruction 10, the 6k x 6k 

Matrix A has its transpose stored in the Matrix B. 

Now that we know how to use skewed storage to access columns as 

well as rows of a matrix, a new matrix multiplication algorithm could be 

designed: If one of the two matrices to be multiplied were stored skewed, 

then a column of that matrix could be accessed and multiplied by a row of 

the other matrix. The result would be in EGA of the PE array and if 

these values were summed (using a Logsum algorithm) then one element in 

the product matrix has been formed. This approach to matrix multiplica- 

tion is not as efficient as the one we developed in section I 3; however, 

the reader should attempt by himself to write the ASK instructions that 

will perform this algorithm. 

5. Temperature Distribution on a Slab 

In Chapter II we discussed a method of solution to the boundary 

value problem of temperature distribution on a slab (see Section E of 

Chapter II). On page II-1|6 the basic equation for the relaxation method 

is given: J^ 
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which tells us that the temperature at any point should he equal to the 

average of the temperatures at the k  closest neighbors. 

We shall develop the ASK code necessary to provide a solution 

for two cases: The first case will relax an 8 x 8 array of mesh points 

with initial conditions as shown in Figure 11-21 on page II-U8, using 

only one Row of PE Memory. For the second case, we will solve the same 

8x8 array with the same initial conditions, but we shall use 8 Rows of 

fr PE Memory.  (See Figure 1II-7.) Figure III-8 shows the exact solution 

for either case. Case 1 represents the most efficient solution to the 

problem since it utilizes all 6k  PEs but Case 2 is presented to show how 

the data allocation influences the program necessary to process the data; 

i.e., the program that processes the data as allocated in Case 1 cannot 

be used to process the data as allocated in Case 2. Case 2 is also 

representative of the type of solution necessary for a problem with more 

than 6^ mesh points. 

a. Case 1. One Temperature per PEM 

Before presenting the ASK program, we shall have to learn a few 

more ASK instructions. We will need a method of disabling the "border" 

PEs during the calculation since they represent the boundary values for 

the temperatures and must remain at a constant value throughout the 
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Figure III-8.    Exact Solution for both Case 1 and Case 2 
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relaxation process.    For Case 1 we are allocating the two-dimensional array m 
^ of temperatures  across  one PE Row, thus the following PE numbers must be m 

disabled: 

■ a 
0, 1,  2,  3, k,      5,  6,  7 

8. 15 

16, 23 

2^, '            31 

32, 39 

to, kj' 

M. 55 

56, 57, 58, 59, 60, 6i, 62,  63 

The LDEE1 instruction will load the E and El bits with the bit pattern 

which was previously stored in a specified ACAE by a LIT instruction: 

LDEE1    ,ACAR NmbeA.; 

where ACAR Mmbd*.  can be $C0, $CI, $C2, or $C3 and specifies which ACAR 

contains the bit pattern that is used to set the E and El bits of RGD for 

every PE in the array. 

An ACAR contains 6k  bits and there are 6k  PEs in the array.  If 

bit i of the specified ACAR is one then the E and El bits of RGD of PE are 
i 

set to one, enabling that PE.  If bit i is zero then the E and El bits of 

PE. are set to zero, disabling that PE. L.DEE1 is a FIN3T/PE instruction 
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% 

ca 

I 

and rises the Gammon Data Bus to transmit information from the specified 

ACAR to each RGA of the array as described in Chapter II section B U b. 

f' Example; 

LIT(0)  =007E7E7E7E7E7E00:l6; 

LDEE1   $C0; 

The LIT instruction will load the hexadecimal (base l6) constant shown 

11- above into $C0. That hexadecimal constant can be written in binaiy and it 

r.. becomes clear that the pattern of ones and zeros is the one we need to 

■ disable the border PEs for Case 1: 

i 
B ^This pattern repeats six times 

ffß OOOOOOOO^11110^111111C)|DllllllüJD1111110[31111110|31111lic|oOOOOOOO 

[•■ Bit 0 Bit 31 Bit 63 
(:' for PE0 for PE for PE63 

then execution of 

LDEE1 $C0; 

uses the above bit pattern within $C0 to set the E and El bits. 

