.

|

.'c‘

—
—
Q0
-
g
oy
<
(=
<C
S
o
-
O
)
==
| 55 .
&2
—_
=

AFOSR-TR- 82_0510 -+ 2 °° . Z

OBLIQUE STEPS TOWARD THE HUMAN-FACTORS ENGINEERING

‘OF INTERACTIVE COMPUTER 'SYSTEMS*

4

Raymond S. Nickerson
and
Richard W. Pew

20 July 1971

*oronscred by the Advanced
of Defense, under Air Force
F44620-71-C=0065, ARP

el (o
went

Research Projects Agency, Department

office of scientific Research Contract

A Order No. 890, Amendment No. 6, Ccode 1D2°C.

authors are grateful to Mario Grignetti for his helpful cown=
s on a draft of this report.

Approvedforpublicreleaseg
distributionumlimited.

g2 06 28 189

-

2
o

3

‘é%. = w4

. T
UNCLASSIFIED
/' SECURITY cu ASSIFICATION OF THIS PAGE ('h.'l Data Entered)
H READ INSTRUCTIONS
i REPORT DOCUMENTATION PAGE D TR O o
’\ {. REPORT NUMBER 2. GOVT ACCESS\ON?. 3. nEClPIENT'S CATALODG NUMBER
AFGSR-TR- 82_0510 A95/ 8/ B
3. TITLE (lﬂd Subtitle) 5 TYPE OF REPORT & PERIOD COVERED
OBLIQUE STEPS TOWARD THE HUMAN-FACTORS INIERIM

ENGINEERING OF INTERACTIVE COMPUTER SYSTEMS T FERFORMING ORG. REPORT N MBER

o s d

7 AUTHOR(s) 8. CONTRACT OR GRANT NUMBER «

RAYMOND S. NICKERSON

F44620-71-C-0065
RLCHARD W. PEW

S PERFORMING ORGANIZATION NAME AND ADDRESS 10. ‘::gi.a"‘oERLKESS\NTT'npuRuoaJsFéJ' TASK
BOLT BERANEK AND NEWMAN
CAMBRIDGE, MA. ‘61102F 1993/04

T COMTROLLING OF FICE NAME AND ADDRESS 2. REPORT DATE -
AFOSR/NL JULY 1971
BUILDING 410 13, NUMBER OF PAGES
BOLLING AFB, DC 20332 35 D

MONITORING AGENCY NAME & ADDRESS(if ditterent trom Controfiing Oftice) 15. SECURITY CLASS. ‘of this reput’

a

UNCLASSIFIED

JUSn—— — S—
T8¢, DECL ASSIFIZATION DOWNGRADING
SCHEDULE

SREPRE

16 DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION ST ATEMENT (of the ebatract enjered in Block 20, it ditferent irom Report)

8. SUPPLEMENTARY NOTES

-

B e o

-3

19 KEY WORDS (Continue or reverse alde if neceseary and iden’ity by block number) w { o

e

B T

& 20, ABSTRACT (Continue on raveree eide il neceveary and identify by block numbet)

This paper presents a potpourri of human-factors considerations pertaining
to the design of general-purpose, interactive computer systems that are meant
to be used by nonprogrammers. The reader is warned that it is informal, .
discursive and opinionated. The intent is to identify some specific problems,
to offer tentative solutions to a few of them, and, most importantly, to
stimulate more thinking on the part of both system designers and human-factors
specialists along these lines.

DD 73, 1473 EoiTion oF 1 NOV 681S OBSOLETE ' UNCLASSIFIZD

o e B PP
T SECUR} 1Y CoASL CATION GF TH1. B ros

e aaie e ToLh St

Abstract

This paper presents a potpourri of human-factors
considerations pertaining to the design of general-
purpose, interactive computer systems that are meant
to be used by nonprogrammers. The reader is warned
that it is informal, discursive and opinionated.

The intent is to identify some specific problems, to
offer tentative solutions to a few of them, and, most
importantly, to stimulate more thinking on the part
of both system designers and human-factors specialists
along these lines.

AIR FORCE OFFICE OF SCIEN

01 IENTIFIC RE A ‘)
(NOTICE OF TRANSMITTAL TO DTIC S
This technical report has been reviewsd and is
approved for puhlic relesse IAW AFR 190-12
Distribution is unlimited. '
MATTHEW J. KERPER

Chief, Technical Information Division

T T e

The utility of an on-line, interactive, computational
‘facility that is to be used by nonprogramners will depend on
(1) what capabilities the system provides, and (2) how acces-
sible they are to the user. A scientist, for example, is
interested in getting on with his research and is not likely
to be enthusiastic about investing much time and effort in
acquiring skills that do not have an obvious payoff in terms
of his own research goals. There is nothing to be gained by
providing him with a sophisticated system that will do many
irpressive things, none of which he is particularly interested
in having done. Nor is there any advantage in giving him a
system that will do some of the things he would like it to do,
but is prohibitively difficult to use. But what are the char-
acteristics and capabilities that a geﬁeral purpose, on-line
interactive facility should have? And how does one go about
inplementing them in any particular functional system?

The second of these questions clearly is a technical one,
oxr, more accurately, it spawns a host of problems which must

be answered in terxms of programming OT engineering techniques.
The first question, howevexr, is one of human needs and prefer-

ences. This being soO, it might appear that the answer would be

most readily obtained by asking the prosPective user what he
needs or wants. We think it is not likely to be as simple as

that. A realistic appreciation of the features that an inter-

active system should have is most likely to.be obtained as a
result of first-hand experience with working systems.

