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HATIOHAL ADVTSCBY COMMITTEE FCR AERONAUTICS 

RESEARCH MEMQRAHPUM 

THE CAI^ÖLAnoIT OF DRAG FOR AIRFOIL SECTIOMS AKD 

BODIES OF REVQLHTIOH' AT SUBCRITICAL SPEEDS 

By Max. A. Heaslet end Gerald E. Hitzberg 

SUMMARY 

A method is developed for calculet' ig the drag, In a real 
compressible fluid and at subcritical Mach numbers, of airfoil 
sections at arbitrary lift coefficients and of bodies of revolu- 
tion at zero angle of attack. To apply the method it is necessary 
to know the velocity distribution for airfoils and the velocity and 
thickness distributions for bodies of revolution, together with the 
Mach number of the free—stream transition point from laminar to 
turbulent flow, and the Beynolds number based on chord or axial 
length. The method consists of tracing the growth of momentum, 
thickness along the surface, for both the laminar and turbulent 
boundary layers, by means of relations which involve elementary 
integrals and can be evaluated by simple numerical means.  An 
outline of the computational procedures recuired for drag calcula- 
tions Is presented in the appendix to the report. 

The values of drag coefficient, computed by the method of the 
present report for a number of cases, are compared with the values 
obtained for the same configurations by other methods and the dif- 
ferences between the various results are found to lie within the 
limits of accuracy of current experimental techniques. ' The use of 
the present method Is recommended by Its simplicity and generality. 

: HJTRODÜCTION' 

Starting with the work of Prandtl (reference l), which was 
designed to determine the skin friction on a pointed flat plate in 
a uniform incompressible two-dimensional flow, the theory of drag 
calculations has been extended by several investigators so that, 
under controlled conditions and at speeds where air may be assumed 
an Incompressible medium, very good agreement has been obtained 
with experiment for both airfoil sections and streamlined bodies 
of revolution. The calculation of drag is, however, limited to 
cases for which It is possible to estimate the location of the 
transition point, that is, the point at which the laminar boundary 
layer over the forward portion of the body is terminated by the 
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onset of turbulent flow, and for whioh there la no extensive separa- 
tion of the turbulent boundary layer. 

In the present report the compressibility of the medium is 
considered and expressions for profile drag of airfoil sections 
and bodies of revolution at aubcritical Mach numbers are given in 
forms which are particularly amenable to numerical calculation. 
The principal contribution, however, is contained in the treatment 
of the turbulent boundary layer in the two cases. As in previous 
work on this subject, the solutions consist essentially of inte- 
grals of the Karman moment id equation for bodies in two-dimensional 
flow and for flow over three-dimensional bodies with axial symmetry. 
In reference 2, Squire and Young solve the problem for incompressible 
flow in two dimensions by means of a roint -by—point method of 
integration requiring considerable labor, and in references 3,  h} 

5j and 6 modifications pf the Squire and Young method oro given in 
various forms which expedite the calculations.  All these references 
give results which are in close agreements The method of Kalikhman 
in reference 6 is of particular interest for it is capable of 
generalization to the body of revolution and to the case of high- 
speed flow where density 'han^as are of sufficient magnitude that 
they must be taken into account. This approach i3 adopted in the 
pre sent report. 

The various procedures which have been developed for predict- 
ing the growth of the turbulent boundary layer over an airfoil are 
all based on the same boundary—layer momentum equation. In order 
to apply this equation it is necessary first to relate the skin- 
friction coefficient to the boundary—layer momentum thickness. On 
the basis of experimental data for flat plates two such relationships 
have been evaluated: a power law (reference 7) a*1^ a logarithmic 
law (references 8 and 2). After comparison with the experimental 
data shown by Falkner in reference 7, for Reynolds numbers between 
2 x 10s and 5 X 10T, it appears that there is little significant 
difference in the numerical values of these two relations, when the 
scatter of the experimental data is taken;into consideration- The 
logarithmic law can be generalized easily to the case of compress- 
ible flow and is used in the analysis of this report. 

The logarithmic relationship between the skin—friction .coeffi— . 
cient and the boundary—layer momentum thickness was combined by 
Squire and Young with the boundary—layer momentum equation to 
obtain the section drag of airfoils. The step-by-step integration 
of the fundamental equation was first avoided in reference k  where 
it was found that a considerable simplification can be achieved by 
dividing the velocity distribution over the airfoil into segments 
in each of which the chordwiso velocity gradient is relatively 
constant. Then, using an average value of the velocity gradient 
for each segment, it was found possiblo to construct, a general graph 
from which the solution for any velocity distribution can be read. 
The authors of the present report were able to generalize the method 
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of reference if- to the case of compressible floy over airfoil sections 
"but the" results have never beon'published. It was thought that the 
closed, form in which the present results are given, together with 
the duality which it was possible to estahlish "between the two— and 
three-dimensional cases, maka'tne latter approach .preferable. 

The power law relationship postulated "by Falkner has "been used 
in reference 3 "by Holt to obtain a directly integrable relation for 
the turbulent boundary—layer growth. By means of a theoretical 
approach based on experimental result3 Totervln (reference 5) 
related the skin—friction coefficient and boundary—layer momentum 
thickness in a more complex form which varied with the boundary- 
layer Reynolds number. Approximating this expression, over the 
range of integration, by a power law, Tetervin was able to express 
the growth of the turbulent layer In a manner somewhat analogous 
to that of Holt. The final forms resulting from this method of 
approach share with the present results for the turbulent layer the 
advantage of being in closed form. In reference 9 Tetervin has 
extended his method to include both two— and three—dimensional 
compressible flow. 

In the vicinity of the airfoil leading edge there Is alwayB 
a more or ISBS extensive region of laminar boundary—layer flow. 
For airfoils at flight Reynolds numbers the laminar portion of the 
boundary layer contributes a minor portion of the total section dragj 
however, the amount Is usually not negligible. In reference 10, 
Young and WInterbottom present a method for laminar boundary—layer 
calculations which includes compressibility effects. The derivation 
of their method is comparable to that of reference 11.  There are, 
however, two significant differences: First, roference 10 Is based 
on Pohlhausen' s relationship for tha velocity variation through the 
boundary layer, while reference 11 uses the Blasius velocity profile; 
and, second, reference 10 neglects the fact that for air Prandtl's 
number is not equal to unity:  The method of reference 11 is used 
in the present report. 

Most of the theoretical and experimental work on bodies of 
revolution to date has been on airship shapes. With the present 
trend., however, toward large land-baBed airplanes, particularly 
those with pressurized cabins, It is to be expected that fuselage 
shapes will approach bodies of revolution. The problem of studying 
the boundary—layer growth and "the drag of bodies of revolution thus 
takes on increased significance while at the same time it becomes 
necessary to generalize the procedure to include the effects of 
compressibility. The development of the' laminary boundary layer 
over bodies of revolution in a compressible fluid is given In 
reference 11 and the theory given there Is applied directly In the 
present report. The momentum equation of the turbulent boundary 
layer Is given by Young in reference 12 for zero angles of incidence 
end a stop-by—step mothod of integration is presented whereby the 
growth of the boundary layer may be determined for incompressible 
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flow. The "boundary—layer equations, for "both"turbulent and laminar 
flow, are more complicated for the "body of revolution than for an 
airfoil section because of the fact that is is necessary to take 
into consideration the variation of the "body radius along the axis. 

Drag calculations for "bodies of revolution have not been 
studied as extensively as for airfoils and little previous work in 
the field of compressible flow has as yet been published.  The 
present theory is similar to that developed for airfoil sections 
in that momentum loss in the "boundary layer is expressed as a 
definite integral but differs In that it "becomes necessary to modify 
the theory over the far aft portion of the body. In spite of this 
difficulty the method given does curtail sharply the amount of time 
required for the total calculation. 