If the programmer wished to enable all PEs he could use 

LIT(O)       =1777777777777777777777:8; 

LDEE1 $C0; 

SETE E.OR.-E; 

SETE1 E.OR.-E; 
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We shall also want to apply the epsilon convergence criterion as 

described on page 11-51. 

SBRN  OpcAand; 
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2 < J < 7 

This  means that we will stop the iteration when succeeding values of 

calculated temperatures differ by only a prescribed e. This condition must 

be true for all temperature values simultaneously. We choose € to be 

1 degree as we did in Chapter II. Also, to insure that we finish the 

program within a finite time, we shall include a loop control that will V 

end the calculation after 50 iterations regardless of whether the epsilon 

convergence criterion is met. In order to apply the epsilon convergence 

criterion we learn the following instructions: 

hi 

SBRN will subtract from the contents of RGA the value specified by Operand 

and place the result, rounded and normalized back in RGA. OpeAand  is 

usually a Literal, a PE register, an ACAR, or a PE Memory Address. SBRN ~ 

is a FINST/PE instruction. 

Example: "* 

SBRN   $8; -■' 

.d 
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will subtract the contents of RGS from RGA and place the result back in 

RGA. 

In order to take the absolute value of a quantity we have the 

simple instruction: 

SAP 

which sets the sign bit of RGA to positive (+), 

Example; 

SAP 

If RGA contained a negative number before execution of this instruction, 

it will be made positive. If RGA contained a positive number, it will be 

unchanged. 

Finally we shall require an instruction that can simultaneously 

sense the contents of a specified bit of RGD for all PEs and branch if they 

are all zero. We will need then an instruction of this type to implement 

the € convergence criterion. This instruction is ZERT. First, however 

we must take all 6k  of the specified bits and place them in an ACAR before 

ZERT ctin test them; we do this with the SETC instruction: 

SETC (ACAR NmbeA) Mode. Bit; 

,•>. 
M 
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where ACAR Wumfae* can be 0, 1, 2 or 3 denoting $C0,  $C1, $C2 or $C3' and 

specifies which ACAE will be set with the values ol Morfe Bit for all PEs 

in the array. 

Mode. ZLt specifies  one of the eight mode bits of RGD and can bn 

E, El,  F, Fl,  G, H,  I or J. 

i 

SETC works somewhat like LDEE1 in reverse: If the Moofe Bit  of 

PEi is one, then bit i of the specified ACAE is set to one; if the Mode Bit 

of PEi is zero, then bit i of the specified ACAR is set to zero. SETC is 

an ADVAST instruction and uses the Mode Bit Line discussed in Chapter II 

section B 4 d. 

Example; 

SETC(3)   I; 

will set the 6^ bits of $C3 to the corresponding 6k  values of the I bit in 

RGD of all Sk  PEs in the array. 

ZERT can now test the contents of the ACAR set by SETC and branch 

if all bits are zero: 

ZERT (ACAR Wumbet)   ,Locatton; 

will cause a jump to Locution  if every bit of the ACAR specified by ACAR 

HmbzK  is zero, location  must be +127 of the ZERT instruction. ZERT is an 

ADVAST instruction. 
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Example; 

i 

n 

i 
I 

1 IAG     $C0} 

2 SETC(3)  I; 

3 ZERr(3)  ,OUT; 

The first instruction, IAG, will set the I bit to one for every PE whose 

EGA is greater than the contents of $C0 and set the I bit to zero other- 

wise. Instruction 2 will then transmit the I bits of the PE array to $C3. 

Instruction 3 will jump to location OUT if all of the I bits were zero, 

and will execute the next instruction otherwise. Thus, if EGA < $C0 for 

eveiy PE in the array. Instruction 3 will Jump to OUT. 

The ZERT instruction sometimes necessitates the writing of a 

HALT instruction if the Jump is to be made to the last statement of the 

program. HALT is of the form: 

HALT 

and stops the program from executing. HALT is an ADVAST instruction. 

