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WIND-TUNNEL TIS8TS OF AILERONS AT VARIOUS SPEEDS
IV - AILERONS OF 0,20 AIRFOIL CEORD AND TRUE
COSTOUR WITH 0,35 AILEEON-—CHORD IXTREME
ELUIT-NOSE BALAMCE ON THE NACA 23012 AIRFOIL

By W, Letko, T, A, EHollingworth, andi R, A, Anderson
SURMARY

Megts were pade on an FACA 23012 eirfoll fitted with a
20-percent—chord, true—contour ailsron with 35-percent—
chord, sxtreme blunt—nose bhalance, The tests were made
in the two—dlmansional test section of the NACA stability
tunnel at & raage oY alragpeeds from 160 to 260 miles per
hour, which corresponded to a range of kach numbers from
0.195 to 0,475, The primary purpose of the investigatlon
was to determline the variation of the asrodynamic cheracter—
istics of this type of allsron wlith airsveed; ths sffect of
varintions ¢f gapr width and balance—nose radii was also in—
vestlgated,

The results of the.investlgrntion are presented as curves
of sectlion hings—~momsnt coefficliasnt and section 1ift coeffi-
clent plotted against alleron engle, and cross plote have bsen
made to 1llustrate the effect of varlatlions of Kach number,
balance—nose radll, and gap width on tho serodynamlic charac—
teristics of the allsroa, Tor small silorcn deflectlons at
low angles of attack, incresssf alrspeed had little sffect
on the rate of change of ssctlon hingses—momsnt coefficlent
with alloeron dsflection hut inoreased the rate of change of
section 1i1ft coefficlent with aileron deflection, Incresased
airspead decrcased the unstalled range of the -alleron and
incroeassed the rate of -change of ssction 1lift coefficlent and
section pltching moment cosfficilent with angle of attack, 4n
increase in gap width at low angles of attack for small eille-—
ron deflections decrcasdd tha rste of chanze of ssction 1ift
coeffilcient with alleron deflaction and approciably decreased
the rate of chango of section hinge—mcment cosfficient with



alleron deflection, Increased balance—nose radll increased
the rate of ohange of sectlon hinge-moment coefflcient with
alleron deflectlion for small alleron deflectlons and appre-
oladbly increased the unstalled range of the alleron,

INTRODUCTION

The recent trend 1n alrplane deslgn toward increased
slze, power, and radlus of gyration in roll and the demand
for greater maneuverabllity at hlgh alrspeeds have made
neoessary almost perfectly balanced controls on combat alr—
oraft with no decrease 1n control effectlveness, Although
most present alleron 1nstallations are falrly satisfactory
at low alrspeeds, these lnstallatlons may be unsatlsfactory
at high alrspeede beocause of insufflclent dalance and, 1in
some cages, overbalance, In an effort to overcome thls
dlfficulty, the NACA has undartaken a serles of lnvestlga—
tions to determine the aercdynamic characterlstics of various
types of balanced control surfacee at higher alrspesds than
were used in thelr development, The results of simllar tests
have been reported in references 1, 2, and 3,

The presant report contains the results of tests of a
20-percent—chord allercn wilth a 35-percent—chord extreme
blunt nose talance on an NACA 23012 alrfoll; the alleron
was slmilar to that of reference 1 with the exception of the
alrfoll sectlion contour, A4 0,35-ailleron-chord balance was
chosen becruse the results of reference 4 obtained at low
alrspeeds 1ndicated that thls ailleron would give almost com—
lete balance at a low angle of attack,

The sectlon 11ft and hinge-moment coefficlents were
measured for varlious values of balance—noss radli and gap
widths at alrspeeds up to 360 mlles per hour over a range
of alleron deflections of +20° end a range of angle of
attack from —-5° to 10°, The results of the investigation
are presented as curves of sectlion hinge-moment coefficlent
and sectlion 1ift coefficlent plotted against alleron angle,
Cross plots have besn made to show the effect of varlations
of gap width, balance-nose radli, and airspeed on the aero—
dynamlc ocharacteristics of the elleron,

