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ABSTRACT 

Ota the basis of an hypothesis that low frequency oscillations ("chugging") sometimes 

observed in liquid propellant rocket engines are the result of oscillatory propellant flow 

induced by a combustion time lag,  conditions for the suppression of such oscillations are 

deriTed.    It is found that stability can be achieved by increases in the length of feed line, 

the Telocity of the propellant in the feed line,   the ratio of feed pressure to chamber pres- 

sure, and the ratio of chamber Tolume to nozzle area.    Equations are given for the frequen- 

cies of oscillation.    Examination of the equation for stability indicates that self-igniting 

propellant combinations are likely to be more stable than non-self-igniting systems. 
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A THEOBY OF UNSTABLE COMBUSTION IN LIQUID 

PROPELLANT ROCKET SYSTEMS1 

Martin Summerfield2 

INTRODUCTION 

Liquid propeiiant rocket engines of ail types are generally designed by the engineer to 

deliver a fairly constant, steady thrust for a duration that may extend from several seconds 

to as much as an hour. However, in many cases, it Has been reported that the desired steady 

operation does not occur in actual test, and insteac a condition variously described as "rough 

burning", "chugging", "screaming" or simply unstable combustion may take place. Frequencies 

ranging from 10 cycles per second to as mucn as 5000 cycles per second have been observed in 

oscillographic chamber pressure traces, amplitudes from a few percent to as much as 50 percent 

of the mean chamber pressure, and in many cases, the oscillation was not truly periodic but 

seemea to be merely a series of random fluctuations. Not only is the resulting thrust vibra- 

tion undesirable from the standpoint of possible damage to the structural elements or instru- 

ments in the venicle, but in extreme cases, failure of the power plant itself can occur. 

(Heference 1). 

The theory presented here does not attempt to explain all cases of unstable combustion, 

but it may provide an explanation for one type of instability, perhaps the most serious type, 

sometimes called "chugging". 

The phenomenon of "chugging" was first observed by the author in October 1941 during a 

series of tests of a 1000 lb. thrust nitric acid gasoline rocket motor at the Jet Propulsion 

Laboratory of the California Institute of lecimology. Upon ignition, combustion would proceed 

smoothly at first, but would rapidly become rougn, and in many instances, alter five or ten 

seconds, severe fluctuations in cnamber pressure would be taking place. Frequently, tue bolts 

of the combustion chamber would rupture before the propeiiant flow could be turned off. 

An explanation for this oscillation was advanced on tne basis of an hypothesis that a 

time lag existed between an arbitrary fluctuation in propeiiant flow and its subsequent mani- 

festation in the combustion chamber pressure.  Uns time lag is tne result of the finite rate 

Submitted in final form to Project SQUID April 11, 1951. (Original version dated 
January 26, 1951.) 

General Editor, Aeronautics Riblication Program, Princeton University, Cwsultant 
to Project SQUID. 



of the overall combustion process, and is determined therefore by the kinetic rates of mixing, 

vaporization, and chemical reaction. The argument was pursued to show that the instability 

could be suppressed by increasing the pressure drop across the injector. A numerical illustra- 

tion of this argument may be helpful for an appreciation of the analysis below. 

A particular rocket engine with a compressed gas type of feed sysi- ~ in  designed to op- 

erate with a chamber pressure of 300 psia.  In the first case, assume tnat the feed pressure 

is 500 psia. Now suppose a momentary decrease in chamber pressure occurs after steady opera- 

tion is achieved, the decrease being from 300 to 200 psia. Assuming a square-law pressure 

drop across the injector, and neglecting the inertia of the liquid in the feed line, the flow 

rate will increase by 23% above the design value and will subsequently (after the time lag 

mentioned above) produce a 23% increase in chamber pressure above tne design value, namely, 

369 psia. The injector pressure drop is now only 131 psia, the corresponding flow rate is 

therefore reduced to 81% of the design value, and the chamber pressure will then fall (after 

the time lag), to 81% or 243 psia. The flow rate then increases again, and it is possible to 

continue the calculation in the same manner.  In this case, after one cycle, it is apparent 

that the disturbance is decaying, the amplitude having decreased from 100 psia to 69 psia to 

57 psia. 

