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FLUTTER INVOLVING DEPENDENCE UPON CONING ANGLE
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By Robert P. Coleman
SUMMARY

A preliminary enalysis has been made of the conditions of
stability of free osclllations of a hinged rotor !n hovering
flight. The case analyzed 1s a rotor wlth hinges allowing
freedom in flapping and lagging and having a completely reverslble
cyclic pltch-control aystem, so that a twisting moment on a blede
moves the control stick without hindrence from spring or friction
congtraint,

The principal results of this study ere presented in the form
of a stablility chart in vhich the quantitlies specifying average
coning engle, pitch setting, moments of inertia, chordwise and
sranwise mess distribution are combined into generallzed parameters
in such a way that the stzbllity condition can be plotted on &
single chart.

The results show that the stabllity 1s extremely sensitive to
chordwise center of mass, end that forward movement of the center
of mass Increases the stabllity. It 1s also shown that the
stability depends upon coning angle and pitch setting. Tor all
exemples in which the coning angle is determined by a balence
between 1ift forces end Inertla forces, the condition for neutrel
stablility correaponds to the same point of the chart.

Severel lines of attack for further theoretical work are
suggested, which would extend the generality and strengthen the
valldlty of the analysis,
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INTRODUCTION

N )

"It 1s importent for the safety of helicopter flight that
suitable precautions be teken to avoid the ococurrence of
self-excited vibraticns such as blade flutter. The understending
of flutter phenomena is therefore. important in the design of
rotary wing aircraft. Although helicopter blade flutter has a
certain similarity to airplane wing flutter, the analysls is
somevhat different bscause of the occurrence of terms assoclated
wlth the rotation of the bledes.

Rosenberg in reference 1 hes given an anaiysis of
helicopter blade flutter that consilsts essentially of adding
centrifugel stiffening terms to the standard wing flutter enalysis.
But rotation can also introduce inmertie coupling between flapping,
lagging, and feathering. These coupling terms, depending upon
the average coning angle and pitch setting of the blades, have not
previously been considersed in flutter analysis.

The purpose of the present paper ie to exhibit the simplest
cagse thaet will point out these new effects. This 1s done by
treating the sxtreme case where inertia forces and alr forces are
dominent in comparison with elastic forces. As this case 1s
characterized by a low flutter frequency, the phenomenon is
conveniently referred to as low frequency hellcopter flutter.

In reference 1 the elastic forces are considered and certain
inertia coupling terms are ignored, while in this paper these
inertia coupling terms are conaldered and the elastic terms are
ignored. The next loglical step in the solution of the flutter
problem now seems to be to combine the two theories into a single
echeme of analysis that includee bcth elastic effects end coning
and pitch~angle effects. This further development, however, has
not been included in the present paper.

It should be mentiocned that the prcsent analysis takes no
account of the phenomenon of stall flutter although pitch angle
is also an Importent paremeter In that problem.

ANALYSIS

If the cyclic pitch-control eystem of a rotor is consldered
to be campletely reversible, so that a twisting moment on & blade
moves the control stick without hindrance from spring or frictiom
conetraint then, except for inertia effocts dus to rotation, the
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blade may be considered to have zero frequency in torsiom. Also,
if all the blades have the seme physical characteristics, the
stability of the rotor as a whole can be obtained from a study of
the equations of motion for a single blade. If further, for
purposes of vibration analysis, the hinge lines of flapping,
lagging and feathering are assumed to pass through a common point
on the spindle axis, then the blade may be 'I:reated. as a rigid
body with one ;po:ln'b fixed. Tho well known Euler's equations of
motion for this case are

hiog - (B - Cloyn, = Iy

'.B&:y - {C - A)wzwz = Ly (1)

Cir, - (A - Blayay, = L,

whore

A, B, C principal moments of inertia of blade ebout x, 3,
ecnd z axes,respectively

oy, Wy, Wz components of anguler velocity resolved along
Ingtantanecus dlrectione of principal axes of blede

Ly, Ly, Ly compononts of external momente ebout the flxed point’

X, ¥, & subscripts referring to principal exes of inertla of
blade. (See fig. 1.)

The average values of amerodynamic and inertia moments will be
consldered to be balanced by suiteble comstent torques applied at
the hub by the drive shaft and, if necessery, by the control
system. The deviations from the average will then appear in the
equatlionsd governing the vibratiom.

The total extermel mament L., Ly, Ly 1s tho sum of the
aerodynemic mament Lx' y', Lz' end the hub torque Q.x, Qy, Qz.

Exprossions for the components of asrodynemic moment
Ly', Ly', Ly'- are obtained by sSsuming that each airfoil section

hes an aerodynamic force normal to itz instentaneous velocity and
equal in megnitude to the conventional expression for 1ift of en
airfoil in steady motion (sce fig. 2) thus

F =.-J'pV2<:a.o sin o (2)
2

3




MR No. 16G12

vhere

aerodynamlic force per-imit spen
v instanteneous velocity of section
c chord of section

. instanteneous engle of attack

3 slope of 11ft curve

The effect of induced velocity 1s soncidered only in the
choice of numericel velue four the slope of the 1lift curve. Drag
forces have been ignored in this Intrcductory treatment.