_ The remarks in this paper are indeed based largely on
first-hand expe:ience with a small number of existing inter-
active systems and a second-hand (reading) acquaintance with

= By i+ s

B L

e
¥

a few others. The treatment of the subject is discursive and
informal. No attempt has been made to formalize a set of desi:sn
criteria or even to map an approach that might be taken to do
so. Morcover, we make no claim to exhaustiveness in our enum-
eration of design considerations. Our intent is simply to iden-
tify what appear to us to be some of the features that an interx-
active system should have if it is to be generally useful to
individuals whose main areas of interest lie outside the domain
of computer technology jtself. Many of the design features
recommended below are incorporated in one Or more existing sys-
ters; although, to our knowledge, no single system incorporates
them all. Some of the featuves that will be noted will appear
so obviously desirable as to preclude the necessity of even be-
ing mentioned. However, that it is painfully easy to overlook
what is obvious to hindsight is attested by the fact that opera-
tional systems exist in which some of the most clearly desirable

features are wmissing.

It will be evident that we focus primarily on general-
purpose, scientifically—oriented——and, in particular, JOSS-1like
—systems (Baker, 1966) . We hope, however, that the reader who
is more concerned with special-purpose, prmhlem—oriented, sys=-
tens—reservation systems, cost-control systems, medical systems,
instructional systems—will find some of the discussion germane
to his area of interest. The need for effective user-orientec
design is especially great in such special=-purpose systems,
inasmuch as the user is apt to see himself as even further re-
moved from programming and other computer-related activities
than is the user of a general-purpose systen.

The recommendations that are rade constitute & very "mixed
bag." They involve various aspects of interactive systems—

dla

U=l G

g
i

PEIE b e s ey

languages, facilities, services, dynamics. (We have not paid

much attention to the design of user terminais, a topic which is
perhaps closer to conventional human engineering than are those .
which we do discuss. For discussions of some of the human-factors
problcms encountered in the design of keyboard terminals see Baker,
1967 and Dolotta, 1970. A more comprehensive discussion of human-
factors considerations as {hey pertain to computer input and out-
put devices is contained in shackel and Shipley, 1970.) Ve have
made no attempt to categorize our recommendations in any way,
fecling that to do so would take us beyond the limited objcctives
of this paper, and perhaps create the impression of a more system=-
atic treatment of the subject than is intended. The recommenda-
tions vary greatly in scope and specificity: general design prin-
ciples are thrown in with "little tricks for making life easier
for the user." They are offered quite frankly as opinions, and
no effort is made to justify them with experimental data, or
otherwise. If they stimulate further thought al: 1g these lines,

or even the expression of opposing viewvs, they »+ 1 have served a

useful function.

The Cardinal Assumption of the Uninformed User

Efficient interaction with the system should not be depend-
ent on a knowledge of either the internal structure or the de-
tails of operation of either the system or the service programse.
The user should be free to do his thinking at the level of the
lancuage with which he and the computer converse. There should
be no need for him to be concerned with the way in which his
program is represented within the machine, unless of course it
is imperative to him that his program run at maximum efficiency,-

which usually will not be the case.

L

"""IH-_"_ i

Training Requirements and Self-Teaching Capabilities

The system should require very 1ittle off-line training
or instruction of the user. Ideally, it should be designed so
that a novice can use it, at least haltingly, after spending a
few minutes with a tutor or a manual, and can expect to learn
to use it efficiently from the feedback provided by the system
jtself. Insofar as possible, the system should be designed in
such a way that the most efficient and powerful approaches to
problemsware readily discovered by the user in the process of
interacting with jt. That is to say; the systenm should have a
built-in teaching capability designed to facilitate the acqui-
sition of that knowledge and those skills that qualify a user
as an expert.

For example, it would be helpful to the novice user to be
able to request the computer to give him examples of types of
statements whose format he has forgotten, Or not yet learned.
To illustrate: a beginner might realize-that the language al-
lows “if" statements, but may not be able to put into ‘an appro-
priate format a particular conditional that he wishes to write.
He would then like to be able to put the system into a "teach”
mode and ask it to give him some jllustrative wi £* statements—
perhaps by simply typing »7EACH IF." The computer could there-
upon produce a sequence of »;f" gtatements in an order of in-
creasing complexity until it had either satisfied the user OI
exhausted its supply of examples. such a feature would also
serve the more experienced user, who from time to tine needs
to refresh his memory regarding allowable statement formats.

A common practice is to build format information into the
error diagnostics.' For example, &8 format error might elicit a

remark from the computer such as "The correct format is:" fol-
lowed by an example of a correctly fcrmatted statement repre=
sentative of the type that the diagnostic program thinks the
user was attempting to write. The objection to this procedure
is that, if an experienced user is at the console, the lengthy
output may be not only unnecessary but even bothersome. He may
know exactly what his error is the moment it is pointed out to
him that an error has been made. It would be in keeping with the
policy of eliminating noninformative computer-to-user messages
(sce below) to provide the user with illustrative statements
and detailed error diagnostics only in response to an explicit

request.

Prormpting can be another useful teaching technique and
memory aid. To log in to the TENEX system,* for example, the
user must type, in order and with appropriate terminators, the
word “LOGIN," his nam', a "password" and a job number (the latter
for billing purposes). The experienced user does this more or
less automatically; however, the novice or infrequent user can
easily violate the format requirements, enter items in the
wrong order, or forget to enter an item altogether. TENEX facil-
itates entry by identifying each of the components of the log~-
in procedure (except the first). The user need remember simply
to type "LOGIN," followed by a special terminating symbol (the
"escape" key on the teletype in this case). The computer will

*TENEX is a time-sharing system implemented on a DEC PDP-10
computer at DBolt Beranek and Newman IncC. Several of our ex-
amples are drawn from this system, in part because vwe happen
to be familiar with it and in part because considerable at-
tention was given to human factors problems by its designers.
For descriptions of the system, see Myer and Barnaby (1971)
and Burchfiel and Leavitt (1971).

— e T s B B A S T e e oy s e S SR i . "
3 . AT T mmm gl e

T

#‘a-w‘ ST W.ﬂm B - iy LAY,

“then type "(USER)" and wait for the user to type his name, where-=

upon it will type » (PASSWORD) ", and soO on. The experienced user
can suppress this prompting simply by using a different termina-
ting symbol.

