
')'..; dvxnueaoi hm been apptvrM
■■: paj»&fl r^nrfino and mäm Hi

riLitrllmttaa t uiülial«KL

C

^-S- 01-15-8

u ILLIAC IV Document No. 225

Center for Advanced Computation
University of Illinois at Urbana-Champaign

Urbana, Illinois 6l801 u ft/
^

/

f\m/xv
J'-ftrO ^M^ B^W'

/\JL^/*^1109

m

r
AN INTRODUCTORY DESCRIPTION OF THE ILLIAC IV SYSTEM

Volume I

by-

Stewart A. Denenberg

I

Accession For

NTIS 6RA&I
DTIC TAB
Unannounced
Justification.

^
D
D

kll

1 APPROVED FOR PUBLIC RELEASE
DISTRIBUTION 13 UNLIMITED (A)

If •
pgpartment of Computer Science File No. 850

1 •rJI

This work was supported by the Advanced Research Projects Agency, eis
administered by the Rome Air Development Center, under Contract No.
USAF 30(602)-l+lUlt.

or

^V. ..•w—.k-.^.Ä Lüfi.

f.

v.-

p

u.

2>

. IC -

: is

. <".

■ •.

y

f <■>"-.

To Claire

... ..,..„..,. --.■..- Ä - * - - ■ --- t • - ■ .- --■-*- "*"v- «■-'*" ^.-. • * »t"J • M ^"•" •""- • J"'» •"'■■"■ ''• "T. ■"■ '"• ■Ti» •'AT« fr« IT» W-"» »TJ «i"« C •"_ •"'_ r^m '-■*_ »*-i^-""lA."V-"'^-'^

t

1>

Read This First

This book was written for an applications programmer who would

like a tutorial description of the ILLIAC IV System before attempting to

read the reference manual. As a tutorial, the level of detail presented

in this book is fairly general; particular information can be found in

the Burroughs Reference Manual "ILLIAC IV Systems Characteristics and

Programming Manual."

In order to use this book most effectively, the Chapters should

be read in order. The reader who wants a very quick look at the capabil-

ities of ILLIAC IV may skim just the summaries of parts A, B and C of

Chapter I and begin reading on page 1-55. He may then read pages II-l

Y? through 11-20, skipping the detailed description of the ILLIAC IV Array

(pages 11-21 to II-4l). Pages U-kl through 11-73 are optional; the

9- reader should at least look at them and decide for himself. As much of

(V. Chapter III as possible should be read—the instruction repertoire, more
'■■

than anything else, defines the capabilities of a computer. A valid answer

to the question "What is ILLIAC IV?" would be to hand the questioner a

description of each instruction in the repertoire.

For a more complete understanding, however, the reader should

come back and read the sections he skipped on the first pass. It is the

nature of ILLIAC IV, to a degree much greater than the conventional

computers, that its hardware structure is bound up very closely with its

^•:-.y.:<:x>fr^-^^

capabilities. It is therefore necessary that the reader spend the time

necessary to understand the architecture of ILLIAC IV.

The Table of Contents in the front of the book is in an

abbreviated format while each chapter will be preceded by a finer Table

of Contents. A Hardware Glossary which is essentially a glossary for

Chapter II is at the end of the book.

Chapter I presents the background concepts necessary for an

understanding of ILLIAC IV. A short section is devoted to the historical

development of digital computers and their evolution is described in

terms of the problems that had to be solved. After conventional computer

organizations are described, unconventional ones are presented as design

options to speed up the operation of a computer. Two design philosophies,

overlap and replication, represent two major methods used to increase the

computer's operational speed. Overlap is effected by the buffer and

pipeline mechanism and replication is embodied in the general multi-

processor. ILLIAC IV is shown to be a variant of a general multiprocessor

using buffering and a modified pipeline mechanism in the instruction

execution section.

Chapter II describes the architecture or the hardware structure

of ILLIAC IV., Tiie ILLIAC IV Array is discussed in broad terms followed

by some illustrative problems which point out some of the similarities and

differences between problem-solving on sequential and parallel machirfes.

The problems also serve to illustrate how the hardware components are tied

11

B

■«k-

B

(- .■

together. Following is a more detailed description of the ILLIAC IV Array,

then another illustrative problem (Laplace's equation describing steady-

state temperature distribution in two-dimensions) followed by some data

allocation considerations; the ILLIAC IV I/O System is discussed briefly,

and some conclusions and opinions end the chapter.

Chapter III presents the Assembly Language ASK in a functional

03 and pragmatic way: a problem is described and then only those ASK I
instructions necessary for the solution are described. In this way the

v,
£ five problems introduce forty ASK instructions and the flavor of the
mm

assembly language which, from a programmer's standpoint, is an indication

of the capabilities of ILLIAC IV itself. The five problems are: Summing

an array of numbers, Finding the maximum value in an array of numbers,

Matrix multiplication. Matrix transpose, and Laplace's equation described

in Chapter II.

This book will be issued in three volumes. The first three

Chapters represent Volume 1, Chapters IV through VII will comprise Volume 2,

I
"• and Chapters VIII through XI will be Volume 3. Volumes 2 and 3 will be

:••■

■

supplied as soon as they are available.

in

^

Abstract

Written specifically for an applications programmer, the book

presents a tutorial description of the ILLIAC IV System. Volume 1 contains

three chapters — Background, Hardware Structure, and The Assembly Language—

ASK, as well as a Hardware Glossary. Many illustrative problems are used to

educate the beginner in the use of the ILLIAC IV System.

i
S

iv

_,,f-Tl

;••,

'A

'A

::

m \S

P " • * O •w' «.*. «JL«.* «-t«^ «.* .•.•.-.••>•■-.'- ^— «-«-«-« - ^ -»-»-«-'-«-«-'--«-*-■--- ^- - - -•..•■-- .-- -• -r J - J -* -• -- -' -■ ->• -• -f --. -11

9

••L

TABLE OF CONTENTS

Volume 1

Chapter I Background 6k pages

Chapter II Hardware Structure fk pages

Chapter III The Assembly Language—ASK 90 pages

Hardware Glossary 10 pages

Volume 2

ß Chapter IV ALGOL for FORTRAN Programmers (to he supplied)

Chapter V A High-Level Language—GLYPNIR (to be supplied)

Chapter VI A High-Level Language—FORTRAN . , (to be supplied)

Chapter VII Word Formats (to be supplied)

Volume 3

Chapter VIII The Operating System (to be supplied)

Chapter IX Utilities (to be supplied)

Chapter X Test/Repair Equipment and Diagnostics , . . (to be supplied)

Chapter XI Physical Characteristics (to be supplied)

^Sj^^j&i^ ^

Foreword ><^

This book is based upon the many reports and documents generated

at the University of Illinois and the Burroughs Corporation during the

design and development of the ILLIAC IV computer. In addition, much of the

content of the book was influenced by the material offered in the graduate

level computer science course, CS i»91, "Architecture, Applications, and

Languages for a Parallel Computer" as well as the many one-day, two-day and

one-week seminars on ILLIAC IV. I learned a great deal from my "students".

I would like particularly to thank Professor Daniel Slotnick

and n^r friend Mr. George Westlund who provided the overall guidance for

this book and whose idea it was to create it in the first place. Much

specific help was given me by Walt Heimerdinger in the area of hardware

structure, and Jim Stevens and John McMillan in the area of ASK. Mike Sher

and Cal Corbin helped proofread and make final suggestions before this book

when to press. I am also very grateful to Joyce Fasnacht who cheerfully

typed and retyped the many versions of the text with incredible accuracy,

and who drafted the original versions of all of the figures from my

pencil scratchings.

Any errors you may find are not only my responsibility but

become yours also. If you inform me of them I will correct them in the

next edition.

Stewart A. Denenberg
Urbana, Illinois

1971

VI

£•>:;; ^>>>>:;-.v-^^

V-*

SV;

CHAPTER I — BACKGROUND

TABLE OF CONTENTS

Page

A. Summary • I"1

B. A Review of Digital Computing Machines 1-2

1. Summary I~2

2. Babbage's Difference Engine and Analytical Engine . . . 1-3
'. ■ ■

a. The Difference Engine I-3
b. The Analytical Engine 1-7

B 3. Automatic Sequence Controlled Calculator (Mark I). . • • I-H
k. Electronic Numerical Integrator and Calculator (ENIAC) . I-lU
5. Electronic Delay Storage Automatic Calculator (EDSAC). . I-l6
6. University of Manchester Computers 1-20
7. Electronic Discrete Variable Automatic Calculator (EDVAC) 1-22

C. Unconventional Digital Computer Organizations 1-25

1. Summary 1-25
2. Overlap Mechanisms 1-30

Ö a. Buffer 1-30
b. Pipeline 1-36

i. Summary 1-36
ii. Background 1-37

iii. A Pipeline Adder I-1*1*
iv. A Pipeline Instruction Execution Unit 1-^9

3. Replication—The Multiprocessor 1-51

a. Centralize Memory 1-52
b. Centralize the Arithmetic and Logic Unit (ALU) . . 1-53
c. Centralize the Control Unit (CU) 1-55

k, ILLIAC IV 1-58

References I-6U

;.■-

8

1-1. Transmission of Data in Babbage's Machine 1-9

1-2. Mercury Delay Line or Ultrasonic Store 1-17

1-3. Functional Relations within a Conventional Computer 1-26

I-k. Process Execution with and without Buffer 1-35

1-6. Two Inputs Transformed to Two Outputs via a Three-Stage
Pipeline where P is the Maximum of P , Pp, and P_ 1-38

1-7. Seven Pairs of Numbers being Added in a
Four-Stage Pipeline Adder 1-48

TABLES

Table Page

1-1. Difference Method for Evaluating Polynomial
Function X2 + X + 1 I--«

I-ii

LIST OF FIGURES V^

N
Figure Page ^

s
K1

1-5. Two Inputs Transformed to Two Outputs via a W
Three-Stage Sequential Process 1-37

■ j
IM

1-8. Functional Relations within a General Multiprocessor 1-51 ?} r-;

1-9. Multiprocessor with Common (Lumped) Memory 1-52

1-10. Functional Block Diagram of Intrinsic Multiprocessor 1-5^ yj^

1-11. Serial CPU vs. Parallel CPU 1-56
y

1-12. A Vector or Array Processor I-5T '"

1-13. Functional Block Diagram of SOLOMON 1-59

1-lk. Functional Block Diagram of ILLIAC IV I-6l
£

i2

.■•

■»

■

.M

tty^^^^^**x^^

I
y.

CHAPTER I

BACKGROUND

■ A. Summary

,., Chapter I traces out some of the background concepts necessary

&
for an understanding of ILLIAC IV. A short section is devoted to the

M historical development of digital computers, indicating how computer

systems evolved to the Von Neumann state of organization. Also discussed
f»" '
i •*

H is the tendency computers have had in creating problems themselves. The

first computers were designed to solve specific applications problems such

as computing a table of values for a certain mathematical function or

solving a differential equation which described the ballistic path of an

artillery shell. As computers became more useful, they started to con-

tribute problems of their own to be solved such as the need for easier-

to-use programming languages. The most pressing of these problems was the

need for faster and faster operating speeds. If the computer could be

made to process information at a faster rate, and costs could be held

constant, then the per-unit-tirae cost of processing information would

be effectively lowered. The remaining sections of the Chapter describe

how Von Neumann organization may be modified to increase operational

speed. Two design philosophies to achieve increased speed are discussed:

l) Overlapping the operation of two or more of the functional components

of a conventional computer and 2) Replication of one or more of the

functional components many times. Since these philosophies are not mutu-

ally exclusive, a third option exists whereby both l) and 2) are effected.

1-1

tm

Overlap can be achieved by utilizing the Buffer and Pipeline mechanisms;

however, the Pipeline is limited to the number of stages into which an V

operation can be deconmosed, and ultimately by the speed of light. The

replication philosophy s typifisd Tiy the gifleStel Multiprocessor, but the f>

cost is extremely high. Various re-designs of the Multiprocessor are

explored in order to reduce its high cost: Re-centralizing Memory,

the Arithmetic and Logic Unit, or the Control Unit. ILLIAC I? is V

represented as a Multiprocessor with the Control Unit re-centralized.

This particular option was chosen for two main reasons: l) much of the £j

cost t;f a digital computer is tied up in the Control Unit and 2) there

are large classes of problems that can be solved by a single instruction ■•J

stream which operates on data that can be structured as a vector.

ILLIAC IV also utilizes the Buffer and modified Pipeline mechanisms to

overlap the operation of its instruction execution unit.

B. A Review of Digital Computing Machines

1. Summary

Perhaps the first computer was a coin. If a computer is a tool

used by man to solve a problem, then a coin fits the description. A coin

was (and still is) vised as a tool to help men make decisions. It is a true

binary decision maker: a flip of a coin and a decision is automatically

made: heads, one course of action is taken—tails, another. Whether the

first computer was a coin, an abacus, Pascal's Calculator or Jacquard's

Loom is not argued here; instead the starting point is arbitrarily chosen

1-2

y

T7

with Babbage's machines. The Automatic Sequence Controlled Calculator

(Mark I), ENIAC, EDSAC, the University of Manchester Computers, and EDVAC

are used to reiresent the major chain of machines which evolved to the

Von Neumann organization.

«

y;

5

•;.

f fr.

2. Babbage's Difference Engine and Analytical Engine

■''.! a. The Difference Engine
M

In 1812, when Charles Babbage was an undergraduate at Trinity-

College, Cambridge, mathematical tables of functions were generated by

'':'■ hand. The production of a table of values for Just one mathematical

function was a tedious and cumbersome Job. A group of over 100 people,

called "computers," were trained to follow a finite difference algorithm

to compute values of the function over a specific range and for specific

interval widths within the specified range.

Let us consider how the function f(X) = JT + X + 1 would be

calculated over the range 1 < X < 5 and for an interval width of 1. (See

Table 1-1.)

It was known at the time that the nth differences of an n-degree

polynomial are constant. By convention, the zero-differences (D) are the

values of the function. D. is the value of the function at X^ fU^^D^

For the simple example used here, when i = 3, Xi = 3, and D3 = 13. The
-, 0

first differences (D) are found by subtracting previous values of D from

succeeding values of D ;

1-3

Table 1-1. Difference Method for Evaluating

Polynomial Function JT + X + 1

f(X) = X2 + X + 1

i

1

3

It

5

3

1»

5

Contents of

Step No. D0

3

D1

k

D2

0 (Initial Value) 2

1 7 k 2

2 7 6 2

3 13 6 2

k 13 8 2

5 21 8 2

6 21 10 2

7 31 10 2

1-4

:>>;^::^<^^ i.- « - » - .■ -.«.. .^- ■ - r- » - .t - « - « - r - « - » - i ^ » . .■_ - t .

"",-•

P DIm fl3W - f[\} m Di+i - Di V] = f(X^J - f(Xj = D° - D?

:'•
The second differences are the differences of the first differences and

are calculated the same way:

i • ^i - i
0 1 2 The top part of Table 1-1 shows D , D and D for the X values. Note that

the second differences are constant (the value 2). Also shown is how we

0 1 2 can work backwards if we are given D- , D1, and D1 by summing instead of

subtracting:

^i - M

Therefore, if we have 3 registers to store the values of D , D and D- as
P Q

we sequentially apply the above two equations we can generate D. for as

long as we wish to compute. All we need are the 3 initial values

m D° = 3, D^ = 1+ and D^ = 2

*.'■ In Table 1-1, each step is numbered and the direction of addition indicated
m

by an arrow.

i
The lower part of Table 1-1 displays the contents of the three

»£' registers, D , D and D after each step circled in the top part of the

;•<>; table.

1-5

E

It was Babbage's contention that not only coiald a mechanical

machine be built to perform the finite difference algorithm, it would be

faster and much more accurate. He had even designed his Difference

Engine to print the results directly from the wheels which displayed the

numbers, thus eliminating the possibility of a human transcription error.

Babbage fabricated a small Difference Engine which could tabu-

late a second degree polynomial (or any other function whose second

differences were constant) to 8 decimal digits of accuracy. In 1823 he

was given a grant by the British government to build a machine that could

generate tables for a function whose seventh differences were constant to

an accuracy of 20 decimal digits. His ambitious project was never com-

pleted. Work stopped in 1833 when Babbage ran into financial difficulties

with his engineer who resigned from the project taking with him all of the

specially constructed tools for the building of the Engine (under English

law at the time, the engineer had the right to do so).

Babbage was probably the first computer designer to run into

financial difficulties because the state-of-the-art of technology lagged

too far behind the state-of-the-art of conception. His ideas were sound,

but his funds were hopelessly inadequate to create the technology which in

turn would be used to create his computer.

The Difference Engine was more than Just an automatic calculator

capable of addition, subtraction and multiplication—it could also perform

a procedure or a program. There was only one program that it could

perform, however, and that was the finite difference algorithm. From the

1-6

'">">,>V'.-V'*'..-\">.y*«">'>,,,j'> •"' »7JiTCPSXX> ■ kfy^iys'' .■"•.V. v.'•'.%' . .- VV.'-V-V V-".,-'. •".•■. ". •'. -'•''- •\'\''<r:"*.''4

point of view of modern computing, the Difference Engine was a single-

purpose computer with no program software; the program was intrinsically

JS part of the machine, imbedded into the configuration of the gears and

shafts.

b. The Analytical Engine

The Difference Engine had failed, but Babbage had even greater

'-■■ plans for a new machine, the Analytical Engine. Either he did not realize

SQ that his machines could not be built by the existing technology or he was

optimistic enough to believe he could supply the ideas for both.

*

'/.

.••

-'•.

Babbage designed the Analytical Engine to be able to perform more

than only one algorithm; so that the program as wel. as the data could be

supplied to the machine as an input, and the machine would process the data

^ according to the instructions of the program.

In order to create a machine of this far-reaching capability,

Babbage foresaw the four main functional sections of the modern-day

computer:

• Control Unit

• Memory Unit

• Arithmetic and Logic Unit

RT • Input/Output Unit.

I
f.. The Control Unit was to act on the same principle as the Jacquard

H
"T. Loom Controller: a sequence of plaques with holes punched in them drawn

Ö
1-7

£^j£^&k^^A&i^ik^

over a drum by chains. Where Jacquard's Loom used a particular combination

of holes in a plaque to specify a weaving operation, Babbage's Difference

Engine used each plaque to store an instruction which specified an arith-

metic operation. The plaques were drawn over a drum one at a time and the

pattern of the holes was sensed mechanically. Each plaque instructed the

Engine to perform one well-defined operation and a set of plaques,

therefore, constituted a program. Groups of sets of plaques represented a

Program Library.

Not only did Babbage design a machine that would execute a

program of instructions, he also included the Test-and-Branch type of

instruction which is at the very heart of using a program to solve a

problem. In his plan, the Analytical Engine had the ability to roll the

chain of instruction plaques forward or backward depending on whether the

contents of a specified register turned negative during execution of the

program. Rolling the chain in either direction is equivalent to a "Jump"

in the opposite direction in the program.

The Test-and-Branch instruction provides the programmer with an

"alternate route" capability while his program is executing. Different

sections of the program may be entered and executed based on the values of

numbers that were computed in previous sect:" ms oi the program. An addi-

tional benefit of a Test-and-Branch capabili ■ that it affords the

programmer a shorthand by which he can specify a large number of program

operations with a small number of instructions. By decrementing or

incrementing a register until it reaches a specified value, a section of

1-8
I

the program can be executed repeatedly. Without the Test-and-Branch type

of capability, a programmer would have to specify every operation with at

least one instruction.

;:>

*.
V

■.-.

V

The Memory or "store" as Babbage referred to it, consisted of

wheels. The position of a wheel denoted the value it was storing. Numbers

were transmitted to and from the "store" by means of racks. The racks were

cut to engage the gears of a wheel so that the position of one wheel could

be transmitted to another. The racks, of course, could be connected to

rods, shafts, or other racks to further transmit the motion. (See Figure

1-1.) Since each wheel would store 1 decimal digit and Babbage proposed

■ .

'■■■■

■.■-

Gear Gear

Pii ni-ii-ii-ir-if-irrnnr-if-innn "^rfw

Figure 1-1. Transmission of Data in Babbage*s Machine

that the "store" have a capacity of 100 numbers of 50 decimal accuracy,

this meant the Engine would have 50,000 wheels. Since the instructions

were not stored in the memory but were punched into the plaques and thus

would not be modified during program execution, Babbage's Analytical Engine

was not a stored-program computer.

1-9

^VA-XVC:^::^ ;. i) < .^sto^^

The Arithmetic Ifait was called the "mill". Babbage went to great

pains to optimize the design of the mill, particularly the problem of

carrying when the sum of two numbers is greater than nine and a digit

must be carried over to the next significant position. With customary

fastidiousness and foresight, Babbage represented the algebraic sign of a

number as a separate wheel which would not be connected to the other

wheels during carries.

The Input/Output was to be effected by punch cards much like the

punch cards or plaques that supplied instructions to the Engine. Some of

the input was to be done manually—the initial settings of the wheels of

the "store" were to be done by hand. Babbage also considered the possi-

bility of printing output directly from the wheels of the "store" as he had

with the Difference Engine. By embossing the digits on each wheel, they

could be inked at the end of a calculation and the results transferred

directly to paper. This not only made the results neat and legible but

completely bypassed the possibility of a human transcription error.

Babbage estimated the following operation times:

Addition/Subtraction 1 second

Multiplication (50 decimals by 50 decimals) 60 seconds

Division (100 decimals by 50 decimals) 60 seconds

The description for the Analytical Engine prompted some

scientifically-inclined people of the day to try their hand at programming.

L. F. Menabrea, a General in the Italian Army, was at the Military Academy

1-10

•v

i • j

^•>>>:.:y-v^!/£yv^>>^^

&

f-i/' in Turin when he heard Babbage speak on his Analytical Engine to the

G
" Italian mathematicians. Menabrea demonstrated how one would solve two

simultaneous equations in two unknowns with Babbage's Analytical Engine.

m Lady Lovelace, Lord and Lady Byron's daughter, devised many

'■' programs; among them, one to calculate Bernoulli numbers from a recurrence

formula. In order to calculate the Bernoulli number B , n + 1 operations

must be performed. Lady Lovelace described how she could store the

/.• quantity "n" in a register and decrease it by 1 each time an operation

within the cycle was performed; when the number finally turned negative,

the cycle had been repeated n + 1 times and control could be passed to the

next part of the program. She had invented the concept of a loop.

i

Although Babbage did not build his Analytical Engine, he left the

detailed drawings and notebooks which are currently in the Science Museum

at South Kensington, England. He defined most of the concepts used in a

modern computer, including the most important one which Jacquard had sensed

before him: it was possible to build a machine that would automatically

simulate a process if the process could be described in terms of a sequence

of well-defined operations.

3. Automatic Sequence Controlled Calculator (Mark l)

Babbage's work was soon forgotten, because his Analytical Engine

| y was never completed. In 1937, Professor Howard Aiken designed and devel-

oped an automatic calculator based on components currently available in IBM

V

t

1-11

I
HS

punched card equipment. In cooperation with IBM, Aiken huilt and presented

the calculator to Harvard University in 19kk. Harvard named the calculator

"Mark I".

The Control Unit of Mark I was primarily a paper tape reader.

Each instruction was punched into a paper tape that was 2k holes wide and

fed past a set of 2k rods that made an electrical contact if a hole

existed. The first version of Mark I had no Test-and-Branch capability;

the best it could do was compare two numbers in different registers and if

one was greater, the machine would stop. We might say the machine had a

Test-and-Stop instruction.

Mark I was later modified to include a conditional type of

instruction. The conditional instruction caused control to be switched

from the currently executing paper tape to any of three alternative tapes

if the contents of a specified register were zero. Once control had

passed to a specified alternative tape, the program was executed from

instructions punched on that tape until either the program ended or

control was passed back to the original or yet another tape. If control

was passed back to the original tape, it would start executing where it

left off by virtue of the fact that its physical position in the tape

reader had not changed. Endless tapes were used for looping. This method

of passing control to a new tape was faster than the method of rolling a

set of cards backward or forward as Babbage had proposed, but Babbage's

technique is still conceptually closer to the kind of program control that

is used today. Neither Mark I nor Babbage's Analytical Engine were stored

program computers.

1-12

i

B

; <

:■:-

^

:.■■

■.••

The Storage section of Mark I consisted of wheels as did the

Babbage Machine. There were 72 Accumulator Registers each capable of

holding a 23-digit computed value, plus 60 sets of switches for holding

constants. The switches were set manually and were not under program

control.

As with Babbage's Engine, numbers were transmitted to and from

Storage by rotating shafts connected to the wheel storage.

Input-Output consisted of a typewriter as well as punched-cards,

-•. The operation speeds of Mark I were:

■

Addition/Subtraction .3 seconds

Multiplication (23 digits by 23 digits) 6 seconds

Division 11.^ seconds

There was also built-in hardware which computed:

Sin (X) in 60 seconds

10 in 6l.2 seconds

and Log, 0 X in 68.it seconds *

all to 23 decimals of accuracy.

Mark I contained more than l60,000 parts and the sound of its

thousands of electromechanical relays in operation has been likened to

a roomful of ladies knitting.

1-13

■•-''-'-«-

k' Electronic Numerical Integrator and Calculator (ENTAH)

In 19k6t the first electronic computer was built by J. Presper

Eckert and John W. Mauchly at the University of Pennsylvania. ENIAC was

built for the U. S. Army to calculate ballistic tables by integrating a*

ordinary differential equation. Another type of problem, the interaction

of shock waves in a fluid, prompted John Von Neumann to modify some of the

logical design of ENIAC.

The Memory Storage section consisted of tubes-triodes and

pentodes. The flip-flops were triodes and along with the pentodes

(that were used as "AND" circuits and "OR" circuits), there were over

18.000 vacuum tubes and about 1,500 relays in a 20 feet by 1*0 feet box

for the entire machine. In addition there were about 6,000 switches for

storing constants that could not be changed by the program.

The Control section consisted of a 100 kc/sec oscillator which

produced pulses 2 ^sec wide. As the clock generated pulses, the program

was executed through the many wires that connected one part of the machine

with the others. The programmer did the actual wiring through plugs,

sockets, and switches; the various components of the machine were

"stimulated" or not depending on whether a wire carrying a pulse reached

that component. For example, if an accumulator received a program pulse

it would be stimulated to add. Since both instructions and data were

represented as trains of electronic pulses, a conditional operation on the

sign of a number could easily be programmed by running the wire that

carried the sign bit of that number to an accumulator. If a negative sign

I-llt

u
^^^Si&^v^

N-:

Q is represented by the presence of a pulse, then the accumulator would be
B

"stimulated" if the number was negative; if the number was positive, no

pulse would appear and the accumulator would not be "stimulated" and hence

not enter into the program. Thus ENIAC had its program "wired" into its

hardware. ENIAC also had external switches which caused certain opera-

tions to be performed more than once, giving the programmer a looping

capability (there were extra switches so that a programmer could loop

■■•;

EÜ within loops).

i-:
r» ENIAC had an advantage over Mark I in terms of speed; once

.-.
initial program wiring had been done, instructions could be executed at

electronic speed rather than at the speed of a paper tape reader.

Changing programs, however, meant a massive rewiring job. Many hundreds of

wires had to be re-plugged in order to instruct the machine to perform a

.-,
;'•". different algorithm. At the time it was recognized that switch settingfs

and plugged-wire connections could also be coded in the same way that

IB
ö numbers were coded. If a large capacity storage device were to become

available, then the program as well as the data could be stored in the

machine. Although ENIAC had only 20 storage locations, one must remember

that ENIAC was a special purpose machine built to solve a specific

problem—to compute values for ballistic tables, and it performed this

function very well.

Each of the 20 storage locations was also an accumulator which

could add, subtract, store or fetch independently and simultaneously so

that its effective calculating time was very creditable:

i c
■ 12 r.

1-15

■•V. JV.V .•.".,

Addition/Subtraction 200 us

Multiplication (10 decimals by 10 decimals) 2.8 ms

Division 6 ms

The Input was 80 column IBM cards and the output was either cards

or lights on a display panel.

Although ENIAC actually had its program stored inside of it in

the form of wire connections, it was not a stored program machine. The

definitive characteristic of a stored program computer is not the fact that

a program is stored internally in the computer as opposed to outside on

paper tape, for instance. A stored program computer has the ability to

modify its instructions as well as its data while it is executing the

instructions since both the instructions and the data are "inside" the

machine using the same sirorage medium. Looping and indexing can be done

by modifying the address field of an instruction while the jitogram is

executing. Instructions can modify, destroy or create other instructions

as the program runs. (The stored program concept was responsible for the

term "word" coming into use to describe what existed at a location in the v|

memory store. In order to avoid specifying whethei" the content of a given

storage location was to be regarded as a number or an instruction, it

became convenient to refer to it as a word of storage.)

1

5. Electronic Delay Storage Automatic Calculator (EDSAC)

i
EDSAC was the first operational stored program, electronic com-

Ü
puter. EDSAC ran its first program at the University of Manchester in May •-*

V'
1-16

f1

i^i .TS-l1-*. VT'W trV-I.-^ . "^ ■

^

of 19^9. The EDVAC, discussed in the next section, was the first stored

program, electronic computer to be designed. (Design started on the EDVAC

in 19^5, while design started on EDSAC at the end of 19^6.)

A

t*

Both EDVAC and EDSAC are considered to be IAS computers since

their development was guided by the reports generated at the Institute for

Advanced Study (IAS) at Princeton, New Jersey by John Von Neumann and his

colleagues in 19^5- IAS eventually put forth their own computer in 1952

and the ILLIAC I (University of Illinois), Johniac (RAND Corporation),

MANIAC (Los Alamos) and WEIZIAC (Woizman Institute of Israel) soon

followed and were patterned after the IAS machine. They all had addition

times of about 60 [is and multiplication times on the order of TOO [isec.

•:■-

r
0
l

The storage device which permitted both data and instructions to

be stored together in EDSAC was a mercury delay line or ultrasonic store.

(See Figure 1-2.)

mid0mm/\^^

Re-Shaper and Amplifier

1 f

Output

Input

Figure 1-2. Mercury Delay Line or Ultrasonic Store

I-1T

'-•-•-•-*-'-^-*-'-v-»-' -- - >-y'^!o^o'>Jl*v^.!f^v-:.u-\--:^^^

A mercury delay line is a tube filled with meroury. A wire

coming into the tube carries a train of electronic pulses which are trans-

formed into mechanical vibrations by means of a piezo-electric crystal.

The vibrations are transmitted through the column of mercury to another

crystal at the other end of the tube which converts the mechanical vibra-

tions into electronic signals. These signals are a bit distorted at this

point, so they pass through an electronic network which reshapes and

amplifies the pulses before sending them back through the tube again.

The length of the tube and the velocity of a disturbance in

mercury define the memory cycle time. The number of bits that can be

stored depends on the pulse rate of the clock. A major disadvantage of

ultrasonic storage is the long access time. The time required for an

accumulator to access a bit in storage varies from near zero, to the time

it takes a bit to travel the length of the tube. The access time is on

the average, one half the time it takes for a bit pulse to travel from

one end of the tube to the other.

Another problem one encounters using the ultrasonic store is the

interleaving of instructions and data in the pulse train so that the

arithmetic and logic unit is waiting for data a minimum amount of time.

(For example, it would not be wise to have an instruction that loaded the

accumulator with a number that was stored ahead of the instruction; the

accumulator would have to wait a whole memory cycle to get hold of that

number.) The practice of laying out the instructions and data in the

ultrasonic store in an optimal manner was called optimum programming.

1-18

•/"■.'s" ^V•.■^'vl^^•yfcV.'■iNV•">VO•'.^V''V••.■•>,•V•y•AJi^«•.*•1i^V■ ■.'•>-.',,
J.
%-"« -*- -'v'" •''•'• .'•.."■ ••«• •'• ."•.■•-'•.■ •> ,>-"' .v'- •. ■ - •.

t

.,i

L

Although vacuum tube flip-flops would have provided a faster-

access storage medium, they were not yet economical. EDSAC had 30 mercury

delay lines, each of which could hold thirty-two IT-bit numbers. There

were also short mercury "tanks" that held just one number and were used as

registers. The access time in these registers containing only one number

circulating through a tank was shorter than the access time to a number

circulating in main memory. For the main memory, the circulation time or

memory cycle time was 1.1 ms. The other operation times were:

Addition/Subtraction 1.5 ms

Multiplication k ms

Division was a subroutine which had a variable operation time.

EDSAC had a single-address instruction format which necessitated

the placing of an accumulator in the arithmetic and logic unit to accumu-

late the results of the one-address operations. EDSAC had two types of

Test-and-Branch instructions; one which branched on the contents of a

storage location being less than zero and the other which branched on the

>.] contents being greater than or equal to zero. It was admitted at the time

__ that even though two tests were redundant, the extra one was included for

programming convenience. It must have been around this point in time that

'v the programming profession began.

Input and output were combined on a teleprinter unit which could

both type and punch five-position paper tape. Input data could be punched

onto paper tape which in turn was fed into EDSAC and output could be

/•V- displayed via the typewriter part of the teleprinter.

1-19

US

V ii. i-, i.ji i. ■! m.m I^III.II I.J p.i ! .in

6. University of Manchester Computers

EDSAC was merely the name given to the world's first operational

computer developed at the University of Manchester. As time passed,

EDSAC evolved into a computer system with refinements that expanded the

state-of-the-art of computing.

The Williams Tube memory was developed at Manchester in order

to increase the speed of memory access. Basically the tube was just a

cathode ray tube (CRT) that could store an electrostatic pattern of bits

on the face of the tube. Moreover, the bits could be fetched or changed

by directing the cathode ray to the appropriate place on the tube. The

tubes at Manchester held 102^1 spots and could therefore represent 1024

bits of information; the access time was on the order of microseconds.

One of the uses of the Williams tube was what we now call index-

ing. A Williams tube, called the B-tube (presumably because the letters

A and C were already used) was used to represent two registers. When the

programmer wrote an instruction, he also referenced the contents of either

one of these two registers. The contents of the specified register was

added to the address field of the instruction. In practice, the contents

of one of the registers was always zero so that when the programmer did

not wish to modify bis address field, he could reference the register

containing the zero value. At the time, some people felt the B registers

were of little scientific value and that they were included merely for

programmer convenience. It seems the hardware design philosophy was

1-20

r:v;>;>>;:-s:v:vev^^

■^^'^'^•"»"'■»""""•""''•"'■"TS'^'P^T^riV-^^^

<&

B

i

V

tk

beginning to change—a problem that now deserved consideration was

programming ease. Computers were still being built to solve specific

problems, but they were starting to create problems of their own to be

solved. The problem set had started to divide into "applications"

problems and "systems" problems.

-•r The Manchester computers added a 128 word drum—each word was

'-'J kO bits. The drum was slower than tube memory but it was cheaper in terms
** I

v
of cost per bit stored. Where the access time to tube memory was on the

order of microseconds, access to the drum was measured in milliseconds.

Therefore, the programmers at the University of Manchester were among

the first to contend with the problems of memory hierarchy and cost-

effectiveness in computer operations: if you have a larger, cheaper, and

slower memory and a smaller, more expensive, and faster memory, both of

which can be accessed by the arithmetic unit, you must consider the

problem of making the most effective use of the total computer. If your

criterion for effective use is to minimize the idle time of the arithmetic

unit then you must keep it supplied with data as fast as you can. One

method of achieving this is to feed the small, fast storage from the large,

slow one, transferring data in large blocks. The arithmetic unit then

fetches from the faster storage. Results from the arithmetic unit are

stored to the faster memory, if possible, and eventually can be sent to

the large, slow memory.

1-21

^l^^^wjil^i<w^i|^il^^7p^r^»"l"U«llll"Ht,fVlIJ!fl»«;,Uro|.l«l'.l> H.II «^ ■•. Jj; I«. ■", "^ • . '-t • J1" I "i1 mjjmmjmywmfwy 'Jf'L "Ji ■>•_'*>■ "^""y "J'J «Ji -_a "^ "T"J» .V.* -•., Jl

■■ i

7. Electronic Discrete Variable Automatic Calculator (EDVAC)

EDVAC was the first stored program computer to be designed.

In 19^5 a report, "Preliminary Discussion of the Logical Design of an

Electronic Computing Instrument" by A. W. Burks, H. H. Goldstine, and

J. Von Neumann, was prepared under contract to the ENIAC project. This

report described the concept of the stored program computer, and made

the recommendation that instructions and data be coded using a binary

representation.

The report pointed out that although the ENIAC appeared to be a

decimal machine, the decimal capability was built up from binary components

grouped to respond as decimal components. It was recommended that numbers

and instructions be represented inside the machine in terms of the exist-

ing binary components and that conversion to a decimal representation be ,,,

performed in the Input/Output phase by means of a program. In other words, ■*

it was proposed to use software rather than hardware to take care of 1
i, ■

converting from the binary to decimal system and back. The report was
9

distributed at a summer meeting at the University of Pennsylvania in 19^6 E

and was a strong influence on the design of all future computers, in

particular EDSAC and EDVAC. -

As its primary storage, EDVAC used ultrasonic delay tanks similar j^

to the mercury delay lines used by EDSAC. A tank was 58 cm long and it
t."

took 384 |is for a disturbance to travel that length, thus the memory cycle

time was 3öh |is. The clock rate was 1 Megacycle so that the tank could S
mm

hold 384 pulses or bits of information. Each number was kk bits long /v

1-22 ^

x::^::-::-::-::;:::::^^

r^^TT^TT^—■ .• '^—• .■ ." ■ ." ," .• ." .• ." .• '.■ .■ .■ T: lm. I

followed by k "blank" pxilses so that a tank stored 8 numbers. The total

EDVAC memory was 128 tanks and could store 1024 numbers.

A wire recorder acted as a secondary store with a capacity of

20,000 numbers. As with EDSAC, a memory hierarchy existed with a smaller,

faster tank memory to be traded off against a larger, slower wire memory.

Numbers were transferred from the wire memory to tank memory in blocks of

50 to 100 so as not to slow the arithmetic and logic unit.

EDVAC used a four-address instruction format. The address field

of an instruction, instead of denoting a single address, denoted four

locations: the first two locations signified the addresses of the two

operands to be used in a binary operation (a binary operation is an opera-

tion such as addition, subtraction that involves the use of two operands),

the third address indicated where the result was to be stored and the

fourth address pointed to the location where the next instruction to be

executed was stored. The fourth address has proved to be superfluous if ,-

the computer has a test and branch capability and otherwise executes its I'

instructions in sequence. (Assuming that the instructions are stored in a '•'.

memory where the time to fetch an instruction is not dependent on where in |

the memory it is stored—this type of memory is sometimes called "random-
i

access".) EDVAC pointed the way to a three-address scheme whereby the i
r.
ir

instructions were executed in sequence and the three addresses were used |

in the same way as the first three addresses described above. S"
N
'.
s

A three-address scheme can be very powerful if the programs *
I

involve many three-step operations such as A = B + C. However, the trend

1-23 1"
v

n

"-"«< .'•-'^•v'."-"i-: ■.": "/^'.^ ■.".■'•■ ." .".• •".". V.^■.T"-"*"''.",u," ^., ■■.' -.' -i' •"«._•': ».i,•' ...i'jT *•. i-.,-. ■-■ .■ --. ■-':''•; i-,™'":■' ■.■_ -_ _•_ ,»_■ ,■ _ >:

was to grow away ftom a three-address scheme which vas more useful in

scientific problems than commercial ones (as well as being more costly

than a one-address scheme) and eventually settled into the familiar

one-address scheme we have on most current generation machines.

Here is another example of the applications problems creating

systems problems concerning the shaping of the design of the machine.

It would not be useful to design a two-address machine if there were no

problems that could be solved with that kind of instruction format.

The repertoire of instructions has also evolved under the demands of

the problems to be solved. Character handling instructions would not

have been implemented so soon and so fully if all problems had been

scientific.