SYMBOLS

ct alrfoll sectlon 1i1ft coefficient (1/qe)

¢n, &lloron sectlon hinge—moment coefficlent (h,/q ca®)



' &:%“ alrfgil éeéction pitching-moment coefficlent about
the quarter—chord point of sirfoll (gglé>

q c®

1 airfoll section 1ift

hy ' alileron section hinge moment

c chord of baslic airfoll, 1lncludlng aileron

Ca chord of alileron measured froum hinge axls back to
trelling edge

q dynemie prossure (%pva)

v alr veloclty

p mase dansity of alr

Dc/g alrfoll sectlion pltchling moment about the quarter—
chord point of the alrfoll

(" angle of attack .for alrfoil of 1nfinlte napect ratio

8 alleron engle wlth rcepoct to wirfoil

M Mach number

8
talned from the falred curve of °h agalinst
854 at -5° and 5° ailleron deflections

38 7/ slope of cp, eagalnet 8 at constant a, oOb-

Bch
<B ‘> 8lope of Shg agalnst a, at constant 8,4
%o

de

(S—— slope of ¢y againet «, at constant &84
®o 8,

& LX)\

—e——

. slope of o atalnst 8 at constant a
BGE/E P 1 a & o

o obtalned from the faired curve of cy agalnst
8g 8t —5° and 5° aileron deflections



APPARATUS AND MODEL

The tests on the NACA 23012 alrfoll equipped with an
extreme blunt—nose balance alleron were made in the rectan—
gular 2,5— by 6—-foot test section of the stabillity tunnel,
The model completely spanned the test section and was fixed
into end disks that were flush with the sides of the tunnel,
The end disks were rotated to change the angle of attack,

A photograph of the airfoil mounted in tke tunnel is shown
in figure 1, TFigure 2 is a sketch showing the alleron con-
figurationg tested,

The airfolil was made principally of laminated mahogany,
The aileron, with the exception of a wooden leading edge,
was made of steel and rotated in ball dbearings, These
becrings were set intc steel =nd platos mounted on the ends
of the airfoll, A full-span seal of impregnated cotton
fabric was used for the tests with the zap sealed, The al-
leron angle and hinge moment were measured by a calibrated
spring—torque balanco and sector system, The airfoil 1ift
was recasured by an integreting manometar connected to ori-
fices sut in the floor and celling on the center 1line of ‘the
tunnel, The irtagrating monometer was calibrated from pres-—
sure—distribution data, The presesure dlstiribution was re—-
corded photographically from a multiple manometer connected
to pressure orifices located on the midspan of the wing and
aileron,

TEZSTS

Section hinge-moment and section 1ift coefficlents were
measured at five airspeeds corresponding to a range of Mach
numbers from 0,195 to 0,475, These test alrspeeds corre-—
sponded to Reynolds numbars, based on a 2-foot chord and
standard atmosphere, of approximately 2,800,000 to 6,700,000,
respectively, Fivure 3 shows the variation of different test
kach numbers with approximate Reynolds numbers, At sach air-
speed, tests were run at angles of attack of -5°, 0°, 59,
and 109, TFor each angle of atteck, gap widths of’ 0. OOObc
0,00Z0c, O,0055c (sealed and ansealed) and 0, 0107c were teated
with balance—nose radii of 0, 0,0le, and O, Oac. (See fig, 2,)
The lntegreting manometer results are not avallable for the
zero nose radius, For each of the conditicns, tests were
made with aileron angles of 0°, 50 70 100, £13°, *16°,
£18°, and %209, At high angles of attack and high aileron



defleotions, however, power was not avallable to obtain the
highest speeds,

At each angle of httack, photographic records of pres—
sure distribution were taken at alleron mangles of 00, £59,
+10°, and *16° for Kach numbers of 0,195, 0,358, and 0,465,