A complete list.of symbols, as used throughout this report, 
may be found In Appendix A, and tho computational procedure for 
drag calculations is presented In Appendix B. 

- " THEORY 

    Airfoil Sections 

Introductory, remarks In figure 1 the two-dimensional flow 
about an airfoil section is indicated along with the boundary layer 
and wake associated with the flow. It is an established practice, 
in all theory connected with the calculation of drag, to divide the 
boundary layer and wake region Into three different regimes of flow. 
Thus, if S represents tho stagnation point, tho boundary layer 
between S and the transition point at T.P, on either surface is 
laminar while between T.'p. and the trailing edge at T.E, a turbulent 
boundary layer exists. In tho wake, the third region to "be 
considered, the plane AA is drawn normal to tho center line of the 
wake at the point where static pressure in the wake has returned to 
its original free—stream value. 

It is easy to show, from momentum considerations, that if 
static pressure is assumed constant across the wake, then tho drag 
D per unit length of tho airfoil is given by 

D = /v pu(U0 - u)dy (1) 

whoro tho integration extends across tho wake in plane AA and 

u  local velocity in wake 

p  density in wake 

UQ velocity of undisturbed stream 
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y  distance measured normal .to center line of wake 

Momentum thickness of the "boundary layer is, "by definition, 

•-tf'sG-l)«' (s) 
"0° 

where 

U -velocity at edge of boundary layer 

u _ local velocity in "boundary layer 

y distance measured normal to surface 

9 momentum thickness of "boundary layer 

B boundary-layer thickness 

Py density corresponding to velocity U 

and in a similar manner the momentum thickness of the wake may be 
defined. How let 

where the integration is in plane AA and D0 is density corresponding 
to free—stream velocity U0.  Since drag coefficient c^ iB fixed 
by the relation 

D = cd | p0U0
2c W 

where c is. the chord length of the airfoil, it follows that 

c 
d   c (5) 

The analysis consists essentially in tracing the growth of Ö , 
the momentum thickness, along the top and bottom surface of the 
airfoil and in the wake to the plane AA.  Since the nature of the 
flow in the boundary layer affects the rate of growth of the 
momentum thickness, it is necessary to treat the different regimes 
separately.  The following development is therefore arranged to 
conform with this natural division. 

Laminar layer.— In reference 11, expressions have been developed 
wMch may be applied immediately to determine the growth of the 
laminar boundary layer in two-dimensional flow of a compressible 
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fluid. In tMs reference the boundary~layer thickness di at the 
point xi is defined as the distance from the surface of the 
airfoil to a point in the "boundary layer where the ratio of the 
local velocity to the velocity outeide the boundary layer is O.7O7. 
Neglecting terms involving the fourth power of M, where M is 
the Mach number of the free stream, the boundary—layer thickness 
dj. is given by the relation 

0): 
Br (AT1 17 5.3 { 1--0.35M2 

-   I' 
1-1 HIT] 

/„(?)i G^rxf) -*•>* n(f)i ariT *©" (6a) 

where ..,,.. 

Rc Reynolds number based on chord length 

Ui velocity outside boundary layer at point xi 

U  velocity outside boundary' layer at point x 

x  distance along airfoil chord 

In the computation of section drag coefficients, inasmuch as 
the laminar portion of the boundary layer contributes a minor 
portion of"the total drag, it is practicable to simplify this 
equation. The modification will concern itself with the last term 
in equation (6a) and is Justified by the fact that the last term 
contributes a small part to the total value of. the boundary-layer 
thickness squared. Approximating the last term by the expression 

Tsrf&w (o-o83) Äfcrxo R. 

equation (6a) may bo rewritten as 

W     ^(2^-1 L        W Jj 
I 

f®X&-"<*) (6b) 
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Again neglecting terms Involving the fourth povor of M, It is 
possible to show from, results given in the reference that if 

Prandtl's number Pr «-*—•    is set equal to O.733, Its value for 

free air, then    . 1 

(f3j)-.o.«jl.+ 0.*>[l-1.3»($f] (T) 

In the calculations that follow the "basic variable will "bo the 
nondimonsional product of momentum thickness and density. The 
value of this variable at the point x = Xx, Independent of the 
definition of boundary—layer thickness, is an Immediate consequence 
of equations (6b) and {7}. Thus 

i    (O   dCx/c) 

Turbulent layer The momentum equation for the turbulent 
boundary layer In compressible flow Is given in reference 10 

(-3) 

as 

M. +r(H + 2) Hi + £z]o = -2-s (9) dx       !X U °U   J PtfT 

where the primes Indicate differentiation with respect to x, 
H is a function of the boundary-layer velocity—profile shape, and 
T is the skin friction per unit aree.. Under the assumption that, 
for compressible fluids, 

-3£- =r o.sh.'ih- o (10) 

where 

1 

and u^. is the coefficient of viscosity at the wall, it is 
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possible tu transform the equation t.j thn f,«-r^ ';cxd by Y.-vny and. 
Winterbottom ""...'''. _ .!T 1.._.    ..''! 

JS. + 2.555 (5 * 1)21 . pL iof4ii« -*8-o.«"5     (11) dx U   M^- 

The numerical methods used in the Integration of equation 
(ll) are somewhat protracted. To obviato this introduce now the 
transformation 

TO „        ..SI £a- 0.2k^hise°'391A^ (12) 

With this change of variable,  equation (ll) "becomes 

tff) u/U0 U0    Mw      Po 

whore •-'•=:.--•• 

K = 2-555 (c.191^ + |) 

and the equation has "been written in nondimensional form. 

It is necessary in equation (l^) to relate the value of coef- 
ficient of viscosity at the vail to its value in the free stream 
M0. This follows, directly from the empirical relation (reference 13) 

^w WJ 
Mo   /T0^O.TS 

whore TQ and Tw are absolute temperatures in the stream and at 
the wall, together with 

Tv = T0(l+2rlMa) 

which is an immediate consequence of the assumption that energy is 
constant through the turbulent boundary layer. It follows that, 
approximately, 

Mw •* Mo (1 + 0.152 Me) (Ik) 
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Setting 

JL . ü, 3Z - ?, x „ x, 

and using the approximation for coefficient of viscosity, equation 
(13) appears in final form 

M + K (H+I) (aWdfl S=KU —fLiils  (15) 
01 U [1 + 0.152 Mi2] 

It is possible to put the solution of equation (15) in a form 
which is veil adapted to calculations- if constant average values 
are used for E and K. Under this assumption, the integral of 
the differential equation is 

z = U"       -(C +  52 JKpU       ox h (16) 
t-   [1+0.152 M2! i 

The variable £, in the - tnarbulent region, lies roughly "between 
20 and 30 so that the total variation of JC is small and K has 
an average value approximately equal to 1,21.  The shape factor 
H varies, for a noneaparatod "boundary layer, approximately from 
1.3 to about 1-Tj hut from experience gained in other calculations 
it has "been found that cour Atations. for low speeds are quite 
insensitive to the value of H used and highly satisfactory 
results can be obtained for a constant value öf H. In the present 
report K(E + l) shall be sot equal to 3-  This assumes a value of 
H between 1.1* and 1.5 which is in conformity with low—speed 
measurements and, as shall "be seen, will.give computed drags in 
close agreement with experiment; and other calculations.  There are 
no available experimental measurements of velocity distributions 
through turbulent boundary layers at high speedB of sufficient ' • 
accuracy to permit the determination of the effect of compressibility 
on H. Lacking such information., the assumption will "be made that 
the same values for H can be used in the compressible case as in 
the incompressible case. Imposing the condition that at the transi- 
tion point z  = Zj.p.i the arbitrary constant C is determined and 
the solution becomes 

z  = T-*\     U J Tl+0.152 M^naJ^ - _ [I+O.I52 tf^tf^Xgl.p. 