The average operation times for EDVAC were:

Addition/Subtraction 86k us

Multiplication 2.9 ms

Division 2.9 ms

EDVAC appears to have the unhappy distinction of being the first

computer to experience large time delays in fabrication even though the

proposed design was well within the technical resources available at that

time. EDVAC design was started in 19J+5, but was not considered to be a

working machine until 1952. M. V. Wilkes attributes the problems to the

much faster clock rate used in EDVAC which necessitated higher quality

circuitry that could handle pulses of shorter duration without degradation.

l-2k

7&&&s^

■ »UI»M pjnpiiiiiiMqiimp^v^^iuui »in i ^iiii IJIP^IIIB^HIIUI^I^II^ n^p i» n« w^" a." t'Ji;" «."J^," ■.^•f;- •_■ r-^ VT , . <. " .^"CH."1." ~ PT" S * ,iS.VH

ü

^

Cf It appears that there is a principle of natural selection that

applies to the evolution of computers. Computers are designed to respond
. -•

• '.

S

I

;•-•

to the needs of the environment. If the environment changes too rapidly,

some classes of computers may he subject to the fate of the dinosaur.

More important, the environment is not a closed system outside of the

<M computer; the computer, as it responds to its environment becomes a part

i
of the environment, and creates new problems to be solved. Machines are

then created to solve these problems. We create tools to solve problems

that our tools have created.

C. Unconventional Digital Computer Organizations

1. Summary

After EDVAC, in the early 1950's, the deluge began. Hundreds,

then thousands of computers were manufactured; still, they were generally

organized on Von Neumann's concepts. The conventional or Von Neumann

organization is shown and described in Figure 1-3. Memories became

cheaper and faster, and the concept of archival storage was evolved;

Control and Arithmetic and Logic Units became more sophisticated; I/O

devices expanded from typewriters to magnetic tape units, disks, drum and

remote terminals. But the four basic components of a conventional com-

puter (Control Unit, Arithmetic and Logic Unit, Memory and I/O) were all

present in one form or another.

L The turning away from the conventional organization came in the

middle 1960^ when the law of diminishing returns began to take effect in

C

•Ä^

CONTROL UNIT
(CU)

INPUT/OUTPUT
(I/O)

ARITHMETIC AND
LOGIC UNIT

(ALU)

MEMORY

Figure 1-3. Functional Relations within a Conventional Computer

The Control Unit (CU) has the function of fetching instructions
which are stored in Memory, decoc* .ng or interpreting these instructions
and finally generating the microsequences of electronic pulses which cause
the instruction to be performed. The performance of the instruction may
entail the use or "driving" of one of the three other components. The CU
may also contain a small amount of memory called registers that can be
accessed faster than the main Memory. The ALU contains the electronic
circuitry necessary to perform arithmetic and logical operations. The ALU
may also contain register storage. Memory is the medium by which informa-
tion (instructions or data) is stored. The I/O accepts information which
is input to or output from Memory. The I/O hardware may also take care of
converting the information from one coding scheme to another.

The CU and ALU taken together are sometimes called a CPU or
Central Processing Unit.

S3

1-26

..V^VJV .-. .% '. ..S,T.«.-".T:X-•'.'

t

the effort to increase the operational speed of a computer. Up until this

point the approach was simply to speed up the operation of the electronic

circuitry which comprised the four major functional components. (See

figure 1-3.)

JJ!

■:■:

i
Electronic circuits appear to be limited in their speed of

operation by the speed of light (light travels about one foot in a

nanosecond) and many of the circuits were already operating in the nano-

second time range. So, although faster circuits could be made, the amount

of money necessary to produce an increase in speed was not justifiable in

terms of the small percentage increase of speed.

'..

iv

,"-•

^

v.
r.'

At this stage of the problem two new approaches evolved:

w^ l) Overlap. The hardware structure of the conventional organi-

|i> zation was modified so that two or more of the major functional components

(or subcomponents within a major component) could overlap their operations.

" Overlap means that more than one operation is occurring during the same

time interval and thus total operation time is decreased.
t$

Before operations could be overlapped, control sequences between

the components had to be de-coupled. Certainly the Control Unit could at

>. least be fetching the next instruction while the Arithmetic and Logic Unit

■■ was carrying out the present one.

\.
v. .
KM 2) Replication. One of the four major components (or

t
subcomponents within a major component) could be duplicated many times,

1-27

^-...-...-^..-.--.-....-..^ ..-%-. -w ■ . '- ■■.■.-.. ■.-...■■ i. »_._._. ■.,_._.-»-^-.-.-<-...-..,,.-v

y-l,- ,>y>i^i.-JTrli^i^/?^

(Ten "black boxes can produce the result of one black box in one-tenth of

the time if the conditions are right.) The replication of I/O devices,

for example, was a step taken very early in the evolution of digital

computers—large installations had more than one tape drive, more than

one card reader, more than one printer.

Since the above two philosophies do not mutually exclude each

other, a third approach exists which consists of both of them in a

continuously variable range of proportions.

The overlapping philosophy was implemented largely thrc-i^h the

Buffer and Pipeline mechanisms. The Pipeline mechanism breaks down an

operation into suboperations or stages and decouples these stages from

each other. After the stages are decoupled they can be performed

simultaneously or, equivalently, in parallel. The Buffer mechanism allows

an operation to be decoupled into parallel operation by providing a place

to store information.

The replication philosophy is exemplified by the general Multi-

processor which replicates three of the four major components (all but

the I/O) many times. The cost of a general Multiprocessor is, however,

very high and further design options were considered which would decrease

the cost without seriously degrading the power or efficiency of the system.

The options consist merely of re-centralizing one of the three major

1-28

J
&N

*•.>

^iTSUV'i>i^v^^.-"^»V.>■""-" ^' I. •. - - • ,;,^■."_•^,*, "•rr",.! «%"''ri'i"«;7"«;\«.;;■.■ •'/.■J.^^T,".". v?'...»r; '.">.^'^*.'-''. .--'1. -.,.'. ~ ._'■ t;".^1.",«i—T^"^- J^.«.^-.VT

r:
S: It.

L" f

■

.-:■

components which had been previously replicated in the general Multi-

processor—the Memory, the Arithmetic and Logic Unit or the Control Unit.

Centralizing the Control Unit gives rise to the basic organization of a

Vector or Array Processor such as ILLIAC IV. This particular option was

chosen for two main reasons:

1) Cost. A very high percentage of the cost within a digital

computer is associated with Control Unit circuitry. Replication of this

component is particularly expensive and therefore centralizing the Control

Unit saves more money than can be saved by centralizing either of the other

two components.

2) There is a large class of both scientific and business prob-

lems that can be solved by a computer with one Control Unit (one instruc-

tion stream) and many Arithmetic and Logic Units. The same algorithm is

performed repetitively on many sets of different data; the data is

structured as a vector and the vector processor of ILLIAC IV operates on

the vector data. All of the components of data structured as a vector are

processed simultaneously or in parallel.

ILLIAC IV also utilizes the Buffer and Pipeline mechanism to

overlap the execution of instructions. This allows a further increase in

operational speed as both the replication and overlap design philosophies

are applied simultaneously.

1-29

2. Overlap Mechanisms

Buffer

A buffer is a mechanism which allows a process to be broken

down into subprocesses so that the execution of the subprocesses can be

overlapped.

Let us use an analogy to demonstrate what a buffer is and why we

would like to use one:

Suppose you are mowing your front lawn and you have a bag

attached to your mower to collect the grass clippings. Each time this

bag fills up, you must stop the mower, detach the bag, and walk aroun* to

the back of your house where the trash barrels are. Ycu must then empty

the bag of accumulated clippings into the trash barrel, walk back to your

mower, attach the tag, and continue mowing.

After seme time you come to the realization that you are spending

a lot of your time detaching the bag, walking to the trash barrels, empty-

ing the bag, walking back and re-attaching the bag. You remember that

you also own a large wheelbarrow that could hold many bag-loads of grass ,\;

clippings. You now recognize the option of placing the wheelbarrow on

i
the front lawn, and when the grass bag becomes full, you could walk over ■

to the nearby wheelbarrow and empty the bag into the wheelbarrow. When •.•

the wheelbarrow became full, then you would have to push it to the trash

barrels behind the house, empty the wheelbarrow, and push the wheelbarrow US

back to the front lawn. v'o

§
1-30

IT

B
%

l# Very naturally the question arises : How many bag-loads must

the wheelbarrow he able to hold to Justify its use? Fortunately, this

s w"J problem is very easily solved. Let us look at the times associated with

• each method. i
Ifethod 1: No wheelbarrow used

V;.

T1 = Time to detach bag from mower

[■'_. T_ = "ime to walk from luower to trash barrel

T_ = Time to empty bag into trash barrel

T. = T_ = Time to walk back from trash barrel to mower

T^ = T1 = Time to attach bag to mower

Method 2: Wheelbarrow is used as a Buffer

T^- = T.. = Time to detach bag from mower

T„ = Time to walk from mower to wheelbarrow

To = T_ = Time to empty bag into wheelbarrow

Tg = T„ = Time to walk from wheelbarrow to mower

T..Q = T.. = Time to attach bag to mower

T .= Time to push wheelbarrow to trash barrel

T.. p = Time to empty wheelbarrow into trash barrel

T. _ = T. = Time to push wheelbarrow from trash barrel to front lawn

(Even though the wheelbarrow or bag is lighter on the walk back from the

trash barrel, we are assuming it will take the same time as the walk to

the trash barrel since grass clippings are very, very light. We also

equate the time to attach a grass catcher bag and the time to detach it—

r.i

». -

1-31

!C^C>;t^^^s:^^^ . J) i. ■j^äimMä^M^^^M^^^^^^S

y

based on actual experience.) Finally, in order to relate all the times

(^ through T13) to each other we assume that the wheelbarrov holds N

bag-loads. Therefore, repeating Method 1 N times is equivalent (in terms

of area of lawn mowed) to performing Method 2 once.

The question then becomes: When is

Total time for Method 1 > Total time for Method 2?

or for what value of N is

P

i

N(T1 + T2 + T3 + T2 + T^ > NC^ + T7 + T3 + T7 + T^ + T11 + T^ + ^

Si

which reduces to

N >
2T + T

11 X12

2(T2 - T7)

We can see from the diagram below that T > T and assuming T = T - T ,
11 a

0

Mower

In

Wheelbarrow

11

Trash barrel u

we therefore arrive at

N >
2T + T

11 12

2T.
11

1-32

r:

g

i
ä

fe^^5i^^>^^^^

so that in order for Method 2 to he feaslWa, the wheelherrov Bust hoW

N bag-loads where

• T
N > 1 + —ü

2T 11

We now see that the size of our buffer wheelbarrow depends only on T^

and T12 or viewed somewhat differently, that the larger N is (the bigger

the wheelbarrow we have) the less we have to worry about the effect of

Tll «* T12-

If we now enlist another person to help us by emptying the

wheelbarrow when it gets full and bringing it back in time to receive the

next bag-load, this will reduce the total time of Method 2 by making

Tll = Tl2 =
0 since these subprocesses are being performed simultaneously

with the other subprocess times. Now the .uestion of what size N Justifies

Method 2 over Method 1 becomes: For what N is:

N(Ta+T2 + T3 + T2 + T1)>N(T1 + T7 + T3 + T2 + T1)

Using the same reasoning as before we see that

2N(T2 - T7) > 0

j. -Liici-ciore, zms scheme (•!>• Thle reletlon holds true for ell N since ^ ^ Therefore, this scheme

of having a helper who runs the vheelharrow is a hotter vay to mow a le» I

than by yourself. One may have guessed that fact intuitively; however, it I

is not always clear how a process can he broken do«, into autononously" I

perfomed subprocesses as it is with this particular analogy. '

1-33

iSfö .^^i'*.?

I-'

This analogy, although simple-minded, does illustrate what a

buffer is and how it works: If a process consists of a series of sub-

processes and this process takes "too long" from beginning to end, we can

speed up the process time by dividing the total process into at least two

subprocesses each of which control themselves autonomously. Between the

two subprocesses we place a buffer so that the output from subprocess 1

goes into the buffer and the input to subprocess 2 comes from the buffer.

Since the two subprocesses operate autonomously they speed up total process

time by overlapping (in time) their performance. The buffer acts as a

decoupler of control between subprocess 1 and subprocess 2 and a place to

save things which must be passed between the subprocesses.

It may usually turn out in practice that one process occurs at

one rate of speed while another occurs at a greatly different rate of

speed. In this case, the processes already existed as separate and

distinct, and the placing of a buffer between them is necessary only to

insure that the high speed process is not held up by the low speed one.

The placing of a buffer between the processes again decreases the total

process time by overlapping operations. (See Figure I-U.)

Suppose, for example that subprocesses P^ P2 and ?3 occur at a

veiy fast rate and that F^ and P5 occur slowly. A buffer could be placed j

between them aü shown in the lower part of Figure 1-k and the P-^Pg

process would not bo held up waiting on P^ and P^.

Buffers may have another effect on autonomous processes. They

not only speed up the rate at which information flows through the

1-31+
■

L

:■:■

i

•:-.

two-process system, they may smooth out the rate of information flow.

Without the buffer, one process must wait on another and the outputs of

the first process appear and then must wait a variable time until accepted

by the second process. This results in a "Jerky" flow of information

through the system. The buffer acts to accept outputs from the first

process as soon as they are generated and will save these outputs until the

second process is ready to accept them.

Summing up: a buffer decouples control between a previously

sequential set of processes, transforming them into at least two parallel

or simultaneous processes; and provides a place to store information which

must be passed between the processes.

■v

k

PROCESS

INPUT
Pi P2 Ps P4 P6

OUTPUT

(WITHOUT BUFFER)

SUBPROCESS 1
{WITH BUFFER)

INPUT OUTPUT
BUFFER

mmz
w///////////.
mmm vmm

SUBPROCESS 2

OUTPUT
P5

INPUT

TIME

Figure I-lt. Pioness Execution with and without Buffer

1-35

b. Pipeline

i. Summary

A sequential process can be viewed as a black box that accepts

inputs and produces outputs with the added stipulation that the black box

cannot accept a new input until the output has been generated for the

previous input. In other words, the black box is tied up all of the time

in processing Just one input.

As an example let us consider a black box (an Adder) that adds

two numbers together. Say there are two inputs (the numbers to be added)

and one output (the result). If it takes M seconds for the Adder to perform

the operation it will take N * M seconds to add N pairs of numbers. How-

ever, if the Adder would accept additional operands to be added while the

ones ahead were still in the box then the total time to add N pairs of

numbers would certainly decrease. We can do this if the add operation can

be broken down into independent stages; as soon as an operand passed through

the first stage, the next pair of operands could be accepted by the Adder.

This method of dividing the adder into stages and letting the stages run

independently is called a "pipeline." The total time to process N operands

is speeded up because, once all of the stages in the pipeline are full,

results appear out of the end of the pipeline in time increments equal to

the processing time of the slowest stage.

1-36
1

^^&s^&£&^^^

r
I*

•s'
h
N5*

■

11. Background

The pipeline mechanism can be applied to a process that Is able

to be broken down Into two or more stages that can operate Independently;

the only dependence between stages is that the output of a previous stage

becomes the input to a succeeding stage. For example, suppose we have a

process that upon closer inspection can be viewed as being made up of

three subprocesses. If each subprocess time is P.., P« and P., then it

takes P a P. + Pp + P_ units of time to transform an input to an output of

the process, and consequently if we have N inputs to process then it will

take N(P + Po + P?) units of time to complete the Job. Figure 1-5 shows

how two Inputs I. and !_ proceed through our example three-stage sequential

process. The outputs 0 and 0- are both ready after 2P units of time.

-N

■0

I
r
i

Time

Zero

P1 + P2

p + p + p - p
1*2*3

P + P,

P + P1 + P2

P + P1 + P2 + P3 = 2P

P P
2 r3

*x 1 1 1

1 \ h \ 1
1 i ! ^ 1

h i i

1 i ^ i

: : h
02 Cl

Figure 1-5. Two Inputs Transformed to Two Outputs via
a Three-Stage Sequential Process

1-37

Now let us apply the pipeline mechanism to our example. First

we decouple each subprocess by placing a one item "holding buffer" after

each subprocess; when a subprocess or stage has completed its Job, it

places its output into its holding buffer. When all stages are finished

they simultaneously pass their outputs to the input part of the next stage,

Although this slows the operation of the pipeline down to the rate of the

slowest stage, inputs do not have to wait outside the process until the

previous input is completely finished—inputs can enter into the process

as soon as the first stage has passed its results to the second stage.

Since the stages have been decoupled, they can be processing different

items or operands simultaneously. Each item moves through the stages of

the pipeline or pipe in a semi-finished state of completion (not holding

up a following operand) until it appears at the end of the pipe completely

processed. See Figure 1-6 which shows how two inputs produce two outputs

in a three-stage pipeline.

Time

Zero

PM

2PM

Figure 1-6

P P P
M M M

h h i i

:2 i ^ i

: ^ ! h
i i h 0i

1 ' o2 o1

i. Two
via

PM
1

Inputs Transformed to
a Three-Stage Pipeline
s the Maximum of P.. , P

Two Outputs
where

2, and P3

1-38

i5Ny.>;.V.yv^;/v.v>v-:.-^

r

•. ■

E

t

E

It takes PM + PM + PM units of time to make the initial filling

of the pipeline—after that a finished item appears at the end of the pipe

ÖJ every P.. units of time where P.. is the maximum of Pn, P0 and P_. Thus the ►.' M • M 12 3

time to process N items via the pipeline mechanism for our 3 stage example

is 3P,,. + (N-l) P., units of time.

We can now ask the question (as we did with the Buffer): for

what value of N is the sequential process time greater than the pipelined

process time, i.e., for what value of N is:

| N(P1 + P2 + P3) > 3PM + (N-l) PM

or N(P1 + P2 + P3) > (N+2) PM

Let us say that PM = P«, then

N(P. + P,) + NPM > NPM + 2PM 13 M M M

2P 2P
or N > =

r. P1+P3 P1+P3

_ That is, for the pipelined process to be faster than the sequential one,

*--' N must he such that the relation N > 2P /P +P is true. For the example

fv we are considering in Figure 1-6, N = 2 so that

r:-. 2P p
2 > — or ~ < 1

p +p p +p
1 3 1 3

must hold for the pipeline to he quicker:

». »-- •_

1-39

thus if P1 = 3, P2 = U and P3 = 2 so that

p
2 —=- <1

P +P
1 3

then for this choice of subprocess times the pipeline would be faster.

The larger N is, the greater the chance that the pipeline is

faster than the sequential process for a given set of subprocess times.

Let us devise a more general formula fur S stages and N items to be

pipeline processed:

The sequential process time to process N items through S stages is

S
N ^ P

i=l 1

The pipelined time is

SPM + ^ PM

So we ask: for what N does the following relation hold true?

S
N ^ Pi > SPM + ^"^ PM

s v3
N ^ P. > NPM + (S-l) PM tj

I-itO

KL

SNow, say PM ■ P. where 1 < j < S, then

S
8 N Z E, + NPM > NPM + (S-l) P,

m LA

i=l

or N Z P.. > (S-l) P

m
WX XI ^j x, , ^- \fcJ—J./ X ,

(:'- (S-l) P
or (1) N > —T i

Z P,
i=l 1

Since the right hand side of the relation (l) is always greater

than 1, we can say that for the pipelined process to he faster than the

sequential one, the number of items, N, must he larger than one—again,

we might have guessed this intuitively.

Additionally, the gain of the pipeline approach over the

sequential one is a function of the number of stages, S, and the distri-

bution of the subprocess times, P.. Let us consider two possible

distributions for P, : The best case (the one in which the pipeline out-

performs the sequential method by the highest time ratio) is when all of

[■-' Hi the subprocess times are equal:

P. = K i = 1, 2, ..., S then P.. = K i » » » M

and the ratio of sequential time to pipelined time becomes:

1-kl

s
N 7 P

... 1 NSK NS
R = 1~1

SPM + (N-l) PM SK + (N-l) K S + N - 1 n
•1

and lim R = S; so we see for this case the pipeline can be up to S times W
••

as fast as the sequential process (where S is the number of stages in the

pipeline) if we can keep the pipeline full all of the time (N -» «>). The d
m.i.

relationship (l) on page I-i4l for this case becomes:
r'.;

(S-l) K
N > =1 or N > 1 I?

(S-l) K £

TZ'
which means all we need is for N to be greater than one (two items) for ^

the pipeline to be more effective; and the larger N is the better the

pipeline looks. V«J

Now let us compare the pipelined and sequential times when the Kl

P. have a linear distribution, say ,,,

Pi = i i » 1, 2, ..., S then Pj, = S

and the ratio of sequential time to pipelined time becomes

R = i=1

S
N y p

iti i N(S/2)(Sfl) N(S+1)

SPM + (N-l) PM S
2 + (N-l) S 2(S+N-l)

and lim R = (S+l)/2. Comparing this ratio, R, to the constant distribution
N~*»

(P. = K) where the ratio is S:

1-1+2

•• i

\\y:sj^jL^^-^'rjts^'S^s-.:^s

I

s

■»

i

When is S > S * 1

The answer is whenever S > 1 or whenever there is more than one stage. So

we see that the pipeline outperforms a sequential process by a factor of S

when the subprocess times are all the same, and by a factor of (S+l)/2

(not quite as good) when the subprocess times are linearly distributed.

Both of these factors are based on the assumption that the j. peline is

kept full all of the time.

The relationship (l) on page 1-kl for this second case becomes

(S-l) S
N > =2 or N > 2

((S-l)/2) S

which means all we need is for N to be greater than two (thr^e items) for

the pipeline to be more effective than the sequential process. Note that

this is a more stringent requirement than for the constant distribution

(P. - K) case described first.

There is, however, a finite limit on the numbesr of autonomous

subprocesses a process can be broken down into, so that efficiency does

reach a maximum value. It should also be clear that for the pipeline

mechanism to function at its best efficiency, it should be kept full as

much as possible. If the pipe ever drains (runs out of items to be

processed) the initial filling up time is very costly since each stage

operates at the rate of the slowest stage in the pipe.

1-^3

I.

iii. A Pipeline Adder

We shall now apply the pipeline mechanism to the adder section

of the Arithmetic and Logic Unit of a computer. To illustrate the time

speed-up, let us assume that we must add seven pairs of floating point

numbers with rounding and normalization. First, let us briefly review the

process by which two floating point numbers are added:

Using a decimal notation we represent a number in the floating

point format as follows:

+ . XXX + XX

Exponent t t t I Mantissa I)

Sign of Sign of
Mantissa Exponent

We have allowed 3 significant digits in the Mantissa and two for the

Exponent. Thus -.123 + 01 is the san» as -.123 x 101 in scientific nota-

tion or -1.23. Also +.0llt - 02 is the same as .00014. We say that a

number in floating point format is normalized when the Mantissa is greater

than or equal to .1 but less than 1.

.1 < Mantissa < 1.

Thus +.0lit - 02 is not normalized but

+.1^0 - 03 is normalized.

In order to add two numbers in floating point format, we must

first equalize their exponents so that their mantissas can be added.

I-1+It

\,>-V %••.'•• •-'.•' •■,■.-. .- . v-. • .> ."»v" ,■-.'•• .^ .'•'.*-'.V,'- ."•."• .■•.'■--'•/■'»"■.■- .•-/•>"• v^V-V'.'-.■-*.■• ."-i."i.'-;"«V>.-j,"*V<--"'i"i-,> ."■;

c

®
However, when equalizing the exponents we always take the number with the

smaller exponent and "promote" the smaller exponent up to the larger one

and adjust the mantissa of this number hy right shifting by the difference

of the exponents. We could not -•, rm a left shift or a significant digit

1
Es or a normalized number would appear to the left of the decimal point.

S
After addition of the mantissas, we normalize the result if

necessary and finally we round the result so that it can be expressed

within 3 significant digits.

In order to perform the four operations

1. Adjust Exponents

2. Add Mantissas

3. Normalize (if necessary)

k. Round

we must have an accumulator in our adder that can hold more information

than the format we have specified for our floating point numbers. For our

3 significant digit case let us use an accumulator capable of holding

numbers of the form

+ X . XXXXXX + XX

This accumulator has an extra position to the left of the decimal point to

temporarily store a digit which might overflow as a result of an addition,

and it has 6 significant digits to insure accuracy when rounding takes

place.

1-1+5

mj

Consider two examples of what steps can occur using actual

numbers as operands. We assume that all operands enter into the floating

point addition process in normalized form and that the number with the

smaller exponent has been placed in the extra length accumulator.

Example 1 Add 123 to 1*5.6; that is, perform the operation:

123. + 45.6

In normalized form the numbers are:

(+.123 + 03) + (+.U56 + 02)

1. Adjust Exponents;

2. Add Mantissas:

3. No Normalization
Necessary

h. Round Result:

.123 + 03

+O.0456OO + 03

+0.168600 + 03

+.169 + 03

This number is in
the accumulator

Result in
accumulator also

Number is now back
in 3 significant
digit form.

Example 2 Add 9.99 to .0147; that is, perform the operation;

9.99 + .OlltT

In normalized form the numbers are:

(+.999 + 01) + (+.lltT - 01)

1. Adjust Exponents: +.999 + 01

+0.001470 + 01

2. Add Mantissas;

3. Normalize:

1+. Round:

+1.0001+70 + 01

+0.10001+7 + 02

+.100 + 02 -:>i

1-1+6

•" ." •" •" •' •' ." V ".• V ".* V V V '.* V-'.* " • V V V'J"'4* » ■>''

t
I
I

I?

i
>■.

Now suppose that the stages of the four step addition process

took 70, 100, 60 and 50 nanoseconds (ns) respectively, then the total time

to add our seven pairs' of numbers in a sequential manner would be

7 x (70 + 100 + 60 + 50) = I960 ns

Since each stage can perform its operation autonomously on

different operand-pairs, let us "pipeline" the four-stage addition process,

Since the slowest stage operates at 100 ns we have

Adjust Exponents

Add Mantissas

Normalize

Round

Stage 1

Stage 2

Stage 3

Stage k

In

100 ns
I

100 ns

100 ns

100 ns

Out i

u

u

e
s

iC

At the end of hOO ns the first result appears at the end of the pipe;

after that results come out every 100 ns. (Note that in the sequential

process the first result appears after only 280 ns but they continue to

be created at that rate.) See Figure 1-7 for a snapshot of the pipelined

adder every 100 ns. We see from the figure that the total time to add

7 numbers using our four-stage pipeline adder takes only 1000 ns as

compared with the i960 ns sequential addition.

I-U7

.<--^Vv^V>A/V-.V.'-.'.^V-.S^
• "."."%" I

I

911
c
0

o

to I
c

0\

CO
e
o o
00

J h-
" >i
' r

s^

t- vo
~ s

m >i
r

^^ ^ ^^
s -

vo
>> ^1

o
X £

_» *-^ ^^ ^^
s >>

VO
-

O o »r ^ ~ irv
X tf vo s*"# ^-^ >^ '-'

>>

X i0
X

-
-

o
o

4- vo

VO
X

IA

m
X

cvi

OJ
X

KH VO IA .* s n s ^ s
+ + + + + + +
»r H^

IA
X 4* X K~

f»
M

^ >>
CO cvi

K
+ + + + + +

X^
IA

X X* x<n xw ►r

>> sw sH

+ + + + +
IA

X X^ X X^ ►r

>f tn
th, s01 sH

+ + + +

X X x^ >r

ww sH

+ + +
x00 xw ►r

sw
WH

+ +
cvi

X »r

+ bD-H

•
CQ
Ö

l^ VO IA
h >l >i f» at #

t— VO IA
XXX x-*

-
n

S *
X

-
C\l

X

-

I» ^

x^

IA

X

-3-

-3-
X

^^ r^ ^,
00 CVI H

S -<,- s >>
M A

CO
X xw

^

VO

x^

IA

X
CVI

X

•H
0) K 8
^J Si H
W >t u a) U
<L So (1)
& ^s >

(1)
jg 1 ■P

Vi & .H
o o w

PM Pt
tu

trt
•H CQ

Ä •H

a ^3 ti
a) 0) a)
> -a TD

Ä < <

•

H

s ^

x^

IA s
IA

X x* on

cvi
>>

cvj
h

k^l

1
1-48

^>^-^^r:--N S>>>v^>^:^-^>:b>Vv . -.S^ M >S^^^^L^^^>^:O^^>:^^>:S :•

1 y's

It is, of course, of primary importance to keep the pipe filled

with operands. If the pipe is used sporadically instead of continuously,

• ^
& its purpose is defeated. Other problems may arise if more than one pipe-

line unit exists—for example, an Arithmetic and Logic Unit may have a

Pipeline Adder am" a Pipeline Multiplier. If one pipeline is performing

an operation that needs the result of another operation which is in another

pipe, then efficiency drops while one unit waits on another.

.-~

iv. A Pipeline Instruction Execution Unit

i
Arithmetic and Logic Unit components are not the only sections of

W a computer that can be pipelined to increase execution speed. It is also

possible (although a trickier proposition) to pipeline the instruction

execution section of the Control Unit. (This approach was taken by the

IBM STRETCH computer.)

fib

5
•.■

The process of interpreting and executing an instruction can be

decoupled into several autonomous stages and therefore instructions can be

executed through a pipeline—each instruction in the pipe being in a

semi-finished state of execution. The tricky part of this proposition

comes in when one instruction in the pipe needs the results from the total

execution of another instruction in the pipe. At this stage, the pipe-

lining process must stop and all instructions ahead of the instruction

must be processed through the pipe so that the instruction which needed

the complete results can be given them. Another problem would be a Test-

and-Branch instruction proceeding through the pipe. From where do you
/) %•

JJS' fetch the instructions following the Test-and-Branch? Also, instructions

1
i

E
1-1+9

which modify fields of other instructions (such as the address field)

could not both be allowed in the pipe at the same time. When certain

possibilities such as the ones described above do occur, the pipe must be

allowed to drain or is "flushed out" and the benefits of the pipeline

are temporarily wasted.

In the pipelined Instruction Look Ahead Unit of STRETCH,

instructions were fetched while their predecessors were being executed and

operands were made ready, if necessary. Each instruction was in a stage

of partial completion in the pipeline. The problem of how to handle a

Test-and-Branch or Conditional Branch instruction was solved very straight-

forwardly: the assumption was made that the test would always fail so that

succeeding instructions were fetched from the location contiguous to the

branch instruction. About half the time this guess would be right. Once

programmers were aware of this type of bias they could then write their

programs to take advantage of it.

Summing up: A Pipeline is a mechanism by which a previously

sequential process is broken down into stages, each of which can operate

independently of the other. When the slowest stage is finished, the

output from Stage i is passed on to become the input to Stage i + 1 for all

stages simultaneously. Once the pipe is full, output appears at the end of

the pipe at a time increment equal to the operation time of the slowest

stage.

1-50

IV
V
.A-^-.--.

,
.-
N
.O-.- V>-'>.-A->-. IUI'J!^^^\Aj>J^-^^)l^^V'0-^>^^.A^^ü^Vv ^ .v. A A.-* -V W% ■-...:» -■. .V\-..Jw,.v,..v-.^..^-: . .--..... -.^

"fe-

3. Replication—The Multiprocessor

The general Multiprocessor is the embodiment of the replication

design philosophy; three of the four components of a conventional computer

are replicated many (N) times resulting in a system that can be up to N

times as powerful. See Figure 1-8. We can think of a general multi-

processor as N conventional computers in one system, all sharing the I/O

resources of that system. There may be some information flow from Control

Unit to Control Unit but the main idea is that each Control Unit can

independently and simultaneously execute the program in its memory. Since

the multiprocessor can be executing N distinct streams of instructions

simultaneously, it can, under optimum conditions, effect a time speedup by

a factor of N.

E
ft-

f
• —

t t 1 1

CUi CU2 • • • CUN

s S 1 s ̂ t S ̂ - ' ■ f
y ^

^
s s

I/O ALUj ALU2 • • • ALUN

V V V s. V •v
%
^ i

\
^A ' X

^ 1 1 1

MEMORYj s^FMORYg • • • MEMORYN

i

1-8.

t • • -

,hin

1 \

Figu: re Functional Relations wi-t a General Multiproces sor

1-51

/
</

_•".»•• "j» ■ * '^ •■."-**'» "'-^ * •»* ^f • i ■ ^ * wV • r fc * ■ • - - . ■ ■ » -N ^* k • «^ - • -^» «^ »% w - - * » • -. ■ ta • -^ - * h » wN «.^ -.^ - * w^" ^ «^ * • L > ■ *■ h ■ k ■ .

It is, of course, very expensive to build a true multiprocessor

as outlined by Figure 1-8. There are N times as many Control Units,

N times as many ALUs and N times as many Memories as there are in a

conventional computer. In order to keep the cost at a minimum, the

following question is asked: Which of the functional components: Memory,

ALU, or Control Unit, could be centralized with little or no loss to the

power of the multiprocessing system?

a. Centralize Memory

Memoiy could be lumped into one large memory of N times as many

words instead of N separate memories but little savings in cost would

result—you essentially still have to pay for the same number of bits of

storage. (See Figure 1-9.) The most severe problem that comes from

CUi

ALUi

CU;

ALUz

XI ^X

• • •

• • • cu»

• • • ALUN

MEMORY I/O

Figure 1-9. Multiprocessor with Common (Lumped) Memoiy

1-52

$J

>

ft
•- • • •

m sharing a common memory is the potential bottleneck that exists when more

than one Control Unit wants to store/fetch data or instructions at the same

M» memory location. Additional hardware lines (at additional cost) can be

added to take care of the fetching problem but devising the software to

decide which unit will store first is relatively complicated. Keeping one

Control Unit out of the program instruction area reserved for another

Control Unit requires that appropriate software or hardware be produced to

maintain program integrity. Even if the manufacturer provides the hard-

ware and software, it costs money and that cost is usually passed on to

if the customer. Sharing a common memory might end up costing more money

than distributing the memories among the CUs and ALUs.

;>

£

y\

♦ ■

b. Centralize the Arithmetic and Logic Unit (ALU)

Another approach is to centralize the ALU into an extremely

fast, high-quality ALU that could service all N Control Units. This design

is called the Intrinsic Multiprocessor (see Figure 1-10).

The ALU section of the Intrinsic Multiprocessor is comprised of

many specialized and powerful processing units—some of which may be

replicated (such as the Adder). (These units could be pipelined for a

further increase in speed.)

The Control Units (CUs) can each be executing independent streams

KS of instructions. When an instruction needs to use one of the processing

RD units in the ALU, a request is placed in the Selector. If the desired unit

L
*-•• is free, the operation requested is performed. If all of the units which

«2 1-53

te££ji&&L2SiJ^^ , . \ .' JL, ., > »•• AW-Vf.* f-/;..! --rw-V- A .-- s. f. w?>- -■!

c

rm
CUi

T
CUg

SELECTOR

CUN

EL J

 f—
1 / —i—r— -^

| ADDER | | ADDER | | MULT

ALU

| DIVIDE | | SHIFT |

MEMORY I/O

Figure 1-10. Functional Block Diagram of Intrinsic Multiprocessor

could have performed the operation are currently busy, the request is

placed in a queue to be serviced when the requested unit(s) become free.

If the latter is the case, the CU which requested a unit that was busy will

be temporarily halted in its execution of instructions by the Selector.

Note that memory is also centralized in this version of the

Intrinsic Multiprocessor so that a common memory is shared by all CUs

for instruction and data storage. Since memory is centralized it is

necessary that this type of multiprocessor have a specialized instruction

1-54

- ■ .. .'- .- t'- -*. .' . *. -*- -• ..' -* .• «?_«; .. ^_ .--'--• J > —~ -^ -•■*-^ -•-' -•-•-, J -' ^ -'-•-*-«-«-« -^ -* - -^ -*-— - k »■ -J

'.-•

■ 'S

t^

m

!S

repertoire. Results could not be stored temporarily in a register within

the ALU, since it might hold up the results requested by another CU's

operation. A solution-would be to design the instructions to be of the

three-address form: the two operands and the location in memory indicating ■
HI where to store the result.

fffl
(V The design is effective if all of the specialized units in the
023

ALU can be kept busy for a high percentage of the time. This means that

K the instructions coming to the ALU from the CUs be mixed in roughly the

same proportion as the processing units present in the ALU. For further

efficiency, the same instruction type should not appear at the same time

K' in all CUs. If all conditions are right, a speedup is gained since the

processing function (in the ALU) has been decoupled from the control

function and both of these operations can proceed simultaneously—the ALU

Hffl is not waiting on the CU to fetch and decode instructions. Rather than

have many ALUs not being lOOjS utilized (as is usually the case in the

jP general multiprocessor) the one Super-ALU of the Intrinsic Multiprocessor
(•V

shares its resources among the many CUs.

c. Centralize the Control Unit (CU)

When the Control Unit is centralized (the design option taken

Ö by ILLIAC IV) the array of ALUs is called an Array or Vector Processor.

>. "Array" is perhaps not the best choice of words because it can bring to

mind a two-dimensional picture. In all further discussions it is very

I important for the reader to understand that the term "Array" refers to a

1-55

one-dimensional array—a row, a column, or still better, a vector. Now,

what does it mean when we say a computer has an Array Processor or a

Vector Processor? Before we answer this question, let us recall some

history:

In the early days of computing (late forties and early fifties)

data was processed by the CPU in a serial mode. Pulses representing the

bits which in turn represented numbers went into the CPU "one-at-a-tirae"

and were processed (added, subtracted, etc.) sequentially. The process

could not be completed until after the last pulse had entered the CPU.

In order to speed up the operation of the CPU, its design was

changed to accept data in a parallel mode or "all-at-once." Thus, if a

word was N bits long, the parallel CPU could operate N times as fast as

a serial CPU. See Figure 1-11.

Data

Serial CPU 0101100011001 CPU

Data

Parallel CPU 0101100011001

n * * i i i i
CPU

L 0 0 1

E5
Figure 1-11. Serial CPU vs. Parallel CPU

<&

>~

•»■

1-56

t

I
i

r

If we new extend this concept from dealing with the N bits in a

word all-at-one-time to dealing with N words in a vector all-at-one-time

we have the gist of a vector processor. Although a conventional computer

can operate on the many hits within a word in parallel, the contents of

the word is just one single number, or a scalar. If we devise a computer

with an Arithmetic and Logic Unit that can deal with N words simulta-

neously, then we can view each word as a component of a vector and say

that the machine has a Vector or Array Processor. (See Figure 1-12.)

Each ALU within the ALU array deals with one component of the vector.

Since an Array Processor performs its operations (+, -, x, T,

AND, NOT, OR, etc.) on operands that are vectors, not scalar numbers, when

you execute the instruction "Add A to B and store the result in C" what you

I
I
g
B

I:

i
t
(ft • . ■ r

ALUi

MEMORY!

ALU2

I
MEMORYg

CU

• • •

• • •

E-*——}
ALUN

I
MEMORYN

I/O

Figure 1-12. A Vector or Array Processor

1-57

are actually doing is adding the vector A to the vector B and storing the

result to a vector named C:

A = la., a-j • • • i 81 /

B= (b^ b2,bj

C = (aj^ + bj^, a2 + b2, ..., an
+ t^)

Since there is only one Control Unit, the ALU Array can only

respond in a "lock-stepped" mode to each instruction. For example, if the

instruction is ADD, then all N of the ALUs perform the ADD operation; there

is no instruction which can cause some ALUs to add while others are

multiplying. Every ALU of the Array performs the operation in this lock-

stepped fashion, but the operands are vectors whose components can be and

usually are different.

There is a nice distinction that can be drawn at this point

between the operation of a Pipeline Processor and that of an Array

Processor:

In a Pipeline, each stage performs a different operation simultaneously.