PRECISION

The alleron angle and angle of attack were set to within
£0,3° and *0,1°, respectively, The aileron section hinge-—
moment coefficlients could be repeated to within *0, 003 and
the 1ift coefficients to within *£0,01, Lift and pitching—-
moment coofficlents and angle of ettack were corrected for
tunnel-wall effect by the foliowing formulas:

ey = |1~ 7 (14 aa)] ca’t
e
ag = (1 + Y) aj!
e (1 - 2pY) L
= — c ——— —p—
mC/4 mC/é 4
where
I = 1_1_3. —0_2
48\ b/
c eirfoil chord (2 ft)
h height of tunnel (6 £t) .

B = 0,237 (theoratical factor for YACA 23012 airfoll)
°1' measured 11ft coefficient

a,! uncorrected or geometric angle of attack
°ng/4' measured pitching-moment coefficient

The velues ﬁsed are:



01 0,96601'

Q
u

1.023&0'

= 0,989c 1 !

Be/a c

The hinge moments were not corrected for tunnel—-wall
effect but were measured both by pressure distridbution and
by the spring—torque balance for a nurber of conditions; a
comparison of the results of the .two methods is given in
figure 4, The varlationsg shcwn are probably due to the fact
that the sprinz—torgue balznce measures the moment of the
entire aileron, which includes the effects of boundary layer
at the tunnel wall ani of gaps at the ernds of the aileron as
well as any cross flow over the alleron, The pressure dls-
tridbution, however, giveés the hinge moment of one section of
the alleron and is subJect tc errors in falring the pressure-—
distribution curves, The effect of compressibility on these
corractions has becen neglected; 1t is believed, however, that
the conclusicne given 1n the present report are not invall-
dated,

RESULTS AND DISCUSSION

In order that the results for the tests may be more
easily found, the fligure numbers, tiae varictions shown on
tha fizure, and the corresponrding model confliguratlions are
given 1a table I,

Hinge Momente

Curvoe of section hince-monaont coefficiant Chy plotted

against alleron deflaction 8, are nressnted in figures 5
to 10, The results, in gensral, indicate that good balance
effoectiveness was maintained for a2 limited range of aileron
angles; for large alleron angles, separation of flow caused
rapid increases in the hinge—momant coefficients,

In the unstalled range of aileron angles, the slopes of
the curves of cp, &against 8, were small and generally



‘negative for positive alleron deflectlions-at negative angles
of attack and increased negatively with an increase 1in angle
of attack, In most ceses, the slopes of the curves changed

in the vicinity of the neutral alleron setting and at nega—

tive alleron angles were smaller than at positive angles for
all angles of attack except at a, = —5°, at which the nega—
tive slope was falrly large,

An oscilllation frequently occurred during the tests at
the transition polint between the stalled and unstalled range,
The amplitude of this oscllletion increased with ailrspeed,
The principal effect of increased airspeed, however, was an
appreclable decrease in the unstalled range of the alleron,
(See figs, 5 to 10), This effect is probably due to the
effects of both Reynolds numbor and Mach number, A con—
parison of the varlious test hach numbers with the approxi-
mate Reynolds numbers 1s given in figure 3,

fo
The effect of Mach number on ( h is shown in
a\-a
%o
flgures 11 to la. At a, = 0° for all hach numbers and
[<]]
a, = *5° for low kach numbers, the change ir Aty
\?35, /
8 “q,

o

with kach number was nearly zero, At a4 = *5° for velues
of Mach number above about 0,4 and at a, = 10° for the

dcp
range of Mach numbers tested, the value of ( a") in-

B&a

)
creased rapldly in the negative directlion with kach numbdber,
/aoha
bB

The increase 1in > y Wwhich was probably caused by

o
compressibllity effecte, appeared to occur at conslstently
higher Mach numbers with a sealed gap than with an open gap,

