
■ o

ÄFOSR-TR- 8 2.0510 IP-
OBLIQUE STEPS TOWARD THE HUMAN-FACTORS ENGINEERING

OF INTERACTIVE COMPUTER SYSTEMS*

I
Raymond S. NickerBon

and

Richard W. Pew

00

<

20 July 1971

»et
\

^

m* HOüWW*

Q.
CD
CD

?^r2
£0e-?!C-i-SStn ^Trd«0^ 8»«. »»end^nt No. 6. Cod. VM..

. ire 0r.te£ul to Mario Grl,n.tti for hi. **** •—
^trrMt«. report.

82 06 28 18«)

A„r0VBa for public «1.,«»:

•(

m
iaKUMHIM

„CJST; ä srScgggg VHIS PAGE ^ p... gsiag
0

^FÖBRJ^JA^I-SICL

REPORT DOCUMEHTATION PAGE
T REPORT NUMBER

2 GOVT ACCESSION NO.

4. TITLE fand Subtitle)

OBLIQUE STEPS TOWARD THE HUMAN-FACTORS
ENGINEERING OF INTERACTIVE COMPUTER SYSTEMS

READ INSTRUCTIONS
RF.FORE COMPLETING VVK»

T RECIPIENT'S CATILOG NuMBtR

5 TYPE OF REPORT » PERIOD COVERED

INTERIM
1 6. PERFORMING ORG, REPORT N.MBER

7 AUTHORS»;

RAYMOND S. NICKERSON

RICHARD W. PEW

9 pERFORMmG ORGANIZATION NAMIL AND ADDRESS

BOLT BEPANEK AND NEWMAN
CAMBRIDGE, MA.

I! CONTRACT OR GRANT NUMBER'

F44620-71-C-00b5

"10 PROGRAM ELEMENT PROJbLr, TASK
AREA ft *ORK UNIT NUMBERS

rrT^r^ToTI^r^F.CE NAME AND ADDRESS

AFOSR/NL
BUILDING 410

HiOLLING AFB. DC 20332
1

61102F 1993/04

Tr=SiSS^^^^

)2 REPORT DATE

JULY 1971
\3 NUMBER OF PAGE?

35
IS. SECURITY CLASS, (ol tht. rer "'

UNCLASSIFIED
-^"DECL EHPnfÄTTÖiTÖÖii ÖÄÄDIMO

SCHEDULE

Te-ÖTiTR.BuTioN iTlreilST1 <o, mi, Kw*}

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEM
 — ; . ,_ „ir,,!, in II dlllmttnt Irom Report;
TEMENT (ol the mh,lrmcl entered In Bloc» 20, s

7B SUPPLEMENTARY NOTES

19 KEV WORDS fContlnui
_ " ,,rf. M neee.eery «nd Idtn'lly by block number) e on reverse «Ide It neeeeeerj- «.■"

_______ ■ r.irf. If nece.eary end Identtty by black number;

to ,1, ,ign 't 8 -ral-purpo'e, interactive co«p„ter systems that are .an.,
to tru at sign yi K r r rpflder is warned that it is informal,
to be used by "ollPro8ra77b- Jh^f L to "entify some specific problems, Hiqcursive and opinionated. The intent is to »«wv«*.; r

specialists along these lines. ^^

__ FORM ■•«J EDITION OF I NOV 65 IS OBSOLETE
DO t JAN 73 '**•

UNCLASSIFIiiD

C ATION 6W TMI '

i*tm

•

Abstract

This paper presents a potpourri of human-factors

considerations pertaining to the design of general-

purpose, interactive computer systems that are meant

to be used by nonprogrammers. The reader is warned

that it is informal, discursive and opinionated.

The intent is to identify some specific problems, to

offer tentative solutions to a few of them, and, most

importantly, to stimulate more thinking on the part
of both system designers and human-factors specxaUsts

along these lines.

,

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
iNlOriGE OF TRAKiSMTTTAI TO DTI C
This technical report has bsen reviewed and is
approved for public release IAW AFR 190-12.
Distribution is unlimited.
MATTHEW J. KE3rER
Chief, Technical Infomation Division

/ -

*

The utility of an on-line, interactive, coinputational

facility that is to be used by nonprogra^ners will depend on
1 ("what capabilities the systen provides, and (2) how acces-

5ible they are to the user. A »oi"tiS\f0V^t'UHely
interested in getting on with his research and i. not Ukely

to be enthusiastic about investing nuch time and •«•"J»
acquiring skills that do not have an obvious payoff in ten»

o£ his own research goals. There is nothing to ^gained by
providing hi. with a sophisticated system that will *> »any
Crossivo things, none of which he is particularly rnterested

in"having done. Nor is there any advantage rn ^"'.^ '
.y.tl Lt will do so« of the things he would like it to do
Tut is prohibitively difficult to use. But what are the char-
acteristics and capabilities that a general purpose, on-Une

interactive facility should have7 And how does one go about

i„ple,nenting the» in any particular functional system

The second of these questions clearly is a technical one.

or, .ore accurately, it spawns a host of problems «^ ^
be answered in terms of programming or eng.neerxng techniques

The first question, however, is one of human needs and prefer
ence . This being so, it might appear that the answer would be

lost readily obtained by asking the prospective «« «^ he

Leds or wants, «e think it is not likely to "- « "J e «.
that. A realistic appreciation of the features that an inter

«tive system should have is most likely to be obtained as a

result of first-hand experience with working systems.

The remarks in this paper are indeed "»ed Urgely on

£irst-hand expedience with a small nu^er of existing inter-

active systems and a second-hand (reading) acquaint»» with

::,,\ . ,,-■.■:.J WMBOTIIH hi M

■ ■

. few others. The treatment of the subject is discursive and
L fmai. No attest has heen »ade to formalise a set o de x.h

criteria or even to nap an approach that »i,ht be taken to do
so Horeovor, we make no clai*. to exhaustiveness in ^ en^-
Trltion of de^^ considerations. Our intent is si** to iden-

tify what appear to us to be .0** of the features that an inter-
active system should have if it is to be generally useful to
active syai. (.»«,-at lie outside the domain
individuals whose main areas of interest "e ou^
of computer technology itself. Many of the desrgn *»"»"
„cosZndcd below are incorporated in one or more ""^ S/S

terns, although, to our Knowledge, no single system "corporates

then all. Some of the features that will be noted «ill appear
To obviously desirable as to preclude the necessity of even be-

ing mentioned. However, that it is painfully easy to overlook
th't is obvious to hindsight is attested by the fact that opera-
till systems exist in which some of the most clearly desrrable

features are irdssing.