In an Array Processor, each ALU performs the same operation simultaneously.

k. ILLIAC IV

ILLIAC IV is a direct descendant of the SOLOMON Computer which

was designed by D. L. Slotnick and built by the Westinghouse Corporation

in prototype. Before we take our first look at ILLIAC IV, let us briefly

examine the SOLOMON Computer. _. 11

1-58

ss^^*^^^

T7

Mi

S :■■

i

I

SOLOMON has 102k Processing Elements (PE) each element having

U096 bits of storage. However, since all operations performed within a PE

are serial-by-bit (and not parallel as in current conventional machines)

the speedup factor is not 102li but 1024/N where N is the number of bits in

a word. The serial-by-bit operation of the PEs decreases the speed of the

machine but it also lowers its cost and makes possible variable word

lengths.

v
Each PE has its own memory but can be instructed to reference

the memory of its four closest neighbors. What constitutes a neighbor is

shown by Figure 1-13. If the PEs are viewed as a 32 x 32 array, each PE

(except the border ones) has a closest North, East, South and West

m

I;

r~

NETWORK
SEQUENCER

INSTRUCTION
STORAGE

1 - 2-5

IIZE
S3 - 34 - 3S

65-66-1 67

1 993 994 H 995

32

—ir]s=—■

L

BUFFER I/O

1024

Figure 1-13. Functional Block Diagram of SOLOMON

r."
i>: 1-59

»*• •> -j. •!> "J^J. -J. • .\» 'V-« •> • • "J.% -\- • J- v ';• 'J- v • • v "•• ■■•.-■» »J< «> • 'j-' - ".■ •.- •.• ■.• ■ •,- .• ';• , ;V.;. /v"v-:-VV

neighbor. Hardware connections between these PEs allow for the transfer

or routing of information from PE to PE.

Also shown in Figure 1-13 is the Network Sequencer or Control Unit

which interprets the instructions stored from a special Instruction Storage

Memory. (Data is stored within an individual PE memory and so program and

data are not stored together on SOLOMON.)

The border PEs (Numbers 1, 2, 3, 32; 33 and 6U; 65 and 96;

..., 993, 99^, 995, 10210 all have at least one free connection that

can, under program control be linked to other border PEs. This allows the

programmer to configure the PE memory routing connections to suit the

problem.

The Input/Output is handled by the L-Buffer which has direct

connections only to the rightmost column of PEs (Numbers 32, 6U, 96, ...,

102k). Once data has been loaded into these PEs via the L-Buffer, it

can be further distributed via the "4 nearest neighbor" connections which

exists within the array.

Each PE also contains a programmable mode register which deter-

mines whether or not that PE will or will not respond to an instruction

generated by the Network Sequencer.

A later version of SOLOMON, SOLOMON II, upgraded each PE to

parallel bit operation and added an index register so that each PE can

access different locations within its memory as all PEs perform the same

operation simultaneously.

1-60

The original design of ILLIAC IV contained four Control Units:

each of which controlled a 6k ALU Array Processor. The version being built

by the Burroughs Corporation will have only one Control Unit which drives

6k ALUs as shown in Figure 1-lk. It is for this reason that ILLIAC IV is

sometimes referred to as a Quadrant (one-fourth of the original machine)

and it is this abbreviated version of ILLIAC IV that will be discussed for

the remainder of this book.

::■;

The Control Unit (CU) has been decoupled from the Array Processor

so that certain instructions can be executed completely within the

resources of the CU at the same time that the ALU is performing its vector

&

*

i
r
L'.- m

111
U.

o

CU

PEo

unnrf IDATAI CONTROL
LINEI 1BUS |SI6NALS

PEi • •

PEMQ

T
PEMi • • •

I/O
(B6500)

1
PE63

PEM63

L 3
Figure 1-1^. Functional Block Diagram of ILLIAC IV

1-61

 «'

operations. In this way another degree of parallelism is exploited in

addition to the inherent parallelism of 6k ALUs being driven simultaneously.

Each ALU responds to appropriate instructions if the ALU is in

an active mode. (There exist instructions in the repertoire which can

activate or de-activate an ALU.) Each ALU performs the same operation

under command from the CU in the lock-stepped manner of an Array Processor.

Each element of the ALU Array is not called by its generic name (ALU) but

is called a Processing Element or PE.

Each PE has a full complement of arithmetic and logical circuitry

and under command from the CU will perform an instruction "at-a-crack" as

an Array Processor. Each PE has its own 20^8 word 6U-bit memory called a

Processing Element Memory (PEM) which can be accessed in about 350 ns.

Special routing instructions can be used to move data from PEM to PEM.

Additionally, operands can be sent to the PEs from the CU via a full-word

{6k bit) one-way communication line and the CU has eight-word one-way

communication with the PEM array (for instruction and data fetching).

An ILLIAC IV word is 6k bits and data numbers can be represented

in either 6it-bit floating point, 6^-bit logical, U8-bit fixed point, 32-bit

floating point, 24-bit fixed point, or 8-bit fixed point (character) mode.

By utilizing the first, fourth and sixth data formats listed above the

6k PEs can hold a vector of operands with either 64, 128, or 512 components.

Since ILLIAC IV can add 512 operands in the 8 bit integer mode in about

66 nanoseconds, it is capable of performing almost 10 of these "short"

1-62

o^

i

^N additions per second. ILLIAC IV can perform approximately 150 million

t 6^-bit, rovinded, normalized floating-point additions per second.

The I/O is handled by a B6500 Computer System. The Operating

System, including the assemblers and compilers, also reside in the B6500.

m The specific option of centralizing the CU of the general

H multiprocessor as a basis for ILLIAC IV was chosen for two main reasons:

l) Cost. A very high percentage of the cost within a digital n
computer is tied up in the Control Unit circuitry. Replication of this

component becomes very expensive and therefore choosing the option of

centralizing the Control Unit can save more money than centralizing either

Memory or the ALU.

n

2) There exist large classes of problems where the data to be

manipulated can be expressed as vectors and not sealers. These problems

« range from scientific ones dealing with matrices and the solution of

■ ordinary and partial differential equations to business problems as
I

practical as payroll. In a business problem such as payroll, the same

k; algorithm (payroll deduction) is applied to different data (each indi-

vidual in the company has a different base pay and has chosen different
m
II deduction options). One Control Unit can apply the same algorithm

fv repetitively to the different data (each data point can be thought of as

a component of a vector—each component is operated on by a different PE).

/-' ILLIAC IV was designed especially to solve large problems wherein the

same algorithm is performed repetitively on data that can be structured

as components within a vector. i
1-63

g^^£^££M^£a^

CHAPTER I ~ REFERENCES

1. Graduate Catalog for the Department of Computer Science, University of

Illinois.

2. R. K. Richards, Electronic Digital Systems. New York: John Wiley and

Sons, Inc., 1966.

3. R. V. Wilkes, Automatic Digital Computers. New York: John Wiley and

Sons, Inc., 1956.

h. Saul Rosen, "Electronic Computers: A Historical Survey," Computing

Surveys, March 1969, Vol. 1, No. 1, pp. 7-36.

5. Lee A. Hollaar, "A History of Computer Organizations," ILLIAC IV

Document No. 212, Department of Computer Science Pile No. 819,

Urbana, 111.: University of Illinois at Urbana-Champaign,

May 8, 1970.

6. D. L. Slotnick, W. C. Borck, and R. C. McReynolds, "The SOLOMON

Computer," Proceedings AFIPS 1962 Fall Joint Computer Conference,

Vol. 22, pp. 97-107 (Spartan Books, Washington, D. C).

7. D. L. Slotnick, "Unconventional Systems," Proceedings AFIPS 1967

Spring Joint Computer Conference, Vol. 30, pp. U77-U81 (Spartan

BOOHB, Washington, D. G.)

1-61*

"-•:

ä

z

is

IT

:■

r.-

P

r

CHAPTER II — HARDWARE STRUCTURE

TABLE OF CONTENTS

Page

A. Summary 11-1

B. ILLIAC IV Array—General Description II-2

1. Control Unit (CU) 11-2
2. Processing Element (PE) II-1*
3. Processing Element Memory (PEM) II-5
k. Data Paths II-5

a. Control Unit Bus (CU Bus) 11-6
b. Common Data Bus (CDB) II-6
c. Routing Network II-6
d. Mode Bit Line H-T

C. Some Illustrative Problems II-9

1. Adding Two Aligned Arrays II-9

a. N = 61+ 11-10
b. N < 6U 11-11
c. N > 61+ 11-12

2. Adding Two Unaligned Arrays 11-13

a. Store the C Array Skewed II-llt
b. Skewing at Execution Time 11-15

3. Uncoupling Sequential Code II-16

D. ILLIAC IV Array—A More Refined Description 11-20

1. Processing Element (PE) 11-21

a. Mode Register (ROD) 11-22
b. The Rest of the PE 11-26

2. Processing Unit (PU) 11-28

a. Processing Element Memory (PEM) 11-28
b. Memory Logic Unit (MLU) 11-29

3. Control Unit (CU) 11-31

i'>' a. ADVAST 11-31
b. EINST II-3H

K c. MSU 11-38
L d. TMU 11-39

e. ILA 11-39

II-l

NSS^y:^: :^^

:-."•

TABLE OF CONTEMTS (continued)

Page

E. Another Illustrative Problem 11-^1

1. A Sequential Solution to the Problem 11-^9
2. A Parallel Solution to the Problem II-5^

F. Some Data Allocation Considerations 11-59

G. ILLIAC IV Input/Output (I/O) System II-6l

1. I/O Subsystem 11-61*

a. Control Descriptor Controller (CDC) II-6U
b. Buffer Input/Output Memory (BIOM) II-öU
c. Input/Output Switch (lOS) . . . II-65

2. Disk File System (DFS) 11-66
3. B65OO Control Computer II-67

a. B65OO Central Processing Unit (CPU) 11-68
b. B65OO Memory 11-68
c. B6500 Multiplexor 11-68
d. B65OO Peripherals II-69
e. Data Communicatiors Processor II-69
f. Laser Memory 11-70
g. AEPA Network Link II-TO

H. Conclusions and Opinions II-T1

References II-T^

Il-ii

^yy^^^y&^c^^

P LIST OF FIGURES

Figure Page

ü II-l. ILLIAC IV System Organization II-l

m. II-2. ILLIAC IV Array II-3

II-3. PE Routing Connections ' II-8
r.-
m ll-k. Arrangement of Data in PEM to Accomplish
::-' DO 10 I = 1, 6U

10 A(I) = B(I) + C(I) 11-10
:-;
fiS II-5. Arrangement of Data in PEM to Accomplish

DO 10 I = 1, 66
[v 10 A(I) = B(I) + C(I) 11-12

I
II-6. Arrangement of Data in PEM to Accomplish

DO 10 I = 2, 6U
m io A(I) = B(I) + cd-i) u-ik

II-7. Status of Data in PEM, RGA and RGR while Executing
^ DO 10 I = 2, 62*
PP 10 A(I) = B(I) + C(I-1) 11-16

k-, II-8. Status of Data in PEM, RGA, RGR, and Mode Status (ROD)
£%• while Executing

DO 10 I = 2, 6k
10 A(I) = B(I) + A(I-1) 11-19

I
II-9. Processing Element (PE) 11-21

11-10. Processing Unit (PU) 11-28

II-ll. PU Cabinets (PUCs) and CU Bus 11-31
Ml

K 11-12. Advanced Station (ADVAST) Section of the Control Unit . . . 11-32

11-13. Final Station (FINST) Section of the Control Unit 11-35
v *
m U-lk. FINQ acts as a Buffer between ADVAST and FINST;

ADVAST and FINST act as a Pipeline 11-36

■

■V

11-15. Instruction Look-Ahead (ILA) Section of the Control Unit . . II-1+0

II-16. Steady-State Temperature Distribution on a Slab II-13

II-iii

LIST OF FIGURES (continued)

Page

11-17. Temperature on a Slab a Units by b Units is a
Function of x and y 11-4^

II-18. Digitized Slab II_^5

11-19. Graphical Description of Solution 11-1+5

11-20. Temperature as a Function of i and J 11-1+7

11-21. Specific Interior and Boundary Conditions for Sample Problem U-kQ

11-22. Exact Solution for the Interior and
Boundary Conditions given in Figure 11-21 11-1+9

11-23. A FORTRAN Program for a Sequential
Solution to the Sample Problem 11-51

II-2i*. Values of the Temperature after One, Ten, and
Fifty Relaxations using Sequential Method 11-52

11-25. Values of the Temperature after One, Ten, and
Fifty Relaxations using Parallel Method 11-57

11-26. Comparison of Storage 11-59

11-27. Storage Allocation of U Array for 6k x 6k Set
of Mesh Points II-61

11-28. ILLIAC IV I/O System II_62

11-29. ILLIAC IV System II-63

11-30. Example of Disk Queuer Function II-67

II-iv

o-:

'ktiS£££^

ft

CHAPTER II

HARDWARE STRUCTURE

A. Summary

The ILLIAC IV System can be organized as in Figure II-l. The

ILLIAC IV System consists of the ILLIAC IV Array plus the ILLIAC IV I/O

System. The ILLIAC IV Array consists of the Array Processor and the

Control Unit. In turn, the Array Processor is made up of 6k Processing

iy

.-V

I

ILLIAC H SYSTEM

ILLIAC EC
ARRAY

ARRAY
PROCESSOR

CONTROL
UNIT (CU)

64
PEs

64
PEMt

I/O SUBSYSTEM DISK FILE
SYSTEM (DPS)

CONTROL DESCRIPTOR
CONTROLLER (COO

BUFFER INPUT/OUTPUT
MEMORY (BIOM)

ILLIAC IE
I/O SYSTEM

B6500 COMPUTER

B6900
PERIPHERALS

INPUT/OUTPUT SWITCH
(IOS)

Figure II-l. ILLIAC IV System Organization

II-l

Elements (PEs) and their 6k associated memories—Processing Element

Memories (PEMs). The ILLIAC IV I/O System comprises the I/O Subsystem,

the Disk File System and the B65OO computer. The I/O Subsystem is

broken down further to the CDC, BIOM and I0S. The B6500 is actualOy a

large-scale computer system by itself.

The ILLIAC IV Array will be discussed first, in a general

manner, followed by some illustrative problems which indicate some of

the similarities and differences in approach to problem solving using

sequential and parallel computers. The problems also serve to illustrate

how the hardware components are tied together. Following is a more

detailed description of the ILLIAC IV Array, then another illustrative

problem, this time a more realistic one—solution of the temperature

distribution on a two-dimensional slab; some data allocation considera-

tions are then discussed. The ILLIAC IV I/O System is discussed briefly,

and some conclusions and opinions end the chapter.

B. ILLIAC IV Array—General Description

Figure II-2 represents the ILLIAC IV Array—the Control Unit plus

the Array Processor.

1. Control Unit (CU)

The Control Unit can be viewed as a small unsophisticated

computer in its own right. Not only does it cause the 6U Processing

Elements to respond to instructions, there is a repertoire of instructions

II-2

1?

Ü*

a

.'.

r.
r.
•-.■

TO PE63

CONTROL UNIT

CONTROL UNIT BUS

COMMON i INSTRUCTION
DATA |CONTROL
BUS 4 PATH

• • • -

ROUTING
NETWORK

• • •

• • •

PEM63

• • •

2047

I

TOPEo

IT.

L

Figure II-2. ILLIAC IV Array

II-3

- ' - 1 «-'•-■- -•-»-.-.-'■-.-• -.-«-■-•-•-'-'■-^-«-•-■'--^^.•-•-'-■'-» .-.-.-..t-..i-.-m-.-«-«-i-..l-J-^-.-^ --»..

that can be completely executed within the resources of the Control Unit,

and the execution of these instructions is overlapped with the execution

of the instructions which drive the Processing Element Array.

The Control Unit contains 6k integrated circuit registers called

the ADVAST Data Buffer (ADB) which can he used as a high speed scratch-pad

memory. ADVAST is one of the five functional components of the CU and

will be described in greater detail in section D 3 a. Each register of

the ADB (DO through D63) is 6J+-bits long. The CU also has k Accumulator

registers called ACARO, ACAR1, ACAR2, and ACAR3 each of which is also

6k bits long. The ACARs can be used as accumulators for integer addition,

shifting. Boolean operations and holding loop control information—such as

the lower limit, increment and upper limit. In addition the ACARs can be

used as index registers to modify storage references within the memory

section (PEM).

2. Processing Element (PE)

Each Processing Element (PE) is a sophisticated ALU capable of a

wide range of arithmetic and logical operations. There are 6^ PEs numbered

0 through 63. Each PE in the array has 6 programmable registers: the A

register (EGA) or Accumulator, the B register (RGB) which holds the second

operand in a binary operation (such as Add, Subtract, Multiply or Divide),

the R or routing register (RGR) which transmits information from one PE to

another, the S register (RGS) which can be used as temporary storage by

the programmer, the X register (RGX) or index register to modify the

11-k

i

^•'••-S-V-'.V-V. -•.''.'-■•• •-• -' %■• iJ -• v' I ^,.—^v;,;.-..-.-J"^-.'-. -^-.*-J-L■>l-.V-Vr.-.^'V-'V.V- s.^.^.-.»r./. w«•.*■> {.i.t^tOf^

address field of an instruction, and the D or mode register (RGD) which

controls the active or nonactive status of each PE independently. The

mode register determines whether a PE will be active or passive during

instruction execution. Since this register is under the programmer's

control, individual PEs within the array of 6k PEs may be set to enabled

(active) or disabled (passive) status based on the contents of one of the

other PE registers. For example, there are instructions which disable

all PEs whose RGR contents are greater than their RGA contents. Only

those PEs in an enabled state are able to execute the current instruction.

3. Processing Element Memory (PEM)

Each PE has its own 20^8 word, 6U-bits per word, random access

memory. Each memory is called a Processing Element Memory or PEM and they

are numbered 0 through 63 also. A PE and PEM taken together is called a

Processing Unit or PU. PE. may only access PEM. so that one PU cannot

modify the memory of another PU. Information can, however, be passed from

one HJ to another via the Routing Network described next in section B 4 c.

k. Data Paths

Besides the Instruction Control Path which drives the 6^ PEs

during the execution of an instruction there are four paths by which data

flows through the ILLIAC IV Array. These paths are called the Control

Unit Bus (CU Bus), the Common Data Bus (CDB), the Routing Network, and the

Mode Bit Line.

II-5

.^ f» .•■ :>v->:.-:/^-><<.-':^>^>::

■a-..,».-.B-,«-

a. Control Unit Bus (CU Bus)

Operands or data from the PEMs in blocks of eight words can be

sent to the CU via the Control Unit Bus (CU Bus). The instructions to

be executed are distributed throughout the PEMs and are also fetched in

blocks of eight words to the CU via the CU Bus as necessary. Some of the

instructions are completely executed within the CU; these are called

ADVAST instructions. Most of the instructions, however, cause the 6k PEs

to perform an operation simultaneously or in parallel; these are called

FINST/PE instructions and are made ready for execution by the PE Array

in a section of the Control Unit called FINST. The operation of ADVAST

and FINST will be more fully described in section D of this chapter.

b. Common Data Bus (CDB)

Information stored in the Control Unit can be "broadcast" to the

entire 6k PE Array simultaneously via the Common Data Bus (CDB). A value

such as a constant to be used as a multiplier need not be stored 6k times

in each PEM; instead this value can be stored within a CU register and

then broadcast to each enabled PE in the array. In addition the operand

or address portion of an instruction is sent to the PE array via the CDB.

c. Routing Network

Information in one PE register can be sent to another PE register

by special routing instructions, (information can be transferred from PE

11-6

"■^ •"'^•'•-•'•-•'^•'•-^•'^' ' ^'-^

& ■•

■ register to PEM by standard LOAD or STORE instructions.) High speed rout-

ing lines run between every RGR of every PE and its nearest left and right

^ neighbor (distances of -1 and +1 respectively) and its neighbor 8 positions

M to the left and 8 positions to the right (-8 and +8 respectively). Other
I

routing distances are effected by combinations of routing -1, +1, -8, or

•'■! +8 PEMs; that is, if a route of 5 to the right is desired, the software
• *

will figure out that the fastest way to do this is by a right route of 8

••! followed by three left routes of 1. See Figure II-3 for a picture of the

,■ • connectivity which exists between PEs. As can be seen from Figure II-3,

I ** PEQ is connected by routing lines to PE , PE10, PE17, and PEg. PE. is

k connected to PE.-g, PE , PEn, and PEg.,.

^ d. Mode Bit Line

& The Mode Bit Line consists of one line coming from the ROD of

each PE in the Array. The Mode Bit Line can transmit one of the eight mode

bits of each ROD in the array up to an ACAR in the Control Unit. Since

each bit of an ACAR holds one bit of each ROD for the PE array, special

Control Unit instructions can test and branch on the "mode pattern" in

the ACAR.

In a very gross fashion then, this is the ILLIAC IV Array.

In order to illustrate how all of this hardware is tied together, we

shall next look at some simple problems which utilize the Array Processor

of ILLIAC IV.

i II-7

E!&;:^ i. i s. - ^^&-^^

56 57 58 59 60 61 62 63

63

23

31

39

47

55

<^i^>-^>-K^-<^t^)

24) (25) (26

32) (33) (34) (35) (36) (37

56) (57) (58) (59) (60) (61

(8>-<9^^>_^>-(3>-<I^-^^

15 @ 0 ® (19 @ @ (S

©—®—®—©—€
38) (39

®—©—®—©—6)—®—®—e

®—®—®—®—®—®—®—€>
62) (63

16

24

32

40

48

56

■ -

Figure II-3. PE Routing Connections

II-8

5#
C. Some Illustrative Problems

1. Adding Two Aligned Arrays

Let us first consider the problem of adding two arrays of numbers

together. The FORTRAN statements for a conventional computer might look

like:

DO 10 I = 1, N

10 A(I) = B(I) + 0(1)

The two FORTRAN instructions are compiled to a set of machine

language instructions which include initialization of the loop, looping

instructions, and the addition of each element of the B array to the

proper element in the C array, and storage to the A array. Except for the

initialization instructions , the set of machine language instructions arr

executed N times. Therefore, if it takes M microseconds to pass once

through the loop, it will take about N times M microseconds to perform the

above FORTRAN code.

Now suppose the same operations are to be performed on ILLIAC IV.

Arrangement of the data in Memory becomes a primary consideration—the

data must be arranged to exploit the parallelism of operation of the PEs

as effectively as possible. The worst way to use the PEs would be to

allocate storage for the A, B, and C arrays in Just one PE Memory. Then

instructions would have to be written just as they were in a conventional

machine to loop through an instruction set N times.

II-9

Mte^WKti^^

Let us consider the problem as consisting of three cases:

N = 61|, N < 6it, and N > 61+ and then see what each case entails in terms

of programming for ILLIAC IV.

a. N = 64

To reflect the case where N = 64, we have arranged the data as

shown in Figure 11-h. In order to execute the two lines of FORTRAN code,

only the three basic ILLIAC IV machine language instructions are necessary:

1) LOAD all PE Accumulators (RGA) from Location a + 2 in all PEMs.

2) ADD to the PE Accumulators (RGA) the contents of Location a +1 in all PEMs.

3) STORE result of all PE Accumulators to Location a in all PEMs.

LOCATION 0

LOCATION a
LOCATION a+1
LOCATION a+2

LOCATION 2047

Figure 11-k.

PEo.
R6A

1 1

PEi
ROA

1 1
R6A r-i

1) 1

• • •

•
•
•

•
•
•

•
•
•

AU) A(2) A(64)
B(l) B(2) B(64)
C(l) C(2) C(64)

•
•
•

•
•
•

•
•
•

PEMo

Arrang

10

am«

DO

A

PEMi

snt of

10 I

[I) = B

Data in PEM to l

= 1, 6k

(I) + C(I)

PEMM

Iccomplj .sh

.•■■:•.

11-10

W^^V^^^

i
Since every PE will execute each instruction at the same time or

in parallel, accessing its own PEM when necessary, the 6k loads, additions,

and stores will he performed while just three instructions are executed.

This is a speedup of 6^, for this case, in execution time.

The three instructions to perform the 6^ additions in ILLIAC IV

Assembly Language (ASK) would actually look like:

LDA ALPHA + 2 ;

ADEN ALPHA + 1;

STA ALPHA;

(Note that since each instruction operates on a vector, a memory location

can be considered a row of words rather than a single word.)

b. N < 6U

Since there are exactly 6k PEs to perform calculations, a proper

question is: what happens if the upper limit of the loop is not exactly

equal to 6U? If the upper limit is less than 6U, there is no problem

other than the total PE array will not be utilized.

The trade-off the potential user of ILLIAC IV must consider here

is how much (or how often) is ILLIAC IV under-utilized? If the under-

utilization is "too much" then the problem should be considered for running

on a conventional computer. However, the user should keep in mind that

he usually doesn't feel too guilty if he under-utilizes the resources of

ii-n

c* ■-.v.- % .•- .^ .-. .">■,

a conventional system—he doesn't use every tape drive, every bit of

available core, every printer and every byte of disk space for most of

his conventional programs.

c. N > 61t

When the upper limit of the loop is greater than 64, the pro-

grammer is faced with a storage allocation problem. That is, he has various

options for storing the A, B and C arrays and the program he writes to

perform the 2 FORTRAN statements will vary considerably with the storage

allocation scheme chosen. To illustrate this let us consider the special

case where N = 66 with the A, B, and C arrays stored as shown in Figure II-5.

PE0

R6A
1 1

1
LOCATION 0

•
•
•

LOCATION a A(l)
LOCATION a+l A(66)
LOCATION a+2 B(l)
LOCATION o+3 B(65)
LOCATION a+4 CU)
LOCATIONa+S C(65)

•
•
•

LOCATION 2047

PEMQ

R6A
I 1

A(2)
A(66)
B(2)

B(66)
C(2)

C{66)

PEMi

• • •

PEes
ROA

A(64)

B(64)

C(64)

PEMss

Figure II-5. Arrangement of Data in PEM to Accomplish

DO 10 I = 1, 66

10 A(I) = B(I) + 0(1)

11-12

I

To perform the 66 additions on the data stored as shown in

Figure II-5» Six ILLIAC IV machine language instructions are now necessary;

LOAD RGA from Location a + k

ADD to RGA contents of Location a + 2

STORE result to Location a

LOAD RGA from Location a + 5

ADD to RGA contents of Location a + 3

STORE result to Location a + 1

The addition of two more data items to the A, B and C arrays not

only necessitates extra ILLIAC IV instructions but complicates the data

storage scheme. In this instance, the programmer might as well DIMENSION

the A» B and 0 arrays to 128 as 66. Note that the particular storage

sdEüeme shown in Figure II-5 wastes almost 3 rows of storage (l86 words).

Tfce storage could have been packed much closer so that B(l) followed A(66)

in PE_ of rcw a + 1, but the program to add the arrays together would have

to do much more shuffling to properly align the arrays before adding. An

ILLIAC IV progrjsn Is highly dependent on the storage scheme chosen.

2. Adding Two Uiiall^'f Jrroys

Now let us consider how we would -"-"form the following FORTRAN

statements using ILLIAC IV;

DO 10 I = 2, 6k

10 A{1) = B(I) + C(I-1)

11-13

This program could be effected in either of two ways: One way-

would be to store the C array "skewed" or offset one element to the right

at compilation time; the other way is to store the C array normally and

perform the skewing at execution time.

a. Store the C Array Skewed

When we choose this method to effect the FORTRAN program, we

store the data as shown in Figure II-6. Before executing the program, the

user may wish to disable PE-. By storing the data skewed to begin with, we

PEM, PEM,

PEo

RGA

PEl

ROA

PE2

ROA

1 1 1 1 1 1
4 i

i <

►

p

i

>
LOCATION 0

•
•
•

•
•
•

•
•
•

LOCATION a A(l) A(2) A(3)

LOCATION a+1 B(l) B(2) B(3)
LOCATION a-I-2 — C(l) C(2)

•
•
•

•
•
•

•
•
•

LOCATION 2047

PEM,

• • •

PE«3

RGA

• • •
A(64)
B(64)
C(63)

*

PtM, ««

Figure II-6. Arrangement of Data in PEM to A' ^omplish

DO 10 I = 2. 61+

10 A(I) = B(I) + 0(1-1)

11-lk

J

s

"->. I

t

I

L-:

accomplish our goal at compilation time and the execution time instructions

would be of the form

DISABLE PE0 (optional)

LOAD RGA from Location a + 2;

ADD to RGA contents of Location a + 1;

STORE result to Location a;

h. Skewing at Execution Time

B The second way to effect this program is to store the data

SS "straight", i.e., exactly as shown in Figure 11-k but to have the ILLIAC IV
6

program skew the data using the ROUTE instruction; then the addition is

performed as above. The ILLIAC IV commands would be of the form:

1) All PEs LOAD RGR from Location a + 2.

2) All RGRs ROUTE contents one PE to the right (the route is

jg end-around so that RGR of PEg_ goes to RGR of PEQ).

,-. 3) All PEs LOAD RGA from RGR.

Note: After this third instruction is executed the

W data is stored as shown in Figure II-7.

1+) All PEs ADD to RGA the contents of Location a + 1.

5) All PEs STORE the result in RGA to Location a.

I

K Note that after the execution of the above five instructions, A(l) will

t
contain B(l) + 0(610 if PE. was not disabled.

11-15

PEo

R6A R6A

PEf

R6A
• • •

PE,8

RGA
1 C(64i | 1 CU) | 1 C(2) | 1 C(63) I

R6R RGR RGR RGR
1 CI64) | 1 cli) | 1 C2) | | C|63| |

11

< > 4 1

LOCATION 0

LOCATION a

LOCATION a+1

LOCATION 0+2

LOCATION 2047

• • •

•
•
•

•
•
•

•
•
•

•
•
•

A(l) A(2) A(3) A(63)

B(l) B{2) B(3) 8(64)

C{1) C(2) C(3) C(64)
•
•
•

•
•
•

•
•
•

•
•
•

Figure 11-7. St

Th
of

PEMo

at us of

E

10 A

e conte
the pr

D

0

(I

nt
og

PEM!

at a in

10 I

) =B(I

3 of PE
ram on

PE1

=

) •

M,
pa<

PEMe PEMM

VI, ROA and RGR while Executing

2, 6k

»■ C(I-1)

RGA and RGR are shown after Step 3
5e 11-15.

3. Uncoupling Sequential Code

Finally let us consider the FORTRAN code:

DO 10 I = 2, 6k

10 A(I) = B(I) + A(l-l)

How would we do the above instructions on a parallel computer such as

ILLIAC IV? At first, it appears we cannot perform the above algorithm

11-16

LVv* «"» .* .■••*.'•,"• ><T> w>i"* >.> '."* ."" V^'."*' »'■'« ■ '«"'"■«'» '«> '.'" LVIV %" ■.' \' • ■ ■■■ ! ■' '"• "> V "-' V %"/■■' V.V« •*.>'. ■"*''« ''« Tii rVr».,"~«.*'' '"•."•.■ ».'1

t

^J'

i

on ILLIAC IV tecause it is inherently sequential. If we recognize that the

2 FORTRAN statements above are only a shorthand for 63 FORTRAN statements:

A(2) = B(2) + A(l)

A(3) = B(3) + A(2)

s
A(63) = B(63) + A(62)

A(6U) = 3(610 + A(63)

and that each of the 63 statements is executed sequentially, we see that

each statement in the sequence relies on the result computed from the

previous statement. That is, A(3) cannot be computed until the statement

above it has computed A(2). Therefore the 63 additions cannot be done in

parallel, if we literally try to apply the two FORTRAN statements as they

stand. However, using mathematical subscript notation:

i
A2 = B2 + A1

A3 = B3 + A2 = B3 + B2 + Al

A^ = B^ + A3 = B^ + B3 + B2 + A1

it

I

hS^ + h-l+ '•• B2 + Al

We see that the elements of the A array can be computed independently using

the formula

N
AN = Al + 4 Bi for 2 < N < 61+

11-17

•>■■
^ .• ■ •\>vy. * r * *JI " j, «I •,, Ä • m - * w « r

;y?^-?TS-^^,«,,»^TT»BaBws^™

S = A(l)

DO 10 N = 2, 6U

S = S + B(N)

10 A(N) = S

The above FORTRAN code is equivalent to the original code (its end results

are the same) but now the computation of the A array has been decoupled so

that each value of A in the array can be computed independently.

An arrangement of data to effect this program is shown in

Figure II-8 and the program might be as follows:

1) Enable all PEs. (Turn ON all PEs.)

2) All PEs LOAD RGA from Location a.

3) i *- 0.

k) All PEs LOAD RGR from their RGA. (This instruction is performed
by all PEs, whether they are ON (enabled) or OFF (disabled).)

5) All PEs ROUTE their RGR contents a distance of 21 to the right.
(This instruction is also performed by all PEs, regardless of
whether they are ON or OFF.)

6) J - 2i - 1.

T) Disable PEs numbered 0 through j. (Turn them OFF.)

8) All enabled PEs ADD to RGA the contents of RGR. (Figure II-8
shows the state of RGR, RGA and ROD (the MODE STATUS)~which
PEs are ON and which are OFF—after this step has been
executed when i = 2.)

9) i - i + 1.

10) If i < 6 go back to STEP h, otherwise go to STEP 11.

11) Enable all PEs.

12) All PEs STORE the contents of RGA to Location a + 1.

11-18

•

*7«

¥
tm

The FORTRAN code to perform the above formula would be: $

n

& rJ

M

M

>. £

'.':'.<•: :^ y-i- .-/v-^-v^

e
ft ■
•:■

c

us

- K If +
2 i1.8 }

k! ||
+ i

+ ? +

il 1
• • • « I • • •

■o
Z

*
IK

i
m
+
«1

+

< § • «• m 1 • • •

»4

^ * « +
•♦• 3

m a ■ Ik

is: i ■ m
m i^

+ a
3 s

••• £ I •••

s ■
?

»4
a a u.

s s N a s
a a

• • • JP I • • •

•
a
t,

H s < 1
s

Lf • • • N ■ • • •
*

+
a a

» a +
1 O IL.

bl
0.

4 1
|

&
* * * < I • • •

§ I s o

i o a

9 t

O

^ §

g

cö «

o

■p
CO

CO

(30

o s

CVJ

9M S <

0O

ft

CO

to

ü +J 6S « n o
o «

A <D

<; x -d
S w § 10 K *^S.

Z (U H
a! « H

j-
1

M <
W A MD ^.^ O K ? <u (X

H PH

m <H
O

ii
CO

^■^ +> •
M Ö 00

OJ H
< ■P 1

Ö H
O M a O

H (U
0) M

+3 ft

-d ö

Sü

ö h
Ü no « p

s—^ M ft
9 (U
+> Ä cd P
■P
CO <H o
(1)
-d^
O OJ s

II a)
Ä -H

•-•:■

E
11-19

; .-'.ILIL--.
>"-"%".■ .^-:.

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Note that this same algorithm can be applied to the solution

of problems where the recurrence is of the form: F. = C. * F. , which
N iii-l

decouples to F = (IT C.) F . All that need be done is that Step 8 be
a i=2 i J.

changed to MULTIPLY rather than ADD. Note also that if C. = i i = 1, 2,

...6k and F- = 1 we have an algorithm for confuting N! on ILLIAC IV;

that is, when the algorithm is complete PE.. will contain (N+l)!

This example tries to illustrate that it is not always immedi-

ately clear if an algorithm can be decoupled so that it can operate in

parallel or is so dependent on what happened before that it can only be

executed sequentially. In this example, it appears that the algorithm

is sequential, but upon closer inspection, the parallelism appears.

Potential ILLIAC IV users will probably need much practice in analyzing

problems using a parallel viewpoint, especially if they have already been

conditioned to viewing their problems only in terms of solving them on a

sequential conventional computer. The tool, for better or for worse,

shapes the vises it is put to.

D. ILLIAC IV Array—A More Refined Description

Section B presented a general description of the functional

components of the ILLIAC IV Array. This section will expand on that

description.

11-20

. ■. ■

A

1. Processing Element (PE)

The Processing Element (PE) is shewn in Figure II-9. For the

sake of clarity, all of the interconnections between the six registers

have not been shown in Figure II-9.

MTA FROM
THtt KM

•4 LINE
COMMON OAT* SUS

(CM) FROM CU
(OPEMNO OR ADDRESS)

tM LINE
INSTRUCTION CONTROL

MTH FROM CU
{OPERATION CODE)

MODE REGISTER
(ROM

.MODE BIT
^TOCU

SELECT OATES

TO AND FROM .
OTHER RORi

R REOISTER
(ROR)

A REGISTER
(RGA)

ACCUMULATOR

B REGISTER
(RGB)

S REOISTER
(R6SI

X REGISTER
(WX)

INDEX REGISTER

ARITHMETIC
UNIT

ADDRESS
ADDER

ADDRESS TO
THIS FEM

LOOIC/SMIFT
UNIT

TO THIS FEM
OR

TO CU VIA CU BUS

Figure II-9. Processing Element (PE)

11-21

.v.V,

.•■

Note that information enters a PE either from its own PEM, from

another PE (via RGR) or from the Control Unit (CU). The CU sends the

electrical pulses down the Instruction Control Path which are the micro-

sequences that define the operation code of the instruction to be executed

by the PE Array. The Instruction Control Path consists of 266 control

lines which drive the 6h PEs simultaneously; i.e., all PEs execute the

same instruction in parallel. The microsequences pass through the Mode

Register (ROD) before going on to the Select Gates of the PE. The Mode

Register is an eight-bit register which contains (in addition to other

information) the status of the PE. In section B 2 it was pointed out

that if the PE is in the enabled status or mode, then the instruction is

completely executed (the proper gates will be selected)j if the PE is in

a disabled mode, then it will not respond to the instruction. As a

general description, this is true but it presents an incomplete picture

of the operation of the mode regisv-r. Following is a more complete

description:

a. Mode Register (ROD)

The mode register (RGD) has eight bits called the E, El, F, Fl,

G, H, I and J bits. The E and El bits are used to reflect the status of

a PE.

If both E and El are zero then writes (storing of information)

to RGS, RGA, RGX and PE Memory are prohibited or locked out; writes to

RGR, RGB, and RGD are allowed-they are not locked out. When both E and

11-22

■ ■-'.--..-•.-• '. -•...■•.'.■•- •- ^ .•■..•. . . V '. -. - '- . - - - - . - . V - - ^. N. . %■ . ■v.^ <- «- ^- •- t.

33E3G3!!*33I**??3E»^^^^^^^^^^^^^^^^^^^^^^^^™*»^^S^5^*5M5!Ä«iH^^S^^^S^5^?B^^^^^^^^^

SEI are zero we refer to the PE as "being in the disabled state even though
■

RGR, RGB and RGB can he changed hy an instruction that references these

K registers; however, any part of an instruction which seeks to modify

RGS, RGA, RGX or a PE Memory location will not he performed. Reads of all

I B» registers and PE Memory are not locked out when a PE is disabled.
i -
yj If E and El are one then we refer to the PE as being in the

I
■

i
I»

enabled state and all instructions are completely executed—no PE registers

or part of PE Memory is locked out.

In brief then, when a PE is disabled, its RGS, RGA, RGX and

PE Memory are protected—when a PE is enabled, its RGS, RGA, RGX and

PE Memory are unprotected.

Let us now take a closer look at what it means when a PE is

ft disabled; When a PE is disabled (E = El ='o) RGR, RGB and RGD are

unprotected and one of two things may occur:

■
l) An instruction which directly modifies only RGR, RGB, or

fes RGD will be completely executed. For example, the following types of

instructions will be executed when a PE is disabled:

LOAD RGR from RGA

ROUTE RGR N PEs to the Right (or Left)

LOAD RGB from RGA

LOAD RGD from RGB (the eight high order bits of RGB

f.; go into RGD)

/-■;. SET one of the eight bits of RGD.

i 11-23

C A"

,,.i.,»^ 1.. '.v,.--. ,-■•- l----1-. «•.-•.•-.-,.-:.-.-■. I- .•.-.,■.■...-.-..-.-.-.•.;-.-.-.■.•.-.-. -.-I-.1 i - ..'■ .l .».'-'.■■.. •^'•J.l.J.'i,VJ.,^,
,.a.M

2) An instruction which indirectly modifies RGR, RGB or RGD

will be partially executed. (An indirect instruction is taken to mean one

that is intended to change the contents of RGS, RGA, RGX or PE Memory, hut

in doing so must use and change the contents of RGR or RGB.) For example,

if an ADD instruction is sent to a disabled PE, the PE will actually

perform all of the microsequences necessary for addition, changing the

value of RGB, but RGA will not be changed—the answer will not appear in

the accumulator. Since the second operand of a binary operation is

fetched to Register B, RGB gets modified (indirectly) during an ADD

operation in a disabled PE.

