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NATIONAL AOTISORY COMMITTEE FCB AERONAUTICS 

TECEIICAL NOTE SO.  119^ 

EFFECT OF FINITE SPAN ON THE AIELOAD DICTEIBUTICNS FOE OSCILLATING WINGS 

I - AEROnrKAMIC THEORY OF OSCILIATIN& WINK OF FINITE SPA» 

By Eric Reissner 

SUMMrJ?y 

A formula ie derived for the preraare distribution on an oscillat- 
ing lifting surface of finite span under tho assumption of a ratio of 
span to average chord (aspect ratio) that ie not too email.    The ranje 
of validity of this formula,  eo far as aspect-ratio limitations are con- 
cerned, ia not lees than the rang« of validity of lifting-line theory 
for tho non-oscillating wins. 

It is found that the effect of throc-diraoncionalit;' of the flow may- 
be incorporated in the results of the two-dinensiocai theory by adding a 
correction factor   o    to the basic function   C(k)    of the two-dimensional 
iJieory. 

The correction term   a   ie a function that depends on wing plan 
form, wing deflection functicai, and reduced frequency    k.    Its determi- 
nation requires the solution of an integral equation which is clmilar to 
the integral equation of liftinß-Iine theory. 

The present report concludes with an explicit statement of the form 
which the results of the theory aeeume for the epanwiee variation., of 
lift,  total moment, and hingo moments on a wing which is oscillating in 
bending,  torsion, and aileron and tab deflection. 

Methode for the numerical evaluation of the results obtained as 
well as numerical applications to specific problems are given in part II 
of this report. 

INTRODUCTION 

V» 

The present report d-3als with the linear aerodynamic theory of 
oscillating airfoils of finite span. It contains the outcome of attempts 
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to obtain simplifications and extensions of earlier results given in ref- 
erences 1 to 3. The guiding thought in the developments is to deduce, 
from a rigorous formulation of the problem of nearly plane lifting sur- 
faces, simplified results In applicable form -which depend on the assump- 
tion of sufficiently large aspect ratio. It is found that euch results 
can be obtained and that thair range of applicability, ec far as aspect- 
ratio limitations are concerned, is at least as inclusive as that of 
lifting-line theory for the airfoil la uniform mo-ion. 

In reference 1 wings of rectangular plan form were considered and 
expressions were obtained for the spanwise distribution of lift and mo- 
ment on the airfoil for arbiträr;', email puriodie displacements of the 
points of the wing surface. In roference 2 these results were extended 
to w^ngs of arbitrary plan form. In reference 3 expressions wore 00- 
tained, on the basis of results in references 1 and 2, for the spanwise 
variation of aileron hinge moment and tab hinge moment. Moreover, it 
wa3 established that the effect of finite span could be incorporated 
into the results of the two-dimensional thaory, ae given in references 
k and 5» by a modification of the basic function C » ? + 10 in an 
explicitly specified manner. The term to be added to the function C 
in order to account for the three-dimensionality of the problem wse 
found to be the earn© for lift, moment, and hinge mcnents but to depend 
on the nature of the motion being dealt with. Determination of these 
three-dimensional correction terms requires the solution of ar integral 
equation for the variation of the circulation along the span. The deri- 
vation of this integral equation is an important part of the work. 

In this report the foregoing results are obtained in what appeare 
at present to be the simplest possible way. In particular, a consider- 
able reduction in the necessary analysis is accomrliced by showing that 
the effect of finite span manifests itself in the"expression for the 
chordwise pressure distribution solely by a modification of the function 
C. With this result, uno may be mado of the known formulas for lift and 
moments of the two-dimönEional theory in order to establish the final 
results of the FroBent theory without further integrations. 

SYMBOLS 

U velocity of flight 

x, y, 2 Cartesian coordinates 

u+U, v, v components of fluid velocixy 

t time 
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I 

p pressure 

p density 

0 Telocity potential 

P", 8 discontinuities of u and T in the ay-plane 

xi(y) coordinate of leading edge 

x^(y) coordinate of trailing edge 

b samichord 

b0 somichord of nidspan 

s ratio of span to chord at midspan 

velocity component w at the airfoil 

instantaneous deflection of points of wing surface measured 
normal to xy—plane 

regions in jy—plane (airfoil, mice, remaining) 

circular frequency 

tarring of terms, defined by equation (12) 

circulation per unit of span 

circulation function defined by equation (15) 

function defined fcy equations (?3a, b) and occurring as 
kernel of the integral equation (62) 

dlmenslonless spanvlse coordinates; y* • y/b0, r\*  • n/b0 

z, > dlmenslonless chordvise coordinates defined by equation 
(«•Ob) 

