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VBLOCITY DISTRIBUTION ON WING SECTIONS OF ARBITRARY SHAPE
IN COMPRESSIBLE FOTENTIAL FLOW |
I - SYMMETRIC FLOWS OBEYING THE
SIMPLIFIED DENSITY-SFERD RELATION

By Lipman Bers
SUMMARY

As a first step toward the computation of the velocity
distribution slong a wing profile of arbiirary shave in a
compressible fluid, the circulation-free flow around a sym-
metrical profile is treated under the assumption of the sim-
plified density-sveed relation due to Tchaplygin, Kdirmén, and
Tsien., The velocity distribution problem is reduced to & non-
linear integral equation which is solved by a fairly rapidly
convergent iteration method. Numerical examples are given.

INTRODUCTION

The central problem in the two-dimensional theory of a
potential flow of a perfect fluid around an airfoil profile
is that of determining the pressure distribution on a profile
of given shavpe if the speed and direction of the flow at in-
finity (undisturbed flow) are known., A solution of this
provlem should consist not merely of giving a mathematical
existence proof but of indicating a method for obtaining nu-~
m;rical results of reasonasble accuracy in a reasonesble amount
of time., '

The difficulty of the problem depends essentially upon
the prescribed speed at infinity. If this speed does not ex-
ceed a certain limiting value (depending upon the profile) the
flow will be everywhere subsonic, For higher values of the
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speed at infinity the flow becomes partly supersonic (nixed -
or eupercritical flow), Finally, 1t is probable that for ’

too high velues of the specd at infinity a potential flow

becouwes either mathematically impossible or unstable. The -
case of mixed flow is the more important one, both from the -
practical and theoretical points of view. Nevertheless, 1%
seems that the complete solution of the problem of everywhere
subsonic flows 1s a necessary prersquisite for a successful
attack on the problem of transition through the speed of
sound. ~-(In fact, at present the very existence of mixed
flows pzst a profile has not yet been proved.)

i

In view of the admitted difficulty of the problem it is
advisable to develop the mathematical epparatus by consider-
ing first the simplest pomssible cases. The most radical sim-
plification would be, of course, t0 neglect compressibility
altogether, Tnder these assumptions the pressure distribution
problem has been solved completely. (See references 1 and 2,)
In the present report the following two simplifying aesump-
tions are made: _ "

A, Only circulation-free flows around symmetrical pro-
fileg are consldered. ’

B, It is assumed that the velocity potenbial satisfies A
the simplifled differential squation resulting from the so-
called ©Ohaplygin-K4rmédn~Tsien equation of state. (Cf. ref-
erences 3, 4, and 5,): W -

1

Soms remarks may be made concerning this second assump-
tion. In general, the velocity potentisl o@(x,y) eatisfies
the partial differential equation :

eom w T Lo

a_a:'c_'< 229 _ay( _.ay) ) . ‘0

== TTT &= = g Z=marf~ Tz =%=

whnere p -.1s the densitv ofnﬁhe flﬁ{ﬁ;_ Since the density is
a given functlon of the speed

'p;' ;<q> ( > (ﬁ e ._ .

equation (l) 13 nonlinear The £unct10n p(q) is determined g
by the pressure~density relation (egquation of state). In an
isentropic flow tne pressure ©p . satisfies tne relation
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p p~Y = constant (38)

-

vhere Y is the ratio of specific heats for constant pres-
sure and constant volume. (The standard value of Y is
1.405.,) This implies the density-speed relation

. 1/(Y=2) | |
P () ©

where a, 1s the speed of sound at 4 stagnation point and

Po the stagnation density. GChaplygin noticed that the
equation satisfied by the potential becomes simpler if the
density-speed relation is taken in the form -

P = P, (l * ::a>_% (5)

This relation may be obtained formally from (4) by setting

Y = -1, Though this value of Y violates fundamental phys-
ical laws, it should be observed that only the density—-spesd
relation and not the pressure—-density relation enters in the
equation for the potential,

As a matter of fact, the function (5) behaves qualita-
tively in the same way as does the function (4) within the

subsonic range; that is, for O S ¢° £ 2a,2/(1 + ¥), and
for small values of q/ay the function (5) gives a good
numerical approximation to (4),

Von Kédrmén and Tsien Jjustify the use of the value Y = =1
by the remark that it is possible to determine such values
of the constants A and B +that the pressure-~density rela-
tion

P = A/p + B

will give a good approximation to the relation (3) for val-
ues of p and p olose to some preassigned values, say to
the values of p and p for the undisturbed flow. This’
remark 1s of interest as far as computations of the pressure
distribution are concerned. It in no way affects the velocity
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distribution for, es it was already noticed, the differential
equetion for the potential function depends only upon the
dengity—-sneed relation, and the preceding pressure-dengity
relation leads to the same equaition (5) no matter what values
are assigned to A and B,

I+ should be emphasized, however, that the primary pur-
pose of this report is not to facilitate the use of the ap-
plication of the approximate relation (5) but rather to de-
velop methods which could be extended to the case of the ac~
tual density-speed relation.

In the following, use will be made of certain results
contained in a previous report. (See reference 6.)

This investigation, conducted at Brown Univeraity, was
goonsoraed by and conducted with the financial assistance of
the Natlonal Advisory Committee for Aeronautics.