For example, the following types of instructions cause indirect

modification of either RGB or RGR:

ADD to RGA the contents of PEM location X (RGB is modified)

MULTIPLY the contents of RGA by the contents of PEM

location X (RGB and RGR are modified)

DIVIDE the contents of RGA by the contents of PEM

location X (RGR is modified)

However, none of the above instructions modify RGS, RGA, RGX or PE Memory,

since we are considering the case when a PE is disabled (E = El = 0).

There are no ILLIAC IV instructions which modify RGD indirectly,

so the programmer does not have to worry about inadvertently changing the

mode pattern of the PE Array (the mode pattern is just the 61* states of the

E and El bits in the PE Array). The programmer must, however, have the

ll-2k

m^LJl-^ :':■'-.'■:■*•--■.-'.■'-.■. ■- '. '. ■••■* - '.- ■.-'.' .--".-■.•,'..,•, ..'...•....■'J^ l.-A. Lwi ', .'.■. .i.-._^LNA.Lii^sJB^fAA,l*,l«J.^.«..i. «. l.H-'JL'JHäA:.«

i

i
a".

capability to modify the mode of a disabled PE, else after he turned it off

he could never turn it back on. Since RGD can be modified directly when a

PE is disabled, the programmer is afforded this capability by various

instructions in the ILLIAC IV repertoire.

The general rule which always holds true is: When a PE is

disabled (E = El » 0) RGS, EGA, RGX and PE Memory are protected (writes are

locked out). When a PE is enabled (E = El = l) RGS, EGA, RGX and PE Memory

are not protected (writes are not locked out).

If the programmer remembers this rule he can understand better

the operation of each instruction in the repertoire. Another way to say

the rule is: "Wot all parts of a PE are disabled in a disabled PE; RGR,

RGB and RGD can still respond to an instruction in a disabled PE. The

P PE is disabled, not dead when its E and El bits of RGD are zero".

[•

»

i

y

i

f
So^^i-:

Still this is not yet the complete story for up to now we have

only been considering instructions which process operands in the 6U-bit

k; mode. (The word "mode" here has nothing to do with the mode register RGD—

it is used only to be consistent with other literature; "code" or "format"

(-■". in place of the word "mode" would be a better choice.) Actually the El bit

protects the inner part of a word (bits 8-39) in RGS, RGA, RGX or PE Memory

and the E bit protects the outer part of a word (bits 0-7 and kO-63) in RGS,

RGA, RGX or PE Memory. The convention described above still holds: If E

or El is zero the appropriate bits within RGS, RGA, RGX or PE Memory are

protected; if E or El is one the appropriate bits are unprotected.

11-25

.- \-'.' ■> 'J- *. ■> '.- '.-'' "-• .'■ >. -."..'. -• -K's'f. ,,. •'. -'. •- - . - J •'. '. - . - . - . ■ ' - - - . J , - -

In the 6U-bit mode where all 6k bits are necessary to represent

one number, E and El work together to protect the word in which the number

is stored. Since it makes no sense to protect the inner part of 6k bit

floating point numbers and not protect the outer part, we always have

E equal to El when executing instructions in the 64-bit mode. However,

there are instructions which assume that their operands are in the 32-bit

mode in which case we have two numbers per ILLIAC IV word. In this case

the E and El operate independently and can be of opposite values. This

type of operation and the operation of the E and El bits with the fault

bits, F and Fl, is described more fully on pages k-lk through k-l6 of

Reference 1.

b. The Rest of the PE

The Common Data Bus (CDB) carries the address portion of the

instruction to be executed and is 6k bits wide (consists of 6k lines).

The signals on these 6k lines go to every PE in the 6k PE array. As is

the case with a conventional computer, the operand may be an address, a

count, or a number.

Depending on the type of instruction, either the Arithmetic Unit

or the Logic/Shift Unit is actuated and the result is sent to PEM, to the

appropriate PE register, or to the CU via the CU Bus.

RGA is the Accumulator and acts like an accumulator on a conven-

tional machine. RGB can be used to hold the second operand in a binary

operation or act as an extension to RGA for double length operands. RGS is

11-26

n ; ^&^

*V • - • . ^L TT. W^.TT^

I.
^ a tenrporary storage register and may be used as the programmer sees fit.

Since RGR, RGB and RGD can be modified in disabled PEs, RGS is a good, safe

tH place for the programmer to store intermediate results. RGR is called the

n

'':■

I
I

i
,■-■

I

Routing Register and can be viewed as a port to transfer data to and from

other PEs. Every PE has four bi-directional lines from its RGR to the

RGR of the PEs a distance of +1, -1, +8 and -8 away. RGX is an index

register and is used to modify the address portion of an instruction in the

same manner as on a conventional computer. All registers are 6k bits long

except for RGX which is 16 bits long and RGD which is 8 bits long.

The Mode Bit Line consists of a unidirectional one-bit line

running out from the RGD of each PE to the register storage section of the

CU. Using this path, the programmer can load an ACAR register with a

pattern of 6k bits, each one coming from the same mode register bit from

each of the 6k PEs. Conversely, the contents of an ACAR can be used to set

a specified bit within the mode register of each PE in the array: bit 0

of the ACAR is transmitted to the specified bit of RGD of PE ... bit 63 of

the ACAR is transmitted to the specified bit of RGD of PE/-.,. A special

version of this instruction exists whereby bit i of the ACAR is transmitted

to both the E and El bits of RGD of PE. so that the entire array can take

on a specified mode pattern in just one instruction. The transmission of a

mode pattern stored in an ACAR down to the PE array does not take place

over the one-bit mode line (which is unidirectional from the PE to the CU);

this transmission comes via the CDB.

11-27

!■', »_*. «.' fclamfci *-'- ■-' «-' «- - ^1^ ■ - ^'- ■"- ■'. ■'- v. *'. V- •!. r. W- -'- f,'. n. '. V-«.*. «'_ .!-.•-it'- .'^ «'- .'- »'- .'- »T-n' «'-«"L--'-'»'- ^ -'*-'-'-• '.'-V .".'-'-• »f _>'-»'--'-■ -1

,.\™"™ L"~™™"^^ V. .", *. =. \ " <'-"■-. '.".;",~"-" .."■«.• -/J

2. Processing Unit (PU)

Figure 11-10 depicts a Processing Unit (PU). A Processing Unit

(PU) consists of three components: l) a PE, 2) a Memory Logic Unit (MLU)

and 3) a PE Memory (PEM). The PE has already been described.

a. Processing Element Memory (PEM)

The 20^8 word PEM has an effective 350 nanosecond (ns) access

time. This 350 ns effective access time is comprised of a 250 ns Read or

Write Cycle Time and a 100 ns delay due to the additional logical checking

MEMORY SERVICE UNIT
(MSU)-

CONTROL PATH

PROCESSING
ELEMENT

(PE)

MEMORY
LOGIC UNIT

(MLU)

PROCESSING
ELEMENT
MEMORY
(PEM)

MODE BIT TO CU

TO CU BUS
-► (DATA OR INSTRUCTIONS

TO CONTROL UNIT)
-»>I/0

Figure 11-10. Processing Unit (PU)

11-28

E |
L
C circuitry of the MLU. The 250 ns Read or Write Cycle time consists of

188 ns data access time and up to 62 ns to complete the cycle. READ and

WRITE work in the following manner:

READ: Data can he accessed (sent on its way to the PE or else-

where) in 188 ns but it takes 62 more ns for the memory to complete the

cycle, during which time, memory is locked out or is not interrogatible.

WRITE; The data word is written into memory in 188 ns and

control can return to processing. However, memory cycle is not over for

another 62 ns, so memory cannot be interrogated for 250 ns as above.

i::-

r.

, •

:

K

r

f?

*■ • • . , • _ •

(.■•

In general, this means that if the next instruction after a

memory reference does not also reference memory, it can be performed

188 ns later; however if that instruction does reference memory, it will

be performed up to 350 ns later.

■
C-' b. Memory Logic Unit (MLU)

The MLU acts as a "switch" in that it resolves conflicts involv-

ing simultaneous accesses to the PEM. The MLU of each PE in the Array

receives signals from the Memory Service Unit (MSU) in the Control Unit

which allows one of the three possible users of PEM to gain access to the

PEM. The three users are:

11-29

Äv ::::::<::^^

1) CU Bus to fetch instructions to the Instruction Look-Ahead

Section (ILA) of the CU, or to fetch data to the register

storage of the CU.

2) PE itself (Loading g- ?E register from PI Memory).

3) Input/Output devices (1/0),

Note that Figure 11-10 has an arrow coming out of the MLU with

the caption "To CU Bus". This is meant to imply that this line is not the

CU Bus itself but is just a 6k hit line to the CU Bus. The CU Bus carries

eight 61|-bit words at a time from a PU to register storage in the CU. The

CU Bus fetches words (in blocks of 8) from PE Memory, through the MLU, up

to 8 specified locations in the ADB of the CU (there does exist another

instruction whereby only one word is fetched and can therefore be stored

in a CU register other than the ADB) when a certain ILLIAC IV instruction

called BIN is executed. The CU Bus is also used by the Operating System

to fetch instructions (which are also stored in PE Memory) up to ILA,

the instruction execution section pf the CU. The eight words (data or

instructions) that are transmitted via the CU Bus are in contiguous PUs

and always start at a PU number that is an exact multiple of eight.

Since there are 6k PUs and only 8 of them can use the CU Bus at

one time, there is a switch which selects which group of 8 PUs will be

connected to the CU Bus. There are eight PU Cabinets (PUCs) in the

ILLIAC IV Array, each of which holds 8 PUs as shown in Figure 11-11. The

figure shows how groups of 8 words in contiguous PUs but at the same row

memory location are connected to the CU Bus.

11-30

^^--^-»r----. .■■ i J*- ■ ■' . ■ ■ - » . -*. ■ ■ • ■ - * ■ - ■ ^ .

- ~ % -j» ' ■ • »

I
h

i
.-.

K

w:

1 LX)CATION 1000 J=r£ /A / / / / / / J.
A' / / / / / /

=/ /
/ / /y-*— LOCATION C / / ///l

s
w
I
T
C
H

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

LEVIL 5

PUo KPU! PUz PU3 PU4 PU5 PUe PU7
/r"
'/A

PUe PUS PUlO PUll PUlZ PU13 PUl4 PU15
/1 IJ

/ /A
PUi6 PU17 PU18 PUl9 PU20 PU21 PU22 PU23 /tin CU BUS

PU24 PU26 PU26 PU27 PU28 PU29 PU30 PU31 /pr
PU32 PU33 PU34 PU35 PU36 PU37 PU38 PU39

/r^—!
//A

PU40 PU41 PU42 PU43 PU44 PU4S PU46 PU47
A

LEVEL 6
///

PU48 PU49 PU50 PU.51 PU52 PU53 PU54 PU55
A

LEVEL 7
//

LEVEL 8 PU56 PU57 PUse PU59 PUso PU6i PU62 PU« V
PUCo

Pi

PUCj

tgure .

PUC2

11-11.

PUCJI PUC4 PUC6 PUC6

PU Cabinets (PUCs) and

PUC7

CU Bus

Eight PUCs contain the Gk PUs in the ILLIAC IV Array. PE
Memory is displayed in the depth dimension of each PU. The switch which
is between the CU Bus and the PUCs selects (under program control) one of
the eight levels (each level cuts across the 8 Pl'Cs) and the same location
of PE Memory for each of the 8 PUs within that level is sent to the CU Bus.
The CU Bus then transmits these 8 words to the CU. The figure is drawn
to depict location 1000 of level 1 (PUs numbered 0, 1, 7) to be sent
to the CU Bus.

3. Control Unit (CU)

The Control Unit may be viewed as consisting of five functional

sections: ADVAST, FINST, MSU, TMU, and ILA.

a. ADVAST

ADVAST, the Advanced Station of the CU, is shown in Figure 11-12.

Its main area of responsibility is to execute instructions that do not

reference information in the PUs as well as to pre-process the instructions

11-31

-.'■»^ .■■... .1. \ *-: %.: - -tty; ^v ::v;^^^^>>^>:v:^.^.>>::^>^ i-Ä^

v-:.*-

INSTRUCTION
FROM ILA

MODE BIT LINE
(64 MODE BITS FROM PEl)

CU BUS
(DATA IN BUCKS OF 8

WORDS FROM PE MEMORY)
i
i

ACARO ACAR 1 ACAR 2 ACAR 5

i r i > ' '

1 • 1 * i

ADVAST
INSTRUCTION REGISTER

(AIR)
SIMPLE ALU

ADVAST
DATA BUFFER

(AD8)

i > 1 • i (
TOFXO

IN FINST
TO FDQ
IN FINST

BACK TO
THE ACARS

Figure 11-12. Advanced Station (ADVAST) Section of the Control Unit

that do drive the PE Array. The instructions that drive the PEs are sent

on to FINST which sends out the microsequences to the PE Array.

The ADVAST Section of the Control Unit may be viewed as a small

computer by itself. It has four Gk-Toit accumulator registers—ACARO,

ACAR1, ACAR2, and ACARS and a 6it-word, 60 nanosecond integrated circuit

memory called the ADVAST data buffer (ADB); each word in ADB is also

11-32

fe^/v^lv^v^vlv:^^

u

• .-
•..-■

& 6k bits long. In addition it contains a simple arithmetic and logic unit
" ...

(ALU) capable of instruction indfcjdng, 2U-bit integer addition and 64-bit

W logical operation on data from CU registers. ADVAST also has its own

_ instruction repertoire (CU instructions) and is capable of executing them

m while the 6k PEs are simultaneously executing their own instructions.

;W
>; As previously mentioned in section D 1 b, a special instruction

executed by ADVAST can load up the bits of any ACAE to match a mode bit of

RGD for each PE in the array at any time during program execution.

Another instruction allows the programmer to set a mode bit in each RGD r
of the total PE array to match the contents of an; specified ACAR. These

(.•. two instructions allow the programmer to set up patterns to control which

PEs will be enabled and which will be disabled during program execution.

These instructions will be covered in Chapter III. m
Qs As Figure 11-12 indicates, there are three sources of input to

■ ADVAST: the instruction to be executed, the Mode Bit Line, and the CU Bus.
I

The CU Bus brings in data in blocks of eight words from PE Memory. Since

K" the Control Unit has access to PE Memory via the CU Bus, reference is

sometimes made to "CU Memory"—this should not be confused with CU

m register storage (four ACARs, 6k ADB locations, thirteen other registers).

[--. CU Memory is actually part of PE Memory which is accessed by two ADVAST

instructions which move the contents of PE Memory to the ADB or one of the

four ACARs (or several of the other thirteen registers) via the CU Bus.

'..'■>

v-'"

There are thirteen other CU registers that can be accessed by the
(.•.'/ programmer; these are more fully described in Reference 1.

11-33

i

Instructions are also fetched via the CU Bus but they go to ILA, the

instruction look-ahead section of the CU, not ADVAST.

The Mode Bit Line (one line from each ROD of each PE in the

array) comes into ADVAST where a mode pattern can be stored in one of the

four ACARs.

Instructions are sent from ILA to the ADVAST instruction

register (AIR) where the instruction is interpreted. If it is an instruc-

tion that can be executed entirely by the CU, then it is executed; if it

is not, it is sent on to FIKST for execution.

Another possible input source to ADVAST is output from the ALU

which can return as input to any of the four ACARs.

b. FIHST

FINST is the Final Station of the Control Unit and receives only

those instructions that require PE action. See Figure 11-13.

Since ADVAST controls the instruction stream, all instructions

pass through it for decoding first. If the operation involves only

ADVAST hardware, then ADVAST completely executes the instruction so that

the instruction never reaches FINST. If the instruction is a PE instruc-

tion, ADVAST decodes it, provides any indexing operations necessary at the

Control Unit level (the address portion of an instruction can be indexed

by the contents of one of the ACARs in the CU), and passes the receded

I

11-3^

^£££££^^ .\.
V
J."->>>>>V »•

r

:•

•.•

.-;

FROM AIR
IN ADVAST

FINAL
INSTRUCTION

QUEUE
(FIQ)

16 BITS

L

FROM ALU
IN ADVAST

---b;-
FINAL
DATA

QUEUE
(FDO)

64 BITS

PE INSTRUCTION
MICROSEQUENCE

GENERATOR

T

INSTRUCTION CONTROL PATH

FING« FIQ+ FOO

TO ADDRESS DECODER
IN MSU
COMMON DATA BUS (CDB)

> (DATA OR ADDRESSES
TO PEt)

Figure 11-13. Final Station (FINST) Section of the Control Unit

instruction on to FINST. Thus, some instructions may be entirely processed

by ADVAST while others may pause in ADVAST only long enough for decoding

before being sent to FINST for execution. To avoid situations where either

ADVAST or FINST is idle waiting for the other section, the instructions

are passed from ADVAST to FINST through an eight word first-in, first-out

Final Queue named FINQ. FINQ, in turn, consists of two parts. The

operation code part of the instruction resides in the Final Instruction

Queue (FIQ) and the address or operand is in the Final Data Queue (FDQ).

FIQ consists of eight l6-bit words and FDQ of eight 61+-bit words. FINQ

allows FINST and ADVAST to be executing instructions concurrently.

Civ

See Figure U-lk. FINQ is a buffer as described in Chapter I which
allows two processes to proceed autonomously and which effects a speedup
by overlapping time.

11-35

{Xtettte^^

INSTRUCTIONS

i
AOVAST

PROCESSED
AOVAST
INSTRUCTIONS

FINQsFIQ+FDQ

FINST

MICROSEQUENCES—TO DRIVE THE PE ARRAY

Figure II-lU. FINQ Acts as a Buffer between ADVAST and FINST;
ADVAST and FINST Act as a Pipeline

ADVAST and FINST, whose operation is decoupled by the holding

buffer FINQ, also acts as a modified two-stage pipeline. Inputs (instruc-

tions) come into the first stage (ADVAST) and are partially processed,

then they are passed on to the second stage, FINST, via FINQ if the

instruction was a FINST/PE type instruction. If the instrud !on was an

ADVAST instruction, it is completely processed in ADVAST id exits out the

"side" of the pipe never making it to the second stage.

From Figure 11-13, we see that two taps come off the FDQ. One of

these is the CDB, already discussed in section D 1 b. The address of an

11-36

&aa££&£i&

r

PL operand also goes to the MSU which controls the 6h MLUs of the 6k PUs.

(The instruction to be executed may be such that an operand in FDQ wants

■ V. to be stored in a location in one specific PE Memory, in which case it is

the MSU's Job to signal all the MLUs but the correct one to lock out

•^ writes to PE Memory.)
«/

k^ Occasionally a situation will arise that will stall the overlap

|g between ADVAST and FINST: Suppose an ADVAST instruction wants to read

a value from (or write a value into) an ACAB, but ahead of that ADVAST
-••,

':;

B instruction, waiting in FIHQ, is an instruction that FINST will cause to
i

write a value from PE Memory (or a PE Register) into Just that ACAR.

Eft Certainly the ADVAST instruction should not be executed until the instruc-

tion ahead of it in FINQ has had a chance to be fully executed. In this

case, the operation of ADVAST is automatically halted (ADVAST is stalled)

until FINQ drains and FINST causes the value to be written into the ACAR.

After FINST has executed the last instruction in the FINQ, the operation

of ADVAST continues and the ADVAST instruction which waited to read a

value from (or write a value into) the ACAR is executed in its proper

order. There are only four instructions which will cause ADVAST to stall.

In all other cases, FINQ makes possible an execution overlap of

ADVAST and FINST/PE instructions. This overlap capability provided by

FINQ makes program timing estimation difficult, since the total execution

time is rarely the sum of ADVAST and FINST/PE time, although it cannot

... exceed this sum.

A"
m U 11-37

E

From the above discussion, it appears as if PE instructions

are not really executed in the PE but in the FINST section of the Control

Unit. This is partially true: The microsequences which will actually

drive the PEs are set up in FINST—however, the actual "happening" of the

instruction takes place within the PEs as the microsequences pulse

through the appropriate PE gates. Together, ADVAST and FINST act very

similarly to a pipelined instruction execution unit as described in

Chapter I. ADVAST and FINST can be viewed as a two-stage pipeline

operating on different instructions simultaneously. However, ADVAST

instructions never reach the second stage (FINST).

At this point, the reader should refer back to Figure II-9 and

note that two of the outputs from FINST (instruction Control Path and

Common Data Bus) are two of the possible inputs to a PE.

c. MSU

The Memory Service Unit (MSU) acts as an arbitrator in the

various requests for access to the PEMs. PE Memory can be accessed by

FINST in the execution of a PE instruction, by the ILA section of the

CU which fetches the program instructions from memory (via the CU Bus),

by an ADVAST instruction which fetches data from PEM (via the CU Bus),

or by the I/O System. (These are the same "users" mentioned under the

description of the MLU, in the PU description of section D 2 b.) The MSU

in a four-quadrant ILLIAC IV consists of an address decoder and three

registers which reference the other quadrants. Since we are only

11-38

c

The MSU controls the 6k MLUs of the PU array, locking out or

n
g allowing access to individual PEMs according to the instruction being

i
^

•

i

considering a one-quadrant ILLIAC IV, we may view the 1SU as a memory

access arbitrator with only one address decoder.

executed (see Figure 11-10).

d. TMU

T*m Test and Maintenance Unit (TMJ) is the section of the CU that

communicates with the operator's maintenance panel and display and with the

I/O System. The TMU Section ha« two registers TRO and TRI. If Input from

the I/O System is to be performed, a TMU instruction can place a request

for such an action in the TRI register; if Output, then the request is

placed in TRO. A hardware component of the I/O subsystem is constantly

monitoring the TRO and TRI registers, waiting for an I/O request to appear.

When this occurs, the I/O subsystem is interrupted, the I/O request is

honored, and a response code may be placed back in TRO or TRI. The program

L- executing on the ILLIAC IV Array can then test TRO or TRI and take an

appropriate action.

ft e. ILA

[/ The Instruction Look-Ahead (ILA) section is responsible for

maintaining a steady flow of instructions to the ADVAST Instruction

I Register, AIR, in ADVAST. (See Figure 11-12.) To accomplish this, ILA

''/• is arranged as shown in Figure 11-15.

«a 11-39

i
> .•• .v.v ■

;:V:V:V:V^;.>>AV::\-^

CONTROL UNIT
BUFFER

CU BUS

8-WORD BLOCKS
OF INSTRUCTIONS

FROM PEM

ILA ASSOCIATIVE
MEMORY (IAM)

H ICR I
INSTRUCTION COUNTER

REGISTER (ICR)

INSTRUCTION WORD STACK (IWS)
8 BLOCKS OF 8 WORDS OR
8 BLOCKS OF 16 INSTRUCTIONS
(128 INSTRUCTIONS)

INSTRUCTION TO BE
EXECUTED TO AIR
IN ADVAST

Figure 11-15. Instruction Look-Ahead (ILA) Section of the Control Unit

Instructions which are stored in PE Memory are fetched to the

Control Unit Buffer in blocks of 8 words via the CU Bus; since each

instruction is 32 bits and there are 64 bits in a word, there are two

instructions per word. These 8 word (l6 instructions) blocks are relayed

to the Instruction Word Stack (IWS) until it is full. The IWS holds

8 blocks of 8 words or 128 instructions.

After an instruction is sent to AIR from IWS, the contents of

ICR, the Instruction Counter Register, are replaced by the proper amount.

(If the previous instruction was not a branch instruction, then the

contents of ICR are increased by one.) ICR then contains the location

of the next instruction to be executed by AIR in ADVAST. ICR sends the

II-ifO

mi

^:^!^^:.>v^>-^ ■:.-^>:.^v>>^

I
J:

'"•;

K
t\

i
[;>

L-

:>■

r

location of the next executable instruction to the ILA Associative Memory

(JAM) which continuously monitors the contents of IWS. IAM is a hardware

table-look-up device or "scoreboard" that can sense the locations of the

instructions stored in IWS. If IAM senses that the instruction pointed

to by the contents of ICR is in the IWS, then that instruction is sent

on to AIR for decoding and interpretation. If the next instruction is

{-> not in IWS, then the Control Unit Buffer fetches the block of 8 words

(16 instructions) from that part of PE Memory that contains the next

1-' instruction to be executed. (If the programmer can keep his program loops

to within 128 machine language instructions, he can execute his program

at the most efficient rate.) The Control Unit Buffer then places its

block of 16 instructions over that block that has resided in IWS the

longest time.

In all cases, whenever the eighth instruction in a block of

l6 instructions within IWS has been executed, IAM will check IWS to see

if the next block of l6 instructions is in IWS—if it is, then operation

continues normally; if it is not, then the Control Unit Buffer fetches that

JÄ block of 16 instructions and writes it over the block of IWS that is the

oldest in time.

P
y

Both the Control Unit Buffer and IWS are buffers that smooth and

£. speed up the instruction execution rat-e.
Hi

E. Another Illustrative Problem

Since ILLIAC IV is an array or vector processor, it is clear

that problems involving matrix computations are ready-made for solution.

II-ia

L

'_*"* -"' -*" -"'J.'" **••'• -*•_*'• *'•_»** •'" -'•^'' -'•^' »"» .'-*'■ ■'- ■* ■ •' * , '•«'' -'* **■ . ■ -"'V-,»'''.'[.V •"•*'• •'• /• JVj.'V -'•'-*• -'• /- ."* »'•",''• «^*,

There is, however, another very large class of problems whose calculation

can be performed in an "all-at-once" fashion and that is the area of

Ordinary and Partial Differential Equations.

As another example of how the functional parts of ILLIAC IV can

be used to solve problems, let us work through a solution of Laplace's

equation describing temperature distribution on a slab. The reader

who does not have a background in mathematics should not shy away from

this example since the method for solution relies completely on the

common sense notion that the value of any temperature on the slab tends

to become the average of the surrounding temperatures.

Laplace's equation

4 + nr = o 5x öy

describes the temperature U as a function of the position (x and y) on a

two-dimensional slab. That is, if we take a two-dimensional slab of

material and keep the edges at certain temperatures (see Figure II-16)

then, after a sufficiently long time the interior of the slab will reach

a specific temperature distribution. This distribution is called the

steady-state temperature distribution. The reason we talk about a

temperature distribution is that the temperature U at any position within

the interior of the slab is not constant but is a function of where it is

within the slab. The temperatures on the edge of the slab are called

boundary conditions and do remain constant. If we impose an x,y

II-42

Isfl

>o^:--"."''-^;.\y:^^>:.">:>';^/:.':^^>*/?.-?,?^.o.*.v--

'-"v

r

K ß

ii

U'lOO0-

JS
Us 57°

U»0o .^

U»410

U«10o

U»0o-

Figure II-16. Steady-State Temperature Distribution on a Slab

i

Li

.••

coordinate system over the slab we can say that the temperature at any

point is a function of x and y or U = U(x,y). See Figure 11-17 which

assumes the slab is a units by b units. Thus every point (x,y) within the

slab has associated with it a temperature U(x,y).

When we make this problem ready for solution on a digital

computer we can no longer represent the temperature U as a function of the

continuous variables x and y. We must discretize or digitize the problem

so that instead of obtaining solutions over a continuous range for x and

y, namely:

O^x^a, 0<y<b

we obtain solutions only on a finite set of points. See Figure II-18

where the variables x and y have been digitized every h units—we say h is

II-Il3

L

. /^ -•. -- v'.'. . -j--^ ■.-•.-•.■-.-■.■<-.►• .^ ■.••.- v \. '.• •. 'j-^ «T:

1 \,Vfc,w\m 's.^iJ'^.V J/ i." .'•..■ ,' wj-wm
,ir: J", ■T -T •"-■ ■ ■.' »T ■TW,V "T ' " »T "T • 5' . "T ■ .

b
U(«,b)il00o

y

U(x,y)s80o

/
t

UfO.y^O0 U(o,y)«100

« a ^ *

UU.O)«©0

Figure 11-17. Temperature on a Slab a Units by b Units
is a Function of x and y

the mesh size. In Figure 11-18, for simplicity, we let b » a and digitize

the slab into a set of 6k x,y values or mesh points.

The method of solution for the problem may now be stated very

simply: The temperature at any interior mesh point (this excludes the

28 points along the edges which must remain at constant temperatures) is

the average of the temperatures of the four closest mesh points. See

Figure 11-19 for a blow-up picture of this property.

Thus in order to obtain a solution we apply the equation

(1) U(x,y) = U(x.y»-h) * U(x+h,y) » U(x.y-h) •»• U(x-h.y)

to all interior points on our digitized slab until equation (l) is true.

This method is called relaxation.

11-kk

lült-au:

,..,._ ■ ,,., , , , nn,, , . ,,_ immi i-m»i ■! I? ij.i» l M my .

V

'{

(I I II 1>——<l II

11 ii i i • i i i ■

Figure 11-18. Digitized Slab: 64 x,y valueJ with a mesh size
of h in the x and y directions

y

y-h

y
i

f'1**

r^i «tV (f+Ny

»•y-h

«-h x K+h

-".

Figure 11-19. Graphical Description of Solution: Temperature
at any point is average of temperatures
at four closest mesh points:

^x v) = U(x,y+h) + U(x+h.y) + U(x.y-h) + U(x-h.y)

k

II-U5

:^C^S^^^^^L>>V<:: : <) •^:^^:vv^

.--•'«•-•-

The manner in which relaxation is usually applied on a

sequential or conventional computer is to start at the top left of the

digitized slab and apply equation (l) at each interior point proceeding

from left to right along each "row" of points and proceeding downward row

by row. Since the boundary points do not enter into the calculation,

equation (l) is applied 36 times—once at each of the interior points.

For the sample case of 6k points, 36 applications of equation (l) is one

relaxation of the relaxation method. As enough relaxations are performed

on the set of 6k mesh points, equation (l) will tend to become true (the

equation will be exact within a specified error tolerance) for all of the

36 interior points. When this stage in the calculation has been reached,

the steady state solution has been achieved.

There is one more change of notation that is usually applied

to the problem before it is actually run on a digital computer. Since

x and y have been discretized they can be viewed as indices within a two-

dimensional U array. That is, x and y are merely positional indicators

that can be replaced by the more familiar i and j notation of FORTRAN

arrays.

Therefore if we replace x by i and y by j and further let i

increase downward we can represent the mesh points as in Figure 11-20.

If we use the i,j notation then equation (l) becomes

(2) n = i-iiJ Lfal+A I 1+1i.1 U1-1
^ ui,J k

We apply this equation for 2<i<7. 2<J<7.

11-1*6

>^-::>::-:->>>:^:^->^^

pfj^.»^^..!.. ... ■..I..iii i. J.I;.. j.^.i...^ w.y»!. ■ .tu. ! n i ti »I 111,1. i IIH.J,.!) ■■!!■_■; ■_"!_Vl^y'l ■^M»IIIIIHJ_ ii» «nil tKiTT-f^^^—i'i^n^jy^!1^ '■IM-»' i^.miiv^»fy^^^^W^i

g

f

i

_ _>_ /'-v

i

Figure I

Hi)

1,1-1 l,j l,j4X

1+i.j

1-20 . Temperature as a Function of i and J

i
I
i
l
i

>>.•
.;:<■

We are now ready to solve a real problem. We shall use integer

values for the boundary values chosen so that the exact solution for

the interior values will also be integers. These values are shown in

Figure 11-21. Note that the values of the boundary temperatures are

constant (0°) along the bottom and right edges, but vary with position

along the top and left edges. The val: '..' of the temperatures at the

interior points are to be solved using equation (2)—they are initially

set to 0° before the calculation begins. We will solve for the temperature

distribution given the initial conditions as shown in Figure 11-21 in two

ways: first the sequential solution as described above will be obtained,

then a method of parallel solution will be described and executed. The

exact solution to the problem is shown in Figure 11-22.

11-1*7

C-.

?< :^%v:v::^:^^

Figure 11-21. Specific Interior and Boundary Conditions
for Sample Problem

The boundary or edge temperatures vary with position along the
left and top edges and are constant along the lower and right edges. The
boundary temperatures do not change during the calculation. The interior
temperatures are enclosed by dotted lines and they are initially set to
zero before the calculation begins.

Il-k8

jS^i^E^m^i^M^^ 1 i ■*- . -^sfr rts>:^

^^.:^:^^_,,^,^^_W^.^^.;J^^,^;¥V^TJVJ,^:^ltr, ^^.^jv.v^^-:':-:r.'^j •■. -•: ^ v-_ -•■^.i .■; .T-:..,:,.;.r._.^._._,-...__ _.„..., ^ ^......,,,...,... .^ ,„

E
b:

i
S

Vii

I
f

49) (42) (35) (28) (21

28) (24) (20) (16

21) (18) U5^ (12

42) (36) (30) (24

35) (30) (25) (20) (15

©-<!)

<i>—0

»)-<t>—0

»>--0—0—0

0—0—cV-0
(V^i)—^>-<^-<b-^^)—0
(V^-K»^h-(t^^>—0
©-^^-(o>-^o>-(^o)—(^

Figure 11-22. Exact Solution for the Interior and Boundary
Conditions given in Figure 11-21

1

1-'

1. A Sequential Solution to the Problem

Step 1; Start at the top left interior point (i = 2, j = 2) of row 2 and

calculate its new value using equation (2):

TT - 1,2 u2,3 3.2 "2,1
2,2 ■ ,,

or using the numbers given in Figure 11-21;

1*2 + 0 + 0 + 42 p U2,2- --

11-1*9

>A-.r^-VJ%'/^ -■. ■•. >. ^. ,•. y. 1-..-. -r. y..-. -r. ■■. -•. ■-. --^.-. -. .,•. x\ ,\ m\ ■-.•.•. ^..-.,-. ^.,-. w_v, .•..- v "v?^ v .• •.■ •.- •.•]•.- ■•^■■- •■'%.- v v .H -.■ •-■<!

,■.V.^,p.l,, ' ■' 'i l.1 ' ' I ■• "1" .'■■.'■■.'•■. ■ ,V•.,. ■■. •". • . •'. ■ . « . I'". ' . m m i^iimmmim miw ■■ ^»iii^i« iww^^pp^T^r». • J ■■.■■•'.'•!«^"1J

Ste£_2: Moving to the right along the same row calculate the new value of

U2 3 using the new value of V^ calculated in the previous step:

n "1.3 ! "g.l. * "^ : %g 33*0*0.21 „

(Note U2 2 = 21 not 0 since it was previously computed as such in

Step 1.)

Steps 3-6: Continuing to move to the right along row 2 we calculate the

new values of U^, U^, U2 6, and U2 using previously

computed values:

„ - "l.- * V2.5 * "l.k * V^ 28 . 0 . 0 . 11. laz
Oh "' ~ -Ll-' • P
^'4 k k

U - Ul^ ! U2.6 + U3.5 + U2.U 21 + 0 + 0 + 10.5 - Q
,:> i. i.

U ■■ "l.S ! "2.7 ! ^.6 ^ "2.3 lk .0*0. 7.9 ,r "2,6"-" t-7-J J 5.5

U "1.7 ! "2.8 ^ "3.7 " "2.6 7 ^ 0 ^ 0 . 5.5 ,,
2,7 „ I -3-1

Steps 1 through 6 are now repeated for rows 3, h, 5, 6 and 7. After new

values have been computed for every interior point on all rows, we have

finished one relaxation of the relaxation method. The values of the

temperatures converge to the exact solution as shown in Figure 11-22 as

more and more relaxations are performed.

11-50
•:-.

J

l!*jQrv7J > ä >.v^w/^^^ •,-"^'«v"'ff,.,.-:,,";.,.-v.'-%::■»?-»T»? •^"■' ■' "^ , T i'

C"

I

If we denote the veilue of U. at the nth relaxation as Uv . then

we say a solution has been reached and we can stop the relaxation process

when

(3) Kli-^j^ for 2 < i < 7

2 < j < 7

■;■

g

i

i

<••

v - • ■ r

when € is our tolerance or desired degree of accuracy. Therefore, in

our computer program which performs the sequential relaxation described

above we save the old and new values of the U array, compare them, and

if every interior temperature in the array satisfies equation (3), we end

the computation. Figure 11-23 shows a FOETRM program that performs the

c

•
•
•

READ IN BOUNDARY AND INITIAL VALUES FOR TEMPERATURES (U)

c READ IN NUMBER OF ROWS (NROWS), NUMBER OF COLUMNS (NCOLS)

c AND EPSILON CONVERGENCE VALUE (EPS)

1 M = NROWS - 1

2 N = NCOLS - 1

3 IFLAG = 0

k DO 9 I = 2, M

5 DO 9 J - 2, N

6 TEMP = (U{I,J+1) + U(I-1,J) + U(I,J-1) + U(I+1,J)) * 0.25

7 IF (ABS(TEMP - U(I,J)) . LE . EPS) GO TO 9

8 IFLAG = 1

9 U(I,J) = TEMP

10 IF(IFLAG . EQ . 1) GO TO 3

11 END

Figure 11-23. A FORTRAN Program for a Sequential Solution
to the Sample Problem

11-51

•.-/ -." *-■' -.■" ■/ •.' *-''.' - -

}r.y'zJ"."',*.-*"J^-\^\m"?:- I-.'.! •*. '•"H^'." ■!•_«■",•'"•. ^.^■.■^•, I«, f, ■•. ,•. m>m^im^^<^i<^^m^V\^n^u9i>9nwiWi;'r._.' . .«l/.[

relaxation algorithm described above and Figure II-2lt shows the values of

the U array after one, ten and fifty relaxations; the exact solution is

also shown in Figure 11-22.

Let us briefly consider the FORTRAN program as shown in

Figure 11-23:

The three COMMEMT statements at the beginning of the program

indicate that the initial values of the temperature U (see Figure II-21),

I

One
Ralaxatlon

Ten
Hel« ations

Fifty
Relaxations

k9 1)2 35 28 21 1U 7 0

ki a.oo lU.OO 10.50 7.88 5M 3.12 0

35 lU.OO 7.00 1..38 3.06 2.13 1.31 0

28 10.50 U.38 2.19 1.31 0.86 0.5l» 0

21 7.88 3.06 1.31 0.66 0.38 0.23 0

Ik 5.1.7 2.13 0,86 0.38 0.19 0.11 0

7 3.12 1.31 0.5U 0.23 0.11 0.05 0

0 0 0 0 0 0 0 0

k9 1)2 35 28 21 lb 7 0

1)2 35.37 29.01 22.90 17.03 11.31 5.66 0

35 29.01 23.1)1 18.21) 13. Ul) 8.88 l).l)l) 0

28 22.90 18.21) 11).05 10.26 6.75 3.38 0

21 17.03 13.1)1) 10.26 7.1*1) l).8e 2.1)1) 0

1U U.31 8.88 6.75 1).88 3.19 1.60 0

7 5.66 U.Ul) 3.38 2.1)1) I.60 0.80 0

0 0 0 0 0 0 0 0

1)9 1)2 35 28 21 Ik 7 0

1)2 36.00 30.00 21). 00 18.00 12.00 6.00 0

35 30.00 25.00 20.00 15.00 10.00 5.00 0

28 21) .00 20.00 16.00 12.00 8.00 U.OO 0

21 18.00 15.00 12.00 9.00 6.00 3.00 0

11) 12.00 10.00 8.00 6.00 1).00 2.00 0

7 6.00 5.00 U.OO 3.00 2.00 1.00 0

0 0 0 0 0 0 Ü 0

Figure 11-2^. Values of the Temperature after One, Ten, and Fifty
Relaxations using Sequential Method

11-52

E

•>£>>

1-2

^■' the number of rows, NROWS (for our case WROWS = 8), the number of columns,

NCQLS (for our case NCOLS =8), and the epsilon convergence value, EPS

§ have all been read in through the appropriate input statements.

