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- RESEARCH MEMORANDUM

THE CALCULATTON OF DRAG FOR ATRFOIL SECTIONS AND
" BODIES OF REVOLUTION AT SUBCRITICAL SPEEDS

By Max. A. Heaslet end Gerald E. Nitzberg

SUMMARY

A method is developed for caleulst” :g the dreg, in a real
compressible fluid and at subecritical Mach numbers, of sirfcil
sactions at arbitrary 1ift coefficisnts amd of bodies of revolu—
tion at zero angle of attack. To apply ths method it is necessary
to know ths velocity distribution for airfoils and the velocity and
thickness distributions for bodiss of revoiution, together with the
Mach number of the free-stream transition point from laminar to
turbulent flow, and the Reynclds number based on chord or axilal
length. The method consists of tracing the growth of momentum
thickness along the surface, for both ths laminar snd turbulent
boundary layers, by means of relations which ihvolve elementary
integrals and can bs evaluaited by simple numsricel mesns. An .
outline of ths compuuationa.ﬁ. procedures required for drag calcula—
tions is presented in the avpendix te the report.

The valuss of drag coefficient, computed by the msthod of the
present report for a number of cases, are compared with the values
obtained for the same configurations by other methods and the dif—
fersnces bstween the various results are found to lis within the
limits of accuracy of current sxperimental techniques. ' The use of
the present meothod is recommended by its simplicity and genera.lity.

: INTRODUCTION

Starting with the work of Prandtl (reference 1), which was
desligned tc dstermine the skin friction on a pointed flat plate in
a uniform incompresgible two-dimensional flow, the thsory of drag
calculations has besn extended by mevera” inveatigators so that,
under controlled conditions and at speeds where eir may be assumed
an incompressible medium, very good agreemsnt hes besen obtained
with experiment for both airfoil gections and streamlined bodies
of revolution. The calculation of drag is, howsver, limited to
cases for which it is possible to estimate the location of the
transition point, that is, the point at which the laminar boundary
layer over the forward portion of the bedy is terminated by ths

<BRSEReS
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onset of tufbulent-flow; and fgr'whiaﬁ there 18 mo extensive sépara-f
tion of the turbulsnt boundary layer.

In the present report the comvreesibility of the medium is
congldered and expreossions for profile dirag of airfoil sections
end bodies of revolution at subcritical Mech numbers are given in
forms which are particulsrly amenable to numerical calculation.
The principal comtribution, however, 1s contained in the treatment
of the turbulent boundary layer in the two cases. As in previous
work on this subject, the snlutions consist essentially of inte—
grals of the Kdrmén moment .1 equation for bodies in two-dimensional
flow and for flow over three—dimensional bodles with axial symmotry.
In reference 2, Squire and Young svlve the problem for incompressible
flow in two dimesnsions by means of a point-by—point method of
integration requiring consideraéble labor, and in references 3, k,
5, and 6 modifications 3f thé Squire and Young method are given in
various forms which expedi{te the cal:sulations. All these references
give rosults which are in close agreoment. The meothod of Kalikhman
in reference 6 is of particular interest for it is capable of
generalization to the body of revolution and to the cass of high—
speed flow whers density ‘haryres are of sufficient magnitude that
they must be taken into aﬂrount. This approach is adopted in the
present report. ‘ o o

The various procedures whiﬂh have been developed for predict—
ing the growth of the twurbulsnt boundary layer over ean airfoil are
ell based on the same boundary-layer mementum equetion. In order
to anply this equation it is pecesasry first to relate the skin-—
friction coefficlent to the boundary-layor momentum thickness. On
the Pasis of experimental data for flat plates two such relationships
heve been evaluated: a power law (reference T) and a logarithmic
law (references 8 and 2). After comparison with the experimental
data shown by Falknar in reference 7, for Reynolds numbsrs between
2 x10% and 5 x 107, it appears that thers is little significant
difference in the nume“ical values of these two relations, when the
scatter of the experimental data is taken into consideration- The
logarithmic law can be gensralized sasily to the case of compress—
ible flow and is used in the analysis of this report.

The logarithmic reletionship betwsen the skin—friction coeffi— .
cient and the boundary-layer momentum thickness wae combined by
Squire and Young with the boundary~layer momentum equation to
obtain the section drag of airfoils. Tha step-by-step integration
of the fundamental equation was first avoided in reference L where
it was found thet a considerable simplification can be achieved by
dividing the velocity distribution over the alrfoil into ssgments
in each of which the chordwiss veloclity gredient is relatively
congtent. Then, using an avnrage valuo of the velocity gradlent
for each sagment, it was found possibls to construct a general graph
from which the solution for any velocity distribution can be read.
The authors of the present report were able to generallze the me+hod
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of reference Lk to the case of compressible flow over airfoil sections
but the results heve nover been published. It was thought that ths
closed form in which thé present results are given, together with
the duality which it was possible to establish between the two- and
three—dimensional cases, mak: the latter approach preferabls.

The powor lew ryelstionship postulated by Falkner has been used
in reference 3 by Holt to obtain a directly integraeble relation for
the turbulent boundery-layer growth. 3By means of a theoretlical
approach based on _ex:periment’a.l results Tetervin {(reference 5)
related the skin-friction coefficient and boundary-layer momentum
thicknsss in & mors complex Porm which varied with the boundary-
layer Reynolds number. Approximeting this expression, over the
range of integration, by & power law, Toatervin was able to express
the growth of the twrbulent layer In s manner scmswhat analogous
to that of Holt. The final forms resulting from this method of
approach share with the present rsesulta for the turbulent layer the
advantage of being in closed form. In reference 9 Tetervin has
extendsed his method to include both two~ and three-dimensionsal
compressible flow.

In the vicinity of the airfoil leading edge there is always
a more or less extensive region of laminar boundary-layer flow.
For airfoils at f£light Reynoclds numbors the laminar portion of the
boundary lsyer contributes & minor portion of the total section drag;
howsver, the amount is usuzlly not negiigible, In reference 10,
Young and Winterbottom preecnt a msthod for laminar boundery-layer
calculations which includes compressibility effocts. - The derivation
of their method is comparable to that of reference 1l. Thers are,
however, twoc significant differences: First, roference 10 1s based
on Pohlhsusen'e relationghip for ths veloclty varlation through the
boundery layer, whille reference 11 usss the Blasius velocity profile;

end, second, reference 10 neglects the fact that for slr Pranditlls
number is not equal to unity. The method of reference 11 is used

in the present ropcrt.

Most of the theoretical and experimental work on bodies of
revolution to date has been on airship shapes. With the present
trend, howsver, toward loargs land-based airplanes, particularly
those with pressurizsed cebine, it is to bé expacted that fuselage
shapes wlll eporoach bodises of rsvolution. The problem of studying
the boundary-layer growth and the drag of bodiss of revolution thus
"tokes on increased significance while at the same time it hecomss
necessary to generalize the procedure to include the effects of
coamprossibility. The development of the laminary boundary layer
over bodies of rsvolution in a compressible fluld is given In
referance 11 and the theory given there 1s applied directly in the
pregsnt report. The momsntum equation of the turbulent boundary
layer is given by Ycung 1- reference 12 for zero angles of incldence
end a step-by-step method of integration is presented whereby the ]
growth of the boundary layer mny be determined for incompressible &7

e i
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flow. The boundary-layer esquations, for both turbulent and laminar
flow, are more complicated for the body of revolution than for an
alrfoil section because of the fect that is is necessary to take
into consideration the variation of the body radius along the axis.