.Next, consider a second case in which the design chamber pressure is also 300 psia, but 

the feed pressure ia  only 400 psia. If an arbitrary decrease of 100 psia is assumed as above, 

the sequence of chamber pressure values becomes 300, 200, 420, 0. In this case it is clear 

that tne fluctuations will increase in strength as time proceeds. A third case, assuming a 

feed pressure of 450 psia, exhibits neutral stability; i.e., the -ipiitude of the fluctuation 

remains approximately constant. 

It appears from such crude considerations that the injector pressure drop is a controlling 

parameter. It will be seen below that this numerical conclusion can be generalized in the 

following statement: instability is not possible if the injector pressure drop exceeds one half 

the mean chamber pressure. However, it will be seen that tne converse is not always true. 

That is, instability can be suppressed even when the injector drop is less tnan naif the cham- 

ber pressure. 

Of course, even in its qualitative form, the theory suggests tnat instability can be elim- 

inated by reducing tne time lag in the combustion process. This was accomplished, in the 1941 

program, by switching to aniline as a fuel instead of gasoline, and indeed, with no change in 

design or operating conditions, smooth running was achieved. 

In formulating the problem in 1941 tne autiior's analysis neglected the inertia of tne 

liouid propellant in the feed lines.3 The flexible coupling responsible for this self-excited 

The author is indebted to Dr. Theodore von Karman for profitable discussion that led to 
tne basic hypothesis of a coohistion ti.ae lag and for suggestions on the mathematical approach 
to the problem, (Private Coonunication, Nov., 1941.) 



oscillation was assumed to be the capacitance of the combustion chamber. A recent paper by 

Gunder and Friant (Reference 2) presented an analysis of chugging in which the essential hypo- 

thesis was also the time lag described above (it was independently conceived by them), but 

instead of the chamber capacitance the important term was the inertia of the liquid in the 

feed lines. It is shown in their paper that instability is not possible when the pressure drop 

exceeds half the chamber pressure. Yachter and Waldinger, in an unpublished coainunication 

(1949), considered the case in which liquid inertia is neglected, and reached the same conclu- 

sion. 

Since similar conclusions resulted either from a consideration of liquid inertia alone or 

chamber capacitance alone, it appeared logical to carry out the analysis with both effects 

present. This is done below, and not only does it include each of the above analyses as spe- 

cial cases, but certain conditions for stability can be derived in such simple form that 

physical conclusions suggest themselves immediately. 

In passing, a few remarks concerning other types of non-steady operation are pertinent in 

order to clarify the assumptions of the present theory. It is assumed here that the pressure 

is uniform throughout the combustion chamber at any instant, that is, that the period of os- 

cillation is long compared with the time required for a pressure wave to traverse the combus- 

tion chamber in any direction. However, high frequency "screaming" has been observed in some 

rocket motor tests, which indicates that chamber gas oscillations are possible, in addition 

to the system oscillations treated here. These high frequencies usuall/ agree fairly well 

with those expected on the basis of axial resonance (organ pipe notes) or transverse resonance. 

What is not clear, however, is the nature of the process that energizes such oscillations and 

why they appear only under certain conditions of injection or chamber configuration. It is 

suspected that the oscillation is energized by a proper interaction between the variations in 

pressure and the rate of combustion, (that is, the time lag is some function of the instan- 

taneous pressure) but the exact formulation of this interaction is not known.4 The remedy is 

not clear unless it is to try arbitrary changes in the spatial combustion pattern. These high 

frequency vibrations are usually of small amplitude but are generally accompanied by signi- 

ficant increases in heat transfer to the chamber walls. The danger of this type of oscilla- 

tion lies in the possibility of a burn-out ul the chamber. 

A third category of unsteady operation is connected with either mechanical or hydraulic 

oscillations in the rocket system. Aside from the well-known possibilities of structural vi- 

bration, valve flutter, feed pump pulsation, etc., there seems to be the additional possibility 

of non-steady hydraulic behavior of certain elements of the flow system, particularly the in- 

jector orifices. The danger of operating near the critical flow rate corresponding to the 

An analysis based on this hypothesis has been advanced by Dr. L Crocco of Princeton 
University. 



appearance of a vena-contracta in the injector orifice was first pointed out to the author by 

W. B. Powell6  in 1942.    The remedy for this type of instability lies   clearly within the do- 

main of the hydraulic engineer.    The present theory is not concerned with such effects. 