Updating Information

The need to train the neophyte is one requirement that oc-
curs to everyonc. A less obvious training requirement concerns
the continuing education of the experienced but sporadic user.
Few interactive systems are static. New procedures and upgraded
versions of old procedures appear regularly. The chronic user
who is on the system much of the time will assimilate changes
gradually as they occur. The infreguent user will find it much
rore éifficult to accommodate to changes that have occurred
during a period of a few weeks oOr months that he has not used

the system.

fypically this kind of training is provided by announcements
nade at sign-on time for two or three days following a change, and
a memo to users may be jssued to be read at their convenience. A
pbetter procedure would be to provide communication about system
modifications contingent on their need. If a new format or com-=
mand is defined that replaces an old one, the user should be
trappecd to a brief description of the new one and how to use

it whenever he attempts to execute the old one. This procedure
is rather like that used to correct for the dialing of an out-
of-Cate phone number: the operator interrupts and provides the
new nurber. When new procedures are jntroduced that supplement
rather than replace others, use of the basic command should call
forth a description of the supplemental procedure prior to exe-
cution of the command for the first three or four times the user

s
=T -

WS iy

b e e i Sl i e

applies it. The important point is that the critical dimension

'relating to the need for prompting the user's memory is not the

time since the system change was made but the number of times
that particular user has already been reminded of that change,
and perhaps the recency of the last reminder. Such a procedure
implies a bookkeeping burden for the executive program, but one
that could be easily managed in a good system,

One simple expedient for getting updating information to
users who neced it, without forcing it on those who do not, would
be to have the computer type the date (or perhaps the number)
of the last change in the system, whenever anyone logs in. If
the user is alrcady aware of the change, he will simply proceed
with the work session; if not, he can ask for a report. Follow-
ing the typing of the report the computer would then give the
date of the next-to-last change, and again, the user can decide
whether he nceds, or wants, to know about it. And so on.

Cormnuter-to~-User Messages

Computer-to-user messages should be designed to accommodate
users representing all degrees of familiarity with the system.
There are two types of computer-to-usexr messages that may occur
in an interactive session: (a) those which the user intentionally
elicits, either by requesting some specific outputs (program
listings, values of variables, etc), or by inserting messages
of his own composition into the body-of his program, and (b)
those that are preprogrammed into the basic system. We shall be
concerned here only with the latter,

The purposé of such messages is to convey to the user some
information that will facilitate his further progress with his

i

program. Most commonly, they take the form of requests for
specific inputs, of information concerning the state of the
system, or of error diagnostics. In the latter case, an indi-
cation that an error has been made may or may not be accom=-
panied by some information concerning the probable nature of
the error. The problem is that of designing a message set and
rules for message generation that satisfy the needs of users
who represent every possible level of expertness in their in-
teraction with the system., MNovices will require lengthy mes-
sages which are completely self-explanatory; experts will prefer
coded outputs which are as brief as they can possibly be made.
Ideally, for the novice, every message should be meaningful
the first time it is encountered. Satisfying this desideratum
is in keeping with the objective of minimizing the amount of
training a beginner must have before interacting directly with
the system., It means, however, that messages should be written
in a natural language (e.g., English) in whatever detail and
with whatever degree of redundancy are necessary to ensure that
they will be readily understood. Detail and redundancies that
are helpful to a user who is learning the system will become
sources of irritation, however, as he acquires skill. (One

of the most reliable marks of the experienced user or an on-
line system is his tendency to be exasperated by any delays
which he perceives to be unnecessary. Given the opportunity,
he would invariably replace lengthy messages with the briefest
possible codes!) Even for experienced users, however, it is
imperative that the computer do something whenever it receives
a cocmmand that it cannot interpret. This is essenticzl if one
is to avoid the situation in which the computer is waiting for
the user to input something interpretable, while the user is
waiting for the'computer to operate on what he assumes was an

interpretable input.

L =

By

£

b

Several possibilities suggest themselves for coping with
the problem of conflicting desiderata of novices and experts
concerning the form and content of computer-to-user messages.

1. Two separate programs. One possibility is to keep on
hand two entirely independent systems which differ primarily,
or only, with respect to the computer-to-user messages they gen-
erate. 1In one case, the messages, being complete and, hope-
fully, self-explanatory, are designed for the novice, the oc-
casional user, and the visiting observer. 1In the other case,
the messages are greatly abbreviated and intelligible only to
the programmer OIr the user who has had considerable experience

with the system.

2. One program, two message sets, it is, of course, over=
simplifying things considerably to recognize only two types
of users: novices and experts. It is more realistic to recog-
nize that users represent a full spectrum of expertness. Any
particular user masters a system only slowly over a long period
of time. Moreover, different users, because of their own par-
ticular needs, may acquire skill with some aspects of a system
while remaining relatively unskilled with respect to others.
It may be advantageous, then, to allow the user himself to de-
cide when he wishes to be treated as a novice, and when he wishes
to attempt to glay the expert. A simple way to provide this §
option is to include two complete message sets in the systen,
and to allow the user to switch at will between one and the
other. Presumably, given such an gption, the amount of time the
user spends in Fhe novice mode will decrease fairly regularly
as he gains experience with the system.

|
|

|
|

e
P

s,

b Y

3. "Yeah, yeah" signal. A third possibility is to provide
the user with the mean$ of cutting short a computer-to-user
message while it is being typed out. For this approach to be
effective, 1e user should be able to terminate any message, by
pressing a csingle key, at any time during the messa&age typeout.
With this capability, the user need attend to the typeout only
so long as it is informative. How much of a message he will
want to see will depend, of course, On his familiarity with the
system. Presumably, one's use of the interrupt option will be-
come more frequent and more rapid as his experience with the

system increases.

4., Two-part messages. A fourth possible approach is to

(a) store each computer-to-user message in two forms—a concise
mnemonic code and a complete sclf-explanatory statement, (b)
always output the coded form of the message first, and (c) out-
put the gself-explanatory statement only if the user requests

it, say, by responding to the coded form with "2". The advan-
tages of this approach are several. First, the same program and
the same mode of operation are appropriate for all uszrs. Sec*
ond, although decoded messages are always available when desired,
the user never receives a lengthy message unless he specifically
requests it. Third, the procedure facilitates the acquisition
of just that krowledge which will make time-consuming messages
unnecessary. l

)
A combination of (4) and (3) would provide a particularly
accommodating facility.

| | .