^ Statements 1 and 2 compute values for M and N to be one less

than the number of rows and columns respectively, and the calculation

■'J starts at 2 not 1 since the edge values will not change throughout the

computation.

At statement 3 a flag, IFLAG, is set to zero. IFLAG will act as

■ a signal to the program indicating whether convergence has been reached

after each relaxation (each relaxation consists of 36 applications of
•'I

equation (2)): If IFLAG is still zero after a relaxation then all of the

U values are within epsilon of their previous value; if IFLAG has been set

to one, then at least one U value was not within the convergence criterion

SI and another relaxation must be made.

" Statements h and 5 initialize the DO LOOP counters I and J

that step us through the rows and columns starting at the top left and

S proceeding to bottom right.

,; Statement 6 is equation (2).

n Statement 7 is equation (3). If the statement is true (TEMP is

within epsilon (EPS) of the last value of U), IFLAG is not changed and

■-! control jumps to Statement 9 where U assumes its new value of TEMP. If

the statement is false (TEMP is not within epsilon of the last value of U)

p
11-53

, jr.«-_ir.j • • F^. ^. ••-» - «_'•_•■. r.-^.K.ra.Kr.

1FLAG is set to 1 and control falls to Statement 9. where U assmes its

new value of TEMP.

Statement 8, if control reaches it, sets the value of IFLAG

equal to 1.

Statement 9 replaces the old value of U with TEMP~the new value

of U.

Statement 10 tests IFLAG. If it is true (IFLAG = l) then at

least one value of U has not yet reached convergence and control is passed

to Statement 3 where IFLAG is re-initialized back to zero. If it is

false UiLAG * 1), then IFLAG must be equal to zero and there exists no U

that was not within epsilon of convergence and therefore convergence has

been attained. Control then drops to Statement 11.

Statement 11 is reached only when convergence has been reached

and the program ends.

This program is still very primitive; it makes no allowance for

the possibility that an overly stringent choice for EPS might result in an

infinite amount of looping between Statements 10 and 3, but it illustrates

a sequential solution to our sample problem.

2' A Parallel Solution to the Problem

Let us next consider how this same problem could be solved in

parallel on ILLIAC IV:

11-54

.--.^ .■

iy

kVv.-. • >-.-V-. ■ . •. -.-.^

I: h
i

i

t;.-'

If each value for U were placed in a separate Processing Element

Memory or register, then the calculation of equations (2) and (3) could

proceed in parallel for all 36 inner values in the U array. A program

could be written to compute new values for U. 2<i<7» 25<'5^'

not from top left to bottom right but all at once. As we did with the

sequential solution let us write down the steps for a parallel solution:

Step 1; Assume the initial conditions are as shown in Figure 11-21.

Step 2; Disable all edge or border PEs. (These PEs contain the boundary

values for U and must not change during the calculation.)

r-; Step 3: Simultaneously calculate;

jH (2) „ "i-i.^uiWW^I'i..i-i

i
k

for 2 < i < 7, 2 < j < 7.

Rather than write out the values for all 36 interior points, let

us just look at the interior points of the second row (i = 2,

J = 2, 3, ^, 5, 6, 7) after equation (2) is applied simultaneously

to all 36 interior points:

U = "1.2 * U2,3 + U3,2 * U2a u U2 + 0+0 + lt2 = 21

'2,2

u
U1.3 + U2^ + U3,3 + U2,2 3. + 0 + 0 + 0 . 3 g

g 2.3 u k

11-55 r
E /I / I

„^„^.T-^ ^■•w- «•■ ■*■■ r-w ■•_■-«■ *H>*-ff■ '>■ ■•;■' T_■ '.'N.^-i. i, .^w—jiw-r'^ .j p^ ,^ ■»■*»- 'i »(p-^j^«^ n« M ,NW« M^, .. »^ , ,^j..^» „ «u,.,^j,,^pmmfm^ m^ i w p■■ ■

U . Ul^ + U2.3 ! J3.4 + U2^ 28 + 0 + 0 + 0 7

2^ 1» ' k =7

U2 - U1.3 + U2.6 + U3.5 + U2.1i 21 + 0 + 0 + Q .^

, ^ _ Ul,6 + U2.T + U3.6 + u2.5 1W n + n + n ^
2'6 k ; ■3-5

U2

Un ,, + tU o + U„ + U
- 1.7 "2.8 : u3.7 T u2.6 7+0+0+0 ,

Note that the value for U2 2 = 21 was not used in calculating

u
2j3 because U2 2 and U2 were calculated at the same time and

a new value for U2 2 is not ready until all of the 36 values for

U have been calculated.

StejDjK Repeat Step 3 until convergence is satisfied.

Figure 11-25 shows values of the temperature U after one, ten,

and fifty relaxations using this parallel method of solution.

Not only are the two algorithms different, but the wa^ the

temperatures converge is also different (as can be seen by comparison of

Figures II-2lt and 11-25), although the end result approaches the same

steady-state temperature distribution. When we use the sequential method

of sweeping from left to right along rows and proceeding from the top to

bottom row, the temperatures at the bottom right converge faster to the

exact solution than those at the top left. This type of convergence

11-56

;&;ii^^^*i*^^

I
occvirs because in sweeping from top left to bottom right we always use

more of the data we just computed as we reach the end of the sweep, i.e.,

the "bottom right. The computations at the bottom right contain more new

information since they are computed at the end of the sequence of

calculations.

r.-
When we use the parallel algorithm of computing a set of new

values at one crack, the values closest to the "boundary (the edge values)

W

U9 1)2 35 26 21 lU 7 0

1)2 21. 8.75 7.00 5.25 3.50 1.75 0

35 8.75 0 0 0 0 0 0

On*
Raluutlon

28 7.00 0 0 0 0 0 0

21 5.25 0 0 0 0 0 0

ll) 3.50 0 0 0 0 0 0

7 1.75 0 0 0 0 0 0

00 0 00000

1>9 1)2 35 28 21 lU 7 0

1)2 31).3 27.1 20.5 llt.8 9.6 U.7 0

36 27.1 19.9 lU.l 9.5 5.9 2.8 0

Ttn
tteluatlons

28 20.5 lU.l 9.1 5.6 3.2 1.5 0

21 ll).8 9.5 5.6 3.1 1.6 0.7 0

ll) 9.6 5.9 3.2 1.6 0.7 0.3 0

7 l).7 2.8 1.5 0.7 0.3 0.1 0
00 0 00000

1)9 1)2 35 28 21 lU 7 0

1)2 35.98 29.96 23.96 17.96 11.96 5.98 0

35 29.96 2U.9U 19.92 ll).92 9.91» l).96 0

fifty
Rtlurtliuj

28 23.96 19.92 15.90 11.90 7.92 3.96 0

21 17.96 1U.92 11.90 8.90 5.92 2.96 0

ll) 11.96 9.91) 7.92 5.92 3.9lt 1.96 0

7 5.98 U.96 3.96 2.96 1.96 0.98 0

00 0 0 0 000

Figure 11-25. Values
Relaxat

of the Temperature after One, Te
ions using Parallel Method

n and Fifty

11-57

frtt^X^ttf^^ j^&a

converge faster than the values in the center of the me.h. This ty?e of

convergence occurs because the outer values are closest to the boundary

valuer and have more new data to use sooner than the inner values. Since

a relaxation consists of 36 computations done at once, the inner values

do not get to use previously computed values until several relaxations

have been performed. After each relaxation more inner values have more

new data to use to compute their next value.

If we liken the convergence process to freezing, we can say that

the sequential algorithm begins freezing at the bott. m right and proceeds

to the top left; the parallel algorithm begins freezing around the edges

and proceeds towards the center.

The savings in time of the parallel method over the sequential

one is dependent upon the number of relaxations necessary to produce

convergence. If the same number of relaxations to convergence are

necessary for both the sequential and parallel algorithms and each

processes P interior values, then the parallel process is faster by a

factor of P. However, since the parallel algorithm uses less new informa-

tion for each relaxation, it may take more parallel relaxations (which

consist of one application of equation (2)) to produce the same degree of

accuracy as a sequential relaxation (which consists of 36 applications of

equation (2)). That is, if a solution can be reached in 10 sequential

relaxations, it could take more than 10 parallel relaxations to reach

a solution of the same accuracy. On ILLIAC IV, though, the parallel

relaxation is 36 times as fast as a sequential one and this speedup far

11-58

'.\'.iV\' v.- >' .v-v.- •'"•.•'• •■•.■",'>"-,."" v> • ."■ .'• i*-;.>.•• .'-.■• .■- ."•.'•/■>.•> .•- .*-.•->"• J.NV-V'.*• ;.■• s> ."• i."-v■ .••.,"-.•j.'-j.'"-"'r-«"-.v ;•>■."• -"- ;>j

/n

outweighs the few extra relaxations necessary for equal accuracy in the

solution (for our particular sample problem).

F. Some Data Allocation Considerations

If we divide our slab into an 8 x 8 array of mesh points to solve

Laplace's equation governing heat distribution on a slab, the data alloca-

tion scheme to be used on ILLIAC IV is straightforward—one value of U can

be assigned to each PEM (see upper portion of figure 11-26).

KM« KMj PEM, PEM! PEM« PEM, PEM, PEMr PEM, PEMa

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • •

• • •
•

Ul.i Uy Uy 01,4 1)1,8 Uy 01,7 U»J» Ul.l "•■•
• • • • • • • • • • • • • • • • t • • •
• • • • • • • • • •

PEMo PEM! PEMt PEMj PEM4 PEMS PEM, PEMr PEM, PEMM

• « • • . • • • • • • • • • • • • • •
• • • « • • • • •

• • ■•

•
uM u»ti Ul,» Ul.4 Ul.5 Uif. ui.r Uij, - -

•
Ut.l ULS U».4 u«.» UM UI.T u«.i - —

• • • • • • ■ • •
•

Ue,! UM %% UV U.,8 UV UV u...
■

- -
• • * • • • • • •
• • • • • • • • • t
• • • • • • • • • •

Figure 11-26. Comparison of Storage: Upper portion shows
8 x 8 U array stored one value per PEM,
Lower portion shows 8 x 8 U array stored
8 values per PEM

11-59

Another possible data allocation scheme is shovn in the lower

portion of Figure 11-26. This scheme allocates 8 values of U per PEM.

Although this lover scheme is not as efficient in terms of execution time

necessary to solve the problem, it is very similar to the way a 6* x 61*

U array would be stored, ^e program for the two data allocation schemes

shown in Figure 11-26 will be developed in Chapter III and it will be seen

that these programs are substantially different-indicating that the form

of an ILLIAC IV program is highly dependent on the data allocation scheme

chosen.

Let us now consider what to do if we wish to impose a finer grid

over the slab. There is certainly no value in using a 50 x 50 grid if we

can use a 50 x 6U Just as cheaply. That is, since ILLIAC IV has exactly

6h PEs. this physical fact might as well be capitalized upon when choosing

a mesh size. ^ the mesh size is arbitrary within defined limits, the

user should choose the closest multiple of 61,-it costs no more and may

actually speed up the calculation, since less code will be generated.

Suppose we have divided our slab into a 6k x 6k set of mesh

points. We could store these 4096 values of U^ as shown in Figure 11-27.

Each PEM holds 6k values of U. For this case, one parallel calculation of

equation (2) could process only one row at a time. Since the border

values do not enter into the calculation, 62 parallel calculations of

equation (2) would have to be performed to effect one relaxation of

the entire U array. This is a speedup of 62 over the 38kk calculations

necessary for one sequential relaxation of a 61» x 64 U array.

11-60

-■ I

r

I

m

PEMQ PEM]. PEM2 PEMes

•
•
•

•
•
•

•
•
•

• • •

•
•
•

Ul.l Ul.2 Ul.3 Ul.64

U2.1 U2.2 U2.S U2.64
•
•
•

•
•
•

•
•
•

•
•
•

"64,1 U64,2 U64.S U64.64
•
•
•

•
•
•

•
•
•

•
•
•

Figure II- ■27. Stoi
6U >

•age
: 61

! Allocation of U Array for
l. Set of Mesh Points

It is very important for the reader to understand that the

ILLIAC IV program to solve a problem is very much dependent on the data

allocation scheme chosen by the -ogrammer. This is true also, but to

a lesser extent, for a conventional sequential computer.

6;
t.-. I
I
B
I

G. ILLIAC IV Input/Output (I/O) System

The ILLIAC IV Array is an extremely powerful information

processor, but it has of itself no I/O capability. The I/O capability

along with the supervisory system (including compilers and utilities)

reside within the ILLIAC IV I/O System. The ILLIAC IV I/O System

consists of the I/O Subsystem, a Disk File System (DFS) and a B65OO

II-61

Ea^^s^^

Control Computer (which in turn supervises a large Laser Memory, a Data

Communications Processor, and the ARPA Network Link). See Figure 11-28.

The total ILLIAC IV System consisting of the ILLIAC IV I/O System and the

ILLIAC IV Array is shown in Figure 11-29. The reader is warned that all

system configurations shown are transitory, and more than likely will have

changed several times before this book is published.

TERMINALS

rTF^
I ARPA
^NETWORK
| LINK

DATA
COMMUNICATIONS

PROCESSOR

B6500 CONTROL COMPUTER

DISK FILE
SYSTEM

I
1/0

SUBSYSTEM

Figure 11-28. ILLIAC IV I/O System

11-62

r

i
i

&

Vkr

»

!

B6500 Perlpherols' Cord Reader, Card Punch,
Line Printer, 4 Magnetic Tape Units, 2 Disk Files,
Console Printer and Keyboard

Ft.

»or--
t-;

G

Figure 11-29. ITJLIAC IV System

11-63

T'-TCt^

1. I/O Subsystem

The I/O Subsystem consists of the Control Descriptor Controller

(CDC), the Buffer Input/Output Memory (BIOM) and the Input/Output Switch

(IOS).

a. Control Descriptor Controller (CDC)

The CDC is that component of the I/O Subsystem (mentioned in

section D 3 d) which monitors the TMU section of the CU waiting for an

I/O request to appear. The CDC can then interrupt the B6500 Control

Computer which can, in turn, try to honor the request and place a response

code back in the TMU section of the CU via the CDC. This responsa code

indicates the status of the I/O request to the program in the ILLIAC IV

Array.

The CDC causes the B6500 to initiate the loading of the PE

Memory Array with programs and data from the ILLIAC IV Disk (also called

the Disk File System or DFS). After PE Memory has been loaded, the CDC

can then pass control to the CU to begin execution of the ILLIAC IV

Program.

b. Buffer Input/Output Memory (BIOM)

The B65OO Control Computer can transfer information from its

memory through its CPU at the rate of 80 x 10 bits/second. The ILLIAC IV

Disk (DFS) accepts information at the rate of 500 x 10 bits/second. This

11-Gk

i^^^^i'C^^ •"• •'■ •"'>v• ■ •'■ • -v>.>V .v.-W.'."]

factor of over six in information transfer rates "between the two systems

necessitates the placing of a rate-smoothing buffer between them. The

BIOM is that buffer. A buffer is also necessary for the conversion of

48-bit B65OO words to 61t-bit ILLIAC IV words which can come out of the

BIOM two at a time via the 128 bit wide path to the Disk File System.

See Figure 11-29. The BIOM is actually four EE memories providing 8192

words of 64-bit storage.

In addition to the data link to the B65OO CPU, the BIOM is also

connected to the B65OO Multiplexor which, in turn, is linked to the B65OO

Peripheral set. A typical path for a user's program and data might be:

Magnetic Tape through the B6500 Multiplexor to BIOM to ILLIAC IV Disk to

IOS to the PE Memory Array.

c. Input/Output Switch (IOS)

The IOS performs two functions. As its name implies, it is a

switch and is responsible for switching information from either the Disk

File System or from a port which can accept input from a real time device.

ALI bulk data transfers to and from the PE Memory Array are via IOS. As

a switch it must insure that only one input is sending to the Array at a

given time. In addition, the IOS acts as a buffer between the Disk File

System and the Array, since each channel from the ILLIAC IV Disk to the

IOS is 256 bits wide and the bus from the IOS to the PE Memory Array is

102h bits wide.

II-65

ra^te^:::-:;::^

2. Disk File System (DFS) . t*
'■3x,0£

(V,
The Disk File System (DFS) consists of two Storage Units, two ft!

Electronics Units and two Disk File Controllers. The DFS is also called

o P
the ILLIAC IV Disk or simply, the Disk. The Disk is of 10 -bit capacity, w

having 128 heads, with one head per track. The DFS has two channels, each fTi

o to
of which can transmit or receive data at a ratf: of .5 x 10 bits/second

over a path 256 bits wide; however, if both channels are sending or kl
Q

receiving simultaneously the transfer rate is 10 bits/second.

I
The Disk revolves once every ho milliseconds and thus has an

average access time of 20 milliseconds. Processing of I/O requests to

the Disk is enhanced by the operation of the Disk Queuer hardware. The

Disk Queuer can store up to 2k I/O requests in a hardware table. This

table is constantly monitored as the disk spins under its heads. If a K*

block of I/O comes under a head that is referenced in the Queuer table—
mm

regardless of its position in the table—then that block is transferred ^

as per the request^ As an example see Figure 11-30. _,

i
The DFS has data paths to the Array via thf. I0S and with the

B6500 via the BI0M; there is also a control path frum the CDC to the DFS 0

which is used in the last stages of initiating Disk to Array transfers p

y of programs or data.

b

*■

li-

es

Data transfer to and from the Disk can also be effected in the conven- H
tional first-come, first-serve manner when so specified by the programmer. *

n

I

B

$

i
i

NOTATION

-HEADS
I/O

REQUEST •<
NUMBER

1

2

24

•
•
•

LOCATION OF BLOCK A

LOCATION OF BLOCK B

•
•
•

DISK QUEUER TABLE

ROTATION

ILLIAC S DISK

Figure 11-30. Example of Disk Queuer Function

Even though the I/O request for Block A was entered into the
Table before the I/O request for Block B, the request using Block B will
be performed first in the above situation since it will pass under the
Disk heads sooner than Block A.

B

r

3. B6500 Control Computer

The B65OO Control Computer consists of a Central Processing Unit

(CPU), Memory, a Multiplexor and a set of Peripheral Devices (Card Reader,

Card Punch, Line Printer, k Magnetic Tape Units, 2 Disk Files and Console

Printer and Keyboard). It is the function of the B65OO to manage all

programmers• requests for system resources. This means that the Operating

System will reside on the B6500. Managing requests includes scheduling

and eventually instituting the process which utilizes the resource.

II-67

PJ» VV ' "- ."'•_'• w"« V» ta"*" V* i"* L'" ^ »"* k"' V ■ i> «^ k'» k"> U"P «T* V> -'• *** •> k"* *"• .^ WXV> ■.">*,,»>,,*W*"hTBJ,,J»^»ix,>''j»*5-"^^_j. ■•■*••'»*'». '■••■,.* •■^■»"■< i'*. '*'■■

All compiling and assembling of programs is performed on the

B65OO. Utilities, such as Card-to-Disk, Card-to-Tape, etc. are also

executed on the B65OO. From a total System standpoint, the ILLIAC IV

Array can be considered as a special-purpose peripheral device of the

B65OO capable of solving certain classes of problems with extremely high

speed.

a. B65OO Central Processing Unit (CPU)

The B65OO CPU provides the Control and the Arithmetic and

Logical processing capability to the B650O Control Computer. The B65OO

CPU operates at 5 megacycles.

b. B63OO Memory

The B65OO memory contains 65,536 li8-bit words and has a memory

cycle time of 1.2 usecs. The B65OO Memory can be considered tertiary

memory (over 3 million bits) in the total system, with the ILLIAC IV Disk

being secondary memory (one billion bits) and the PEMs of the ILLIAC IV

Array being primary memory (over 8 million bits).

c. B6500 Multiplexor

The B65OO Multiplexor is the heart of the B65ÖO I/O System as

can be seen by the number of lines coming into and going out of it in

Figure 11-29. It is linked to the BIOM, the B65OO CPU, B65OC Memory,

11-68

ü£S2££&MS^

t
V'

^ the CDC, and the B6500 Peripheral Set as well as the AEPA Network Link,

" the Data Communications Processor and the Laser Memory. The Multiplexor

may be viewed as a switching network or a small I/O control computer which

operates asynchronously with the B65OO CPU. I
■.

d. B6$00 Peripherals

The B65OO Control Computer has a standard set of input and

output peripheral devices:

1 Card Reader (800 cards per minute)

1 Card Punch (300 cards per minute)

1 Line Printer (132 print positions; 1100 lines per minute)

k Magnetic Tape Units (9 channel; l600 bits per inch;

^5 inches per second)

[v 2 Disk Files (5 million it8-bit words, 20 milliseconds

average access time per disk file)

W 1 Console Printer and Keyboard.

m

I

1. " .

e. Data Communications Processor

t>" The Data Communications Processor will supervise a set of remote

terminals. The terminals are devices such as Teletypes or CRT displays that

allow the user access to the ILLIAC IV System. Users will be able to enter

their jobs into the system in either a batch or interactive mode via the

terminals. The terminals can also be used to monitor jobs while in

y execution and to scan the ILLIAC IV Disk or Laser Memory which will contain

11-69

K--:;>>>:;^^^

the output from a job. If the user decides he needs a hard copy of his

output, he can then signal the system from his terminal to activate a

printer.

f• Laser Memory

The B6500 supervises a 1012-bit read-only Laser Memoiy developed

by the Precision Instrument Company. The beam from an argon laser records

binary data by burning microscopic holes in a thin film of metal coated on

a strip of polyester sheet, which is carried by a rotating drum. Each data

strip can store some 2.9 billion bits. A "strip file" provides storage for

kQO data strips containing more than a trillion bits. The time to locate

data stored on any one of the 400 strips is five seconds. Within the same

strip data can be located in 200 milliseconds. The read and record rate is

four million bits a second on each of two channels. A projected use of

this memory will allow the user to "dump" large quantities of programs and

data into this storage medium for leisurely review at a later time; hard

copy output can optionally be made from files within the Laser Memory.

The laser memoiy can be considered fourth-order memoiy in the ILLIAC IV

System (one trillion bits).

g. ARPA Network Link

The ARPA Network is a group of computer installations separated

geographically but connected by high speed (50,000 bits/second) data

communication lines. On these lines, the members of the "Net" can transmit

information-usually in the form of programs, data, or messages. The

11-70

link performs an information switching function and is handled by an IMP

(Interface Message Processor) and a Network Control Program stored within

each member installation's "host" computer. Each IMP operates in a

"store and forward mode", that is, information in one IMP is not lost until

the receiving IMP has signalled complete reception and retention of the

message. The IMP interfaces with each member's computer system and converts

information into standard format for transmission to the rest of the Net.

Conversely, the IMP accepts information in a standard format and converts

it to the particular data format of the member installation. In this way,

the ARPA Network is a form of a computer utility with each contributing

member offering its unique resources to all of the other members. See

Reference 2 for a complete description of the ARPA Network.

H. Conclusions and Opinions

It is useful to view the ILLIAC IV System as a set of resources;

each member of the set having special capabilities. If the programmer can

define his problem in terms of the unique capabilities of this set of

resources he has effected a computer solution to his problem.

The set of resources afforded by the ILLIAC IV System is:

• A B65OO Computer System which also supervises

• A Laser Memory

• The ARPA Network

• A Terminal System

• A very fast Disk Storage System

• An extremely fast Array Processor.

11-71

i- >'J- -•- JI .*- ^.«f- ^-. .*-.r- ^-. »'^ j- f-i J-TAJ ir.f«gjiA. ^-» .if. f*ir~ rfv.'L if-wv»"- «*-v. ■'-..•■ .' »'-'.- <*- »*- ■'- s. ^_i" ^. •/IJCJJ?^ rf- »*. ^- .■

Kite. MStai H » »ij..» .WTB.'WTu t » «.■- » . -.1. -i.', ."Wx-.. -. -_ -■-,. -.. -' *^ i»^i. V. .. ».. i •.. "l.XJ.».«^ ■.. ■. _ fc^. ■.H.^..*1''W»-.-, .•_■.".■■_■"..■■ - ■!.-.- .-_.-,=> ^*S. -*Ji >-i. in L;1. »Thu^Ju.» -

«n

If the problem to be solved on the ILLIAC IV System involves

vector manipulation or systems of differential equations to be approximated

by finite difference schemes, then the Array Processor resource can be

utilized. Many applications in Numerical Weather Prediction, Linear

Programming, Hydrodynamics, Signal Processing and the response of coupled

mechanical and electrical systems are in this category. ;.i

Information Storage and Retrieval processes can be performed

using the B65OO, the ILLIAC IV Disk and the huge Laser Memory. Large data _

bases can be accumulated on the large slow Laser Memory and car. be sent via "~

the ILLIAC Disk to either the B65OO or the ILLIAC IV Array for processing. R

Computer Aided Instruction (CAI) is another area of application

that can be exploited using the large Laser Store coupled to the terminals.

A remote file editing capability including interactive compiling facilities

and job monitoring during execution is afforded via the terminals. Pro-
Mm

grammer convenience is further enhanced by possible debugging systems using M

the terminals. Also, the B65OO can provide a full range of compilers, «o

assemblers and utilities for programming support. At present, no one is ^

sure how to use ILLIAC IV to assemble or compile programs. *%

broad range of resources within itself.

A satisfying Artificial Intelligence model has not yet been

11-72

c:
•••.

a

As mentioned previously, the AEPA network represents a potential

ü.

v.

produced by any available computer resource. Hopefully the 1012 bit K|

•","•

: >iiwSv-:^v-:>:>:>■ >:^^ ü-üü

fcs.

H Laser Memory will encourage a grander, more comprehensive approach to

K
m

i

i-.-

:■:-

E

intelligence models.

Perhaps it is too glih to say that the ILLIAC IV System is a

set of resources; if the user is resourceful, he car them. Unfor-

tunately the statement is partly true—there are no recipes yet for

solving the large, the important and interesting problems. There is no

N' computer science out on the edge of research. The answer to the question

"How do you use ILLIAC IV?" cannot be answered by a statement, but with

CM another question:

You know the resources, the tools you have to work with, the

next time a problem passes close by, ask yourself "Can this problem be

described in terms of the resources which are now available to me?"

m 11-73

CHAPTER II — REFERENCES

1. ILLIAC IV Systems Characteristics and Programming Manual, Paoli, Pa.:

Burroughs Corporation (llA-FMl Revised), (30 June 1970).

2. Lawrence G. Roberts and Barry D. Wessler, "Computer Network Develop-

ment to Achieve Resource Sharing, " 1970 SJCC, AFIPS Proceedings,

Vol. 36, pp. 5^3-5^9-

References 3 and k are excellent additional material to augment

the reader's understanding of ILLIAC IV. He is warned, however, that many

aspects of the ILLIAC IV Computer have changed since these two papers were

written.

3- G. H. Barnes, et al., "The ILLIAC IV Computer, " IEEE Transactions on

Computers, August I968, Vol. C-17, pp. 746-757.

4. D. J. Kuck, "ILLIAC IV Software and Application Programming, " IEEE

Transactions on Computers, August 1968, Vol. C-17, pp. 758-770.

11-7^

"•r:-:" \~v-T-T-\r^^^^^

I
*& CHAPTER III — THE ASSEMBLY LANGUAGE—ASK

i

[■:■

r>

Ü

i
I

i
$

k

TABLE OF CONTENTS

Page

A. Summary III-l

B. Review III-2

C. Notation III-3

D. Operands 111-4

1. PE Operands III-l*

a. PE Memoiy Address III-U
b. PE Register III-5
c. Literal III-6
d. ACAR III-6
e. Routing Operand III-T
f. Mode Setting Operand III-T
g. Indexing III-7

2. CU Operands III-8

a. CU Memory Address III-9
b. CU Register III-9
c. Literal III-9
d. Skip Operand III-10

E. CU (ADVAST) Instructions III-ll

F. PE (FINST/PE Instructions III-ll

G. Convention 111-12

H. Warning 111-12

I. Sample Problems 111-13

1. Summing an Array of Numbers 111-13
2. Finding the Maximum Value in an Array of Numbers . . 111-30
3. Matrix Multiplication 111-kO
k. Matrix Transpose III-61
5. Temperature Distribution on a Slab 111-70

a. Case 1. One Temperature per PEM 111-71
b. Case 2. Eight Temperatures per PEM 111-83

J. Conclusion 111-89

References 111-90

Ill-i

i^M^Z££i£^^

\r^^r«r^i^/^ \^\^x^ ^.^ \r* ~- ^:.' '^ -, •~J~-',: '• "-'.*.-i.'']^..1-?.''. •J'' ^»'^".^vvr.'r,",;"^'; _■;"_•;"_■;■ .■:_'..•: ;•-.•- .'- .*. ..—«—.-'■■-^••p™™j^»;-'^Mi«-"^

LIST OF FIGURES

Figure Page

III-l. Symbolic Location X is a "Row" of
Processing Element Memory (PEM) 111-15

III-2. Indexing by RGX can cause Different Locations
within PEM to be Referenced 111-17

III-3. Memory Storage for Matrix Multiply Problem 111-48

Ill-it. Example of Skewed Storage 111-63

III-5. Skewed Storage is Used to Simultaneously
Access Columns as well as Rows III-65

III-6. Storage Scheme to Transpose the 6^ x 6k Matrix A
(A is stored skewed) and Store Result to Matrix B III-68

III-T. Initial Conditions and Storage Allocation for
Two Cases of Temperature Distribution on a Slab 111-72

III-8., Exact Solution for both Case 1 and Case 2 111-73

LIST OF TABLES

Table Page

III-l. Assembly Language Steps to Sum Eight Numbers
Using Eight PEs 111-22

III-2. Solution to Problem #2—Finding the Maximum Value
in an Array of Eight Numbers 111-31

III-3. Step-by-Step Display of ASK Instructions and
Pertinent Registers for Matrix Multiply Problem 111-55

III-^. Comparison of Results for Case 1 and Case 2
for Temperature Distribution on a Slab III-88

III-ii

:>>>:;• ::o^>::^^

.^Lv^sn--! •. ^.' -.1 ^". -. .A. JL.--" ,1L"J„-'_

E

I

:■:• i
fj; I

E
> ■. ■■

E

CHAPTER III

THE ASSEMBLY LANGUAGE — ASK

■> A. Summary I
The ILLIAC IV Assembler is called ASK. It is a two-pass

■■•>

B assembler that accepts a program written in the ASK language and converts

r. it to an ILLIAC IV binary object code. Although there are almost 300

instructions in the ILLIAC IV repertoire only those few ASK instructions

required to write simple programs will he described here.

The approach taken in this chapter will be to state a problem,

then to learn only those instructions necessary for the solution of that

|P problem. The first problem is that of summing an array of numbers. After

the instructions for the solution of the first problem are learned only a

™ few more are needed to solve the second problem: finding the largest

H value in an array of numbers. Problem three describes a parallel algo-
tt ■

rithm for matrix multiplication that differs from the standard sequential

tV
& algorithm. The ASK instructions to implement this parallel algorithm are

^ then developed. The fourth problem, transposing a matrix, is used to

►"". develop the concept of skewed storage which is one solution to the problem

OS of accessing the columns of a matrix as efficiently as the rows. The

fifth and final problem develops the ASK instructions necessary to solve

■> Laplace's equation which models the steady-state temperature distribution

on a slab as discussed in Chapter II. Two cases are considered illus-

trating two possible data allocations; the first case allocates the

III-l

Sk temperatures so that one temperature is stored in one PEM, the second

allocates eight temperatures per PEM and is representative of all alloca-

tions requiring a finer mesh spacing up to and including a 6it x 61+ aesh.

After the five problems have been programmed, the programmer has learned

1+0 ASK instructions and some useful programming techniques.

B. Review

Let us review the registers that are programmable:

In the CU, we have four 61+-bit registers named ACARO, ACAR1,

ACAR2, and ACAR3. There is also a 61+-word scratch pad memory called the

ADB. Each word is 61+ bits long.

In each PE, we have six programmable registers:

RGA, the A register and Accumulator, is Sh bits

RGB, the B register is 61+ bits

RGR, the R register or routing register is 61+ bits

RGS, the S register or temporary storage register is 61+ bits

RGX, the X register or index register is 16 bits

RGD, the mode register is 8 bits.

There are two basic types of instructions, FINST/PE and ADVAST.

ADVAST instructions are executed in the ADVAST section of the Control Unit

(CU) and are of the type that can be fulfilled within the resources of the

CU. FINST/PE instructions may be partially processed within ADVAST but

III-2

'B~ "-if- ■ r i^^^j^ZTi^x^^t^T*^.C];w>^rii»--Tr.'^-.Trr^. -r..-. ^.^^-. --.^r.,

t
i:

M to "be fully executed they are sent on to FINST which sends out the micro-

sequences necessary to drive the PE array. Since there exists other

;-; literature which refers to FINST/PE instructions as PE instructions and

m to ADVAST instructions as CU instructions, that naming will be used

P v~ alternatively in this chapter.

P s

ir

m
i

r » m w I

C. Notation

ASK instructions will be described using the following format:

LabeZ: Opcode Opesumd;

Metalinguistic symbols or symbols which stand for other symbols are

written in script, i.e. LaboJi. A value that the variable symbol Lotbtt may

he is LOC or LOOP. Symbols which stand only for themselves (reserved

symbols) are written in upper case type and are underlined, for example:

■ STA OpeJumd;
• w.

oe (STA is a possible value for Opcode..) Reserved symbols will usually be

ft
Operation Codes or Opcodes and must be written exactly as they appear.

. ^ ■

>> Symbols which are partly variable and partly reserved will have

K the reserved part written in upper case type and will be underlined, and
SB

the variable part will be denoted by a lower case Greek letter, for example,

i LDa Optnand;

111-3

t-^T«^^»-' «AJ-«:«-'->.■•.»■ v».- «■T«-,;.t-- . •.._-, «■•. «,1 ^'.^ •.^•. ,.'**-:^-i*.:M^~.^\ ._-. ».■,-■-. t. •> ^ . ■..',. v. .v. >... i'. a., t. if. ■•'. ■.'. «•_ V, ^ v. .', .!_ ..•_ .•_

where a can be A, B, S, X. R or D. This means that LM, LDB, IJ^, LDX,

LDR, or LDD are all possible variations for the LKX operation code.

The LabeZ field is optional and represents a symbolic location

or address within the program; LabeZ must be followed by a colon (:).

The Opcode is the operation code portion of the instruction,

i.e., ADD is an Opcode. A blank must follow the Opcode.

on The Operand is the address or operand portion of the instructi

and may be an address, a count, or data. If it is an address, it denotes

the location in memory where data resides.

A semicolon (;) must follow the Operand and indicates the end of

an ASK instruction.

D. Operands

With each instruction type, PE and CU, there is associated a

permissible set of operands.

1. PE Operands

A PE Operand may be a PE Memory Address, PE Register, Literal,

ACAR, Routing Operand, or Mode Setting Operand:

a. PE Memory Address

A PE Memo^ Address (PEM Address) refers to the contents of a

Row of PE Memory locations. The name of a PEM Address must be symbolic

III-i*

i-'i^s^töv^^^

I.».V. jr\>T>lV > .J 7J-Xrj..r^RTJ'T^'fj:j\rr^i,Ti's»'.rf.rsvzr.T:;»i.«.Z-.W.HLT.J:^-K.',\.r.*.5•_n_-^^ •j.\.-T,L-s..'i"*A-i.i-txiiii i,u ^.IM.•.■»..'».■.■•»..-wa^L-sj

I

.'•

i

S

B

and is created by the programmer. Symbolic names consist of alphameric

characters (letters and digits); they can be up to 63 characters in length

n but the first character must be a letter.

Examples of PEM addresses:

X
[•:■
m LOCATION

L123

A PEM Address will alternatively be called a "Row", "Row location",

IT' "PE Memory location", "PEM location", or "PEM Row location" in the follcw-

SB ing text. Note also that PEM is short for PE Memory.

b. PE Register

A PE Register has the following format:

$ Reg^AteA Wowie

where RzgiAteA. Warne can be A, B, R, S, or X and

$A stands for RGA

$B stands for RGB

$R stands for RGR

$S stands for RGB

$X stands for RGX

(The total mode register, RGD, can never be a PE operand, except in one

special case which will not be covered here.)

III-5

.V ' ' ' " -' '-' -'---^ - -■

c. Literal

A Literal is usually a value that stands for itself, not a

location where the value can be found. It is of the form:

= LiteAaZ

where LiteAal (for the purposes of this brief explanation) is a number,

i.e.,

= 12:8 is a Literal of value twelve in the base 8

number system (and is equal to ten in base 10).

= 10 is an integer ten in the base ten number system.

PE Literals are constrained to be representable within 16 bits

so that floating point numbers (which require 32 or 61+ bits) are not

allowed as PE Literals. Integers which can be represented within 16 bits

are allowed however:

= 0

= 15

= 65535

are all valid integers which can be used as PE Literals.

d. ACAR

Only one of the four ACARs in the CU can be used as a PE

Operand; they are referenced by the names $00, $01, $02, and $03. (The

III-6

ajfri ^ . ^-f^ . tl -t^A ^. i ^.^^^. ^ . .. - V- /■ /- .-. .: .-■ S..-- .-, .-, . - ^ • .', ■■ J-T^y.- J ■ V VV .:. .: ^ ■> .- ^ ^ ^ .- .. ^ ' . »-. >

ZZLXZZJLT-- JIT'•..r**,„,~"*spyj^y.^^^ ",-" .* v^"."»r^ .^.^^-v

t

i
$

P

-y

■-■

k

contents of the specified ACAR is transmitted or "broadcast" to all PEs via

the Common Data Bus.)

e. Routing Operand

A Routing Operand is a highly specialized type of Operand that

is only used with one PE instruction (the Route instruction, RTL). This

sa Operand will he discussed when the Route instruction is discussed.

f. Mode Setting Operand
Ü

fa The Mode Setting Operand is another specialized Operand which is

used with a certain class of instructions which set bits within the mode

register (ROD). This operand will be discussed when an instruction of

this class is encountered.

.-■: a..

M g. Indexing

PE Operands can be indexed in two ways: either by RGX or RGS

within a PE, or by one of the four ACARs in the CU.

Usually the PE Operand to be indexed is a PEM Address or location.

An indexed location is in one of two forms:

* Location

or

£. # Location

111-1

..-•i -V .v -•- --.--. ^ -'. -•» .■!.--. -w ■■ L-. •■ v. -. -. -■. ,v •■ •. _•..% j\ ,% .:, ir. .•..»..%,,% _% _!w '. _% ^N. ^^v JL-.-^ g.' »JVi^o ^l>^r■L^l Ajr«-<^/«j-«_» ^- ^ . •. i

where the asterisk (») means the Location is indexed by the contents of

RGX and the sharp (#) means that the Location is indexed by the contents

of RGS. The contents of the specified index register is added to the value

of Location and that sum is used as the effective PEM Address or location.

LDA *A;

would load the EGA of eveiy PE with the contents of location (A + contents

of RGX). RGX may contain a different value in eveiy PE, in which case the

RGA of every PE in the array will be loaded from a different location in

PEM. This situation is shown in Figure III-2 on page 111-17 and will be

discussed later.

The contents of one of the four ACARs in the CU can also be

used to index a location or PEM Address. The ACAR which contains the

indexing value is specified in parentheses after the location, i.e.