ANALYSIS 

A schematic liquid propellant rocket system is shown in Figure 1.  It is assumed that the 

system is either a monopropellant type or, if a bipropellant or multipropellant system is under 

consideration, that the feed lines and injector orifices for the separate liquid reactants 

have identical hydraulic characteristics so that it behaves like a monopropellant system. Al- 

though it is possible to repeat the monopropellant analysis (below) ior the case of a multi- 

propellant system, the additional complication is hardly worth while until the basic ideas 

are confirmed by experimental checks. The physical principles and the resulting rules for 

overcoming instability will be qualitatively the same for the bipropellant case. 

At any instant during the oscillation, the rate of change of pressure in the combustion 

chambfer is governed by the difference between the rate of evolution of combustion gas and the 

rate of gas flow through the nozzle.6 In accordance with the fundamental hypotnesis of this 

theory, the rate of evolution of gas at a given instant is equal to the rate of flow of pro- 

pellant at an instant r seconds earlier. 

dPc  - ^c     A ^c ■^^P^ vj(t.T)-^pc (1) 

The effect of a changing chamber pressure on the flow of liquid propellant can be cal- 

culated by first setting up the general equation for the instantaneous flow rate with a 

specified difference between tank pressure and chamber pressure, and then differentiating 

this equation with respect to time. A convenient approach is to consider two control sur- 

faces normal to the flow direction, one of area A^  in the propellant tank upstream of the in- 

let to the feed line, and the other of area A9  at the exit of the injector orifice, and then 

equate the total energy (work plus kinetic energy) entering the first control surface in a 

time interval dt  to the energy leaving the second control surface plus the change of kinetic 

energy of the liquid contained between the two control surfaces plus the energy dissipated in 

the sane time interval. 

(MJVJ  +«p4lt»1
s;dt  = r/V^v, *%pA9vS)dt + 

d^Vjpi;,» +H49/,pv,»  +S4si,P*9
J) +- r^i,'  + fcsf,'  *kiva

t)dt 

6Jet Propulsion Laboratory, California Institute of Technology. 
Symbols employed in the analysis are explained on page 14. 



Carrying out the differentiation, replacing v1  and v3  by v2 through the continuity 

equation, the equation takes the following form: 

^-PeJ+W [r^l-^-A] zp^tL+l^ls^fH (2) 
L V  V   J     A*       A,    dt 

In practical designs,  — «     7-   •   ^ 7~    «  '*•  anc' 's T"   «    'a-    Hence, without 
At. Ao '«i As 

appreciable error,   these terms may be neglected.    The energy dissipations due to pipe-line 

friction,  valve losses,  and imperfect flow in the injector orifices are contained in the term 

K%pva
2. 

Differentiating equation (2) with respect to time,   the desired equation is: 

d'p,. A,2 dv.. cFv9 
-¥-+ P(-l* + K) v2 -1 + pl7 —L = 0. (3) 

Equations (1) and (3) can be combined to eliminate pc  and provide a single equation with 

a single dependent variable, v3. Thus, differentiate equation (1) to produce an equation 

containing the first and second derivative of pc.    The first derivative can be replaced by 

equation (3) ana on expression for the second derivative is obtainable by differentiating 

equation (3). Tue resulting equation for v7  is the following (dropping subscript "2" of 

vt,  and writing prime for the derivative with respect to time): 

i9v'" + ^kii ,- * (i4 # «y „v- + r-^V + Wf (4) 
C   L Aj Ag 

This non-linear differential equation can be linearized by the following argument. If 

the amplitude of oscillation Av is snail coapar*d with the equilibrium value of v (which is 

a plausible assumption in testing for instability), then ve  can replace v in equation (4). 

From equation (2): 

"e = ^ rr + V* (-^-P (5) 
^a P 

The same assumption that Av is snail compared with ve  makes it legitimate to throw out 

the (v')*  term in comparison with either the v' tern» or the v'  term. The latter comparison 

leads to tnis conclusion provided HT^c'L'  is identified as the maximum value of the fre- 

quency when conditions are near neutral stability. This identification appears later and 

provides a posteriori justification for this s ;proximation. 