For the condition of high speed and a, = 0° with 0, O2¢c
dch

balance—nose radii, values of ( of --0,0008 for a

ga§ of 0,0055¢ (fig, 11) and -0, 0022 for the sealed gap (figzg.
were obtained from this investigation as contrasted to



values of —-0,0075 and -0,0057, respectively, which are
reported in reference 1 for a 66,2-216, a = 1 alrfoll for
the same conditions, Thls differencs. ln the results indil-
cates that the amount of balance required depends on the
hinge moment of the unbalanced alleron, The hlnge moment
of the unbalesnced alleron 1n turn depends on the shape of
the alrfoll section, particularly near the tralllng edge,
(See reference 8.)

An lncrease in the gap wldth tended to decreass slightly
the unstalled range of the alleron; the effect was neglliglble,
however, for most conditlions (figs, 6 to 10), The effect of

och
gap wildth on ( a) ls shown 1n figure 13, The change
¢8 g
aCh lo)
in (E;;ﬂ with gap width varled consilderadly with a,.
a’a,

At agy = 0°, 1increased gap wildth resulted in a decreased

: socy
nogative value of KT——£> at all alrspesds; thls trend

0
vas also found ln reference 4, At a, = 100, thse manner

in which (T——ﬂ\ varled with gap width wes dependsnt upon
8-(1
alrepeed, At Wk = 0,199, the effect of gap width on

och \
(T——ﬂi vas8 negllgible; whereas at M = 0,417, the values
8y g

. Yo

/aCh
of ?;;ﬁ> locreased negatively with gap width up to a
a

maximum negatlve value at a gap width of approximately 0, 006c,
For gap wldths lergor than 0,006c the negative valuss of

oen,\ den
— ) decreased, The valuee of —_—3 for the sealed
08 ?Sa /ao

gap corresponded closely to the valuas of the smallest gap
widths for all condlitions, A value of -0,0002 for

OChg o
(‘6 > waes lndicated at aoj = O when the gap wldth was
o
a
o



e .- . - dei-\" -
0,0lc, An approximate value of ( hé) of -0,0072 was

28,

%o

obtalned for a plaein sealed mileron 1in reference b5,

Increasing the balance—nose radlil lnecreased greatly the
unstalled range of alleron angles, as shown 1in flgures 5 and
6, Because the data for zero radil were incomplete and be—
cause the results for allerons with small balance—nose radil
(especinlly zero) showed thet the stall occirred at such a
small deflection that these milerons have doubtful practical
application, no curve for zero radil and only one for 0,0lc
radil 1s presented, The effect of balance-~nose radil on

ech. N
{; Be is shown 1a figure 14, In general, the value of
as/
cha
—_— incroased negatively with incrzmsed radil 1lan the

unstalled range, as was indicated in reference 4, An ex—
ceptlion was found in the condition of the unsealed gap at

dep
low alrspeoeds where the value of ( e> remained practi-

cally constant, In the unstalled range the rate of change

ach
( > with balance—nose radll was greatest with the
8 (o8
gap sealed, (See fig, 14,) At a, = 0° and with the gap

sealed, the Alleron with balance—nose radilil of zero was
8slightly overbalanced at all alrspeeds,

Olosely balanced milerons may be overbalanced while

dch
rolling, depending on the value of ———ﬂ> ., The vari-
dag 8,
ation of cp, with a; at high and low Mach numbers for the

open and the sealed gap 1s presented in figures 15 and 16,
Ech
respectively, When 8, = +13° the value of ( 1s
Emo 8
a
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negative, With the aileron”neutral, the value of

dchg )
' ) is positive at negative angles of attack and

ba.o /88.

becomes negative with an increase 1ln angle of attack, In
general, the effect of gap wldth or of a variation in air-

c
<?—E§ appears tc be slight, The results of
da, /8

spead on
a

this investigation indicate that for large wlleron angles, a
reduction in stick force would be obtalnad while the alrplane
is rolling; the amount of reducticn depends on the value of
xtch