It will be evident that «e focus primarily on ^eral-
puroose, scisntifically-oriented^nd, in partrcular, **-™»
usfstels (Baker, 1«.,. «e hope, however, that ^ reader «ho
1. ^re concerned with special-purpose, protlem-onented, sys

t ^!lrerervatIon systems, cost-control systems, medical systems,

! "ructional systeL-*ill ti** some of the discussion germane
to"i -a of interest. The need for effective user-oriente.

design is especially great in such special-purpose ^sterns

Ja Lch as the user is apt to see hi»self « r«^~.^
noved from programing and other computer-related actrvrtxes

than is the user of a general-purpose systen.

The recomendations that «e U« constitute a very "nixed

bag.- They involve various aspects of interactive systems-

2

languages, facilities, services, dynamics. (We have not paid

Tl attention to the design of user terminals, a topic which is
perhaps closer to conventional human engineering than are those ^

' Lch we do discuss. For discussions of some of the -™--~

problems encountered in the design of keyboard termnals •"«"*«•
«67 and Dolotta, 1970. A more comprehensive drscussron of human- _

factors considerations as «Aey pertain to computer rnput and out-

put devices is contained in Sha<*el «d Shipley, 1970.) We have

„adc no attempt to categorise our recommendations in eny way,

f cling that to do so would take us beyond the limited ebjoctiv..

If this Paper, and perhaps create the impression of a more system-

atic trLLnt of the sublet than is intended. The recommenda-

tions vary greatly in scope and specificity: general desrgn prrn-

c pi sTre thrown in with -little tricks for making life easier

for the user." They are offered quite frankly as "P^s ^
„o effort is made to justify them with experimental data, or

otherwise. If they stimulate further thought .5 ng these Unes,

or even the expression of opposing views, they v 1 have served a

useful function.

 aiaai Assuni M la maSaBS* mi

Efficient interaction «it*, the system should not ^ depef-
, . ~r »ithar the internal structure or the de- ent on a knowledge of ex^er the U ^ ^^ ^^

.ails of operation o^*« the y ^^ ^ ^ ^ ^ ^
The user should be free to QO «* There should

,.. v vÄ ^A the computer converse. There snouxu
rUa9%:TorTirto be el rn^with the «ay in which his

n0 m it represltL wUhin the machine, uniess of course it
rsTm^ratirr-m that his program run at maximum efficrency,

which usually will not be tha case.

«**--■---"

:.r.r.r;.: z::,....... rr». .•---r
^♦.h « tutor or a manual, ana can expe^

fe„ --^-^^ «.. .eedbacK prcviaea by the systen
to use xt efficiently be designea in

iteelf. msofar as P«"^!^^ power£ul approaches to
such a way that the ^ ^^ ^ Puser in the process of
prohlcs are readi y «^^ ; ^ system shouia have a
interactin, with ^. Th' ^ faciutate the acqui-
bullt-ln teaching capability oesis gUalify a user
sition of that HnowXeage ana those .kills that gu

as an expert,

le it would be helpful to the novice user to be
For *™*le'1\™Zter to giVe him examples of types of

able to request the computer to gi iearned.
*«Y-mj*t he has forgotten, or not jc»-

statements whose format he has g xanguage al-

To iUustrate: a beginner -*ht "f1^ into an appro-

Xow. "if" statements, but may ^ be ' 't he wishes to write.

—r::: ^r.rrr«n.i - a -teach-
He wouia then liKe TO " i,i».t-.fcl»a -if- statements—

^ i, <» to aive him some illustrative
«0«, ana ask " to ^ ,. ^ computer couia there-
perhaps by simply «^ "^ ^^„ts in an oraer of In-

reLCr-rrtil it haa eithe. satis- the^or
exhaustea -; -X — : -whrrm L. to time neeas
ZZulTs Try regaling allowable statement formats.

. <« to build format information into the
^T^tfc: - ^l". -mat error might elicit a

error diagnostics. ««*

■

remark from the computer such as "The correct format is:" fol-

lowed by an example of a correctly formatted statement repre-

sentative of the type that the diagnostic program thinks the

user was attempting to write. The objection to this procedure

is that, if an experienced user is at the console, the lengthy

output may be not only unnecessary but even bothersome. He may

know exactly what his error is the moment it is pointed out to

him that an error has been made. It would be in keeping with the

policy of eliminating noninformative computer-to-user messages

(see below) to provide the user with illustrative statements

and detailed error diagnostics only in response to an explicit

request.

Prompting can be another useful teaching technique and

memory aid. To log in to the TENEX system,* for example, the

user must type, in order and with appropriate terminators, the

word "LOGIU," his nairu . a "password" and a job number (the latter

for billing purposes). The experienced user does this more or

less automatically; however, the novice or infrequent user can

easily violate the format requirements, enter items in the

wrong order, or forget to enter an item altogether. TENEX facil-

itates entry by identifying each of the components of the log-

in procedure (except the first). The user need remember simply

to type "LOGIN," followed by a special terminating symbol (the

"escape" key on the teletype in this case). The computer will

*TENEX is a time-sharing system implemented on a DEC PDP-10
Jl««*** at Dolt Beranek and Newman Inc. Several of our ex-
amples are drain from this system, in part because we happen
ampies are utaw« because consideraole at-
tenUonTas'givei to'hu^n fac?ors problems by its designers,
Po? descriptions of the system, see Myer and Barnaby (1971)
and Burchfiel and Leavitt (1971).

'

. ... f,. ..■ .-■ II

then type "(USER)" and wait for the user to type hi. "^' "h«e-
TZ it will type .(»ASSMOBI»-. ana so on. The experxenced user
can su^ss Zs pronpting simply by using a different temina-

ting symbol.