The author largely profited from several instructive
discusslons he had with 2refessor S, B, Warschawski. He
also ig indebted to Mr, Charles Saltzer for competent aseliest-
ance. '_" _ . o -

-~

SYMBOLS

a{w) auxiliary function defined by equation (55)
a local speed Of gound

8gq speed.of sound at & stagnation point

B(w) auxiliary function defined by eguation (25)

c, CJ positive cOnstanfs

as® non-Buclidean length element defined by equation (22)

Z(P) domain exterior to the profile P
F integral transformation defined in section 5

£lw) function defining the mapping of the circle into the
profile P

fn(w) nth approximation to the function f(w)

Y
il

i



NACA TN No, 1008 5

g (o)

gik
h(w)

Im( )

complex potential of g compressible flow
function inverse to f(w)

coefficients of the metric (22)
function defined by equation (44)
imaginary part of ( )

profile surrounded by a coppressible flow
pPressure

local speed

speed of the undisturbsd flow

value of g at a boundary point
distorted speed

distorted speed of the undisturbed flow
value of g™ at a boundary point

local Mach number

stream Mach number

radius of the circie in the §-plane
real part of ( )

arc length measured along P

length of the curve P

parametér oceurring in section 8
components of the velocity

distorted wvelocity

Cartesian coordinate in the z-plane

complex variable
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coordinate of the profile as a function of the arc
length

laading edge . : S -
tralling edge .
angle at the tralling end

exponent in the adiabatic relation

thickness parameter of a symmetrical Joukowski profile

canstants occurring in section 8

slope of the profile P

angle between the velocity vector and the x-axis

value of 8 on the boundary

auxlliary complex variable

square of the distorted speed of the undisturbed flow n
function defined by equation (54)

Cartesian coordinates in the {-plane

density

stagnetion density

dimeneionless length parnmeter along the profile P
velocity potential

vaiue of ¢ at the boundery

auxiliary analytic function defined by equation (34)
stream function _ - . - | -“.

argument of a point on the circle It =R
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ANALYSIS -
1. The Boundary Value Problem
Consider a symmetrical profile P 4in the plane of the
complex variable 2 = x + iy. It will be assumed that P

is a smooth curve, except, perhaps, for a sharp angle at the
trailing edge zp, that the x-axis is parallel to the axis

of symmetry of the profile and that the profile is given by
an equation of the form o

z = 2(s), 0< e <8 (8)

where s 1is the arc length on the curve P measured in the
csounterclockwise dlirection from the polint znp. Then § \is
the total length of the profile and

zy = 2(8/2)

is the leading edge. It will be convenient to introduce the
dimensionless parameter

c = 2ns/$S (7)

The function

@(o) = arg 2'(oS/2m) (8)

where

2'(s) = dZ/as

depends only upon the shape bBut not upon the size or posi-
tlion of P. Note that by virtue of the foregoing assumptions

8(0) = m - af2, B(n) = 3n/2, 8(2n) = 2n + of2

where o 1s the angle at the trailing edge, 0 < a < m,
and '

&(2n -~ @) = Bn - B(c), 0o < (9)

The equation of the curve P may be written in the form
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v

z = 2(c8/2n) = gL‘j/‘eig(a) do + Zp (10)
. b1 .

Now let aop(x,y) be the potential of a circulation-

free flow of a compreseible fluid past the profile P; that
18, a function such that

w o= ao 22, v e ae 22

dx oy

are the components of the velocity in the x- and y~directions,
respectively, &a, being the specd of sound at a stagnation

point. The function o{x,y) 4is defined and one-valued in
the domsin B(P) extericr to P and satisfies the boundary
condition :

22 2 6 on P (11)
on

as woell as the condition

dep q., d¢p
— —> - > 0 ag g —>» o (12)
ox a, dy

Here 3/dn denotes differentiation in the direction normal
to P, and qo 18 the speed of the flow far away from the

profile (undisturbded flow),

The conjugate complex velocity is given by

w s - iy = qe"ie (13)

where q 1s the speed and 6 the angle between the velooity
vector and the x-~axis. The function & satisfies the condi-
tion

@D
n

e~ on the upper bank of P
(14)

®~ 2 on the lower bank of P

[e2]
1}

and
8 — 0 as g —> o
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Under the assumption of the approximate density-speed
relation (cf, Introduction)

Po

JL+ q3/ay?

p=

the equation of continulty

a—a;:-(pu) +§-y-<pv) =0

takes the form - . .-

{l,,(bcp)}bcp_gbm_gaw
oy 0x dy Oxdy

This is the classical equation of a minimal surface,

1+ (15)

by

The determination of the flow around a given profile P
requires the integration of the differential equation (15)
under the boundary conditions (11) and (12), In the case of
an incompressible flow the corresponding boundary value prob-
lem can be reduced to the problem of mapping the domain E(P)
conformally into a domailn exterior to a circle, A similar
mapping wlll be defined presently for the flow considered
here.