. a) . Although the curve of cp_ against a, some-
\Bao 8 a

a

times has & slight positive slope, there 1ls little chance of
overbalence for thils alleron installation,

Lift

Section 1ift, alleron neutral.- (Curves of airfoll

séctlion 11ft coefflicient ¢y plotted agalnet angle of
attack a«ay are presented in figures 17 to 20, The results
indicate that the princlpal effect on the sectlion 1lift curve
of variations of elrspeed, gap width, or balasnce-nose radil
was &a change 1ln slope,

Incrcased airspeed increased the slope of the 1ift curve
as 1s zhown 1n figures 17, 18, and 21, TFor a gap width of
0.0055¢ with the gap both open and sealed, an increase 1n
slope of approximetely 15 percent was obtalned for the raange
of test Mach nuxbers, A slope of 0,124 at a Mach nunmber of
0,473 was obtained from this investlgatlion for the sealed
condition, A comparison of the thooretical and the measured
effect of Mach number on the slope of the 1ift curve for the
sealed and open gavp is given 1in figure 21, References 6
and 7 show that the slope of tae 1ift curve should vary with
hach numdber es — « The theoretical curve in flgure-z2l

J1 - N

\
.wasg obtalned by selecting e value of 2oyt at zero Mach

nunber of such magnitude that the thaoretical increase in
lift—curve slope passes through the measured value for the
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“#ealdd gap at a Mach number of 0,2, The measured effect of

Mach number on the slope was greater thau the effect indicated
by theory., The varlation in Reynolds number and the failure
to conslder compressibllity effects in applying the wind-
tunnel correctlon probably coantrlibuted to the discrepancy be—
tween the theoretlical and the measured effect of kadh numbdber,

Increased airspeed had a negligible effect on the angle
of zero 1ift but resulted in meparation at a lower angle of
attack (figas, 17 and 18),

The effect of gap width on /§3i> 1s shown 1n figure

TIAN "8,
c
19, The value (f—l/ vas greatest for the sealed gap and
daq
8a

only slichtly less for the O, 0005¢c gap width, 4An increase
from 0,0005¢ to C,0030c in gap wlidth decreased the value of

ce \
(——i \ approxirately 8 percent, but a subsaquent increase
amo/s
a

in gap width from O0,0030c to 0,0107c hald a negligldble effect
on the slope, The Increased gap wldth sllghtly increassed
the angle of zero 1ift,

An increase in balance—nose radil from O to O,02c had
little effect on the slope of the sectlon 11ft curve as
shovn 1n figure 20,

Section 1ift_ selleron deflected,—~ Curves of section
11ft coefflcient ¢y plotted against aileron angle 84

are presented 1n flgures 22 to 27, The results, in gensral,
indicate that the 1ift lncreased with alleron eangle up to
some value after which separation occurred, and cq de—
creased rapidlyr,

Although the slopes of the ¢y against 8, curves

changed slightly 1n some cases at 8z = O, these slopes
gonerally remained unchanged throughout the unatalled range
of alleron deflectlons, An exceptlion to this condition was
found when an effsct (probably due to compressibility, Reyn-
olds numtar, or a combination of both) occurred, which re—
sulted in a rapid decrease 1ln slope with increased aileron
L]

deflection, A value of ESi\ of 0,045 was obtained as

W’ o
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an approximate average siopa for all test condltions 1in
the unstalled range of alleron deflectloas,

The principal effects of increased alrspeesd were an
appreciable decrease in the range of alleron angles over
which 11ft effectiveness was maintalned and a decreass,
gen;rally, in the maximum value of ¢y, (See figzs, 22" to
27

The effect of alrspeed on \agi\ is shown 1n flgures
1P ao
28 to 31, At ay = 0° and 5° for all hach numbers and at

tc
ag = ~5° and 10° for low Mach numbers, the value of ( 1\

%o
increased with kach nurber, as 1s shown in Fflgures 28 and

29, As the khach numbers increased above 0,35, the value of
’301\

o°?