Making the substitution, u - v', the differential equation becomes: 

u" + Au' + Bu + Cu(t.T) = 0 (6) 

In this equation: 

Ve     la     \c*Ly \l7m/ 
C 

'c 

To solve equation (6), it is assumed that the general solution can be represented in the 

form of a linear sum of particular solutions, each of these being a sinusoidal oscillation 

modified by a damping factor.7 

"-  „   "" un «fA.+ Hi)* (8) 

The successive values (X^, a^) are the roots of the characteristic equations obtained by 

inserting the above solution into equation (6), and grouping real and imaginary terms: 

Xa +AK+B - J +C e"^ cosfc*-; = 0 (9) 

2>&> +Aw- C e-^sinftor) = 0 (10) 

It is convenient to transform these equations by introducing new variables: 

(jr = e 

Kr =x 

AT=a (11) 

Br* = 6 

Cr* =c 

Equations (9) and (10) become 

!*  + ox + 6 - 0» ^ c e-* cos 6> = 0 (12) 

(2x + a) 6 - c e" sin 6 = 0 (13) 

7The methoo of solution employed here follows that of N. Minorsky for time lag 
problems. (Reference A). 



By plotting these equations in the x - 9 plane it is possible to locate all the inter- 

sections of (12) and (13), and thus, for any given values of A.B.C.T,  to determine the behav- 

ior of the system. Those solutions involving positive values of x  lead to instability; those 

solutions with negative x   represent disturbances that decay. It is the objective of the de- 

signer to select values of A,B,  and C such that all  the terms in (8) are damped (or at least 

the low frequency terms, since the high frequencies are generally suppressed by viscous dis- 

sipation). 

A plot of equations (12) and (13) would look like Figure 2 for arbitrary values of a, b, 

and c. Qhly the positive 6 half of the plane need be examined: both equations are invariant 

with respect to a change in the sign of 6.    Equation (12) yields two branches: the positive 

ate gradually converges upon the line x = 0; the negative one is a broken curve drifting off 

to nore negative values of x. Equation (13) describes a broken curve that converges upon the 

line x = - a/2. Examination of the three curves reveals that, in general, intersections can 

occur only a finite number of times, since the curves separate from each other at large values 

of 6,   This indicates that, for any given system, there is an upper limit to the frequencies 

that can occur, whether positively or negatively damped, and these can be calculated graphi- 

cally in the manner of Figure 2. 

Certain conditions can be derived for which solutions with positive values of x are im- 

possible. Thus, if a > c, the curve given by equation (13) would lie entirely in the nega- 

tive x half of the plane. Therefore, this inequality is a sufficient condition for stability. 

The inequality can be expressed in ten» of the appropriate design parameters by means of the 

defining equations (7) and (11) and the following relationships: 

^ = M ;V f j4 + A (14) 

The condition for stability then becooies: 

ti _ + LL fr>T (is) 

Another useful  form of this equation can be obtained by using the theoretical expreasion 

/(»Si.55 for i.l <y< 1.3 



By substitution in (15) the inequality takes the form: 

_i_ + 2.4—— >r (17) 

Although this inequality expresses merely a sufficient condition  for stability, it will 

appear in the following section, when the magnitudes of the terms are examined for typical 

cases, that the condition is sufficiently close to be useful as a design criterion. 

Another general condition for stability can be derived by combining equation (12) and 

(13) and examining the possible roots {6n, xn): 

e* + e7f(x) + g(x) =o 

f(x) = 7x7  + 2ax + Ca9-26; (18) 

g(x) = (x*  + ax + bf  - c' e"* 

The signs of f(x) and g(x) are of interest.    The term (a2-2b) can be evaluated in terns 

of the defining equations (7) and (11),  and it can be seen that it is inherently positive. 

Consequently,  in the positive x donfin where our attention is focused, f(x) is positive. 