ZJH        diBonsionlees coordinate of midchord line;  ^"(xz + l^)/S\>0 

k reduced frequency; k = o> b/tl 

k        reduced frequency at midspan 

"a 
za 

Ba- *«> 

O) 

r • 

a 
K 

V* n* 
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*m 

Q 

An A3 

» 

X. 

s 

C(k) 

c 

e 

a 

f 

l,  m 

h 

a 

P, 7 

L 

Ma 

Mß,  My 

F 

*o S 
function defined by equation (V?) 

functions defined by equations (52b) and (53b) 

function defined by equation C>9) 

two-dinsanaional circulation function given by equation (63) 

variable of integration 

function defined by equation (72) 

function defined by TfcaolorBen 

correction term defined by equation (77) 

location of elastic axis in units of semichord b 

location of aileron leading edge in units of b 

location of aileron hinge line in units of b 

location of tab leading edge in units of b 

location of tab hinge line in unltB of b 

aileron and tab overhang in units of b; l=e— c, m«f — d 

bending deflection of wings 

angle of attack of wings 

aileron and tab deflection angles 

lift per unit of span 

monent about elastic ails per unit of span 

aileron and tab hinge moments per unit of span 

function defined by equation (8'.') 
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FORMULATION OF THE PROBLEM 

The wing considered. Is of arbitrarily given plan form and la placod 
In the path of a uniform incompressible air stream of velocity U. ümall 
camber, thickness, angle of attack, and deformations are aecuntd for the 
vine vhlch, for this reason, may he represented by a plane surface of 
discontinuity of pressuro and tangential velocity In the fluid, parallel 
to the direction of U, In addition to the surface of discontinuity 
representing the wine itself, there le admitted tho possibility of a 
surface of discontinuity of tangential velocity (but not of pressuro) 
vhlch extends downstream from the trailing edge of the ving and which Is 
also taken to be parallel to I!. 

'  I 

let x and y be the coordinates in the plane of the surfaces of 
discontinuity, the direction of V determining the x-oxlB, and let z 
be tho coordinate perpendicular to x and y. Lot u + U, v, and v 
be the copponents of fluid velocity in the x, y, and z directions, 
respectively. Let p dosignats the pressure In tho fluid and p thn 
density. With the higher oi-dor terms in the /elocltles neglected, the 
equations of fluid motion and of oontinuity become 

(a) 
du     „ du         1 
at         at         p 

op " 
äx" 

<»J 
dt         (be         p by 

(o) ov     _ ov         1 — + U •— =  
ot          dt         p 

to 
az 

(1) 

ox  oy  Ü2 
(2) 

Exterior to tho surfaces of discontinuity tho flow is without 
vorticlty so that in terms of a velocity potential 0, 
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(a) u - J£ 

(3) 

From equatiwe (3) and (1) mi appropriate formcf the Bernoulli equation 
follows for the pressure p, 

p  cit   ux 

Lot 

(a)  r-(4nU-(aä|^ 

CO 

(5) 

qy /z=o 

etand for the discontinuity distributions of the velocity compontnto u 
and v ever the surfaces of discontinuity in the xy-plane. According 
to the- Biot-Gavart theorem tho velocity component w in the interior of 
the fluid 1B then given by tho integral 

-1 pn 7( I, i), *)(x - I) + Hi,  I, t)(y -n) -I f(«-|)"*<jr-,)'*^}1/* 
at&l (6) 

From equations (5) it follows that    7    and   6    are related to each 
other in the form 

07 _ ÜB 
cty      dx 

(7) 
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From equations (k)  and (5) it follows that the discontinuity of 
proQsure Ap is given by 

P a t (f y <*' ) + ur (8) 

The problem of the oscillating lifting surface nay now he formu- 
lated. Designate the coordinates of the leading and trailing edge of 
the wing by xj(y) and xt (y), respectively, with xj(0) - -b0 and 

x^(0) « bg, so that br repreoente the semichord at mldepan. Let sb0 
stand for the length of the semispan. Distinguish the following three 
regions in the xy-plane; (1) the airfoil region Ea,  (2) tho wake 

region By which is the strip of width 2sbe extending downstream from 
the trailing edge, (3) the remaining region Rr. Then there is the 

condition of continuous flow outside the airfoil and wake regions, In Er, 

6-0 (9) 

and the condition of continuous pressure in the wake region Rv, 

Ap - 0 (10) 

At the airfoil the condition of tangential flow is tc be satisfied. If 
Za(x, y, t) stands for the instantaneous deflection of points cf the wing 

surface measured normal to the xy-plane, this condition In the region 
B- is 

wa - w(x, y, t) d t    h x (11) 

I    * 

By introducing equations (9) to (11) in the integral representation 
for w, equation \6)t  and taking account of equations (7) and (3), there 
may be obtained the general integral equation of lif tins-surf ace .theory 
for the distribution of the veloclV discontinuities 7a and 8a over 

the airfoil region. With the solution of this integral equation, 
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equation (8) fujniLhec tho cliordvlee pressure distribution   A pa.    Appro- 
priate integration   of   6 pa   results in expressions for s^anvisu lift, 
moment, and aileron and tab hinge-moment distributions. 