The density term in the integrand may be evaluated "by assuming 
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the flow outside the "boundary layer is isentropic;  thus 

1 
7~1 (18) P = 1 + 2=± M2 (14J2) 

2 

The value of z at the transition point, which is required in 
equation (lT)j must he found from the value of (9^)T.P. determined 
"by equation (8). Since, in nondimensional variables. 

5 = 2.555 iJhl&Xs-LLE') 
\ [1+0.152 M2 ] / V [1+0.152 M2 ] 

where In denotes natural logarithms, then 

if 

z  o 1.60U w InSw (19) 

w =  kiOIS . Rc3pÜ (20) 
[1+0.152 Ma] 

Substituting from equation (8) into equation (20) thus gives w at 
the transition point. In figure 2, which is a plot of equation (l9)j 
the required value of zy.p, can "be found. If the velocity distri- 

bution over the airfoil and the free—stream Mach number are known 
it is now possible to substitute directly into equation (17) and 
determine the growth of the boundary layer up to"the trailing edge. 

Wake,— Young, and Winterbottom in reference -10 have discussed 
the momentum equation in the wake and have concluded oh the basis 
of what experimental data are available, that^ 

pa ©a =ör.E. 0T.E. üTil-
3,2 (21) 

where subscript 2 applies at piano AA in the wake and T.E. indi- 
cates values at the. trailing edge of the airfoil. 

From Z!p.E. ^^3e valU9 °f WT.E. follows and the airfoil 
section profile drag coefficient iB given by 

cd =  [1+0.132 M21 ^*JU-_ UT ,  2'2 (22) 
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Bodies of Revolution 
i 

JS^^^^^P.^X-^SISEKS.'—
S
 

I^1-'3 development of the theory relating j 
to the calculation of drag for a "body .of revolution Is directly ' 
comparable to the theory presented above for airfoil sections except         ~   • 
that the angle of attack pf the "body will be restricted to zero. • 
In figure 3 the body is shown; point S representing the stagnation 
point, T.P. indicating tau transition point jn the piano of the ; 
papei-j T.TE. denoting the tall end of the body, and AA marking the '• 
position of the plane where static pressure has returned to its 
value in the ambient stream. , 

Drag coefficient of the body is by definition 

Cb ^—S7S (23) 

where 

D   drag of body 
1 

TJ0  velocity in the free Btream 

p0  density in the free stream 

V   volume» of body 
1 

and, from considerations of momentum., 

D = 2it/ pu(TJ0 - u)y dy f&fc) . \ 
w 

where the Integration extends across the wake In plane AA and                • 

u   local velocity In th3 wake ' 

p   density in the wake 

y   distance measured normal to center line of wake \ 

For bodies of revolution the momentum area $ which is defined by 
the equation ' 

$ = 2* f6 -JBä (l  - JlVr + y cos a)dy (25) 

where , 
j 

S   thickness of the boundary layer ! 
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r   radius of cross section of "body 

<x   angle between tangent to generator and axis of "body 

occupies a role analogous to that of momentum thickness in two- 
dimensional airfoil theory. Momentum area in the wake, at the 
plane AA, is 

02  = 2« ; J     _fiä_/i_ JLAy dy 

whence 

CD = 

(26) 

(27) 

The theory which follows will also nave occasion to use the 
variable    0    which is related to the momentum area by the 
expression 

9  = <t/2*r 

or 
5 

6  -/     PH-fl-UVi +Zcos )(! + f cos a) ay 

(28) 

(29) 

Laminar layer  From the theory developed in reference 11,  the 
laminar boundary-layer thickness    &i, defined as in the two- 
dimensional case, at an arMtrary point    Xi    is given,  neglecting 
terms involving the fourth power of    M, "by the expression 

($' 
^ 

&7ir\ 

(30a) 

where 

Ui  velocity outside boundary layer at point xi 

R^  Reynolds number based on length of "body 

r   radius of cross section of body 
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x   distance measured along axis 

dj.  "boundary—layer thickness as defined for equation (6a) 

I        axial length of "body 

Since, in general, the lauunar portion of the "boundary layer 
contributes a'small part of the total drag and'since the last term 
in equation (30a) represents a small part of the value given "by 
the relation, it is practicable to derive a simplification for 
(di/l)2 analogous to equation (6b). Thus, 

Ci-r - 111 (JL\Z\ 1-0.35 M2 

<)9 
ir\xiJ 

.±1 

i 
I-I.67 <£>"j 

r (f-wiT<f) (30b) 

It can also be shown that if Prandtl's number is set equal 
to.0.733 and if terms in M of fourth degree and higher are 
ignored, then for the' tody of revolution the following approximate 
relation is obtained.  -   - •. - 

(f S)V y-082 \ ^a*h '-KIT]    (31) 

Grouping momentum thickness and density together, and in 
nondimensionai form, the following equation holds 

1 (t S) V iffi><£' j1 * ^ 4 -0-92 (I"')2] I 
/ 

(32) 

Turbulent layer The momentum equation of the boundary 
layer, for a body of revolution in compressible flow is given 
in reference 12 in the form 
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IEC^^C^ =r2^ 
where 

A* displacement area in "boundary layer (see definition in list of 
symbols) 

T  skin friction per unit of area 

Setting (A*/G) = H reduces the equation for the 'boundary layer of 
the "bodies of revolution to a form, similar to- that for airfoils. 
Thus 

4fi+["(H4a)Hl.+ £!slfl>--XIr2«.        (33) 
dx  L     U   p^ J   p^ 

the primes indicating differentiation with respect to x. 

It should "be noted that the definition of H differs in the 
three-dimensional case from that in two dimensions.  However, in 
the case where the thickness of the boundary layer is small in 
comparison with the local radius of the "body of revolution the two 
expressions for H are approximately equal. 

The relation between T}   PJ U, arid 9    used in the analysis 
for airfoil sections was based on theory that held for a flat 
plate; that is, the pressure gradients were" ignored in that 
particular.phase of the study. Since on bodies of revolution the 
pressure gradients are small/ the same relation may be assumed to 
hold, thus 

-iS- = 0.2^5^« (« 

where   

v 
From equation {3k)  and the definition of 4,  it follows that 

UpTTO      .  .        0.3914^ 
-|g? = o.2^ 2nr o (35) 
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and substitution, of this relation into equation (33)  gives 

|| + 2.555 [(IM.) ff  + El]    - ^ 10^11^Se~°'391^ 

15 

(36) 

Now let 
UDPU- 2.0.391.4^ (37) 

Direct substitution into equation (36) yields 

-JLL_ + Kf(H+l) -MH^/l^Al +    d(r/l)/d(r/l? 

(?) 
urn, r/l 

= K u ^O.PQ
1
 £g 

ÜÖ "T^T" Po 
(38) 

where 

2.555 f 0.391t + |A = K 

and the equation is written in nondimensional form. 