Then, 0* can be positive only if g(x) is negative, and conversely, it is possible to elimi- 

nate real, positive values of &*, and hence of 6, by setting g(x) > 0 in the positive x 

domin.    This condition can be assured by setting 6 > c.    This inequality can be expressed 

in terns of the design parameters through equations (7) and (11), yielding the following con- 

dition for stability: 

tip 
— > 1 (19) 
Pc 

As in the case of equation (IS), this inequality represents merely a sufficient condition for 

stability. Clearly, stability is possible even if 2^p/pc is less than unity, by reference to 

equation (15). 

The frequencies of the oscillations can be evaluated in principle by solving equation 

(18) togetiter with either of equations  (12) or  (13).    However, consideration of equation (18) 

alone can indicate the nagpitude of the frequancy of the particular mode in series (8)  that 

makes its appearance as the stability conditions (15)  and (19) are gradually relaxed.    Thus, 

equation (18) being quadratic in (*,  it can be solved explicitly for Pcr,   the critically 

damped frequency: 

ecr=    i * « f(0) + *   /fW*'- tg<0) (20) 

If i' i« supposed that the conditions of critical damping occurs when (2Ap/pc)  is near to 

unity, then !>y setting (c-b)«!  and expanding the square root accordingly it can be sho«n that: 



^cr 2 ^ -. (21) 

mm 
As expected, a)cr -> 0 as ( ^ )cr-^ 1 

As a second case, it may be supposed that the condition of critical damping is reached 

fay relaxing condition (15), Then, c may be replaced by a in equation (20), and if it is fur- 

ther assumed that l^k/yA,  is of the same order as C' '- . ==£-, it can be shown that: 
' fiTc   PC 

ay or imm^ 
By comparison with condition (15), it is apparent that in this case ^cr is of the order of 

A third case of interest may be developed by assuming that r « &   'l. This assumption 

makes it possible to reconsider the basic differential equation (6). Thus, uft-r) can be ex- 
panded in a Taylor series: 

u(t-r) =u(t) - ru'ft; + ... (23) 

and the differential equation takes a «ell-known form: 

u* + (A-Gr) u' + (B+C) u = 0 (24) 

The condition for stability is that the coefficient (A-Or)  shall be positive; this pro- 

vides the same relation as equation (15), but in this case it is a necessary condition where- 

as (15) was merely a sufficient condition. The frequency in the critically damped situation 

is simply / ß + C which reduces exactly to equation (22). (This result requires careful ex- 

amination in each specific case, however, since / ß + C is often of the order of T'1.) 

By inserting typical design values in equations (20), (21), and (22), it may be concluded 

that frequencies greater than 200 cycles/second are unlikely. This supports the opinion ex- 

pressed in the Introduction, that this type of instability ("chugging") is a different phe- 

nomenon from the high frequency oscillations ("screaming") sometimes observed. 

It is of interest to observe that the monopropellant analysis of Peference (2) appears 

as a special case of this analysis. In equation (6) allow L*->0 : 



j— u' + rz: u + u.   . = o (25) 

This equation can be identified exactly with equation (5) of Reference (2). Being of lower 

order, the differential equation for this limiting case can be solved for the critical con- 

dition in simple closed form (in contrast to the system of equations (12), (13), (20) which 

do not yield so simple a solution); thus, it is unnecessary to resort to the relatively weaker 

sufficient conditions. The critical condition for stability then becomes: 

ia  m     77 - cos    (—JJ— ) 

— i—wrr>T (26) 

Pc 

This is equivalent to equation (13) of Reference (2). This stability condition is useful 

when«, "er (l^i/p^)  *■ mch  greater than (c*L*/BTc) (2^p/pc).    It has the advantage of per- 

mitting the use of smaller values of ('i2«/pcA2J than the weaker condition (15). 

DISCUSSION OF RESULTS 

Equations (15) and (19) lead to the following rules for overcoming instability in a liquid 

propellant rocket system: 

(a) Increase the pressure difference between supply tank and combustion chamber, 
either by reducing the area of the injector orifices or by inserting resis- 
tance elements in the feed lines. 

(b) Increase the volume or L* of the combustion chamber. 

(c) Increase the length of tubing from supply tank to combustion chamber. 

(d) Reduce the cross-sectional area of the propellant flow passages leading to 
the iniector (or increase the mass flow per unit area). 

(e) In a bipropellant system, instability may occur in only one of the two feed 
systems. Therefore, an important step in eliminating instability is to in- 
crease the value of the left side of equation (15) pertaining to the weaker 
of the two. 