Further development is here baBed on the assumption of simpljr 
harmonic motion, 

z«(*, y, t) - z.U, y)<> 
iU)t 

(12) 

As a consequence of the linearity of the theory, it follows alco that 
velocities and pressure becomo products of i""* and of amplitude func- 
tions independent of time whijh are designated by bars. 

The firEt step in the deduction of the f^.nal form of tho integral 
equation of the problem consists in the detenaination of the values of 
7   and 8 in the wake region, by means of equations (8), (7), (9), and 
(10). Equation (S) takes on the form 

*t 

ico C / '• *• * / äx'   i + u7„ 

n 
If the circulation   r     Is defined by 

(13) 

i      'a. 

and the circulation function Q by 

(1>0 

_ i   i sx n  • — r e v * 
b„ 

(15) 

it follows front equation (8) and its differentiated form that 7W is 

given by 
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7V -"-Hi £"fie * U* (16) 

When   7v   of equation (16) Is substituted in equation (7), there is ob- 
tained for   6y, 

i^x 
boä~e (17) 

Equations (17),  (16), and (11) are now introduced in the integral 
representation for   w,    equation (€), in which the coordinate    z   is 
mails to approach zero.   Ae wa3 shown in reference 1, the two limit proc- 
esses of integration and of letting    t   approach zero may be interchanged 
if the Cauchy principal value of the integrals lc token at the points 
I   m   x-,    i\ * y   for wJiich the lnte.-jrwid becomes infinite.    There results 

v.(x, 7) - fi 1    /?•''»{It  i)(* -I) + ;a(I, iKy-i) 

.If (x-t)s+ (y-n) 2 ' 3 /a 
dtdr, 

>, A    WI ,    SIR,      ,, t  . dfi      , V bo   /y -1 ,v   -1 7ln (n?(x - f.) + an- (y - n>,., 

|(a-C )a+ (y-n)2 j 
3/2 

Equation (18) holds for all points   x, y    inside    Ka.    Its left-hand 
side is the given function 

w„ " i<B   Za + U 
SzL 

(19) 

and, according to equations (7) and (9), 6  is expressed In terms of 
7a by moans of the formula, 
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•i ^r. a 
dx' (20) 

In addition, there is imposed the Kutta-Joukuwsky condition stating 

that y   and b are finite along the trailing edge of the wing. The 
amplitude of the chordvise preosuro distribution A pa in terms of the 
function 7-,  for which equation (18) is to he solved, is given by 

A5, 
- - ia> 

'/ 
ya dx' + u 7a (21) 

The general problem is the solution of equations (18) to (20) for 
arbitrary shape (plan form) of the airfoil region »a. Eosuits equiva- 
lent to this solution are kno-.m for tho following two special cases: (l) 
the two-dimensional problem to which the general problem reduces when 
tho region Ha 1B the strip |x| <. b « bQ and wa of equation (19) 

is independent of y (see for instance reference 5), and (2) the problem 
of the wing with circular plan form (references 6 and 7). 

The purpose of the remainder of this report is to obtain approximate 
solutions of the problem which are applicable subject only to the re- 
striction that the airfoil region Ha is of sufficiently large aspect 

ratio, a restriction that is roughly equivalent to requiring that the 
ratio s of span to chord at midspan is sufficiently large. The nature 
of these results Is, presumably, that of the dominant terms of an asymp- 
totic development of the exact solution in terms of the parameter s. 
However, no investigation of this aspect of the problem is made in the 
present report. 

Concerning the range of validity of the results as far as aspect- 
ratio limitations are concerned the statement may be made, in view of 
the nature of the analysis, that the results obtained in this report for 
oscillating wings are certainly applicable for all wings for which 
lifting-line theory is considered applicable in the case of uniform mo- 
tion. There is some reason to believe that the results for oscillating 
wingB may have a somewhat wider range of validity than lifting-line 
theory, as the chordwise waves which occur in the vibration problem nay 
be responsible for a reduction of the effective chord length whilo at 
the same time having no influence on the effective span length. 



f- 

NACA TU Ho. 119U 11 

IERIVATION OF SIMPLIFIED XffBKBtAL EQUATION OF LIFTIHQ-SUfcFACF. W.'.ORY 

Equation (X8) may be mitten in the form 

(28) 

whoro 

(a)      X» 

8^>o   xt^L 

"ft// 
-sb„   x, 

yaC>,, t|)(ac~e) * \(i, i)(y -1) 

o 

A. 