{
|
!
!

10

" — - - 5 il Mt b T
s

e =

String Recognition

The capability for the computer to perform recognition on
a partially complete character string effectively combines the
principles of concise computer-to-user messages, prompting, and
efficient training procedures. The string recognition proce-
dure that is implemented in the TENEX system works in the follow-
ing way. Whenever the user thinks that he has typed enough of
a command string or file designator so that the intended command

or file is uniquely specified, he may terminate the partially
completed string with one of several terminators. With one term=

inator the computer either completes the typing of the designated
string an? waits for the next entry or parameter, Or, if it can-
not identify uniquely the string that has been terminated pre-

maturely, it rings the terminal bell and awaits further input
to complete the string. In a second termination mode the sys-
tem accepts the abbreviation as it stands and either executes
+he command directly, or, if it cannot recognize the command or
make a unique selection, it prints a "2?" and aborts. In an
earlier version of this recognition feature the computer took
over for the user as soon as it had received'sufficient charac-
ters and completed the string automatically. Given this pro-
cedure the user finds it easy to type accidently more than the
requisite number of characters before the computer has time to
take control. ‘The resuit may be the typing of a few stray char-
acters at the end of the cormand that at best are rnisleading
and at worst confound the beginning of the next input. The
string-recognition feature, as currently implemented in TENEX,
is especially cpnvenient if it can be applied to terms defined

by the user himself as well as to system-defined commands.

!
i

11

Default Values and Conditions

Often in interperson conversations, information is ex-
changed by default. 1IZ one mentions Paris, for example, it is
likely to be assumed that he is referring to Paris, France;
had he meant Paris, Maine, he would have been expected to say
Paris, Maine. Similarly, in the case of man-computer inter-
action it is sometimes possible to assume what unstated values
of program parameters should be, and to assign them by default
whenever the user does not explicitly indicate otherwise., De-
fault conditions make it possible to build into the system
considerable sophistication that can be exploited by the user
as far as he wishes, or to the degree consistent with his level
of training. As an example consider the file designation pro-

cedure used by the TENEX system. A complete file designator

consists of five parts, and might look as follows:

ALPHA. F4; 3; Al2345; B775202

Part I (ALPHA in our example) is the file name assigned by
the user. The system will recognize an abbreviation (first
few letters) of the name so long as no other file name would be
abbreviated the same way. Part II (F4) is the file extension,
which tells the system what kind of file is involved. It is
also subject to the automatic recognition procedure. Part III
(3) is the version number. When creating a new file the default
value of the vérsion number is one. When creating a new ver-
sion of an old file the default value is one greater than the
last number used with that file nare and extension. When delet-
ing a file the éarliest version number is assumed unless the
user explicitly'specifies a higher one. Part IV (Al2345) is the
account number to which page charges will be assigned. If the

12

i e S T T i A VA e S ot W B

R,

b e

user defaulis this number, the account to which his compute time
is charged is assumed. Part V (p7752¢2) describes 2a protection
or privacy status for the file. If no number is specified it is
assumed that any other user may read the file but only the cre~
ator of the file may write into it or delete ijt. Note that for
a typical user Parts I, II and occasionally Part III are suf-
ficient to declare most files ‘and it is the exception that re=
quires further specification.

In some cases in which it is not clear in advance what the
best default value is, it might be appropriate to sample user
opinion or to collect statistics on the most frequently used
value in order to determine what it gshould be. When it is im=-
portant for the user to know exactly what he defaulted, the
machine should prompt him with the defaulted value. It is im-
portant, for example, for the TENEX user to know his extension
and version number, but the account and protection information
are not displajed unless specifically requested.

Program Component Identification

There should be a straightforward way of structuring a
program and of jdentifying its components. Perhaps the most
common structure in conventional programming is that of a heir-
archy: programs, subprograms, routines, subroutines, etc.

There is every reason to expect that this will be equally true
of interactive programming; hence, there is need for a means

of identifying program components in such a way as to make it
possible to refﬁr to any level in a hierarchy of arbitrary depth:

13

4
o A g

& P
T T m«ﬂf«

P o e iy e ¢

Several of the current JOSS-like systems provide for a
two-level organization of a program in "parts” and "steps."
The convention is to identify steps with decimal numbers, the
integer part of the number designating the part to which the
step belongs. Reference can then be made to, and operations
performed upon, either individual steps or parts as wholes.
Thus, for example, the command "DELETE PART 3" would, in effect,
delete steps 3.1, 3.12, 3.2 and any other =teps identified with
a number whose integer part is 3. The restriction of two levels
imposed by this scheme might not be a serious limitation for the
casual user of a systenm; however, it probably does represent an
unnecessary constraint for the more experienced user. Moreover,
it is a limitation that is removed by simply making the con=
vention that when a command can appropriately reference more
than a single step (e.g.. DELETE, TYPE, DO), the command will

be understood to refer to all steps whose most significant digits

correspond to the nunber in the command statement. Hence, the
command "TYPL PART .1324" would cause the typing of steps .13241,
Jd3242, .132431, and any other step whose number began with .1324.

If the user wished to refer to a single step, he would, of course,

have to use enough digits to jdentify that step uniquely. - For
example, assuming that his program contained each of the above
step nurbers, in order to have the single step .1324 typed, he
would have to say "TYPE .13247."

List-processing languages such as IPL and LISP are not or-
ganized in terms of numbered steps, so this convention does not
apply. In LISP, program components are "gymbolic expressions,”
each of which is comprised of a function and its arguments.

The arguments of a function may be functions in turn, so that
these programs also have a hierarchical structure. Expressions

14

= T - T LT

M T Y i —

ORI —— - - - e, g

or subexpressions may be ideni.ified via the appropriate function
names. List-processing languages are less likely to be of concern
to the nonprogrammer computer user than are the JOsS -like lan-
guages—at least in the near future—so they are given little
attention here.

