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SIMPLIFIED DENSITY-SPEED RELATION 

By Lipman Bers 

SUMMARY 

As a first step toward the computation, of the velocity 
distribution along a wing profile of arbitrary shape in a 
compressible fluid, the circulation-free flow around a sym- 
metrical profile is treated under the assumption of the sim- 
plified density-speed relation due to Tchaplygin, Kärman, and 
T8ien.  The velocity distribution problem is reduced to a non- 
linear integral equation which is solved by a fairly rapidly 
convergent iteration method.  Numerical examples are given. 

INTRODUCTION 

The central problem in the two-dimensional theory of a 
potential flow of a perfect fluid around an airfoil profile 
is that of determining the pressure distribution on a profile 
of given shape if the speed and direction of the flow at in- 
finity (undisturbed flow) are known.  A solution of this 
problem should consist not merely of giving a mathematical 
existence proof but of indicating a method for obtaining nu- 
merical results of reasonable accuracy in a reasonable amount 
of time. 

The difficulty of the problem depends essentially upon 
the prescribed speed at infinity.  If this speed does not ex- 
ceed a certain limiting value (depending upon the profile) the 
flow will be everywhere subsonic.  For higher values of the 
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speed at infinity the flow "becomes partly supersonic (mixed 
or supercritical flow).  Finally, it is probable that for 
too high value« of the speod at infinity a potential flow 
becomes either mathematically impossible or unstable.  The 
case of mixed flow is the more important one, both from the .. 
practical and theoretical points of view.  Nevertheless, it 
eeemB   that the complete solution of the problem of everywhere 
subsonic flows is a necessary prerequisite for a successful 
attack on the problem of transition through the speed of 
sound.  (In fact, at present the very existence of mixed 
flows pE'.st a profile has not yet been proved. ) 

In view of the admitted difficulty of the problem it is 
advisable to develop the mathematical apparatus by consider- 
ing first the simplest possible cases.  The most radical sim- 
plification would be, of course, to neglect compressibility 
altogether.  Under these assumptions the pressure distribution 
problem has been solved completely.  (See references 1 and 2.) 
In the present report the following two simplifying assump- 
tions are made: 

A. Only circulation-free flowB around symmetrical pro- 
files are considered. 

B. It is assumed that the velocity potential satisfies 
the simplified differential equation resulting from the so- 
called  Ohaplygin-KjCrman-Tsien equation of state.  (Cf. ref- 
erences 3, 4, and 5. ) ; ..,..-. 

Somiä remarkrs may be made concerning this second assump- 
tion.  In general, the velocity potential  <p(x,y)  satisfies 
fihA    naTCh'taT      lllf •fei<6Tlt.1 ol      ami a t. 4  fin 

öx \  öx/   öy \ .dy/_ 

where  p  is the density of the fluid.  Since the density ,i3 
a given function of the .speed  q 

P-pCO.   ,' - (Ij^ • (£)" (3) 

equation (1) is non_line.ar .  The function  p(q)  is determined 
by the pressure-density relation (equation of state).  In an 
isentropic 'flow tne pressure  p . satisfies tne relation 
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p p~^  = constant (3) 

where  Y  is the ratio of specific heats for constant pres- 
sure and constant volume.  (The standard value of  Y  is 
1.405.)  This implies the density-speed relation 

where  a0  is the speed of sound at ä stagnation point and 
t 

p0  the stagnation density.  Ohaplygin noticed that the 
equation satisfied "by the potential "becomes simpler if the 
density-speed relation is taken in the form 

9  =  9, (5)" 

This relation may he obtained formally from (4) "by setting 
Y = -1.  Though this value of  Y  violates fundamental phys- 
ical laws 1 it should he observed that only the density-speed 
relation and not the pressure-density relation enters in the 
equation for the potential. 

As a matter of fact, the function (5) behaves qualita- 
tively in the same way as does the function (4) within the 
subsonic range; that is, for  0 ^ q3 Ü 2a0

a/(l + Y),  and 
for small values of  q/a0  the function (5) gives a good 
numerical approximation to (4). 

Von Karman and Tsien justify the use of the value Y = -1 
"by the remark that it is possible to determine such values 
of the constants  A  and  B  that the pressure-density rela- 
tion 

p = A/p + B 
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d-istr ibut ion for, as it was already noticed, the differential 
equation for the potential function depends only upon the 
density-speed relation, and the preceding pressure-density 
relation leads to the same equation (5) no matter what values 
are assigned to  A  and  B. 

It should he emphasized, however, that the primary pur- 
pose of this report is not to facilitate the use of the ap- 
plication of the approximate relation (5) hut rather to de- 
velop methods which could he extended to the case of the ac- 
tual density-speed relation'. 

In the following, use will he made of certain results 
contained in a previous report.  (See reference 6.) 

This investigation, conducted at Brown University, was 
sponsored hy and conducted with the financial assistance of 
the National Advisory Committee for Aeronautics. 

