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THE COMPLEX REPRESENTATION OF SIGNALS

TIS R67EMH5

SECTION I

INTRODUCTION

The purpose of this report is to derive and assemble for reference some useful

properties of the complex representation of signals. It is intended for use by systems

engineers who already have a thorough knowledge of systems theory with real signals.

None of the work is original and the results have been known for many years. The proofs

of the various properties are included for the specific purpose of emphasizing the con-

ditions under which these properties are valid. The development begins with a discus-

sion of the Hilbert transform, proceeds to the analytic signal and complex envelope, and

ends with sections on the relations between operations on real signals and their complex

envelopes, and the complex sampling theorem.

i)I''
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SECTION II

THE HILBERT TRANSFORM

Central to the theory of the complex representation of signals is the notion of the

Hilbert transform. Taking the Hilbert transform of a signal amounts to shifting all its

frequency components 90° in phase; however, this is not the usual definition of the Hilbert

transform, so we shall demonstrate this property.

To avoid mathematical difficulties we shall work throughout this report only with

4 signals that have zero mean. Note that this includes all finite energy signals.
Notation

1. x(t) is a real zero mean signal

2. Integrals written without limits are assumed to be from -c to

Definition 1

The Hilbert transform of x(t) is the Cauchy principal value of the integral

!A

7ft dr (1)

Note that this is a convolution integral, so x(t) can be interpreted as the result of passing

x(t) through a linear time invariant system with impulse response

h ((2)

Proposition 1

h(t) has the Fourier transform

H(f) e e - 7rft dt =(3)
f 71t j, f O

Note that this amounts to a 90° phase shift at all nonzero frequencies.

Proof

An attempt to evaluate the transform directly leads to difficulties at the infinite limits.

An alternate procedure is to define a function
47r

ha(t)= 2 + 2
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1,

which has the Fourier transform
e-af

-jea f >0

Ha je) aff<T-T .a~l = je a, f < 0

This can be verified by showing that h (t) is the inverse transform of Ha(f). Now we noteaathat since

h(t) = lim ha(t)
a- 0

it is reasonable to define

, I-j, f>O0

H(f) =limHa(f) = (4)
a-0 j, f<0

End of Proof

To be rigorous, it would be necessary to show that the Fourier transform defined by

Equation (4) has all the properties of the usual transform, but we shall be content with this

justification.

Corollaries

The Fourier transform of the inverse

j,f >0

H(f) -j, f = -H(f) (5)41 -j, f < 0
therefore

,-t - d" = -x(t) (6)

i.e. , the Hilbert transform of the Hilbert transform of x(t) is -x(t). It is important to

remember that this only holds when x(t) is zero mean.

Because of the existence of an inverse Hilbert transform -- Equation (5) -- every

zero mean signal has a unique Hilbert transform.
A

x(t) and x(t) are a unique pair (7)

End of Corollaries

We shall now investigate the relationship between the Fourier transform of x(t) and the
A

Fourier transform of x(t).

3



Notation

1. x(t) has the Fourier transform X(f)
A A

2. x(t) has the Fourier transform X(f)
A

Note that X(f) is not defined to be the Hilbert transform of X(f).

Corollary

It follows from Equations (1) and (3) that

A -jX(f), f>0
X(f) = H(f) X(f) = (8)

j X(f), f < 0

i.e., the spectrum of the Hilbert transform of x(t) is found by multiplying the positive

spectrum of x(t) by -j, and the negative spectrum by j.

End of Corollary

We shall now show a useful integral property of Hilbert transforms.

Notation

1. y(t) is a real zero mean signal

2. superscript * denotes complex conjugate

Recall from Fourier transform theory that

fx(t) y(t) dt =fx(f) Y*(f) df (9)

We can use this relation to show that

Proposition 2

fx(t) y(t) dt = fx(t) y(t) dt (10)

Proof

fx(t) y(t) dt

;J (f) Y*(f) df by Equation (9)
10 0

=f [j X(f)] [-j Y*(f)] dl +fn[jXf]j *f d

II
=J(f) Y*(f) df

= (t) y(t) dt by Equation (9)

End of Proof

4



1Corollaries
From Equations (10) and (6) it follows that

(t) y(t) dt = -f(t) y(t) dt (11)Iix
which implies

[ i *t) (t) dt =0 (12)

End of Corollaries
The following relations will also be useful later in our work.