(f) Reduce the combustion time lag of the propellant. This may require changing 
over to a more reactive propellant or adding catalytic or combustion-promot- 
ing substances. This may be outside the bounds of permissible changes, in 
practice. However, it is possible to change the configuration of the injec- 
tor (scmewhat empirically) or to preheat the propellants to accomplish the 
sane result. Che way to accelerate combustion of the propellant is to provide 
a flow pattern in the combustion chamber in which hot gases are recirculated 
vigorously to mix with the incoming propellant. 

10 



liiere is experimental evidence that some of these reconnendations are in the right direc- 

tion.    It has been reported that an increase in ^ or an increase in L* has been effective in 

certain instances in eliminating instability (Reference 1).    In the author's experience, 

switching from nitric, acid-gasoline to nitric acid-aniline in the identical rocket system re- 

moved the instability that had been encountered with the former,     (See the remarks in the 

Introduction above.)    In the case of nitroroethane, a redesign of the combustion chamber and 

relocation of the injectors so as to promote recirculation of hot gases and more prompt vapor- 

ization and   reaction of the injected liquid has been found to suppress instability. 

It is of interest to consider the numerical magnitudes of the terms in the stability 

equation (15) by inserting typical values of the parameters involved:    For example, consider 

a 5000 lb.  thrust rocket airplane installation: 

Length of tubing from tanks to motor = 5 feet 
Equivalent diameter of tubing = 2.5 inches 
Miss flow of propellent = 25lbs/sec. = .78 slugs/sec. 
Chamber pressure =     400 psia 
Tank pressure -     550 psia 
Characteristic velocity (c*) s 5,000 ft/sec. 
Gas constant R of chamber gas = 2,000 ft-lbs/slug 0R 
Adiabatic flame temperature = 5,500 0R 
Characteristic length of motor (L*) -      60 inches 

r     =    5* .78 +   5000* 5   300 =   QQ2 + ,002 = .004 sec. 
cr    40ÖK4.9     2000*5500 600 

In this case,  the system will be stable if the combustion time lag is less than 4 milli- 

seconds.    Ch the other hand,  if the same motor is installed in a similar system,  but with 30 

feet of tubing,  the tolerable limit for the time lag is increased to 14 milliseconds.    A pro- 

peliant combination and combustion chamber that chugs in the first installation might be 

stable in the latter. 

It is not unreasonable to expect the actual time lags of practical propellant systems to 

fall within this range.    Although the process of ignition is not quite like that of combustion, 

the observed ignition lag of self-igniting propellants may be expected to indicate an upper 

estimate of combustion time lags.    Observed ignition lags, under conditions similar to the in- 

jection process in a rocket motor,  are of the order of 5 to 30 milliseconds,  i.e.,   in the sen- 

sitive range.    (Reference 3,) 

An interesting interpretation of equation (15) can be developed by considering the overall 

combustion reaction.    The time lag T may be defined as the interval between the instant of 

entry of an elementary mass of liquid propellant and the later "instant" when this mass is 

converted to high temperature gas,  that is,  when it exerts its full effect upon a pressure 

gauge connected to the combustion chamber.    This time interval T includes the time required 

11 



(on the average) for the gasification of the elementary liquid mass and the time required for 

the gas phase reaction. The  gasification time is not calculable on simple grounds, particu- 

larly since the process of vaporization is always accompanied by gas phase or liquid phase 

reactions of unknown character. Hie gas phase reaction time, on the other hand, can be esti- 

mated (roughly) by equating it to the gas phase residence time in a combustion chamber of 

«iniMix volume, i.e., an empirically determined volume such that further reduction results in 

a serious loss in specific impulse. This residence time is given by: 

fV )  - L* ■    r* o r*I * 
T   % ; c-^min  =  min    = ^g mean      mm (27) 

u'Pg mean Pc'Pg mean  ^g min     c 

A reasonable assmption is that p   „gj^"" PR „jj-i then, 

T ~ t SIS. (28) 
«     Krc 

Denoting the time in the liquid phase as r^, equation (15) takes the following form as 

a condition for stability: 

-1— + —_ . —L > T, + SIQ (29) 
p^    BTC       pc      

l       Rrc 

Hie second term on the left side and the corresponding term on the right side are usually 

of the same order of magnitude, since, in practical designs, 2tip/p   is less than unity and L* 

is generally made greater than ^*in£n> There are sound reasons for such design practice (based 

upon considerations other than the control of chugging); therefore, the inequality becomes 

sensitive to the relative magnitudes of the term on the left describing the momentum of the 

liquid in the feed lines and the term T^ on the right. 