Setting 

U Pü *  T- "w 

and using the relation 

Hv = M0Cl + 0.152 M^l 

the final form of equation (38) becomes 

dr    ;       ü       r 
£ = K 

UpRj 

[1+0.152 M2] 
(39) 

Putting again K = 1.21,  K(H+l) = 3 and fixing the arbitrary- 
constant of integration by assuming that z = Zm p  at x = x^p , 
it is possible to express the solution of equation (39) iQ the 
form 
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z = zT>p i^H^^Y^^-al 

+ _  1.21 R-i 
U3[l+0.152 M^]r     ^^ 

His density terra In the  integrand is evaluated "by means of* the 
expression 

1 
>-l    , 

P = [l +^M?(1_U2) (hi) 

The determination of z~ _  from the known expression for 

(&p)  given by equation (3^), proceeds as follows: Srom equation 

S = 2.555 in / JL°P R* LO\ 
V [1+0.152 M2] / 

whence 

if 

z = l.oOlt- w Zn3*;     - (1+2) 

v - - Ji^ZOL _ e pu <i*) 
[1+0.152 Ma] 

Thus, from equations (+3) and (32) the value of w at the transi- 
tion point can. he found and Z

T.P. ^-B  obtainable from figure 2. 
With this information, together with the velocity distribution 
over the "body and the free—stream Mach number equation (^0) can he 
used to trace the growth of the "boundary layer aft of the transi- 
tion point.      -   ".= . . --.--—-.       ... 

One difference arises in the computations for bodies of revolu- 
tion which distinguishes the theory from that for air-foil sections. 
This is duo to the fact that r vanishes at the tail of the body 
and as a consequence an infinite singularity appears in equation 
(ko).    Because.of this singularity it is not possible to carry the 
integration to the tail for momentum thickness will become infinitely 
large and the expression for drag coefficient becomes an indetermi- 
nate form. To circumvent this difficulty it is necessary to use 
equation (ho)  up to some arbitrary point, say the 8o~percent point 
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of the axis, and then to modify the method of calculation. For 
this purpose It le convenient to compute the growth of momentum 
area rather than momentum thickness over tlxe latter portion of the 
turbulent run. 

Two means will "be given whereby the momentum area can he 
calculated^ The first, which is merely an extension of reference 10 
to the. case of compressible flow, involves a point-by—pomt integra- 
tion of the basic differential equation.  This equation Is express- 
ible nondimensionally in the form 

dx 
(H+2) Ü   41$ (O.-^gi^)8 git r 

InS- Upö lj 
m 

O^k^k X 2iir X [1+0.152 M2I 

The derivation of this expression may be obtained by combining 

a_p£f • 
=» T • 

and 
Upn$ ,   . o.39X4£ 
-t-P- = 0.2^ 2« r e 
Hv • ••...• 

to 

(0.391^)2 

e&' iTf 
UpJBj 

0.2^ X 2« r X [1+0.152 M2I 

(*S) 

which,  together with equation (ll),  will give the required relation. 

From the value  of    Ö    and    r    at the 80-percent point on.the 
axis,   the value of    T$    can be found at this point and the ^growth of 
7F    can then be calculated over the remaining portion of the body. 
In particular,   if   Q&-.   is the value  of   $   at an arbitrary poinb 
x"    on the axis, • 

*n+l ?.*n-+f * A(T) (h6) 

where ^n+2 
ls 't^s val1JlB of ^ at the point x + £(x").  The 

calculation consists'of repeated applications of this relation. 
As the interval A(x~) In equation (46) gets.smaller the result of 
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the calculation approaches the exact solution of equation (hk). 

Since the above calculation ie to he applied over an interval 
which ia small in comparison with the axial length of the body, the 
labor of such'a calculation Is much less than would be required if 
such methods were applied to the total turbulent run. It is possible, 
however, to shorten this calculation further,by assuming that 
Cf2« r is a linear function of x where c-p = 2T/P0XJ0

2
 is the 

local skin-friction coefficient.  The validity of such an assumption 
will be examined later In the discussion. 

Return now to equation (33).  From the definition of akin- 
friction coefficient the right—hand side of this equation is 
expressible as     _.       . .  .       " 

jtr 2T 

P0Ü0
2 0U 

/Uo\2  m 2JCT0T (V7) 

If    Cf2n r    is linear, over the aft portion of the body,  falling 
from Its value at the 80-percent point to zero at the tail,  then 
in nondimensional terms equation (33)  can be written as 

& + 
dx 

(H+2) fdff/d3c) 
U 

fdq/dx) f = l(^2rt?)o.s (W) 

This equation can be  integrated, and as a result 

_-(H+a)     -1    r 
$ = U p 

H 
C +/ I (cf2* r)o>8  (l-x)lT    dx (h9) 

"When    x = 0.8,   4    = ^0.8 

so that •   -  -: 

C = 
0.8      O.8 

H+2 _ 
P 0.8 

Using this value of    Q}  together with equation (^9), 

; - *o 8(V) H+2 (SgA. 5<c^WS (l^)Tj =« 
o.e\   v J \   p   J      g      ^H+2  J 

0.8 

(50) 

and, after substituting from equation (U7), the value of 4 at the 
tall Is given by the equation 



HACA EM Hb.  ATB06 19 

v»--Hfc:)"(l5:)- 6.528 
2JC r 

InSf- 
4.075 Ej  9  pIT 

\ [1+0.152 tf1 r) 0.8 

1.0 

PT.E.U3?.E.2   J0#8 ^Oin IT 
y 

(51) 
JT.E. 

Wake. - In reference 12 Young has integrated the momentum 
equation in the wafce applying the  same methods used in references 
2 and 10,  for the "body of revolution.    If subscript 2 indicates 
values, of the variables in the plane    AA    and    T.E.     denotes values 
at the tail of the "body,  then it is shown that 

(52) 

Since,  from'equation (27) 

CB = 
S*, 

2/3 

it follows that 

PT.B. T.E.;_ TT 
-2/3   /, 3 A 

TT 3.3 
UT.S. (53) 

DISCUSSION 

The foregoing theory provides a convenient procedure for 
studying the growth of laminar and" turbulent boundary layers and; 
for calculating the drag coefficients of airfoils and "bodies of 
revolution-  Juat aa in the case of wind-tunnel testing, where it 
is essential that the model tested he an accurate representation of 
the original configuration, it is important that in the application 
of this.theory the operator Bhould be ahle to determine correctly 
the required 'aerodynamic properties of the configuration under 
consideration.• This implies that the pressure distribution over 
the body and the extent of the laminar"and turbulent layers be 
specified or be determinable. 
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Telocity distributions are an immediate consequence of pressure 
distributions, for "both low- and high—speed flow, so that if experi- 
mental data are_avallable_ the calculations may proceed directly. 
The theoretical calculation of the yelcfcity distribution corre—. 
sponding to-a given shape is, on the ether hand., a rather lengthy 
process although such methods have been treated adequately in the 
literature. For an arbitrary airfoil section at any desired lift 
coefficient the velocity distribution for incompressible flow can 
be found by the methods of Theodorsen (reference Ik),  Allen 
(reference 15) or Goldstein (reference 16). For NACA conventional 
and low-drag airfoils corresponding distributions may be found quite 
easily from the tabular data given in reference 17. At subcritical 
Mach numbers the velocity distributions are calculable from low- 
speed data by moans of the well—known Glauert-Prandtl or Karman— 
Tsien transformations. For the body of revolution, methods have 
been given by Young and Owen (reference IS) and Kaplan (reference 19) • 

The theory for the determination of velocity distributions is 
of course based on the assumption of potential flow but, for 
airfoils, if the lift coefficient rather than angle of attack is 
specified the calculations are sufficiently accurate for most appli- 
cations. In reference 20 it is shown that the effect of the presence 
of a boundary layer is primarily to change the apparent angle of 
attack of the airfoil and to increase the local velocities in the 
vicinity of the trailing edge. A procedure is introduced in this 
reference for estimating the magnitude of the change in the trailing— 
edge velocity brought about by the presence of the boundary layer. 
This procedure fi'rst estimates boundary—layer thickness from the 
potential theory velocity distribution and can be used in conjunc- 
tion with the theory of the present roport.  In the calculation of 
drag coefficient, however, the nature of the equation is such that 
the total drag coefficient computed is merely affected to a very 
small degree by moderate changes in the trailing-edge velocity, and 
as a consequence such a refinement is not used when only drag coeffi- 
cient is to bo found. 