Drag calculations for bodiss of revolution have not basen
studied as extensively as for airfoils and 1ittle previocus work in
ths fleld of compressible flow has as yet been published. The
presont theory ls simller to that developed for airfoil sections
in that momentum loss in the boundary layer is expressed as a
d¢ofinite integrnl but differs In that it becomes necessary to modify
the theory over the far eft portion of thé body. In spite of this
difficulty the method given does curtail eharply the amount of time
raquired for the totel calculation. .

A completa 1igt of symbols, as used throughout this report,
may be found In Appondix A, and tho computational procedurs for
drag calculations is prescnted in Appendix B.

. T THEORY @ -
" "Atrfoil Sections

Introductory remarks.- In figure 1 thes two-dimensional flow
about an alrfoil section is indicated along with the boundary layer
and wake associated with the flow. It is an established practice,
in all theory connected with the calsculation of drag, to divide the
boundery layor ond wake region into three different regimes of flow,

Thus, if S represents the atagnetion point, the boundary layer
boetween S and the traneitlion point at T.P, on elther surface is
lominar while between T.P. and the tralling edge at T.E, a turbulent
boundary lsyer exists. In the wake, the third region to be
conaidered, the plane AA 18 drown normal to the center line of the
wake at the point where static pressure in the wake has returned to
its original free—stream valus.

It i8 easy to shbw, from momontum considerations, that if
gtatic pressure is assumed constant across the woke, then the dreg
D per unit length of tho alrfoil is given by

D= f, ou(Up - way - (1)
whoro the integration extonds acrosg the wake in plens AA and
u  local velocity 1n wake
o} denelty in wake

'Ub veloclity of undisturbed stream
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¥ distance messured normal to center lins of weke
Momentum :bhic]mess of the boundary layer is, by definition,

=[5 Du(——ay (2)

where

U veloclty at edge of boundary layer
u _ local velocity in boundery layer

¥ distance measured normal to surface
_9 momentum thickness of boundsry layer
5 Dboundsry-layer thickneés .

pgy density corresponding to velocity U

and in a similer msnner the mmentmn thickness of the wake may be
defined. TNow let
a .
: ay (3)
%)

where the iIntegration is in pla.nb AA and p, 1is denslity corresponding
to free—stream velocity U,. Since drag coefficlent c3 1s fixed
by the relation

/
6z = fw ngo

1 2 S ' -
D = Cd B pOUQ C . (’4’)
vhere c¢ is the chord length of the airfoll, it follows that

oy ,2_2;; {5)

The =nalysie consists sssentially in tracing the growth of & ,
the momentum thickmess, along the top and bottom surface of the
airfoil and in ths weke to the plane AA. BSince the nature of the
flow in the bourdary layer affects the rate of growth of the
momentum thickness, it ias nscessary to treat the different regimes
separately. The following development is therefore arranged to
conform with this natural division.

Laminar layer.— In reference ll, expressions have besn developed
which may be spplied immedlately to determine the growth of the
laminar boundary layer in two-dimensional flow of a compressible
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fluid. In thils reference the boundary-layer thickness 41 at the
point =x; is defined as the digtance from ths surface of the
airfoil to a point in the boundary layer where the ratio of the
local wvelocity to the velocity outeide the boundery layer is 0.707.
Noglecting terms involving the fourth power of M, where M ism
the Mach number of the free stream, the boundary—laver thickness
dl ig given by the relation

o s |
£ = 3 12.-0.35M2 1-1.91 ( Z»
&g et @)

" Re U;

-’;<Jé)l(:(i}_. L17, (25\ oy 1;4}12}\ ) ( 10,17 (_Jg> .'(6&)

c
where . s _
Raynolds number based on chord length ‘
Uy velocity outside buundarJ layor at point xj
U velocity outside boundary layer at point x
x distanve along alrfoil chord

In ths computation of section drag copfficlents, inassmuch as
the laminar portion of the boundary layer contributes & minor
portion of the total drag, it 1s practicable to gimplify thie
eguation. The modification will concern iteelf with the last term
in equation (6a) and is Justified by the fact thet the last term

contributes a small part to the total value of the boundary-layer
. thicknoes 8quared. Approximnting the last term by the expression

(e e By
equation {62) may Yo rewritten as

(& *"‘7&2)3‘;’“ e -3 T(Ul)]

%9317d<x -: (€b)

il
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Agaln neglecting terms invoiving the fourth power of M, 1t is
possible to show from results given in the reference that if

Prandtl's number Pr = 9—%“-‘ is set equal to 0.723, its valus for

" free aﬁr, then

(%%.g _0082]\14—0611\‘.[ {1—134(%)]! (1)

In the ca.lnula.tions that follow the basic variable will be the
nondimsnsional product of momentum thickness and density. The
valus of this variable at the point x = x3, independsnt of the
definition of boundary-layer thiclmsss, is an immadiste cchasequence
of equations (6b) and (7). Thus

( U) _0.h3 !\1+0261&2{—1—092 2]‘
o

R/—%f
)

( )8 "’acx,c) (3)

Turbulent layer.— The momentum equetion for the turbulent
boundary layer In comprescible flow 1s given in reference 10

as

r ) b |
geloog Tl ®

where the primes 3ndicate differentiation with respect tc x,

H is a functlon of the boundsry-layer velocliy-profile shape, and
T 1is the skin friction per unlt areea. Undsr the assumption that,
for compressible fluids,

T‘_T_s'wf ~ 0 ohsh o © oMt (10)

where

pUU'E
=7

and . 1is the coefficient of viscosity at the wall, it is
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possible to transfurm the equat*uu t; thn f»rm aocd by Y.eumgs and
Winterbottom . LT Lo ) _

+

%XQ +2.553 (H + 1)%1 e %U. 10,4118 T30 +20ME (11)

The nnmer*caj. mothods used in the 1ntagration of equation
(11) are somewhat protractsd. To ¢bviato this jnbrodube now the
traneformation

z =.._E’H ; = O. 2452@,2 R (12)”

With this Change'of variaebls, equation (ll) becomes

-4

yEa(U/Uo) /alx/e)] | _ x U Uosoc
T/Uo Uy Pw

Fle

Z_ 4+ X (B4l
x

whexre
= 2.555 (c.zglh + %)
and the equation hes been wr*ttsn jn nondimsnsional form.

It 48 necessary in equation (lq) to relate the valus of coef—
ficient of viscosity at tho wall to its valus in ths free strean

Mo

. e

where TO and Tw ere absolute termeratures in the stream and at
the wall, together with

vhich 1s an immediate conssquence of the assumption that energy is
constant through the turbulent boundary layer. I% follows that,
approximately, ) '

.