The author largely profited from several instructive 
discussions he had with Professor S. B. Warschawski.  He 
also is indebted to Mr. Charles Saltzer for competent assist- 
ance .   ~" 

SYMBOLS 

A(uu) auxiliary function defined hy equation (S5) 

a local speed of sound 

a0 speed of sound at a stagnation point 

B(UJ) auxiliary function defined hy equation (25) 

C, Cj positive constants 

dS3 non-Euolidean length element defined hy equation (22) 

3(P) domain exterior to the profile  P 

21 integral transformation defined in section 5 

f((ju)   function defining the mapping of the oircle into the 
profile  P 

fn(a>)  nth approximation to the function  f(ui) 
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G complex potential of a compressible flow 

g(cr) function inverse to  f(uu) 

Sik coefficients of the metric (22) 

h(a>) function defined "by equation (44) 

Im( ) imaginary part of  ( ) 

P profile surroxxnded by a compressible flow 

p pressure 

q local speed 

qoo speed of the undisturbed flow 

q(cr) value of  q  at a boundary point 

q* distorted speed 

q* distorted speed of the undisturbed flow 

q*(o*) value of  q*  at a boundary point 

M local Mach number 

Mja stream Mach number 

R radius of the circle in the £-plane 

Ee( ) real part of ( ) 

s arc length measured along  P 

S length of the curve  P 

t parameter occurring in section 8 

u,v components of the velocity 

w* distorted velocity 

x,y Cartesian coordinate in the z-plane 

z complex variable 
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7.(B) coordinate of the profile ae a function of the arc 
length 

Zjk leading edge 

Zj trailing edge 

a angle at the trailing end 

y e3:ponent in the adiabatic relation 

e thickness parameter of a symmetrical Joukowski profile 

e^ constants occurring in section 8 

0(a) slope of the profile  P 

9 angle between the velocity vector and the x-axis 

0 value of  8  on the boundary 

£ auxiliary complex variable 

X square of the distorted speed of the undisturbed flow 

A function defined by equation (54) 

i , T)  Cartesi-an coordinates in the £-plane 

p density 

p0 stagnation density 

a dimeneionless length parameter along the profile  P 

cp velocity potential 

cp value of  cp  at the boundary 

X auxiliary analytic function defined by equation (34) 

\\r stream function 

(ju argument of a point on the circle  |£| = & 
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ANALYSIS 

1. The Boundary Value Problem 

Consider a symmetrical profile  P  in the plane of the 
complex variable  z = x + iy.  It will "be assumed that  P 
is a smooth curve, except, perhaps, for a sharp angle at the 
trailing edge  zrp,  that the x-axis is parallel to the axis 
of symmetry of the profile and that the profile is given "by 
an equation of the form 

z » Z(s),   0 <*   s "£ S (6) 

where  s  is the aro length on the curve  P  measured in the 
counterclockwise direction from the point  Zip.  Then  S  is 
the total length of the profile and 

zL m  Z(S/2) 

is the leading edge.  It will he convenient to introduce the 
dimensionless parameter 

The function 

where 

a   = 2TTS/S (7) 

Q(cr) = arg Z« (CTS/2TT) (8) 

Z'(8) = dZ/ds 

depends only upon the shape "but not upon the size or posi- 
tion of  P.  Note that by virtue of the foregoingaesumptions 

8(0)   =  TT   -   a/2,        e(-Tr)   =   3TT/2,        9(2TT)   =   2TT  +   a/2 

where  a  is the angle at the trailing edge,  0 < a < TT, 
and 

©(2TT - a) = STT - ©(a),     0 < a < TT (9) 

The equation of the curve  P  may be written in the form 
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= Z (CS/JJTT) = -§- / e
i0(a) da + ZT (10) 

Now let  a0<p(x,y)  be the potential of a circulation- 
free flow of a compressible fluid past the profile  P; that 
is, a function such that 

u ao r—» 
dx 

7 B ao 

are the components of the velocity in the x-   and y-direotione, 
respectively,  a0  "being the apeod of sound at a stagnation 
point.  The function  cp(x,y)  is defined and one-valued in 
the doaain  E(P)  exterior to  P  and satisfies the boundary 
condition 

On 

as well as the condition 

on (11) 

dcp 

S7 
dcp 

o7 
as 2 (12) 

Here ö/ön denotes differentiation in the direction normal 
to P, and q.» is the speed of the flow far away from the 
profile (undisturbed flow). 

Th'B conjugate complex velocity is given by 

,      -18 w a u - iv = qe (13) 

where q is the speed and 6 the angle between the velocity 
vector and the x-axis. The function 8 satisfies the condi- 
tion 

8 s 0 - Ti   on the upper bank of  P 

8 = 6 - STT  on the lower bank of  P 
(14) 

and 
8 as CO" 



NACA TN No. 1006 

Under the assumption of the approximate density-speed 
relation (of. Introduction) 

P - 
?o 

2 
0 </l + qs/a 

the equation of continuity 

takes the form 

(1+C^y\i4_2 ^ & jLJL+f    /^\«^ a»    0        (15) 
\   Vöy/ J öxa    ox öy öxöy \   Vox/ / öys 

This is the classical equation of a minimal surface. 

The determination of the flow around a given profile  P 
requires the integration of the differential equation (15) 
under the "boundary conditions (ll) and (12).  In the case of 
an incompressible flow the corresponding "boundary value prob- 
lem can he reduced to the problem of mapping the domain  E(P) 
conformally into a domain exterior to a circle.  A similar 
mapping will he defined presently for the flow considered 
here. 

