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A PRELIMINARY THEORETICAL STUDY OF HELICOPTER-BLADE 

FLUTTER INVOLVING DEPENDENCE UPON CONING ANGLE 

AND PITCH SETTING 

By Robert P. Coleman 

SUMMARY 

A preliminary analysis has teen made of the conditions of 
stability of free oscillations of a hinged rotor In hovering 
flight. The case analyzed is a rotor vith hinges allowing 
freedom In flapping and lagging and having a completely reversible 
cyclic pitch-control system, so that a twisting moment on a "blade 
moves the control stick without hindrance from spring or friction 
constraint. 

The principal results of this study are presented In the form 
of a stability chart In which the quantities specifying average 
coning angle, pitch setting, moments of Inertia, chordwlse and 
spanwise mass distribution are combined Into generalized parameters 
in such a way that the stability condition can be plotted on a 
single chart. 

The results show that the stability is extremely sensitive to 
chordwlse center of mass, and that forward movement of the center 
of mass Increases the stability. It is also shown that the 
stability depends upon coning angle and pitch setting. For all 
examples In which the coning angle is determined by a balance 
between lift forces and Inertia forces, the condition for neutral 
stability corresponds to the same point of the chart. 

Several lines of attack for further theoretical work are 
suggested, which would extend the generality and strengthen the 
validity of the analysis. 
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INTRODUCTION 

 It Is important for the safety of helicopter flight that 
suitable precautions he taken to avoid the occurrence of 
self-excited vibrations such as hlade flutter. The understanding 
of flutter phenomena Is therefore, important In the design of 
rotary ving aircraft. Although helicopter blade flutter has a 
certain similarity to airplane wing flutter, the analysis is 
somewhat different because of the occurrence of terms associated 
with the rotation of the blades. 

Rosenberg in reference 1 has given an analysis of 
helicopter blade flutter that consists essentially of adding 
centrifugal stiffening terms to the standard wing flutter analysis. 
But rotation can also Introduce Inertia coupling between flapping, 
lagging, and feathering. These coupling terms, depending upon 
the average coning angle and pitch setting of the blades, have not 
previously been considered in flutter analysis. 

The purpose of the present paper is to exhibit the simplest 
case that will point out these new effects. This is done by 
treating the extreme case where inertia forces end air forces are 
dominant in comparison with elastic forces. As this case is 
characterized by a low flutter frequency, the phenomenon Is 
conveniently referred to as low frequency helicopter flutter. 

In reference .1 the elastic forces are considered and certain 
inertia coupling terms are ignored, while in this paper these 
Inertia coupling terms are considered and the elastic terms are 
ignored. The next logical step In the solution of the flutter 
problem now seems to be to combine the two theories into a single 
scheme of analysis that includes both elastic effects and coning 
and pitch-angle effects. This further development, however, has 
not been Included in the present paper. 

It should be mentioned that the present analysis takes no 
account of the phenomenon of stall flutter although pitch angle 
is also an important parameter in that problem. 

ANALYSIS 

If the cyclic pitch-control system of a rotor is considered 
to be completely reversible, so that a twisting moment on a blade 
moves the control stick without hindrance from spring or friction 
constraint then, except for Inertia effects due to rotation, the 
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"blade may be caneldered to have zero frequency la torsion. Also, 
if all the "blades have the same physical characteristics, the 
stability of the rotor as a -whole can he obtained from a study of 
the equations of motion for a single blade. If further, for 
purposes of vibration analysis, the hinge lines of flapping, 
lagging and feathering are assumed to pass through a common point 
on the spindle axis, then the blade may be treated as a rigid 
body vith one point fixed. The veil known Euler's equations of 
motion for this case are 

Aiij - (B - CjayOe • Lj 

Biy - (C - A)a>za>x = Ly (l) 

-  (A - BjayCy - Lz Ca>, 

whore 

A, B, C    principal moments of inertia of blade about x, y, 
and z axes,respectively 

G>X, (ay,  coz components of angular velocity resolvod along 
Instantaneous directions of principal axes of blade 

LJJ, Ly, Lz components of external moments about the fixed point' 

x, y, z    subscripts referring to principal axes of inertia of 
blade.  (See fig. 1.) * 

The average values of aerodynamic and Inertia moments will be 
considered to be balanced by suitable constant torques applied at 
the hub by the drive shaft and, if necessary, by the control 
system. The deviations from the average will then appear in the 
equations governing the vibration. 

The total external moment Lg, L_, Lz is tho sum of the 

aerodynamic moment L^*, L ', L * and the hub torque ft , G , Q . 

