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NATIONAL ADVISORY COMMITTEE FOR AEROINAUTICS |

RESEARCH MEMORANDUM

EFFECT OF AIRFOIL PROFILE OF SYMMETRICAL SECTIONS ON THE
LOW-SPEED ROLLING DERIVATIVES OF 45° SWEPTBACK-WING
MODELS OF ASPECT RATIO 2.61

By William Tetko and Jack D. Brewer
SUMMARY

An investigation was made in the Langley stability tumnel to deter-
mine the effect of airfoll profile of symmetrical sections on the
rolling derivatives of three untapered wings having 450 sweepback. The
wings had the following profiles normal to the leading edge: biconvex
(12 percent thick), NACA 654-012, and NACA 0012. The aspect ratio for
each wing was 2.61. "

Celculations were made to determine the effect of different wing
profiles on the stability boundaries and motions at subsonic speeds of a
typical transonic airplane configuretion.

Results of the tests indicate that increasing the sharpness of the
leading edge of the alrfoll decre&sed che range of 11ft coefficlents
over which the derivatives maintained their initial trends and usuelly
decreased the maximum values of the derivatives cobteined in the unstalled
range .

In general, the effect on the derivatives of adding & leading-edge
spoller to the inboard half of the NACA 0012 wing appeared to be
equivalent to Increasing the eharpness of the entire leading edge to scme
value between that of the LACA 0012 wing profile and the NACA 65_1_-012 wing
profile.

Results of the calculations of the dynamic stabllity of a typical
transonic alrplane configuration showed that at 0.2 11ft coefficient,
changes in airfoll profile had only a cvmall effect orn. the oscillatory
and spiral stability boundaries of a typical transonic airplane confi-uration.
At higher 1ift coefficients (0.5 and 0.8), increeses in the sharpness
of the leading edge usually caused & stabillzing shift of both the
oscillatory and spiral stability boundaries. The stabilizing shift
in the spiral stadility boundary was more than compensated for,
however, by the changea in effective dihedral of the airplane wings.

An Increased sharpneas of the leading edge therefore caused an increased
tendency toward aspiral instability, particularly at the higher 1ift
coefficients.

RESTRICTED




2 _ NACA RM No. L8L3la
INTRODUCTION

Estimation of dynamic flight characterigtics of aircraft requires a
knowledge of the forces and moments resulting from the angular motions
of the airplane. The relationship between the forces and moments and
the angular motions are coumonly expressed in nondimensional terms
imown as the rotary derivativea. In the past, these derivatives have
generally been estimated from theory because of the lack of a convenient
experimental technique.

The recent application of the rolling-flow and curved-flow principles
of the Langley stability tunnel (references 1 and 2), however, has made
the determination of the rotary derivatives relatively simple. A
systematic research program utilizing these new experimental techniques
has been esteblished to determine the effects of various geometric variables
on rotary and static stability characteristics.

The present investigation was made to determine the effects of air-
foll profile of symmetrical sections on the low-speed static stability
and rolling characteristice of sweptback wings. One wing, having a blunt
leading edge, (NACA 0012 airfoil section) was tested with and without e
leading-edge spoiler oxtending from the plane of symmetry to the 50-percent
semlgpan point of each wing panel to determine whether there might be an
advantage in a wing having a section varying from sharp nose at the wing
root to round nose at the wing tip. Results of tests to determine the
static- and yawing-stability derivatives of the winga used in the present
investigation are reported in reference 3.

Motions and stability boundaries, calculated by using the stability
derivatives obtained from the data of this paper and from those of
1sferences 2 to 4, are also included in this paper. These results are
Presented to show the effect of changes of the wing section on the stability
characteristics at subsonic speeds of a typical transonic airplane config-
uration such as that of references 2 and 4.