As the inertia terms in Euler's equations are expressed in
terms of wy, @y, ®, 1t is desireble to exprecs the aerodynamic

moments In terms of these same varlebles, thus:

vy=Vcos u.=rmz

VZ=VB:Lnd,=ra)y

where r ip radlal dlstance of blade element from hinge point.
then

1
F,=Fcos a-= §pV2cao sin a cos a = %pcaorawymz
F, = F 8in o = é‘pvecao pin? g = %pcaoramya

The serodynamic mcments cen then be written:

I.x' =I°RFzsdr = @y, Lron%pcaoaradr 7

(3)

N/

| R R
Ly = L-Fzm =-um, .%pca.olsd_r

R R
Lz' =J; Fyrdr = ws? i -%pcaozsd.r

L
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where & 1s the distance of the chordwlse center of mass behind
the asercdynamic center.

© Euler's equations now becoms:

: R a
A(Dx - (:B _-C).a)ymz = m}_mzj %pcaoerdr i Qx
o
= ] ' R 3
ZBmy - (C - A)mzmx mmya.\z I %pcaor dr + Qy S (%)
o
. R
Co, - (A - B)mxmy = mye L[)%pcaoﬂdr + Qz
-

where Qz’ Qy, QZ are the comnonents of constant torgue required

to balence averasge values of essumed aerodynem’c and ilnertia
mcments. These torque components may represent such things es
welght moment, constent structural bending moment, and constant
bungee force in the control system.

In order to obtain solutions of equations (%) the deviations

from the average values of a, @y, ®, bre assumed to be small

enough so that squeres and prcducts of deviations can be neglected.

Bquationes (L4) are linearized by putiing

oy ={2 4 wp !

~

Vv

oy =8y + @ (5)

Z

W = Qz + a)z'
\J .
and with the essumption that Qx’ Qy, Q,z are in equilibrium with

terms not containing o', oy, ,' the conutent terms become
(1; - 5,0 = S’j{
'IQQZQ: s Baﬂynz = S%
:[30:03_ 2 B3Qy2 - _‘%

5
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and the lineer terms become

e+ T B, Q) =0

myt B Ia(ﬂzmx' * szz') * H2(Qymz +szy') =07 @

b * ' TR T AL
o' + 130wyt +lgn ) - Bl t = 0 J
where
£ -3 R
Il= A Hl=.*_ .%.pcaoeradr
o
1 [
I, = &b H, =3 °2pce.or35r
R
B-A
I3 = 22 33=%J%maor3ﬂ
(o}

The quadrctic terms are neglected.

The linocar terms govern the vibratlions. Their soclution 1s
of the form

@' = gy oM

o®=o 'em

) e > (8)

v _ v AL
mz =@ ©

(v
where A 1s a root of the determinantal equation

A (1, - 5)09, (I, - 52,
-1, » + Ef3, I + Bgﬂy -0 (9)
1307 1301 - 2H§)I A
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Thie equation 1s a cubic in A. When expanded in the form

ALy B2+ Wica0
where

a = B{),
b= (I - B )(I,2 - I0P) + (I, - %)(1301 2R1;)
¢ = 2I5(I; - l) inly( IBQ: + H3,Qy)

the well known conditione for stabllity are
a>0
>0
¢ >0
c<eb

The fourth condition 1s ths importent one for oscillatory'
instability.

Tor the critical condition corresponding to ¢ = ab the
cublc equation becomes

(A.+a.)(x2+'b) =0 ]
(10)

-8
A= __
+iib

s

This condition represents the border line between damped and
soelf-excited vibratlon of the system. A chart has been devised
to show the values of the pertinent parameters corresponding to
this boundary dbetween damped and self-excited vibrations.

The expliclt equatlon corresponding to ¢ = eb 1s
y(I1 - Hy) oI, (- 130; + ELY) |
= Hp l_(Il - (10,2 - T£42) + (If - B ) (I - 233(5] (11)
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which can be.reduced to Ehe form

H, - I, & Ie x
I, g2 (12)
B, I, B0

The average pitch setting & eand coning engle B8 are now
introduced by the substitution

e

ngnsmp

ﬂy =0 cos Beinbe (13)
ﬂz = {Qcos B cos B

“J

In terms of B &and 6 equation (12) becomes

gin 8 sin 0
1 - 4 308 e I tan B

) (1%)
13 ten” B l-trm f __+_3 2_531:8115
EQ 12 32 ein ©

STABILITY CHART

‘A chart hes been plotted in which all varisbles of equation (1%)
have been included subJect cnly to the restiriction

o = A3 (15)
I =13
which is a very good approximation for a long thin body like a
rotar blade. In terms of variables defined by
I=Hl-1100529
I3 tan2 B

Y=-22 gin g
Ip ten E

8
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equation (14) becouss

. (Y - 1)(2Y - 1)
1 - tan? 0 (3 -@} (26)

The chart, figure 3, is then a plot of Y sagainst X for
constent values of 6.