£diting Capabilities

The system should provide flexible editing and error-coc-
recting capabilities. It is convenient to make a distinction
between two broad classes of editing and error-correcting opera-
tions: those which may be performed on a program component or
step as it is being composed, or local operations, and those
which may be performed on steps which have &lready been inserted
into the program, or remote operations.

There are two local operations which, from the user's point
of view, are needed: one to delete the last character typed,
and one to delete the entire step or program corponent currently
being entered. Each of these should be executed by striking a
single-control character. The operation deleting the last char-
acter should be iterative, allowing the user to delete the last

~n characters typed. In the case of teletype or typewriter input

it should not be possible, with this operation, to delete ele-
ments past the firs: character of the current line or program
component because it becomes very difficult to keep track of ex-
actly what was deleted. This restriction is not important in
the case of a CRT terminal where the consequences of deletion
can be portrayed literally to the user; i.e., the deleted char-
acters actually @an be made to disappeir and new ones to appear)
in their places.%

§i.

T e o = e T

when text is being displayed on a CRT as it is being typed,
a cursor or underscore should be used to show the location of
the next character to be typed. This is especially helpful when
nonprinting characters (spaces, tabs, carriage returns) are be-
ing used in formatting tables, labeling graph axes, etc.). A
further convenience to the user would be an alternate mode of
display in which nonprinting characters are explicitly repre-

sented by special symbols.

A flashing cursor can be helpful when backspacing over dis-
played characters for erasure or editing. Rule: have the cursor
‘flash whenever it is pointing to the location of a character
that has just been deleted from memory. Again this would be
particularly useful in the case of nonprinting characters.

There are four remote editing operations that are essential
to an on-line system. They are the operations of deletion, re=-

placement, insertion, and revision. The operand may be a vari-
able, a step or other program component. Given a step-numbering
scheme such as that described above, the remote operations of
step deletion and insertion are self-evident. One advantage of
such a scheme is that it obviates the renumbering following the
deletion or addition of steps. For example, given a program
comprised of steps .11, .12, .13, and .14, deletion of step .12

and insertion of two additional steps between .13 and .14 would

not necessitate renumbering any of the original steps that are

retained, even though their ordinal positions in the program
have been changed. The steps of the program fcllowing the in-
dicated changes might be numbered J11, .13, 131, .132, and .1l4.
Step replacement,would be accomplished by simply writing a new)
step and assigning it an old number, the system being designed

2 |

16

e e T L L ——— TS ——
S = e ot e e
AR Sear g S e

so that whenever a step is given the same number as that of a
previously entered step, the original step is replaced by the
new one. '

The delete operation can of course cause grief when supplied
with an erroncous argument. An easy way to guard against this
event is to force the user to think twice about any such command.
In PROPHET (Castleman, 6t al., 1970), a.CRT—oriented chemical/
biological information-handling system, the effect of a delcte
command is to have the to-be~-deleted element blink on the display.
The user then must verify that the blinking element is in fact
the one that he wishes to delete.

A system that allows only the three remote operations of
deletion, replacement, and insertion would be reasonably ade-
quate for many applications; however, to be truly efficient, it
should include, in addition, a capability for revising steps or
other program components witlout complctely retyping them. 1In -
many instances the user will want to change only those portions
of a step that are in error, while retaining those portions
that are correct. It is an inconvenience, for example, to have
to retype a lengthy and involved algebraic statement to correct
a single erroneous character. The need here is for deletion,
replacement, and insertion Opérations which can be performed on
elements within a step. The more sophisticated systems provide
editing commandg for searching progran components for particular
characters or character strings, and for performing delete, re-
place, or insert operations relative to the result of the search.

In additioﬁ!to providing thése component editing capabilities

it is also important not to place artificial sonstraints on the
\

e

2l

ways in which they may be used. It should be permissible to
intermix freely editing commands and to make up strings of
commands to be executed as a unit. For example, to change

N=N+1 to N=N+2, one might want to write an editing procedure
that would search for the string N=N+, delete the next character
in the line and insert 2 in its place. 1In the TENEX version of
TCCO, which is a language used primarily for the purpose of ed-
iting, this is accomplished by typing the string

SN=N+$DI2%$

where the S, D and I indicate search, delete and insert, re-
spectively. The first and second dollar signs terminate the
search and insertion strings,.and the third executes the string
of editing instructions. |

A ccmmon practice in algebraic interactive languages is
to reject an input string if the computer detects a syntactic
error and to inform the user of why the input was unacceptable.
We recormmend instead that the aberrant string be retained in
the buffer and the computer automatically shifted into an edit-
ing mode so that the user may choose to delete the entire
string or, if possible, to correct it by changing one or two
erroneous characters. It is more than mildly irritating to
corplete the typing of a complex algebraic expression only to
find that it must be completely reentered in order to add one

forgotten right parenthesis.

pirect and Indirect Commands . :

The system should allow both direct and indirect commands.

18

S

-
i, vy

b

A W

y
- L

By direct command is meaat a command that is to be executed
immediately; an indirect command is one that is to comprise

a component of a program, and that will be executed in the
course of the execution of the program to which it belongs.
The direct-command capability allows the computer to be used
as a powerful desk calculator for such purposes as evaluating
mathematical expressions, generating tables, and plotting
functions on a one-shot basis. It also serves as an important
tool for debugging and editing active programs. Indirect
commands provide for the construction of programs. Virtually
all conversational languages include both direct and indirect
cormands. In some cases, however, direct commands comprise

a minimum set (DO, RUN, LXECUTE), in which case in order to
use the computer as a desk calculator one must enter an indi-
rect command and then execute it as a program.

Arbitrary Starting Point

The user should be able to start or restart his program
at any point. 1In particular, after fixing an error that has
caused a running program to halt, he should be able to restart
the program at the point at which it stopped.