Notation

'(t) = y(-t)

i.e., the overbar is an operator which turns y(t) into its time reverse.

Proposition 3

A

Iit) = -(t) (13)

i.e., the Hilbert transform of the time reverse of y(t) is the negative of the time reverse of
the Hilbert transform y(t).

Proof

git) =  t-rd

A 1 T=~) 7 JPt- dT

= r -t+ d

Ifrv()d where r=--

= -y(t)

End of Proof

Corollaries

From Equations (10) and (13) it follows that

J|X(t) y(t) dt = -fx(t) Y(t) dt (14)

5



which implies

trA AA
(t) y(t) dt = x(t) y(t) dt = (t) Y(t) dt (15)

End of Corollaries

The differences between Equations (11) and (14), and between Equations (12) and (15)

should be noted.

4 Finally, we shall have need for relations similar to Equations (10) through (15), but

involving ensemble expectations rather than integrations.

Notation

1. x(t) and y(t) are sample functions of a real, zero mean stationary random process

j 2. E [ ] denotes ensemble expectation

Proposition 4a
J A A

E [x(t) y(s)] = E [x(t) y(s)] (16)

Proof

- E [(t) A(S)]

_ 1 fd Ext - s - )]
-LTJJ tTJ -O*=_E 1 fd_ xtY(s where [=t-t, yO=S -V

- 7J E

-E x(t) _fd_ y(s +

- E [x(t) y(s)]

End of Proof

Corollaries

It follows from Equations (16) and (6) that

E[x(t) y(s)] = -E [x(t) A(s)] (17)

6



which implies

E [x(t) x(t)] = 0

Also, making use of Equations (16) and (13), it follows that

E [xA(t) y(t)] = -E [x(t) Y(t)] (18)

which implies A
, ~ ~~E [X(t) (t), A E[A~t ,t]:EA(t) Y(t)] (9

End of Corollaries

Proposition 4b

E [x(t) A(s)] A [x(t) y(s)] (20)

Proof

E [x(t) A(s)]

- E fd s where T= -s+ a
=EX(t) ! j ,)

-- IJ, E [x(t) y(s + i)]

A
E [x(t) y(s)] by stationarity End of Proof

bit
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SECTION III

THE ANALYTIC SIGNAL

Notation

"Re" denotes the real part

In steady state circuit analysis it is common to write

A cos (2,rft + 0) = Re IA eJ( 2 t Ne)!

and to analyze the circuit using only the exponential form, taking real parts when the real

signals are wanted. The analytic signal is a natural extension of this technique to a broader

class of signals.

Notation

x(t) is a real zero mean signal

Definition 2

The analytic signal of x(t) is

x(t) =x(t) + jX(t) (21)

then

x(t) = Re x(t)

Proposition 5

x(t) and x(t) are uniquely related (22)

Proof

The proposition follows directly from Equations (21) and (7).

End of Proof

Notation

1. x(t) has the Fourier transform X(f)

2. x(t) has the Fourier transform X(f)

Proposition 6

The spectrum of x(t) is twice the positive frequency spectrum of x(t).

A X(f), f>0
X(f) = X(f) + j X(f) = 2 (23)

8
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Proof

The proposition follows directly from Equations (21) and (8).

End of Proof

Proposition 7

If the spectrum X'(f) of a complex signal x(t) is zero at nonpositive frequencies, then

there exists a real zero mean signal x(t) such that

x' (t) = x(t) (24)

Prooi

Let X'(f) = Xr(f) + j X!(f)r I
where X (f) and X!(f) are realr

Define X(f) = A [X r (f) + j x i (f)], f > 0
1 [X (f) - X X(f)], f < 0

Then x(t), the inverse Fourier transform of X(f), is real. Furthermore, the analytic signal

x(t) has Fourier transform X(f) = X'(f).