Updating information

The need to train the neophyte is one requirement that oc-

curs to everyone. A less obvious trainin, requirement concerns

Z1ZZ5 education of the experienced but «^ «^
« c-a*-ic New procedures and upgraaea

Few interactive systens are static, new pro
versions of old procedures appear regularly. The chronic user

To is on the system much of the time will »"^ ^«^
cradually as they occur. The infrequent user »ill find xt much

during a period of a few weeks or months that he has not

the system.

„ • •, w this kind of training is provided by announcements TypxcaUy thxs kxnd ^^^ ^ ^^^ ana

„aae at sxgn-on ^J« ^^ be reaa at ^ convenience. A

a memo to users »ay be "suea " COOTluniCation about system

r— —tinr^v^ re r h...
it Whenever he attests to execute the old ««•• ^'/"^^
is rather like that used to correct for the dxalxng of an out
cf-Lte phone nu^er: the operator interrupts and P-vxdes the

„!w nu^er. ^en new procedures are introduced that ***™*

ather than replace others, use of the basic "-»' «^ ^
forth a description of the supplemental procedure prior to exe
iortn a aesci. y „ . ^k ,(r.t *!,,.• or four times the user
cution of the command for th= first tnree

6

applies it. The important point is that the critical dimension

relating to the nee'1 for prompting the user's memory is not the

time since the system change was made but the number of times

that particular user has already been reminded of that change,

and perhaps the recency of the last reminder. Such a procedure

implies a bookkeeping burden for the executive program, but one

that could be easily managed in a good system.

One simple expedient for getting updating information to

users who need it, without forcing it on those who do not, would

be to have the computer type the date (or perhaps the number)

of the last change in the system, whenever anyone logs in. If

the user is already aware of the change, he will simply proceed

with the work session; if not, he can ask for a report. Follow-

ing the typing of the report the computer would then give the

date of the next-to-last change, and again, the user can decide

whether he needs, or wants, to know about it. And so on.

Cor,r>uter-to-User Messages

Computer-to-user messages should be designed to accommodate

users representing all degrees of familiarity with the system.

There are two types of computer-to-user messages that may occur

in an interactive session: (a) those which the user intentionally

elicits, either by requesting some specific outputs (program

listings, valuek of variables, etc), or by inserting messages

of his own composition into the body-of his program, and (b)

those that are preprogrammed into the basic system. We shall be

concerned here only with the latter".

The purpose of such messages is to convey to the user some

information that will facilitate his further progress with his

-.•s
•

. __..__^ ^__ —.—. 1 —— • —

Ä;

program. Most commonly, they take the form of requests for

specific inputs, of information concerning the state of the

system, or of error diagnostics. In the latter case, an indi-

cation that an error has been made may or may not be accom-

panied by some information concerning the probable nature of

the error. The problem is that of designing a message set and

rules for message generation that satisfy the needs of users

who represent every possible level of expertness in their in-

teraction with the system. Novices will require lengthy mes-

sages which arc completely self-explanatory? experts will prefer

coded outputs which are as brief as they can possibly be made.

Ideally, for the novice, every message should be meaningful

the first time it is encountered. Satisfying this desideratum

is in keeping with the objective of minimizing the amount of

training a beginner must have before interacting directly with

the system. It means, however, that messages should be written

in a natural language (e.g., English) in whatever detail and

with whatever degree of redundancy are necessary to ensure that

they will be readily understood. Detail and redundancies that

are helpful to a user who is learning the system will become

sources of irritation, however, as he acquires skill. (One

of the most reliable marks of the experienced user or an on-

line system is his tendency to be exasperated by any delays

which he perceives to be unnecessary. Given the opportunity,

he would invariably replace lengthy messages with the briefest

possible codes.') Even for experienced users, however, it is

imperative that the computer do Bom«thing whenever it receives

a command that it cannot interpret. This is essential if one

is to avoid the situation in which the computer is waiting for

the user to input something interpretable, while the user is

waiting for the computer to operate on what he assumes was an

interpretable input.

Several possibilities suggest themselves for coping with

the problem of conflicting desiderata of novices and experts

concerning the form and content of computer-to-user messages.

!. TWO separate programs. One possibility is to keep on

hand two entirely independent systems which differ primarily,

or only, with respect to the computer-to-user messages they gen-

erate. In m» case, the messages, being complete and, hope-
fully, self-explanatory, are designed for the novice, the oc-

casional user, and the visiting observer. In the other case,

the messages are greatly abbreviated and intelligible only to

the programmer or the user who has had considerable experience

with the system.

2. one program, two message sets. It is, of course, over-

simplifying things considerably to recognize only two types

of users: novices and experts. It is more realistic to recog-

nize that users represent a full spectrum of expertness. Any

particular user masters a system only slowly over a long period

of time. Moreover, different users, because of their own par-

ticular needs, may acquire skill with some aspects of a system

while remaining relatively unskilled with respect to others.

It may be advantageous, then, to allow the user himself to de-

cide when he wishes to be treated as a novice, and when he wishes

to attempt to play the expert. A simple way to provide this

option is to include two complete message sets in the system,

and to allow the user to switch at will between one and the

other. Presumably, given such an option, the amount of time the

user spends in ^e novice mode will decrease fairly regularly

as he gains experience with the system.

m mgmm
•

-

3 -Ygäh, Y""- ÜaSSk' A third pos.ibUity is to provide

the user with the means of cuttins short . conputer-to-aser

«ssa^e vhiie it is bein«, typed out. For this epproech to be
Tffeotive, « user should be able to terninete any TOe.sage by

prlsstn, 1 .in9U .e,. at «y Urn during the .essag. typeout.
ZTZ capabiiity, the user need attend to the tyP-t o^

so long as it is informative. How nuoh of e message he «ill
Zn'Z see will depend, of course, on his familiarity with the

astern, -»resum^ly, one's »se of the interrupt »P"»" "" be-
ccmo more freguent and more rapid as his experience with the

system increases.