(13)

This follows directly frum,bhe empiracal relation (reforence 13)

by = Mo (1 o+ 0.152 MB) (1)
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Setting

T .5 fU_5 zx.%
Tg U, 5o e, T =

and using the approximation for coefficien’c of viscosity, egquation
(13) appears in final form

8% .+ K (Ee1) f_L_).dU kG2 X% (15)
dx [1 + 0.152 M2]

It is poseibles to put the solution of equation (15) in a form
which is well edspted to calculations - 1f constant average values
are used for E =and K. Under this assumption, the integral of
the difforentisl equation is

='t—]"K(H+l) '{C + Re

16
L (1+0.152 M2} (26)

[X3 T

— K(H+1)+l&}

The variable &, in the-turbulent region, lies roughly between
20 and 30 so that the total veristion of K is smsll gnd K has
an average value approximately egual to 1.21. The shape factor
H variees, for & nonsaparated boundary layer, approximately from
1.3 to ebout 1.7, but from sxperience gained In other calculations
3t has been found that com: itatioms for low speeds are qulite
insonsitive to the value of H used and highly satisfactory -
results can be obtained for o constant value of H. In the present
report K(E + 1) shall be set equal to 3. This assumes a valus of
H between 1.4 gnd 1.5 which is in conformity with low—speed
measurecments and, as shell be seen, will give computed drags in
close agreement with experiment and other caiculations. There are
no availeble experimental meassuremsnts of velocity distributions
through turbulent boundary lsyers at high speeds of sufficient -
accuracy to permit the determination of the effect of compressibility
on H. TLacking such informntion. the assumption will be made that
thoe szme valuss for H can be used in the compressible case as In
the incompressible cass. Imposing the condition thet at the transi-
tion point =2 = zmp p , ‘the arbitrary constunt ¢ 18 determined and

the solution becomes

_ Tp p.\ @ 1.21 R, j‘x - N
ZT'P‘( U ) +'[1+o.‘1'52 M21US X7, p P ()

The density term in the integrand may be evaluated by assuming
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the flow outside the boundary layer is isentropic; thus
1
S (1 + X=L M2 (1-6'2)] =1 (18)

The value of 2z at the transition point, which is required in
equation (17), must be found from the velus of (55)p.p, determined
by equation (8). Since, in nondimsnsional variables,

t = 2.555 znc[:?’ Re 95 U)
+0.152 M2] )
where _ in denotes nétural logarithms, then _
z = 1.60k w In3 (19)
if - - . - "
W = 4,015 R, 556 (20)

[1+0.152 M2]

Substituting from equation (8) into equation (20) thus gives w at
the transition point. In flgure 2, which is a plot of equation (19),
the required value of zyp p, can be found. If the velocity distri-
bution over the airfoil and the free—stream Mach number are known

it 1s now possible to substitute directly 1ntq equation (17) and
determine the growth of the boundary layer up to the trailing edge.

Wake .~ Young and anterbottom in reference 10 have- discussed
the momentum equation in the wake and have concluded on the basis
of what experimental data ars avail&ble, that

=, Oo =5 . B 77 8.2
Pz 02 = PT.E. %.E. Ur.m. (21)

vhere subscript 2 applies at plano AA in the wake and T.B. indi-
cates values at the trailing edge of the airfoll.

From zp g, the value of wp g, follows and the airfoil
section profile drag coefficient is given by

2w -
140.172 M2 T LE. g o 22 o0
= [1+ MluowK T.E. (22)
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Bodies of Rovolution

Introductory remarks.-— The developmsnt of the theory relating
to the celculetion of drag for a body .of revolution is dire-tly
camparable to the thsory prescnted gbove Tor zirfoil sections except
thet the angle of atitack of the boiy will be reatricted to zero.

In figure 3 the body ia shown; puint S .reprnesenting tho stegnetion
poinu, T.P. 1lndicating th> transit"on point in the plane of ths

r, T.E. denoting tihe t2il end of the body, and ~4 marking the
position of the plane where static rressurs has returnsé to its
value in the ambient strenn. '

Drog coefficient of the body is by definltion

D
»s o T2 V7S (=3)
where Ao
D drag of hody
Uo velocity in the free stream
Po density in the free stream
v volumr of body
end, from consideraitlons of momentum,
D = 2::]1; ou(U, — Wy ey Pek)

where the integration extends asroes the wa_k-eiin pla.ns A4 and
u local velocity in thz wake

o) dengity in the weke

¥y distance measurod norrmel to center line of woke

For bodiss of revolution the mompntum ares ¢ which is dsfined by
the egquation

5} : 3
& = O2x Pu (1 - l&) (r + 7 cos a)dy (25)
fo Pyy U

where

s} thickness of the boundary laysr

——— -



12 . . NACA RM No. ATBO6

r radius of cross section of body
a angle between tangent to generator and gxis of body

occupies a role analogous to that of momentum thickness in two-—
dimensional airfoil theory. Momentum ares in the wake, at the
pPlans AA, 1s ' .

0p =25/ B9 /1 _ 2 26
2 EIEW DoUo(l )ydy. (26)

wvhence
29

CD = -(_V)Eﬁ (27)

The theory which follows will also have occasion to use the
variable © which is related to the mcmentum area by the
expression

8 = ¢f2mr (28)

or
5

8 =-Jc; %(l—%)(l +% cos a)_dy (29}

Leaminar layer.— From the theory developed in referernce 11, the
laminar be bound.ary—-layer thickness 8, defined as in the two-
dimensional case, at an arbitrary point x3; 1s given, neglecting
terms involving the fourth power of M, by the expression

" @ [ @) ll
L@resd mere

wvhere

U, velocity outside boundary layer at point x;

R;  Reynolds number based on length of body

r radius of cross section of body

(308)
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x distance measured along axis

d; boundary-lsyer thicknsss as defined for eguation (6a)

1 axial length of body

Since, in gonersgl, the lam.nar portion of the boundary layer
contributes a ‘small part of the total drag and since the last term
in equation (30a) represents a small part of the valus given by

the relation, it is practlceble to derive a gimplification for
(81/1)2 analogous to equation (6b). Thua,

(%‘1)2 @ )9 '7<r11>2 1-0.35 M2 [1_-1.67 (%)2]

e o ey

|

I

LF FOW o

It can also be shown that -if Prandtl's number 18 set equal
t0 .0.733 and 1f terms in M of - fourth degree and higher are
ignored, then for the Tody of revqlirtion the fol‘F owing a.pproximate
relation is obta.insd _ . - )

gzg = g82:1+9611421-1—13k Uo):}][ (31)

Grouping momentum thickness a.nd densitv togatnsr s a.n.d. in
nondimensional form, the following equation holds ) '

= 0.3, l+026MlO92 221!
(12" e s oo )
[ <>2<U°>8 “e(®) )

Turbulent layer.— The momentum equation of the boundery
layer for a body of revolution in compressible flow is given
in reference 12 in the form
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g%(:de2®) + §EC<;qﬁM¥§ = T 2nr
where

Ay displarement area in boundary layer (see definition in list of
symbols}

T skin friction per unit of area
Setting (A*/d) = H reduces the equation for the boundary layer of

the bodles of revolution to & form similar to. that for airfolls.
Thus

- 1
.d__? +!'(H+2) -U.'__-l- D. U]‘I) = T (33)
dx P T

2
AN

ths primes indicating differentiation with respsct to x.

It should be noted thet the definltfion of H differs in the
thres—dimensional case from that in two dimensions. However, in
the case where the thickness of the boundary layer is small in
comparlson with.the local redius of the body of revolution the two
ezpressions for H are approximptely equal

The relatﬁon between T, p, U, and 9 used in the analysis
for airfoll sectlons was based on bhsory thet held for a flat
plate; that is, the pressure gradients were "ITgnored in that R
particular phase of the study. Since on bodies of revolution the
pressurs gradients are small the sams relation may be assumed to
hold, thus :

Up.Ue - (o] -8-91-4;
Hyr

= 0.2h45he (3k)

2. W07

From equation (34) and the defimition of @, 1t follows that

o.8914f

Upo :
—2° = 0.2l5k 2nr o (35)
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and substitution of this relation into equation (33) zives

U -2 —o0.8g%al
&, o555 o,z _Ueg
P 2.555 ‘ (B+1) Tt E | i 10.411t e
Now let : -

z = —‘Uau:U  £2 = 0.2ksht %0 9970

Direct substitutlion into equation {36)yields

+ K?F(H+l) d(Uﬁ ) / (Z:/Z) + d(I‘/l ) Ild(I/l) z
: U/0, £
oM S

_ g UoPol Qg
=Ko, o %

0

whero

2.555(0 391k + "g' =K.

and the equation is written in nondimensional form.

