
U.S. AIR FORCE 

PROJECT RAND 
RESEARCH MEMORANDUM 

A VARIABLE DENSITY SPHERICAL SHOCK WAVE PROBLEH 

}\ichard Latter 

~-477 

~STIA Document Number ATI 210664 

23 October 1950 

Assigned to-----------

This is a working paper. It may be expanded, modified, or with
drawn at any time. The views, conclusions, and recommendations 
expressed herein do not necessarily reflect the official views or 
policies of the United States Air Force. 

--1-1 ---------~R~nD~ 
1100 MAIN ST. • SANTA MONICA • CALIFORNIA----



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
23 OCT 1950 2. REPORT TYPE 

3. DATES COVERED 
  00-00-1950 to 00-00-1950  

4. TITLE AND SUBTITLE 
A Variable Density Spherical Shock Wave Problem 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Rand Corporation,Project Air Force,1776 Main Street, PO Box
2138,Santa Monica,CA,90407-2138 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

12 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



RM 477 
-i-

ABSTRACT 

! solution is found in the strong shock 

approximation for the propagation of a spherically 

symmetric blast wave in an infinite medium with a 

radial density variation of the form p • bR2a-J, 
0 

·where a and b are constants. It is found for this 

case that the velocity of the shock front is 

~ ~ 
dt • AR , where A is a constant related to b and 

the energy of the blast. 
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A VARIABLE DENSITY SPHERICAL SHOCK WAVE PROBLEM 

An important problem in studying the propagation of a blast wave is 

to have some information as to the effect of a varying external density 

on the shock wave. The folloWing discussion deals with the solution of 

such a problem. In particular, we shall consider a point explosion occur-

ring in an infinite medium with a radial density variation. This problem 

is solved in the strong shock approximation for a family of density 

functions. 

Formulation of the Problem 

The Eulerian equations which are assumed to define the hydrodynamic 

flow in regions not containing the shock wave are 

au+uau._!~ 
at ar p ar 

(1) 

Conservation of Momentum 

(2) 

Conservation of Mass 

(3) 

Conservation of Entropy 

In these equations u is the particle velocity, p is the pressure, p is the 

density, t is the time, r is the Eulerian radius, and y is a constant 

determined by the equation of state of the gas. In addition to these 

differential equations, the functions p, p, and u must satisfy boundary 

conditions at the shock front. We shall assume that the pressure discontinuity 
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at the shock front is large and consequently we shall be concerned with 

approximate boundary conditions; these are 

£.. = y+l 
p y-1 

0 

2 (dR)2 
.P...- -
p

0 
y+l dt 

(4) 

(5) 

(6) 

where R is the instantaneous position of the shock front and p is the density 
0 

of the undisturbed medium immediately in front of the shock wave. 

Solution 

The method used in treating the present problem is based on the similarity 

method of G. I. Taylor. We shall assume that the solution of our problem has 

a special form and then try to satisfy the differential equations (1) - (3) 

and the boundary conditions (4) - (6) with this form. 

Let us assume a solution of the form 

p(r,t) (tt) 
Po(R) • g 

u(r,t) h(E) 
• Ra 

(7) 

(8) 

(9) 

where a and~ are constants, € • r/R, and R = R(t). It is easy to show that 

no generality is gained by replacing Ra and R~ in (7) and (9) by arbitrary 

functions of R. We now see under what conditions these solutions satisfy 

equations (1) - (6). 
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(i) Substituting p, p, and u into equation (1), we find 

where a prime denotes differentiation with respect to the argument of the 

function. We now make the assumption that 

f3 • 2a 

and 

where A is a constant. Then equation (10) becomes 

f') (ah+E-h')A-(hh'+- •0. 
g 

This is now an ordinary differential equation in the variable e. 

(ii) Substitution into equation (2} gives 

I 

g ~ R~ !!!! - g'E Ra ~ + hg' + gh' + 2 ~ • 0 • 
p dt dt ~ 

0 

Using equation (12) and requiring that 

where a is a constant, we find 

(ga - g'E).A. + hg' + gh 1 + 2 ~ = 0 

which is an ordinary differential equation in E • 

(11} 

(12} 

(13) 

(14) . 

(15) 

(16) 
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(iii) Equation (3) can be written for the above solution in the form 

(17) 

Making use of equations (11) 1 (12) and (15), we find 

[ra(lwy) - ~f - Gf' • yf ~€] A + hf' - yfh f .. o • (18) 

Again we obtain an ordinary differential equation. 

Equations (13) 1 (16) and (18) are a set of three simultaneous ordinary 

differential equations whose solution determines f, g and h. It remains to 

show the consistency of the solutions (7) - (9) with the strong shook 

boundary conditions. We see immediately the consistency by substituting 

solutions (7) - (9) into equations (4) - (6). Thus equation (4) becomes 

equation (5) becomes 

and equation (6) becomes 

g(l) y+l .. - , 
y-1 

2 a dR 
h(l) • y+l R dt , 

2 2a (d.R\2 
f(l) • y+l R dt) • 

(19) 

(20) 

(21) 

Or finally using equation (12), we can rewrite these conditions in the form 
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f(l) • 2 
7 y+l 

g{l) • r+l 
y-1 

h(l) 2 
~. y+l 

which are clearly consistent with the equations (13), (16) and (18). 