2, Mapping of the Profile into a Circle

The stream function of the flow Y(x,y) is defined by
the equations :

o poaw
3x  p oy N
o9 _ _ Po BV
oy p x

This function is constant along any gstreamline and can be
normalized so that
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V=0 on P -
The complex potential G(g) is defined by
¢(g) = olx,y) + 1¥(x,y) (16)

L.et the potential ¢ be normglized s0o that
®y = ~®r

where (py denotes tne value of ¢ at s = z; and ¢p the
value of @ at % = zp, This ocen always be achieved by add-
ing a constant to ¢, The function

6 = G(z) . (17)

mapa the domain E(P) into ths domain in the G-plane ex~
terior 30 the slit

Ve 0, - 5 @F gp “(18)

This latiter domain is now mapped oconformally into the domaln
{6l £ R in the plane of the complex variable f = £ + in
by mesns of the relation . A

22 g + Rl) (19)
2R
Eguations (17) and (19) define a transformation

t = E(x,y), n =n(x,y) (20)

of the domain E(P) 4into the domain 14! Z R. The points

72 = ZL'_ g = ZT' g = o
are taken into the points -
g = "Rl §= R, g'm

respectively. If R 1s chogen as
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Prag : (2
29,

the mapping (20) satisfies the conditione

3t —> 0, oFf —> 1 as g —> e (22)

on ox

By virtue of the foregoing mapping there exists a one-
to-one correspondence between the points of the profile P
and those of the cirecle {{l =R, This correspondence can be
described by means of a function

O.= £{w)

such that the point 2Z [f£f(W)S/3nw] corresponds to the point

RelW, Plainly f(w) is an increasing function satisfying
the conditions

£(0) = 0, £f(w) = =, f(2rn) = 2w (23)

as well as the symmetry condition

f(2n-w) = 2r - £(w), o<w<mT (24)

In the following sections it will bPe shown that the knowledge
of the function f£(w) implies the knowledge of the velocity
distribution along P. -

Remark: In the case of an incompressible flow the mapping
Just constructed is exactly the standard conformal mapping of
the profile into a circle, In the case considered here the
mapping (20) is conformal with reapect t0 the Riemann metric
(aS) defined in E(P) by means of the formulas

as® = g11dx° + 2g,24x 4y + £22dy° (25)

where

ao® + q® cos®90

8ix =
a, * aq



12 NACA TN No, 1006

q® sin 6 cos 8

€ia T
2 2
a4 +g_

ao2 + g° 8in®0

2 3
a, + q

The proof of this mssertion follows immediately from the re-
sults of a previous report, J9ee rererence 6.)
G. Velocity Distridution Bxpressed in Terams
of the Function f(w)

1w
At a point ¢ = Re eguation (19) takes the form

®» = P;p cos W

or, by (21)
Qq

W = 2R = cos W -. N _ | (26)

2o

Now let (o) denote the value of g at a point 2[oS/2m]
and &(¢) the value of @ at this point., Furthermore let

w = g(o) (27)

be the function 4inverse to f(w). By (26)

c»
p(0) = 28R — cos glo) . (28)
8o

On the other hend, on the profile P

~ a?(c) 2re -

io) = || = —5— (8 ()] (29)
so that

(o) = £2 o [ein g(o)] &'(o) (30)
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This formula shows that the function g(o), and therefore
also the funection f(w) determines the velocity distribution
along P Dbut for a constant factor.

A formule permitting a complete determination of the
velocity digtribution can be derived by introducing the so-
called distorted velocity w* defined by

w* = q*e'ie (1)

where g% is the distortsd speed given by

e = - 1 (32)

86 1 + /1 + ¢q®/a,®

Note that q* always satisfies the inequality O < q* < 1,
It has been shown (see, for instance, reference 6) that the
complex potential G is an analytic function of the variable
w*, Therefore w* 1is an analytic functlion of G and hence
also of the complex variable . The function w* does not
vanish, except at the pointe { = -R and § = R. The imag-
inary part of the logarithm of w* 1s -6. 4Along the circle

f€] = R the function -6 may be regarded as a function of
the real variasble w, { = RelW, This function possesses
jumps of the magnitude « and mw gt w=0 and w= T,

respectively. It follows from known theorems of function
theory that at { = -R the function w* vanishes as (§ + R)

and at ¢ =R as ({ - R)a/n, respectively. Furthermore

wH(w) = g% >0 (33)
Hence the function

-/ 1+ Qs

x(8) = w*(t + R)™" (¢ - R) Sl (34)

is regular for (] > R, continuous for t¢l = R, and no-
where equal to either gero or infinity.

Therefore log X(f) is a one-valued analytic function
zhich is continuous on the circle 1€} = R  and regular at
= oo, Set
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1og X(Be*™) = A{w) + 1B(w) (38)

A(w) may be expressed in terms ef B(W) by means of the
well-lrnown formula

T
A(w) = - }-/ {B(w+t) - B(w ~ t)} cot g-dt + Ay (36)
° .