Setting

.U
Ty
and using the relation

uoll + 0.152 M%]

Her

the final form of equation (38) becomss

+ K (H+l) (dU/dI) )—‘ z = —__—[lﬁéeﬁé]

dz
dax

15-

(36)

(37)

(38)

(39)

Putting again K = 1.21, K(H+1) = 3 and fixing the ar'bitra.ry

constant of integration by assuming that z = zp p at x =
it is possible to express the solution of equation (39) in the
form
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= p,p, (%{3(2;—2%)1'21

X
1.21 Ry f e
U2[1+0.152 M2F1.21 A ax (k0)

Xm.p

e .

The density term In the integrand s evaluated by means of the
expression

(1 + --2—- Ma(l )}7—}1- : (k1)

The determinstién of = from the known expression for

T.P.

E;Eg glven by equation (32), proceeds as follows: From équation
¢ =2.555 n (“[ig.?;:lﬁg]“)
whence : : _ -
z = 1.604 v In3y . (h2)
e S
- _’*_PZP__B.L 55T (43)

["+0.152 M2]

Thus, from equations (43) and (32) the value of w at the transi-
tion point can e found and =zp p, 18 obtalnaple from figure 2.

With this 1nformatlon, together with the velocity distribution
over the body snd the free-sgtream Mach number equation (40) can be
used to trace ths growth of the boundary layer aft of the transi-
tion poinb. - - 5 . . Bl o .

One difference arises in the computations for bodies of revolu—
tion which dlstinguishess the theory from that for airfoil sectiona.
This is duc to the fact that r vanishes at the tail of the body
and as a consequence an infinite singulsrity appeare In equation
(40). Because of this singularity it i1s not possible to carry the
integration to the tail for momentum thickness will becoms infinitely
large and the expression for drag coefficient becomes an Indotermi—
nate form. To clrcumvent this difficulty it i1s necesesary to use
equation (4O) up to some arbitrary point, say the 80-percent point
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of the axis, and then to modify the method of calculation. For
thie purpose it ie convenient to compute the growth of momentum
area rather than momsntum thicknese over the lattar porti on of the
txz"bu__ent ‘run.

Two meane will be glven whereby the momentum aree can be )
caleulabed . The FPiregt, which is merely an extension of raference 10
to the case of compresaible flcw, involvese g point-by-point integra—
tion of the basic differential equation. This equation i express-
ible nondimensionally in the form : :

& as . B
a¥ , | (me) & 7 |- (0.2914)" en ¥ )
ax T ° T53 R, v
in&
, A 0.2usk X 2nF X [140.152 M2]

The derivation of this expression may be obtained by combining

2
g2 = 20 N
;
and. :
' HE.UE = 0.2454% 2n r € 0.3.8.1-4§'
to get S
T _ = (g 3911‘]5){ —— (4s5)
Pyl 2 P25

1 0.2454F x 2% F x-[1+0.152 M3T

which, together with equation (33), will give the required relation.

From the vaelue of G and T at the 80-percent point on:.the
axis, the velue of & can be found at this polnt and the.growth of
% can then be calculated over the remaining portion of the body.
In particular, if Qh is the ve.lue of % at an arbitrary point
Z on the axis, -

qm+1—$ +<%j—t> A(i) ()

_ where %,.1 1is the value of 3 at the po*nt T + A(E) The

calcula.tion consists- of ‘repeataed a.pplica.tions of this relation.
As the interval A(Z) in equation (46) gets. smallsr the result of
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the calculation spproaches the giact solution of equation (4k).

Since the above calculation is to be applied over an interval
vhich is smsll in comparison with the axial length of the body, the
labor of such’ a calculation is much less-than would be required if
such methods were applied to the total turbulent run. It is possible,
however, to shorten this calculation further by assuming that - . e
cg2x ¥ is a linear functlon of X .where cg = 2T/p U,2 is the
local skin-friction coefficient. The validity of such an sssumption
will be examined later in the discuesion.

Return now to equation (32). From the definition of skin-
frictlon coefficient the right-hand side of this equation is
expressible as o . B S o e

o1 Do Enfc : S -
T U2 U (—> 207 . (_47) o '

If ecf2n ¥ is linear over the aft portion of tkhe body, falling
from its value at the 80-percent point to zero at the tail, then
in nondimsnsional terms equation (33) can be written as

B, [(me) (), (5] -3 (cpom), , E) (8) :

U
This equation can be intsgrated, and ss a result

T = 't‘rf(m'a) 3_1 ‘[c +fg (cp2x ?)0-8' (l—i)ﬁH d.'x'] (49)

80 that ' T LT o P T
BT . H42 - o

o ®0.8 ﬁO.B pO.B

Using this value of €, together with equation (L9},

% = Eso.s(fr“%j‘a) e (B-g'% 3(cg2x Tho. ?/1 (1-%)U dx - (50)

o H+2 . -
ﬁ U Q.8

and, after substituting from equation (47), the value of ¢ at the -
tail is given by the equation
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Trw. =%o.m To.s ) @ o2y, 2r ¥
- S \Ur R, DTE 6.528 - 4073Rlepv)
' [1+0.152 M ] 0.8
oA AN R SL
_‘o.s 0.8 /‘ (1-%) ( (51)
oreUnE.2 J, 4 U, E_

Wake . In referemce 12 Young has integrated the momentum
equation in the wake applying the sams methods used in references -
2 and 10, for the body of revolution. If subscript -2 Indicates
values of the variables in the plane AX gnd T.E. denotes values
at the tail of the body, then it Is ehown that

To by = DTE -5TE. Up.po2 (52)

Since, from equation (27)

20,

Cp = —375

it fqllows that

BTE
c

D =

.. V s

TE _ . ..: o o e
T2 Uf'ws 2 . L - (53)

DISCUSSION

The foregoing theory provides a convenient procedure for
stodying the growth of lamdnar and’ turbulent boundery layers and ;
for calculating the drag coefficlents of .alrfoils and bodies of .
revolution. dJust am in the case of wind--tunnel testing, where 1t
is essential that the model tested be an accurate TYepresentation of
the original configuration, it is important that in thes application
of this theory the operator should be able bo detérmine correctly
the required aercvdynamio properties of the configuration under
considsration. - This implies that the pressure distribution over
the body and the extent of the laminar and turbulent layers be
specified or be determinable. :
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Velocity distributions are an immedlate consequence of pressure C
distributions, for both low— and high-speed flow, so that if experi—
mental data are_avallable the calculations may proceed directly.

The theoretical salculation of the veldcity distribution corre—
sponding tca given shape is, on the other hand, a rather lengthy.
process although such methods have been treated adequately in the
literature. . For an arbitrary dirfoil section at any desired 1lift
coefficient the velocity distributi¢gn for incomprassible flow can
be found by the methods of Theodorsen (reference 1k), Allen
(reference 15) or Goldsteln (reference 16). For NACA conventional
and low-drag airfoils corresponding distributions may be found quite
eaglly from the tebular data glven in reference 17. At subcritical
Mach numbers the velocity distributions are calculable from low--
speed. data by means of the well-known Glauert-Prandtl or Karman—
Tsien transformations. For the body of revolution, methods have
been given by Young and Qwen (reference 18) and Kaplan (reference 19).