DISCUSSION OF RESULTS

The varisbles X and Y of equation (16) have been defined
in such o way as to maks the chart nearly a universal single curve.
A sipht dependence upon 6 Iindicated by the different curves of
the chart, shows that 1t 1s, in reality, a family of curves; but
that all the curves are cloge together for any reascnsble range of
values of #. The main dependance of the flutter condition upon
the physcial characteristice and the operating conditlon of the
blnde iz consequently implied in the form of expression defining
X and Y.

The most lmportant blade characteristic 1s the chordwise
position of center of mass with respect to asrodynamic center.
This dictence s appeers in the definition of H; and

consequently In X. For typicel parameters, changing the center
of mass from 1 percent shead to 1 percent behind the aerodynamic
center will chango the velue of X from -15 to 15 1If

I) =0 end from -4 to -15 1f I; = 1. The value of I,

would be close to zero for & blade with a heavy spar of clrcular
cross section. It would be close to 1 for a blade with its
mess well distributed in the chordwilse direction.

The varlieble Y 1is equal to the ratio of the average aero-
dynemic moment to the average lnertie moment aebout.the axias
parsellel to the blade chord.

For
avorege asrodynamic moment, L.' = "quznﬂg
everage lnertle moment, M, = (C - A)anx

_ E'I'_._. BB stinemY

My ~(C-A)y Iotanp
9
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The value of Y for blades with a flapping hinge will therefors
normally be close to 1, so that the critical point for mearly all
typlcel applications will be close to Y = 1; X =0.- Departures
fram the value - Y = 1 wlll be associated with such things as
gravity moment or structural bending moment In the blade, or
poesibly transisnt flepping conditions as in gusta. These effects
may thus meke the blade flutter 1f they increase the coning angle
or meke 1t more stable 1f they decrease the coning angle. It
seems, for example, as though the gravity moment would tend to make
the blade more stable. Cases could thus be imagined that, for a
conetant pitch setting were stable at very low rpm, where gravity
has a large relative effect, and unstable at operating rpm, where
a typical value of Y 1o 1.04. A model tested -upside down would
be expected to show the opposite eoffect.

FURTHER REFINEMENTS OF THEORY

This treatment is t¢ be considered es only & preliminary
study of blade flutter. Many simplifying assumptions have beem
made in order to obtaln a simple stabllity chart and for this reason
the reeults should be applied with caution. This analysls can now
be used as a sterting point for further refinements. Same effects
which might be conaidered are:

1l. dreg forces

2. case vhere I, # I,

3. elastic and friction forces

4. uneteady-1ift functions

5. conetraints such as completely irreversible comtrols

6. induced velocities and flight velocity

It is hoped that the present treatment, which is based upon
linearized Euler's equations, may suggest interesting alternatives

to the more common hinge engle representation in other problems of
rotor dynamlcs.

10
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CONCLUESIORS

l. For a helicopter blade in which the restoring forces
in vibration are due to inertis effects rather than springs or
structural stiffness, a simplified theory leads to conditions
Tor the occurrence of flutter that can be repiresented by & single
generalized chart. For all examples in which the coning angle 1is
determined by o balance between 1ift forces and 1nertia forces the
critical condition corresponds to the same point on the chert.

2. Tho theory Indicates the dependence of flutter instability
upon the physical characteristics and the coning angle and pitch
setting of the blade.

3. The results show that the stablility is extremely sensltive
to chordwise posltion of center of mass wlth respect to asro-
dynemic center. Forwerd movement of the center of mess increases
the stabillity.

4, This paper i3 to be consideredas only a preliminary study
of blede flutter end as a starting point for further developments.

Langley Memorial Asronauticel Laboratory
Naticnal Advisory Committee for Aercnauntics

Lengley Fleld, Va.
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Figure 1.— Pm’nc//oo/ Axes of
Tnertia of a B/ade.
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Figure 2.— A_ssumed Instanitan-
eous Force on Airfoil.




=0°
/f’)K
STABLE ~ B
’.6 | //‘///
"] | 30° | __+—T
/1/,/ o — |
/ ///
12 &Az//
B
Hesihe
.727‘an/_-3
4 < UNSTABLE
VAN
39 Y20 IO
=7
=4 0 4 B8 1.2 1.6 2.0 2.4 2.8 32
H—1; cos?

Is Tan+<A NATIONAL ADVISORY

F;f(l’e 3 - Sf—ob///fy Ch ar.t. COMMITTEE FOR AERONAUTICS

*ON YW

21D91