2,

where A, 1s the value of loz |[X! at infinity. (See, for
instancs, reference 7, p. 243.) XNow by (33) and (34)

Ae = log g2 (37)
. ) r,
A(0) = log &% [£(w)] - log |1 + o] [1 = o217 (33)
and
B(w) = —gff(w)]— arg(1+ eiw) - 1%' arg(eiw-— 1)+ (1_'_;::._)(” (3e)

Here B6(o) and q*(c) denote the ﬁalues of © and q*,
respectively, at the point Z(oS/2mn/ of ¥, Noting that

‘l + eiwl = Blcos-w|, ll - eiwl = 2‘sin gz
2 2
and that

% for 0 < W<

iW
arg(l + e )
' (—2“-+1'r for m < w < 2m

iw w,
r ( -~ 1 R e
arg(e ) 5 >
as well as that by (14)

~ : Offrw)] - = for 0< w<m
elf(w)] = { (40)

Blf(w)] - 2n for m< w< 2n
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equations (38) and (39) can be written in the form
1+ & a
~ T w wl™

log §* [f(w)] = A(w) + log-{z cos El gin > }

B(w) = -8 [f(w)] + “;;" w + (n - % )

From (41), (42), and (86), it follows that

14+ &

sin =

cos £
() 8 32

where

T7
h(w)=—2]‘;f {@[f(w+ t)J.—@ [f(w..t)]_“':"
“o

Since by (32)

t
t} cot 3 dt

80 _ 1 <1 *>
— = = (== - q
q 2 \q*

it follows from (43) that

o8 @
q[f(w)J q* 22+Fco w in"gﬂ
RS B
2q
2 (14 2) = ™
N il cos .%.‘U ain % eh(w>}
where
3
T 1

156

(43)

(44)

(45)

(46)

(47)
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Tnig is the desired expression of q(o) 1in terme of the’
function f(w). The parameter A may be used instead of
/8y o determine the conditions at infinity, This param-
eter can be easily expresseed in terms of the stream Mach num-
ber (cf., reference 6):

Ma

A e = (48)
L1+ 1-M;}
The fact that the velooity distribution can be expressed

in terms of the function f£(w) in two different ways permits
the derivation of an integral equation for the funciion f{w),

4, The Integral Fquation Ffor the Function f£(w)

Bquations (28) and (29) may be written in the form

- S,
& [f(w)] = 2R -2 gog W
2o

ap [£f(w)) 1
aw £i(w)

21a g
S

1 '
Combining these two equations ylelds the relation

1 _ EE &g 2Rq,,
£ {w) = 5 Frw)T =, [sin w| (49)

Now substitute in (49) the value of ay/qa given dy (46).
Then

A%

m eh(w)}. (50)

1.2 G
W n{}“h(w)-kza(l*ﬁ) 2

= W
sin 3

sin S

cos ¥

£'{w)=0 &

where

and h(w) and A are given by (44) and (47), respectively,
Integrating
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w
flw) |, .- 2 (2+2) 2o
' o (w? L w! |2 w | T n(w')
= C sin - e~ BW )-Az cog — sin — ) dw?
. 2 2 2
“0
Setting w = 2w here it follows from (24) that
21 2a
aT -0 ==
! u 2(1+8 1 |2 1 T '
=Cf gsin %—l {a‘h(“")-?\z ( ) cos 'U‘Jz— sin wT eh(w )}dw'
°
80 that finally
f(w)
W ol 1'%’ “h(w') 2(1+%)l w'l? w' %g n(w') .
fo sinl'-“z}—-- e w A2 [cos—z—- Sin—z—- e w
=2 (51)
a ”, 2a
atm| =~ 1 |7F 3 (14  |® (I h(wt)
w! ~h(wt)_ ™ w! w! | w .
f3 sina {% A2 cos<3 n*g e w

Sincas h(w) 1is given by formulas (44) this is a nonlinear
intezral squation for the unknown fumction £(w),

5., Solution of the Integral Equation

The integral equation (51) can be written in the form

flw) = ¢ {é,f(w')}

where F{}uf(uﬁ)}-'denotes the right-hand side of (51). The oper-

.

ation F 1ig g functional transformation which takes & con-
tinuously differentiable funection f(w') satisfying the con-
ditions

£(0) = 0 f(2m) = 2mw

into & function satisfying the same end-point conditions.
Therefore the solution of (51) can be attempted by the iter-
ation method. Choose some function fo(w) satisfying th

precedlng conditions and compute succesaively o
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2. {w) = F{L, fo(w')}

fa(w) = F{%, fl(w)}f

fn+1(w) = F{?' fn(w’)}

™ w wm mm w e e

If the sequence

fo(w)’ fl(w)' “sh fn(w)| LI

converges toward a funotion f{Ww) and 2im P(f,) = F(£), thia
functicn . £f satisfies the integral equation.

Prom the purely mathematical point of view 1%t would Dde
neocescary to supplemnnt the precedlng consideratlion by prov-
ing thet under suitable assumption: (1) the integral squa-
tion possesses & solution, (11) this solution can be obtained
by il%terations, and (1i1) this solution 1s an increasing
function., It is hoped that such proofs will be presented at
some later date. At present 1t may suffioce to etate that
the statements (1) to (iii) eeem to be verified in the ocases
for whioh the computations have been carried out, The ex-
igtence of an increasing function satisfying the integral
equatlon seems gquite obvious from physlcal reasons, s for
the convergence of the method, reference is made to the fact
that the method described here 1s rather simllar to
Theodorsen's method of conformal mapping (refersnces 1 and 23)
for which a rigorous convergence proof has been found {(ref-
erence 8),

It might be noted that the desired solution f£{w) must
gatiafy the symmetry oondltion

flen - w) = 2n - f(w), £f1(2n - w) = £'(w) (62)