3. Mapping of the Profile into a Circle 

The stream function of the flow  \{/(x,y)  is defined by 
the equations 

öcp 

öT = 
Po  öy 
P    öy 

öcp 

öy~ = 

Po   ö\j/ 
p    öx 

This function 1B constant along any streamline and can be 
normalized so that 
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^ » 0  on  P 

The complex potential  fl-(e)  is defined by 

G-(g) « cp(x,y) + i^(x,y) 

Let the potential  cp  be normalised BO that 

(16) 

where  cpj,  denotes the value of  cp  at  z =» z^  and  «Pgi  the 
value of cp  at  z = zy.  This can always "be achieved "by add- 
ing a constant to    cp,  The function 

0 =« G(z) (17) 

maps   tho   domain     E(P)      into   the   domain   in   the   G-plane   ex- 
terior   -so   the   slit 

ty  i   Qt      -cpT   -   cp "$  cpT (18) 

This latter domain is now mapped oonforraally into the domain 
\£\   - R     in the plane of the complex variable  £ = I  + i*l 
by mean« of the relation 

•-&('*# 
(19) 

Equations (17) and (19) define a transformation 

i  • l(x,y),   n = n(ae.y) (20) 

of   the   domain     2(P)      into   the   domain       !£i   -   R.      The  points 

z   =   ZL, Z»2TJ Zc<» 

are taken into the points 

£ - -H ,    t - H ,    £ - • 

respectively.  If  £  is chosen as 



NACA TS  No. 1006 11 

R = 2*±£  ' (21) 

the mapping (20) satisfies the conditions 

*! _^ 0,      Li __> 1  as  2 —> <=»       (32) 
ön öx 

By virtue of the foregoing mapping there exists a one- 
to-one correspondence "between the points of the profile  P 
and those of the circle  l£lcR.  This correspondence can "be 
described by means of a function 

a = f(cu) 

such   that   the  point     Z   [f(cu)S/3Tr]   corresponds   to   the   point 
RelLU.      Plainly     f(uu)      is   an   increasing  function   satisfying 
the   conditions 

f(0)   •   0, f(-rr)   a  IT, f(2Tr)   >   2TT (23) 

as   well   as   the   symmetry   condition 

f (SIT- w)   =   2TT  -   f (u>) , 0 <  (U < TT (24) 

In the following sections it will he shown that the knowledge 
of the function  f('-u)  implies the knowledge of the velocity 
distribution along  P. 

Remark:  In the case of an incompressible flow the mapping 
just constructed is exactly the standard conformal mapping of 
the profile into a circle.  In the case considered here the 
mapping (20) is conformal with respect to the Riemann metric 
(dS) defined in  E(P)  "by means of the formulas 

dS3 = giidx8 + 2g13dx dy + &Z2d.ys (35) 

where 

a0
3 + q3 cossQ 

Sn =   
3  ,   3 
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Si» 
q.£ sin 8 cos 8 

ao  + <I 

San   - 
a0  + q  ain

-8 

+ 1" 

l'he proof of- this assertion follows immediately from the re- 
sults of a previous report.  (See reference 6.) 

P>. Velocity Distribution Expressed in Terms 

of the Function  f(u>) 

At  a point  £ =» Re    equation (19) takes the form 

cp  m  cpT   oos   U) 

*» -    • - 

cp  =   3R  —  cos   uu 
a« 

or,   hy   (21) 

(36) 

Now let  q(cr)  denote the value of  q_  at a point  Z[aS/2iT] 
and  cp(c)  the value of  cp  at this point.  Furthermore let 

ui = g(a) 

he the function inverse to  f(ui).  By (26) 

~ a 
cp(ff) x 2H — cos g(a) 

So 

On   the   other  hand,   on   the   profile     P 

(27) 

(28) 

q(a)   = 
c-cp(a) 

as 

2.VB.. 
I$'(a)| 

so   that 

q(a)   «  i=i q^    [sin   g(a)|    g'(a) 

(29) 

(30) 
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This formula shows that the function  g(cr) , and therefore 
also the function  f(u))  determines the velocity distribution 
along  P  but for a constant factor. 

A formula permitting a complete determination of the 
velocity distribution can be derived by introducing the so- 
called distorted velocity  w*  defined by 

w» = q*e-i8 (31) 

where  q*  is the distorted speed given by 

q* = -3 1 (32) 
ao 1 + J\   + q.a/a0

3 

Note that  q*  always satisfies the inequality  0< q* < 1. 
It has been shown (see, for instanoe, reference 6) that the 
complex potential  G-  is an analytic function of the variable 
w*.  Therefore  w*  is an analytic function of  G-  and hence 
also of the complex variable  £.  The function  w*  does not 
vanish, except at the points  £ = -E.  and  £ = R.  The imag- 
inary part of the logarithm of  w*  is  -8.  Along the circle 
|£| = R  the function  -8  may be regarded as a function of 
the real variable  O), £ = Re^.  This function possesses 
jumps of the magnitude  a  and  TT  at  ou = 0  and  O) = TT , 
respectively.  It follows from known theorems of function 
theory that at  £ = -R  the funotion  w*  vanishes as (£ + R) 

and at  £ = R  as (£ - R) /TT,  respectively.  ITurthermore 

w*(°=) . q* > 0 (33) 
*co 

Hence the function 

*(£) = w*(£ + R)-1 (£ - R)"a/TT £1 + ^      (34) 

is regular for   (£| > R,  continuous for   |£( = R,  and no- 
where equal to either aero or infinity. 