[ f(x -t )= + (y-r,)a  ] ", 3/a 
df.dT| 

(b)      I8 -     ° 

(S3J 

/• ° r       -1SI -ii nOi)(*-g) + n  (n)(/ - n) AtJ /        J o      V        —- •—;— dld.i 

-*\   xt(n) I J 

and «tore,  from equation (PO), 

V*. *>-.y    —äi—d* 

The decisive step in the present solution Of the problem 00 ex- 
pressed by equations (2f?) and (23) 'B the reduction of tho two- 
dimensional integral equation to 2 one—dimenaional integral equations 
which can be solved euccesnively. For this reduction it is assumed that 
the airfoil region is sufficiently elongated in Bpan direction, that the 
rate of taper is moderate, and that the velocities do not vary appre- 
ciably along the npan over distances which are a fraction of the moan 
chord. With these assumptions it may be postulated that at every upon— 
wise section the contribution to tho normal velocity wu induced by the 
tangential velocities at the airfoil is approximately as if every 
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rpanwlae section were part of a wing without taper and as If the flow 
wero two-dimensional.    Equation (2ja)  then becomes 

I 

Ii  ». 

xt(y) 
n 7a( t, y)(x - i )dUti 

(x - £ f + (y - T))
2
 ] 

ft    1    ' 
-»   Xj(y)       L 

xt(y) 

2 «   / I - I 

*i(y) 

3/a 

(afc) 

A corrccpsnding approximation IE for the integral Ia 1B ob- 
tained by a lees direct procedure. Write 

whore 

k it V.   3 U    * / 

ebo   „ -i2| 

./.      ./  . .        (x-   Ma
+ (y-«)alB/a 

-*o   xt(n)   L 

Bb. -in I 
i4= /•. r      • »  »'fi(n»»-{)—did, 

y../M I (x- na + <y-,)s I3'9 

- 8*>o x* 

Write next 

Bb0       on 8b0    xt(n) H'.t ./ "./ ./ 

• 

-sb0     x -eb0   x 

(25) 

(26) 

(27) 

(28) 
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In the integral extended from x to X*(n), that ie, over port of the 

airfoil region, the sane approxiaatlii-. •'•?r. LB m&dt, as In the expression 
for Ix. If this is done, its contribution to I  vanishes and 

3 

Bb„ 

*/  / 

-i^| 
e tr a'   (n)Cy - O  

- eh. x   L(X _t 5  (y ~n i 

With a nev variable of integration X « | - x 

sb0 
in   I 

«x,    _i ? x 
e    »     (y-Tj)dX     1 .    . 

••  ,/     [ Xs + (y - 

In order to approximate the remaining integral   I*   this integral is 
separated into two parts, one part which equals the value of   I4   in the 
two-dimensional theorj and the other part being the difference between 
the two-dimensional and the three-dimensional value of   I4, 

I4 <• ljs* + &I4 

<•> .5 
-I St 

n (y) 
(x - I )dt dT) 

/ /. - » xt(y) [ (x --   if * (y - n)' 
3/3 

*V 
•••«/    fc= 

«t(y) 
tj 

4l 

The factor fJ (y) naj be written in the alternate form 

(30) 

(3D 
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st>„ 

fl(y) 
2 ./      y _T> 

'-ob. 

(32) 

if account is taken of the fact that ß ( ±oh_) = 0. 

.(«> If equations (33) and (32) are combined, the value of I^*' may 
be written 

Bb 
(2) 

o  °° 

-eb„ x.(y) 

i 2! * 
(33) 

o "V 

The next atop is transformation of I4 by integration by parts 

vith respect to i). Before this stop is carried oat It is noted that it 
is consistent vith the preceding approximations to replace in equation 
(27) the limit of integration xAn)    by x.(y). Then 

(x- {) 

-rtu 

Q (n) dt) 

[(*- !)a+ (y-T))eJ 3 /a ' 

I -i "• I 
e1*5 (x-t) 

*tfr> 

o8bo  

•7V (x- 
-eb„ 

5* (n)(y - T)) dt) 

t)2 /(x- S)B+ (y-n)2"- 
*S (3*) 

as the integrated portion of the inner integral vanishes because 
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By combining equations (3k)  and (33) there follows 

15 

(») 
a*. 