The theory for the dstsrmination of velocity distributions is
of course based on the assumptlion of pctential flow but, for
airfoils, 1f the 1lift coefficient rather than angle of attack ig
specified the calculations are sufficiently acrurate for most appli-
cations. In refurence 20 it is shown that the effect of the presence
of a boundery layer is primarily to change the apparent angle of
attack of the alrfoll and to increass the local velocitics in the |
vicinity of the trailling edge. A procedure is introduced in this
reference for estimgiing the megnitude of the change in the trailing-~
edge velocity brought about by the presence of the boundary layer.
This proceduro first estimatss boundary-layer thickness from the
potential theory velocity distribution and can be used in conjunc—
tion with the thecry of the present roport. In the calculation of
drag coefficient, however, the neture of thv equation is such that
the total drag coefficient computed is mérely affected to a very
small degree by moderate changes in the trailing-edge velocity, and
as a congsquence such a refinemsnt is not used when only drag coerri-
cient is to bu foungd.

The determination of the location cof the transition point from
laminer to turbulent flow in the boundery layer presents a diffi-
cult problem. At small Reynolds numbers and for smooth surfaces
transition occurs in a region cf dacreasing local volocitics where - - - -
there ls usually a region of separated laminar flow beltween the
laminar and tuwrbulsnt portions of the boundery laysr. However, at
Reynolds numbers greatsr than several million the length of thilsg
‘region of separated leminar flow is of negligible extent so that it
18 possible to consider tr- msition as occurring at a point. Expori-
mental flight tests of smooth airfoils with maximum velocity in the
vieinity of ths midchorA indicate that “trang] €161 occursé when the N
local laminar boundary—layor Reynolds number Ry = Udp/n attains
a value of about 8000. The veiocity U is the local velocity
outside the boundary layer and 1t should bs noted in particular y
that the characteristic length d used in evaluatlng this Reynolds
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numbsr is the value of & obtainsa by the equation for the laminar
boundary layer in the present resport. This transition criterion
applies astrictly only to the determination of whether the transi-
tlon point. is ahead of the maximum velocity point. FPor configura-
tions in which maximum velocity is as far back as ths midchord
position and for which the transition Reynolds number occurs aft

of this point, it ias probable that the transition point will be
close behind the maximm yslocity point. For smooth eirfoils at
angles of atteck such that there is a sharp velocity peak in the
vicinity of the lead.ing eége, transitlion.ocgurs behind the maximm
velocity point. . Theory and experimsnt indicate that in such cases
transition at large Reynocide mmbers occurs only after the velocity
has decreaesd béetwesn 5 and 10 percent of the meximum velocity. the
percentege of the wvelocity recevery befcre transition ocrurs being
greater the moré slowly the veloc ty deg.rea.ses in the chordwlse
direction. . .

. The preceding criter;a. for the location of the tremsition
point indicate the most rearward position that can.be expected,
that .18, the probgble position for smooth airfoils in low—turbulence
flow. When the surface under congideration is rough or contains
such transition—pramoting agents as .protuberances, waves, air
leakage, or dust particles shead of the %ransition point, as
predicted for idesl conditions, it 1a to de a.n:bicipated tha.t transl—
tion will move forward in the direction of such. disturbances. In
the immsdiate vicinity of the stagnation point, howsver, there is &
very rapid acceleration of the air so that any local disturbance
which is not sufficiently severe to-change the local velocity
distribution will be unable to cause transition to. occur 1n this
region of very fa.vora.ble velocity gradient.

Y

. Thers ere not sufficient exper‘lmanta.l data on the location of
the transitlion point on bodles of revolution in low-turbulence
flows. Lacking such infonna.tion, the most reasonsble basis for
estimating the transition point on bodies of revolution seems to
be .to use. the sams cr*ter:if.' as previously presenued. for airfoils.

Dra.g of' Aj rfoil Sections

In reference ‘2 the section drag coefficiente, computed by th_e
method. of that re-oor’c. are pressnted for an, extensive range of
airfoll thir‘kmsse—chord rétios, Reynplds numbers, and transition .
point locations. A repreeentative group ,of these casea has been
recomputed by the methods of referen- e 4; as well es the present
report, and the results of these calrulations are given in table I.
It is seen in the teble that the maximum 4! fference existing between
the three methods for obtaining-the drag coefficient is 0.0002 fur
a single surface and is 0.000k for the totel drag coefficient for
both airfoil surfaces. There is no apoarent consistency in the
nature of the deviations, however, and in only one case does the
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difference in total drag reach the valus given above. The results
of reference It should sgree numdrically with those of reference 2,
gince they are bassed on the sams fundemental assumptions; but some
difference might be expected when comparisons are made with the
computations based on the present report because of the small
changs in the shape factor E and the averaging msthod used to
fix the factor X. The agreement between the results should
therefore be considered highly satisfactory and a confirmation of
the compatibility of the assumptions.

The limits of accuracy of. current msthods for measwring
airfoll section drag coefficients 1s of the same order of magnitude
as the differences exlsting between the various theorstical results
so that 1t is not possidble to gay which of the calculations most
accurately predicts experimental values. The weke—survey method 1s
now used commonly in the determination of experimental dreg coeffi-—
clent and it can certainly not be sald to determine drag within the
1limits needed to establish the relmtive accuracy of the preceding
computations even though, for a given test configuration, 1t may
be possible to repeat meesurements to & higher order of accuracy.
Any experimental check ig also complicated by the problem of
locating the point of trensition from the laminar to turbulent flow

in the boundary layer. The previously montioned methods for . -

determining the transitior point cen easily err by a few percent of
the chord length on each surface, and this can bring about an error
in the calculated section drag coefficient of the order of magni—
tude of 0.000k4.

Very few experiments have been cénducted in which the location
of transition from laminar to turdbulent boundary-layer flow cn both
surfaces and the corresponding sectilon drag coefficient were measured
accurately. In reference 2 the section drag coefficient
measured in flight is givern as 0.0080 for a 25-percent-~thick
section at & 1ift coefficlsnt of 0.25 and a Reynolds number of
be 36 and ’0 percent ‘of the chord length, from tho leading edge,
on the upper and lower surfaces, respectively. For this configura—
tion the following results are given by the various listed methods
for calculating airfoil section drag coefficients:

Mothod =~ “866t1ch drag coefficient
Experimental, Flight (reference 2) - | 0.0080
Squire and Young (reference 2) _ . ) -0079 ;
Nitzberg (reference 4) L0077
Holt (reference 3) - _- - --:;;; B .0076
Totervin (reference 5) N | T ;6077

Present report - ' o .b080
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These valuss are gll within the probahle limits of accuracy of
experiment. :

The drag coefficient Ffor an NACQA 0012 airfoll at zero angle
. of attack and the corresponding tranaltion-point locations, have
been measured at a number of Reynolde numbers. These measurements
are tabulated in reference 5 along with the theoretical drag
coefficients obtained by several theoretical methods.” The results,
together with- the numsrical values calculgted as indtcated in thse
present report, are presentsd in table IT. Xt 1s belleved that the
differences betwesen the numerical vsluss of ‘the varlous methods
leave littls cholce as to the relative accuracy. Any decision to
use ole method in preference to thg others must rest, for the
present, on convenience of application. The procedure of the
present report requlres no approximations to the veloclity distri—
bution over the sirfoil and it is readily applled to calculating
both the growth of the laminsr and turbulsnt boundery layers a8
well as computing sirfoil section drag coefficienu.