Therefore log x(£)  is a one-valued analytic function 
which is continuous on the circle  \t\    = R  and regular at 
£ = <».  Set 
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log x(Be  ) » A(u>) + 1B(U>) (36) 

A(a>)  may be expressed in teras of  3(u>)  "by means of the 
well-known formula 

A(OJ) = 

TT 

B(uu+t) - B(tt» - t)  cot i- dt + K» 
J     2 

(36) 

where  A,»  is the value of log  |X.i at infinity.  (See, for 
instancs, reference 7, p. S43. )  Now "by (33) and (34) 

•\» * loS q£ (37) 

A('.ü)   =   log   q*   [f((«)3   -   log   ll   +   e1U;|    ll   -   eiUJ! (39) 

and 

B(u>)   =   -6[f(u))]- arg(l+ eiU)) - £ arS(eiW- l)+ (l + ?)w       (39) 

Here      8<a)      and      q*(a)      denote   the   values   of    8        and     q*, 
respectively,   at   the   point     Z(C-S/2TT/     of     P.      Noting   that 

1   +   e = cos w ll   -   eiU>! a   2   sin — 

and   that 

for      0  <  U) < rr 

argtl   +   e      )   =- 
3 

—   +    TT for        TT    <    U>   <    2lT 

/      iO) ,   \ til    ,      TT arg(e        -   1)   -  - +   - 

as   well   ,ts   that   "by   (14-) 

9[f (OJ)]   -  n for      0 <  to < TT 

i[f(uu)]   -   2n        for     TT < o> <   STT 
e[f(uj)] 

. r eCfi 

I e[fi 
(40) 
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log q* cos m sin «I 
2 

equations (S8) and (39) can "be written in the form 

i r 1 + ^ 
f (w)      =   A(u>)   +   log *j2 

B((JU)   =  -9    f (ou) 
a, + IT 

+   — iu + 
2TT (--I) 

From   (41),    (42),    and   (36),   it   follows   that 

f (UJ) = «1z3 
CO 

IT 
cos   g- sin  ig h(oi) 

where 

(41) 

(42) 

(43) 

•JT 

Since   "by   (32) 

f (uu+ t) -9 f (u) - t ) 
TT 

-«±_ZL    t  J,    OQt    |.   4t (44) 

q 2   \a* J q »   \<1* 

it   follows   from   (43)    that 

(45) 

12 1 

t[ f (o>) * 2 +   Pi 
q*   „S+ Tf 00    2 (11 "> cos —- sin — 

2 2 

-h(iu) 

•A3 cos      -ö- sin 
OJ 

17    eh(w) 

where 

(46) 

3 q 
X =   (d*)     = -^ 

a. 
1 

A / 
1 + 

ao3 

ü 
(47) 
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This is the desirad expression of  q(cr)  in terms of the' 
function  f(uj).  The parameter  X  may* be used instead of 
q.w/a0  to determine the conditions at infinity.  ThiB param- 
eter din be easily expressed in terms of the stream Mach nüm- 
bor (of, reference 6): 

M 

l^i + yi - <j3 (43) 

The fact that the velocity distribution can be expressed 
in terms of the function f(a>) in two different ways permitB 
the derivation of*an integral equation for the function  f(u>), 

4. The Integral Equation for the Function  f(u>) 

Equations (28) and (29) may be written in the form 

<P f(u>) 25, -£2: oos O) 

q I f (o>) 
2na, d$[f (u>)] 

do) f «(w) 

Combining these two equations yields the relation 

. / »   2TT   a ä 
f ' (u)) = — -& 

S q[f(u))]  a 
 =£- sin oi (49) 

Now substitute in (49) the value of  a0/q  given by (46), 
Then 

f » (u>) = 0 

where 

.i-a 

sin U) "{.-"»U3 
»(*+#) 

R& 

cos ill sin j \h^l  (50) } 
0 = 2 

1~W TT
H
  qcx> 

S a0n* O - co 

and  h(w)  and  /\  are given by (44) and (47), respectively. 
Integrating 
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f (u>) 
^CAJ 

= C 

-fit 

cos CJU1 

sin 
2  i I o 

etting     u) =   2TT     here   it   follows   from   (24)   that 

CD» \^'W 

2TT >aTT 

sin  -g- 

-ffi. 1    IT   f     .    ,      ., 2 (l + £i} 
-*2 cos or 4      JJL. sin -3- 

ag 
TT 

h(u) 
'!} aw» 

so that finally 

f(u>) 

OJ 
I 

••2v- 

sing- 
l- et 

wie-^^')-xa 
»(i+5) fr' 

cos- LU 
2 

Btt 
IT ,h(u,,J"U)- 

/ 
atr 

8i»^ 
l-*{.-«»').xa'

(l+*> 
(51) 

cos UJ« sin ID' 
3rraeh(cu.n    , 

Sinco  h(w)      is given by formula (44) this is a nonlinear 
integral equation for the unknown function  f(oi). 

5. Solution of the Integral Equation 

The integral equation (51) can he written in the form 

f (u)) ** 1  -juj, f (o>f ) 

where  F< cu, f (ou* ) I  denotes the right-hand side of (51)'.. The oper- 

ation   3?  is a functional transformation which takes a con- 
tinuously differentiable function  f(cu')  satisfying the con- 
ditions 

f(0) * 0 f(3ir) = 2TT 

into a function satisfying the same end-point conditions. 
Therefore the solution of (51) can be attempted by the iter- 
ation method.  Choose some function  f0(

UJ)  satisfying the 
preceding conditions and compute successively 
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v. J 

fa(u>) 3 y |u>, f^w)} 

fn+1(w) " »{w. **<«>»>} 

If the sequence 

f0(u)>, faCoj), ..• fn(w), 

converges toward a funotian  f(uj) and lim F.(fn) • F(f), this 
function  f  satisfies th» integral equation. 