4 Two^rt messages. A fourth possible approach is to

(., .tor. each computer-to-user besage in two forms— concxse

demonic code and . complete «"-«^-^'f6^^ ^^
always output the coded form of the message first, and (c) out
ZL self-explanatory statement only if tbe user regues

It, say, by responding to the coded ^^J^^^
tages of this approach are several. First, the s g

th! same mode of operation are ^X^a: 1 blew en'desired,
ond. although decoded messages are always avail
the user never receives a lengthy message unless he specifxcaliy

Z it Third, the procedure facilitate, the acquisxtxon

unnecessary. |

A co^ination of (4) and (3) would provide a particularly

accommodating facility.

10

■fi

String Recognition

The capability for the computer to perform recognition on

a partially complete character string effectively combines the

principles of concise computer-to-user messages, prompting, and

efficient training procedures. The string recognition proce-

dure that is implemented in the TENEX system works in the follow-

ing way. Whenever the user thinks that he has typed enough of

a command string or file designator so that the intended command

or file is uniquely specified, he may terminate the partially
completed string with one of several terminators. With one term-

inator the computer either completes the typing of the designated

string and waits for the next entry or parameter, or, if it can-

not identify uniquely the string that has been terminated pre-

maturely, it rings the terminal bell and awaits further input

to complete the string. In a second termination mode the sys-

tem accepts the abbreviation as it stands and either executes

^he command directly, or, if it cannot recognize the command or

make a unique selection, it prints a "?" and aborts. In an

earlier version of this recognition feature the computer took

over for the user as soon as it had received sufficient charac-

ters and completed the string automatically. Given this pro-

cedure the user finds it easy to type accidently more than the

requisite number of characters before the computer has time to

take control, phe result may be the typing of a few stray char-

acters at the end of the command that at best are misleading

and at worst confound the beginning of the next input. The

string-recognition feature, as currently implemented in TENEX,

is especially convenient if it can be applied to terms defined .

by the user himself as well as to system-defined commands.

11

Default Values and Conditions

I

Often in interpertson conversations, information is ex-

changed by default. If one mentions Paris, for example, it is

likely to be assumed that he is referring to Paris, France;

had he meant Paris, Maine, he would have been expected to say

Paris, Maine. Similarly, in the case of man-computer inter-
action it is sometimes possible to assume what unstated values

of program parameters should be, and to assign them by default

whenever the user does not explicitly indicate otherwise. De-

fault conditions make it possible to build into the system

considerable sophistication that can be exploited by the user

as far as he wishes, or to the degree consistent with his level

of training. As an example consider the file designation pro-

cedure used by the TliNEX system. A complete file designator

consists of five parts, and might look as follows:

ALPHA. F4; 3; A12345; P7752JJ2

Part I (ALPHA in our example) is the file name assigned by

the user. The system will recognize an abbreviation (first

few letters) of the name so long as no other file name would be

abbreviated the same way. Part II (F4) is the file extension,

which tells the system what kind of file is involved. It is

also subject to the automatic recognition procedure. Part III

(3) is the version number. When creating a new file the default

value of the version number is one. When creating a new ver-

sion of an old file the default value is one greater than the

last number used with that file name and extension. When delet-

ing a file the earliest version number is assumed unless the

user explicitly specifies a higher one. Part IV (A12345) is the

account number to which page charges will be assigned. If the

„su^cd that .n, other user ney read »« '"•»»* ^ ^ £or
ator of the file nay «rite into it or delete it. «ote t

, i ,„=.r Parts I. II and ooeasionally Part III are suf
\^::IZZ^ mes and it is tHa exoeption that re-

quires further specification.

X„ so.« cases in which it is not clear in ^.nce what the
H t default value is, it night be appropriate to sanple user
best de£aUl' V''" t'statistic8 0„ the nost frequently used opinion or to collect stat! ^ ^ u ^

value in order to ^^"^ ^^ he defaulted. the

portent for the ««"^^Laulted value. It is i-
„achine should pronpt hxn w^th ^ ^ ^ hig exten8ion

portant for •^^J1*^ and protection infomation
and version number, out tne aw
are not displayed unless specifically requested.

ggograa Cornpc—^ Tc^ntification

There should be a straightforward way of ^^T*
/ f ^ntifving its coraponents. Perhaps the most

program and of identifying i« r . .a ^.a. of a heir-
o« structure in conventional programming is that of a ne

CT oroarZ subprograms, routines, subroutines, etc.
archy: programs, sub^ 9 thi8 will be equally true
There is every reason to expect ***
«f interactive programming; hence, there is neea xor
of interactive ^ i» fc- 4- aUch a way as to make it

13

■iümiiwixr-
..<v. tn h•■

Several of the current JOSS-like systems provide for a

two-level organization of a program in "parts" and "steps."

The convention is to identify steps with decimal numbers, the

integer part of the number designating the part to which the

step belongs. Reference can then be made to, and operations

performed upon, either individual steps or parts as wholes.

Thus, for example, the command "DELETE PART 3" would, in effect,

delete steps 3.1, 3.12, 3.2 and any other =teps identified with

a number whose integer part is 3. The restriction of two levels

imposed by this scheme might not be a serious limitation for the

casual user of a system; however, it probably does represent an

unnecessary constraint for the more experienced user. Moreover,

it is a limitation that is removed by simply making the con-

vention that when a command can appropriately reference more

than a single step (e.g., DELETE, TYPE, DO), the command will

be understood to refer to all steps whose most significant dxgits

correspond to the number in the command statement. Hence, the

command "TYPE PART .1324" would cause the typing of steps .13241,

.13242, .132431, and any other step whose number began with .1324.

If the user wished to refer to a single step, he would, of course,

hav* to use enough digits to identify that step uniquely. For

example, assuming that his program contained each of the above

step nu^ers, in order to have the single step .1324 typed, he

would have to say "TYPE .1324JJ.-

List-proce'ssing languages such as IPL and LISP are not or-

ganized in terms of nunfcered steps, so this convention does not

apply, m LISP, program components are "symbolic expressions,

each of which is comprised of a function and its arguments

The arguments of a function may be functions in turn, so that

these programs also have a hierarchical structure. Expressions

■

14

mm

or subexpressions may be identified via the appropriate function

names. List-processing languages are less likely to be of concern

to the nonprograromer computer user than are the JOSS-like lan-

guages—at least in the near future—so they are given little

attention here.