End of Proof

Corollary

A necessary and sufficient condition that a complex signal x'(t) be the analytic signal of

a real zero mean signal is that its spectrum X'(f) be zero at nonpositive frequencies.

X'(f) = 0, f < 0 (25)

U Proof

The corollary follows directly from Equations (23) and (24).

Notation

y(t) is a real signal

Proposition 8

If z(t) = x(t) + y(t)

then z(t) = x(t) + y(t) (26)

i.e., taking the analytic signal is a linear operation.

9



Proof
A

(t) --z(t) + j z(t)
A A

X(t) + j x(t) +y(t) + jY(t)

=x(t) + ;(t)
End of Proof

-10



SECTION IV

THE COMPLEX ENVELOPE

At the beginning of Section III we noted that the analytic signal was an extension of the

use of complex representation of signals in steady state circuit analysis. One of the ad-

vantages of this technique is that is is not necessary to carry the exponential term ej 2 ft

through the analysis; it is sufficient to work with the complex amplitude A eJe. The com-

plex envelope is an extension of this technique which allows the complex amplitude to be

time varying.

Notation

x(t) is a real zero mean signal

Definition 3

The complex envelope of x(t) at the frequency f isc
-j21fc t

u(t) = x(t) e (27)

Note: The complex envelope is often called the "preenvelope" in the literature.

Notation

1. Ju(t) I is the magnitude of u(t)

2. 4 u(t) is the angle of u(t)

Proposition 9

For any given frequency fc' any real zero mean signal x(t) can be written uniquely as

an amplitude and phase modulation carrier in the form

x(t) = Iu(t) I cos [2rfct + I u(t)] (28)

Note: There is no bandwidth constraint on this representation.

Proof

x(t) = Re ;(t) by Equation (21)

- j2irft

= Re u(t) e c by Equation (27)

=Re i u(t) Iej4) u(t) ej2 7f ct I

= Iu(t) I cos [27rf t + j u(t)] c End of Proof

' 11



Notation

1. u r(t) is the real part of u(t)

2. ui(t) is the imaginary part of u(t)

Proposition 10

For any given frequency fc, any real signal can be written uniquely as the difference of

two amplitude modulated carriers in phase quadrature in the form

x(t) = u r(t) cos 2rf ct - ui(t) sin 2rf ct (29)

Note: There is no bandwidth constraint on this representation.

Proof

x(t) = Re x(t) by Equation (21)

j21rf t
= Re u(t) e by Equation (27)

~j2irf t

=Re [Ur (t) + j u(t)] e c

U= U(t) cos 2irf t - u.(t) sin 27rf trccEnd of Proof

Note: The uniqueness of the representations -- Equations (28) and (29) -- results from the

precise definition of x(t) by Equation (21). Other representations of the same form as

Equations (28) and (29) are possible by defining x(t) to be the real part of some other com-

plex signal.

Notation

1. 6 () is the unit impulse function

2. * between functions denotes convolution

Proposition 11

The Fourier transform of the complex envelope u(t) is

U(f) -X(f +fc) (30)

Proof
] -j22rfet

u(t) = x(t) e by Equation (27)

12
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Hence U(f) = X(f) 6(f + fc)

= X(f + fc

End of Proof

The above proposition shows that the spectrum of the complex envelope u(t) is simply

twice the positive frequency spectrum of the real signal shifted downward by frequency fc,

or in the usual terminology, shifted to baseband.

A. "HIGH PASS" AND "NARROW-BAND" MODULATED CARRIERS

It is one thing to define the analytic signal and the complex envelope, and quite another

* thing to compute them for a given signal, x(t). The potential difficulty lies in carrying out

the mathematical operation required to compute the Hilbert transform. For "high pass"

modulated carriers we shall demonstrate that the analytic signal and the complex envelope

are simple to find; however, we must first define what is meant by a "high pass" modulated

carrier.

Definition 4

Let x(t) = a(t) cos [27rf ct + 0(t)] (31)

where a(t) and ((t) are real.

je(t)
Let ul(t) = a(t) e (32)

Then x(t) is defined to be a high pass modulated carrier if

U(f - fc) = 0, f < 0 (33)

Note: ul(t) is defined by Equation (32), and is not necessarily the complex envelope of x(t).