Variable Names

In composing programs, the user should be free to assign
names to variables in a way most consistent with his own mne-
monic conventions. Ideally, he should be allowed to call vari-
ables anything he wants; in practice, other considerations may
place a limit on the number or tvpes of characters a name may
be allowed to contain. If a limit must be imposed, five or six

19

B B e —— - e - R, i it - = —

s e e . " Nt o W . el i e i WA i+

G St e S s Tl R B RN b T

characters per name would probably be adequate for most users;
three characters per name is perhaps tolerable; a single char-
acter limitation (even with subscripting) is a definite handicap.

Language Modification and Abbreviations

A means should be provided for the user to modify the lan-
guage and redefine terms. For example, an individual who finds
himself using a small set of commands very frequently might find
it economical to replace each of these commands with a single-
character abbreviation. Insofar as possible, he should be
allowed to establish equivalences of this sort.

One should also be able to define and use abbreviations
for such things as variable names. For example, PROPIET, the

chemical/biological information-handling program mentioned
above, permits one to give a variable such a name as "MOLECULAR

FORMULA OF ASPIRN,” and then define and use an abbreviation
such as "MA" (Castleman, et al., 1970).

The user should not, of course, be allowed to make language
changes that will affect other users in any way.

Acécéress Arithmetic

Languages for which a step is the basic program component
(e.g., JOSS~-like languages) should permit the changing of step
nurbers for any specified progran segment with a single command.
For example, a command like "CHANGE STEPS .21 to .46" might be
used to replace all the step numbers beginning with .21 to new.
nusbers beginning with .46, leaving the less significant digits

unchanged.

i
%

Ty

RENES

Algebraic Expressions as Ihputs

The system should accept and correctly interpret any eval-
uatable algebraic expression in any case in which a number is
an admissible input. As a simple but important example, one
should be able to input fractions as fractions, that is, one
should be zble to imsert 1/17 as opposed to .g58889. The im=
portance of this capability does not stem from the fact that a
fraction is easier to type than a decimal (although if one wants
accuracy, he will, in general, have to type several more char-
acters in the latter case), but rather from the fact that, if
the user has the fraction to begin with, converting it to a
decimal number involves a task that the computer, not he, should
perform. The abiiity to input fractions directly is a partic-
ular advantage to the user who is dealing extensively with prob-
abilities.

Identification of Precision Limits

The limitations of the system with respect to numerical
precision should be explicit in the output. The system should
not produce numbers with more significant digits than are justi-

. fied by the computational accuracy of its number-handling pro-=

cedures. For example, if the system can assuré only cen bits
of accuracy in its number representation, it should rot output
nurbers with more than three significant (Qecimal) digits.
Since most machines use floating-point arithmetic, which allows
the manipulation of numbers whose magnitude is far beyond the
precisional 1imits of the system, there must be some straight-
forward way to represent arbitrarily large numbers so that the -
accuracy limitation is obvious. One possibility is to express

21

all numbers in scientific notation with the fractional part
being limited to the number of digits implied by the precisional
capabilities of the system. Another possibility is the use of
filler symbols. For example, given a limitation of three deci~-
mal digits of accuracy, the number 365,741 might be represented
as 366,xxx., It should not be represented as 366 ,22¢, since in
this case the limitation is not obvious. The system should
round the output to the least significant digit; it should not
truncate.. 1In short, when a user receives a number from the com=.
puter, he should be able to assume that it ie exactly the number
that he would have obtained had the computation been done by
hand, "and rounded off to the same number of significant digits.

Formatting Options

The system should provide formatting options specifically
designed to assist the user in making his program easy to read.
Extra spaces and carriage returns should be freely allowed and
should be preserved in storage at the lavel of the symbolic
program. In scientific programming, one frequently wishes to
construct algebraic statements involving several depths of
nested parentheses. pParenthesizing errors are very easy to make,
and can be frustratingly difficult to find. It would be a help
to have several, say three, different characters, e.g.; (, [+ L
for formatting algebraic statements. - These characters could be
ecuivalant as far as the progran interpreter is concerned, but
the distinction should be maintained at the level of the conver-
sational program. Such a feature would facilitate the construc-
tion of complex algebraic statements and would simplify the pro=
cess of finding errors when they occur. It would be particularJ
ly helpful if the different parenthesizing symbols were differ-

ent sizes.

22

Another useful formatting convention, easily implemented
with a typewriter as the I/0 device is that of color-coding the
dialogue, printing user-generated text in one color and computer=
generated text in ancther (Baker, 1966).

Procedure Definition

There should be a straightforward means of defining and
storing.generalized program components and retrieving them for
incorporation as elements in programs or higher-order compo-
nents. Having once written a particular generalized program
component (procedure, function, macro, subroutine), one should
not have to write the same component again. Heavy users of an
interactive system are likely to be develcping many programs
having common components. The prospect of developing a library
of program components especially tailored to one's own needs is
perhaps one of the most corpelling enticements that a computer

system can offer to a prospective user.

Procedure Library

The system should maintain a central public library of
programs and procedures that are available to all users. The
library should be designed to expand as users generate new pro-=
grams of general interest. Every user should have read-only
access to the ﬁibxary on a continuous basis. He should not,
however, be able to enter programs directly into the library.
Ore possible scheme for allowing a user to contribute to the
1ibrary would be to have him deliver a program to a temporary
file which is ﬁeriodically examined by the system supervisor or’
librarian for the purpcse of updating the library £ile.

\

23

Ui

Compilation Capability

A system designed specifically for gcientific and engineer-
{ng applications probably should have a combilation capability.
The interpreter should be used for exploratory programming; how-
ever, when a program is to be used frequently for production rums
it should be compiled. This is especially true when compilation
results in noticeably shorter system response times. It is essen-
tial, however, that such a compiler accept as input the program
as it was written for the interpreter.