Example i 

ZERT(3)   ,OUT; 

TXLTM(l)  .LOOP; 

OUT: HALT; 
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If the contents of $C3 are all zero then a jump is made to location OUT 

where the program ends; otherwise a transfer is made to LOOP based on the 

contents of $C1. 

We shall introduce one more notation before writing the ASK code 

for Case 1: The percentage sign {%)  in an ASK statement signifies that a 

comment to the reader is about to follow. The ASK assembler will not 

interpret any character on a card following a %  sign. We assume the 

initial value of the temperatures are stored in location TEMP as shown in 

the upper portion of Figure III-7. 

LOOP; 

SETE E.OR.-E; 

SETE1        E.OR.-E; % Enables  all PEs 

rE7E7EOO:l6; 

% Do this before disabling 

% Set up max of 50 relaxations 

% Make sure that PEs to be disabled have 
a number less than EPS in their RGA 
so ZERT will work right later 

% Disable border PEs 

% Get value from left neighbor 

% Place in RGA 

% Get value from right neighbor 

% Add to RGA 

$3,8; % Get value from top neighbor 

$R; % Add to RGA 

LIT(O) =007E7E 

LDS TEMP; 

LIT(l) 1,50,1; 

LDA =0; 

LDEE1 $00; 

RTL $s,i; 

LDA $R; 

RTL $S,-1; 

ADRN $R; 

RTL 

ADRN 
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RTL $S,-8; 

ADEN $R; 

LIT(3) =0.25; 

MLRN $C3; 

LDR $A; 

SBRN $S; 

SAP ; 

LIT(O) =1.0; 

IAG $C0; 

SETC(3) i; 

ZERT(3) .OUT; 

STR TEMP; 

LDS $P4 

TXLTM(l) ,LOOP; 

OUT: HALT; 

% Get value from 'bottom neighbor 

% Add to RGA 

% Place constant of 1/k  in $C3 

%  Divide by k;  relaxation done. 
(New value is in RGA) 

%  Save new value in RGR 

%  Subtract old value in RGS from 
new value in RGA 

% Take absolute value of New - Old 

%  Set up EPS value of one degree 

%  Set I to one if ABS (New - Old) is 
greater than one degree 

%  Transmit I bit pattern to $C3 

% Jump out if no I bits are one 

%  Otherwise store new value back 
in TEMP 

% Also place new value in RGS 

%  and Jump hack to LOOP for start of 
next relaxation. 

£•> 

Although the comments attempt to explain the operation of our 

program there are a few points that should be discussed: 

The reader may have noticed that we multiplied by 0.25 rather 

than dividing by k. This is a good programming trick to remember since 

ILLIAC IV can multiply two 6^ bit floating point values about 6 times 
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as fast as it can divide them.    Another apparent inefficiency may have 

caught the reader's attention in this same area of the program: 

Why is the constant 0.25 being created in this particular part 

of the program—it is in the middle of a loop of calculations; shouldn't 

LIT(3) =0.25; 

be performed outside this loop so that it is done once and not up to 

50 times? 

111-82 

:•: 

c 
i 

Although this is a valid argument for a conventional computer 

it is not for ILLIAC IV, because CU instructions in ADVAST can be executed 

concurrently with PE instructions and since LIT is a CU instruction 

imbedded in a loop of PE instructions it is actually more efficient to 

leave it where it is because it requires literally no time for execution 

within a PE instruction loop (its execution is completely overlapped with 3 

PE instructions); it would require a small amount of time to execute if n 

it were at the beginning of the program in a place where there was no 

opportunity for overlap of instruction execution. ?"' 
ß 

i 

Another programming hint to remember is the following- W 

y 
Occasionally a programmer will write a set of instructions that 

modify fields of other instructions (usually the address field). That 

type of code must be used with extreme care on ILLIAC IV because of the ß 

128 word Instruction Word Stack (IWS) which acts as a buffer to store ^v 

Id 

•.si 
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■ impending instructions to be executed. The instruction to be modified 

will have its image in memory modified but will not be affected itself by 

|£ the instruction if it is already in the IWS. The next time through that 

a set of instructions, however, it will be modified causing possible strange 

behavior of the program. The programmer can not modify an instruction 

C" within 128 instructions of the modifier instruction and expect it to work 

when control reaches the modified instruction the first time. 