Editing Capabilities

The system should provide flexible editing and error-cor-

recting capabilities. It is convenient to make a distinction

between two broad classes of editing and error-correcting opera-

tions: those which may be performed on a program component or

step as it is being composed, or local operations, and those

which may be performed on steps which have already been inserted

into the program, or remote operations.

There are two local operations which, from the user's point

of view, are needed: one to delete the last character typed,

and one to delete the entire step or program component currently

being entered. Each of these should be executed by striking a

single-control character. The operation deleting the last char-

acter should be iterative, allowing the user to delete the last

n characters typed. In the case of teletype or typewriter input

it should not be possible, with this operation, to delete ele-

ments past the firti character of the current line or program

component because it becomes very difficult to keep track of ex-

actly what was deleted. This restriction is not important in

the case of a CRT terminal where the consequences of deletion

can be portrayed literally to the user; i.e., the deleted char-

acters actually can be made to disappear and new ones to appear

in their places.!

When text is bein9 displayed on a CRT as it is being typed,

a cursor or underscore should be used to show the location of

the next character to be typed. This is especially helpful when

nonprinting characters (spaces, tabs, carriage returns) are be-

ing used in formatting tables, labeling graph axes, etc.). A

further convenience to the user would be an alternate »ode of

display in which nonprinting characters are explicitly repre-

sented by special syinbols.

A flashing cursor can be helpful when backspacing over dis-

played characters for erasure or editing. Rule, have the cursor

flash whenever it is pointing to the location of a character

that has just been deleted from memory. Again this would be

particularly useful in the case of nonprinting characters.

There are four remote editing operations that are essential

to an on-line system. They are the operations of deletion, re-

placement, insertion, and revision. The operand may be a varx-

Lu. a step or other program component. Given a step-nut^er.ng

scheme such as that described above, the remote operations of
rteHeletion and insertion are self-evident. One edvantage of

such a scheme is that it obviates the renumbering followxng the

deletion or addition of steps. For example, given a program
aele ,, ,, is. and .14, deletion of step .12
comprised of steps .11, .12. •"' ana * •
and insertion of two additional steps between .13 and .14 would

not necessitate'renu^er ig any of the original steps that are

«taLed, even though «u Ir dinal positions in the program

I" L; changed. The steps of the program following the in-

dicated changes might be numbered .11. .13, .131, .132, and .14.

Step r'placeLnt' would be accomplished by simply writing a new

step Ind assigning it an old number, the system being designed

16

 ™_

so that whenever a step is given the same number as that of a

previously entered step, the original step is replaced by the

new one.

The delete operation «m of course cause grief when supplied

with an erroneous argument. An easy way to guard against this

event is to force the user to think twice about any such cor^nand.

In PROPHET icastle»an, s« .1.. 1970), a CPT-oriented chemical/

biological inforsation-handling system, the effect of a delete

co-and is to have the to-be-deleted element blink on the display.

The user then must verify that the blinking element is in fact

the one that he wishes to delete.

A system that allows only the three remote operations of

deletion, replacement, and insertion would be reasonably ade-

quate for many applications, however, to be truly efficient, it

Ihould include, in addition, a capability for revisxng steps or

other program components without completely retyping them. In

mfny instances the user will want to change only those portions

of a step that are in error, while retaining those P«"ons

that are correct. It is an inconvenience, for example, to have

to retype a lengthy and involved algebraic ^"-"Y* """*
a single erroneous character. The need here is for deletion,

eriace-nt, and insertion operations which can be Performed»

.Lent, within a step. The more sophisticated systems provide

editing ccmnandi for searching program components for P«trcular

characters or character strings, and for performing delete, re-

Tlace cr insert operations relative to the result of the search.

in addition to providing these component editing capabilities

it is also important not to place artificial constraints on the

17

- r . f

ways in which they may be used. It should be permissible to

intermix freely editing commands and to make up strings of

commands to be executed as a unit. For example, to change

N-N+l to N-N+2, one might want to write an editing procedure

that would search for the string N-N+, delete the next character

in the line and insert 2 in its place. In the TENEX version of

TECO, which is a language used primarily for the purpose of ed-

iting, this is accomplished by typing the string

SN=N+$DI2$$

where the S, D and I indicate search, delete and insert, re-

spectively. The first and second dollar signs terminate the

seal and insertion strings,, and the third executes the string

of editing instructions.

A ccronon practice in algebraic interactive languages is

to reject an input string if the computer detects a ^actic
error and to infer, the user of «hy the input «as unacceptable,

„e reco^end instead that the aberrant «"ing be retarned in

the buffer and the computer automatically shifted into an edg-

ing mode so that the user may choose to delete the entire

string or, if possible, to correct it by changing one or two

eronLus characters. It is »ore than »ildly ^"at.ng *>
Iplete the typing of a co^lex algebraic expression only to

find that it must be co^letely reentered i» order to add one

forgotten right parenthesis.

Direct and Tr^rAct Commands

The system should allow both direct and indirect comands.

18

By direct command is meant a command that is to be executed

immediately; an indirect command is one that is to comprise

a component of a program, and that will be executed in the

course of the execution of the program to which it belongs.

The direct-command capability allows the computer to be used

as a powerful desk calculator for such purposes as evaluating

mathematical expressions, generating tables, and plotting

functions on a one-shot basis. It also serves as an important

tool for debugging and editing active programs. Indirect

commands provide for the construction of programs. Virtually

all conversational languages include both direct and indirect

commands. In some cases, however, direct commands comprise

a minimum set (DO, RUN, EXECUTE), in which case in order to

use the computer as a desk calculator one must enter an indi-

rect command and then execute it as a program.

Arbitrary Starting Point

The user should be able to start or restart his program

at any point. In particular, after fixing an error that has

caused a running program to halt, he should be able to restart

the program at the point at which it stopped.