The calculation of girfoil section drag coefficient for
airfolls at speeds reguiring the inclusion of compressibility
effects was first given by Young and Winterbottom (refersnce 10).
The single numerical example cobsidered in this reference is an
18.5-percent--thick symmetrical Joukowski sectlon st zero angle of
attack. The assumption was made that the transition point is 9.k
percent of, the chord from the leasding edge and that the Reynolds
number is equal to 107. Velocity dlstributions wers used for
potentisl flow and at a Mach number of 0.685. For these two cases
.the calculated dreg coefficients were 0.0089 and 0.0091, respectively,
while the present report gave, for the ssme data, the vaeluss 0.0089
and 0.0093. Thus, both methods indicate that at subcritical Mach
numbers the introduction of compressibility effects into the compu—
tations brings sbout only a slight increase in the airfoil section
drag coefficisnt. .

Drag of Bodies of-Revelution

The problem of bound .ry—layer growth and the determination-of
drag coefficlent for bodies of revolution is more complex than for
airfoil sections, since 1t is necessary to teke into coasideration
the dimensions of the bedy as well as the velocity distribution.
The method derived in the present report furnishes a procedure
which parallels closely the enalysis derived for an sirfoil section
and, with 11lttle increase in Intricacy, embraces compressibility
effects. In order to compars rssults obtalnsd by the present masthod
with results glven in refersnce 12, drag coefficients of the Akron
airship shape wers computed at a variety of Reynolds numbers and
transition points: These results are presented 1n table III along
with the corresponding drag coefficients obtained by Young for “the
sams configurations. (For convenipnce of comparison, .Young's ’

- = —reme e
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convention of basing the drag coefficient on the body surface area
was adopted. This convention differs from those used by the NACA
which bases the drag coefficient on either the volume to the two—
thirds power or on the projected frontal arsa.) It is noted that
for transition points far forward the difference between the results
for identical configurations, as cbtained by the present method and
that of Young, incremses with the Reynolds number. This imnlies
that the difference between the two methods arises in the calcula—
tion for the turbulent layer and is probably brought about by the
use of tThe averaging method aassoclated with the local skin-friction
coefficient.

Very few experiments have been conﬁucted on bodies of revolu—
tion at zero angls of attack to determins tho location of transi-
tion and the corresponding drag coefficlent: In reference 21 the
drag~coefficlent measurements for the Akron airship shape at three
Reynolds numbers of the order of 10,000,000 are given. Boundary--
layer surveys indicated that in each of thesss three cases the
transition from laminar to turbulent boundary-layer flow occurred
at T percent of the body longth from the leading edge. In
reference 22 drag coefficients are given-at the same three Reynolds
numbers for a metal body of virtually the same shape. These latter
measurements are considerably largsr, a fact which is difficult to
oxplain because the pressure distridbution over the forward % percent
of the body is BO very favorable that at these moderate test Reynolds
numberg it 1s improbeble that transition could move significantly
ahead of the T—porvent station. For the serles of msasuremsnts
reference 22 indicates that the wind-tunnel-interference effect was
of minor importance. The wooden model was of polygonal cross
section; whereas the metal model was & trus body of revolution but
this would seem to bs unimportant. Assuming that transition
occurred at 7 percent of the body length from the leading edge and
using the experimental pressure distribution of references 21, the
drag coefficient of the Akron shape was calculated at ths three
test Reyneclds numbers.

In the following table the calculated values are comparod with
the two sets of experimental values, -

Reynolds . 131p .3 x. 108 15.0 X 108 | 17.3 X 108
numbar . )

‘Wooden 0:0198 0.0193 0.0190
model o .

Matal o

model . | .0228 0223 .0219
Theory JCor22 ' 0217 . 0212

———
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It is seen that the calculated values lie between the two sots of
experimsntal data.

Raw data from wind—tu:msl experimsnts on 'bod.*es of revolution
gonerally indicabte a change in .the gbsolute wvalue of the presaure
coefficlent as the Mach number increa.ses but the mesgnitude-of this
Increase is such that it may very well be sittributable to wind—
twmnel--wall effectas. There is a difference of opinion between
various authors as to the effects of compressibllity on the velocity
distribution over bodies of revolution for analyses have besn
prosented both affirming end denying that pressure coefficients
rise with increasing Mach nwmbsrs. These differences have been
resolved by J. G. Herriot. In refersnce 23 he shows by means of
linear perturbation theory that, for very slender streamline bodles
of revelution in a uniform stream of compressible fluid, the’™
pressure coefficlent at the surface of the body 1s almost independ—
ent of Mach nmumber. The eguations of ths prssent report, together
with the result that the velccity distribution is independent of
Mach number, were used to determine the effect of compressibility
ocn the calculated drag coefficient for the Akron shaps. For transi—
tion point at 25.7 psrcent of the chord from the lsading edgs,
Reynolds number equal to 10®, and free—stresm Mach number equal to
0.7, this configuration had for calculated drag coefficient the
value 0.0018% as coumpared with 0.00198 for ths incompressible case.

In ths presentetion of the theory 1t wag noted that the method
developed for computing the growth of the boundary layer over bodies
of revolution breaks down in the vicinity of the tail end. Vhen
the drag of the Akron shape was being computed it was obserwved that,
over a rangs of Reynolds numbers from 10% tu 10%® and transition
points from the leading edge to about the midchord position, in the
step-by—step integration over the last 20 percent of the chord the
quantity cp[2r(r/t}] varied almost -linserly with x from its
value et the 80-percenmt—chord station to~ zero at the trailing edge.
In reference 12 this is also shown Pqr Reynolds number equal to 108,
When this assumption was Iinserted in the differential eguation for
® it was possible to integrrats the equation directly and the
results obtained by the direct integration were in good egreemsnt .
with values obtainsd by the step-by—step integration of the original
oguation. It is believed that for practical applications the
simplified procedure based on the assumption of & linsar variation
of cp [ex(r/z }1 will be sufficiently precise. However, if a body
of revolution,.with shape markedly different over the rear portion
from that of the ‘Akron, is to be investigated for a range of
transition points and Reynolds numbors it is suggosted that répre—

sentative cases be computed b using a sgg—by—step integration
over the last 20 psrcent of t chord. in this manner can

the exactness of the assumption ccncerning the linsar variation
of Cftaﬁ(r/z)] be tested.
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General Remarks

In certain cases it is particularly dssirable to know ths
varlation of either the thickness or the displacement thickneass of
the turbulent boundary layer over a curved surface or a body of
revolution. In order to determine this precieely frum a knowledge
of the momentum thickness distribution it would be necessary, of
course, to have added information abuut tie variation of the shape
factor E and the velocity distribution through the boundary layer.
In reference 24, von Doenhoff and Tetervin have discussed certain
aspects of this nroblem thoroughiy, and have presented an empirical
diffsrentlal equation that, when used with the mémsntum equation
and the skin—friction relation, permits tracing the development of
the turbulent boundary layer to the separation point. The calcu—
latlons necessary for the solution of thase eqyations are, however,
of considerable length -

The relations in reference 2h maka it possibls to calculate
the variation of momentum thickness and boundary-layer--shape factor
accurately. TFor airfoils at low speeds, this calculation involves
the use of three equations:

¢ 22,555 tn (K.075 B, B0}

4. - 2.975
4 esg_(H : 27 }_("2

L

=
‘ale.

U2 o, .86]
=t —2035(3—13 )

The first two of thase equations ars the baslc equations of the
pregent report and the last equation 1s an empirical relation which
was developed by von Doenhoff end Tetervin. It so happens that the
first equation is qpite insensitive to the value of H._ Thus for

constant value of H, is qutte acrurata.' Once the chor&wise digtri— -
bution of & 1s found the solution of the empirical equation of
referen~e 2L is gimplified consideradbly. If the numerical integra—
tion of the third equation above givss a value of H in excess of
1.8 et any chordwise station in the turbulent regime, the imminence
of turbulent separation can be suspected and the mothod of the
present report cannot be - applied behinﬁ that station.