I 
Two final comments on the program: 

The IDA  =0; (the sixth instruction) is necessary since the 

K IAG  $C0; instruction later acts on all of the I bits in the array, since 

RGD is not protected. We can insure that the I bits in the disabled PEs 

(the ones which contain the edge temperatures) get set to zero by placing 

any value less than 1.0 (such as 0) in their EGA before the calculation 

begins. 

It was not necessary to store the newly computed values back in 

TEMP (using the STR  TEMP; instruction) until OUT is reached, however, 

that choice was made so that TEMP could be displayed as the calculation 

progressed.  (See Case 1 of Table III-U.) 

b. Case 2. Eight Temperatures per PEM 

For this approach to the problem, the data is allocated starting 

at Row TEMP as shown in the X^ver portion of Figure III-7. The main 

differences in this approach are: 

3. 
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1) The PE disabling pattern must be changed to reflect the 

different storage allocation of the temperature values. 

2) The left and right neighboring values can be received using 

the ROUTE instruction but the above and below values must be handled 

differently since they will be in the same PE Memory. If we are referring 

to Row TEMP then TEMP - 1 and TEMP + 1 as PE Memoiy Addresses will 

reference the above and below values respectively. 

3) Since we have allocated the data as 8 PE rows we shall have 

to perform 6 iterations (the top and bottom rows contain boundary tempera- 

tures and do not change) to complete one relaxation instead of Just 1 

iteration for 1 relaxation as  we did with Case 1. This means that we 

shall need 2 loops; one to step us down from row 2 to row 7 (TEMP + 1 

to TEMP + 6) for a given relaxation, and one to step us to the next 

relaxation. 

k)    We shall leave out the epsilon convergence test in the 

interest of simplicity (it can be done in exactly the same way as we did 

it for Case l). 

Case 2; 

An explanation of the finer points will follow the ASK code for 

SETE E.OR.-E; 

SETE1 E.OR.-E; 

LIT(O)   =7EOOOOOOOOOOOOOG:l6; %  Set up enable bit pattern 
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C. »% 

fi 

LIT(2)   1,50,1; 

LAAP: LIT(l)   1,6,1; 

LDEEL 

STA 

$C0; 

LOOP: LDR TEMP(l); % 

RTL $R,i; % 

LDA $R; % 

RTL $R,-2; % 

ADRN $R; % 

ADRN TEMP-l(l); % 

ADRN TEMP+l(l); % 

LIT(3) -0.25; % 

MLRN $C3; % 

TEMP(l); 

TXLTM(l)  .LOOP; 

TXLTM(2)  ,LAAP; 

%  Set up max of 50 relaxations 

% Set up iteration counter I to step 
from row 1=2 (TEMP + l) to 
row 1=7 (TEMP + 6) 

%  Disable border PEs and rest of PEs 
not in calculation 

Load RGR from Row I of TEMP 

Get value from left neighbor 

Place in RGA 

Get value from right neighbor 

Add to RGA 

Add in value of top neighbor 
(Row I - 1) 

Add in value of bottom neighbor 
(Row I + 1) 

Place constant of iß  in $03 

Divide by k.    Iteration on Row I 
complete 

Store Row values in RGA back to 
Row I of TEMP 

%  Go back and pick up next row 

%  One relaxation (all rows done) is 
complete. Perform next 
relaxation. 

& 

Comments; 

l) The 3rd instruction 

LIT(O)  =7EOOO0OOOOO0OO0O:l6; 
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sets the bit pattern which will be used to disable PE0> enable PEs 1 through 

6 and disable PEr The rest of the PEs do not enter into the calculation 

but are disabled in case of an arithmetic fault (underflow or overflow) 

occurring in a PE that is not used in the calculation but might contain 

strange data from a previous user. 