Variable Names

In composing programs, the user should be free to assign

names to variables in a way most consistent with his own mne-

monic conventions. Ideally, he should be allowed to call vari-

ables anything he wants; in practice, other considerations may

place a limit on the number or types of characters a name may

be allowed to contain. If a limit must be imposed, five or six

characters per nanc would prcbably be adequate for «•» "^

three characters per oa-ne is perhaps tolerable, . "»9le <*"-
«ter imitation (even with subscripting) is a definite handicap.

Lanouaoe Mo-Hflcatlon anri Abbreviations

A *eans should be provided for the user to »odify the lan-

gua5e and redefine t*m. For exan^le, an individual ^ii^.
hinLlf »sing a small set of ccmands very frequently n^ht find

it c Lica! to replace each of these elands with a single-

character abbreviation. Insofar as possible, he should be

allowed to establish equivalences of this sort.

One should also be able to define and use abbreviations

for su h things as variable names. For example, ~ tho
! • i/Ki„laical information-handling program mentioned

rr^tt^ iv. • variable such a name as ^CU^
fo2JoT ASPI«.," and then define and use an abbreviation

such as "MA" (Castleman, et al., 1970).

The user should not, of course, be allowed to toaKe language

changes that will affect other users in any way.

a^rr-Ass Arithmetic

Languages for which a step is the basic program component

,e a JOSS-like languages) should permit the changing of step

Iu::;;s for ny specified program segment with a single command,
nu-bers tor any i -CHANGE STEPS .21 to .46" might be .
For example, a command like vmm » .«, «% ** «ew
used to replace all the step numbers beginning with .21 to new
used to repxac leavina the less significant digits
numbers beginning wxth .46, leaving w«

unchanged.

20

Algebraic Expressiops as Inputs

The systen, .houW «ccept .nd correctly interpret «.y ev.l-

«tabU .lU"le expression in eny case in which a number s

Tn a^issihle input. ** a simple hut important exa.p , one

.hould he ahie to input fractions as f™"»"'*? "^

accu cy, -e .ill. in 9eneral. have to type ••-^t~"t
0h^

r/cir n^rmri::: a ^ ^ r 0^« r ^
mu »Ki-J4tv to input fractions directly is a partiw

TZJZ.T*. uTer 1 is .ealin, extensively with proh-

abilities.

T^ntificatic- gg t>^riSion Limits

fied bv the computational accuracy of its nun« fieö by rne ^ agsure only cen blts
cedures. For example, if the ^^ out t

of accuracy in its number representation, it s^^fl

.\ ~~ *.v,an three significant (decimal) digits.

precisional Usdts of *e ^" ' rlOTber, ,0 th.t the
forward way to represent arhitrarily ^T
accuracy limitation is ohvious. One possibility

21

KMSMMWi

all numbers in scientific notation with the fractional part

being limited to the number of digits implied by the precisional

capabilities of the system. Another possibility is the use of

filler symbols. For example, given a limitation of three deci-

mal digits of accuracy, the number 365,741 might be represented

as 366,xxx. It should not be represented as 366,iW, since in

this case the limitation is not obvious. The system should

round the output to the least significant digit; it should not

truncate.. In short, when a user receives a number from the com-

puter, he should be able to assume that it is exactly the number

that he would have obtained had the computation been done by

hand, and rounded off to the same number of significant digits.

Formatting Options

The system should provide formatting options specifically

designed to assist the user in making his program easy to read.

Extra spaces and carriage returns should be freely allowed and

should be preserved in storage at the level of the symbolic

program. In scientific programming, one frequently wishes to

construct algebraic statements involving several depths of

nested parentheses. Parenthesizing errors are very easy to make,

and can be frustratingly difficult to find. It would be a help

to have several, say three, different characters, e.g., (, [, i,
for formatting algebraic statements. These characters could be

equivalant as far as the program interpreter is concerned, but

the distinction should be maintained at the' level of the conver-

sational program. Such a feature would facilitate the construc-

tion of complex algebraic statements and would simplify the pro-

cess of finding errors when they occur. It would be particular-

ly helpful if the different parenthesizing symbols were differ-

ent sizes.

22

Another useful formatting convention, easily implemented

with a typewriter as the I/O device is that of color-coding the

dialogue, printing user-generated text in one color and computer-

generated text in another (Baker, 1966).

Procedure Definition

There should be a straightforward means of defining and

storing generalised progran, components and retrieving them for

incorporation as elements in programs or higher-order compo-

nents. Having once written a particular generalized program

component (procedure, function, macro, subroutine), one should

not have to write the same component again. Heavy users of an

interactive syster, are likely to be developing many P"*»"
having common components. The prospect of developing a library

of program components especially tailored to one's own needs is

perhaps one of the most compelling enticements that a computer

system can offer to a prospective user.

Procedure Library

The system should maintain a central public library of

programs and procedures that are available to all users. The

library should be designed to expand as users generate new pro-

grams of general interest. Every user should have read-only

access to the iibrary on a continuous basis. He should not,

however, be able to enter programs directly into the Ubrary.

One possible scheme for allowing a user to contribute to toe

library would be to have him deliver a program to a temporary

file which is periodically examined by the system supervisor or

librarian for the purpose of updating the library file.

23

Compilation Capability

A system designed specifically for scientific and engineer-

ing applications probably should have a compilation capability.

The interpreter should be used for exploratory programming; how-

ever, when a program is to be used frequently for production runs

it should be compiled. This is especially true when compilation

results in noticeably shorter system response times. It is essen-

tial, however, that such a compiler accept as input the program

as it was written for the interpreter.

File Storage

In cases where lengthy work sessions are anticipated, it

should be possible for the user, when terminating a session with

work unEinished, to leave the system in such a state that, upon

reentering it at a later time, he will be able to resume his work

exactly where he left off. This mean? providing the user with

the capability to store his virtual core in a long-term storage

medium such as magnetic tape or disc, and to retrieve it upon

reentering the system. The user should also be able to maintain

files of his own subroutines, programs and data sets.