Expressions for the components of aerodynamic moment 
Lg', ly1, Lz

f- are obtained by assuming that each airfoil section 

has an aerodynamic force normal to its Instantaneous velocity and 
equal In magnitude to the conventional expression for lift of an 
airfoil In steady motion (see fig. 2) thus: 

-. 2 
F ».-£pV C&Q  sin a (2) 
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vhere 

7   aerodynamic force-per-unit span 

7   Instantaneous velocity of section 

c   chord of section 

a.       Instantaneous angle of attack 

e   slope of lift curve 
o 

She effect of Induced velocity Is considered only In the 
choice of numerical value for the slope of the lift curve. Drag 
forces have "been Ignored In this Introductory treatment. 

AB the Inertia terms In Sutler* s equations are expressed In 
terms of ax^,  ouw, eoz It Is desirable to express the aerodynamic 

moments in terms of these same varieties, thus: 

7V =• "V cos a 
•7 

rco 

V„ = V sin a = rco z y 

where r is radial distance of "blade element from hinge point. 

then 

F = F cos a = jjpVca    sin a cos a = gpca^r oyaz 

p e F sin a. = ^pV^caQ sin2 a = gpcaQr^ujy2 

The aerodynamic moments can then he -written: 

•J. F-sdr = "V0* 
P I    ^pca^^dr 

(3) 

L • z -fv* 03 2 
\B 

!     iPCB-oT^dx 
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-where s Is the distance of the chordwise center of mass "behind 
the aerodynamic center. 

Siller's equations now "become: 

Aöj - (B -C).oyoz = «Pyfl^l   -Jpcaosr2dr + Q^ 

Bo^ - (C - A)a>acDx »-ay»2       -Jpcaor3dr + <^      I    (h) 

Ccis    - (A - B) z "A • V J^' oca r3dr + Q o z 

where Q^, 0 , Qz are the components of constant torque required 

to balance average values of assumed aerodynamic and Inertia 
moments. These torque components may represent such things as 
•weight moment, constant structural bending moment, and constant 
bungee force in the control system. 

In order to ohtain solutions of equations (h)  the deviations 
from the average values of m . <o , (a     are assumed to be small x  y  z 
enough so that squares and products of deviations can he neglected. 

Equations (k)  are linearized "by putting 

"V y  y > 

z   z   z 

(5) 

and with the assumption that Qx, Q_, Qz are In equilibrium with 

terms not containing a^*, aij1,  a)z* the constant terms become 

> (6) 
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and the linear terms 1)600100 

a^ + a,/ . ^XPLP,' +nz®yf)" - ° 

y 2* ix x z 2   yi       z y 

V + S^W +nA,} " V^y1 B ° 

0 >       (7) 

where 

Jl •     A 

I    , C - A 
2 "      3 

T        B  - A 
I3 "     C 

-l-pcaoSrSdr 
o 

H2 =BJ i"Poaor3dr 

H
3 -"4"  i"Pca0r

3är 

The quadratic terms are neglected. 

The llnoar terms govern the vibrations. Their solution Is 
of tho form 

i    i *t 
"x " °^o e 

co  = co   e 
y    yo 

CD * = co * e*"* 

>   (8) 

z    zo 

where X Is a root of the determlnantal equation 

\ (ii-H1)nz (li-H^Oy 

xft  ^x - *#j 

(9) 
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Kile equation Is a cubic in X. When expanded in the form 

X^ + aX2 + hX + o » 0 

where 

a »H^2Z 

l. - di - HiKift8 - i3cv2) + (i^ - "ft) (iA - SE
'PJ

) 

c - 212(1! - %) OftC-I^ + H^) 

the veil known conditions for stability are 

a > 0 

b >0 

c >0 

c < ab 

The fourth condition is the important one for oscillatory 
instability. 

"For the critical condition corresponding to c = ab the 
cubic equation Becomes 

(X + a)(X2 + b) = 0 
(10) 

X=< 
±Wb 

This condition represents the border line between damped and 
self-excited vibration of the system. A chart has been devised 
to show the values of the pertinent parameters, corresponding to 
this boundary between damped and self-excited vibrations. 

The explicit equation corresponding to c = ah is 

Qytti - Ha.) 2i2 (-130, + nfj) 

- % [jli - HxXlgO,2 -  iff) + (Ift - aft)(I^c - 2H3^    (11) 

.i.        
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which can he- reduced to the form 

(12) 

The average pitch setting 6    and coning angle ft are now 
Introduced hy the euhstltutlon 

Clx a ß ein ß 

O -fi cos ß sin e 

Cl • 0 cos ß cos 6 

H-, 

In terms of ß and 0 equation (12) "becomes 

oln 9   \/ H oln 9  \ 
.— lMs-^ 1; 

I,  cos* 0 \In tan P   A I, taoß  7 
p 

tan ß 
>-2_ 

1 - ton* 0 

\H2  I2 

2I3 tan ß 

Hg sin 0 

(13) 

(1*0 

STABILITI CHART 

A chart has "been plotted In which all variables of equation (Ik) 
have been included subject only to the restriction 

Hg = H3 
(15) 

which Is a very good approximation for a long thin body like a 
rotor blade. In terms of variables defined by 

I - Hl " El cosg 9 

I3  tan
2 ß 

Y = Jg. sin 0 
Ig ten ß 

8 
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equation (14) "becomes 

„  (I - 1)(23T - 1) 

tan** 6 (3 -% (16) 

The chart, figure 3, is then a plot of Y against X for 
constant values of Q. 