Trom the purely mathematical point of view it would be 
necessary to supplement the preceding consideration "by prov- 
ing that under suitable assumption.' (i) the integral equa- 
tion possesses a solution, (ii; this solution can he obtained 
by iterations, and (iii) this solution is an increasing 
function.  It ia hoped that such proofs will be presented at 
some latpr date»  At present it may suffice to state that 
the statements (i) to (iii) seem to be verified in the oases 
for which the computations have been carried out.  The ex- 
istence of an increasing function satisfying the integral 
equation seems quite obvious from physical reasons.  As for 
the convergence of the method, reference is made to the faot 
that the method described here is rather similar to 
Theodors an's method of conformal mapping (references 1 and 2) 
for which a rigorous convergence proof has been found (ref- 
erence 8 ) , 

It might be noted that the desired solution  f(lt>)  must 
satisfy- the symmetry condition 

f(2n - UJ) = 2TT - f(o>),     f'(2TT - u>) = f'(oi)        (52) 

If the function  f0(^)  eatisfies this condition, so will 

all successive approximations  f (UJ).  It will therefore be 

sufficient to compute  fn(üi)  only in the interval 0<, oi^ TT. 
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The only nontrivial step in computing the functions 
fn(cu)  consists in evaluating the integral 

hn+i
(w) " ^J    (An+i(uJ+t) " **+,>-*>} COt |dt      (53) 

where 

An+1(«i) = © fa<u>) 
O+TT 

2TT 
U> (54) 

(Cf, equations (5l) and (44).) It should De noted that this 
is a proper Riemann integral. In fact, the value of the in- 
tegrand at  t = 0  is 

fAn+1(u> + t) - An+1(u) - t) , t 
lim <  (St cot — 
t-*0 I 2t \ 2 

4AQ+1(UJ) = 4 |e» [fa(u))3 fa(u>) - a±JL| 

By using this information, the integral (53) can be evaluated 
numerically, say "by the trapezoidal rule. 

After  f(o>)  has been computed with sufficient accuracy, 
the velocity distribution is computed by means of formula 
(46). 

6. Choice of the function  f0(u)) 

The rapidity of convergence of the iteration method for 
solving equation (51) will depend upon the choice of the 
function  f0(u)),  the Oth approximation.  In order to reduce 
the computational work, this function should always satisfy 
condition (52). 

A few methods of choosing the function  f0(cu)  are 
listed, in the order of preference! 
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(a) Choose for  f0(tu)  the solution of equation (51) 
for a value  M  ae close as possible to the value of  X  for 
which the equation is to be solved, 

(|3) Choose for  f0(ai)  the solution of equation (51 ) for 
the dewired value of  X .or for a value  X'  cloee to the de- 
sired value, and for a profile  Pl  different from but close 
to  P.  ' 

(V) Choose for  f0(uj)  the function resulting from the 
conformal mapping of the profile  P  onto a circle; that is, 
the solution of (51) for \  = 0, 

(s) Choose for  f0(u>)  a function approximating the 
funoticn resulting from the conformal mapping of the profile 
P  onto a circle.  lor thin profiles ouch a function is givon 
by 

TT 
f0(ui)    =    ~   (1    -    COS    U>) , 0   ^   UU   <   IT 

f0(2tT   -   u>)   =   2TT   -   f0(u>) 

(55) 

Note that (V) is a special case of (a) (set  \' = 0) and (fi) 
a special case of (ß)  (set  V = 0  and choose  P'  ae a 
straight segment). 

7. Velocity Distribution at Points Not on the Profile 

It remains to show how the knowledge of the function 
f (O))  permits the computation of the velocity distribution 
at points not on the profile»  This is done by means of the 
following theorem which also shows that solution of the in- 
tegral equation (51) actually yields a solution of the bound- 
ary valiie problem stated in section 1, 

Note first that from the way the integral equation has 
been set. up it follows that there exists an analytic function 
w*(£)  regular for  j £ f > 1  and such that 

W(eiuj) f (a)) -ie [f«o)] (56) 
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where  £*  is given "by (43) and (44) and  6  by (40).  If 
f(eiuj)  ie known,  w*(£)  can "be computed, say by Cauchy's 
formulas 

8,14 •    - £ 

Now the following theorem holds: 

Let  f(ui)  "be an, increasing function satisfying (51). 
Set 

where  0a  is a real constant and the "bar denotes the con- 
jugate complex quantity.  The transformation 

x = x(|,Tl),   y = y(|, TO (59) 

of the z-plane into the £ -plane defined "by (58) (for  | £|>l) 
is one-to-one.  It takes the domain | £[ >1  into the domain 
B(P)  exterior to the profile  P.  The function 

cp = SCjRe fa   + y) (60) 

considered as a function of  x  and  y  is the desired poten- 
tial of the compressible flow around  P;  that is. it satis- 
fies the differential equation (15), the "boundary condition 
(11) and the condition (13). 

The proof of this theorem will "be found in the appendix. 

After  cp  is found, the velocity components  u  and  v 
can be determined by differentiation.  But it is also true 
that  w*  considered as a function of z     is the distorted 
velocity  (cf. sec. 3) and therefore 
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• ,   •     2 |w*|    v* 
u - iv =* aft • — 0 1 - [w»| 8 \v*\ 

The proof of this last statement is left to the reader. 