If the function fo(w) satisfies this ocondition, s0 will
all successive approximations £ (w). It will therefore be
sufficient t0 compute fn(w) only in the interval Oguwgm,
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The only nontrivial step in computing the functions
£,(W) consists in evaluating the integral

ui
L(w) = g;;/n {§n+1(w4-t) - An+1(w-t)} cob % dt (58)
o ‘ .

where

, (W) =8 [fn(w)J - q;ﬂﬂ w (54)

(Cf, equations (51) and (44).) It should be noted that this
1s & proper Riemann integral, In fact, the value of the in-
tegrand at t = 0 1is

A (w + t) - A (w -~ t)
lim{ nt1 nti <2t cot 3)}
t>0 2% 2/ )

= apl, (W) = 4 {9! e (w)] £l (w) - ngl}

By using this information, the integral (53) can be evaluated
numerically, say by the trapezoidal rulse,

After f(w) has been computed with sufficient accuraey,
%he)velocity dlistribution is computed by means of formula
46

6. Choice of the Function f£,(w)

The rapidity of convergence of the iteration method for
solving equation (51) will depend upon the choice of the
function £ (w) the Oth approximation. In order to reduce

the computational work, this function should always satisfy
condition (52),

A few methods of choosing the function f,(w) are
listed, in the order of preference! :
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(%) Choose for f_ (w) the solution of equation (51)

for a value A' ag close as possible to the value of A for
which the equation is to be solved,

(B) Choose for f,{w) the solution of equation (51) for

the desired value of A . or for a value A! close to the de-
sired value, and for a profile P! different from dbut clcse
te P. -

(Y) Ohoose for f,(w) the function resulting from the

conformal mapping of the profile P onto & circle; that 1s,
the solution of (51) for A = O,

(6) Cnoose for f£,(w) e function approximating the

functicn resulting from the conformal mapping of the profile
P onto a circle., For thin profiles guch a funotion 18 given

by

™

folw) = % (1 - cos w), oLwegn
. (55)
fol{2m - w) = 2n - £, (w)
Note that (Y) is a special case of (a) (set A' = 0) and (8)
a special case of (B) (set A!' = O and choose P! ase a

straight segment).

7. Velocity Distribution at Foints Not on the Profile

It remaing t0 show how the knowledge of the function
f(w) permits the computation of the velocity distridbution
at poinss not on the profile, Thie is done by mesns of the
following theorem which also shows that solution of the in-
tegral eguation (51) actually yilelds a sclution of the bound-
ary value problem stated in section 1,

Note firet that from fhe way the integral eguation has

been set up it follows that there exists an analytic functlon
wr(t) regular for f¢€f >1 and such that

. w,(QiUJ) ’,5"' [f(w)]e-ig[f'(w)] ’ (55)
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where q* 4is given by (43) and (44) and 6§ by (40). If
f(elW) "is known, w*({) can be computed, say by Cauchy's
formulal

aTl

w*(g) = - _!‘_f "‘T*(eiwleiw dw + q-*m (57)

iw
2 (o} € - ¢

Now the following theorem holds:

Let f(w) Dbe an_increasing function satisfying (51).

Set

4 _
g=x+ iy = 0, fw‘( (l ga>d§wa*(§)(l-€g>d ﬁ} (58{)

where ©C; 1s a real constant and the bar denotes the con-
Jugate complex guantity. The transformation

x = x(¢g,n), v =y(t, n) (59)

of the z-plane into the !-plane defined by (58) (for ;Iglzl)
is_one-to-one. It takes the domain {{|>1 into the domain
E(P) exterior to ths profile P, The function

® = 20,Re <g + -1§-> (60)

considered ms a function of x and y is the desired poten-
tial of the compressible flow around P; that is, it satis-
fies the differentiai eguation (15), the boundary condition
(11) and the condition {12).

The proof of this theorem will be found in the appendix,

After o 1is found, the velocity components u and v
can be determinsd by differentiation. But it is also true
that v* considered as a function of ¥ is the distorted
velocity (cf. sec. 3) and therefore
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2 lw w* -

1 - fw*l® {we

v o~ iv = a,
The proof of this last statement is left to the reader.

8. Examples

Az an illustration of the method, velocity distributions
have been c¢omputed for a circle and for a symmetrioal Joukowski
profile with ¢ = 0,1 (¢ %bDeing the usual parameter determin-
ing the thickness), The following valueas of A have been used

A
A

0.0485 for the circle

0,157 for the Joukowski profile

These correspond to the following values of the stream Mach
number :

M_ = 0,408 for the circle

co

M, = 0,685 for the Joukowski profile -

X
These values of M ‘are known to be close to the critical
values, (The critical stream Mach number is the stream Mach

number)for which the maximum local Mach number is equal to
unity.,

In the case 0f the cirele
B8(o) = o + %, @t(c) = 1, o« = m

It 18 natural to set

folw) = w S R
This oorresponds to case (Y) of section 6. The first approx-
imation-is easily computed in closed form and is equal to .
A
filw) = w + T sin 2w

- 2N »

In the case of the Joukowski profile
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The funetion &(s)
formulas

2el(l+ €)