2) The 7th instruction 

LOOP:  LDR   TEMP(l); 

will load the Row specified by $C1 into the RGR of all the PEs   (regardless 

of whether or not they are enabled at this point in the execution).    The 

tarting value field of $C1 acts  as an index register to step down through 

the rows of IEMP-the first time through the LOOP, $C1 has  a value of 1 

and Row TEMP + 1 (the second row)  is referenced by this  instruction. 

Since we use RGR as  a temporary storage register and as the 

Routing register,  it is necessaiy to route values  a little differently than 

we  did in Case 1.    The first route of one to the  right allows  each PE to 

receive a value from its  left neighbor; but when a PE needs  the value from 

its  right neighbor it has  already   been shifted one to the right by the 

first ROUTE so that a left shift of two is necessaiT.    This  type of routing 

could also have been used to implement the algorithm for Case 1. 

3)    Note that PE0 and PE7 are disabled using the LDEE1      $C0; 

instruction but the 1st row and 8th row are effective^  "disabled"   (they 
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do not change during the calculation) by stepping the row counter from 

Row 2 to Row 7 instead of from Row 1 to Row 8. 

k)    The 12th and 13th instructions 

ADRM   TEMP-l(l); 

ADRN   TEMP+l(l); 

also use $C1 to pick the appropriate Row.    Note that the Operands are 

PE Memory Addresses and specify a Row.    The ACAR indexing appears after 

the Operand. 

Table III-U shows intermediate values of the temperatures at 

one, ten and fifty relaxations; the exact solution is shown in Figure III-8 

and at the bottom of Table Ill-it.    As expected Case 2 shows a closer 

convergence to the exact solution for the same number of relaxations since 

it iterates one Row at a time and each new Row gets the benefit of values 

coraputed in the Row above it, while Case 1 relaxes the whole array in one 

iteration.    Even closer would be the sequential solution for a conven- 

tional computer as shown in Chapter II.    However, Case 1 performs 6 times 

fewer calculations  and is therefore about 6 times as fast as Case 2 and 

is  about 36 times as  fast a sequential method. 
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J. Conclusion 

The instructions presented in this chapter 

LDA 

LDB 

ADRN 

RTL 

LIT 

TXLTM 

CSHL 

CSHR 

LESST 

SETE 

SETE1 

SETF 

SETF1 

SETG 

SETH 

SETI 

SETJ 

IAL 

IAG 

SLIT 

ALIT 

MLRN 

LOAD 

BIN 

LDL 

LDEE1 

SBRN 

SAP 

SETC 

ZERT 

HALT 

are not the comprehensive set of ILLIAC IV instructions; neither are they 

completely described in many cases. They were presented only as the 

problems demanded them and not in any functional order. I hope, however, 

that the reader has acquired some of the flavor of ILLIAC IV assembly 

language and is now confident enough to try to master the complete language, 

M 
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HAEEWARE GLOSSARY 

ACAR — See Accumulator Register 

I 
Accumulator Register (ACAR) — There are k ACARs in the ADVAST section of 

M the Control Unit. Each is 6k bits long,. They «  called ACARO, 

ACAR1, ACAR2, and ACARS, and each acts like an accumulator on a 

*-■ conventional computer. 

& ADB ~ See ADVAST Data Buffer 

[v Advanced Station (ADVAST) — ADVAST is one of the five sections of the 

Control Unit and processes all instructions as an ILLIAC IV 

program executes. If the instruction can be execi Uäd oorapletely 

within the resources of the Control Unit it never leaves ADVAST; 

if however, the instruction involves driving the 6*'-PE Array 

it passes on to FINST. ADVAST consists of k ACARs, the ADB, a 

simple ALU and the ADVAST Instruction Register as well as thirteen 

other registers not dealt with in this book. 