8. Examples 

A;3 an illustration of the method, velocity dis tri buti ons 
have been computed for a circle and for a symmetrical Joukowski 
profile with  e = 0,15  (e  "being the usual parameter determin- 
ing thij thickness).  The following values of X  have been used 

X -   0.045  for the circle 

h  -   0,157  for the Joukowski profile 

These correspond to the following values of the stream Mach 
number 

Mco ** 0»406  for the circle 

M^ a 0.685  for the Joukowski profile 

These values of  M^  are known to be close to the critical 
values,  (The critical stream Mach number is the stream Mach 
number for which the maximum local Mach number is equal to 
unity, ) 

In the case of the cirole 

e(o) =. a  + ~,   0»(a) » l, a =» Tf 

It is natural to set 

f0(u)) = <JU • • 

This corresponds to case (Y) of section 6.  The first approx- 
imation-is easily oomputed in closed form and is equal to 

f-i(cju) = a) +  — sin 3u) 
1 - 3X 

In the oaBe of the Joukowski profile 
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•a = 0 

The function ©(a)  and 8'(s)  are given by the parametric 
formulae 

8 = TT - 
3e, (1+ €) 

< e3tanh**
a (e3cos t) - eatanh

_1 ( eacos t) > 

r s     i + 2 c 
4 cot t I (.cot t)  +   

L     e3 •• 
9»TT + t - tan *  = ~—*  

(cot t)  + — 
-l3 

- 4(cot t)' 

de . CSC_L f(i- c)(n-3c)(   j* + 6(sin t)» . -11—-) 
ds    8e,   \    c3 (1+ e)a J 

where the parameter  t  ranges from  t = 0  to  t = 2- and 

ei» es'  an^- €3  are oonsta:a*s determined by 

ei   • 
TTg. 

2(1+ c ) e3   tanh"*1   £3   -   Cgtanh"1   c2 ] 
= /3 £3 -VI - C 

£3 = 
yd + e) (1 + 36) 

1 + 2£ 

The proof of these formulas will he found in reference 9. 
The function  s, G, dQ/ds  are tabulated in table I.  The ap- 
proximation of order  0 has again been chosen according to 
oase  (ry)  of section 6.  In the case of a circle the func- 
tion  f(ou)  must satisfy the symmetry relation 

f (TT - UJ) = TT - f (oi) 
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It is—fcherefore sufficient to consider this function in the 
interval  0 <,  ui < TT/3.  Accordingly the functions  fn(w) 
have "been computed for  u> =» 0°, 10°, ..., 90°,  In the case 
of the Joukowski profile, the functions  fn(u))  have been 
computed for  O) = 0°, 10°, .,., 180°.  The convergence of 
the successive approximations is seen from tables II. 

Ihe resulting velocity disbributions are given in tables 
III and plotted in figures 1 and 2,  The argument  5  is the 
argument of a point on the circle into which the profile is 
mapped conformally.  The results obtained have been compared 
with those arising from the Earman-Tsien velocity correction 
formula 

Ji_Ä (±\ 1   - * (61) 
1»   ^o/1 -   *'^ - <tx 

where 

It will be noticed that the.present method (which con- 
sists of an actual solution of the boundary value problem 
for the case y  = -1) gives a greater compressibility effect 
than the one predicted by the approximate methods mentioned. 
(To evaluate this remark correctly, note that Von Karaan ex- 
pressed the opinion that in the case when the assumption 
7 = -1  is applied to air and formula (61) is used, the error 
committed in using this formula seems to counteract the error 
committed in using the incorreot pressure-density relation.) 

CONCLUDING REMARKS 

It has been shown that under the  assumption of the lin- 
earized pressure-volume relation and of a symmetrical flow 
the velocity distribution of the compressible flow past a 
wing section of arbitrary given shape can be determined rig- 
orously by a method which requires not considerably more 
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computational labor than, the case of an incompressible flow, 
This is, of course, only the first step toward the complete 
solution of the velocity distribution problem.  The next 
step should consist of extending the present method (a) to 
the case of the actual adiabatic pressure-density relation, 
(b) to the case of a circulatory flow around a not necessar- 
ily syatmetrical obstacle. 

Remark:  After this paper was completed the author 
learned about a paper by Slioskin (reference 11), in which 
the same problem is reduced to an integro-differential equa- 
tion, different from the one derived in this paper. 

Brown University, 
Providence, R. I., May 1945. 
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APPENDIX 

This appendix contains the proof of the theorem stated 
in section 7. 

Th« mapping properties of the function (58) follow im- 
mediately from the following three statements, 

(a) The function (58) takes the point  £ «= "°  into the 
point  !! =.<», 

(b] The function (58) maps the circle  J£| « 1  in a one- 
to-one manner into the profile  P. 

(a) The Jacobian 

j , &(*.y) 
O(£,TO 

is positive for all values of i     and  n, £s + r\s   >  1. 

To verify (a)j observe that as I —* °°, w*  approaches 
the value  q* « */A >   0. 

To verify (b), note that the integrals in (58) are inde- 
pendent of the path since the integrands are analytic func- 
tions of  £.  In order to obtain the   imafe of  |£| «= 1  the 
integritlon may be performed along the circle.  But for 
*    ia> 
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O-fr) d£ = - 2 sin UJ duj 

whereas  w*(e  )  is given "by (56).  Hence the equation of 
the curve into which  {£} = 1  is taken may "be written in 
the form 

z = 2 C r   f    1        ~.r,/ \-,^l  ,     ifTT+eCfduV]} . i / 'S q*Cf Cuu)1 > sin cue L        J du> 

Set  a = f(u))  and note that the integral equation (51) im- 
plies that  £(2TT) = 2TT.  By virtue of (40), (45), and (49) 
the preceding equation may "be written in the following forms 

UJ 

P i©rf(u>)l 
z   =   Og   /     f'(uj)   e dU), 0 < UJ <   3TT (Al) 

z   =   cs    /     e
iQ(cr^   d0i o< or   < 2TT (A3) 

where  03  is a new positive constant.  Equation (Al) shows 
that   l£| = 1  is taken into  P  (of. equation (lO) and note 
that  P  is determined "but for a scale factor).  Equation 
(A2) shows that the mapping of the circle into  P  is one- 
to-one, for hy hypothesis, 

f ' (cu) > 0 (A3) 