The next proposition asserts that ul(t) is the complex envelope of x(t) if, and only if, Equa-

tion (33) holds.

Proposition 12

Let x(t) be given by Equation (31). A necessary and sufficient condition that
- j9(t) j2ft

x(t) = a(t) e e (34)

is that x(t) be a high pass modulated carrier.

Proof

Let ul(t) be given by Equation (32).

13
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jDefine the complex signal

J27rf t
x'(t) = u1 (t) e

To prove the sufficiency of the assertion, we must show that

x'(t) = x(t)

Since X'(f) = Ul(f - fc) , and since xl(t) is a high pass modulated carrier

X'(f) = 0, f < 0

But, by Equation (24), this is a sufficient condition for x'(t) to be analytic. Now, since

x(t) = Re x'(t) = Re x(t)

and since, by Equation (22), x(t) is uniquely related to its analytic signal

x'(t) = x(t)

To prove the necesbity of the assertion, we must show that when x'(t) = x(t), x(t) is a high

pass modulated carrier.

Since x'(t) is analytic, it follows from Equation (23) that

X'(f) = Ui(f - fc) 0, f 0

Therefore, x(t) Is a high pass modulated carrier,

End of Proof

Note: Even if a real zero mean signal given by Equation (31) is not a high pass modulated

carrier, it still has a complex envelope defined by Equation (27), but the complex envelope

is not given by Equation (32).

The preceding proposition shows how to form the analytic signal and complex envelope

of a real signal when the real signal is a high pass modulated carrier whose amplitude and

phase modulation are known. The analytic signal is given by Equation (34) and the complex

envelope by Equation (32).

In the literature, reference is often made to representing "narrow-band" modulated

carriers in this manner. This restriction is clearly sufficient, but not necessary. The
"narrow-band" restriction is often imposed to make the magnitude of the complex envelope

coincide with the "physical" envelope as seen on an oscilloscope, or because it is desired

to represent doppler effects as shifts in the carrier frequency.

14



B. ZERO-MEAN STATIONARY GAUSSIAN NOISE

Notation

1. n(t) is a real signal which is a sample function of a zero-mean stationary gaussian
random process

2. R(t - s) is the autocorrelation function of this process

Proposition 13
A
n(t) is a sample function of a zero-mean stationary random process.

Proof
A
n(t) is the result of a linear time invariant operation on n(t).

End of Proof

Corollaries
A A

By Equation (20) E tn(t) n(s)] = E [n(t) n(s)] (35)
A A

By Equation (16) E [n(t) n(s)] = E [n(t) n(s)] (36)

Notation

1. k(t) is the complex envelope of n(t) at frequency fc

-j2 7rf ct
i.e., k(t) = n(t) e (37)

2. kr(t) and k (t) are, respectively, the real and imaginary parts of k(t)

We now investigate the statistics of k(t).

Proposition 14

1. kr(t) and k.(t) are zero mean, stationary, and gaussian with autocorrelation
r AI^

function R(t - s) cos 21rf (t - S) + R(t - a) sin 27rfc(t - s) and cross-correlation
C A

function R(t - s) sin 27rf (t - s) + R(t - s) cos 2rfc (t - s).

2. I k(t) 12 is chi-squared two degrees of freedom distributed with mean 2R(O) and

variance 4R2 (0); i.e., Ik(t) I is Rayleigh distributed.

3. 1 k(t) is uniformly distributed between 0 and 27r.

4. 1k(t) 12 and J k(t) are independent.