ADVAST — See Advanced Station 

ADVAST Data Buffer (ADB) ~ The ADB consists of 6k  registers within the 

ADVAST Section of the Control Unit. Each word in the ADB is 

6k bits long and access time is about 60 ns. Each word in the 

ADB is labelled: DO, Dl ... D63. 
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ADVAST Instruction Register (AIR) — AIR is the 32-bit instruction execution 

register of the ADVAST Section of the Control Unit. AIR causes 

instructions which can be completely executed within the resources 

of the Control Unit (ADVAST instructions) to happen. If the 

instruction involves driving the 61t PE Array, it is sent on to 

FINST. 

AIR ~ See ADVAST Instruction Register 

ALU — See Arithmetic and Logic Unit 

Arithmetic and Logic Unit (ALU) — That set of circuitry within an electronic 

computer that performs arithmetic (+, -, -f, x) and logical (AND, 

NOT, OR) operations. 

ARPA Network —The ARPA Network £| a group of computer installations 

located throughout the country but connected via high-speed 

(50,000 bits/sec) telephone lines. Member installations will share 

hardware and software resources of other members on the "Net". 

Array Processor — The Array Processor comprises 6U PEs and 64 PEMs. See 

Figure II-l. 

BIOM — See Buffer Input/Output Memory 

Buffer Input/Output Memory (BIOM) ~ The BIOM is a rate smoothing buffer 

placed between the B6500 Computer and the Disk File System. It 

consists of four PE Memories and provides 8192 words of 64-bit 

Storage. See Figure II-l. 
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vyv'      BJ500 — See B65OO Computer 

B6500 Computer (B65OO) — The B65OO is the control computer for the 

ILLIAC IV System. It holds part of the Operating System as well 

as the utilities, compilers, and assemblers for ILLIAC IV. See 

Figure II-1. 

CDB — See Common Data Bus 

CDC — See Control Descriptor Controller 

Common Data Bus (CDB) — The CDB is one of the four paths by vhich data 

flows through the ILLIAC IV array. It is one word {6k bits) wide 

and runs in one direction from the Control Unit to the 6h PEs. 

It may be used to "broadcast" operands to the 6k PEs. 

Control Descriptor Controller (CDC) — The CDC is part of the I/O Subsystem 

and controls the transmission of data and programs between the 

Disk File System and the ILLIAC IV Array. See Figure II-l. 

Control Unit (CU) -- That part of the ILLIAC IV Array responsible primarily 

for driving the 6k PEs in their instruction execution but may be 

viewed as a small unsophisticated conrputer in its own right 

capable of executing ADVAST instructions. The CU consists of 

five functional sections: ADVAST, FINST, MSU, TMU and ILA. 

Control Unit Buffer — The Control Unit Buffer is part of the ILA section 

of the Control Unit. It is an 8 word {6k bits per word) buffer 

which feeds the Instruction Word Stack (IWS). 

Glossary-3 
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Control Unit Bus  (CU Bus) — The CU Bus  is one of the k paths by which data 

flows through the ILLIAC IV Array.    It is  8 words  (512 hits) wide 

and runs in one direction from the 6k PEMs to the CU.    The CU Bus 

can fetch instructions (not under programmer control) or data 

(under programmer control). 

CU — See Control Unit 

CU Bus — See Control Unit Bus 

Data Communications Processor — The Data Communications Processor super- 

vises a set of remote terminals and is supervised by the B6500 

Computer.    The remote terminal capability will allow users to run 

ILLIAC IV programs remotely. 

DPS — See Disk File System 

Disk — See Disk File System 

Disk File System (DFS)  ~ The DFS, as part of the ILLIAC IV I/O System, has 

the main responsibility in transmitting and receiving data and 
o 

programs to and from the ILLIAC IV Array.    Its  capacity is 10    bits 

*■ 9 ^ and its effective transmission rate is 10 bits/sec over 2 channels 
b 
••• See Figure II-l. 

I 
Y FDQ — See Final Data Queue 

'j 

'j Final Data Queue (FDQ) — FDQ is part of the Final Queue (FINQ) of the 

I Final Station (FINST) of the Control Unit. It is 61+ bits long 
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^v» and holds the address or operand part of instructions which 

drive the 6^ PEs. 