To verify (c), observe that it follows from (A3), (43) 
and (50) that Jw1,'(eicl,)f < 1.  Since the maximum of the mod- 
ulus of an analytic function is attained on the "boundary, 

|w*U) J < 1   for JJ | - 1 (A4) 

Now the JacoMan is equal to 



28 NACA  TIT  No,   1006 

'-fa<s7&)-'-{KH + H)^-H>} 

_   o   a     1       -i-f V— 

so   that   "by   (A4) 

18 
w        } 

form 

J > 0 for       U| >1 

Next, equations (58) and (60) may be rewritten in the 

where 

*   =  ßoXiU),        y   =   ReXsU).        s   -  R«X3< £) Uß) 

XIU> •c'/{^cFr","<t>}(1_Tir)4t 

x.o.-^y {-^+..«>}(! _i.)4t 

Since 

x3(£> . 20a (t + -1-) 

*;• * xr * xr 
(A6) is a WeieratraBsian parametric representation of a mini- 
mal surface. In other words, cp considered as a function of 
x  and -y  satisfies equation (15). 
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A simple computation shows that a line element normal 
to the circle  | £ I = 1  is taken by the mapping (58) into a 
line-element normal to the profile  P.  Since the normal 
derivative of  cp in the  £-plane vanishes so does the normal 
derivative of  cp  in the z-plane.  Thus  cp considered as a 
function of  x  and  y  satisfies the "boundary condition (ll), 

Since 

öz        öx by 

ST = ST+ i ST 
öz        ös 

Sl+ ST 

and     w*(°=)   = <0 

öz Ox by öz bz \ 02 OX oy /ÖZ ÖZ 

br\ =  d* +       br\  =  i Kb~l       öl J 

it   follows   from   (68)   that   as 

bx 
-»   C. 

i - **.» by 

H 
^f       *-* T 

CO 

1      —* 
öl 

bx 
-*o, 

öy                1 
r—    -*0,    — 
ÖT1              X 

so   that 

Li 
bx 

1 
-A   

q.*o= Ü   -* 
i - q*2 

CO 
öy    ~* 

bx 
-* o. 

ÖTJ             1 q*» 
öy        Oj   1 +   q *3 

^ oo 

Now,    as l -* 0 
dcp 

H 
-*o 

and therefore 

by   _ öcp öj_  öcp ^n  .  3qS, 
öx   b P   bx on ox   1 - q*3 b
 ^ CO 

*j£ = &£ il + i£ *J1-^ o 
by        b I   by bn   by 

q.co 

as  z -> «.  Thus condition (12) is also verified. 



30 Table I. NAOA TN No. 1006 

Functions entering into the computation of the velocity 
distribution along a symmetrical Joukowski profile with 

6 = .15 

t s ® d®/d*j It s ® d®/d3 

0.00 0.0000 3.1416 HO. 80 3.0267 3.8755 
.02 .0667 3.0834 -.4076 II   -Q2 3.0:520 3.8980 
.04 .2548 3.0353 -.1731 .84 3.0371 3.9204 
.06 . 5191 3.0034 -.0804    | 1   -3@ 3.0419 3.9428 
.08 .8148 2.9888 -.0220 1   <88 3.0465 3.9650 

.10 1.1062 2.9892 +.0238 1   'Q0 
3.0510 3.9873 

.12 1.3723 3.0009 +.0647 I   *92 3.0551 4.0094 

.14 1.6066 3.0206 +.1040 1   -94 3.0591 4.0315 1 

.16 1.8071 3.0453 +.1437 V   *9& 3.0629 4.0535 +5.8608 I 

.18 1.9766 3.0730 +.1850 1   *98 3.0666 4.0755 +6.0844 j 

.20 2.1193 3.1024 +.2287 fll.OO 3.0701 4.0975 +6.3066 ] 
,22 2.2395 3.1326 +.2757 1.02 3.0735 4.1194 +6.5277 
.24 2.34,07 3.1630 + .3264 Ö1.04 3.0768 4.1412 +6.7464 -1 
.26 2.4265 3.1933 +.3813 Bl.06 3.0800 4.1630 +6.9630 " 
.28 2.4995 3.2232 +.4408 8l.08 3.0831 4.1848 1 

.30 2.5620 3.2586 +.5052 1.10 3.0861 4.2065 

.32 2.6158 3.2816 +.5750 1.12 3.0890 4.2282 

.34 2.6623 3.3101 1.14 3.0918 4.2499 

.36 2.7029 3.3381 1.16 3.0945 4.2715 

.38 2.7Z85 3.3655 +.8185 1.18 3.0972 4.2932 

.40 2.7697 3.3926 +.9119 1.20 3.0998 4.3148 

.42 2.7975 3.4192 1.22 3.1024 4.3363 

.44 2.8221 3.4454 1.24 3.1049 4.3579 

.46 2.8442 3.4712 1.26 3.1073 4.3794 

.48 2.8640 3.4968 +1.3500 1.28 3.1097 4.4009 

.50 2.8818 3.5220 +1.4761 1.30 3.1121 4.4224 

.52 2.8980 3.5469 +1.6089 1.32 3.1144 4.4439 

.54 2.9127 3.5715 1.34 3.1167 4.4653 

.56 2.9261 3.5959 1.36 3.1190 4.4868 

.58 2.9384 3.6201 [1.38 3.1212 4.5082 

.60 2.9497 3.6441 |l.40 3.1234 4.5297 

.62 2.9600 3.6679 1.42 3.1256 4.5511 

.64 2.9697 3.6915 +2.5419 1.44 3.1277 4.5725 

.66 2.9786 3.7149 +2.7190 11.46 3.1299 4.5939 

.66 2.9869 3.7382 +2.9014 1.48 3.1320 4.6153 

.70 2.9946 3.7614 +3.0895 1.50 3.1341 4.6367 

.72 3.0019 3.7844 +3.2823 1.52 3.1363 4.6581 

.74 3.0087 3.8073 1.54 3.1384 4.6794 

.76 3.0150 3.8302 1.56 3.1405 4.7008 

.78 3.0210 3.8529 1.5708 3.1416 4.7124 +10.177 
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Table Ila. 