LDA A(l);

would load the RGA of every PE with the contents of location (A + contents

of ACAR1). Since the contents of ACAR1 is a scalar (and not a vector or

row) quantity, the RGA of each PE will be loaded from the same location—

A + contents of ACAR1. This is not necessarily the case when indexing is

done using RGX or RGS within each PE.

2. CU Operands

A CU Operand may be a CU Memory Address, CU Register, Literal,

or Skip Operand.

III-8

r:'^v---.^.j-:--/~jr;" .•"'•.w^",•^^^''>.r^^".^^,T.T^•^.■•■^■.'^7■.■^•-l.•^••".v^-v. K K<^r-\'.\^rrrmr- •• r ^i^'iMr-.'r-T-r'.'-vj':

P.

''..

a. CU Memory Address

A CU Memory Address refers to the contents of a single location

in PE Memory (whereas a PE Memory Address refers to the contents of a row

of locations in PE Memory). CU Memozy is not to be confused with CU

Register Storage (the 6^ ADB locations, the k ACARs and thirteen other

I
Si CU registers). CU Memory lies within PE Memoiy. There are CU instructions

m which reference a single word stored in CU Memory which means that the

single word resides in a specific Row and a specific PEM within that row.

H> As we shall see, it takes two coordinates to specify a CU Memory Address:

the Row number and the PEM number.

i
r^ b. CU Register

The available CU registers are the four ACARs ($C0, $C1, $C2,

«> or $C3) or any of the 6k locations within the ADB ($D0 through $D63).

■ Additionally, there are thirteen other CU registers that can be vised as a

CU Operand, but they will not be covered here.

i
c. Literal

i
A CU Literal Operand is usually in one of two forms. One format

^ is the same as the PE Operand, i.e.,

M where LitdAal can be a number or an address. When a CU llta/iat is an

u.-"; address, it refers to a single location in PE Memoiy.

r
III-9

I

For example =X refers to the word in PEMQ of Row X in PEM; while

=X+1 would refer to the word in PEI^ of Row X in PEM. More will be said

about this when tne Matrix Multiplication problem is discussed.

The other format is used for loop control and looks like:

IncAmznt, Limit, Stavting Valuz

where StaMlng Vatuz is the Initial value of the loop counter

L-imit is the upper limit of the loop counter

and IncAmtnt is the increment for the loop.

Unlike PE instructions, there are CU instructions which can

create literals. These instructions and the loop control literal will be

discussed later.

d. Skip Operand

A Skip Operand is a special CU operand used to transfer control

to another location with the program. It is usually of the form:

j Locaution

where LooaUon is the location in the program that will be skipped to

based on the results of a test defined by the Opcode. There is a strong

constraint on the value of Location; it is limited to be within +127

instructions from the transfer instruction being executed. There is

another instruction which can Jump to any location in the program that

III-10

\j[Z££££&£s^^

T-

i
i
i-.

fei

C.

C"

fe

has as its Operand Just the location and is not preceded by a comma. This

instruction, called JUMP will not be discussed since it is not necessary

for the solution of any of the problems.

E. CU (ADVAST) Instructions

If an accumulator is needed for the execution of a CU instruction

one must be specified since there are four accumulators to choose from.

Accordingly, the Opcode, of many CU instructions is followed by a number in

KS parentheses that specifies which ACAR is to be the accumulator for that

ß!
instruction. The format is:

Opcode (ACAR Wuwbe/t) Operand;

An example might be

LDL(3) $Dllt;

which means: Load $C3 (ACAR3) from $Dlk (Location Ik of the ADB).

(v F- PE (FINST/PE) Instructions

PE Instructions may be partially processed by the Control Unit

but they are not completely executed until the PE array performs the

fci operation. It is very important to remember that one PE instruction does

S not cause only one action to occur as is the case with CU instructions,

it causes 6k actions to occur.

III-11

llfO

LDA X;

causes the RGA of 64 PEs to be loaded from location X of each PEM or,

equivalently, from Row X of PEM.

G. Convention

The following convention will be observed in the prose descrip-

tion of the operation of the instruction types: The words "enabled" and

"disabled" will not be mentioned. For example, if an instruction is

described as loading the RGA of all PEs. this description is meant to

imply all enabled PEs and certainly not the disabled ones. However if

an instruction is described as loading the RGB of all PEs. then this is

meant to imply all PEs, disabled or enabled. All of the rules which

describe the operation of enabled and disabled PEs previously described

in Chapter II are in effect.

H. Warning

The description of PE and CU Operands and Instructions will be

necessarily incomplete to avoid getting bogged down in details. Also

discussion of a third class of instructions (IMJ instructions) which are

used primarily by the Systems Programmer will be skipped entirely. The

intent is to present the minimum amount of detail which will allow the

programmer to use a small instruction repertoire to solve the sample

problems. This method allows the user to gain a "feel" for how the

language works without having to learn all of the intricacies of the

language.

111-12

^::^>^:-re-;\vv;fr-:v.N'^v-:^^

T

k

$

fc—

K4»

I. Sample Problems

1. Svimmlng an Array of Numbers

The first problem a programmer usually solves is to write the

algorithm that sums an array of numbers. The problem is stated as follows;

Given an array of numbers X^ X2, X-, ... XN, find

N
g Z x.
i i=l

and store the result in S.

If we were to solve this problem on a conventional machine, we

might use a language like FORTRAN:

S = 0.

DO 10 I = 1, N

10 S = S + X(I)

Now let us consider the instructions in the ILLIAC IV repertoire

that we will use to solve this problem.

The first instruction we need is a "load" instruction; one that

loads the contents of a PE Register from a PE Memory location or from

another PE Register. It is of the form

LDa Opvuind;

111-13

I
* -^ - >->-►-* -•—1 JL .■> ->«.-> > -« -> -».-.-» J _■ ^ j .. ., -> ^ _• .» .> _• .« .• .' .• .• J. _«..' ^..«. .•_ .^ .•. J_ .'. .•_ .•.^. .■•..,.♦, .'_t._^^ ."-fi

m
where a = A, B, S, X, R or D, and specifies RGA, RGB, RGS, RGX, RGR, or fif

RGD respectively. _
ft

Opznand is usually a PE Memory Address or location, a PE register,

or an ACAR. "t

LDa is a FINST/PE or a PE instruction.

Examples:

LDB $R;

means all PEs load their RGB from their RGR.

LDA X(l);

Once again it is stressed that PEM location X is at the same place in

every PEM and can therefore be viewed as a vector or "Row" of PEM locations

(see Figure III-l). This concept is, of course, at the very heart of the

ILLIAC IV, a memory or register access does not access only one operand,

it accesses a vector-full of operands.

tion. Its format is similar to the "load" but its operation is just the

lll-lh

C-1

LDA X; '■■

means all PEs load their RGA from the contents of PEM location X, or Row X. fe

DTJ

means: l) The contents of ACAR1 ($Cl) are added to Row location X. Call

this value Y.

2) RGA is loaded from the contents of Row Y. •/!
P

v.1

i
■.

Associated with the "load" instruction is the "store" instruc- W

»*. •

t7-1

m£&tä&^^

c

f:
I

i

'•.■

I f-

1--

«0

n

LOCATION 0

X ►LOCATION X WMM*

LOCATION 2047

PEi

It

LOCATION 0

LOCATION X Wffltfo

LOCATION 2047

• • • «63

LOCATION 0

• • •

LOCATION X

LOCATION 2047

^

PEM0 PEMx KMe,

Figure III-l. Symbolic Location X is a "Row" of
Processing Element Memory (PEM)

reverse: the contents of a PE register are stored to PE Memory. PE stores

are always to PE memory, and never to another PE register; register to

register transmission is effected by the load instruction. The store

instruction is of the form:

STa OpeAand;

i

i:

where a = A, B, S, X, or R and specifies RGA, RGB, RGS, RGX or RGR

respectively.

OpeAand is always a PE Memory location.

Like LDCK, STa is a PE instruction.

111-15

v.-y-V-.•■ .■• ."•■."- ."• v^Ak-..-..-..-.'^. .%.-..•..-/ •.. .\<■ «.'•-• \\vv-. '." >/ %" v •' v v"'.' vN'sw -." •/ v' •."-.■, - 'VVVVVVVVVV o

Examples:

STA X;

means all PEs store the contents of their EGA in their PEM Row location X.

STS *A;

means: l) The contents of RGX of each PE is added to PEM location A;

call this new location Y (Y may have a different value in

each PE).

2) The contents of RGS of each PE is stored in PE Memory location

Y of each PEM.

See Figure III-2 for a picture of how Y can vary within PEM if RGX holds a

different value for each PE. Row A has a variable offset specified by the

contents of RGX which results in a different location being referenced in

each PEM.

Another instruction we need to solve our first problem is one

that will add:

ADRN Operand;

where Operand is usually a PEM Address, a PE Register or an ACAR which

contains the value of operand to be added to the accumulator RGA. The

result appears in RGA.

III-16

@.

&•-'

L-.

LOCATION Y'LOCATION A

«1

N6X 1

11

LOCATION A

LOCATION Y mm.

«2

MX 2

LOCATION A

LOCATION Y

KMQ

msx
^6»

•s

• •

LOCATION A

• • •

LOCATION YiLOCATION A+S5

PEN! KMt KM«,

Figure III-2. Indexing by RGX can cause Different Locations within
PEM to be Referenced

RGX in PE0 is 0

RGX in PE is 1

RGX in PE2 is 2

RGX in PE. is i
i

i
RGX in PEg is 63.

STS *A causes the contents of RGS to be stored in
location Y.

^

111-17

ADRN is one variation of the PE add instruction; it adds two

6k bit floating point numbers using rounding (R) and normalization (N).

Examples;

ADEN X;

means: to the contents of the RGA of every PE add the contents of PEM

Row location X and place the result back in RGA.

ADRN X(0);

means 1) Add the contents of ACARO ($C0) to PEM location X; call this

location Y.

2) The contents of location Y are added to RGA in every PE

simultaneously and the result is pieced back in the RGA of

each PE.

In order to use ILLIAC IV effectively we must use the "ROUTE"

instruction in programming a solution to our problem. (The total array of

numbers to be summed could be stored entirely within the PEM of one PE,

but the computational power of the rest of the PEs in the array would be

totally wasted. The scheme we shall use to sum the numbers will attempt

to use as many PEs as possible.)

The Route instruction is used to send data from some PE register

(RGA, RGB, RGX, or RGS) to the routing register, RGR, and from there route

that data a specified distance to another PE's routing register. One form

of the Route instruction is:

111-18

^4

■ "" ■ ■ fc • "1 • W W • '' " •■ r • J • ■ « ■ « \ m • » ■ •• ■ ■ •• ■ n ■ • B • - « . a - « - 4 #« ■" I* '. • a ■ .1

RTL Source Reg-c4teA, RoiUlng Vütancz;

where SouAce KzgütoJL can be $A, $B, $X, $R or $S. If Source KzqlbtVi and

the following comma are not present, the source register is

assumed to he $R.

Roi^ttng ViAtancz is a number indicating how many PEs to the left or

right the data should be routed.

A positive number denotes a route to the right.

A negative number denotes a route to the left.

Tho "L" in RTL stands for 'Local" and not for 'Left".

RTL is, of course, a FINST/PE Instruction.

Example:

RTL $A, -3;

would cause the following to happen:

1) For all PEs, the contents of RGA are placed in RGR.

2) The contents of RGR of each PE is routed 3 PEs to the left. The

results always end up in the R register, RGR; the contents of RGA

are unchanged. The Route is always end-around so that, in this

case, the contents of RGR of PE0 would end up in the RGR of PEg,.

Since a Route Instruction only changes RGR, it is always executed

by the entire PE array, regardless of whether or not a PE is enabled or

disabled.

The second operand, the Routing Vi&tancz can be indexed by an

ACAR. If this is the case, the contents of the specified ACAR is added to

111-19

j • . r_
• - ■^^■» . ..m ...» ^ „■ 0_ Z£Mä£££ä^

the Routing ViAtancz and the route is then performed. The general form

is:

RTL Soatce RzglitzA, Routing Vl&tancz (ACAR WtunbeA);

where ACAR WumbeA is 0, 1, 2 or 3 specifying $C0, $C1, $C2 or $C3.

Examples:

RTL $S, 12(1);

would place the contents of RGS in RGR then route RGR a distance of

(12 + contents of $Cl) to the right.

RTL $S, 0(0);

To the Routing Vt&tancz, in this case zero, is added the contents of $C0.

This distance is then used to route the contents of RGR after it has been

loaded from RGS. If an ACAR is used to Index the Routing Vütancz it is

extremely important (for reasons too complicated to describe here) that

the number in the ACAR be positive.

We may now program a solution to our problem. For ease of

illustration let us assume that we have an eight PE (rather than a. 6h PE)

machine and that N = 8 (we have 8 numbers to sum) and that they are

given to us stored across one Row of PEM at location X. Also, since PE

numbering begins at zero let us label our array X , X , X , X , X, , X ,

X/- and X™.

111-20

K
m ■A

The ASK program to perform the sum might look like

LDA X;

RTL $A> -i;

ADRN $R;

RTL $A, -2;

ADRN $R;

RTL $A. -hi

ADRN $R;

STA S;

Table III-l shows the first seven steps of the ahove assembly language

program. The contents of RGA and RGR of each PE are also shown after the

execution of each step. After Step 7 has been executed

m 1

is in the RGA of each PE of our 8 PE array. The last instruction,

STA S; stores this result to location S as the problem requires.

It should be clear now that we could sum 6h numbers on our

6k PE ILLIAC IV using the following instructions:

111-21

w

I

K < K
■«■ -w- -w-

e

S5
(X.

ITi VO t—

P4 ft Pi
<U <U tt)

+3 +J +J
CO CO CO

ft5

s

.«
^

H
I

H

0)
H

g
■'• .#«
T 7

« urn A
■ A «a; Qd <J:
X -ee- ■ee- ■««■

f
i 1 1 1

• • •
H CJ on -* M0

ft ft ft ft s
0) 0) 0) (U

■P -p -p ■p
W CO CO CO

n
CO

Ol tvl v Q »u
X »■I X M
+ + + •H +

o co CJ ^ pi / 1 Lr\ Xt LA
X X X H X ^<! ^-J

>r xT x0 +
xT x0 :r +

X

+
x0

+
t-.

+
rH

X

+ p +
+

r.'i

i i^l II
•H

+
xT +

X X X

rH ..J-l . J^ LA
M X
+ + V . ;■ ■' +

0- ^" ^ x0 ^ o . i"J M
X

x^0 x^0 xT +
x^0 xT" +

x0 :° +

+ +

x^1

'" t'-11 X

o O , r* J-
X X X + + '¥ , jH +

U) VO o t- O xf
iVi X OT

X X X X X X X
LA LA vo + VO + + . + + + + , O +

H X X IA
X

X >r >r x*5

+
LA

X

■A' ^0

+
IA

X
+
xrH

t'w.!!,

HT4

xT ►r X X , + •«• + ■r* +
IA LA t- ^0 t- »0 C-l X CM

X X X X X X XI X
Jt J» >^ ? IA + + + ♦ + + Cl +

X X ^ X x* >^ IA
X ie IA

X >r t-Wl H
X + + + + * j CJ o

X X X X

x^ x0 xT1 xP
4> 4 + •H +

X x* x^0 IA
X x0 IA

X ^ X >r
m on ^s + ■a + + 4- ♦ + 4

•rt

+
X X X >r X >p IA

X x9 IA
X ►? x0 x0

♦ + + +
x00 x" xT >r

IA
X

LA
X xH HT + + + •H 4

Cl en IA if CA «tf p X o
X X X X X X X

>^ X^
CO

X +CV, X +<. ♦, Vi + + tv t-t-J? \
X X X X

>
X

x01
+
xvo

■rl x'"

>

a« rf o o
X X X X + ♦ + •H +

(jf eg
X

-a-
X •sT :t X *r X >r

>t ^ x" > X^ :- X X > 5- ■rl

IA
X

X X xT xT + + + K;H H>
»r ^ X xw f»1

X >? x0 X x^
>? x0 >r > ^ > >

x0

X

+

xP

X +
X

t- w?

i 1 3 i s 1 i i a i ^
11. 1

H CM rn j- IA VO t-

111-22

l.^.A.*J,» ^.■...^■..JL.«-.^..^ ft fc «..> »..- %.- «^w f - rf", ■- *■- ^^ ■ . ■ _ ■ ^m _. ■a., • ._ ■„._.«._ •"„ J*., -* . Jf^ ij^VL. *J

t

i

tt

i

I
♦■. -

f.: I

LDA X;

RTL M. -i;
ADRN $R;

RTL $A, -2;

ADRN $Ri

RTL $A, -hi

ADRN $R;

RTL $A> -8;

ADRN $R;

RTL $A, -16;

ADRN $R;

RTL $A, -32;

ADRN $R;

STA S;

The general rule for routing using this kind of algorithm to sum

numbers is:

To sum N numbers where N = 2 and I is a positive integer, we

perform I routes using a routing distance starting at 2 and ending at 2 ,

This method of summing numbers is sometimes called a "Logsum"

since the routing distance increases as a power of 2. The reader should

also check for himself at this point that the Logsum algorithm will work

when the Routing dlbtmcz is positive and all routes take place to the

right. The algorithm is independent of the direction of the routes; the

result will be the same since routing is end-around in both cases.

111-23

Unfortunately the solution to the problem presented above is net

very elegant, nor is it concise. It could be made more concise and elegant

by using looping instructions.

Of the four-teen instructions needed to sum 6h numbers six pairs

of them are of the form:

RTL $A, Vi

ADRH $R;

If we could set up instructions around the above instruction pair which

would cause the pair to be executed 6 times and would cause the value of

V to take on the values 1, 2, it, 8, 16 and 32 consecutively, then the

solution would not only be better—it would be a representative method for

summing arrays.

There are many looping instructions in the ILLIAC IV repertoire;

one of them is TXLTM. Before we discuss the operation of TXLTM we must

first describe the LIT instruction which will place the starting value,

increment, and upper limit of our loop into a specified ACAR, (This ACAR

is then referenced by the TXLTM instruction.) For looping purposes, the

LIT instruction loads up a specified ACAR with an increment, a limit, and

a starting value. It is of the form:

LIT (ACAR NmbeA] IncAzmznt, L-vnlt, Stantlng Vaiuz;

where ACAR Numbe/t is either a 0, 1, 2, or 3 specifying, $C0, $C1, $C2 or

$C3.

ig lll-2k

/'■-■■• r

Incfumznt, LLnit and Sta/cting Value, have already teen briefly

discussed and they work in the following way

if IncA.me.nt = 2

Limit = 11

Stasvting Vatue. = 1

then the sequence 1, 3, 5» 7> 9> 11 can be generated while a loop is being

executed 6 times when TXLTM is used. (The TXLTM will "bump up" the value of

StaAting VaZue. by the value of IncA.eme.n-C each time the loop is traversed.)

Examples:

LIT(3) 1, 3, C;

will cause an increment of 1, a starting value of 0 and an upper limit of

3 to be placed in $C3 to be used as loop control variables.

LIT can also be used in a less sophisticated manner to load an

ACAR with Just one number:

LIT(O) "ki

will place the integer h (right-adjusted and zero-filled) into $C0. LIT

is a CU or ADVAST instruction which is executed completely in ADVAST.

The TXLTM instruction is of the form:

TXLTM (ACAR NmbeA) tioccJUion;

where ACAR Numfaet is either a 0, 1, 2, or 3 specifying $C0, $C1, $C2 or $C3.

111-25

^:i:v-}^^

Location is the symbolic location within the program (somewhere

in the program is a LabeZ that is the same symbol as Location) to which a

jump is made if the Starting Value, is less than the Limit in the ACAR

specified by ACAR NumbeA. If the StoAting Value, is not less than the

Limit, the next instruction is executed. In either case, the Starting

Value is increased by Increment and placed back in the StantLng Value..

TXLTM is also an ADVAST instruction and the operand ^Location is

a Skip Operand.

Warning: Location cannot refer to any location within the program—only

to a position within 127 instructions of the TXLTM instruction.

Examples;

TXLTM(I) .ALPHA;

means "transfer to location ALPHA if the StaAting Value in ACAR1 is less than

the Limit in ACAR1. If not, execute the next instruction. In either case,

replace the Starting Value in ACAR1 by the value: StoJvting Value. + Increment"

Let us consider how we would set up a summation loop using the

LIT and TXLTM instructions:

LIT(O) 1. 3,

LIT(l) =0;

LDA $C1;

LOOP: ADEN $R;

TXLTM(O) ,L00P;

111-26

m

:v>to£:>v:££^^

t

W
■ The first instruction sets up an JncAmzrut of 1, a Umit of 3 and a

Sta/Uing VaZwi of 0 in $C0. The second instruction places a zero in ACAR1

Ü k which is then loaded into RGA in the third instruction. The fourth

instruction at location LOOP adds the contents of RGR to the accumulator

S (RGA). The last instruction checks to see if the StoJvUnQ Value. (0)

C\' is less than the UmX (3) and then increments the Starting Value by

IncnrnZYlt (1). The condition will be true the first three times sending

K;' control back to LOOP.* After $R is added for the fourth time, the StaAtinQ

Value, will be 3, and will not be less than the Limit, and so control will

drop to the sixth instruction, whatever that may be. The loop is executed

four times and a value of k times the contents of RGR will be in RGA at

the completion of the loop.

§

*

i
A \y

The LIT and TXLTM instructions can provide the loop control for

our summation problem but we will need one more instruction to double the

routing distance each time through the loop. (We want V in the instruction

pair

RTL $A, Ci

ADRN $R;

to start at the value 1 and double each time through the loop.) Since V,

the routing distance, can be a constant indexed by an ACAR (remember the

example: RTL $S,12(l)) we can place the value 1 into seme ACAR, say $C0,

,.-.. Since ILLIAC IV has a single instruction stream and a multiple data stream,
I it is convenient to think of locations holding data as Rows, but locations
4 %k in the instruction stream are considered as scalars—just like they are on

S$ a conventional computer.

111-27

using a LIT(O) =1; instruction and double it by shifting the contents of

$C0 left one bit each time we pass through the loop. All we need is a

shift instruction:

CSHa (ACAR Wumfae/t) 0p2Jumd;

where a = L or R denoting a left (L) or right (R) shift

ACAR UimbeA. is either 0, 1, 2, or 3 and specifies which ACAR is to

be shifted.

OpeAand is a number or count which specifies how many bits the

specified ACAR is to be shifted. This shift is end-off. OpeAand

can be ACAR indexed. CSHa is an ADVAST instruction.

Example:

CSHL(O) ki

will shift the contents of $C0 four bits to the left end off.

We now have enough instructions to set up a loop for our Logsum

program:

LDA X;

LIT(O) =1;

LIT(l) 1, 6, 1;

LOOP: RTL $A, 0(0);

ADRN $R;

CSHL(O) 1;

TXLTM(l) ,L00P;

STA S;

111-28

^ -* ^ -*.- J . ^- ^ m* .* -* »* A_ ^_ * * _*_ »A_—*^_ ^- J- -*^. «V »V ^ - J ■*- . ^. ^^ ^ - - - » i - -. ^. fc"-! ^J >^\- ift_ fc _ hf _ J*^ ■ .. ^^ «^ ■ _ M - < _■ - W^^ a ^ ■

t
r^N
%j$ This represents one possible solution to the problem; there

are many others which use different ASK instructions. As an example of

a slightly different solution, let us learn one more type of looping

instruction. i

I

15

i
I
I

K

!■:■■

t:-:

g

E

LESST (ACAR NumbeA) CU Reg-cite^, Location;

will cause a Jump to Loattion if the contents of the ACAR specified by

ACAR Numfae-t (0, 1, 2 or 3) are less than the contents of the Control Unit

Register specified by CU RzgüteA (CU Rtglbtcn. can be $C0> $C1, $C?, $C3

or $D0 through $D63). LESST is an ADVAST instruction.

Warninp; Location cannot refer to any location within the program—only

the position within 127 instructions of LESST.

Example:

LESST(O) $01, LOOP;

means that a jump to location LOOP will be made if the contents of $C0

are less than the contents of $01. If this is not the case, the next

instruction will be executed.

Now we may rewrite our Logs urn program as follows:

111-29

LDA X;

LIT(O) =i;

LIT(l) =33;

LOOP: RTL $A, 0(0);

ADEN $R;

CSHL(O) i;

LESST(O) $01, LOOP;

STA S;

X0 =2, X1 = 0. X2 =5. X3 = 7,

xk - 1, x5 = 3, x6 = 4, X = 6

111-30

Note that ACAEO is being xtsed in dual role: it contains the Routing tlj

P-ci-tonce variable and also helps control the loop. Q

2. Finding the Maximmn Value in an Array of Numbers '*^*

The problem is to find the largest value in a given array of ^J
Ö

numbers X^^, X2 ... Xg^ and place that value in RGA of every PE.

Before attempting to program the solution in ASK, let us look at

the top of Table 111-2 which lists the steps for solution for 8 specific ';

values assuming an 8 PE array. The lower part of Table III-2 displays the

contents of RGR, RGA, and bits E and El of ROD after each step. For this

example we have used the following specific values for the array of 8

numbers:

M

-3

^>:X2£^:V:N:V^^

BEa^SST^^^^^^^^^^^^^^^^^^^^^^^^^^^aiK^SÜBBSw^Bj^B^^KW^^^^^^^^B

£
Table III-2. Solution to Problem #2~Findlng the Maximum Value

in an Array of Eight Numbers

Step 1. The 8 values are in RGA of each PE; PEi «- X^ i = 0, 1, ... 7.
Enable all PEs. N «- 0.

Step 2. Route RGA 2N to the right (end around).

Step 3. Compare RGR to RGA; If RGA > RGR, disable PE (Set E = El = 0).
m If RGA < RGR, leave PE enabled.

I

i

i
i

i
i
i

m

Step k. For all enabled PEs: RGA*- RGR.

Step 5. Enable all PEs (Set E = El = l); then N - N + 1.

Step 6. If N < 3, Go hack to Step 2.
If N > 3, STOP, the largest value is in RGA of every PE.

Step No.
and Value
of N

Contents
of

PEo

2

PE,

0

PE2

5

PE?

7

PE,,

1 3

PE6

1.

PE7

1. RGA 6
N • 0 RGR

E, El 1.1 1.1 1.1 1.1 1,1 1,1 1.1 1.1

2.
N " 0

RGA
RGR

E, El

2
6

1.1

0
2

1.1

5
0

1.1

7
5

1.1

1
7
1,1

3
1
1,1

3
1.1

6
li

1.1

3.
N - 0

RGA
RGR

E, El

2
6

1.1

0
2

1.1

5
0
0,0

7
5

0.0

1
7

1,1

3
1

0.0

U
3

0,0

6
k

0.0

U.
H • 0

RGA
RGR

E, El

6
6

1.1

2
2

1.1

5
0
0.0

7
5

0,0

7
7
1.1

3
1

0.0

u
3

0.0

6
u

0,0

5 and 6
N • 1

RGA
RGR

E, El

6
6

1.1

2
2

1.1

5
0

1.1

7
5

1,1

7
7

1.1

3
1

1,1

It
3

1,1

6
1)

1.1

2.
N » 1

RGA
RGR

E, El

6
li

1.1

2
6

1.1

5
6

1.1

7
2

1,1

7
5

1.1

3
7

1.1

k
7

1.1

6
3

1.1

3.
H ■ 1

RGA
RGR

E. El

6
k

0.0

2
6

1.1

5
6

1.1

7
2
0,0

7
5

0,0

3
7

1.1

li

7
1.1

6
3

0.0

H « 1
RGA
RGR

E, El

6
It

0.0

6
6

1.1

6
6

1.1

7
2
0,0

7
5

0,0

7
7

1.1

7
7

1.1

6
3

o.o

5 and 6
N « 2

RGA
RGR

E, El

6
1.

1.1

6
6
1.1

6
6

1,1

7
2

1,1

7
5

1.1

7
7

1.1

7
7

1.1

6
3

1.1

2.
H « 2

RGA
RGR

E. El

6
7

1.1

6
7

1.1

6
7

1.1

7
6

l.l

7
6

1,1

7
6

1,1

7
6

1.1

6
7

1.1

3.
N - 2

RGA
RGR

E, El

6
7

1.1

6
7

1.1

6
7

1.1

7
6

0,0

7
6

0,0

7
6
o.o

7
6

0,0

6
7
1.1

1».
N > 2

RGA
RGR

E, El

7
7

1.1

7
7

1.1

7
7

1.1

7
6

0,0

7
6

0,0

7
6

0.0

7
6

0,0

7
7

1.1

5 and 6
B » 3

RGA
RGR

E. El

7
7

1.1

7
7

1.1

7
7

1.1

7
6
1,1

7
6

1,1

7
6

1,1

7
6
l.l

7
7

1.1

111-31

E^&g^>^

^^^^^T^^^^^^^^^^^^^^ AA-". .'.-W-VA A"«.1

When we are operating on Sk-hit floating point operands, both

the E and El bits must be on or set (equal to l) for the PE to be enabled.

(in the 32 bit mode the E bit enables one 32-bit floating point word and

the El bit enables the other.)

*U'

Note that at Step k and N = 0, when the contents of RGR are

placed into RGA of enabled PEs, two values of the largest number (7)

appear in RGA of the PEs; at Step k and N = 1, four values of the largest

number appear, and at Step k and N = 2 all eight PEs contain the largest

value. Since we use routing distances which are powers of 2, this solution

to the problem is sometimes called "Logmax."

In order to code this problem in ASK we will need two more

instructions: SET, to set the E and El bits and thus enable a PE, and

IAL which will set the I bit of RGD based on the results of an arithmetic

comparison of the contents of two registers. Unfortunately the E and El

bits cannot be set directly on the result of an arithmetic comparison;

however, another bit of RGD (called the I bit) can be, and E and El can be

set equal to the I bit. Thus, the E and El bits can finally be set based

on an arithmetic comparison of the contents of two registers.

The SET instruction can set any bit (E, El, F, Fl, G, H, I or J)

of RGD, the mode register. It is of the form:

SETq Mode Bit . Logic . E Bit;

111-32

f- •'' ■'-'•" E. • - « - '
■ ■ • r • - ■ - • ->"• .'' ."» .'■■ .' •-•./-.v. ..v>,

... .-■■...■>

where x can be E, El, F, Fl, G, H, I or J.

Mode Bit can be E, El, F, Fl, G, H, I or J also.

Logic is a logical or Boolean operator and can either be OR or MD.

E Bit can only be E or El.

The AND and OR operations operate on Boolean variables that can

only take the values 0 or 1. The tables below define the MD and OR

operations:

mo 0 1

0 0 0

i 0 1

OR 0 1

0 0 1

1 1 1

(V

For example; Q> ASD 1 «■ 0

0 OR 1 =1

The instruction: Modi. Bi4 . Logic . E Bit is a Ifode Setting

Operand as described in section D 1 f.

Either the Mode Bit ör Ifoe E Bit can be preceded by a minus (-)

sign denoting the logical "NOT" or cs^lement function, i.e., if E is zero

then -E is one; if E is one then -E it Z3K< *

The bit of RGD specified by a is set to 1 if the suit of

Mode Bit . Logic . E Bit equals 1; the bit specified by o is set to zero

if the result is zero.

SET is a FINST/PE instruction.

111-33

Ej£y^v^w^>v^^

!ti

Examples;

SETE I.OR.E;

Suppose I was 1 and

E was 0

before the execution of the above instruction. After the above instruction

is executed

E will be equal to 1 because

I.OR.E result? in 1.0R.0 = 1

The instruction then says to "Set the E bit equal to l".

SETE1 I.OR.E;

would result in El being set to 1.

If the programmer wished to enable (set equal to l) the E and El

bits for all PEs so that he could do 61t-bit floating point arithmetic he

could do so with the following pair of instructions :

SETE E.OR.-E

SETE1 E.OR.-E

The first instruction insures that the E bit will be set to 1

since the logical expression

E.OR.-E

has the value 1 regardless of whether E is 0 or 1:

111-3^

.~>.Tv;-0-K."A. ^iTXTCTi^'ic^^ '^rvrt "^ '-^"•".■:RTI»_I,
.';T7 '

LN'*

if E = 0 E.OR.-E becomes 0.OR.1 = 1

if E = 1 E.OR.-E 'becomes 1.0R.0 = 1

The same reasoning applies to the setting of the El bit in the second

instruction.

Next we need an instruction that can set the I bit of ROD

based on the results of an arithmetic comparison:

IAL Operand;

where Operand can be a PE Register, a PE Memory Address, or an ACAR.

When OpeAand specifies a PE Memory Address the IAL instruction arithmeti-

cally compares the contents of RGA to the contents of the PE Memory

Address and sets the I bit to one if the contents of RGA are less; or sets

the I bit to zero if the contents of RGA are not less.

IAL is a FINST/PE instruction.

Examples:

IAL LOG;

if contents of RGA < contents of LOC, then set I to 1

if contents of RGA > contents of LOC, then set I to 0

Although the comparison is done in every PE simultaneously, the

results can vary between different PEs; that is, the I bit in each PE is

one or zero depending on the arithmetic comparison after IAL is executed.

111-35

■w ■■■•.■■■ •.■..^■■.■. ^■■. ^. .^.LV- ■'. -....-- v- ^.■^:.VL-..-.k-..-..-.^-- ■-■■-■--■ L^--. - - ■-.--•■•■ --■■-•,-•■,■-.,--.

..9aj^iOT7P^WP>*^^^^n«9^w<^'W^^«W«^^^^^^i^^^9W^ppw^^^^pp^^^p^^^i<i<7*^pnr^^

There is another instruction:

IAG Opznjxnd;

which works just like IAL but it uses a "greater than" test rather than a

less than test, i.e., the I hit is set to one if the contents of EGA are

greater than the contents specified by OpeAand.

Since the IAL instruction sets the I bit and it is the E and El

bits which enable or disable a PE we must devise a method to set the E

and El bits based on the value of the I bit. Assume the E bit has been

set to one, what instruction will cause the E bit to take on the value of

the I bit?

SETE I.MD.E;

will set the E bit to the value of the I bit assuming the E bit has been

previously set to one.

Consider the following instructions:

.-

1

2

3

5

6

SETE

SETE

E.OR.-E:

SETE1 E.OR.-E;

TAG $R;

I.MD.E:

SETE1 I.MD.E;

LDA $R;

111-36
i i

^^^^^^^^^^^^^^^M ^^h^ABAä^^a^BÖB^B^rita^B^a^^^^ä^MBAaa ^^rt—^^—i

■■."i

Instructions 1 and 2 enable all of the PEs, setting their E and El bits

to 1. Instruction 3 sets the I bit equal to 1 for every PE whose RGA

contents is greater than its RGR contents. If RGA < RGR then the I bit

is set to 0. Instructions k and 5 disable all PEs whose I bit is zero,

thus if

RGA > RGR PE remains enabled

RG4 < RGR PE is disabled

Instruction 6 is executed only hy those PEs which are in the enabled

state. Thus

".

if RGR < RGA RGA is loaded from RGR

if RGR > RGA RGA remains unchanged

The above set of six instructions will compare the contents of

RGA to the contents of RGR for every PE in the array and the lesser of the

two will appear in RGA.

Note that instruction 5 uses the value of E in its Mode Setting

Operand that was calculated in instruction kt so that instruction 2 is

really not necessary.

We may now write the ASK code necessary to select the largest

number from an array of 6k values . Assume the 6k values are stored at

Row X and the largest value is to appear in RGA of every PE:

&*:•

111-37

.■■ .■- '.■. A A .^ '-V A .". 'I'- .'• L". A' A L'^l\ A.1."-. L^ -'. •■• W A,1.', W A''.■. I». 5

E.OR.-E;

E.OR.-E;

X;

=i;

1, 6,1;

$A, 0(0);

$R;

I.MD.E;

I.AND.E;

$R;

E.OR.-E;

E.OR.-E;

i;

.LOOP;

Instructions 1 and 2 enable the entire PE array.

Instruction 3 brings the array of numbers from PE Memory Address

X to the RGA of each PE.

Instruction k initializes $C0 (which will be used to control the

routing distance) to 1.

Instruction 5 sets up loop control in $01.

Instruction 6 performs the route.

1

2

SETE

SETEl

3 LDA

k LIT(O)

5 LIT(l)

6 LOOP: RTL

7 IAL

8 SETE

9 SETEl

10 LDA

11 SETE

12 SETEl

13 CSHL(O)

Ik TXLTM(l)

111-38

i

z

1,-^3

>:•
UJ

2

\tts^&S^&^

'J» ".*-" fc. * ..' ... *-- ^ _^...^« «TV-L^..*^*—^.-T.-i..TfcA."fc.LT£.i. -V-.-V-l -- .

t
■fe

i

i

Instructions 7, 8, 9, and 10 are the heart of the program:

Instruction 7 sets the I bit to one of all PEs whose RGA < RGR. Instruc-

tions 8 and 9 disable all PEs whose RGA > RGR and leave enabled those that

have RGA < RGR. Instruction 10 loads the RGA of every enabled PE from

RGR. Therefore, only those PEs whose RGA < RGR will have their RGA loaded

from RGR and RGA will contain the larger of RGA and RGR or Max (RGA, RGR).

After this process is repeated six times through the loop the largest value

in the array will appear in the RGA of every PE.

Instructions 11 and 12 re-enable the entire PE array previous to

the next pass through the loop.

Instruction 13 doubles the routing distance.

r-f, Instruction 1^ transfers control back to Instruction 6 if the

loop is not finished.

It is very important to understand the operation of Instructions

7, 8, 9 and 10:

f>:

N"

tv

7 IAL $R;

8 SETE I.AND.E;

^ 9 SETE1 I.MD.E;
■I

10 LDA $R;

ß

They perform the following logic:

111-39

B

fc JT- m . fcTV •>. J. * - H^, - _ «"_ t _ a .

If the contents of EGA < contents of RGB, set I to 1.

then I.AKD.E has the value 1 also

thus E and El are set to 1 and the PE is enabled.

If the contents of RGA > contents of RGR, set I to 0.

then I.MD.E has the value 0 also

thus E and El are set to 0 and the PE is disabled.

Instruction 10 is only executed by enabled PEs and this means the

lar:«r of RGR and RGA ends up in RGA—which is just what we want.

3. Matrix Multiplication

Given a 4 x 4 Matrix X = All

X21

X31

A12

X22

X32

Xl|2

Ä13

X23

X33

^3

Xll|

'2k

'Ik

%h

and a ^ x 4 Matrix Y = yll y12 y13 ylk

y21 y22 y23 y2k

y31 y32 y33 y3k

yia yk2 yk3 ykk

we can compute the matrix Z = X • Y using the definition:

III-ilG

^:;£Q:-:s^v:fr^ i) . /X^W/yy}±0<>y*y*&>:

.^^jgr-jr^-^T-^-jw-^^

B
v • i -

ß

■

H
i
I

ZiJ = 4 Xik ^j for i = 1. 2. 3. ^

J = 1, 2, 3, 4

The FORTRAN Program to compute the product of X and I' based on the above

definition might look like

DO 20 I = 1, It

DO 20 J = 1, 4

P» SUM = 0.

DO 10 K = 1, It

10 SUM = SUM + Xd.K) * Y(K,J)

20 Z(I,J) = SUM

The method using the definition of matrix multiplication is not

the best algorithm for ILLIAC IV, however. Since ILLIAC IV can handle

a whole row or vector of values simultaneously, a matrix multiplication

program should take advantage of that fact to be efficient.