Final Instruction Queue (FIQ) — FIQ is part of the Final Queue (FINQ) of 

the Final Station (FINST) of the Control Unit. It is 16 bits 

long and holds the operation code of instructions which drive 

the 6h PEs. 

Final Queue (FINQ) — FINQ is an 8 word, 80 bits per word, buffer in the 

FINST section of the Control Unit. FINQ consists of the Final 

Instruction Queue (FIQ) which is l6 bits long and the Final Data 

Queue (FDQ) which is 6k bits long. It stores instructions on a 

first-in, first-out basis which are to drive the 6h PE Array. 

Final Station (FINST) — FINST is one of the five sections of the Control 

Unit. If an instruction involves the driving of the 6k  PE array, 

FINST generates the microsequences necessary for the instruction 

to happen. FINST consists of the Final Instruction Queue (FIQ) 

and the Final Data Queue (FDQ) collectively called the Final 

Queue (FINQ) and a PE Instruction Microsequence Generator. 

FINQ — See Final Queue 

FINST — See Final Station 

FIQ — See Final Instruction Queue 

IAM — See ILA Associative Memory 

L 

G 

ICR — See Instruction Counter Register                                      | 

• 
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ILA — See Instruction Look Ahead 

ILA Associative Memory (lAM) — The IAM is a hard-wired device within the 

ILA section of the Control Unit which senses if the next instruc- 

tion to be executed (pointed at by ICR) resides in the Instruction 

Word Stack (IWS). 

ILLIAC TV Array — The ILLIAC IV Array comprises the Array Processor and 

the Control Unit. See Figure II-l. 

ILLIAC IV Disk — See Disk File System 

ILLIAC IV I/O System ~ The ILLIAC IV I/O System comprises the I/O 

Subsystem, the Disk File System (DFS) and the B6500 Computer. 

See Figure II-l. 

ILLIAC IV System — The ILLIAC IV System comprises the ILLIAC IV Array 

and the ILLIAC IV I/O System. See Figure II-l. 

Input/Output Switch (lOS) — The I0S is a switch which insures that only 

one device (the DFS or the possible Real Time Device) is 

transmitting to or from the ILLIAC IV Array. It is also a buffer 

between the DFS and the ILLIAC IV Array. See Figure II-l. 

Instruction Control Path — The 266 line Instruction Control Path comes 

from the FINST Section of the Control Unit and drives the Sk PEs 

in the execution of their instructj ons. 

^ 
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j 
"föj       Instruction Counter Register (ICR) — ICR is a 25 bit register in the 

i ILA section of the Control Unit which holds the address of the 

next instruction to be executed. 

I 
Instruction Look-Ahead (ILA) — The ILA is one of the five sections of the 

Control Unit. It is responsible for maintaining a steady flow of 

instructions to the ADVAST Instruction Register (AIR) in ADVAST. 

Instruction Word Stack (IWS) — The IWS is a buffer which is fed by the 

>; Control Unit Buffer in the ILA Section of the Control Unit. The 

IWS holds 128 ILLIAC IV instructions. 

IDS — See Input/Output Switch 

I/O Subsystem — The I/O Subsystem comprises the Control Descriptor 

Controller (CDC), the Buffer Input/Output Memory (BIOM), and the 

Input/Output Switch (lOS). See Figure II-l. 

IWS — See Instruction Word Stack. (IWS is also called "ILA Instruction 

Word Storage".) 

Laser Memory — Laser Memory is supervised by the B6500 Computer and can be 

considered as fourth-order storage in the ILLIAC IV System. It 

IP 
holds 10  bits and access time ranges from 200 ms to five seconds. 

Transmission rate is 8 x 10 bits/second over two channels. 

Memory Logic Unit (MLU) — Each PE Memory has an MLU that resolves conflict- 

ing accesses to that memory. There are 6k  MLUs and they are 

driven from the MSU Section of the Control Unit. 