SYMBOLS

The results of the tests are presented as standard NACA coefficients of
forces and moments which are referred to the stability axes with the origin
at the quarter-chord point of the mean aerodynamic chord of the models
tested. The positive directions of the forces, moments, and angular
displacements are shown in figure 1. The system of axes and angular rela-
tionships used in calculating the stability boundaries and motions are
shown. in figure 2.
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The coefficients and symbols used herein are defined as follows:

v free-stream velocity (elso, velocity of airplane),
feet per second

v airplane sideslip velocity (positive sideslip to the right),
feet per second

p mergs density of air, slugs per cubic foot

q dynamic pressure, pounds per square foot (%'-pvz)

8 ving area, square feet

b ving span, measured perpendicular to plane of symmetry, feet

A aspect ratio (b2/S)

c chord of wing measured parallel to :.7125 of symmetry, feet

c mean aerodynamic chord, feet é cldy

0

x distance of gquarter-chord point of any ochordwise section from
leading edge of root section, feet

X digtance of quarter chord of mean :7';od.y1mmc chord from leading
edge of root chord, feet % cex dy A

0

y spanwl se diatﬁnce measured perpendicular to axis of symmetry,
feet

w welight of airplane, pounds

m mass, slugs (w/g)

g acceleration due to gravity, feet per second per second

m relative-density factor én/pS\D

kxo radius (.Jf &gyration about principal longitudinal axis, feet

kg radius of gyration ebout principal vertical axis, feet
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nondimengional radius of gyration a‘bout longitudinal stability

o (Bt (T

nond.:lmensionnl radius of gyration a‘bout vertical stability axis -

(\]( T) cos2y + <T> .ma,.)

nondimensional produot-of-inertia pu.rmter

2 ky 2
— [ -
Gz“_b) (b) cos 1 8in g

11ft coefficient (L/q8)

dreg coefficient (<Cy for ¥ = 0°)
longitudinal-foroce coefficient (X/qS)
laterrl-force coefficient (Y /q8)
rolling-moment coefficient (L' /qSb) .
pitohing-moment coefficient (M/qSE)
yewing-moment coefficient (N/qSb)

11ft, pounds

longitudinal force, pounds

lateral force, pounds

rolling moment about X-axis, foot-pounds

pitching moment about Y-axis, foot-pounds

yawing moment about Z-axis, foot-pounds

angle of attack, measured in plane of aymmetiry (also angle
between reference axis and flight-path axis), degrees
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angle of yaw, degrees
angle of sweepback, degrees

angle of sideslip, radians, (ta.n‘l %)

angle of attack of principal longitudinal axis of airplanse,
positive when principal axis is above flight path,
degrees (see fig. 2)

angle of flight path with respect to horizontal, positive
vhen flight-path axis 1s above horizontal axis, degrees
(see fig. 2)

angle between reference axis and principal axis, positive when
reference axis is above principal axis, degrees (see fig. 2)

time, seconds

Routh's discriminant
wing-tip helix angle, radians
rolling angular velocity, redians per second

yawing-velocity parameter

yawing angular velocity, radians per second
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APPARATUS AND TEST

The present investigation was conducted in the 6-foot circular test
section of the Langley stability tunnel. This section 1s equipped with a
motor-driven rotor which imparts a twist to the air stream so that a model
mounted in the tunnel is in a field of flow similar to that which exlsts
about an airplane in rolling flight (reference 1).

The models tested consisted of three untapered wings of 45° sweepback
and aspect ratio 2.61. The models had the following profiles in planes
normal to the leading edge: biconvex (12 percent thick), NACA 65;-012,
and NACA 0012. The plan form of the models and the three profiles axe
shown in figure 3. Also shown in figure 3 is the semispan leading-edge
spoiler which, for some tests, was mounted on the wing with the
NACA 0012 section.

All tests were made with the model mounted rigidly at the quarter-
chord point of the mean asrodynamiz chord on a single-strut support
as shown in figure 4. The forces and moments were measured by means
of electrical strain gages contained in the strut. The dynamic pressure
at which the tests were made was approximately 39.7 pounds per square
foot which corresponds to & Mach number of 0.17. The Reynolds number
based on the mean asrodynamic chord of the models was 1,400,000.
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The models were tested through an angle-of-attack range from about
—20 angle of attack up to and beyond the angle of maximum 1ift in straight
flow at 0° angle of yaw and in rolling flow at values of pb/2V
of #0.021 and 30.062. In straight flow, six-camponent measurements
vere made, whereas only measurements of laterel force, yawing moment, and
rolling moment were obtained in rolling flow.