\pB / rermalned about constant for ay = —5° and rapldly
Co
decreased for ag = 10°. This change wes probably a com—
oc
presslbility effect, The value of [ 1\ varled with «
68 g
a

o
but the rate of lncroase with Mach number below critical
spaeds was approxlimately the same for all values of a,.
The results of thils investigation 1indicate that at zero
angle of attack the effect of alrspeaed on both the alleron
offectiveness nnd the balance effectlveness was slight,

Variutlons 1in gap wldth genersally had a negligilbdle
effect on the range of alleron angles ovar which 1ift
effectivoncss was maintalned (figs, 2% to 27), Increased
g8y width, however, did appreciably decrease the maximum

‘oc
value of c¢q, The eoffect of gap wilidth on (S—l is

. 63/;0
shown 1in flgure 30, At zero angle of attack the value of
bcl\
aa/
Co

Ay = 10

decreased with inoreased gap wldth; hovwever, at

dc
° the effect of gap wildth on (Fsi\ depended on
o

G.g
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‘the alrspeed, For low airspesds the sffect ia slfillar to
that for zero angle of attack, but at high alrspeeds the

value of <§gi> increassd with gap width, (See fig, 30,)
Sa o i

At high alrspeeds and zero angle of attack for the contltlon
at which the best hinge—moment balance was obtained, that 1s,

: och
for a gap width of approximately O0,0lc and (66 a) =-0,0002,
! a /g
0

s0c
the value cf ngl> = 0,042 was the esmellest for the range
a’y, .

0
of gavp widtbhs tested,

Incrcoecd bslinco=noses radii grezatly increased the range
,of alleceron deflectliona over which 1ift effectivencess wes
maintalined and appreciebly incresnsad the maximum value of

cy. (Seo 5;ga\ 22 and 25,) The effect of talanco—nose
& q \
radii on &Eglj is romewhat irraguler 28 can be seen from
2o

figura 21,
Pltching-koment Ccefficlent

Tre varlation of tke 21lrfoil section pitching—moment
coefficient cmc/4 with angle of attack a,, aileron

neutral, which wvas obtalned from pressure distribution, 1s
prescnted 1n figure 32, The principal effect on the cmc/4

curve of a variatlon of airsposed or gap width was a-change
-in slope, whereas the affect of balance—ncse radil was neg-
ligible; increased gap width or increased =zirspeed lncreased
the slope of the cmc/4 curve, The veriation was approxi-

rately linear and was sufficlent to double the slope for the
range of test Mach numbers and gap widths,

CONCLUSIONS

From the results of this investigation the following
conclusions may be drawn:

1, Increased airspeed increased the positive slope of
the alrfoil section 1ift curves and pltching-moment—coefficient



14

curves, lncreased the slope qof the curves of section 1ift
coefficient with alleron angle, and had a negligible effect
on the balance effectiveness at low angles of attack for
small ealleron angles, The unstalled range of alleron de—
flections decreased with increaned speed,

) 2, Increased gap width increased the aileron balance
effectliveness but decreased the elope of the curves of
section 1ift coefficlent with mlleron sngles at low angles
of attack for small alleron angles, An incresse in gap
width usually decreased the slope of the airfoll section
1ift curve but increased the positive slope of the airfoll
sectlon pitching-moment—coefficlent curve,

3. Increased balance-nose radii greatly increased the
unstalled range of alleron angles and decreased the balance
effectiveness for emall angles,

Langley Memorial Aeronauticel Laboratory,
Tational Advisory Committee for Aeromautics,
Langley Fleld, Va,
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TABLE I
LIST OF FIGURES

Mach alance~
Fig- Variation shown number nose Gap width
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