P 
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Memory Service Unit (MSU) — The MSU is one of the five sections of the ~'*^ 

Control Unit. The MSU resolves PE Memoiy access conflicts and £ 

sends appropriate signals to the 6k  MLUs. S 
h 

MLU — See Memory Logic Unit _ 
R 

Mode Bit Line — The Mode Bit Line is one of the four paths by which data 

flows through the ILLIAC IV Array. It is one bit wide and runs £ 

in one direction from the ROD of each PE to the ACARs in the (? 

ß 
Control Unit. 

[I 
MSU — See Memory Service Unit ■ 

PE — See Processing Element 

PE Instruction Microsequence Generator — That part of FINST responsible 

for generating the microsequences for instructions which drive _, 

the 6h PE array. t» 

Ti 
PEM — See Processing Element Memory [ö 

PE Memory — See Processing Element Memory [n 

Processing Element (PE) — There are 6h PEs in the Array Processor of the 

ILLIAC IV Array. Each PE is a sophisticated Arithmetic and 

Logic Unit capable of performing a wide range of arithmetic and ^j 

logical operations. A PE has six programmable registers but is r.. 

devoid of control logic (except for certain data-dependent u- 

conditions) being driven by the Control Unit. Ki 

.-. r" 
- ••' 

^3 
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Processing Element Memory (PEM) — There are 6k PEMs in the Array Processor 

of the ILLIAC IV Array.    Each PEM consists of 20U8 words at 

61+ bits per word.    Average access time is approximately 350 ns. 

Processing Unit (PU) — A Processing Unit consists of a Processing Element 

(PE) plus a Memory Logic Unit (MLU) plus a Processing Element 

Memory (PEM) i.e. PU = PE + MLU + PEM.    There are 6k PUs in the 

Array Processor of the ILLIAC IV Array. 

Processing Unit Cabinet (PUC) ~ Each PUC holds 8 PUs.    They are called 

PUCQ, PUOJ^  ... PUCp 

PU — See Processing Unit 

PUC — See Processing Unit Cabinet 

RGA — RGA is the Accumulator Register of a PE and acts like an accumulator 

on a conventional computer.    RGA is 6k bits. 

RGB — RGB is the B register of a PE and can be used for temporary storage, 

however it usually holds the second operand in a binary operation 

so it is not a safe place to storr data.    RGB is 6k bits. 

RGD — RGD is the D register or Mode Register of a PE and reflects the 

active or non-active status of the PE in one or two of its 8 bits. 

The bits are called E, El, F, Fl, G, H, I and J.    Certain Mode 

Bits can be set based on arithmetic comparisons.    Other bits can 

reflect fault and overflew conditions. 
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RGR — RGR is the R Register or Routing Register of a PE and can be used for 

temporary storage; however RGR is also a port to exchange informa- 

tion between PEs, so it is not a safe place to store information. 

The RGR of PE. is connected by routing lines directly to the RGR 

of PE. . , PE.^n , PE.-, and PE. ß. RGR is 6k bits. 
i-1'  i+l   i+o      i-o 

RGS — RGS is the S Register of a PE and its intended use is for temporary 

storage. RGS is 64 bits. 

RGX — RGX is the X Register or Index Register of a PE and operates like 

an index register on a conventional machine, modifying the 

address field of an instruction. RGX is 16 bits. 

Routing Network — The Routing Network is one of the four paths by which 

data flows through the ILLIAC IV Array, and consists of the 

64 RGRs. Each RGR is connected to the RGR immediately to the left 

and right as well as to the RGR eight to the right and eight to 

the left. The connection is end-around so that the RGR of PEQ is 

connected to the RGR of PEg- and vice-versa. 

Test and Maintenance Unit (TMU) — The TMU is one of the five sections of 

the Control Unit. It is connected to the operation maintenance 

panel and via the CDC of the I/O Subsystem can cause communication 

to occur between the B6500 and the ILLIAC IV Array. 

TMU — See Test and Maintenance Unit 
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