The determination of the location of the transition point from 
laminar to turbulent flow in the boundary layer presents a diffi- 
cult problem. At small Reynolds numbers and for smooth surfaces 
transition occurs in ä region cf decreasing local velocities where 
there is usually a region of separated laminar flow between the 
laminar and turbulent portions of the boundary layer. However, at 
Reynolds .numbers greater than several million the length of this 
region of separated laminar flow is of negligible extent so that it 
is possible to consider ti\nsit1on as occurring at a point. Experi— 
mental flight tests of smooth airfoils with maximum velocity in the 
vicinity of the midchord indicate that transition "occurs when the 
local laminar boundary—layor Reynolds number R^. = Udp/ii attains 
a value of about 8Ö00. The velocity tr is "the local velocity • 
outside the boundary layer and it should be noted in particular 
that the characteristic length d used in evaluating this Reynolds 
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number is the value of & obtained by the equation for the laminar ! 

boundary layer in the present report. This transition criterion j 
applies strictly only to the determination of whether the transi— • 
tion point, is ahead of the maximum, velocity point. For configura- 
tions in which marl reran, velocity is as far hack as the midchord 
position and for which the transition Reynolds number occurs aft : 
of this point, it is probable that the transition point will be ' 
close behind the mail mum velocity point. For Bmooth airfoils at i 
angles of attack" such that there is a sharp velocity peak in the 
vicinity of the leading edge, transition, occurs behind the maximum ! 
velocity point. . Theory and experiment indicate that in such .cases ' 
transition at large ReynoldB numbers occurs only after the velocity , 
has decreaeed between 5 and 10 percent of the maximum velocity, the 
percentage of the velocity recovery before transition occurs being : 

greater the more slowly the velocity decreases in the chordwise = 
direction. ) 

The preceding criteria for the location of the transition ; 
point indicate the most rearward position that can-be expectedj [ 
that -is,, the probable position for smooth airfoils in low—turbulence 
flow. "When the surface under consideration is rough or contains ! 
such transition—promoting agents ae protuberances, waves, air : 

leakage-, or dust particles ahead of the transition point, äs 
predicted for ideaT conditions, it is to be anticipated that transi- 
tion will move forward in the direction of such disturbances. In 
the immediate vicinity of the stagnation pointy ;however, there is a 
very rapid acceleration of the air so that any local disturbance ; 
which is not sufficiently severe to change the local velocity" 
distribution will be unable to cause transition to. occur in this 
region of very'favorable velocity gradient. 

There are not sufficient experimental data on the location of ' 
the transition point" on "bodies .of revolution in low—turbulence 
flows. Lacking such information, the most reasonable basis for ' 
estimating the transition point on bodieB of revolution seems to 
be to use the same-criteria as previously presented.for airfoils. , 

•-.-.-.-.'.       Drag of "Airfoil Sections  .. ! 

In reference 2 the section dra^ coefficients, computed by the . 
method of that report, are presented for an extens'ive range of 
airfoil thickness—chord ratios^ Reynolds numbers, and transition i 
point locations. A representative group of these cases has been j 
recomputed by the methods of reference k;  as well as the present ; 
report, and the results of these calculations are given in table I. 
It is seen in the table that the maximum difference "existing "betveen ' 
the three methods for obtaining the drag coefficient is 0.0002 for 
a single surface and is 0.000*1- for the total drag coefficient for ! 
both airfoil surfaces. There is no apoarent consistency in the ; 
nature of the deviations, however, and in only one case does the 
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difference In total drag reach the value given above. The results 
of reference k  should agree numerically with those of reference 2, 
Bince they are "based on the same fundamental assumptions, hut some 
difference might be expected when comparisons are made vith the 
computations based on the present report because of the small 
change in the shape factor H and the averaging method used to 
fix the factor K. The agreement between the results should 
therefore be considered highly satisfactory and a confirmation of 
the compatibility of the assumptions. 

The limits of accuracy of. current methods for measuring 
airfoil section drag coefficients Is of the same order of magnitude 
as the differences existing between the various theoretical results 
so that it is not possible to say which of the calculations most 
accurately predicts experimental values. The wake—survey method Is 
now used commonly in the determination of experimental drag coeffi- 
cient and it can certainly not be said to determine drag within the 
limits needed to establish the relative accuracy of the preceding 
computations even though, for a given test configuration, it may 
be possible to repeat measurements to a higher order of accuracy. 
Any experimental,check i§ also complicated by the problem of 
locating the point of transition from the laminar to turbulent flow 
In the boundary layer. The previously mentioned methods for 
determining the transition point can easily err by a few percent of 
the chord length on each surface, and this can bring about an error 
in the calculated section drag coefficient of the order of magni- 
tude of O.OOOI4-. 

Very few experiments have been conducted in which the location 
of transition from laminar to turbulent boundary—layer flow on both 
surfaces and the corresponding section drag coefficient were measured 
accurately.  In reference 2 the section drag coefficient 
measured in flight is given as O.OOSO for a 25-percent—thick 
section at a lift coefficient of 0.25 and a Reynolds number of 
8.2 X 106, the transition points having been measured and found to 
be 36 and ?,0 percent of the chord" length, from the leading edge, 
on the upper and lower surfaces, respectively. For this configura- 
tion the following results are given by the~värioüs listed methodB 
for calculating airfoil section drag coefficients: 

Method 

Experimental, Flight (reference 2) 

Squire and Young (reference 2) 

Nitzberg (reference k) 

Eolt (reference 3) 

Tetervin (reference 5) 

Present report 

"Section draä coefficient 

0.0080 

.0079 

-0077 

.OO76 

.0077 

.0080 
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TheBe values are all within the probable limits of accuracy of f 
experiment. .':."- 

r 

The drag coefficient for an HACA 0012 airfoil at" zero angle 1 
of attack and the corresponding transition—point locations.have j 
"been measured at a. number of Reynolds numbers. These measurements ; 
are tabulated in reference 5 along with the theoretical drag j 
coefficients obtained by several theoretical methods. The results, \ 
together with the numerical values calculated as Indicated in the j 
present report, are present-id in table II. It is believed that the ! 
differences between the numerical values of the various methods j 
leave little choice as to the relative accuracy. Any decision to ' 
use one method in preference to the others must rest, for the : 
present, on convenience of application. The procedure of the j 
present report requires no approximations to the velocity distri- 
bution over the airfoil and it is readily applied to calculating ; 
both the growth of the laminar and turbulent boundary layers as ', 
well as computing airfoil section drag coefficient. , 

1 
1 

The calculation of airfoil section drag coefficient for ; 
airfoils at speedB requiring the Inclusion of compressibility . 
effects was first given by Young and Winterbottom (reference 10). 
The single numerical example considered in this reference is an 
l8.5-percent—thick symmetrical Jbukowaki section at zero angle of ! 
attack. The assumption was made that the transition point is 9.k 
percent of,the- chord from the leading edge and that the Reynolds 
number is equal to 10T. "Velocity distributions were used for • 
potential flow and at a Mach number of 0.685- For these two cases J 
the calculated drag coefficients were O.OO89 and 0.0091, respectively,       • . 
while the present report gave, for the seme data, the values O.OO89 
and O.OO93. Thus, both methods Indicate that at subcritical Mach 
numbers the Introduction of compressibility effects into the compu— j 
tations brings about only a slight increase in the airfoil section • 
drag coefficient.       . ; 

Drag of Bodies of-Revolution ! 