DISCU5SID1I OF RESULTS 

The variables X and Y of equation (l6) have teen defined 
in such a way as to make the chart nearly a universal single curve. 
A sight dependence upon 0 Indicated "by the different curves of 
the chart, shows that it isf in reality, a family of curves; "but 
that all the curves are close together for any reasonable range of 
values of 0.    The main dependence of the flutter condition upon 
the pbyscial characteristics and the operating condition of the 
hlr.de is consequently Implied In the form of expression defining 
X and Y. 

The most important blade characteristic is the chord-wise 
position of center of mass with respect to aerodynamic center. 
This distance s appears in the definition of H-^ and 

consequently In X. For typical Parameters, changing the center 
of mass from 1 percent ahead to 1 percent behind the aerodynamic 
center will change the value of X from -15 to 15 if 
^»O and from  -1*5 to -15 if 1±  = 1. The value of I-j_ 

would he close to zero for a "blade with a heavy spar of circular 
cross section. It would he close to 1 for a "blade with its 
mass well distributed In the chordwise direction. 

The variable Y is equal to the ratio of the average aero- 
dynamic moment to the average Inertia moment about.the axis 
parallel to the blade chord. 

For 

average aerodynamic moment, L * = -Q_£lBH_ 

average inertia moment, M = (C - A)QC1 

y - ***• A sin 0 
*V   (C - A) Hx " I2 tan ß 
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The value of Y for "blades with a flapping hinge vlll therefore 
normally he cloae to 1, so that the critical point for nearly all 
typical applications wiUr he close to Y = 1, I = O. - Departures 
from the value Y = 1 vlll he associated with such things as 
gravity moment or structural handing moment In the blade, or 
possibly transient flapping conditions as in gusts. These effects 
may thus make the hlade flutter if they increase the ooning angle 
or make it more stähle if they decrease the caning angle. It 
seems, for example, as though the gravity moment would tend to make 
the "blade more stable. Cases could thus be Imagined that, for a 
constant pitch setting were stähle at very low rpm, where gravity 
has a large relative effect, and unstable at operating rpm, where 
a typical value of Y lo l.C-4. A model tested upside down would 
be expected to show the opposite effect. 

FURTHER EEFHTEMEBTS OF THD0BY 

This treatment Is to he considered as only a preliminary 
study of blade flutter. Many simplifying assumptions have been 
made In order to obtain a simple stability chart and for this reason 
the results should he applied with caution. This analysis can now 
be used as a starting point for further refinements. Some effects 
which might he considered are: 

1. drag forces 

2. case where Ig £  I? 

3. elastic and friction forces 

k.  unsteady-lift functions 

5. constraints such as completely irreversible controls 

6. Induced velocities and flight velocity 

It is hoped that the present treatment, which is based upon 
linearized Butler's equations, may suggest interesting alternatives 
to the more common hinge angle representation in other problems of 
rotor dynamics. 

ID 
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OOHCUJSIOHB 

1. For a helicopter "blade In which the restoring forces 
In vibration are due to inertia effects rather than springs or 
structural stiffness, a simplified theory leads to conditions 
for the occurrence of flutter that can he represented "by a single 
generalized chart. For all examples in which the coning angle is 
determined "by a "balance "between lift forces and Inertia forces the 
critical condition corresponds to the same point on the chart. 

2. The theory indicates the dependence of flutter Instability 
upon the physical characteristics and the coning angle and pitch 
setting of the "blade. 

3. The results show that the stability is extremely sensitive 
to chordwise position of center of mass with respect to aero- 
dynamic center. Forward movement of the center of mass increases 
the stability. 

k.  This paper i3 to be considered as only a preliminary study 
of "blade flutter and as a starting point for further developments. 

Langley Memorial Aeronautical Laboratory 
national Advisory Committee for Aeronautics 

Langley Field, 7a. 
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Flyure 1- Principal Axes of 

Inertia    of a Blade. 
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Figure 2 - Assumed   Instantan- 
eous Force on Airfoil. 



2.0 \ 

e=o° 
i 

1.6 
STABLE 

d.u 

__J01_ 

\.z 

.a 
Hs/he 
I2 top 

UNSTABLE 

r \^ 

0 

zJ ko° 

s 

z 
o 

r- 
Q 

to 

^4 0 .4 .8 I.2 I.6 

j3    tan2/3 
Fywe   a- Stability Chart. 

zo 2.4 2.8 

NATIONAL ADVISORY 
COMMITTEE FOB AERONAUTICS 

3.2 