Successive approximations to the function £(k>)  in the 
case of a circle (M-= .406, A ~ .045) 

deg. 
u 

10 
20 
30 
40 

50 
60 
70 
80 
90 

to 

rad. 
.UUUÜO 
.17453 
.34907 
.52360 
.69813 

.87266 
1.04720 
1.22173 
1.39626 
1.57030 

*o<*0 
.ÖÖÖÖÖ 
.17453 
.34907 
.52360 
.69813 

.87266 
1.04720 
1.22173 
1.39626 
1.57080 

*lfo> 

.ÖÖÖÖÖ 

.13144 

.38086 

.56643 

.74683 

.92136 
1.09003 
1.25352 
1.41317 
1.57080 

fg<40 

.ÖÖÖÖÖ 

.18171 

.36239 

.54122 

.71769 

.89172 
1.06355 
1.23362 
1.40250 
1.57080 

fS^) 

.ÖÖÖÖÖ 

.18611 

.37082 

.55287 

.73138 

.90587 
1.07635 
1.24333 
1.40768 
1.57079 

tAi*>) 

".ÖÖÖÖÖ 
.18420 
.36808 
.54900 
.72673 

.90095 
1.07183 
1.23985 
1.40586 
1.57080 

*öfrO 
.ööööö 
.18558 
.36976 
.55135 
.72951 

.90388 
1.07450 
1.24191 
1.40698 
1.57080 

Table Hb. 

Successive approximations to the function f (u>) in the 
case of a symmetrical Joukowski profile (e * .15, 

}&#>=  .685, \= .469) 

^r—-^ftej) fo<") *l(«) f2(") f3<w> f4(<u) 
Jlfigi rad. 

iff .ÖÖÖÖ .ÖÖÖÖ .ÖÖÖÖ •.ÖÖÖÖ .ÖÖÖÖ ' .ÖÖÖÖ 
10 .1745 .0437 .0324 .0323 .0324 .0324 
20 .3490 .1273 .1275 .1274 .1271 .1275 
30 .5236 .2570 .2786 .2785 .2779 .2787 
40 .6981 .4470 .4762 .4755 .4750 .4760 

50 .8726 .6645 .7090 .7070 .7068 .7078 
60 1.0472 .9078 .9649 .9609 .9615 .9620 
70 1.2217 1.1682 1.2320 1.2257 . 1.2270 1.2272 
80 1.3962 1.4332 1.4996 1.4909 1.4931 1.4928 
90 1.5708 1.6956 1.7586 1.7484 1.7514 1.7508 

100 1.7453 1.9502 2.0022 1.9914 1.9951 1.9943 . 
110 1.9198 2.1857 2.2253 2.2156 2.2193 2.2182 
120 2.0944 2.4016 2.4248 2.4174 2.4208 2.4199 
130 2.2689 2.5922 2.5992 2.5956 2.5982 2.5972 
140 2.4434 2.7555 2.7481 2.7494 2.7501 2.7495 

150 2.6180 2.8902 2.8728 2.8787 2.8776 2.8778 
160 2.7925 2.9964 2.9764 2.9850 2.9821 2.9831 
170 2.9670 3.0773 3.0639 3.0702 3.0675 3.0686 
180 3.1416 3.1416 3.1416 3.1416 3.1416 3.1416 
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Velocity distribution about a circle (11^=.406) 

Y4r Present Kärman-Tsien Incompressible 
Method Method 

0 6.000 0.000 0.000 
10 .335 .333 .347 
20 .675 .667 .684 
30 1.014 1.000 1.000 
40 1.350 1.326 1.286 

50 1.671 1.636 1.532 
60 1.958 1.912 1.732 
70 2.185 2.134 1.879 
80 2.336 2.279 1.970 

90 
2.389 2.329 2.000 

Table Illb 

Velocity distribution about a Joukowski Profile (£=.15, M^=.685) 

VV*- Present KÄrman-Tsien Kaplan Incompressible 
5\a* Method Method 

0 .849 .839 .870 
10 .835 .854 .852 .874 
20 .847 .869 .867 .887 
30 .873 .894 .892 .909 
40 .912 .928 .927 .938 

50 .957 .970 .970 .974 
60 1.011 1.019 1.021 1.016 
70 1.073 1.073 1.078 1.061 
80 1.142 1.132 1.139 1.109 
90 1.215 1.191 1.203 1.157 

100 1.289 1.250 1.265 1.203 
110 1.360 1.303 1.322 1.244 
120 1.417 1.347 1.366 1.278 
130 1.446 1.373 1.394 1.297 
140 1.427 1.369 1.385 1.294 

150 1.325 1.308 1.312 1.247 
160 1.088 1.128 1.110 1.106 
170 .645 .704 .674 .738 
180 0.000 0.000 0.000 0.000 
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Figure 1.- Velocity distribution along a circle (MCQ-,406). 
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