The problem of boundary—layer growth and the determination.-of ; 
drag coefficient for bodies of revolution is more complex than for 
airfoil sections, since it is necessary to take Into consideration 
the dimensions of the body as well as the velocity distribution. ! 
The method derived in the present report furnishes a procedure 
which parallels closely the analysis derived for an airfoil section ; 
and, with little increase in intricacy, embraces compressibility '• 
effects.  In order to compare results obtained by the present method 
with results given in reference 12, drag coefficients of the Akron 
airship shape were computed at a variety of Reynolds numbers and \ 
transition points; These results are presented In table HI along 
with the corresponding drag coefficients' obtained by Young for the 
same configurations. (For convenience of comparison, .Young's 
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convention of "baaing the drag coefficient on the body surface area 
was adopted. This convention differs from those used by the'NACA 
which "bases the drag coefficient on either the volume to the two- 
thirds power or on the projected frontal area.) It is noted that 
for transition points far forward the difference "between the results 
for identical configurations, as obtained by the present method and 
that of Young, increases with the Reynolds number.  This implies 
that the difference between the two methods arisen in the calcula- 
tion for the turbulent layer and is probably brought about by the 
use of the.averaging method associated with the local skin—friction 
coefficient. 

Tory few experiments have been conducted on bodies of revolu- 
tion at zero angle of attack to determine tho location of transi- 
tion and the corresponding drag coefficient; In reference 21 the 
drag—coefficient measurements for the Akron airship shape at three 
Reynolds numbers of the order of 10,000,000 are given. Boundary- 
layer surveys indicated that in each of thess three cases the 
transition from laminar to turbulent boundary—layer flow occurred 
at 7 percent of the body length from the leading edge.  In 
reference 22 drag coefficients are given at the same three Reynolds 
numbers for a metal body of virtually the same shape.  These latter 
measurements are considerably larger, a fact which is difficult to 
explain because the pressure distribution over the forward 5 percent 
of the body is so very favorable that at these moderate test Reynolds 
numbers it is improbable that transition could move significantly 
ahead of the 7—percent station. For the series of measurements 
reference 22 indicates that the wind—tunnei—interference effect was 
of minor importance. The wooden model was of polygonal cross 
section; whereas the metal model was a true body of revolution but 
this would Beem to bo unimportant. Assuming"that transition 
occurred at 7 percent of the body length from the leading edge and 
using the experimental pressure distribution of reference 21, tho 
drag coefficient of the Akron shape was calculated at the three 
test Reynolds numbers. 

In the following table the calculated values are compared with 
tho two sets of experimental values. 

Reynolds 
number 

12.3 X.106 15.0 X 10s 17.3 X 106 

Wooden 
model 

•O.OI98 0.0193 0.0190 

Metal 
model .0228 .0223 , .0219 

Theory • Cr?2 .0217 .0212 
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It is seen that the calculated values lie "between the two sets of 
experimental data. ! 

Raw data from wind-tunnel experiments on bodies of re-volution 
generally indicate ä change in.the absolute value of the pressure 
coefficient as the Mach number increases but the magnitude-of this j 
increase is such that it may very well he attributable to wind—• 
tunnel—wall effects. There is a difference of opinion between ; 
various authors as to the effects of compressibility on the velocity : 
distribution over bodies of revolution for analyses have been • 
presented both affirming and denying that pressure coefficients j 
rise with increasing Mach numbers. These differences have been : 
resolved by J. G-. Harriot. In reference 23 he shows by means of • 
linear perturbation theory that, for very slender streamline bodies i 
of revolution in a uniform stream of compressible fluid, the' ! 
pressure coefficient at the surface of the body is almost independ— i 
ent of Mach number. The equations of the present report, together         .  ! 

with the result that the velocity distribution is independent of ; 
Mach number, were used to determine' the effect of compressibility ' 
on the calculated drag coefficient for the Akron shape i'   For transi— \ 
tion point at 25-7 percent of the chord from the leading edge, 
Beynolds number equal to 10B, and free—stream Mach number equal to : 
0.7, this configuration had for calculated drag coefficient the 
value 0.00l8*t as compared with O.OOI98 for the incompressible case. 

In the presentation of the theory it was noted that the method 
developed for computing the growth of the boundary layer over bodies I 
of revolution breaks down in the vicinity of the tail end. 'When 
the drag of the Akron shape was being computed it was observed that, 
over a range of Reynolds numbers from 10s to 10s and transition 
points from the leading edge to about the midchord position, in the \ 
step—by—step integration over the last 20 percent of the chord the | 
quantity cf[2it(r/l}] varied almost linearly with x from its . j 
value at the 80--percent-chord station to zero at the trailing edge. ! 
In reference 12 this is also shown for Reynolds number equal to 108. 
When this assumption was inserted in 'the differential equation for ', 
$ it was possible to integrate the equation'directly and the ! 
results obtained by the di^'ect integration were in good agreement' \ 
with values obtained by the step—by—step integration of the original ; 
equation. It is believed that for practical applications the  . . 1 
simplified procedure based on the assumption of a linear variation i 
of cf [2it(r/l}l will be sufficiently precise. However, if a body 
of revolution, • with shape markedly different over the rear portion I 
from that of the Akron, is to be investigated for a range of I 
transition points and Reynolds numbers it is suggested that repre— ; 
sentative cases be computed by using a step-^by—step integration 
over the last 20 percent of the chord. Only in this manner can • 
the exactness of the assumption concerning the linear variation 
of cf[2rt(r/l)] be tested. ; 
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General Kemarks 

In certain cases it IB particularly desirable to know the 
variation of either the thickness or the di splacement thickness of 
the turbulent "boundary layer over a curved surface or a "body of 
revolution. In order to determine this precisely from a knowledge 
of the momentum thickness distribution it would he necessary, of 
course, to have added information about the variation of the shape 
factor H and the velocity distribution through the boundary layer-. 
In reference 2k}  von Doenhoff and Tetervin have diBcussed certain 
aspects of this -Droblem thoroughly, and have presented an empirical 
differential equation that, when" used with~'tE6*'mömentum equation 
and the skin—friction relation,- permits tracing the development of 
the turbulent boundary layer to the separation point.  The calcu- 
lations necessary for the solution of these equations are, however, 
of considerable length. 

The relations in reference 2k make it possible to calculate 
the variation of momentum thickness and bottndary—layer—shape factor 
accurately, ffor airfoils at low speeds, this calculation involves 
the use of three equations: 

äß  +  (H+2) £ äS = 1 dx  K       J  u dx (£.   . 

£'= 2.555 'in (t.075\fW)" "" 

ää _.„ 4-e8° ^-a*9Y5^T-^ Ä ffl 5« -^.o35(&-i.286)
n 

6  as = e 
dx U dx 

The first two of these equations are the basic equations of the 
present report and the last equation is fin empirical relation which 
was developed by von Doenhoff and Tetervin.  It so happens that the 
first equation is quite insensitive to .the value of H.  Thus for 
nonseparated flow the variation of S, as computed by means of the 
method of the present r'oport on the basis"1>T "the-"ässumption of a 
constant value of H, is quite accurate.  Once the chordwise distri- 
bution of 6  is found the solution of the empirical equation of 
reference 2k is simplified considerably.  If the numerical integra- 
tion of the third equation above gives a value of E in excess of 
1.8 at any chordwise station .14 the turbulent regime, the imminence 
of turbulent separation can be suspected and the method of the 
present report cannot be^applied behind thatstation. 