8=1 - €zt

r 2 1+2e
4 cot t L(cot t) + ——

23

@ = 0

and- @'(s) are given by the parametric

anh™* (¢, cos t)- e tanh~ (e cos t)}

@=1 + t - tan~?

ia
. 2 1+ 2¢ P 3
(cot t) + =—F— | - 4(ecot t)
[

| _ csc t {(l— e)(
ds 8e,y

where the parameter

€,9 €55 and €5 are

2
L+ 36)( in t) + 6(sin t)a - z;%;:;;{}

t ranges from ¢t = O__to t = and

w4

constants determined by

e

e)[e3 tanh™! ¢, - eatanhfl_ga]

e) (1 + 3e)

61 =
2(1+
ga = 1l -
_ ~/(1 +
63 =

1 + 2e¢

The proof of these formulas will be found in reference 9.
The function s, ©®, d®/ds are tabulated in tadle I, The ap-

proximation of order

0O hae again been chosen according to

case (r) of section 6, In the case of a circle the func-

tion f(w) must sat

isfy the symmetry relation

fln - w) = - f£(w)
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It is-therefore sufficient to consider this function in the
interval O < w < m/3. Accordingly the functions f,(w)
have been computed for w= 0%, 20°, ..., 90% In the case
of the Joukowski profile, the functions £,(w) have been
computed for w= 0°, 10°, ..., 180°, The convergenas of
the successive approximations 1s seen from tables II.

The resulting velocity disbtributions are given in tables
III and plotted in figures 1 and 2, The argument &8 La the
argument of a point on the cirsle into which the profile 1ie
mapped conformally. The results obtalned have been compared
with those arising from the Fdrmdn-Tsien velocity correction

formulsa

}_=<_‘}_) 1= ' (61)
w6 T
.71

where <3L> is the value of the ratio at local velocity to
Q.71

velocity at iInfinilty for an incompressidble fluid, To use
thig formula amounts to replacing the function f(w) by the
functlon arlsing in conformal mapping of the profile into
the circle. In the case of the Joukowski profile Kaplan's
results (reference 10) obtained by a modified Poggi method
are also given for the sake of comparison,

It will be noticed that the.present method (which con-
slsts of an actual solution of the boundary value problem
for the cese <Y = ~1) gives a greater compressibility effect
than the one predicted by the approximate methods mentioned.
(To evaluate this remark correctly, note that Von Kdrmén ex-
pressed the opinion that in the case when the assumption
v = «1 1is applied to air and formula (61) is used, the error
committed in using this formula seems to oounteract the error
committed in using the incorrect pressure-density relation.)

_CONGLUDING REMARKS

It has been shown that under the assumption of the lin-
earized pressure~volume relatlon and of a symmetrical flow
the velocity distribution of the compreseible flow past &
wing sec¢tlion of arbitrary given shape can be determined rig-
orously by a method whioh requires not considerably more
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computational labor than the case of an incompregsible flow.
This is, of course, only the first step toward the complefe
solution of the velocity distribution problem. The next
step should consist of extending the present method (a) to
the case of the actual adiabatic pressure-density relation,
() to the case of & ciroculatory flow around = not necessar-
ily symmetrical obstacle,

Remark: After this paper was completed the author
learned about a paper by Slioskin (reference 11), in which
the same problem ie rsduced to an integro~differential egqua-
tion, different from the one deFived in this paper.

Brown University,
Providence, R. I., May 1945.
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AFPBNDIX

This appendix ooOntains the proof of the theorem stated
in sectlon 7.

The mapping properties of the function (58) follow im-
mediately from the following three stattments,

() The function (B8) takes the point ¢ = ~ 1into the
point B o= 0o,

(v) The function (58) maps the circle |[{| = 1 in a one-
to-ons manner into the profile P, -

(6) The Jacodbian

o (x,y)
d(¢,n)

is positive for all values of £ and =0, t° + n° >1,
To verify (a), observe that as f —2 o, w* apﬁroachos
the value q¥% = > 0,

To verify (b), note that the integrals in (58) are inde=-
pendeant of the path since the integrands are apalytie func-
tiona of . 1In order to obtain tlke image of |[{| = 1 the
integratlon may be performed along the circle, But for

§=eiw
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1 -« L2Ydf = - 2sinw dw
E

whereas w*(el®) 1s given by (56).
the curve into which |[{} = 1
the form

Hence the equation of
is taken may be written in

w

. 201./P {}_—_l"" - E*[f(w)l}-sin wel TH8LEWI ] 4,
“0 q*[f(w)] '

Set o = f£f(w) and note that the integral equation (51) im-
plies that £(2n) = 2w, By virtue of (40), (45), anda (49)
the preceding equation may be written in the following forms:

w
16[ £ (w
z = Ozd/n £ (w) e L )] aw, 0SS w< 2n (A1)
“o
o
7z = Gz—/‘ eie(c) do, 0S o < 2n (A2)
“o

where Op 1s a new positive constant. Zquation (Al) showse

that Il = 1 4is taken into P (ef. equation (10) and note
that F 1s determined but for a scale factor). Equation

(A2) showe that the mapping of the circle into P is one-
to-one, for by hypothesis,

ft(w) >0 (A3)

To verify (c), observe that it follows from (A3},
and (50) that Jw*(eiw)l < 1,
ulus of an ana