V" V      -At.   ~   / 

-^o     *t(») 

-Q (1) •   r S 

(35) 

Equation (35) for A I4 may again te eeparatod into two integrale, in 
the sane wanner aa I3 oi equation US). If this sepai-ation is made, 

tha intecral between the limits x and Xi(y) may again Tie neglected 
with tJie result that 

A I4   •  0 

7  7 
-eh0     x 

x- £ 

-/(x-t )a + (y - n)a     -v " 1 

and with    X =    £  _ x 

, cu st>0 

?*/    n'(T1),
r_   r l( y_^_ 

i l   4   ^v^T-(~ 
o 

'? - Til x -iSi   i 

(y -1))2 

y -n (36) 

T 
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Wov,by combining equation* (36) and (31), then, foiiove: 

*t.(y) -*K 

:7" X(    ,-,     _k^L).-*g*dJ *| 

(37) 

Prom cowMnation of equatlone (37), (99), and (S5) there folJove 
finally as an approximate value or the wake Integral Is, 

i2- 13a «tu   /•  jHjj 

vhere 

u  2« i/,_. s 
*t(y) 

r>" 
U> St), 

0)1>„     A» -IX 
K(x) • --°   /       e       x 

0      [* +r] 
dX 

(38) 

«*„      /*        IX 
i    —°      / 2  (  X_ I x I      v 
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For the applications it is convenient to transform 2(x) by an inte- 
gration by parto of the first integral as followu: 

+ j /•.-«(  x^. + c > 

./      V x2 7 Xs + xs J 
OX 

Hie riijlit eide aßsumes a definite value only if 

and then 

./' 

c(x) - -x~ 

—IJL •*      —i\. 
c 1K d\ 1 /-'    e 1A| 

sr + i   /       —ir- 
iS    .    „E\3/S (A.a + x2) •7, /x~ -0 d\ 

By introducing this formula in equation (39a) there follows: 

„üjoi-t^i   p   .-«^.jZEZZilil)»        (39b) 
U   x «•i 

Combination of equations (38), (pit),and (22) results in the approxi- 
mate Integral equation of lifting-ourfaco theory, which is the basic re- 
sult of the present work. Because the establishment of this equation 
depends on the condition of a ratio of wing span to average wine chord 
that is not too small (so t'.iat the wine plan form hac the appearance of a 
strip), it might bo considered to call this equation the integral equa- 
tion of lifting-strip theory to distinguish it from the general equation 
of l-'ftin»,«-surface theory on the one hand, and from lifting-line theory 
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for the stationary sufficiently elongated wing °n the other hand. That 
it ie not possible to speak of a lifting-line theory for the oscillating 
wing follows from the fact that according to equation (33) and (22) the 
effect of epanwlse variation of circulation is not uniform across the 
chord but varies in a manner depending on the frequency co. 

In order to obtain a normalized form of the equations of the prob- 
lem, the following dimoneicnlees variables may be introduced: 

(*)    y* • y/b0 

* - | Ut + *i) 

(UO) 

(b) 

f (xt-*z) 

As the space coordinate i   does no longer occur, from equation (18) on, 
introduction of a dtmeneionlecB variable z at this stage will give no 
rise to doubts as to its meaning in the subsequent developments. Write 
as abbreviations 

(a)   A (xt - xz) * b 
2 

M  jj- C*t + XZ> = *m 

(Ul) 

The quantity    zm   is a measure of the local sweep of the mldchord line. 
The quantity   b    stands for tha KaßnJ. r.ui« nf the local chord so that 
b(o) «= b0.    With tliese symbols equation (tob) becoues 

boKm + bz (42) 

Also lot 

k .flfe 
tObg 

koZm (43) 

where   k    is the local reduced frequency and   kQ    the reduced frequency at 
midepan. 
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Upon Introducing oquationo (40) to (U3) in equations (38), (2':), BIA 
(23) there follows as the normalized form of the integral equation to be 
solved 

-*a<»' y f) " g fij 
-1 ra( £.-y«) 

dj 

_ ilk .-u* ff(y.} 
s « 

/ 
2 rd£ 

-i e -ii^ _  - r      .. T , 
-'- K) k0(y* - tj+) dTj« (WO 

Equation (UU) has firct been established in reference 2. For tho 
wing of rectangular plan foim (k » k0, k^ = 0) it reduces to an equa- 
tion ßiven in reference 1. 

The problem from here on i 0 to solve equation (kh)  for the function 
7a, to obtain an equation for the spanwisa variation of O , and to 

express the chordwiBe pressure distribution in texmn it   wa. 

In terme of the variable z as defined by equation (te) the func- 
tion ft of equations (Ik)  and (15») is to be written as 

n(y»)«^ei(k+k,a)  /" 
*o 

-I 

and equation (?l) for Apa becomes 

<*5) 

-^ - ik I' *a a»' + 7&{z, r) 

To be established is tho manner in which the prcoence of the term 
containing dß/di)* in equation (4U) modifies the result of tho two- 

dimensional theory for £pa. 

(46) 
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CALCULATION OF EHEESUBE DISTRIBUTION 

The next step in the analysis Is the determination of ?a from 
equation (kk)  In which the following abbreviation Is Inserted: 

5-f /"'glr* Dt0(y*-n*)]dTi
s 

(47) 

Use Is made of the following pair of formulas of lnteKral-equatlon 
theory: 

g(8) . JL   f Jill d t, f(l)    finite 

(M) 

It may be noted that a derivation of tho results of the two-dinone 1onol 
theory in this manner hao been given in reference 8. 