The present report treats the turbulent boundary layer in terms
of the boundary—layer momontum thicknsss, BInce, for en unseparated

turbulent boundary layer a value of H, the ratio of dilsplacement to e

m—— e e : &

o s
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momentum thickness, of from 1.4 to 1.5 is indicated at low speeds
and, since the effoct of Mach number on E has besen azsumsd to bs
negligible, the value of the displecemsnt thickness follows imme-
diately. In order to obtain the boundary—-leysr thickness, consist—
ency demands the use of the typs of velocity dlistribution which was
usged in the develomment of the logarithmic velation between the
skin friction factor { and the boundary-layer momentum thickness.
However, this approach lnvolves theoretical difficulties which can
be circumvented by the following mesans. It has been previously
noted thet the logarithmic relationshlp bstween the local skin—
friction coefficient and the boundary—la»r momentum thickness
lsads to a variation of local skin-fiict.cn ccefficient with
Beynolds number which is numerically equal fto that predicted by the
pover law developed by Fallmaer in refersnce TF. This power law
relationship between local skin fricvion coefficient and boundary—
layer momentum thickness ieads to ths conclusion that the variation
of velocity through the boundary laysr is relsted to the distance
normal to the swurfece by the exprﬂssion .

U \&5/ .
Using this approximation for the walocity profile 1t Ilmmediately
follows the boundary—layer thickness is approximately
8.4(1 + %g) times the boundary-layer momentum thickness.

In reference I and 20 it s shown, for a wide variety of air—
foil ssctions, that the drag coefficients and boundary—layer—
thickness distribubtions celculated from the Sguira and Young equations
agree well with experimenzal values. - In the resulis that have been
given in the present report, it has been shown that for various
airfoil shapes and for a representative ranje of Reynolds numbers
the calculated valus of drag coefficient for each case is very close
to that obtained by previously established methods, including those
of Squire and Young. Since the method of the present report is of
the same accuracy as prsvious methode and is more general and easily
applied, 1ts use in the cal-ulstion of drag coefficients and boundary—
layer distributions is therefore reecrmendsd.

Ames Asronasutical Laboratory,
National Advisory Committee for Aer.nautics

Moffett Field, Calif. ' '
7?/ 7/ ,J'w ::f/:., . % ?
(éZjZ' ég? szé? /[ 2 Gerald E. Nitzﬁbrg,
Max. A. Heaslet, i Aeronautical Bngineser,
Physicist. o

Rl A ,

Donsld H. Wood,
Aesronautical Engineer.
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APPENDIX A
Symbols

General Terms

*

cp lpcal skin—friction coafficient (ET/poU

D drag of body (per unit length for airfoil section)
k thermal conductivity
M Mach numbe“ of free stream

Pr Prandtl’s nymber /-4R{>

4y dynamic pressure of free siream (“90 2) _
local_yelocitx iriside bouniary_;gyer or in wake -

U, ~velocity of undlsturbed stream ' '

8) local velocity outsida boundary laysr or at edge of wake

U nondimensional velowity ratio (U/U, )

7 ratio of specifiz heats .[(cp/cv) = 1.4

& boundary-<layer. thickness. - : .-. = .- : . k

1
¢ skin-friction factor .(p,U2/7)%

Ho .coefficient"of viséosify 1ﬁ freé'streém;{;

“w. coefficient of viscosity aﬁ wall

Po density in frae stream

py density Just ogtsi@g ?Qﬁndgry:lgyer;

p  density ihside boﬁndaryAlayer or ﬁékel'
B nondimensional density ratio (pU/po
T akin frlction per unjt ares,

Airfoil Sectiona

c airfoil chord

cg . section profile-drag coefficient (D/—po 2c)
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H  -boundary-ldayer shapse paramster (s*/e)

R. Reynolds number based on chord_ 1ength ( )
W variable introd.uced in euua.tion (19)

x distance along air;oil chord .

z varia.‘ble x in nondimansi onal terms (x/c)

y distance measured perpendicularly -5 alrfoil surface or to
center line of wake

el

varigbls y in nondimensiopal térms (y/c) _

z variable introduced in equation {12) .

5% d.is lscement thicknsss | 1 - E2N d,v‘} )
= f (- o)

e momentum thicknsss[[a pl (}_ ll)dy}

7] momentum thickness 1n nondlmensiona.l terms (8/c) =~ . .

Bodies of revolution

A surface area of body S
Cp ‘total drsg coefficient (n T,2A) . -

Cp total dreg cosfficient (:D/-oO 2V2/S

H

* boundary-layer parameter (%)
3 length of body . .-

r radius of cross. sec tion of body

T radius in nondfmensional terms (r )

Ry Reynolds mumber based. on length of 'body ( Pollo )
v volume of body -

w variable introduced. in eq_uation (}4”)

X distance m.sa.sured ‘parallel to axis of 'bod.y from: stagnation

polint

==

Hl

varigble x i_nnond.imsnsigr_lal terms _(x/I)

R mmm mm omm os s s ow
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b g distance measured perpendicular to surface or to center line

of wake

<l

distance y in nondimensional terms (y/l)
z variable introduced in eq_uation (37)

a anglo between tangent to genera’cor and axis of bod.y

displaﬂement area. of bounda.ry la.yer

La L . o= - 0

i . , c
Nk }}t [g,r f (1 = poU (r +'F cos co)dy:l

displacemsnt areq of walce 1 Eﬁf (1 - ,9_.(_) - d_y-]

e variable o'fmj:n'begi‘a%ion {®'2nr)

% nondimensional varisble of integration {e/1)

momentum area of bo‘mdary layer

o [21( J‘QB ng (J_ .....> (r + ¥ cos q.)dy~1
momentum arsa of wake [Eﬂ' _}f_;—g——%; (l -%)F d-.Y ]

) momentum area in nogdiman\.giénal t_ems (;%)

Subscripts T S

B conditions at stagnation point

T.E. conditions at trailing edge of airfoil or tall of body of
ravolution '

T.P. condltions at transition point
W condition at wall or surface

o) free—stream condlitions . S e s o

l
}
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* conditions In lsminar boundsry leyer at arbitrary point x;
0.8 conditions at 80-—percent point on axia of body of revolution

2 conditions in weks where static pressure ia that of free stream

. carm e &



UL U CAPPENDIX B L
Compuié%ién Procedﬁfe for Drag“Calculétibﬁ.
‘L. Alrfoil Section at Arbitrar“ L*ft Coefficient
A. From. known airfoil thickness & gtribution or pressure
. distribution determine velucity distribution cor-
responding to desired 13t coefficient.

B Estimate transit*onﬁpoint location on each surface by '
" the following:

(a) For maximum velocity in vicinity of
leading edge, transition occurs
at chordwise station correspond-
ing to velocity decrease of from
5 to 10 percent of meximum vélocity.