(43)

Since the meximum of the mrod-
ytic function is attained on the boundary,

fwx(8) | <1 for [{] Z1 (Ag)

Now the Jacobian is equal t0



28

‘NAGA TN No, 1008

a
= ¢.°2 ‘ X ( i w“3>
to S [rx i3
go that by (44)
J >0 for i§(>1

Next, equations (58) and (60) may be rewritten in the

form
x = Rexa (4}, ¥ = Rexa(l), = = Rex,({) (45)

where - o -

¢ 1 1
Kt = °‘._[{w(c> MR ACRE ORL
¢ 1 1
%a(l) = "”‘-,é {TTZ')" N w*(;)}(l - F)ag
X, (8) = 20, (¢ + 3)
Since
Xao + Xa© + Xa© = O

(AB) is & Welerstrassian parametric representation of a mini-
mal surface. In other words, @ considered as a function of

x

and ¥y satlsflies equation (15).

[

il
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A simple computation shows that a line element normal
to the circle |{!l =1 418 taken by the mapping (58) into a
line-element normal to the profile P, Since the normal
derivative of ¢ 4in the {-plane vanishes so does the normal
derivative of ¢ 1n the z-plane, Thus ¢ considered as a
function of x and y eatisfies the boundary comdition (11).

Since

o/
]
o/
)
o/

0z 0%
0z _®x ¥

5t st 3t at 3t

0932 3x oy 9z dz
—_ = =+ {4 L =1 = -
3n  on an <a§ EZ)

and w*(e=) = q* , 1t follows from (68) that as {-—o
dx 1 - g*2 2
a—-@ cl ¥qm . ‘—y——’o
¢ Q¥ o _
ox oy 1l + q::
L A Y
q‘oo
so0o that
el 1 * )
x G, 1 - q*° oy
[e~]
8N on 1 a
— - 0, — = 2
ax By C11+qm
Now, as ¢ - O
' dep dep )
— —»20,, — —0
D¢ 3 an
and therefore
Sp _ 09 3t L 3p an __ 29% _ 4o o
ax 3¢ 0x omn 9x 1 -4q*2 ag o
§Q=.a_ce.a_g.+é$u..,.o

dy _ 3t 3y  an oy
as 2z -» o, Thus condition (12) is also verified,
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Functions entering into the computation of the velocity
distribution along a sg@met{icag Joukowskl profile with

= ,15
t s @ a® Jaslll ¢ I ® | a®/as
0.00 | 0.0000 | &.1l4le 0.80 | 3.0287 | 3.8755
.04 2548 | 3.0358 -.1731 .84 | 3.0371 | 3.9204
.08 .8148 | 2,9888 -.,0220 .88 3.0485 | 3.9650
.10 1,1062 | 2.9892 +.0238 .80 | 3.0510 | 3.9873
Jd4 | 1.60668 | &.0206 +.1040 .84 | 3.0591 | 4.0315 i
.18 1.8071 { 3.0453 +.1437 .96 | 3.06820 | 4.0535| +5.8808 |
.18 | 1.9766 | 3.0730 | +.,1850 .98 |3.06668 | 4.0755 +6.0844;
.20 | R.1193 | 3.1024 | +.2287 1.00 |3.0701 | 4,0975 +6.5066:
W22 | 2.8895 | 3.13R%6 +,2757 Hj1.02 |3.0735 | 4.1194 | +8,5277
.24 | 2.3407 { 3.1630 +.3264 J1.04 | 3.0768 | 4.1412 | +8.7464 |
.28 2.4265 | 3.1933 +.3813 1.06 3.0800 | 4.1630| +6.9880 !
.28 | B.4895 | 3.2232 +.4408 [§1.08 | 3.0831 | 4.1848 !
.30 | 2.5620 | 3.2586 | +.5052 §11.10 |3.086L | 4.2065
.32 | 2.6158 | 3.2816 | +,5750 1.12 |3.0880 | 4.2282
24 | 2,8623 3.3101 | l1.14 |3.0018 | 4.2499
.38 | 22,7029 | 3.3381 l1.16 3.0045 | 4.2715
.38 | 2.7285 5.3855 | +,.,8185 1.18 | 3.0972 | 4.208%2
40 | 2.7697 3.3926 | +,9119 1.0 |{3.0998 | 4.3148
A2 | 2.7975 | 3.4192 1.22 3.1024 | 4.3363
441 2.8821 | 3.4454 1,24 |[3.1048 | 4£.3579
.46 | 2.8442 | B.4712 1.26 3.,1073 | 4.3794
.48 | 2.8640 | 33,4968 |+1.3500 1.28 13.1097 | 4.4009
.50 | 2.8818 | 3.5220 |+1.4761 1.30 3.1121 | 4.4224
b2 | 2.8980 { 3.5469 |+1.6089 1.32 3.1144 | 44,4439
.54 | 2,9127 5.5715 1.34 13,1167 | 4.4653
.58 | 2.92861 | 3.5959 1.36 3.1190 | 4.4868
.58 { 2.9384 | 3.6201 1.38 |3.1212 | 4.5082
.60 | 2.9497 | 3.8441 1.40 13.1234 | 4.5297
.62 | 2.9600 | 3.6679 1l.42 3.1258 | 4.5511
.64 | 2.9687 3.8915 | +2.5419 l.44 |3.1277 | 4.5725
.66 | 2.9786 | 3.7149 | +2.7190 l1.46 |3.1299 | 4.5989
“ .68 | 2,9869 | 3.7382 |+2.8014 1.48 |3.1320 | 4.6153 '
.70 | 2.9946 | 3.7614 | +3,0895 1.50 |3.1341 | 4.6367
.72 3.0019 3.7844 |+3.2823 1.52 3.1363 4,6581
74 | 3.0087 | 3.8073 1.54 |3.1384 | 4.6794
.76 3.0150 | 3.8302 1.56 |3.1405 4.7008
.78 | 3.0210 | 3.8529 1.5708{3.1416 | 4.7124 |+10.177