(22) 

(23) 

(24) 

The equations (13), (16), (18), and (22) - (24) define the solution for 

the propagation of a spherical shock wave into a medium of varying density. 

The family of allowable densities is defined by 

Solving for p , we find 
0 

I 

P R 
...£._ • a • 

Po 

a 
p (R) • bR • 

0 

(25) 

(26) 

Since we are primarily concerned with blast waves, we must require that the 

total energy of the blast wave is constant. The total energy is the sum of 

two terms; these are the kinetic energy 

(27) 

and the thermal energy 

[
R 

E • 4n r 2
dr ..L • 

th y-1 
"'0 

(28) 

The total energy is therefore 

, (R 2 t 2 \ 
E = 4nj 

0 
r dr \ ~ u + ~) • (29) 
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Substituting equations (7) - (9) and equation (26) into this expression, we 

find 

'R . j P (R) ./ 2 1 2 1 
• 4n °2a J r dr {2 g(e)h (E)+ _1 f(e). 

R ,, o y 

Or 

Clearly if E is to be a constant, then 

p (R) • cR2a-3 
0 

where c is soma constant. Comparison of equations (26) and (31) gives 

immediately that 

a ,. 2a- J. 

(30) 

(31) 

(32) 

(We note that we must require a > 0 to have a finite mass near the blast 

centen) 

This equation shows an immediate connection between the density variation 

and shock wave velocity. Thus for a density variation 

the shock wave velocity is 

p (R) • bR2a-3 
0 

dR A ---, 
dt Ra 

where the connection between the constants b and A is determined by the 

expression (30) for E. 

{JJ) 

(34) 
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This completes the solution except for the integration of the differential 

equations for f, g, and h. A numerical integration of these equations is being 

undertaken. However, it is possible to get reasonably accurate approximate 

solutions using essentially the ideas of G. I. Taylor. 

Approximate Solution for f 2 g 2 and h. 

According to Taylor's solution for the case of constant density, we 

conclude that for E small the density is very small, consistent with the 

known effect of shock waves in carrying mass with them. This implies from 

equation (13) that for E small f' = 0 or f is constant. Using this 

result combined with equations (16) and (18), we find that h(€) • E/y for 

small E • Following Taylor we now assume that 

h(S) • (IS,+ xE. y)A. 
"( J 

l 

(35) 

Under this approximation we proceed to determine f, g, x, and Y• First we 

observe that equation (24) demands that 

(36) 

or 

x = r-1 . 
y{y+l) (37) 

To determine y, we first eliminate g'/g from equation (18) with the aid of 

equation (16) This gives 

ft -· f 

where we have used equation {32). 

3A. - yh' - 2y h/.e 
h- €A 

(38) 
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Using equations (35) and (37), we find 

fl 
- •y+2. 
f E.•l 

On the other hand, by combining equations (13), (16) and (18), we find 

fl 
-= 
f 

[(2a-3)(1-·()-~] (€-A-h)A + v[~ + A(2a-3)]<GA-h) - ya.bA 

(eA-h)
2

- yf/g 

Thus using equations (~) - (2h), we have 

' ( 2 !:1 . 2a-1>v • <u•2a>r - 3 • 
f 6=1 2 

y - 1 

Equating the two expressions (39) and (ul), we find 

y • (2a-3)y
2 + (4+2a)y - 1 

2 
y - 1 

8 

(39) 

(40) 

(41) 

(42) 

This completes the determination of h(G). To determine f, we substitute 

equation (35) into equation (38). Thus 

2 ) y-2 
f1 y x(2+y e -. . (43) 
f y-1 

Y-1-:x.yE 

Or integrating we have finally 

oa2 ( +9) 1 
log f • log ; 1 - y ~log (y-1-xyEY- ) (44) 

Similarly, we may write equation (16) in the form 
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, al. + h' + 2h/E . .s..:. .. _____ _ 
g f.A.- h 

(45) 

Integration of th!s equation gives 

(2a-3)y+3 J Y-1-YXEy-l 
log g • log y+ll - y+2 + log -----

Y- y-1 (y-l)(y-1) y-1~ 

(46) 
(2a-3)y+3 

+ log E'. 
y-1 

The expression (46) for g must be consistent with our original 

assumption that g is very small for small & • Clearly this requires that 

the exponent of € in g must be positive or 

Thus 

(2a-3)y + 3 > 0 

a > 3(y-l) 
2y 

Under this condition our solution is consistent. 

Discussion 

(47) 

(48) 

The equations (35), (44) and (46) complete an approximate description of 

the blast problem. This approximate integration for the functions f, g and h 

is, however, not essential as a numerical integration of the differential 

equations (13), (16) and (18) is relatively simple. This latter is being 

undertaken mainly to specify the accuracy of the approximate solution, though 

it is anticipated that the latter is in error by only a few per cent. 
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