By applying equatlona (1(8) to equation (1*1*) there follows, 
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?JL 

^.-I/LH r   f»  /TTT y«. y*) 

* ^ «-•TV- '   * " 

+ pi ff8 »* J   /T7] 
S n 

2» ^    /  l-£    ~£ d5J W 

SlST lnte8ral ln e^M0n <*> *• »««* to a s:nale ,«« 

--ikX 

«-X        /   z - £ ix /mW 

= /V-j f/pl- *« 
i  

f  *    /    /T7T/  i       ! - / .-«fj: 
IX 

/T    -ikX   . 

i      E - X   L      V. 
1 V'r~)- •} dX. (50) 

By intpcducinß equation (50) In equation (1*9), 
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f. - - s A - z (   r A + t    wQ 

.-i^ö„-ik»     /•   /T77 ,-*»• 
* -T z - x 

ik„«e 2   "° .7 dX 

2 it 
rA* £ e •Ik l 

JSi-l z~ i nrr'O (51) 

° ^TS- x*interch£2» ^ SLA SS*'' as "" —- 
«f^neo'ej?* *' »«W«*•7, the following ,ntg 

./ y 1 + z' 

ae the variable 
•ation vith respect 

ntegrale occur (see 

dz' 8 
7  = - + Din 
i   - 2*      2 

2 +   /  -* A   (z y i+ c Aiiz» £) (52a) 

1 - z*    dz' 
1 + z'  X   = - + oJn • z + 

— 7*      o 
-1 

z'      2 
TU 

X + 1 
A. (z, X) 

The functions   AQ    are defined hy 

(53a) 

Aj (1, {> • 1 Jn i-z£ +"rJrF yrrg 
(52b) 

(z,X) - 2 tan* (   /(I -«)(X+!)')_ 
V  U + z)(X- (53D) 
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The following formulae will aleo be needed: 

ÖA*    ^1-'a"  i       fi^ t     l        /1+ £   x    ^ /«^ v 

d Aa 

a», (53c) 

With equations (52a) and (5>) there follows fron equation (pi), 

-1 

-Ä a.-»k /I/H?(i—"*•)".]'• dX 

a8 /[^Hd •  .-.':• 
,li\+ Ajjr^dj     (54) 

Equation (51*) leads iBnnedlately to the integral equation fcr the 
apanvise variation of i~.  . Let z = 1 find there follows, in view of 
equation (1»5) and in view of the fact that A, (1, I)  • 0 and 
Aa (1, X) * -n, 

—  |     ——' 



2U 

— © n (y") »ig y   /  ~ wa d£ 

-i^-^/ (yjif-i ).-*»* 
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it 
l^Le-1^   dj (55) 

Equation (55) ean be simplified by aeons of the following relations 
of the theory of Sessel functions: 

w    /(/S-Km- 

-J(iW   (k) + iH0^)   (k) )   - 
-Ik 

0») f y~7- »"**' af - * ( j0(k) - Ux (k)) 

Hcnco 

4. /Ft 

(56) 

UÄ.ttf|[^.) + tV
)]*V}-r*lk <J°-1Ji> » •.) 
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«id by canceling two of the    O-terma against each other 

n  - h     *     9b 
o"*»./ 

'l + t    _ 

J ~ ^ 
i «Ik, H^2) • 1H0(2) j     bo bo   i slkI Hx(2) + lEo(i?)   1 
*•   I J 2    L ' 

(58) 

Define now a function   n   by the relation 

H • - 
J0 - iJi J_ - iJi 

fn,(«J * in J2)" «c>"J]      * [<Jo " >i) - * (Ji + >o) j 
(59) 

and write an en abbreviation 

b„ «ikfH^) +    iH>>] 

Equation (58) then assumes the form 

5 (7-) + n(t> !- a5(y) - n<8) (#•) .(«) 

(50) 

(61) 

Equation (6l) is the integral eauation for the spanwise variation of 
ciruuJatioh.    The function 0 la the distribution of   Ö   according 
to the two-dimensional theory.    The    GHtorm represents the influence of 
finite span.    With equation (U7) for   Q   there may bo written 
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• 

;/ ^- EC *b(7* - n*)] *• - ö<a > (j.) (62) 

The aoxt step in the analysis is to subtract ogU*tinn (55) mul- 
tiplied by   - ( - + sin"1 s )      from equation (5*0 it \ 2 s 

I 

/* 9   a*'- 1 (I 4 sin"1 z ) t. 9-«**a) B J       a it \2 / b„ 

• I y A, (*» t )*a 4 f 

ik_ ^  _ii^     ,'v 
06 -/      (*•«*"*•   +0   e-^ dX 

- L e-
lk» /i.d.jii^ d£ (63) 