The present report treats the turbulent boundary layer in terms 
of the boundary—layer momentum thickness, STnco,"for an unseparatod 
turbulent boundary layer a value of H, the ratio of displacement to 



NACA EM ffo. A7B06 27 

momentum thickness, of from l.h  to 1.5 is indicated at low speeds 
and, sinco the effect of Mach number on E has been assumed to "be 
negligible, the value of the displacement thickness follows imme- 
diately. In order to obtain the boundary—layer thickness, consist- 
ency demands the use of the type of velocity distribution which was 
used in the development of the logarithmic relation between the 
skin friction factor £ and the boundary—layer momentum thickness. 
However, this approach involves theoretical difficulties which can 
"be circumvented by the following means. It has been previously 
noted that the logarithmic relationship between the local skin- 
friction coefficient and the boundary—la~er momentum thickness 
leads to a variation- of local skin—frict:on coefficient with 
Reynolds number which is numerically equal to that predicted by the 
power law developed by Falkner in reference 7. This power law 
relationship between local skin friction coefficient and boundary- 
layer momentum thickness leads to the conclusion that the variation 
of velocity through the boundary layer is related to the distance 
normal to the surface by the e:cpression 

u=,W
/5   '   ' 

Using this approximation for the velocity profile it immediately 
follows the boundary—layer thickness is approximately 

8.Ml + M—) times the boundary—layer momentum thickness. 

In reference k  and 20 it is shown, for a wide variety of air- 
foil sections, that the drag coefficients and boundary—layer- 
thickness distributions calculated from the Squire and Young equations 
agree well with experimental valueB. - In the results that have been 
given in the present report, it has been shown that for various 
airfoil shapes and for a representative range of Reynolds numbers 
the calculated value of drag coefficient for each case is very close 
to that obtained by previously established methods, including those 
of Squire and Young.  Since the method of the present report is of 
the same accuracy as previous methods and is more general and easily 
applied, its use in the calculation of drag coefficients and boundary- 
layer distributions is therefore recommended. 

Ames Aeronautical Laboratory. 
National Advisory Committee for Aeronautics 

Moffett Field, Calif. ,,       , ,, ,1 -y-/ 

///a$£u U.  'Q^AXßJ Gerald E. Mtzberg/ 
Sfex. A. Heaslet, ^^^ Aeronautical Engineer. 

Physicist. 

Appro•*: 0^^^,/j^ 
Donald H. Wood, I 

Aeronautical Engineer. 1 



28 NACA EM No. A'fBOß 

APPENDIX A 

Symbols 

General Terms .. 

Of      local skin-friction coefficient (2T/P0U0 ) 

"D        drag of "body (per vn.it  length for airfoil section) 

k   thermal conductivity 

M   Mach number of free stream 

Pr  Prandtl's number /^P—\ 

O^Q  dynamic .pressure of free stream (•gPcU'o ) 

u   local velocity inside boundary layer or in wake - 

TJ0  velocity of undisturbed stream 

U   local velocity outside boundary layer or at edge of wake 

Ü   nondimensional velocity ratio (U/U0) 

7   ratio Of specific heats [(cpA;v) = l.Jj-] . "     • 

S   boundary—layer- thickness. -:.-.•-." - 
i 

t,        Bkin~f riet ion factor .(pyT^/T)2 ...... 

u0 . coefficient of viscosity in free stream '.'..' 

l-Ly. coefficient of viscosity at wall 

p0 density in free  stream ..." 

Pg density Just outside boundary layer.. ,.: 

p density inside boundary layer or wake. 

p nondimensional density ratio (pjj/p0) 

T skin friction per unit area • 

Airfoil Sections 

c   airfoil chord 

c^ .    section profile-drag coefficient    (D/-ip0U02c) 
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H  ""boundary—layer shape parameter (ö*/ö) 

Rc  Reynolds number based on chord length ^ gU j , 1 

w   variable introduced in equation (19) 

x   distance along airfoil chord 

x"   variable x in nondimensional terms (x/c) 

y   distance measured perpendicularly -J  airfoil surface or to 
center line of wake 

y   variable y in nondimensional terms (y/c) 

z   variable introduced in equation (12) 

r  5 1 
5*  displacement thickness s /0 ( 1 — ^rjf) ay ! 

6   momentum thickness[f5 5H_ A _ JiNdy | 

0 momentum, thickness in nondimensional terms (ö/c)     • „ 

Bodies of revolution 

A   surface area of body -_--•••' 

CA  total drag coefficient (D/--PoG^A) 

Cj)  total drag coefficient (D/-|p0U0
272/S) 

H ' boundary—layer parameter f =-j 

1 length of body  .   .  - 

r radius of cross section of body 

r radius in nondimensional terms (r l) 

E 

Y volume of body 

w variable introduced" in equation (k-2) 

(p0ZIT0 x 
u— } 

x   distance measured parallel to axis of body from-stagnation , 
point "'•-—,-• "-.-.."' _  ' ' 

l 

x   variable x in nondimensional terms (x/z) 
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y 

z 

a 

distance measured perpendicular to surface or to center line 
of wake 

distance y in nondimensional terms (y/l) 

variable introduced in equation (37) 

angle between tangent to generator and axis of body 

displacement area of "boundary layer 

A*   ' 2* /oB'.'.(i-^)(r+'8--H 
^displacement area of wake_J 2rtr fl ^7T) 

ir ^ I 

0        variable of  integration   .($'?.irr) 

9        nondimensional variable of integration    (ö/l) 

f momentum area of boundary layer 

4      / [2jr /
S -£H_ (l - JLVr + y cos a) dy 

I.      Jo    p0U0 V        U0A /     J 

of wake    [air f -^- fl      -f V dy 
1       o    Pouo \        uo/ J 

I momentum area 

$> 
$   momentum area in nondimensional terms 

Subscripts -•  - • • -' -- - --    

S   conditions at stagnation point 

T.E. conditions at trailing edge of airfoil or tail of body of 
revolution 

T.P. conditions at transition point 

v        condition at wall or surface 

o   free—stream conditions     -- 
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±   conditions In laminar "boundary lajer at arbitrary point ii 

0.8 conditions at SO—percent point on axis of body of revolution 

2   conditions in vake where static pressure is that of free stream 



32 ...:... /HACA EM No. A7BO6 

-_-=•--;     - APPENDIX B 

Computation Procedure for Drag Calculation 

1. Airfoil Section at Arbitrary Lift Coefficient 

A. From-known airfoil thickness d"stribution or pressure 
'  distribution determine velocity, distribution cor- 
responding to desired lift coefficient. 

B. Estimate transition—point location oh each surface by 
' the following: 

(a) For maximum velocity in vicinity of 
leading edge, transition occurs 
at chordwise station correspond- 
ing to velocity decrease of from 
5 to 10 percent of maximum velocity. 

("b) For maximum velocity in vicinity of mid- 
chord, transition occurs near maximum 

;  ;~velocity point or, for large Beynolds 
: : numbers, "ahead of "maximum velocity 
 "point at chordw^.ee station where local 

- . :-... ..'. boundary—layer Reynolds number attains 
a value of about SOOO. 