Short Interruptions

i
In addition to the capability for the resumption of work

after indefinite periods, there should be a simple procedure for

allowing brief interruptions in a work session. It frequently

happens in the course of an on-line session that the user finds .

it necessary or advantageous to leave the console temporarily

(e.g., to attend to an unexpected visitor or telephone call, or

24

.-

to flispose of some pressing business-or perhaps to cogitate

about his program or some results he has obtained from running

it) If it is likely to be several minutes before he will return

to ihe computer, and particularly if he is being charged on the

basis of on-line time, he will want in such cases to be able to

take "time out." to tell the computer it can forget about him

until such time that he indicates that he is ready to resume the

session. The procedure for effecting such a recess should be

less involved than that used to store a system for reactrvat^n

in the indefinite future. It should not, for example, be neces-

sary explicitly to create files on a long-term storage device

Ideally, to initiate the time out, the user should be required

to do nothing more «»plicated than to press a special function

key, or perhaps to type "time out" or "wait" or some such thing.

Resunption of the session should be effected by an equally simple

procedure.

Program and File Information

The system, on request, should be able to provide the user

with information concerning the status or contents of his program.

It should be able to produce, at the minimum, a copy of any

specified segment of the user's program, a list * ^^V
functions, procedures, macros that the user has defxned, a table

of contents of the user's files or previously stored programs,

values of variables, indexes, subscripts, etc.

Status and Control Information

The user should be provided continuously with status and

control information. At the very least, he should be informed

25

as to whether he is waiting for the machine or it is waiting for

him (The JOSS system provides this information via a red and a

green light at the console that indicate whether the computer or

the user is controlling the typewriter [Baker, 1966].) Given that

the user is waiting for the computer, he might like to know:

(1) is the computer currently working on his problem? (2) is it

waiting for a peripheral device like a tape unit or line printer?

(3) is it waiting in a queue for its -slice" of time? or (4) is

the system dead?

Feedback to the user is particularly important when the

iength of the delay to be expected is unknown. For example, a

long pause after some data have been entered can make the user

wonder if he has entered data incorrectly, or possibly has not

properly signaled the computer that he is done. The computer

should signal receipt (or acceptance) of entry innately,

even though there may be a delay before the next entry can be

accepted, or before there is a substantive response CFoole, 1966).

m some systems it is practical to include an auxiliary

display at the terminal that provides the user with his current

status with respect to these alternatives, but in »^^ J«-
ting over telephone lines this may not be economically practrcal.

Z alternative that seems to be guite effective is to provide

a status co^and with which the user can interrupt the ongoing

computation long enough to have printed a oomputer-to-user

„essage describing both his current status <~'' I/0

wait, etc.) and give the cumulative log-on and CPU time used

Z dlte. The system is then restored immediately to it. former

Itu^ith no loss of priority. In the course of a Ion, com- ■
putation, user-initiated periodic status interrupts of thrs

Lrt can provide quantitative information regards how much of

the machine's time one is getting per unit of elapsed tune.

,, ." -■

The system should be able to tell the user how much time he

has used since the beginning of the session, or since some spec-

ified date. It should also be able to produce a statement of

charges accrued since the beginning of the current billing period

against the user's job number or account.

System Dynamics Information

If the system dynamics (e.g., response time) change signif-

icantly with the load, as they usually do, it would be a con-

venience to the user if he could get an indication of what the

load is before deciding whether he should get on. At a minimum

the system should be able to answer the question: How many users

are now on line? Other, and more helpful, items of information

are, in principle, obtainable (e.g., mean system response time

to a request for a given time slice over the last n minutes),

but only at a somewhat greater cost in overhead program execution.

Fail-Safe Provisions against Potentially Fatal Operations

Users make mistakes. They enter commands they did not in-

tend and sometimes discover what they have done too late to avoid

the dire consequences. If one deletes a program, or a file, by

mistake, for example, in most systems there is no provision for

recovering from such an error. The program, or file, is gone

and would have to be reentered in its entirety. Provisions can

be made, however, either for decreasing the probability of such

errors or for facilitating recovery from them when they do occur,

A simple measure for decreasing the probability of such

errors is to require for commands that modify stored programs

or files (e.g., DELETE, KILL, MODIFY) some confirmation in

27

I fiM

addition to the usual command terminator. This is tantamount

to forcing the user, after issuing a potentially destructive

command, to indicate explicitly, "Yes, that is what I meant

to say." Such a fail-safe measure is implemented in the

PROPHET system, as noted under Editing Capabilities, above.

An alternative way of dealing with this problem is to im-

plement procedures for recovering from the erroneous entry of

potentially disastrous commands. Some systems, for example,

have implemented "UNDELETE," "UNDO," or -RESTORE" commands,

in BEN TENEX, UNDELETE restores the file to the user's directory

after it has been inappropriately deleted. It may be Ued any

time up until the user logs out of the system, at which time

his deleted files are expunged, in TENEX-LISP, UNDO undoes the

effects of a program execution. "UNDO PART 4" would restore

the program to the status it had, complete with the variables

and constants as they were, before part 4 was executed.

No Invisible Mistakes

interactive systems make frequent use of nonprinting char-

acters as control characters. It is important to the user who

is attempting to diagnose an error that it not be possible to

have an error hidden because it involves the application of a

nonprinting character. This can be avoided by having a special

character echoed at the terminal for every one that does occur

in a character string.

r^^nnal Dump of Stacked Input

When a full duplex terminal is in use, in which the type bar

is controlled by the computer and every typed character is echoed

28

mm

through the machine, it is possible to type at the keyboard

while the computer is occupied with computation. The typescript

that is entered this way is not reflected back to the terminal

unLil the computer releases control of the interaction. If the

computation is ended appropriately all is well, but if the com-

putation is terminated prematurely because of an error or because

of an unanticipated program branch, then the preentered typescript

is appended to the end of the error message and is interpreted

as the beginning of a new, but, in this case, inappropriate

message. - Whenever an error termination like this occurs, the

system should automatically dump the prestored typescript and

leave the user with a clean slate to deal with the error condi-

tion.

Report Quality Output

The system should be capable of producing output of a quality

acceptable for incorporation in official reports. This goal is

somewhat more easily realized with typewriters or with MODEL 37

teletypewriters than with MODLL 33 or 35 teletypewriters, since

in the former cases one has a conventional character set, includ-

ing both upper- and lower-case characters. There is, however, a

considerable need for research into the problem of improving the

design of keyboard devices that are to be used as computer ter-

minals (see Dolotta, 1970). The identification of an adequate

character set is only one of the many problems that arise in this

context.

