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On occasion some of us here have consid.ered the possibility 

of picking out special strategies, called "best" strategies, ~rhich 

have the s:;?ec ial feature that, in a.ddi tion to be.i ng o:ptimtun in the 

us~al sense, they take advantage of the mistakes of one's opponent. 

I show hera that such best strategies al1.;ays exist, in the case of 

finite g:'..mes, and I nise some questions regarding the nature of the 

set of all beet strategies. 

If l is a zero-sum two-person ~~e then by 

we shall mean the expectation of the first player when he uses the 

mixed strategy S , and the second. player uses the pure strategy yj 

when there is no danger of' embigui ty' we s:h.a.ll omit the 11 r "' writing 

merely 

E( ~ ,y) • 

"ive say that a strategy ~ 1 dominates ~ strategy 
;.. 
52 if, for ally, 

E( {~, y) >E( ~2, y). 
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strate{51 if it is optimal, and is not dominated by a:ny other strategy. 

A beat strategy is called uniformly beat, if it dominates every other 

strategy." 

It is easy to give an infinite game for which the set of best 



strategies is empty. Thus suppose, for example, that the first 

player can choose any positive integer, while the second player 

can choose either 1 or 2, and that the payoff funotion R (to tbe 

first player) is defined as follows: 

H(i 1 1) = 0 for all i 

H(i, 2) 1:1: = i 
:ror all ij 

thus the (infinite) payoff matrix for this game is as follows: 

0 

0 

0 

0 

0 

1 
2 
2 
3 

t 

The matrix has a saddle-point at (n, 1) for every n a.'1d the second 

player has a unique optimum strategy -- namely, he should always play 

the first colu:nn. On the other hand, every strategy is opti!ll:!.ml for 

the first player. Horeover, every strategy for the first player is 

dominated by some other: if ~ = <~ 1 , ~2 1 ••• ) is :my strategy, 

then s' = (o, ~l' ~2, ••• ) is a strategy vhlch dominates it, 

for 

-2-

BM-386 



E( ~ t, l) = E( ~ , l) 

E( ~ t, 2) > E( ~, 2) • 

Thus there is no best strategy for the first player. 

In contradistinction, for the case of finit9 ganes we have the 

following: 

Theorem l. The class of best strategies for a finite game is not 

empty. 

Pnof. Let 

I 

\ I 
a11 ~ 

A = 

aml • a 
mn 

be the payoff matrix of a finite game. 

Let B
0 

be the set of optimum mixed strategies for the first player. 

As is well-known, B is a bounded closed set in m-dimensional space. Let 
0 

the function f 1 be defined as follows: 

( 1) 
~ 

L a~ 1 x .• i=l ... _ l 

Since f 1 is a continuous function, and B is bounded and closed, ther9 
0 

exists a point ( xfl), ••• , x~l) ) in B
0 

such that 
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{ 2) 
(1) {1) r1(x1 , ••• , x ) = m 

ma.::r: 
( Xl 1 • • • 1 X J ~ Il m o 

fl{:x:l, ••• , xm). 

Nov let :B1 be the set of all points ( x1, •• • , xm-) of ] such that 
0 

(3) (1) ( 1) 
f1(X1 1 ••• 1 X) c f 1 {X ... 1 ••• 1 X ). m m 

From {1) and (3) ve conclude that Il1 is bound.ed and closed. F~ (3) 

ve see that :B1 is not e!llpty. 

Now suppose that ~1 , ••• , Bk {with k < n) have been defined, and 

e....."""e known to be non-empty, bounded., and closed. \le set 

m 
fk+l(:x:l, ••• , xm) = \ x. 

L. ai k+l i 
i=l ' 

Since Ek is bovn~ed and closed, ~~i fk+l is continuous, fk+l assumes 

~t ~-- .... . t < {k+l) (k+l) > f 't:l i 
~ s ma.x..uutt::)l a.~ sor:J.e poln X 1 , ••• , :x:m o .. k: .e., ve 

have 

fk+l) (k+l)) -
f · (Xi I • • • I Xm - < 
k~ ~, 

max: xm) f Ilk fk+l(:x:l, ••• , x:c:.). ... ' 

We denote by Bk+l the set of all points (:x:11 ••• , Y.m) of Ilk such that 

:f' k+l (:x:l, ••• ' xm) 
{k+l) (k+l) 

= fk+l{:x:l ' •.• , :x:m ) ' 
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and it is readily seen that Bk+l is non-empty, bounded, and closed. 

Thua we have a sequence B
0

, B1 , ••• , Bn of seta of points of n-space 

which satisfy the follm;ing condi tiona: 

(1) B
0 

is the set of optimal strategies for the first player; 

(2) fork= 1, ••• , n, Bk is the set of points of Bk-l at which 

(3) 

the form. 

assl.IDles ita maxirnum. 

B is not empty. n 

It is now easily seen that every member of B is a best strategy. 
n 

For suppose that <u1 , •• • , '1n_) t:- Bn and that (v1 , •• • , vm) is an 

optii:l.um strategy such that, for k = 1, •• . , n, 

Since Bn £. Bn-l f. ... ~ B1 f B
0

, we see that <u1 , ••• , um) f- :8 1 , and 

hence that 

... , 

ao that 

X ) "- B m ~ o 
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ife conclude that 

then since 

and 

we see that 

< v2 , ••• , v ) (:; ::S 1 ; m 

m 
~ 

L ai""'"i 2: 
1=1 :.::: 

and hence that (v1 , ••• , vm) f. B2 • Continuing 1n this way, we see 

that (v1 , ••• , vm) t::Bk' fork= 1, ... , n, and that 
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fork= 1, .•. , n. 

Thus (u1 , •• • , um) is not dominated by ( v1 , ••• , vm) 1 as was 

to be aho'Wll. 

Remark. It would awarently be of interest to study the geometrical 

:properties of the set of all best strategies for a finite game. 

It can be shown that every optimum strategy "1-Thich is not best ia 



dominated by a best strategy. (It would be desirable to give a simple 

proof' of' this; the only proof I have found so far is rather tedious.) 

Some interesting questions regarding the set :B of all best 

strategies are the following: 

Is B a closed subset of n-space? 

Under what conditione is :B finite? 

Is B connected? 

Is B polygonal? 

Can it be shown that :B is non-empty for the case of a continuous 

game vi th a continuous payoff function? 

There are also questions re~~ing uniformly beat strategies. wnat, 

fqr L~tance, are necessary and sufficient conditions that a finite game 

have a uniformly best atrategj? 

je 
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