(b} For maximum velocity in vicinity of mid—
chord, transition oscurs near maximum
velocity point or, for largs Reynolds

;numbers, dhead of maximum velocity -
. ... .. point at chordwiee station where local
. .7 ‘poundary—-layer Reynholds number attains
"7 a value of about 8000,

. ) - . l" .fToP'

C. TFrom stagnation point to transition point the flow in
boundary layor ie lemlnar; thus at transition point

1) I UL X 11 + 0.26 M?(1-0. .92 T p. E)tf '1'13‘1‘_’ ax

Re Up.p.% 17 | j°
\ : - 4,075 R
D. Transform varisble to wpp, = ———8-(68)p p.Up.p.
. _ B X 152M2

E. From figure 2 oi)t&in ZT-P. =.1.60)-l- VT.P.]-D.ZWT.P.

F. For turbulent region, from transition point to trailing
edge, the growth of z ie given by

o A Ao -

~X7. R,
ZT E = ZT P ( P ) — lje_l—RC / _5 ﬁ4 &%
Un, E. [1+0.1524210p 5.3 i 5

g7 W 5 e g oumam

|

1
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' =i -
where P o= [1 + 3’5—1 M2 (1—32)] B-" [:L+.§M2 (1-02)]

G. At trailing edge obltain wgp, . cox‘rqsponding to
Zp g, from £l gure 2. '

—E._'_.Sé'_ct-ion drag coefficient is obtained from

2(1-!—0- 1521‘{2)¥'T B ' 2.2
°a = TIUOTS R (UT.E.)

2. Bodies of Revolution at Zero Arfgle of Attack

A. Fron body thickness distribut’'.m.or pressure distri-
bution determins velocity distribution.

B. Transition from laminar tec turbulent flow oscurs

roughly at chordwise station where lozal _boundary-
leyer Reynolds number etteins a vaiue of SCOO.

2_ _5.3R | ro. | pET.P.

Re® = =222dy L 110.354% 1-1.678 2}- iEe.tig

& o=z Su2) ey
Ur.p.” 'rT.-E:‘?-l LR AT R R g

0. PFrom stagnation po*nt to-transition’ point the flcw 1n

boundery layer is lamSnar; thius-at transition point ~_
0.43 . . S e
(o p)T P2 g lg__- —— {1-4,. 0.26 M? (1_0;92 UT_PF)}
- Rlpp, "7 rp p, E &

J/ET.P. =2 ﬁs'-i7ﬁf' 0
[o] ) .
_h.075R; =
D. Transform variable to w = t_ (55 ) ¥
TP = Tog1oomE (COT-B:UT.P.

“E: From figie 2 obtain zg p, = 1,60k WT_P.ZnawT_P_

F. For turbulent regioh. from trtasition point to 80
percent axial station, the growth of z 1s given
by
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U, 8/ Fr i1.22 1.2l R
S ZT.P.( _T.P.) (_T.P.) + 21_ .
Us.8 Ts.a (1+0.152M2)Uq , o

fxO.a = (%___)1.21 o

X7.p, _ BRICE . L o

=1
where B = [1 + ?l;i ¥ (1T wli+ L M2 (7))

\elp

G. Irom figure 2 obtain Yo.s corresponding to Z,.8 i o

H. Transform va.r;ta.ble 1;0

5, . monF, B, = 2xTo , g¥p , { 1+0.152 M3)

_.8 0.8 AO'B A l‘_.075 RzBO BUO A

I. From 80-percent axiasl station to trailing edge, growth
of & is found from

'5 ) ﬂa I_Io.a )3.5 -50-8 >+ 0:766(2@0.3) ﬁa‘eﬁo'sz
T.E. = Yo.8\Tr x. Br.E. 12(w, o)  BL.E.UT.E.°
. T.E. e - -
f (1-%) ([_—T—U—- S o3
0.8 T.E. _

J. The drag roefficient of the body of revolution, based on
the volume to the two-thirds power, 1s then

v2/3/2

% i 5515 (ﬁT.E.)G'E
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TABLE I.- COMPARISON COF SECTION DRAG COEFFICTENT FOR SEPARATE
ATRFOIL SURFACES CCMPUTED BY VARIOUS METHODS
: . v eo.....Bection Qreg coefficlent, cq . .
Thickness | Reynolds, | B?wpgzze slufg::e " Ref g;r:?_m_)a_a i Reference ll- . Present veport |
chord | mmber | /oof m, P.|xfoof T. P, | Usper | Lower | pper | Lower | Upper | Lower
. surface surface surface ! surface | surface ; surface
0 168 0 0 0.0046 | 0.0046 { D.0046 | 0.0046 | 0.0047 | 0.00k7 |
0 ;109 2 2. .0041, 001 1,00k | .0Oke L0040 | ,00k0
0 l 10° o b 0036 § .0036 ! ,003% | ,003k 0035 | .0035
0 ;107 0 0 L0030, .0030 i .0030 | .0030 .0030 | .0030
0 P 107 Rt .2 L0026 1 L0026 i 0025 1 .0025 L0026 | L0026
0 P 107 M b 0021 | 0021 ! .o0021 | L0021 .0021 | 0021
0 | 5% 307 0 0 0024 | .002k | o023 ; .0023 | .co2k | .ooeM
1k 106 77 77 L0065 | +.0050 |-, .0063 | .0050 0063 | .00k
14 10 376 376 0052 | .00BL ¢ .0050 | .o0ko | .0OBL | ,OOWO
oLk 107 LTT 277 .00k 0031 | Lo0ko 5 L0031 L00kL | ,0031
b 107 .376 .376 ,0031 .0023 | ,0030 | .0023 0031 ' .0023
25 10° 189 196 .009L | .0066 | 0091 | .0065 | 0089 ! .00G
.25 108 .366 .396 0067 'L L0050 t . ti .00k .0066 | .0049
e 0 189 196, | .0057: | 00K | .0060.; L00KL.| 0059 | .00k
.25 107 . 386 .396 .0038. ; .0038;! .0029 0039 |

i o — ety v ¢

e 41 rrrr— e ——— a1

0029

,0029

0TV “ON ™ VOVE

L
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TABLE II.-- COMPARTSON OF EXPERTMENTAL DRAG COEFFICIENTS FOR

NACA 0012 ATRFOIL SECTION AT ZERO ANGLE OF ATTACK

WITH VALUES CALCULATED BY SEVETAL METHODS

..... .

Bectlon drag coefficlent, cq
ROyno1del Experimental [aloulated |Celculated | Caloulated C;iggiized
% 10~8 measurenent reference 2 [reference 3| reference 5 | . report
™
2.675 0.0071 | 0:007h 0.0067 0.0069 0.0067
3.780 0070 | .oorE” | ioo6d -00%0" bore 7
5.350 :.0968 ) .0071 .0069 . 0070 0068 .
7.560 0067 | .oo7L .0069 .0069 .0067
TABLE III.— THEORETICAL DRAG COEFFICIENTS OF AKRON
ATRSHIP SHAPE CALCULATED AT SEVERAL REYNOLDS
. . HUMBFRS AND AT VARIOUS TRANSITION-—
- - - POINT TOCATIONS
] = | Drag coeffj:cien_ill (EA_%-
. . I " 1 3
Reynolds i Trensition | Present ' Reference 12 |
number | percent 1 | report ] |
T ;';g*“T B
108 ; 4,677 I 0.00502 } 0.00508 : -
107 I 4.6 | ,00343 ! .00335 i
108 | 4.6 [ .oo2us ! .00235
108 i 25.7 | .00u38 i .ooubb !
107 g 25.7 © o ,0028k .00279
108 I 25.7 | .00198 ! .00189
10° i 53.4 1 ,00312 ¢ .00316 {
107 I 53.4 St .001T3 . .00176 i
{ 108 : 53.4 | | 1

.0011k

.00115
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Figure 1.- Airfoil section with boundary layer.
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Figure 3.~ Body of revolution with boundary layer.
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Figure 2 (a to ¢).- Grapk for evaluating w from z for turbulent boun-
dary layers.
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