File Storage

In cases where lengthy work sessions are anticipated, it
should be possible for the user, when terminating a session with
work unfinished, to leave the system in such a state that, upon
reentering it at a later time, he will be able to resume his work
exactly where he left off. This means providing the user with
the capability to store his virtual core in a long-term storage
medium such as magnetic tape oOr disc, and to retrieve it upon
reentering the system. The user should also be able to maintain
files of his own subroutines, programs and data sets.

short Interruptions

l

In addition to the capability for the resurption of work
after indefinite periods, there should be a simple procedure for
allowing brief interruptions in a work session. It frequently
happens in the course of an on-line session that the user finds .
it necessary or advantageous to leave the console temporarily
(e.g., to attend to an unexpected visitor or telephone call, or

24

P]

T ———
- B

A — gy 5 W | pa

Ty T =

to dispose of some pressing business—or perhaps to cogitate
about his program or some results he has obtained from running
jt). If it is likely to be several minutes before he will return
to the computer, and particularly if he is being charged on the
basis of on=-line time, he will want in such cases to be able to
take "time out," to tell the computer it can forget about him
until such time that he indicates that he is ready to recsume the
session. The procedure for effecting such a recess should be
less involved than that used to store a system for reactivation
in the indefinite future. 1t should not, for example, be neces-
sary explicitly to create files on a long-term storage device.
Ideally, to initiate the time out, the user should be required

to do nothing more complicated than to press a special function
key, or perhaps to type "time out" or "wait" or some such thing.
Resumption of the session should be effected by an equally simple
procedure.

Progranm and File Information

The system, on request, should be able to provide the user
with information concerning the status or contents of his program.
It should be able to produce, at the minimum, a copy of any
specified segment of the user's program, a 1ist of variables,
functions, procedures, macros that the user has defined, a table
of contents of the user's files or previously stored prograns,
values of variables, indexes, subscripts, etc.

status and Control Information

The user should be provided continuously with status and
control information. At the very least, he should be informed

as to whether he is waiting for the machine or it is waiting for
him. (The JOSS system provides this information via a red and a
green light at the console that indicate whether the computer oOr
the user is controlling the typewriter [Baker, 1966]).) Given that
the user is waiting for the computer, he might like to know:

(1) is the computer currently working on his problem? (2) is it
waiting for a peripheral device like a tape unit or line printer?
(3) is it waiting in a queue for its "slice" of time? or (4) is
the system dead?

Feedback to the user is particularly important when the
length of the delay to be expected is unknown. For example, a
long pause after some data have been entered can make the user
wonder if he has entered data incorrectly, or possibly has not
properly signaled the computer that he is done. The conputer
should signal receipt (or acceptance) of entry immediately,
even though there may be a delay before the next entry can be
accepted, or before there is a substantive response (Poole, 1966).

In some systems it is practical'to include an auxiliary
display at the terminal that provides the user with his current
status with respect to these alternatives, but in systems opera=
ting over telephone lines this may not be economically practical.
An alternative that seems to be quite effective is to provide
a status command with which the user can interrupt the ongoing
computation long enough to have printed a computer-to-user
mnessage describing both his current status (running, I1/0
wait, etc.) and give the cumulative log-on and CPU time used
to date. The system is then restored irmediately to its former
gtatus with no loss of priority. In the course of a long com= - |
putation, user-initiated periodic status interrupts of this '
sort can provide quantitative jnformation regarding how much of
the machine's time one is getting per unit of elapsed time.

% !

T P

i b e

The system should be able to tell the user how much time he
has used since the beginning of the session, or since some spec-
ified date. It should also be able to produce a statement of

charges accruecd since the beginning of the current billing period
against the user's job number or account.

Svstem Dynamics Information

If the system dynamics (e.g., response time) change signif-
icantly with the load, as they usually do, it would be a con-
venience to the user if he could get an indication of what the
load is before deciding whether he should get on. At a minimum
the system should be able to answer the question: How many users
are now on line? Othex, and more helpful, items of information
are, in principle, obtainable (e.g., mean system response time
to a request for a given time slice over the last n minutes),
but only at a somewhat greater cost in overhead program execution.

Fail-safe Provisions against Potentially Fatal Operations

Users make mistakes. They enter commands they did not in-
tend and sometimes discover what they have done too late to avoid
the dire consequences. If one deletes a program, or a file, by
mistake, for example, in most systems there is no provision for
recovering from such an error. The program, or file, is gone

. and would have to be reentered in its entirety. Provisions can

Y

be made, however, either for decreasing the probability of such
errors or for facilitating recovery from them when they do occur.

A simple measure for decreasing the probability of such

errors is to require for commands that modify stored programs
or files (e.g., DELETE, KILL, MODIFY) some confirmation in
)

27

iy S sy .

%
M

addition to the usual command terminator. This is tantamount
to forcing the user, after issuing a potentially destructive
command, to indicate explicitly, "Yes, that is what I meant
to say." Such a fajil-safe measure is implemented in the
PROPHET system, as noted under Editing Capabilities, above.

An alternative way of dealing with this problem is to im-
plement procedures for recovering from the erroneous entry of
potentially disastrous commands. Some systems, for example,
have implemented "UNDELETE," "UNDO," or "RESTORE" commands.

In BBN TENEX, UNDELETEC restores the file to the user's directory
after it has bcen inappropriately deleted. It may be used any
time up until the user logs out of the system, at which time

his deleted files are expunged. in TENEX-LISP, UNDO undoes the
effocts of a program execution. "UNDO PART 4" would restore

the program to the status it had, complete with the variables
and constants as they were, before part 4 was executed.

No Invisible Mistakes

Interactive systems make frequent use of nonprinting char-
acters as control characters. It is important to the user who
is attempting to diagnose an error that it not be possible to
have an error hidden because jt involves the application of a
nonprinting character. This can be'ayoided by having a special
character echoed at the terminal for every one that does occur

in a character string.

Conditional Dump of Stacked Input

When a full duplex terminal is in use, in which the type bar
is controlled by the computer and every typed character is echoed

28

kel a8 e 5 . . e, N e~ =
o T Ay R

SIS

- e

B Lt

l

through the machine, it is possible to type at the keyboard

while the computer is occupied with ccmputation. The typescript
that is entered this way is not reflected back to the terminal
uniil the computer releases control of the interaction. If the
computation is cnded appropriately all is well, but if the com=
putation is terminatecd prematurely because of an error or because
of an unanticipated program branch, then the preentered typescript
is appended to the end of the error message and is interpreted

as the beginning of a new, but, in this case, inappropriate
message. - Whenever an error termination like this occurs, the

system should automatically dump the prestored typescript and
leave the user with a clean slate to deal with the error condi-
tion.