This comparison indicates that in the case of self-igniting propellants (e.g., nitric 

acid and hydrazine) chugging is less likely to occur than in the case of non-self-igniting 

propellants (e.g., nitric acid-kerosene) by virtue of the relatively small gasification time 

of the former. In fact, chugging may be impossible with certain self-igniting combinations 

even if I3 is very small, since the L*  term'may ensure the inequality. On  the other hand, 

care may be necessary in rockets burning less reactive liquids to provide sufficient momentum 

in the feed lines. 

Equation (15) indicates that, in the trend toward compact liquid rocket installations 

with short pipe lines, the appearance of instability will become more probable. Of the reme- 

dies available to the designer (listed above), those involving changes in the propellant feed 

12 



system are simpler than those involving changes in the configuration of the rocket motor. 

The pressure difference ^p may be increased by inserting flow restrictors in the lines, but 

this has the disadvantage of requiring a higher supply pressure. A more attractive alterna- 

tive is to increase the length or decrease the area of the feed lines: this would require a 

smaller increase in supply pressure to achieve the same degree of stability. 

In computing the magnitude of the momentum term, if the feed system consists of several 

passages in series that term in equation (15) becomes —x  ~' In such calculations, the 
Pc    i     Ai 

momentum of the liquid in the regenerative cooling passages should not be overlooked. In 

systems having centrifugal pumps instead of pressurized propellant tanks, the theory is di- 

rectly applicable, but the momentum term should include the suction lines as well as the high 

pressure lines. In the case of a system with positive displacement pumps, this theory would 

deny the possibility of unstable flow (unless a compressible air cavity or elastic tubing is 

present to permit flow oscillations). 

In systems with long feed lines it is possible that the effective length may be somewhat 

less than the measured length due to compressibility of the liquid, particularly if bubbles 

are present. A rough calculation indicates that the maximum effective length is of the order 

(m/Aspßpcoi),  where ß is the volume compressibility of the liquid. At 100 cycles/sec, this 

would be of the order of 10 to 20 feet for the usual steel tubing filled with air-free nitric 

acid.  (However, a more precise analysis including the role of the elasticity of the liquid 

should be carried out for such cases.) 

Caution is required in the application of these stability criteria to cases in which the 

linearization performed herein may be invalid. In addition to the mathematical linearization 

above, a physical linearization is tacitly assumed in the statement that T is a constant in- 

dependent of pressure. 

In conclusion, it is suggested that experiments be conducted to test the correctness of 

this theory, first, to determine the magnitude of the hypothetical time lag and its dependence 

on pressure, injector configuration, etc., and second, to determine whether equations (IS) 

and (19) are valid conditions for stability. 
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NOMENCLATURE 

Physical Quantities 

A cross-sectional area (normal to the flow direction) 

c* characteristic velocity of the propeilant 

K overall frictional pressure-loss coefficient 

I length of flow passage 

L* characteristic length of the rocket motor 

* mass flow (mean value) through the rocket system 

p pressure (absolute) 

Ap = Pi ' Pr = Pressure difference from tank to chamber 

R gas constant of combustion gas (based on unit mass) 

T temperature (absolute) 

v velocity of flow 

V volume of chamber 

ß volume compressibility of liquid 

A- damping factor of oscillation 

&> frequency of flow oscillation (radians/sec) 

p density of the liquid 

r combustion time lag 

Subscripts 

i refers to propeilant tank 

s refers to feed line 

a refers to injector orifice 

c refers to combustion chamber 

t refers to exhaust nozzle throat 

e refers to equilibrium value of v 

g refers to combustion gas 

Parameters 

A, B, C,  a,  b,  c, U,  u, x,  6 are employed in the analysis to simplify algebraic manip- 

ulation and are defined in the text. 
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