Therefore, consider the following algorithm for matrix

multiplication:

_ 1. Take x and multiply it times the 1st row of Y

P-" 2. Take x12 and multiply it times the 2nd row of Y

fy. 3. Take x and multiply it times the 3rd row of Y

It. Take x . and multiply it times the Itth row of Y

I Each of the above k operations is multiplying a scalar value (x) times a

p vector (Y) resulting in a vector or row quantity. If we sum the above

f"'-', rows we have the 1st row of Z:

r , ■ III-41

^^i&i^:^:^^:^:^^^

^^r^. y«^.UV^>..^.-^lT'L^L »i^T^A^V^^ .V ^ .ir^T.\^.". ^ .*. ."^

x^ Mist Row of Y) = (Xliyil x^y^ x,^ x^y^)

+ +

x12 M2nd Row of Y) = (3^^ ^^ x^^ x^^)

+ +

x13M3rdRowofY) = (^^ x^ ^^^ x^)

+ +

x^ * (4th Row of Y) = (x^y^ x^y^ x^y^ x^)

k k k h
(1st Row ofZ) sZxn,y Zxv Fxv Fxv.

^ ll/kl kf
J
1
xlkyk2 k^1

XUcyk3 ^i^^k

To get the 2nd row of Z we take the second row of X and multiply

each element by the 1st, 2nd, 3rd and itth rows of Y and sum the rows again.

Similarly for the third and fourth rows of Z. The algorithm might appear

as :

1. i ♦- 1 (set i equal to l)

2. Take x^ and multiply it times the Ist row of Y

3. Take x±2 and multiply it times the 2nd row of Y

k. Take x and multiply it times the 3rd row of Y

5. Take x^ and multiply it times the 4th row of Y

6. Take sum of the above 1+ rows and store in i*11 Row of Z

7. i ♦- i + 1 (Bump up i)

8. If i > 4 STOP, otherwise go back to Step 2.

111-42

[T7T]r^TJT7^KrZr3!j7JÄ^7WiK^

P.

I
i

The flow chart for performing Z = X • Y

where X is M rows by N columns

Y is N rows by K columns

and Z is M rows by K columns is;

Notation: [Y] ■ Jth row of Matrix Y
J

[S] = row or vector of values

fV

&

u

m

G

[S] - [S] + 3C * [Y] J - J + 1 -»(j > my j > N? y~- Yes *

In order to write the ASK code for the matrix multiplication

problem we must learn a few more instructions.

SLIT (ACAR WuwifaeA) =lvteAaZi

SLIT is called a "short literal" instruction and it works just like the

literal instruction LIT except that the value of =LitzfiaZ is placed in the

111-1+3

(f(
.* v ■."-'-" "j" v vr.' ".• \% '.* v v "j« '.•■•.«■' *' -^ •> .'»".■■'.V, .

^^^.A-'T-L^.^i «i ^.TM T» T«:"^*.^«^*».* *.-:-. T^*Ctr., n^TTLTCZ^: \- .TT'TrXrilTx.TxX^ v_ j- , r-.-v'-ir:

low order 2k bits of the ACAR specified by ACAR UimteA. The other hO bits

of the specified ACAR are unchanged—as opposed to the LIT instruction

which operated on the entire 6h bits of the specified ACAR. SLIT is an

ADVAST instruction.

Example;

SLIT(O) =15;

will place the binary integer 15 in the low-order 2h bits of $C0.

SLIT(l) =X;

will place the location of the variable X into the low-order 2k bits of

$C1. In the above example (X) is a symbolic CU Memory Address and refers

to one word of storage in PE Memory, not to a whole row. This will be

discussed in further detail shortly.

ALIT (ACAR Umbzn.) 'UteJial;

The ALIT instruction adds the value of =Llt<lAaZ to the low-order

2k bits of the ACAR specified by ACAR Umbzfi. The other kO bits of the

specified ACAR are unchanged. ALIT is an ADVAST instruction.

Example:

ALIT(3) =1;

will increase the low-order 2k bits of $C3 by 1.

III-1|1+

1 V ,■ ,* y'i* • !■ ■;;'■■•,l ' v »IIII ■^jii«ji.>i«i!>iii!'«ji •JJI.WU.I iniip vr^^r^^^ji^^/i^nj^^m^^i^mm^m^^^m^^^i^imimmi^r *^*^*i~^^

t
i
i

I»

I

It can now be pointed out that when a LIT instruction of the

form:

LIT(3) 1, 6, 0;

is used the StoAting Vcuiuz of 0 is placed in the low-order 2k bits of $C3.

Therefore if the programmer wishes to modify the Starting VaJiue., he can

do so with an ALIT or a SLIT instruction. ACAR indexing is also done with

only the StoMting VaZae. field of the ACAR so that offsets from a particular

Row can increase (or decrease) as a loop is traversed. More will be said

about this point later.

We will, of course, also need a multiply instruction:

MLRN OpoAand;

where OpQAand can be a PE register, a PE Memory Address or an ACAR.

The value specified by OpeAand is multiplied by the contents of

RGA and the result of the multiplication appears back in RGA. (Lower

significant bits also appear in RGB but we will not use this information.)

jT Rounding and normalization will occur. MLRN is a FINST/PE instruction.

m Examples

LDA X;

MLRN Y;

causes the product XY to appear in the RGA of every PE.

111-45

^j-j'j-j'jr^.-j'nrjirjs-. ir: r^yr^r.£^^.j^:!^'jsT.Kr<\rV:.\\m.:ß. ,".-t:T!i'^r-ä-r
s'. • r5 r* --J .-'T,'.-

: ';I „^ ■7.'•-■_— ■-■i.—•■'.■ ;■■;■■>.':»^r. r. ■,—'.-_ "V,".'."."?. 7 .B_".-7-.-."

LIT(2) =2.0;

MLRN $C2;

causes the contents of every EGA in the PE Array to be doubled. The

constant 2.0, stored in $C2 is sometimes called a "broadcast" Operand

since it is a scalar value that is transmitted or broadcast to all PEs

for multiplication via the Common Data Bus.

The method we shall use to perform the matrix multiplication

algorithm will transmit the appropriate X values to an ACAR in the Control

Unit, which in turn will be "broat ist" to the PE array as part of the

multiply instruction (MLRN). It is easy enough to get a scalar constant

into a specified ACAR using a LIT instruction as above, but how can we

"get" the scalar elements within the X matrix? We need an instruction

that will LOAD a specified CU register from a single location of a single

PE memory. We do this with the LOAD instruction:

LOAD (ACAR NmbeA] CU RzgliteA;

where ACAR Nmbzi can be 0, 1, 2 or 3 and specifies the ACAR ($C0, $C1,

$C2 or $C3) which contains the CU Memory Address whose contents is to be

loaded into CU RtgliteA. CU RuglbtQA can be $C0, $C1, $C2, $C3 or $D0

through $D63, and can be ACAR indexed.

Example:

SLIT(2) =X;

L0AD(2) $C3;

III-U6

i _%;>%^Trzjv..,jv\ s - ■..^^.k%.- '»".LTVX"».—^. irv.-ii^- ...i_ »...% .jv Lr«.,v~

i

g

g

I
I

(•■.

e

The SLIT instruction will load $C2 with the CU Memonr Address of X. The

IßAD instruction will then load the contents of CU Memory Address X into

$C3.

As was pointed out in section D 2 a, a CU Memory Address

references a single word in PE Memory (and not a row of words as is the

case with a PE Memory address). This single word referenced by a CU Memory

Address resides in a specified row and in a specified PE within that row

and so it requires two coordinates to specify a CU Memory Address. The

scheme for presenting the two coordinates is as follows:

A CU Memory Address consists of two parts, a PE row address

followed by an offset which indicates how many PEs to the right or left

is the single word referenced. For example, if X + 5 is a CU Memory

Address then the specified row is PE Memory Row X, the plus sign indicates

the direction of offset is to the right and precedes the offset distance

5 so that the word referenced by CU Memory Address X + 5 is the word in

PEM5 of Row X in PE Memory. The general form is:

If the sign is positive the offset is to the right, if negative

the offset is to the left.

,-. If X - 1 is a CU Memory Address then the offset is 1 to the left

^ so that the word referenced by CU Memory Address X - 1 is in PEM. of the
63

B Row preceding X or Row X - 1 (see Figure 111-3).

111-47

:^:^>:;^v>>:^^

mmm-mwrmmimiMm im u ■ i. • IM • ^m\. t^W^^^^mt l. i» li l_^rW^^^^P^W^^^"'W"^"SW"^»P"^"P"«W!WW»"i"»««^if«Wy«<*BI»»W^ll

ROW X
ROW X+l
ROWX+2
ROW X+3

ROWY
ROWY+1
ROW Y+2
ROW Y+3

ROWZ

ROW Z+l
ROW Z+2
ROW Z+3

PEMQ

*11
KZl
KSl

*41

hi
yzi
hi
Ul

«11

221

«31

'41

fcu MEMORY ADDRESS X+64)

(CU MEMORY ADDRESS X-^j)

f PEMx PEMg PEM3

•
•
•

•
•
•

•
•
•

x18 X13 X14
xM «« »24
XS2 X33 X34
X42 X43 X44

•
•
•

•
•
•

•
•
•

hz y« y«
ht y23 y24

hz ^33 y34

fn y43 y44
•
•
•

•
•
•

•
•
•

«12 «IS «14

222 «23 «24

«32 «33 «34

«42 «43 «44
•
•
•

•
•
•

•
•
•

PEM„

mm

• • •

i

Figure III-3. Memory Storage for Matrix Multiply Problem

111-1+8 ä

Ö

•- — ■■---'- •- --• -~-' --..-■
.v-v

w-v-vv^^svÄrrr^r^TirTr^^^

I V.--

i
1

If X is a CU Memory Address then the offset is presumed to be

zero and the word referenced by CU Memory Address X is in PEM of Row X.

s If X + 64 is a CU Memory Address then the offset is 6k to the

right so that the word referenced by CU Memory Address X + 64 is in PEM

of the Row following X or Rcw X + 1 (see-Figure III-3).

£'

K

I

i

There is no problem in ascertaining whether an address is a PE

or CU Memory Address since a CU Memory Address can only appear as an

operand for the CU (or ADVAST) instructions LIT, SLIT or ALIT.

Summarizing: Operands which are part of CU instructions are

^ called CU Operands, and if this Operand is a Memory Address then the

Operand is called a CU Memory Address and it refers to a single word

(and not a row) in PE Memory. Operands which are part of PE instructions

are called PE Operands and if this Operand is an address then the Operand

is called a PE Memory Address or a Row and it refers to a Row of PE

■ Memory.
m

[•'■ Let us now see how CU Memory Addressing works within the context

of our Matrix Multiplication Problem:

|

Suppose the X, Y, and Z Matrices are stored as shown in Figure

III-3. The following pair of instructions:

SLIT(2) =X+1;

L0AD(2) $C3;

111-49

Sffiüii^^^-^^iv^^^ A •v-^sto;ifö>>:>v:^^

would caiase x which is stored in PEM to be loaded into $C3. Note that >

IßAD is a CU instruction which loads one word from PE Memory (called

CU Memory) into $C3. Ü

Now consü'-^r how the following sequence of instructions operate: ly

1 3LIT(2i =X-1; f"

2 LIT(1) 1, 3, 0;

3 LOOP: ALIT(2) =1; ">;

k L0AD(2) $C3; rc

5 TXLTM(l) ,L00P;

I Instruction 1 places the location of CU Memory Address X - 1 "

into the low order 2k bits of $C2. The location referred to is CU Memory r*^

Address X - 1 which i^ indicated by the shaded portion of PEM^,, of Row
D3

ex

X - 1 in Figure III-3. Note that CU Memory Address X - 1 is one word back [C?

from CU Memory Address X. Since SLIT is a CU instruction, CU Memory

Address X - 1 is not back one whole row but only one word. &

Instruction 2 sets up the loop control using $C1. $

Instruction 3 increases the low order 2k bits of $C2 by 1. In H

other words, the location now referenced by $C2 is CU Memory Address X

which contains x..... ^

^'«
Instruction It will load $C3 from CU Memory Address X, i.e., x «'I'

'11 ">

will be transmitted to $C3.

\)

111-50

^^^ä^^ä^^^^

f
i

tfSr. Instruction 5 will loop us back up to LOOP until we have

executed our loop h times.

The second time through the LOOP we start at instruction 3 where

$C2 is increased again by 1. The location now referenced by $C2 is CU

£ Memory Address X + 1 which contains x^.

I;-; Instruction k will new load $03 with x12.

[;■; The third time through the loop instruction h will load $03 with

I

i
I

x _. The fotorth time through the loop instruction k will load $03 with x^.

It will be in this way we shall transmit the appropriate value

of x. to A0AR3 to be "broadcast" as a multiplier.
^-J

Let us again review the convention of referencing one value that

is stored in PE Memory by a CU Memory address:

When a PE instruction references memory location X + 1 it is

referring to a whole Row of values (in our example the second row of the

X matrix as shewn in Figure III-3). Since the PEs are an array this type

of referencing is possible. However, when a CU instruction references a

location in PE memory it can only refer to the contents of one location

(a scalar value) since it has no capability to store a row or vector.

Therefore when X + 1 appears as a CU Memory Address it must be interpreted

differently: the first location of Row X is found in PE Memory. X + 1

then refers to the next word in row X which is in PEM1 and contains x^.

Similarly X + 3 as a CU Memory Address refers to x , . Finally, and most

important:

K III-51

•±:^tttttt^^^

X + 6U as a CU Memory Address refers to the first location in

PE row X + 1 which contains x21. (See Figure 111-3.)

For our problem since we are multiplying & k x k matrix by a

U x U matrix we shall have to remember to skip 60 locations to bring us

to the beginning of the next row of X. We can do this with an

ALIT(2) =60;

instruction whenever we are ready to reference the next X Row of PE Memory.

Before we write the Matrix Multiply program, there is one more

fine point that we must cover. Consider the following ASK instructions:

LIT(O) 2,5,1;

The first instruction sets up a StaAting VaZue. of 1, a Limit of 5 and an

an Inclement of 2 in $C0. The second instruction loads the RGA of all

PEs in the array from PE Memory Address Y indexed by the contents of $C0.

But $C0 contains three values—which one is used to index location Y?

The answer is that only the low-order 16 bits of an ACAR are used to index

a PE Memory Address. Since the Starting VaZue. resides in the low-order

2k bits of $C0, it is the StaAtlng Vaiue. that is used to index Y and

therefore the

LDA Y(0);

111-52

A,*

t-*V

i
i

k ■

f."
fe

&
K".

instruction will cause RCJW Y + 1 to be loaded into RGA of all PEs in the

array, since $C0 contains a StaMlng VaZuz of 1.

The following ASK instructions:

LIT(l) 1,3,0;

LOOP: LM Y(l);

TXLTM(l) ,L0OP;

would cause RGA of each PE in the array to be loaded consecutively with

ROW Y, ROW Y + 1, ROW Y + 2 and ROW Y + 3 as the loop is traversed.

We are now ready to write the Matrix Multiply program. We

assume the X and Y matrices are given and the storage of their elements

is as shown in Figure III-3.

»■",

(0

r

1 LIT(O) 1. 3, 0;

2 SLIT(2) =X-1;

1 3 L00P2: LDS 1
1+ LIT(l) 1. 3, 0;

0
u

T"
N 5 L00P1: ALIT(2) =i;

T N 6 L0AD(2) $03;

R
E
R 7 LDA Y(l);

L
0

L
0

8

9
MLRN

ADRN

$03;

$S;

0 0 10 LDS $A;
P P 11 TXLTM(l) ,L00P1;

12 STS Z(0);

13 ALIT(2) 60;

11+ TXLTM(O) ,L00P2;

111-53

^5 t - ■ -

Note that the outer loop (L00P2) is controlled by $C0 and that

RGS is used to accumulate the sums. $C0 also indexes Z at instruction 12

where the contents of RGS are stored in ROW Z, ROW Z + 1, ROW Z + 2 and

ROW Z + 3 as the Starting Valuz in $C0 takes on the values 0, 1, 2 and 3

as L00P2 is traversed.

BIN (ACAR Nimibzi) AVB LocaUon;

i

$C1 is used in much the same way. It controls the inner loop

(IDOPI) and indexes Y at instruction 7. As is the case with Z, using $01

to index Y makes reference to succeeding rows of Y, i.e., the first time

through the loop instruction 7 loads RGA of every PE from Row 1 of the jjjj

Y matrix, the second time through from Row 2, etc.

i

Table III-3 presents the contents of pertinent registers as the

ASK code executes through L00P1 and IJOOP2. t***

The method used here to multiply two k x k matrices is, of R

course, only a choice from many possible algorithms. For larger matrices

there are more efficient methods which utilize the BIN instruction: r*"

n
u The BIN works just like the UJAD except that it moves eight values from

PE Memory instead of one. ACAR HwvbcA specifies the ACAR (0, 1, 2, or 3) F

which contains the CU Memoiy Address of the first of the eight values to be **

moved. The eight values must be stored contiguously. The KVB Location

denotes the starting location in the /DB where the eight values are to be

stored. The AP8 location can also be ACAR indexed. EIN is an ADVAST

instruction.

W

•-•;

111-54

r
t-Ä

%

(•:

P

P»

1

t

0)
■p
to

•H
bO
<ü
(X

■P
ß
r

•H

PH

w
ö
o

•H
-P
O

H

kl S 1 H
rQ

i-i ü
ü u

PH

H a
ft »
M •H

•H P n ^
PHS a)
-p M
t« •H

i ^
!»P
r" CO

1 X
P<
0) N
p o
CO CH

•
i

EH

^

^

^

^

S 8

P
X

^

r-t O

r-t O

I I

«

>. a

3 3

111-55

• k • ,"• «■» ,"»>"* k> ."• .•■ ,">■ '»"* »"• , ■ ."- ■.% ,% .'. V" %" V • • v'

- ■ - - -• -» iä^ A

ü

!? tu

ja ji

»T1 iT J J3

^^

ii

2i

1 s

g 8

i i ^ 5

9

M

V5(

I1

K3

M

2i MH

tu

% 1

% %
♦ +
a a

i
+
H

a

7 ♦
H H

MH KP

M M

M3 iT

i3 ^

f +

>

r-t H

$ 81
ff

g s

dl

g
3

•i %

H H

f ?

cy oj

a a

II 3

111-56

feifö^Ksv: ■-•"'.""••'•.■'S-,"'.""»»""-.""- •"•!.'"«.■" •'"-.'■. "'^•'- ■'- ■"• '"•^•'.

t

Ü

i

I
f-.

[>

u
&

%
^

\

I

5 I

(n H
% i

l%j H *l
^

a M a >• >«
H^ ^

♦

+

H
M
♦

r1

s St
% CM %
f 1 f

IM K W !>«. ^ *
H >, + +

OJ H CM
iH >. >. h ,Js

%

* a >>

s

<*, %

^ if
H H

I
%
K

K X

Pi m

+ +
W CM

a a

o ■
m
rt

f> •
m

A

H

OJ ■ ft

m
if

J* ^t
m m

% %
.r MM

+ + .tf -»
CM CM

>.
rt rt

s >>
H H

if $

m m
m m
C %
J5 r * * m m

CM CM

% y
M M ♦ + m m
H H

>. s

•P s

oj cy
pn m

% %
H H

H M + +
OJ OJ
EU OJ

§ 5
M X
+ +

eg CM
H H

S S

j F

H H
M m
^ •*,
H H

X M + +
OI OJ

% % f f y +
a a >. >.
H H

iT J5

K K

ö
3
^
as
H
|
B

S 1

% s % *,
H1

H
K if

^t d|

% »li *|l ^
Hrt ^ & ? + * + _»
H r-4 te >.

K^ iT iT ^

a a
I? xH

% % s %
w^ •r ^ X
i •

«ll •S ^1 i
H H M

M M K ?

a

R< si St P^
^ i. •to ^
f S X

rH
X +

Ol OI OJ
r\i OJ cu OJ

% *>>, •K, ^ ? ? H
H X

OJ CM OJ
H H rH >» S >. >.
a N 9 Fl

m

rH i* K^ vT +
rH n Kl OI

^j % % ^
«H

X ><"

^

I
^

c
OJ

5a

%

\

%

*
a

"to

3 %

%

St
%
+

C\l
cy

%
rH

OJ
H
rl

r^

%
rH

X +

%
+

rH
H

r1

%

%
rH

X
+

OJ

%

%
+ m

•s

%

'Tw

%

%

%

+

a

%

I

III-5T

,• v v^ •.•-.■'■.••.■: /-.■-J.'->>>J-,-•.'• J"-^

si

I

I

in J
o (H

+J
r:
^

a
1

■H -.
3 Q

■*J

M ■n

i
%

O^

W

H

ro
on

H

W
+
X

-^
i-4

X

-1- -3-
Jl -3 >. >.
--t -4
H H

M M
+ +
ig -*
Cl m

=>, »m
rH H

M M
+ +
-5 -4
rj OJ

^ ^
H

X M + +
-3 rt H >. >*

H H
rH

M X

nn m
-3-

h >.
-4- -*
H H

X M
+ + m m
m m

^ ^
(H r-t

X X
+ +

rn
C\J C\J •i %
r-i r-i

K M
+ ¥

m
H rH >. >>
"-1 r-t
r-4 r-t

X W

IM Oi -*
Ni >. -tf J-

x^ X
+ +

CM CM
m

^ >,
rH H

X K
f +

CM
ro OJ •i %
|H rH

X K + +
cy CJ
H H >. >»
a H

rH
X X

H H
J -S >.)M % -3

r-t »r H
+ +

H
m

% ^
rl

M fT1
+ +

OJ ry

''f., =>,
r-t H

H X
+ +

rH H
H

>i >»
H
H H

X H

"S tß
r^ a
a; cc

■i:
4»

H
J

O
H

o
m

H

-*
m

rH

m
+
X

-3
H

K

J 5 >. >»
J- -3-
H M

K M
+ +

-3" -3
m m

% %
H H >r H

+ +
-3 -3- M
CVJ rj

% % "U
H H O

K M
+ +
-4 -4 1
H H o

S >> ffi
H rH

PT r 4J
tn
rH

m m
-3 ^

t». >. 0)
-4 -4 J3
H H ■»J

K X + + m m 0
m m ■P

^ %
sf «H &
+ + 1
V> Vn 5

OJ CM

% % 13

f f |
+ + O
m m +1

r-H H to
S K
ä p Oi

X X fa
i

OJ CM
-3- -a- to >> >. d
J- -3 EC
H "^

X X
+ + bl

CM CM 0
ro m

% % to
H rH ■p

X X B
+ + i

CM CM +J
CM OJ B

% ^ o
H H

X X
+ + OJ

eg CM x:
H rH p >. >.
h a T)

X X 1
rH H
-3 -3- ^. >. 1 -3 -3
H H

X X
+ +
H H u
(^i tn Ü

^ % Jj

H H
X X 0
+ + •H

rH r-i cd
OJ OJ 1

% % ICi

r f + +

>» >> ■«J

a a ■rH
X X be

u
cc

<! en rH
Ü Q a

.*
a.

3.
«
o
N

B
| Si H cnl
rH CM
rH rH

3

%

m
m

^ > % %
rH ^ H rH

X X X
+

OJ CM CM OJ s ^ % %
rH

X «r >< r

%

% %

+ +
H rH
OJ CM

>r

po m

+ +
-4 -4
H H

S^ CM S(
►>, % ^

rH H H
X M

CM
ft] cy CM

^ ^

rH H
X X
+ +

rH H
CM OJ i i
rH H

K X
+ +

H H

111-58

+
-3
m

%

OJ

^

^

^

+
rH
IT)

+
H
OJ

%

3 s

•*,

H
M
+

on

rH
X
+m

OJ

%

a

+

^

%

»T1

f

Tu
rf3

^

+
rH

H
X
+

rH
cvj

rH
X
+

h

%

%
M

%

%

%

"k

+
■H

+
rH
<\j

.■Ki

@

i

w

;s

&

I
^

• ' i»»'»^ •.-*■» ■«TV i^ -> -■V

E

i
I

I

e
c<-
I ¥

si

sf 1 o

>'

s'

>'

r

$?

G
•H

|
O
O

I
M

H

ii

i g

I

ä

^^

H H
>. it

'S %

^

I1 I1

H H

2) 3

I1 MW

I

I
I
V I

I

5
S

a

0

I

i
o

i

I
I
5

1 I
5

s

I I
B « JB *

»H Tl 4^ t»

I 1 I 1

8 «
S I
•H ♦*

I I
5 1

5 =i

I
I

5
u

i i i m m m 1 « 1
I g g
■P *> ♦!

I 111-59

Examples;

SLIT(2) =X;

BIN(2) $D8;

would cause the first eight values stored starting at CU Memory Address X

(the values in PEM , PEM ... PEM™ of row X) to be placed in $08, $D9 ...

$D15 respectively.

LIT(l) =8;

SLIT(2) =X;

BIW(2) $D0(1);

would cause the first eight values starting at CU Memory Address X to be

placed in $D8, $D9 ... $D15.

The BIN instruction allows us to send eight values from PE

Memory to a section of the ADB. With reference to our Matrix Multiplica-

tion problem, we would next need an instruction that could transfer the

values from the ADB into an ACAR so that they could be broadcast as

multipliers. The ADB locations $D0 through $D63 cannot be used as

PE operands (see section Did), only one of the four ACARs is permissible.

LDL could be used in this case to transfer information between CU Registers:

LDL (ACAR NuirheA] CU RzgüteA;

LDL loads the specified ACAR Wumfae-t (0, 1, 2 or 3) from the specified

CU ZzglbteA ($C0, $C1, $C2, $C3 or $D0 through $D63). The CU Re.g-Ü>tzi

can be ACAR indexed. LDL is an ADVAST instruction.

111-60

t

B
i

fr

I
m
g
&

(-:■

S5

I

G

Example;

LDL(3) $D8;

LV would load $C3 from $D8. The LDL instruction would have to be executed
iv'

8 times (within a loop) to transmit the contents of $D8 through $D15
P
t/ (whicih we previously transmitted from PE Memory via the BIN instruction).

The instruction pair

LIT(l) =2;

LDL(3) $D0(l)j

would load $C3 from $D2, since $D0 is indexed by Id.

If we were multiplying two 6k x 6k matrices the combination of

BIN and LDL in a loop would be more efficient than LOAD which transmits

Just one value at a time.

k. Matrix Transpose

We obtain the transpose of a matrix by switching the rows for

the columns and the columns for the rows, that is,

[/• if A is N x M matrix comprised of elements a

■n and B ir M x N matrix comprised of elements b.
t^ T then B is the transpose of A, or B = A if and only if

b. = a,. for 1 < i < M

1 < j < N

111-61

A FORTRAN SUBROUTINE to transpose A and store the result in B

might look like:

SUBROUTINE TRANS(A, B, M, N)

DIMENSION A(N,M), B(MJN)

DO 10 I = 1,M

DO 10 J = 1,N

10 B(I,J) = A(J,I)

RETURN

END

Note that the FORTRAN program moved only one element of A at a

time to the appropriate position within the B matrix. Using ASK we will

be able to move a whole row at a time.

There is a problem in data storage we must consider before we

even attempt to write down the algorithm to transpose a matrix. Within

the transpose program we will be accessing the rows of matrix A and

storing them to the appropriate column of B. Now, if we store a matrix

in PE Memory as we did in the Matrix Multiply problem then rows can be

accessed very easily and efficiently with one ASK instruction. For example,

since the rows of the matrix are stored across Rows of PE Memory, the

instruction LDA =X+1 would access the second row of matrix X (see Figure

III-3)• Getting hold of columns in a simultaneous manner is more difficult

when we use this "straight" (no change to the topology of the matrix—rows

are stored as rows and each element is in its proper location) storage

scheme as shown in Figure III-3. Since column J of the matrix is completely

111-62

B

m

contained within PEM there is no single ASK instruction which can access

a column simultaneously.

Since we will be wanting to access (read or write) columns as

well as rows with equal facility for our Matrix Transpose problem, we

must first develop a storage scheme which will allow us to do this. What

we want is a storage allocation such that each element of a column is also

in a different PEM. One such allocation is called "skewed storage" and

is shown for a 1* x 4 Matrix in Figure 111-1+. For simplicity we assume a

k PE ILLIAC until we actually code the problem for a 61t x 64 matrix.

Note that the skewed storage scheme as shown in Figure III-U

accomplishes our goal: each element of each row is in a different PEM and

each element of each column is in a different PEM. Now let us look at how

this type of storage can be used to access columns as efficiently as rows:

I
E

•
•
•

ROW A an
ROW A + I a24

ROW A +2 033

ROW A+3 a«
•
•
•

PEMQ

"12

•21

'34

"43

•
•
•

013
aZ2
a
3i

a44
•
•
•

PEMi PEM2

•
•
•

014

o«
a32

a41

■
•
•

PEMS

Ist ELEMENT SKEWED 0 TO RIGHT

Ist ELEMENT SKEWED I TO RIGHT

1st ELEMENT SKEWED 2 TO RIGHT

1st ELEMENT SKEWED 3 TO RIGHT

Figure III-1+. Example of Skewed Storage. The k x k Matrix A
is stored skewed in a 4 PE ILLIAC.

111-63

- »(— H-^ W^t

Suppose RGX has been loaded with the values 0, 1, 2 and 3 as

shown in Figure III-5(a). If our k x k matrix A is stored skewed, what

will appear in RGA if we execute the ASK instruction?

LDA *A;

Since the asterisk (*) denotes indexing by RGX, we can view the

value in RGX as an offset to Row A so that RGA will appear as shown in

Figure III-5(a) after LDA *A; has been executed. A closer look at RGA

shows that it now contains the 1st coluirn of the matrix A.

Now suppose that we rotate the values in RGX one place to the

I right so that they appear as

3, 0, 1, 2 as shown in Figure III-5(b) 7^

Now if we perform the same instruction

LDA *A;

Figure III-5(c) shows how the 3rd column is accessed after we

rotate RGX one more place to the right so that it contains the pattern

2, 3, 0, 1. However the 3rd column must be rotated two places to the left

to get it back in the proper order.

iLtt

the offsets are different so that the 2nd column of Matrix A will appear

in RGA after the instruction has been executed. However, the 2nd cnlumn

is not in the right urder; it must be rotated one place to the left before ~

storing it as a row in our transpose problem.

!V

, f

ti

III-6U Ü

E

bfiSJM^fc&M^ ; , iä&Üj&ÜÜL^^

E

S

ROX

R6A

ROW A

PEo

024
033
042

PEMr

R6X rrn
R6A 042 I r

• • •
ROW A On

024
a33

OI4Ö
• • •

PEl

021

012

312
^4
043

PEMi

PEt no
osx

013
022,

3iS
044

PEMg

022

& SSI
031 sir

pti

014
023

^

PEM,

TD
53

o»

^

Figure III-5(a)

RGA contains Column 1 of Matrix A
(which has been stored skewed)
after the instruction LDA *A; has
been executed. Circled elements
are accessed by the instruction.

Figure III-5(b)

RGA contains Column 2 of Matrix A
after LDA *A; has been executed.
RGA must be rotated one place to
the left if the column is to be
used in a transpose.

*

r.«

R6X rrn in- 1 rr n i~n
RGA 1 o» i «n i 013 1 'a 1 r nr r y

• • • • •
•

• •
ROW A on 012 CJJ13^ 014

024 021 022 Ctzfr
fflssy 034 031 o,r

042 CSi) 044 041
•
•
•

• •
•

• •
•

• •
•

Figure III-5(c)

RGA contains Column 3 of Matrix A
after LM *A; has been executed.
RGA must be rotated two places to
the left if the column is to be
used in a transpose.

t:

RGX

RGA

ROW A

024

On
3iS

033
042

034

0l2
021,

3^
043

044

013
'22
iiiT
52

031

Figure 111-5(4)

RGA contains Column k of Matrix A
after LDA *A; has been executed.
RGA must be rotated three places
to the left if the column is to be
used in a transpose.

^

•.-.
^

i

Figure III-5. Skewed Storage is Used to Simultaneously
Ac' 3S Columns as well as Rows

III-65

■ -> ■>> .NJ. -JN .^.- v " • ■> ' .•.-.■ . - . -
kJ^&i

:Tj>T.vr*-"_v . v. i -^ ^,
1"

,-M."v\"vM"^>'."v'.TV^.I":'A .",.l'r.*r.^.r 7.V",":u7.J.'A ',*..■■. "'. •'"v~""T. « ■." -. -, -. ww^^mw^WWW^^ W^W^n^W^

Finally the kth column is accessed as shown in Figure III-5(d)

when the pattern in RGX is rotated once more to the right (so that it

contains 1, 2, 3, 0) and the LDA *A; is executed. As might be expected,

the i+th column must be rotated three places to the left to restore the

proper order.

2

m

-.1

Now that we have a method of storing our matrix so that both

columns and rows can be accessed simultaneously let us consider the flow-

chart necessary to transpose our k x k matrix A, storing the transpose in B;

START
Load RGX with the

pattern: 0,1,2,3 I •- 0

ft
MB
tmal

ff]

Execute

LDA *A;

Rotate the accessed
Column I places to the
left (to get column
in right order)

Store column to
first Row (offset
by I) of Matrix B n

Rotate RGX
pattern 1 place
to the right

a

Let us now write the ASK code to transpose the 6k x Gh matrix A

and store the result in the matrix B. The flow chart indicates that there

are five basic instructions we want to loop through:

111-66

>>:>:fc^-->::^us^

K*.' ».i •^rjjzf.-.^^. «»X^^JV J^T% .^r:.-~7^r^,rvr^.r:£^^i^T7:T7^T7^T^rT^r^'™r^^^^^

I

^ •'

j

k

ß

•^

*•■

g

I, .

p

1. LM *A;

2. RTL $A,-P;

3. STR B+P;

■ I, m. $X,1;

5. LDX $R;

where we wish V to take on the values 0, 1, 2 ... 63 as we traverse the

K; loop. Assuming that we have already loaded RGX with the proper pattern,
B

the first instruction accesses a column of Matrix A. The second instruc-

£| tion routes the column back to the proper order. The third instruction

stores the column to the appropriate Row of B. Instructions It and 5 rotate

r 1 •' RGX one place to the right by Routing, then reload RGX with the routed

pattern. (Remember the result of a ROUTE appears in RGR only.)

The following ASK instruction will transpose Matrix A and store

the result in Matrix B assuming A has been stored skewed as shown in

Figure III-6.

r. i

3

h BEGIN:

5

6

7
8

9

10

LDX XROW;

LIT(O) l563,0i

MT(1) =6it;

LDA *A;

RTL $A,0(1);

STR B(0);

ALIT(l) =77777777:8;

RTL $X,1;

LDX $R;

TXLTM(O) .BEGIN;

111-67

•7.TT- .w-r^v-s-a

XROW —»■ 0 1 63

ROW A—► «1.1 a1.2 A MATRIX
al,64

02,64 az.i 02,63
• • •

•
•
•

• •
•

06*,Z a64,3 a64.I

• « •

ROW B —►• al.l a1.2 B MATRIX
a64,l

01.2
a2,2 a64I2

• •
•

• •
•

• •
•

al,64 a2,64 a64,64

PEMf PEM. PEM, 63

Figure III-6. Storage Scheme to Transpose the 6h x 6k
Matrix A (A is stored skewed) and
Store Result to Matrix B

re

,rjtr

i

Instruction 1 loads up RGX with the initial pattern of values

(0, 1, 2 ... 63) to be used to offset the reference to Row A at instruc-

tion k. Instruction 2 sets up the loop control variables in $C0 so that

the 6^ columns of A are stored to the 6h rows of B. Instruction 3

initializes the Routing Distance to be uaed in Instruction 5. Since we

III-68

ij
i",

\2J

ä
'.tN

..■^ ^v .■T'—s^-t"-: "- "-■ ^i'j.^.*L-imi

E

wish to perform left routes and we should never do this by using negative

numbers in an ACAR to be used as an index (see warning on page 111-20)

we use the fact that Routes are end-around so that a left Route of I can

f* 'be accomplished by a right Route of 64 - I. Specifically:
L"

I?

I
i

r

3

'i

A Left Route of 0 is equivalent to a Right Route of 6k

A Left Route of 1 is equivalent to a Right Route of 63

K A Left Route of 63 is equivalent to a Right Route of 1

Since we wish to start with a left Route of 0 (the first column is already

in proper order) and then increase the Routing Distance by one each time

through the loop, we start with a Right Route of 6k and decrease that

value by one (at Instruction 7) each time we traverse the loop.

Instruction k accesses a column of Matrix A.

Instruction 5 puts the column in proper order.

Instruction 6 stores the column to the appropriate Row of B.

t'- Instruction 7 decreases the Routing Distance stored in $C1 by

one. (An ALIT(l) =-1 would not work since the -1 would be generated in

the sign-magnitude representation. What we need for our problem is a

minus one in two's complement notation so that as it is added to the

low order 2k bits of $C1, the integer 6k will become 63 then 62, etc. as

the loop is traversed.)

111-69

^v^:: :>>::::-^^^

.."-«."•." *."».■•.■.«."• '. •• • ."• • . '•.,'.• i .' J» 'M ■■!■"■•■ ■■■■'■' ."V !■' >.■; '.mm ■< if •«■^i(> rwv^Tww^TTw^V^V^^^T^^^^T^^^'^^^^'^^

Instruction 8 rotates RGX one place to the right.

Instruction 9 places that new pattern back in RGX.

Instruction 10 loops the program hack to Instruction k where the

next column is accessed.

After control has passed through Instruction 10, the 6k x 6k

Matrix A has its transpose stored in the Matrix B.

Now that we know how to use skewed storage to access columns as

well as rows of a matrix, a new matrix multiplication algorithm could be

designed: If one of the two matrices to be multiplied were stored skewed,

then a column of that matrix could be accessed and multiplied by a row of

the other matrix. The result would be in EGA of the PE array and if

these values were summed (using a Logsum algorithm) then one element in

the product matrix has been formed. This approach to matrix multiplica-

tion is not as efficient as the one we developed in section I 3; however,

the reader should attempt by himself to write the ASK instructions that

will perform this algorithm.

5. Temperature Distribution on a Slab

In Chapter II we discussed a method of solution to the boundary

value problem of temperature distribution on a slab (see Section E of

Chapter II). On page II-1|6 the basic equation for the relaxation method

is given: J^

111-70

>

E3

PTF^V^^^'rr^T'rT^^rT'r^TTT^

ß

i
ft

p
'-". s

(■•■

i

E

„ "i-1.., * "i..Hl ^ "l.l.., - U1..1-l

which tells us that the temperature at any point should he equal to the

average of the temperatures at the k closest neighbors.

We shall develop the ASK code necessary to provide a solution

for two cases: The first case will relax an 8 x 8 array of mesh points

with initial conditions as shown in Figure 11-21 on page II-U8, using

only one Row of PE Memory. For the second case, we will solve the same

8x8 array with the same initial conditions, but we shall use 8 Rows of

fr PE Memory. (See Figure 1II-7.) Figure III-8 shows the exact solution

for either case. Case 1 represents the most efficient solution to the

problem since it utilizes all 6k PEs but Case 2 is presented to show how

the data allocation influences the program necessary to process the data;

i.e., the program that processes the data as allocated in Case 1 cannot

be used to process the data as allocated in Case 2. Case 2 is also

representative of the type of solution necessary for a problem with more

than 6^ mesh points.

a. Case 1. One Temperature per PEM

Before presenting the ASK program, we shall have to learn a few

more ASK instructions. We will need a method of disabling the "border"

PEs during the calculation since they represent the boundary values for

the temperatures and must remain at a constant value throughout the

111-71

^^li-S^^&Ki^^^

111. "■ »11 'l* Mi t in U I -^ ■ -^ . .■.■. ■, . n1-; ■■■.'.■. >. ' ■. ■. ■■. ■. i. ■. p^K^^^^w^^^^maMw^i^^^^^^Ra^^^^^H«^^^^«^

i
•p

O

H

(U

1 • • • o • • •

• • •

1 • • • o • • •

• • • $ • • •

N s • • • o • • •

1 a.
• • • s • • •

f • • • s • • •

1 • • • CM • • •

1 • • • s • • •

M
• • • s • • •

i • • • 9 • • •

i • • • 0> • • •

s
It!