* 

5 rSÄSt^ST *" «• *«**- ** °- ^uation (63) 
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-1 • 

J    -ik   j 
1 

•/  IT ~-d* 

L   _i   */   at   ^T*dU 

According to eguationB (58b, ^ (33b)^ 

A^'*l>-0 A.(.,l>.< 

The third of these «.i.-n wese relations is vorlfl«,» >>. 
verified b7 moans of the identity 

2 tan-1    ft-ff _ *       , _i 

(«) 

(65) 

r 
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-fc F'V^-' dj 
(66) 

*» pre8Bure dletrioutlonrontti'a^fou89"*111011 ("6)' «•» 
APa 2       /»*       -___      .  

• ^2 ne-
1]Sn 

It 

* 

Dl 

1 

/'( /f=3   ATI     i      *AlX_lk 

dX 

dt 

(»i'SÄi^.-s«- 'ca.- —- ,*.,« 
(67) 
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, l       
A Pa a /' / /' i - z    /i + j  i   .. . \ _ ., 

* / i + *./    yxa _ a 
<U 

(68) 

EqiittJon (68) contains the notevcrthy result that the term with n  and 
also the term with Q lead to chcrdwise pressure distributions which 

are both proportional, to ,/ (1 — E)/(1 + a). Ifoti that according to 
equation (hi;)  thece two pressure terms are caused by downward velocities 

across the wing of the form 

/" 
•Irf(z-   »-*4{ and   e -lira The 

fact that these two different velocity distributions lead to the sane 
simple preosure distribution is here arrived at by an analysis which 
does not reveal the Inner reason for this occurrence.   A modification of 
the analysis so as to clarify this point appears to bo worth wh.l",par- 
ticularly as the fact itself accounts for the relatively simple form In 
which the aerodynamic span effect modifies the expressions for the air 
forces and moments of the two-dliwänslonal theory. 

In order to obtain the final form of the expression for  /i pa,    use 
the following known formulas of the theory of Bessel functions: 

M 

00 

/ 

./ 
d£   - x J0(k) 

(69) 

!       /I- £3 
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and express the quantity Q in terms of S  by means of equation (61), 

2U(J0 i/k0 
(70) 

Then vrite 

PU 

whero 

1 

£    /'   ( /TU  /G3   -i-.ücA^   vadU    /IE 

(71) 

S = e ~
lk» Z' 5s „ (2) n . X 

V 2      ° «    • ^V 

.^-'V^)[^).(_i.l)(^)-^)j     ,w 

-(E) 
Introduce the value of CJ    from equation (60) and the value of ti 
from equation (59). Then 
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1 

S 
S m —** 

p "ATT tt  t 

n i 

H  (s> * 

H^*) * i H>> 

31 

r//Bf'-' 
r      H0<*> 

Hx + i H0 ->      *./      y 1 -I     a 

— 1 

x   r__!i j + ( _JL _ ,V     »*        + __l£i_  ^ I       (731 

Introduce in conformity with reference 4 the function 

Sx<8)(Je) 0(k) 

Equation (73) then beconus 

6 

Ha
(a)(k) + UJS)M 

(7>0 

!,/" /Hfv'[«-l'(#T-0('r3rÄr)] «» 
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By Introducing equation (75) in equation (71) there follower 

^ _ 2 
pU 

8 /IZI  ,   /HI»a dj 
«yi+t../. yi-s a 

L    ^ .(a)   ; v    JO -u, ) j 

yftt/y^t-*' (76) 

Equation (76) ie the general result to be established. A corre- 
sponding formula for the two-dinensional theory is given in reference 8. 
Equation (76) shows that the aerodynamic span effect in the present 
theory manifests Itself solely by a modification of the basic function 
C(k). An additive correction term occurs, which is given in the form 

•CgftrO [«•*#&*] (77) 

and which is seen to dopend ou the ratio of three-dimensional to two- 
dimensional circulation function Cl.    In order to evaluate the correc- 
tion term for a given wing deflection function Z-±,    it is then 
necessary only to solve the integral equation (6^) for the spanwise 
variation of circulation. 



NACA TN No. UOfc 33 

LIFT AMD MOMENTS FOR BENDING, TORSIONAL, AILERON, AND TAB DEFLECTION 

For the applications (eee reference 10) the following deflection 
functions are of particular interest: 

Bending deflection: ZQ » h(y) = E^ty*) 

Torsional deflection: Z"a • ci(y)(x - ab) « ö^,(i - ab)fa(y*) 

Aileron deflection: Za - F(y)(x - eh)    for cb <: x  <: b 

Tab deflection: ZQ • y(j){x - fb)'    for db £ x  <: b 

Lift and monont functions according to the two-dimenrional theory nay be 
found in reference 5. Modified so as to include the .^lerodynainic Bpan 
effect these functions can be written in the following form, ae was 
shown in reference 3: 

2pUsb >?•»[••*]}! 
file     aka 

; 2      2 
l + (i-.)i»J[c.]] 