Report Quality Output

The system should be capable of producing output of a guality
acceptable for incorporation in official reports. This goal is
somewhat more easily realized with typewriters or with MODEL 37
teletypewriters than with MODLL 33 or 35 teletypewriters, since
in the former cases one has a conventional character set, includ~
ing both upper- and lower-case characters. There is, however, a
considerable need for research into the problem of improving the
design of keyboard devices that are to be used as computer ter-
minals (see Dolotta, 1970). The identification of an adeguate
character set is only one of the many problems that arise in this

R S e

context,

*sense" Switches

Most computers provide the programmer with a set of toggle
switches (usually referred to as "sense switches®) on the console,

A ANt e e st

29

each of whose positions (up or down) can be examined by the
prog.am. By making the course of the program at different
points contingent on their positions, the programmexr can make
it possible to control the flow of his program at run time by
manipulating the appropriate switches. Such real-time control
of a running program could be a very great convenience to the
user of an interactive systcm, and could be provided by means
of a set of sensc switches located at the remote terminal. A
cutout overlay that accompanies the program to bhe run could be
used to romind the user of the status and meaning of each sense
switch, which could change, of course, as a function of the
program being run. '

User Interrupt

We may think of the user-computer interaction as always
being under the control of cither the user or the computer.
Whenever it is the user's turn to "say" something, we say he
is in control. He may actually be typind a user-to-computer
message, or he may be scratching his head thinking about what
to type; in either case, if the computer is waiting for an input
from him, we say he is in control of the interaction. Similarly,
the computer, while in control, may be outputting a computer-
to-user message, or it may be executing a program in preparation
for outputting a message. Normally, control passes either from
the user to the computer, or vice versa, at the texrmination of
a message. That is, one of the communicants regains control
by virtuc of the fact that the other relinquishes it, having
completed a message, and having nothing more to say at the
moment. To a large extent, it is this continual exchanging of
control, the give-and-take dynamics of the situation, that jus-
tifies describing the interaction as "conversational." . There

30

,,..
[P

PP

-
Ma

is a nced for one exception,'however, to the normal way of pas-.
sing control from the computer to the user: the user should
have the ability to interrupt. That is, he should be able to
seize control of the interaction at any time, without waiting

for the computer to relinquish it.

The need for this capability is most clearly seen in the
case of a lengthy computer output which, from its beginning, is
obviously erroncous. suppose, for example, that the user has
programmed a loop to generate a lengthy table, and that by the
time the first few values of the table have been typed, it is
clear that there is something wrong with the algorithm. In such
a case, the user should not be forced to wait until the entire
table has been generated before regaining control of the inter-
action. le should be able, by pressfng a single key, to cause
the computer to stop what it is doing and to await further in-

structions from him.

Background Execution option

The efficiency of an interactive system could be increased
py providing the user with the option of ndetaching" his program
from interactive control at the terminal and having it run as a
low-priority packground process. suppose, for example, a par=
ticular application involves developing a procedure for genera-=
ting fairly lengthy tables. While developing and debugging the
procedure, the user wants to be on-line. Once the procedure is
operating satisfactorily, however, he may simply want to leave
it alone and let it generate its output. In such a case, the
user would like to be able to leave the terminal and return
after the tables have been conpleted. Moreover, unless there is
some urgency for an immediate result, he would probably be

31

content to have it generated at the computer's leisure, espec-
ially if background-processing time were charged out at a lower

rate than on-line time.

Programmed Logout

There should be an instruction to discontinue service that
could be appended at the end of a program, thus permitting the
user to log out of the system and disconnect the terminal in-
directly. If one has written a program that will run for a
considerable time without intervention, it should not be neces-
sary for the user to stay around simply to pull the plug at the
end of the session. As a fail-safe protective measure against
progran malfunction, it would be a conveniance for the user to
be able to specify a time at which his program should be automat-
jcally terminated in the event that it is still running.

Complaints ard Suggestions

The system should have a complaint or suggestion input
capability. 1deas for system improvement frequently occur to
a user in the process of interacting with the systém, and are
forgotten by the end of the session. Similarly, a minor mal-
function, unless it is serious enough to terminate the session,
is apt not to be remerbered. It would be a convenience to the
user, and it should be an aid to the system managers, if it
were possible to jnsert a complaint or suggestion directly into
an appropriately designated file at the point during the on-
line session when the occasion arises. A hard-copy record of
the file could then be made periodically and might prove to be ;
a valuable source of information when attempting to improve the

system.

32

s

REFERENCES

Baker, C. L., 1966. Joss: Introduction to a helpful assistant.
Memorandun RM=-5058-PR. The Rand Corp., Santa Monica, Calif,

Baker, C. L., 1967. JOSS: Console design. Memorandum RM-
5218-PR. - The Rand CorIp.. Santa Monica, Calif.

Burchfiel, J. D. and E. M. Leavitt, 1971. TENEX: User's Guide.
Bolt Beranek and Newman Inc., Cambridge, Mass.

Castleman, P. M. et al., 1970. THE PROPHET SYSTEM: A final
report on Phase 1 of the design effort for the chemical/
biological information=handling program. National Institutes
of Health and Bolt Beranek and Newman IncC.

Dolotta, T. A., 1970. Functional specifications for type-
writer-like time-sharing terminals. Computing Surveys, 2,
5-31. .

Myer, T. H. and J. R. Barnaby., 1971. TENEX: Executive lan-
guage manual for users. Bolt Beranek and Newman Inc., Camb-

ridge, Mass.

Poole, H. H. PFPundamentals of Display Systems. Spartan Books,
MacMillan & Co., 1966.

shackel, B. and P. Shipley. Man-computer interaction: A review
of ergonomics literature and related research. EMI Electronics
Ltd., Report No, DMP 3472, Feb. 1970.

—
— .

-
EL

i)

T -