• •• 1 1 1 1 1 1 1 1 • ••
hS

s
K
U

to
0)

h
(U

|
EH

■P

-s
W

CM

0)

1 •• • i 1 1 1 1 1 1 1 • ••

1 ••• olo o o o o o o •••

f ••• r» o o o o o o o • ••

n
Z •• • % o o o o o o o • ••

f ••• CM o o o o o o o • ••

m
Z ••• s o o o o o o o •••

N
z
tu a.

•• • CO o o o o o o o • ••

••• $ o o o o o o o • ••

i •• • $ in
tM CM 1-1 N o • ••

,0
trt

u H
o en
u

CO
a
o ö

•H o
■p
cö ö
Ü o
o •H
H P
H 3
< ^1

■H
9' u
w p a m
h •H
o a
•p
CO 0)
-0 1 1

u
3 0)

o Ö
•H Q)
p H

'4 <(H
a O
o
o to

0)

^ i
•H :>
p
•H o
«

n

IM ■

Si

3

I Z+++++++
H Z Z z z z z z

111 Ui U Ul kJ UJ u
h- >- H P I- »- K

111-72

f.'i

Z^L^^^^^^^l^i^^^

f

i

V'T.'.-••.••.-.■-"•-" H A ., ,v,. ,,^ ,.(.,. «.Lt.^.^,,^.,,,,,.,., , , p.p ,i9 p i. ,■ V^^M

i

I
a
i

I
I

5^-®—©—©—©--<!)

a)—®—®—®—®—©—0—0

o—©-0—©

(i)-H|>-(^K»>—0-K«>—(|>-0

©—©-<»>—(|>-<|>-^)—G^

©—0—©—©-^)-Kö—©-^

I
t.v

c

Figure III-8. Exact Solution for both Case 1 and Case 2

111-73

■' ■*-»* i^^tiii^^i^^v^

1 1

* J
■v:y

relaxation process. For Case 1 we are allocating the two-dimensional array m
^ of temperatures across one PE Row, thus the following PE numbers must be m

disabled:

■ a
0, 1, 2, 3, k, 5, 6, 7

8. 15

16, 23

2^, ' 31

32, 39

to, kj'

M. 55

56, 57, 58, 59, 60, 6i, 62, 63

The LDEE1 instruction will load the E and El bits with the bit pattern

which was previously stored in a specified ACAE by a LIT instruction:

LDEE1 ,ACAR NmbeA.;

where ACAR Mmbd*. can be $C0, $CI, $C2, or $C3 and specifies which ACAR

contains the bit pattern that is used to set the E and El bits of RGD for

every PE in the array.

An ACAR contains 6k bits and there are 6k PEs in the array. If

bit i of the specified ACAR is one then the E and El bits of RGD of PE are
i

set to one, enabling that PE. If bit i is zero then the E and El bits of

PE. are set to zero, disabling that PE. L.DEE1 is a FIN3T/PE instruction

111-lk

«W^W :i^^i^.v.::v^%^^^o^^^^;:^•'^; v^^

^:^,^\^ KV.V^I^.\^VL«J_.,7_I.._<-_V.-_U-X.S-^ J.» imvm J.« J_« i'« 57-..■■_■ Hi 'JI .^<> i . I , « . - J.l.p.M ■|i!piipiJ|iiU»ii!J|ii»l»»i II11JH». lij p mim m i ■! w

E

%

ca

I

and rises the Gammon Data Bus to transmit information from the specified

ACAR to each RGA of the array as described in Chapter II section B U b.

f' Example;

LIT(0) =007E7E7E7E7E7E00:l6;

LDEE1 $C0;

The LIT instruction will load the hexadecimal (base l6) constant shown

11- above into $C0. That hexadecimal constant can be written in binaiy and it

r.. becomes clear that the pattern of ones and zeros is the one we need to

■ disable the border PEs for Case 1:

i
B ^This pattern repeats six times

ffß OOOOOOOO^11110^111111C)|DllllllüJD1111110[31111110|31111lic|oOOOOOOO

[•■ Bit 0 Bit 31 Bit 63
(:' for PE0 for PE for PE63

then execution of

LDEE1 $C0;

uses the above bit pattern within $C0 to set the E and El bits.

If the programmer wished to enable all PEs he could use

LIT(O) =1777777777777777777777:8;

LDEE1 $C0;

SETE E.OR.-E;

SETE1 E.OR.-E;

111-75

G

or

,",.,,. r-"^'l- •."'.■-. .'..■-'.■-'T. •'."i'.^ ,^,'.■.■'.■.'^r1.' *••*•*• **%*i'my\.9im\i9\!*\!M .9 ^-^•^^^^^^^^^^^y^^^^mmmmm

We shall also want to apply the epsilon convergence criterion as

described on page 11-51.

SBRN OpcAand;

III-76

^9

2 < J < 7

This means that we will stop the iteration when succeeding values of

calculated temperatures differ by only a prescribed e. This condition must

be true for all temperature values simultaneously. We choose € to be

1 degree as we did in Chapter II. Also, to insure that we finish the

program within a finite time, we shall include a loop control that will V

end the calculation after 50 iterations regardless of whether the epsilon

convergence criterion is met. In order to apply the epsilon convergence

criterion we learn the following instructions:

hi

SBRN will subtract from the contents of RGA the value specified by Operand

and place the result, rounded and normalized back in RGA. OpeAand is

usually a Literal, a PE register, an ACAR, or a PE Memory Address. SBRN ~

is a FINST/PE instruction.

Example: "*

SBRN $8; -■'

.d

s7^t<t>J'<Js;':;-'^\S./\-'-S-.\^^<^<r-r<r\r'*^\jr. • ..oA.- vr^r. nv v. - ..<... ■<-. •-..-. ^..-..-. »r. &,-. <■_.- .- .- .- .. .-

u"»

will subtract the contents of RGS from RGA and place the result back in

RGA.

In order to take the absolute value of a quantity we have the

simple instruction:

SAP

which sets the sign bit of RGA to positive (+),

Example;

SAP

If RGA contained a negative number before execution of this instruction,

it will be made positive. If RGA contained a positive number, it will be

unchanged.

Finally we shall require an instruction that can simultaneously

sense the contents of a specified bit of RGD for all PEs and branch if they

are all zero. We will need then an instruction of this type to implement

the € convergence criterion. This instruction is ZERT. First, however

we must take all 6k of the specified bits and place them in an ACAR before

ZERT ctin test them; we do this with the SETC instruction:

SETC (ACAR NmbeA) Mode. Bit;

,•>.
M

111-77

—M. £ - . ■__

where ACAR Wumfae* can be 0, 1, 2 or 3 denoting $C0, $C1, $C2 or $C3' and

specifies which ACAE will be set with the values ol Morfe Bit for all PEs

in the array.

Mode. ZLt specifies one of the eight mode bits of RGD and can bn

E, El, F, Fl, G, H, I or J.

i

SETC works somewhat like LDEE1 in reverse: If the Moofe Bit of

PEi is one, then bit i of the specified ACAE is set to one; if the Mode Bit

of PEi is zero, then bit i of the specified ACAR is set to zero. SETC is

an ADVAST instruction and uses the Mode Bit Line discussed in Chapter II

section B 4 d.

Example;

SETC(3) I;

will set the 6^ bits of $C3 to the corresponding 6k values of the I bit in

RGD of all Sk PEs in the array.

ZERT can now test the contents of the ACAR set by SETC and branch

if all bits are zero:

ZERT (ACAR Wumbet) ,Locatton;

will cause a jump to Locution if every bit of the ACAR specified by ACAR

HmbzK is zero, location must be +127 of the ZERT instruction. ZERT is an

ADVAST instruction.

III-78 ü

sä^^^^^y^-^^^^

I
(Ä

Example;

i

n

i
I

1 IAG $C0}

2 SETC(3) I;

3 ZERr(3) ,OUT;

The first instruction, IAG, will set the I bit to one for every PE whose

EGA is greater than the contents of $C0 and set the I bit to zero other-

wise. Instruction 2 will then transmit the I bits of the PE array to $C3.

Instruction 3 will jump to location OUT if all of the I bits were zero,

and will execute the next instruction otherwise. Thus, if EGA < $C0 for

eveiy PE in the array. Instruction 3 will Jump to OUT.

The ZERT instruction sometimes necessitates the writing of a

HALT instruction if the Jump is to be made to the last statement of the

program. HALT is of the form:

HALT

and stops the program from executing. HALT is an ADVAST instruction.

Example i

ZERT(3) ,OUT;

TXLTM(l) .LOOP;

OUT: HALT;

111-79

If the contents of $C3 are all zero then a jump is made to location OUT

where the program ends; otherwise a transfer is made to LOOP based on the

contents of $C1.

We shall introduce one more notation before writing the ASK code

for Case 1: The percentage sign {%) in an ASK statement signifies that a

comment to the reader is about to follow. The ASK assembler will not

interpret any character on a card following a % sign. We assume the

initial value of the temperatures are stored in location TEMP as shown in

the upper portion of Figure III-7.

LOOP;

SETE E.OR.-E;

SETE1 E.OR.-E; % Enables all PEs

rE7E7EOO:l6;

% Do this before disabling

% Set up max of 50 relaxations

% Make sure that PEs to be disabled have
a number less than EPS in their RGA
so ZERT will work right later

% Disable border PEs

% Get value from left neighbor

% Place in RGA

% Get value from right neighbor

% Add to RGA

$3,8; % Get value from top neighbor

$R; % Add to RGA

LIT(O) =007E7E

LDS TEMP;

LIT(l) 1,50,1;

LDA =0;

LDEE1 $00;

RTL $s,i;

LDA $R;

RTL $S,-1;

ADRN $R;

RTL

ADRN

III-80

IjLjL^djLtiÜif^teiZt^^

RTL $S,-8;

ADEN $R;

LIT(3) =0.25;

MLRN $C3;

LDR $A;

SBRN $S;

SAP ;

LIT(O) =1.0;

IAG $C0;

SETC(3) i;

ZERT(3) .OUT;

STR TEMP;

LDS $P4

TXLTM(l) ,LOOP;

OUT: HALT;

% Get value from 'bottom neighbor

% Add to RGA

% Place constant of 1/k in $C3

% Divide by k; relaxation done.
(New value is in RGA)

% Save new value in RGR

% Subtract old value in RGS from
new value in RGA

% Take absolute value of New - Old

% Set up EPS value of one degree

% Set I to one if ABS (New - Old) is
greater than one degree

% Transmit I bit pattern to $C3

% Jump out if no I bits are one

% Otherwise store new value back
in TEMP

% Also place new value in RGS

% and Jump hack to LOOP for start of
next relaxation.

£•>

Although the comments attempt to explain the operation of our

program there are a few points that should be discussed:

The reader may have noticed that we multiplied by 0.25 rather

than dividing by k. This is a good programming trick to remember since

ILLIAC IV can multiply two 6^ bit floating point values about 6 times

111-81

■-•/••.■•■.■••-■••::<-"-v.v.'<'.v. 'teÜMS^

as fast as it can divide them. Another apparent inefficiency may have

caught the reader's attention in this same area of the program:

Why is the constant 0.25 being created in this particular part

of the program—it is in the middle of a loop of calculations; shouldn't

LIT(3) =0.25;

be performed outside this loop so that it is done once and not up to

50 times?

111-82

:•:

c
i

Although this is a valid argument for a conventional computer

it is not for ILLIAC IV, because CU instructions in ADVAST can be executed

concurrently with PE instructions and since LIT is a CU instruction

imbedded in a loop of PE instructions it is actually more efficient to

leave it where it is because it requires literally no time for execution

within a PE instruction loop (its execution is completely overlapped with 3

PE instructions); it would require a small amount of time to execute if n

it were at the beginning of the program in a place where there was no

opportunity for overlap of instruction execution. ?"'
ß

i

Another programming hint to remember is the following- W

y
Occasionally a programmer will write a set of instructions that

modify fields of other instructions (usually the address field). That

type of code must be used with extreme care on ILLIAC IV because of the ß

128 word Instruction Word Stack (IWS) which acts as a buffer to store ^v

Id

•.si

y^vS^

f
v:-.'
■ impending instructions to be executed. The instruction to be modified

will have its image in memory modified but will not be affected itself by

|£ the instruction if it is already in the IWS. The next time through that

a set of instructions, however, it will be modified causing possible strange

behavior of the program. The programmer can not modify an instruction

C" within 128 instructions of the modifier instruction and expect it to work

when control reaches the modified instruction the first time.

I
Two final comments on the program:

The IDA =0; (the sixth instruction) is necessary since the

K IAG $C0; instruction later acts on all of the I bits in the array, since

RGD is not protected. We can insure that the I bits in the disabled PEs

(the ones which contain the edge temperatures) get set to zero by placing

any value less than 1.0 (such as 0) in their EGA before the calculation

begins.

It was not necessary to store the newly computed values back in

TEMP (using the STR TEMP; instruction) until OUT is reached, however,

that choice was made so that TEMP could be displayed as the calculation

progressed. (See Case 1 of Table III-U.)

b. Case 2. Eight Temperatures per PEM

For this approach to the problem, the data is allocated starting

at Row TEMP as shown in the X^ver portion of Figure III-7. The main

differences in this approach are:

3.

111-83

Efr>>>>^:^^

1) The PE disabling pattern must be changed to reflect the

different storage allocation of the temperature values.

2) The left and right neighboring values can be received using

the ROUTE instruction but the above and below values must be handled

differently since they will be in the same PE Memory. If we are referring

to Row TEMP then TEMP - 1 and TEMP + 1 as PE Memoiy Addresses will

reference the above and below values respectively.

3) Since we have allocated the data as 8 PE rows we shall have

to perform 6 iterations (the top and bottom rows contain boundary tempera-

tures and do not change) to complete one relaxation instead of Just 1

iteration for 1 relaxation as we did with Case 1. This means that we

shall need 2 loops; one to step us down from row 2 to row 7 (TEMP + 1

to TEMP + 6) for a given relaxation, and one to step us to the next

relaxation.

k) We shall leave out the epsilon convergence test in the

interest of simplicity (it can be done in exactly the same way as we did

it for Case l).

Case 2;

An explanation of the finer points will follow the ASK code for

SETE E.OR.-E;

SETE1 E.OR.-E;

LIT(O) =7EOOOOOOOOOOOOOG:l6; % Set up enable bit pattern

111-81+

-'.N'.

l£E£££tä

K
C. »%

fi

LIT(2) 1,50,1;

LAAP: LIT(l) 1,6,1;

LDEEL

STA

$C0;

LOOP: LDR TEMP(l); %

RTL $R,i; %

LDA $R; %

RTL $R,-2; %

ADRN $R; %

ADRN TEMP-l(l); %

ADRN TEMP+l(l); %

LIT(3) -0.25; %

MLRN $C3; %

TEMP(l);

TXLTM(l) .LOOP;

TXLTM(2) ,LAAP;

% Set up max of 50 relaxations

% Set up iteration counter I to step
from row 1=2 (TEMP + l) to
row 1=7 (TEMP + 6)

% Disable border PEs and rest of PEs
not in calculation

Load RGR from Row I of TEMP

Get value from left neighbor

Place in RGA

Get value from right neighbor

Add to RGA

Add in value of top neighbor
(Row I - 1)

Add in value of bottom neighbor
(Row I + 1)

Place constant of iß in $03

Divide by k. Iteration on Row I
complete

Store Row values in RGA back to
Row I of TEMP

% Go back and pick up next row

% One relaxation (all rows done) is
complete. Perform next
relaxation.

&

Comments;

l) The 3rd instruction

LIT(O) =7EOOO0OOOOO0OO0O:l6;

111-85

s

sets the bit pattern which will be used to disable PE0> enable PEs 1 through

6 and disable PEr The rest of the PEs do not enter into the calculation

but are disabled in case of an arithmetic fault (underflow or overflow)

occurring in a PE that is not used in the calculation but might contain

strange data from a previous user.

2) The 7th instruction

LOOP: LDR TEMP(l);

will load the Row specified by $C1 into the RGR of all the PEs (regardless

of whether or not they are enabled at this point in the execution). The

tarting value field of $C1 acts as an index register to step down through

the rows of IEMP-the first time through the LOOP, $C1 has a value of 1

and Row TEMP + 1 (the second row) is referenced by this instruction.

Since we use RGR as a temporary storage register and as the

Routing register, it is necessaiy to route values a little differently than

we did in Case 1. The first route of one to the right allows each PE to

receive a value from its left neighbor; but when a PE needs the value from

its right neighbor it has already been shifted one to the right by the

first ROUTE so that a left shift of two is necessaiT. This type of routing

could also have been used to implement the algorithm for Case 1.

3) Note that PE0 and PE7 are disabled using the LDEE1 $C0;

instruction but the 1st row and 8th row are effective^ "disabled" (they

111-86

>::^Sv:i->>:^:Cvv-;fr^

&

R

v

do not change during the calculation) by stepping the row counter from

Row 2 to Row 7 instead of from Row 1 to Row 8.

k) The 12th and 13th instructions

ADRM TEMP-l(l);

ADRN TEMP+l(l);

also use $C1 to pick the appropriate Row. Note that the Operands are

PE Memory Addresses and specify a Row. The ACAR indexing appears after

the Operand.

Table III-U shows intermediate values of the temperatures at

one, ten and fifty relaxations; the exact solution is shown in Figure III-8

and at the bottom of Table Ill-it. As expected Case 2 shows a closer

convergence to the exact solution for the same number of relaxations since

it iterates one Row at a time and each new Row gets the benefit of values

coraputed in the Row above it, while Case 1 relaxes the whole array in one

iteration. Even closer would be the sequential solution for a conven-

tional computer as shown in Chapter II. However, Case 1 performs 6 times

fewer calculations and is therefore about 6 times as fast as Case 2 and

is about 36 times as fast a sequential method.

111-87.

^^^^>^^

1
r

«H

OJ

d)
V,
M
O

Ti

§ ,£1
c5

H H
CO

0)
to crt
crt

C) g
n

h o c
<M n

•H
w H->
-p 3

5 •H
tn ^
0) -P

PH M
•H

<M «
o

a;
c ^
Ü 3
CO -p

•H al
U JH
CO 0)

&&
O 0)
O (H

•

i
M
ai

CVI

V

oooooooo
•\

oooooooo oooooooo

1^-3 d (,,,'-, 0
t- . .ri°°oo

H o o o d o
o^t w^ as j-
IA n w H o o P- o

vo-a tncu r-i H

CO CU IA —i o
„ irsoo cj o 3 o o

H ro o o o o o

cu o t- OOO Ov
■£ o ^ j on H d 0

2? 2i St ov ov o
0\ 0\ 0\ ON Ov o • ••••• o

-a;HO\^iAncu

l^H PJOO OJ H
H
c^,^<^oooo

w fN H d d o d

VD rH t- H wvo

CVI H H

a) . 'T^ 'I ° ° 0

w t-H o d d d

IA O IA o H IA

OOHVOH«^™0
0\ 0\ 0\ 0\ 0\0\

CU CU H H 3

POOO CM O O O O

o\\o m (-vo oo

lAt-HVOHP-fO
1*1 W CVJ H H

2v Wv Ov o\ o\ o
o\ ox a\ o\ ov o

££3 33°^°
IA« 1-W

-3- W H H t- lAPO

«0 H ON ovo ro

W^CO H\0 d IA0

-9 <n Cy W rH rH

O ^ 2« ON ON O
O 0\ Ov ON o\ o

^^Sft^Kl^^0 »i W IA0O H^ t-O
j-j- n cvi cu H . S>^i«^Sl^^°

oooooooo
IA
P-

^-•oooooo

■*^oooooo

IA
CU

H^OOOOOO

o
® ° d d d d d o

IA

vA O IA O iA
J ^ O CU IA h- o v\J rH • • • • •

J- CU 00 t- IA (<0 H

ON CVI IA 00 H -+ h- O
-»^tflCUCUr-,

OOOOOOOO

t-00 IA t- PI H

-* CU H O O O

VO ON CM VO t-cri
-* • o
H ON IA m H O O

CO lAVO H VO I—
■ • ■ • ■ • C"

r-j-3' ON IA 00 H O

IA rH H VO CU IA

rH ON H IA Ov 00
IA t- Ox-» ONIA CU
Cl CU H H

00 rH IA00 VO h" ••••••□
cu^ t- o-a- ON^f
-a- oo cu cu H

2>fUiA0pHJt-O
-3- -3- CO CVJ CU H

OOOOOOOO

CO VO VO VO VO CO
. 0\ Ov Ov Ox ON ON C" o

lAJ^ OO CU H O

VO J- CM CVJ ^ VO
ON ON ON Ov ON ON • ••••• I

■^ H ON t— IA 00 H

VO CU O O CU VO
ON ON ON ON ON ON

H f—^ H CO IA CU
CU H H H

VO CU O O CU VO
ON ON ON Ov Ov ON

OJoÖovlÄrH^Oo'
CU (M H H >-l

VO J- CU CU .9 VO
ON Ov ON ON ON ON

IA ON-» ON-S- d-*
00 CU CVI H H

co VD vo vo vo oo
C^ ON ON ON ON ON

ütDdfnt~7rjl'VC
-a- oo cu cu H

OOOOOOOO

t-VO IA^ 00 CU H O

■a-cuooovoj' cu o
H H H

H« IA 0J ON SO COO

op j- o vo CVJ OO J- O
CU CU CU H H

IA O IA O
00 W CU «

JAgiAO

J^SUS^0

OV CU IA«}
J -a- oo cu m*-0]

SI
13 W CO

OvcuiAOOH^rt—o -a--^ oo cu cu tn |

l; e H
M ti

J3

111-88

^AV:^^>^^^^^JC^>^;:V^>^^^^^>^^^>^^»>^

, ».i JUk-.^fc ■'.Jl.^.Ji - • Ä m l-.M - i J- M ~ *

("v'-

I

i

I

J. Conclusion

The instructions presented in this chapter

LDA

LDB

ADRN

RTL

LIT

TXLTM

CSHL

CSHR

LESST

SETE

SETE1

SETF

SETF1

SETG

SETH

SETI

SETJ

IAL

IAG

SLIT

ALIT

MLRN

LOAD

BIN

LDL

LDEE1

SBRN

SAP

SETC

ZERT

HALT

are not the comprehensive set of ILLIAC IV instructions; neither are they

completely described in many cases. They were presented only as the

problems demanded them and not in any functional order. I hope, however,

that the reader has acquired some of the flavor of ILLIAC IV assembly

language and is now confident enough to try to master the complete language,

M
K 111-89

—- * — * - - ** ■ *-*»*-» - * __a :-^^vS>':

•. . -. -. •. -. -.— \ -. •. •.-,-■•- l - ■ . - . •—-■ ". .". -■ .". -■ •■ .■. ." .■ .■ .• i» • ."'^'i." ■..■.' ^ ^ ^ U" IP V^T'^

CHAPTER III — REFERENCES

1. David M. Grothe, "A Macro-Assembler for ILLIAC IV," ILLIAC IV Document

No. 200, Department of Computer Science Report No. 36k. ILLIAC IV

Project, University of Illinois at Urbana-Champaign, (December 1,

1969).

2. Reference Manual for ILLIAC IV Assembler (ASK). Paoli, Pennsylvania:

Burroughs Corporation (IL^-PM2), March 17, 1969.

III-90

.?.'-• -ttttrtMr&te^^ ^i^iiiivMö^^Ä-d

LV.V. »TlVJv". \r_*^.~" v!l,,..T.«S.tl! yL",'." ..'_*" »un^^^^npj »■_ «,■_ »«N^«mmi^■»■■»_HIIIIM ••'«•vvianpwpnrwpi^r^rw^^^^wvw^n^

c;>

Lv

(-':'
'.-••

HAEEWARE GLOSSARY

ACAR — See Accumulator Register

I
Accumulator Register (ACAR) — There are k ACARs in the ADVAST section of

M the Control Unit. Each is 6k bits long,. They « called ACARO,

ACAR1, ACAR2, and ACARS, and each acts like an accumulator on a

*-■ conventional computer.

& ADB ~ See ADVAST Data Buffer

[v Advanced Station (ADVAST) — ADVAST is one of the five sections of the

Control Unit and processes all instructions as an ILLIAC IV

program executes. If the instruction can be execi Uäd oorapletely

within the resources of the Control Unit it never leaves ADVAST;

if however, the instruction involves driving the 6*'-PE Array

it passes on to FINST. ADVAST consists of k ACARs, the ADB, a

simple ALU and the ADVAST Instruction Register as well as thirteen

other registers not dealt with in this book.

ADVAST — See Advanced Station

ADVAST Data Buffer (ADB) ~ The ADB consists of 6k registers within the

ADVAST Section of the Control Unit. Each word in the ADB is

6k bits long and access time is about 60 ns. Each word in the

ADB is labelled: DO, Dl ... D63.

Glossary-1

ZV^SJ^Üi&tt^^^

^«.-jLti.j. . tr^ -i. -^ -.-..•• -^ AW •..-..-. -.k -k ••'.» -t. -.-. -—-_».-j._^. j< .» -j nji rj". .■ j. .T. ^ --, v-j »•.'HW (T^ >■. ^. ^j ^TJ - . ^»-"T«

ADVAST Instruction Register (AIR) — AIR is the 32-bit instruction execution

register of the ADVAST Section of the Control Unit. AIR causes

instructions which can be completely executed within the resources

of the Control Unit (ADVAST instructions) to happen. If the

instruction involves driving the 61t PE Array, it is sent on to

FINST.

AIR ~ See ADVAST Instruction Register

ALU — See Arithmetic and Logic Unit

Arithmetic and Logic Unit (ALU) — That set of circuitry within an electronic

computer that performs arithmetic (+, -, -f, x) and logical (AND,

NOT, OR) operations.

ARPA Network —The ARPA Network £| a group of computer installations

located throughout the country but connected via high-speed

(50,000 bits/sec) telephone lines. Member installations will share

hardware and software resources of other members on the "Net".

Array Processor — The Array Processor comprises 6U PEs and 64 PEMs. See

Figure II-l.

BIOM — See Buffer Input/Output Memory

Buffer Input/Output Memory (BIOM) ~ The BIOM is a rate smoothing buffer

placed between the B6500 Computer and the Disk File System. It

consists of four PE Memories and provides 8192 words of 64-bit

Storage. See Figure II-l.

Glossary-2

^^^■^^ä:^

r^v^3V.'^^Ä'^WlW^ffVlÄ:ÄXVL5f:^^

vyv' BJ500 — See B65OO Computer

B6500 Computer (B65OO) — The B65OO is the control computer for the

ILLIAC IV System. It holds part of the Operating System as well

as the utilities, compilers, and assemblers for ILLIAC IV. See

Figure II-1.

CDB — See Common Data Bus

CDC — See Control Descriptor Controller

Common Data Bus (CDB) — The CDB is one of the four paths by vhich data

flows through the ILLIAC IV array. It is one word {6k bits) wide

and runs in one direction from the Control Unit to the 6h PEs.

It may be used to "broadcast" operands to the 6k PEs.

Control Descriptor Controller (CDC) — The CDC is part of the I/O Subsystem

and controls the transmission of data and programs between the

Disk File System and the ILLIAC IV Array. See Figure II-l.

Control Unit (CU) -- That part of the ILLIAC IV Array responsible primarily

for driving the 6k PEs in their instruction execution but may be

viewed as a small unsophisticated conrputer in its own right

capable of executing ADVAST instructions. The CU consists of

five functional sections: ADVAST, FINST, MSU, TMU and ILA.

Control Unit Buffer — The Control Unit Buffer is part of the ILA section

of the Control Unit. It is an 8 word {6k bits per word) buffer

which feeds the Instruction Word Stack (IWS).

Glossary-3

V. ".•rAV."'^'."", '.''7"!.' f.* -•'- u' 'u .'■■.'

Control Unit Bus (CU Bus) — The CU Bus is one of the k paths by which data

flows through the ILLIAC IV Array. It is 8 words (512 hits) wide

and runs in one direction from the 6k PEMs to the CU. The CU Bus

can fetch instructions (not under programmer control) or data

(under programmer control).

CU — See Control Unit

CU Bus — See Control Unit Bus

Data Communications Processor — The Data Communications Processor super-

vises a set of remote terminals and is supervised by the B6500

Computer. The remote terminal capability will allow users to run

ILLIAC IV programs remotely.

DPS — See Disk File System

Disk — See Disk File System

Disk File System (DFS) ~ The DFS, as part of the ILLIAC IV I/O System, has

the main responsibility in transmitting and receiving data and
o

programs to and from the ILLIAC IV Array. Its capacity is 10 bits

*■ 9 ^ and its effective transmission rate is 10 bits/sec over 2 channels
b
••• See Figure II-l.

I
Y FDQ — See Final Data Queue

'j

'j Final Data Queue (FDQ) — FDQ is part of the Final Queue (FINQ) of the

I Final Station (FINST) of the Control Unit. It is 61+ bits long

•■ Glossary-4

•
7
v
•j

:-i

>:.*,

n

1

l>tf>
^v» and holds the address or operand part of instructions which

drive the 6^ PEs.

Final Instruction Queue (FIQ) — FIQ is part of the Final Queue (FINQ) of

the Final Station (FINST) of the Control Unit. It is 16 bits

long and holds the operation code of instructions which drive

the 6h PEs.

Final Queue (FINQ) — FINQ is an 8 word, 80 bits per word, buffer in the

FINST section of the Control Unit. FINQ consists of the Final

Instruction Queue (FIQ) which is l6 bits long and the Final Data

Queue (FDQ) which is 6k bits long. It stores instructions on a

first-in, first-out basis which are to drive the 6h PE Array.

Final Station (FINST) — FINST is one of the five sections of the Control

Unit. If an instruction involves the driving of the 6k PE array,

FINST generates the microsequences necessary for the instruction

to happen. FINST consists of the Final Instruction Queue (FIQ)

and the Final Data Queue (FDQ) collectively called the Final

Queue (FINQ) and a PE Instruction Microsequence Generator.

FINQ — See Final Queue

FINST — See Final Station

FIQ — See Final Instruction Queue

IAM — See ILA Associative Memory

L

G

ICR — See Instruction Counter Register |

•

Glossary-5

•

lj " " ' ~' ' ' - ' - " • - " - - - - - - " - • - ■•■-•- -■--'---------■- - ---.■-•-■--
(•3

ILA — See Instruction Look Ahead

ILA Associative Memory (lAM) — The IAM is a hard-wired device within the

ILA section of the Control Unit which senses if the next instruc-

tion to be executed (pointed at by ICR) resides in the Instruction

Word Stack (IWS).

ILLIAC TV Array — The ILLIAC IV Array comprises the Array Processor and

the Control Unit. See Figure II-l.

ILLIAC IV Disk — See Disk File System

ILLIAC IV I/O System ~ The ILLIAC IV I/O System comprises the I/O

Subsystem, the Disk File System (DFS) and the B6500 Computer.

See Figure II-l.

ILLIAC IV System — The ILLIAC IV System comprises the ILLIAC IV Array

and the ILLIAC IV I/O System. See Figure II-l.

Input/Output Switch (lOS) — The I0S is a switch which insures that only

one device (the DFS or the possible Real Time Device) is

transmitting to or from the ILLIAC IV Array. It is also a buffer

between the DFS and the ILLIAC IV Array. See Figure II-l.

Instruction Control Path — The 266 line Instruction Control Path comes

from the FINST Section of the Control Unit and drives the Sk PEs

in the execution of their instructj ons.

^

Glossary-6

££&afc£^^

j
"föj Instruction Counter Register (ICR) — ICR is a 25 bit register in the

i ILA section of the Control Unit which holds the address of the

next instruction to be executed.

I
Instruction Look-Ahead (ILA) — The ILA is one of the five sections of the

Control Unit. It is responsible for maintaining a steady flow of

instructions to the ADVAST Instruction Register (AIR) in ADVAST.

Instruction Word Stack (IWS) — The IWS is a buffer which is fed by the

>; Control Unit Buffer in the ILA Section of the Control Unit. The

IWS holds 128 ILLIAC IV instructions.

IDS — See Input/Output Switch

I/O Subsystem — The I/O Subsystem comprises the Control Descriptor

Controller (CDC), the Buffer Input/Output Memory (BIOM), and the

Input/Output Switch (lOS). See Figure II-l.

IWS — See Instruction Word Stack. (IWS is also called "ILA Instruction

Word Storage".)

Laser Memory — Laser Memory is supervised by the B6500 Computer and can be

considered as fourth-order storage in the ILLIAC IV System. It

IP
holds 10 bits and access time ranges from 200 ms to five seconds.

Transmission rate is 8 x 10 bits/second over two channels.

Memory Logic Unit (MLU) — Each PE Memory has an MLU that resolves conflict-

ing accesses to that memory. There are 6k MLUs and they are

driven from the MSU Section of the Control Unit.

P
Glossary-7

Kß^:£:to:^^

"_■•-• .■.•;- .-.•.•.■ V-1 -.'•».•."..• .<"1 ".l ,., .' .',p., «• ■"• -" .' ' m'^^m'W^m^^m^mm^^^mm^^^mrm^rm^m

Memory Service Unit (MSU) — The MSU is one of the five sections of the ~'*^

Control Unit. The MSU resolves PE Memoiy access conflicts and £

sends appropriate signals to the 6k MLUs. S
h

MLU — See Memory Logic Unit _
R

Mode Bit Line — The Mode Bit Line is one of the four paths by which data

flows through the ILLIAC IV Array. It is one bit wide and runs £

in one direction from the ROD of each PE to the ACARs in the (?

ß
Control Unit.

[I
MSU — See Memory Service Unit ■

PE — See Processing Element

PE Instruction Microsequence Generator — That part of FINST responsible

for generating the microsequences for instructions which drive _,

the 6h PE array. t»

Ti
PEM — See Processing Element Memory [ö

PE Memory — See Processing Element Memory [n

Processing Element (PE) — There are 6h PEs in the Array Processor of the

ILLIAC IV Array. Each PE is a sophisticated Arithmetic and

Logic Unit capable of performing a wide range of arithmetic and ^j

logical operations. A PE has six programmable registers but is r..

devoid of control logic (except for certain data-dependent u-

conditions) being driven by the Control Unit. Ki

.-. r"
- ••'

^3
Glossary-8 y'.

I ■; i

c

 ^ " " 1

^

Processing Element Memory (PEM) — There are 6k PEMs in the Array Processor

of the ILLIAC IV Array. Each PEM consists of 20U8 words at

61+ bits per word. Average access time is approximately 350 ns.

Processing Unit (PU) — A Processing Unit consists of a Processing Element

(PE) plus a Memory Logic Unit (MLU) plus a Processing Element

Memory (PEM) i.e. PU = PE + MLU + PEM. There are 6k PUs in the

Array Processor of the ILLIAC IV Array.

Processing Unit Cabinet (PUC) ~ Each PUC holds 8 PUs. They are called

PUCQ, PUOJ^ ... PUCp

PU — See Processing Unit

PUC — See Processing Unit Cabinet

RGA — RGA is the Accumulator Register of a PE and acts like an accumulator

on a conventional computer. RGA is 6k bits.

RGB — RGB is the B register of a PE and can be used for temporary storage,

however it usually holds the second operand in a binary operation

so it is not a safe place to storr data. RGB is 6k bits.

RGD — RGD is the D register or Mode Register of a PE and reflects the

active or non-active status of the PE in one or two of its 8 bits.

The bits are called E, El, F, Fl, G, H, I and J. Certain Mode

Bits can be set based on arithmetic comparisons. Other bits can

reflect fault and overflew conditions.

Glossary-9

V

'.v."^r;i'.jJJAiVL5»."..,CiT. • . • . -. -""• . ' . • .^_,.',.' '■ ■»■., i1 ■ - ■■- '.'»t »^ "■.". •'.■.•!». »,,". ■ .■ ^■»^^^^»^^^•^^-^»^»^■^^^i^i^i^w

RGR — RGR is the R Register or Routing Register of a PE and can be used for

temporary storage; however RGR is also a port to exchange informa-

tion between PEs, so it is not a safe place to store information.

The RGR of PE. is connected by routing lines directly to the RGR

of PE. . , PE.^n , PE.-, and PE. ß. RGR is 6k bits.
i-1' i+l i+o i-o

RGS — RGS is the S Register of a PE and its intended use is for temporary

storage. RGS is 64 bits.

RGX — RGX is the X Register or Index Register of a PE and operates like

an index register on a conventional machine, modifying the

address field of an instruction. RGX is 16 bits.

Routing Network — The Routing Network is one of the four paths by which

data flows through the ILLIAC IV Array, and consists of the

64 RGRs. Each RGR is connected to the RGR immediately to the left

and right as well as to the RGR eight to the right and eight to

the left. The connection is end-around so that the RGR of PEQ is

connected to the RGR of PEg- and vice-versa.

Test and Maintenance Unit (TMU) — The TMU is one of the five sections of

the Control Unit. It is connected to the operation maintenance

panel and via the CDC of the I/O Subsystem can cause communication

to occur between the B6500 and the ILLIAC IV Array.

TMU — See Test and Maintenance Unit

Gloss ary-10

zt&tt£±&k^^

I
I
I
I

i

E
Ö-

UnCLASSIFIED
Seeurili^lMjiflcjtion

DOCUMENT CONTROL DATA -R&D
(StuHIr elm»tHlemll«n ol tltt; Im4r o< «»«We« mi* li*»mktt mmolmHmt muH b» ««iff< »hmt th» amtall npon I» etattHM)

I ORICINATINe ACTIVITY (CmpSS^ÜSHÖ !»•. «C^OWT »KCUBITV CL»*«! FICATIO»-'

Center for Advanced Computation
University of Illinois at Urbana-Champaign
Urbana, Illinois 6l801

UUCLASSIFIED
a», aneu^

a. nK^anT TITLC

AW INTRODUCTORY DESCRIPTION OF THE ILLIAC IV SYSTEM

4. OCtCRlPTlvK norm» (Ttßm ml rfmt ana InelflT»)lml»m)

Research ReTOrt
»■ AUTMOWI» (Flwml nmmt, rnlma i > Inltlml. Immt nmmtm)

Stewart A. Denenberg

«. KKPONT DAT*

July 13, 1911
M. CONTHACT OR «RANT NO.

.USAF 30i6o2)-hikh
h. PROJECT NO.

ARPA Order No. 788

7m. TOTAL NO. OF PAOH

255
7b. NO. OF RCFS

9
«o»

ILLIAC IV Document No. 225

•6. OTHKR RCRORT NOISI (Anr othmt ntmbmn Html mmr bm mmml0tmd
»Im import)

Dept. of Computer Science File No. 850

10. DISTRIBUTION STATCMCNT " APPROVED FO" FÜPUC F^ieASE;
DISTRIBUTION 13 UNLIMiltD iA) / s

Copies of this report may be obtained from tne aotaress in (1) above.

II. SUPPLEMCNTARV NOTES

None

11. «POMSORIN« MILITARY ACTIVITY

Rome Air Development Center
Griffiss Air Force Base
Rome, Ne^York IjlA-O

Written specifically for an applications programmer, the book

presents a tutorial description of the ILLIAC IV System. Volume 1

contains three chapters -- Background, Hardware Structure, and The

Assembly Language--ASK, as well as a Hardware Glossary. Many illustrative

problems are used to educate the beginner in the use of the ILLIAC IV

System.

r
1

DD F(MM
I NOV •• 1473 UNCLASSIFIED

Security Ctastincation

^y-w^v^ ■■.-',

rur^.Tl^'. ■i*i'riy%JrZ'^~jtV^TkIr^TWl^i".iyrL~, Tl^iw^vn.'^iP^l?,UJ^" ^l1 ■••J '"I'^.A1 ■!'. ■■i"ww^v?,,?^^9TTTTT^'^,"T^

k"

UITCLASSIFIED
S«curity CU»«tnc«tlon

KCV WONOt

Reference and Learning Manuals

Texts; Handbooks

ASK (Assemblers)

Storage Allocation

Computer Systems (General)

HOC«

LINK C

KOLK

UNCLASSIFIED
Security ClaHiHcation

m

&<£<£<ttte^^