L
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Table Ila.
Successive approximations to the function f(w) in the
case of a circle (M, =".406, A = .045)
= ‘”rad AAQ f @) f1W) fo(w) £3 (W) £4(w) £5@)
o~ CO0000 | . 0000 , 00000 ,00000 | .00000 | .00000 . 00000
10] .17453 . 17453 .19144 .18171 .18611 '« 18470 .18558
20| .34907 « 34907 . 38088 . B8RE9 . 37082 .36808 | .36976
30| .B2360 . DRBE0 . 56643 54122 . 55287 . 54900 .BB135
40; ,69813 .869813 | .74883 . 71769 73138 «T26873 .72951
B0} .87266 87286 .92126 .89172 . 90587 90085 «90388
60{1.04720 |1.04720 §1.09003 | 1,06355 | 1.07635 |1.07183 |1.07450
7011.28173 |1.22173 | 1.25352 | 1.23362 | 1.24333 | 1.23985 | 1.24181
80{1.39626 |1.29626 | 1.41317 | 1.40250 | 1.40768 |1.40586 |1.40698
90/1.57030 |1.57080 | 1..57080 | 1,57080 | 1.567079 |{1.57080 |1.57080
Table IIb.

Successive approximations to the function fw) in the
case of a symmetrical Joukowski profile (€ = .15,
M,= .685, A= .469)

rad.
.0000 .0000 Q000 . 0000 .0000
10| .1745 .043%7 0824 .0323 0324
20} .3490 1273 1275 1274 1271
30| .BR36 .2570 .2'786 .2785 2779
40} .6981 .4470 4762 + 4755 +4750
60| .8726 .6845 .7080 7070 .7068
60 {1.0472 .9078 .9649 . 9609 «9615
70 |1.2217 1.1682 1.2320 |1.22587 | 1.2270
80 |1.3962 | 1.4322 1.4986 1.4909 1.4931
90 {1.5708 | 1.89586 1.7586 [1.7484 | 1.7514
100 11.7453 11,8508 2.0022 1.,9914 1,90861
110 11.9198 | 2.1857 | 2.2258 | 2.2156 | 2.2183
120 2.0844 | 2.4016 2.4P48 | R.4174 2.4208
130 |2.2689 2.5082 {2.50492 | 2.,5956 2.5982
140 2.4434 | 2.7555 2.7481 2.7494 | 2.7501
150 [2.8180 | 2.8002 | 2.8728 | 2.8787 | 2,8776
160 [2.7925 | 2.9964 | 2.9764 | 2.9850 | 2.9821
170 2.9670 | 3.0773 3.0639 3.0702 | 3.06875
180 |3.1416 | 3.1416 | 3.1416 | 3.1416 | 3.141lé

1 2.9831

fqw)

0324
1275
2787
.4760

7078
.9620
1.2272
1.4928
1,7508

1.9943 .
2.2182
2.4199
2.5872
2.7495

2.8778

3.0686
3.1416
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Table Ills
Velocity distribution about a circle (Hw=.406)

NACA TN No. 1008

Velocity distribution about a Joukowski Profile (¢=.15, M _=.685)

\JQQE? Present K&rman-Tsien Incompressible
3 Method Method

0 © 0.000 0.000 0.000
10 + 8335 333 .347
20 «87H 867 .684
30 1.014 1.000 1.000
40 1.350 1.326 1.286
50 1.871 1.636 1.532
60 1,952 1.912 1.732
70 2.185 2.134 1.879
80 2.336 2.279 +1.970
90 " 2.389 2.329 2.000

- Table IIIb

/qa | Present K4rm&n-Tsien | Kaplan Incompressible
& Y| Method Method -

1] .849 .839 870
10 .835 .854 .852 874
20 . 847 .869 867 .887
30 873 .894 .892 . 809
40 912 928 927 . 938
50 « 957 970 970 974
60 Y.o11 1.019 1.021 l.016
70 1.073 1.073 1.078 1.081
80 1.142 1.132 1.139 1.109
20 1.215 1.191 1.203 1.157

100 1.289 1.250 1.285 1.203
110 1.360 1.303 1.322 l.244
120 1.417 1.347 1.3688 l.278
130 l.446 1.373 1.394 1.297
140 1.427 1.369 1.385 1.294
150 1.325 1.308 1.312 1.247
180 1.088 1.128 1.110 1.106
170 . 845 .704 874 . 738
180 0.000 0.000 0.000 0.000
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