( *- JikCrs - kpcri 1+ |rEx(d) » H E2(d)] [ c + a7 j "j r        (78) 
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B»_ . „ f 2*f _ (I 
2pirV I (i+ft)lk[( C + a 

1 iS*_    -£ 
. 2 

"0*0 [««•?*«] [•.*]]» (M 

—%-. f-sfi 
PpU£b*        '       2    ^1      3 V'H"' [••»J-JS 

M + < -   B0_ + lujo   -t 
La L ^ 03 

+ lkDP2 - *?%. 

if +   ij   B,   + iKB,_ -k^B 3 '  ~""7E      R •"?•! ,1 
t^[w«)*a^(d)][o*. ]}y (80) 
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=   f_ «k3 

2    "hi h.<«>** [*•*}] 
J t 

H*-*\] 
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V"fl-(|-.)*]f«^l 

J      3* 5rv*>i**a*]r0 + ,n L • ' •» J; 

+    a '/. • ikD    - jt»u 2L ?s     —ra 
J     2* *a(4) |«i(d) + & Ee(d) 

fe*«,]l 7 

»•to».   A, B, and   D 

(81) 

of tho , *., cuia   D   are dufined'in reforonce form 
j'    The türme 

Ei - T,„ _ lo - Vtm •i(d)  - T10(d) _ ji/j*.- 

Äa - T,, _ 11 - 21T 
.(*)     ~\ 

E» - Tia - SJT, 

io       ».(*) - Tii(d) •- artrlo(d)   l 
E3(4)  = T13(d) _ 

(4) 

anTro(d) 

with the terms    T 
J 

(88) 

The terms 

aiso defined in 

»j(J - h, 

referonoe 5. 

a, ß, y) a» defined by equation 
(77) are giren 
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>* • r°+ Ui(k) 
Jo(lr) - UjdO j   . ](^T-0 (83) 

The functions  n.'2' of the two-dimensional theory ae defined by equa- 

tion (CO) are given by 

lkm 
sCO.L. UlCe - Ik 

*o SHi(a,()t)   b 

»b 
bokH,(=)fkJ    ^S   >  J 

> 

*o **<»'(« « V      2 ' 

bo  kH1
(B,(k) « ' 2 -' 

(31*) 

The functions fj. of the three-dimensional theory are, according 

to equatlcnu(62) and (39b), the solutions of the integral equation, 
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fJjiV) + ao    L.78 y - 

a 

-**<>/ -f—Jf F(*o!** - 11 >*"i]   -SjWür-J (85) 

The function n is defined by equation (59) as 

J0(k) - * Ji(fc) 
uGO 

«k | [ JO00 -yidcjj - i [Ja(k) +yc(ir)]j 

The function   P   is, according to equation (39b), 

F(x) 
./ \ x     X x 

+ _ 
X 

•) dX (66) 

This function occurred prevloucly in reference 9, where a different 
theory of the problem of the oscillating wine of finJtu cj-cn wae put 
forward.    A discussion of tlie theory of reference 9 ie given Jn ref- 
erence 1.    Tables 1 and S contain values of the two functions   u   and   F 
for a significant range of tho variables   lc    and   x. 

It ia apparent that the main tack in obtaining throe-diiaeneional 
corrcctionn to tlie reeult3 of the two-dimensional theory consists in 
solving tho integral equation for   it .    The second part of this rjport 
(reference 10), which deals with applications of the* theory, contains a 
practical method for doing this. 

Massachusetts Institute of Technology, 
Cambridge, Mass., I-ecember j,  l$k-j. 
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.658- 
.564 - 
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.4?7 - 
.376- 
•333 - 
.897- 
.S65 - 
.238 - 
.814 - 
.194- 
.176 - 
.160 - 
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- 1.5711 
-1.4681 
- 1.3751 
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- l.OfiOl 

.9871 
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.4410- .08891 
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•^53 - .i6i3i 
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W    0? EQUATI01J (59) 
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O.2139 - 
.8068 - 
.1991 - 
.1924 - 
.1801 - 
.1688- 
.1436 - 
.1818 - 
.1087 + 
.0864 + 
.O807 + 
.0780 + 
.0754 + 
.0730 + 
.0706 + 
.0634 + 
.0663 + 
.0632 + 
•Oßio + 
•0591 t , 

O.O6651 
.06101 
•05571 
.05071 
.04131 
•03891 
.01391 
.00481 
.00311 
.00661 
.00701 
•007S1 
.00781 
.00721 
.00701 
.OO691 
.00661 
.00611 
OO571 
OO521 
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