Proof 1

A^ -j21rfct
k(t) = [n(t) + jin(t)] e

15



A
Hence k r(t) = n(t) cos 2rf t + n(t) sin 27rf t

A
ki(t) =-n(t) sin 27rfct + n(t) cos 2crft

Thus, k (t) and k.(t) are sums of zero-mean gaussian random variables, and hence are

themselves zero-mean gaussian random variables. We must show that they are from

stationary processes. To that end

E [kr(t) kr(s)] = E [n(t) n(s)] cos 2rf ct cos 27rf cs

+ E [n(t) n(s)] cos 2wfet sin 2crf sC c
+ E [n(t) n(s)] sin 27rf t cos 27rf sA (38)

I + E [n(t) n(s)] sin 27cf't sin 2irf s
c c

= R(t - s) [cos 2 rfct cos 27rfcs + sin 27rf t sin 27ffcs]

A 

= R(t - s) cos 27rf (t - s) + R(t - s) sin 27rf (t - s)c c

i.e., stationary. Similarly,

E [ki(t) ki(s)] = E [kr(t) kr(S)] (39)

A
E[kr(t) ki(s)] R(t - s) sin 2 fc (t - s) + R(t - s) cos 27rf (t - s) (40)

End of Proof 1

Proofs 2 and 3!2

The random variables Ik(t) 2 , k(t) and kr(t) , ki(t) are related by

k(t) k2 (t) + 2(t)

k i (t)
, k(t) = arctan

kr~

Since the joint distribution of kr(t) and k i(t) is known, the joint distribution of Ik(t) 2 and

4 k(t) can be determined. Without proof

Ikt1 I kt12 > 0
2 1

1 2R 2(0)

2,47rR
2 (0) e 0 < 4 kt < 27r

P[Ikr l 1
2  kt]=

0 otherwise

16



From which the marginal distributions are

Ikt 1

t 1 e 2R(O ItI 2 O

p~jkt 1 21 = 2R2 (0) (41)10 otherwise

0 ( ikt 2r
p[j kt 127r (42)

0o otherwise

End of Proofs 2 and 3

Proof 4

By inspection

p~lk ti 2  kt] p[IktI2] p[j kt] (43)

End of Proof 4

17
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SECTION V

OPERATIONS ON REAL SIGNALS AND THEIR COMPLEX ENVELOPES

When we add, multiply, correlate, or convolve real signals, we are often interested

only in the amplitude and phase modulation of the result, and do not wish to retain any in-

formation concerning the carrier. Under these circumstances it is advantageous to work

only with the complex envelopes of the signals. When performing the above operations on

complex envelopes, we must be confident that we understand what happens to the real

signals, and vice versa, or much of the utility is lost. In this section we shall investigate

the relation between the real signals and their complex envelopes as they undergo these

operations. The theory we have developed in Sections II and III will prove very useful in

developing these relationships.

The presentation will be simplified if we agree on the following notation at the onset.

Notation

1. In all that follows, x(t) and y(t) are real zero-mean signals

2. [Env x] (t) is the complex envelope of x(t) at the frequency f

-j2tr t

[ Env x] (t) = R(t) e c (44)

3. "Env" is the operator which transforms x(t) into its complex envelope [Env x] (t);
thus,

Env x(t) = [ Env x] (t) (45)

Note: It is important to distinguish between the operator Env which "takes the complex

envelope" and the complex time function [ Env xj (t) which is the result of the operation.

A. ADDITION

The complex envelope of the sum of two real signals is the sum of their complex

envelopes.

Env [x(t) + y(t)] = [Env x] (t) + [Envy] (t) (46)

Proof
-j21rf t

Env x(t) + y(t)] =[x(t) + y(t) e c

-j27rf t
= [x(t) + y(t)] e c by Equation (26)

18
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-j27rfct -j2rf t
=x(t) e C+ y(t) e

=[Env x] (t) + [Envy] (t)

End of Proof

B. TIME CORRELATION

The complex envelope of the time correlation function of two real signals is one-half

the time correlation of the complex envelope of one signal and the conjugate complex

envelope of the other, as follows.