%a - J'3 ^>17  |l - 0.35 M2 1-1.67 ^T.P.lH    Üs-1Tdx 
UT.P.; * , ;'j . L Jj 

. C. From stagnation point to transition point the flow in 
boundary laror is laminar; thus at transition point 

(6pU p 
2 = £^3  \1 + 0m26 1^(1-0.92 % p s)\J      Ü8*17 dx 

T'P-        Rc%.P.9*ir j ...  , J° 

D. Transform variable to wm p. = ——-—G..{ffp)m  p Um p 
1+0.152M2    ' '  " 

35. From figure 2 obtain zm.p, = 1.60^ Wij.^'ln^r^p. 

F, For turbulent region, from transition point to trailing 
edge, the growth of z is given by 

,T E . Zm - (%&±\\ —-£&&— rXT,Ei &> dx T-E-      T.P.^TIE>;    [i+o,i52M£luT.B.3 J-T^ 
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where I + HH
2
 (I-ü

2
) 

1_ 

1 7 " « [I+.£M? (i-ü2)3 

G. At trailing edge obtain. Wrjjt corresponding to 
ZT.E. f**0111 figure P. 

2(1+0.15^8)^.». •-   va.a 

E.. Section: drag coefficient is obtained from 

2. Bodies of Revolution at Zero Angle of Attack 

A. From body thickness distr-*but ".in• or pressirre distri- 
bution determine velocity distribution. 

B. Transition from laminar to turbulent flow occurs 
roughly at chord viae station where local boundary- 

- •   layer Heynolds number attains a value of 8000. 

R2 _      5-3 *l_ ! 
UT.P. rT.E;- 

1-0.35M2! 1-1, oTÜp.pf I! J      raSe • 1Tdx 

0-     From stagnation point to transition point the flow in 
boundary layer is laminar-  thus at transition point 

(? p)T.p.2 =  „-_-•*•'a'f^J- ' -i {l +. 0-26 Ka/1-0.92 Üfc.p.2)} 

/^"P'raÜs,V7dx':v    •••'   ;.•••' 
Jo 

D.     Transform variable to    wm p    = —-——— (.9c)m -p .Um p lm*;      .1+0.152M2    ..':   l-F-x'F' 

•"'E.'    From figure 2 obtain    z^.P.   = ^«60^ •wm.p.7.nswrjT.p^ 

?.    For turbulent region,    from ti-lnsition point to SO— 
percent axial station,  the growth of    z     is given 
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/uT.p.wrT.p.V'gl 1-gl h 
Z0.B . *T.P^^—j ^=—-; (1+0.152M2)üo.3S 

1 

where  p = [l -t- 2zi M
2 (l-TJ2)]   *[l+ | Ma 0--U2)] 

Gr. From figure 2 obtain v„ _ corresponding to z 

H. Transform variable to 

o.e. .O.B    ^.075B2Po.sno^ 

I. From SO-jpercent axial station to trailing edge., growth 
of * is found from 

•T ~        /tfo.s   \3.5   /^8   \        0-766(2^0.gj   Ö3.6^_0.8g 

•*•"•' " *° Ai^7      ^ HUT'+     i^(w0i8)     PT.E.UT.E.
2 

T.E 

/   <«><&?-* 
J.    The drag coefficient of the "body of revolution, based on 

the volume to the two-thirds power.,  is then 

•»-s^K^«-)8" 
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HABLE I.• COMPARISON OF SECTION DRAG COEFFICIENT FOE SEPARATE 
AIRFOIL SURFACES COMPUTED BY VARIOUS METHODS 

& 

e 

o 

Thickness j Reynolds, 
chord  ' number 

0 
0 
0 
0 
0 
0 
0 

.14 

.14 
at 
.14 
»25 
.25 
»25 
.25 

ice 

10s 

10° 
10^ 
107 

107 
5 x lo7 

10' fi 
106 

10T 

107 

10Q 

109 

107 

107 

tfpper 
surface 

x/c of I. P. 

Lower 
Burface 

x/c of T. P. 

..2 
.It. 

0 

.177 

.376 

.177 

.376 

.189 

.386 

.189 

.386 

0 

,2. 
.4 

) 
.2 
.4 

,177 
.376 
.177 
.376 
.196 
.396 
.196. 
.396 

„Section ,^^.8. Jr.9.sf f icient^_ cd. 
Reference 2   !   Reference 4 

Upper 
surface 

Lover 
surface 

~1" 

o.oo46 
,oo4i 
.0036 
.0030 
.0026 
.0021 
.0024 
.0065 
.0052 
.oo4i 
.0031 
,0091 
.0067 
.0057" 
.0038. 

+. 
Upper   i   Lover 

surface i Burfaoe 

0.0046 j 
.0041 I 
.0036 ! 
.0030 i 
.0026 j 
.0021 
.0024 
.0050 
.0041 
,0031 
,0023 
.OO66 
.0050 
.0041 
.0029 

o.oo46 
,0042 
.0034 
.0030 
.0025 
.0021 
.0023 

. .0063 
.0050 
.0040 
.0030 
.0091 
.0065; 

.0060- 

.0038: 

0.0046 
.0042 
.0034 
.0030 
.0025 
.0021 
.0023 
.00^0 
.0040 
.0031 
.0023 
.0065 
,og49 
.0041 • 
.0029 

Present report 

Upper ! Lover 
surface ! surface  1  

0.0047 
.oo4o 
.0035 
.0030 
.0026 
.0021 
.0024 
.0063 
.0051 
.0041 
.0031 
.0089 
.0066 
.0059 
.0039 

0.0047 
.oo4o 
.0035 
.0030 
.0026 
\0021 
.0024 
.0049 
»0040 
.0031 
.0023 
.0064 
.0049 
.0042 
.0029 

W 
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TABLE II.- COMPARISON OF EXPERIMENTAL DRAG COEFFICIENTS FOR 

NACA 0012 AIRFOIL SECTION AT ZERO ANGLE OF ATTACK 

WITH VALUES CALCULATED BY SEVEPAL METHODS 

Section drag coefficient c& 

Reynolds 
number 
x 10~6 

Experimental 
measurement 

Calculated 
reference 2 

Calculated 
reference 3 

Calculated 
reference 5 

Calculated 
present 
report 

2.675 

3.780 

5.350 

7.560 

-- 1 

O.OO7I 
.:•     •.- T - 

.0070 

.0068 

:;°9&1   -. 

0.00714- 

.0072'"- 

.0071 

.0071 

O.OO67 

•:oo69 

.OO.69 

.0069 

O.OO69 

loofö' 

.0070 

.OO69 

O.OO67 

.Sorer   * 

.0068 

.OO67 

TABLE III.- THEORETICAL DRAG COEFFICIENTS OF AKRON 
AIRSHIP SHAPE CALCULATED AT SEVERAL REYNOLDS 

. NUMBERS AND AT VARIOUS TRANSITION-- 
• - • •  POINT LOCATIONS 

Reynolds 

1 

\ 
•]  Transition 

j  Drag coefficient, CA   i 

1 Present ' Reference IS j 
number '  percent I j  repor t  ; 1 

. ... 
106 

10 T 

10s 

10s 

•10 7 

10 s 

10 e 
10 7 

10 8 
• 

j ' -i;,6v;: 
!    1K6 
!    I4..6 
1   25.7 

•1   25.7 
!   25.7 
i    53. !* 
!   53.^ 
;  .. .53 A . 

I 0.00502 
!  ,0031*3 ; 
i  .00214-5 ! 
]  .0014-38 I 
•   .002814- 1 
j   .00198 ! 

.00312 '< 
i  .00173 •!• 
{  .OOlllt- i 
t 

0.00508 
.00335 
.00235 
.001*1*6 

. .00279 
.00189 
.00316 
.00176 
.00115 
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Figure 1.- Airfoil section, with boundary layer 

NATIONAL ADVISORY COMMITTEE 
FOR AEROKAUTIC8 

Figure 3.- Body of revolution with, boundary layer, 
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(a) Values of 2 from. 106 to 106 

Figure 2 (a to o).- Graph for evaluating w from z  for turbulent boun- 
dary layer«. 
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Fig. 2b 
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