"Sense" Switches

Most computers provide the programmer with a set of toggle

switches (usually referred to as "sense switches") on the console.

29

each of whose positions (up Or down) can be examined by the

pro^-ran». 13y making the course of the program at different

points contingent on their positions, the programmer can make

it possible to control the flow of his program at run time by

manipulating the appropriate switches. Such real-time control

of a running program could bo a very great convenience to the

user of an interactive system, and could be provided by means

of a set of sense switches located at the remote terminal. A

cutout overlay that accompanies the program to be run could be

usoa to remind the user of the status and meaning of each sense

switch, which could change, of course, as a function of the

program being run.

User Interrupt

We nay think of the user-computer interaction as always

being under the control of either the user or the computer.

VThenever it is the user's turn to "say" something, we say he

is in control. He may actually be typing a user-to-computer

message, or he may be scratching his head thinking about what

to type; in either case, if the computer is waiting for an input

from him, we say he is in control of the interaction. Similarly,

the computer, while in control, may be outputting a computer-

to-user message, or it may be executing a program in preparation

for outputting a message. Normally, control passes either from

the user to the computer, or vice versa, at the termination of

a message. That is, one of the communicants regains control

by virtue of the fact that the other relinquishes it, having

completed a message, and having nothing more to say at the

moment. To a large extent, it is this continual exchanging of

control, the give-and-take dynamics of the situation, that jus-

tifies describing the interaction as "conversational." There

30

^£*a«S*»«»*ff■■::■. i5*ftir-;m-£W",&-' ^mWää**^-:. ■1*«\^:t^i«flWS

»•

is . need ~ one exce.Uon. ^e. *** ^"ZT
sing centre! fro» the ee-nputer te the u e. ^ ^ ^

have the ability te interrupt. Th^ "' ^^ „aiting
seize centrel e£ the interaetren at any
for the eervputer te relinquish it.

The neea .er this capahility ^V^Z Z^.
ease of e lengthy center ^^^ £ User has

obvieusly erreneeus. *™°*l'XZ7^. "* «"* * ^
ptogramea a leep te ^^^^J^, been typed, it is
time the first few values of the tab al ithn. x„ such

clear that there is ^^J^jt «ait until the entire
a case, the user •^» »^.'^l^ control of the inter-

table has been ^/"^ tyVssi-* a single Xey, to cause
action, «e should be *"•'«' ana to await further In-
the computer to stop what it is do

structions from him.

ga^agound Exe-^^n Option

, an interactive system could be increased
The efficiency of *" ^ „ o£ .dctaching" his program

by providing the ^^Ze^^l end having it run as a
from interactive centrel at t for „arrple, a par-
low-prierity background P"""" " a ptocedure for genera-
ticular applioatien inve -s -«-P- ^ ^ aebugging the
ting fairly lengthy tables, «n ^ ^^ ^ proceaure is
procedure, the user wants to b Mant ^ leave
operating satisfactorily, ^^^f In such a case, the

it alone and let it ^"«^J^^he terminal and return
user would like te be able «^T* Moreoveri unless there is

after the tables have *™^^ he vouia probably be
seme urgency for an mediate result.

31

—" —

I ■ -.
^ü

» ' V ' •

content to have it generatea at the ^f'^^Z'e*
i.Uy if backgrouna-processing ti^e «ere charged out at

rate than on-line time.

Progranrnod Logout

There should be an instruction to discontinue service that

couid be appended at the end of a progr», thus pe^ttxng the

"er to ioTout of the systen and disconnect the ternunai in-

dirlctl If one has written a program that «ill run for a

d r-- U-. «ithout intervention, it »^ ^^ ^
sary for the user to stay around simply to pull the plug at the
sary tor en fail-safe protective measure against
end of the session. As a tan sa v

,r -n™ it would be a convenience for the user to
program malfunction, it wouxu u= ,. u K. -mtomat-

be able to specify a time at which his '^Z—in,
ically terminated in the event that it is still running.

comnlaints gj suggestions

The system should have a complaint or suggestion input
,Miitv Ideas for system improvement frequently occur to

H e inVproLs o/interacting «ith the system and are
a user in w P SeSsion. Similarly, a minor mal-

::::::::: zz r* rjr^ *. ----rr lunc ' „ ^*-*j it would be a convenience to the is apt not to be remembered. It wouxa
«r^ it should be an aid to the system managers, if it

:« 'pi le -insert a complaint or suggestion directly nto

Ta/propriately designated file at the ^^^Tot

r^lua^e Lurce of information «hen attempting to in^rove the

system.

32

' r J »

REFERENCES

Baker, C. L., 1966. JOSS: Introduction to a helpful assistant.

H*m***ndum i?^5058-PÄ. The Rand Corp., Santa Monica, Calif.

Baker, C. L., 1967. JOSS: Console design. Memorandum KM*

5218-PÄ. The Rand Corp., Santa Monica, Calif.

Burchfiel, J. D. and E. M. Leavitt, 1971. TENEX: user's Guide.

Bolt Bcranek and Newman Inc., Cambridge, Mass.

Castleman, P. A. et al.. 1970. THE PROPHET SYSTEM: A final
report on Phase I of the design effort for the chemxcal/

biological information-handling program. National Institutes

of Health and Bolt Beranck and Newman Inc.

Dolotta, T. A., 1970. Functional specifications for type-

writer-like time-sharing terminals. Computing Surveys, 2,

5-31.

Myer, T. H. and J. R. Barnaby., 1971. TENEX: Executive lan-

guage manual for users. Bolt Beranek and Newman Inc., Camb-

ridge, Mass.

Poole, H. H. Fundamentals of Display Systems, Spartan Books,

MacMillan & Co., 1966.

Shackel, B. and P. Shipley. Man-computer interaction: A review

of ergonomics literature and related research. EMI Electronics

Ltd., Report No, DMP 3472, Feb. 1970.

33