Env f x(t) y(t - '") dt = . f [Env x] (t) [Env y]*(t - T) dt (47)

Proof

We first note the identity

y*(t j A A
Px(t) y*(t-T) dt= [ x(t) +jx(t)] [y(t -) -jy(t -T)] dt

(fA A
= Jx(t) y(t -T) dt+ x(t) y(t - T) dt

+ ifx(t) yt - r) dt - j xt) y(t - r) dt

= 2 x(t) y(t - r) dt - 2j fx(t) y(t - T) dt by Equations (10) and (11)

Now we use this to prove the assertion

Envf x(t) y(t - r) dt = X(t) y(t-T)dt e

= [fSx(t) Y(t - T) dt} + j { fx(t) y(t - r) dt fle - e

Using the previously defined notation T(t) = y(-t)

[ x(t) y(t - T) dt + j x(t) ( - t) dt e c

x(t) y(t - T) dt - j x(t) y(t - T) dt] e by Equation (13)

f J x(t) *(t - T) dt e c by the above identity

-j21rf t j27rf(t -- T)

f [ [Env x] (t) [Env y]* (t - T) dt

End of Proof

19



C. ENSEMBLE CORRELATION

The complex envelope of the ensemble correlation function of two real signals is one-

half the ensemble correlation of the complex envelope of one signal and the conjugate com-

plex envelope of the other, as follows.

Env E [x(t) y(t - T)] = E [[ Env x] (t) [Env y]*(t - 7)] (48)

The proof is formally identical to the proof for time correlation given in Section V-B.

The proof uses Equations (16), (17), and (18) in place of (10), (11), and (13), respectively.

D. CONVOLUTION

The complex envelope of the convolution of two signals is one-half the convolution of

the complex envelopes of the signals.

Envfx(T) y(t -) dT= iJ[Env x] (T) [Env y] (t - 7) dT (49)

Proof

We first note the identity
A* j27rft

[Env -] *(t) = y*(t) ec
A j27,f Ct

:~ ~ [7(t) - j A(t)] e
A -j27rfc(-t )

= [T(t) + j y(t)] e by Equation (13)

Nw tEnvy] (-t)
4

Envfx(r) y(t -7) dr = X()(r Y(- t) d7

1 f[ Env x] (7) [Env _1 *(T - t) dr by Equation (48)

= lf [Env x] (T) [Envy] (t - 7) dr by the identity above

End of Proof

E. LINEAR TIME VARYING SYSTEMS

Notation

h(T, t) is the response of a linear system at time t to an impulse at time t - T

20



Definition

A 1 h(, t)d
h(T, t)= (50)

Then it follows from Equation (49) that

Env h( , t) x(t- T) d =If[ Env h] (T, t) [Env x] (t - T) dT (51)

;4

*21



SECTION VI

THE COMPLEX SAMPLING THEOREM

In its usual form, the sampling theorem states that a waveform with no positive fre-

quency components outside a band 0 < f < W Hz is completely determined by its time samples

taken - seconds apart. This requires 2TW samples in a time interval of T seconds.

Intuitively, it would seem that a waveform with no positive frequency components outside a

pass band in the range f - <f < f + W Hz should also be completely determined by 2TWo 0 0
samples in every T second interval. The complex sampling theorem shows that this is the

case.

Notation

sin wt
1. sinc t =

7rt

2. rect t = 1,I
0, ifi I

3. 6(t) is the unit impulse function

4. All summations are from -- to co

, Note: The following are Fourier transform pairs.

1: W sinc Wt -- rect , (52)

W k W k

The Complex Sampling Theorem

Let x(t) be a real waveform with no positive frequency components outside a band in
W Wthe range fo - - < f < fo T Hz. Let x(t) have the complex envelope u(t) at a carrier

frequency fc. Then

x(t) =Re : U[Wk ] sinc It - k1 eJ 2 r(fo+ [t- -W (54)
k

i.e., x(t) is completely determined by samples of its complex envelope taken seconds

apart. Since each sample has a real and imaginary part, there are actually 2TW inde-

pendent samples in a T second interval.
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Proof

Let x(t) have analytic signal x(t) with Fourier transform X(f) Then, X(f) has no fre-

quency components outside the band f < f f + Hz; therefore,
0 2 o 2

X(m X(f)*EZ(t - kW) reet W- (f - fo)
k

and taking Fourier transforms of both sides and using Equations (52) and (53)

1 k' j27rf t
x(t) = x(t) 6 It-wj * W sinc Wt e 0

k

= ~ ~r] inc ~t -~] e27fo[t -

W c

Ek u  k - eine t-k] to siee +It -[ ]

k

k

End of Proof

*1
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