CORRECTIONS

Approximate corrections, simllar to those of reference 5, based on
unswept-wing theory, for the effects of jet boundarles have been applied
to the angle of attack, the longitudinal-force coefficlent, and the
rolling-moment coefficlent. Corrections for blocking or turbulence have
not been applied to the results.

RESULTS AND DISCUSSION

Characteristicse in Stralght Flow

The l1ft, longltudinal-force, and pltching-moment characteristics
as measured in strelght flow are presented in figure 5. These results
are about the same as those of reference 3 which were obtained at a
dynamic pressure of 24.9 pounds per square foot. As was pointed out
in reference 3, the lowest lift-curve s'.ope at low 1lift coefficlents
was obtalned with the blconvex sectlon; and the highest maximum 1lift
wag obtained with the NACA 0012 wing equipped wltl: the lnboard leading-
edge spoller. Effectively increasing the sharpness of the leading
edge reduced the rearward shift of the aerodynamic center with 1lift
coefficlent.

Characteristics in Rolling Flow

As can be seen from figure 6, increasing the sharpness of the
leading edge decreased the maximum positive value of pr and decreased

the renge of 1lift coefficlents over which the variation of CYP with
1lift coefficient remained linear. The values of Cnp at low and medium

1ift coefficlents are small and negative and are little affected by air-
foll profile. However, increasing the sharpness of the leadlng edge of
the airfoll decreased the maximm negative valuss of C and decreased

Pp
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the 11ft ccefficlent at which the values of Cnp became positive. For

certain airplane configurations having a high vertical tail, it might
be possible that Cnp would be positive throughout the 1lift coefficlent

range, which would be of importance from the viewpolnt of stabllity and
control. The blconvex wing had the lowest value of c'lp at low 1lift

coefficients. This might be expected since tke blconvex wing has the
lowest lift-curve slope at low 1lift coefficlents. As with Cy and C_,
P

ny
increasing the sharpness of the leading edge of the wing decreased the
11ft coefficient at which large changes generelly occurred in the initlal
trends of the variation of C,p with 11ft coefficlent.

In general, the effect on the derivatives, especially on cyp and C

of adding the leading-edge spoller to the NACA 0012 airfoll appeared to
be equivalent to increasing effectively the sharpness of the leading edge
to some value between that of the NACA 0012 airfoll and that of the

NACA 65,-012 airfoil.

n?’

c.2
Drag Increment, Cp — Tri‘_

It was pointed out in reference 3 that the increment of drag that is
2\
C
not assoclated with 1lift (Cp - -I‘ﬁ) could be used to indicate the lift

coefficient at which separation begins to take place on plain wings. It
was shown that large changes 1n certain asrodynamic characteristics may
occur at the 1ift coefficlent at which this dreg increment begins to rise.

c.2
A plot of Cp - _f‘tﬂ against 11ft coefflcient for the wings tested 1s

presented 1n flgure 7. It can be seen by comparing this figure with
figure 6 that abrupt changes in the initial trends of pr, (}n:p » and C,
p

generally do occur at approximately the same 1i1ft coefficlent at which

the drag increment begins to increase. This 1lift coefficlent 1s

about 0.6 for the NACA 0012 wing, about 0.4 for the NACA 65;-012 wing,

and 0.3 for the biconvex wing. Ordinarily, changes in the drag increment
can be expected to be useful only for predicting changes in the character-
istics of plain wings. However, the increase in the dreg increment for

the wing with the inboard nose spoller occurs at about 0.4 1lift coefficilent,
at which 1lift coefficlent the eerodynamic characteristics also change
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O

abruptly. As was poirted out in reference 3, the relationship between

the drag increment and the extent of linearity of the stability derivatives
might serve as & basis for making certain qualitative estimates or the
effects of Reynolds number on the stability derivatives when only the 1lift
and drag variations with Reynolds number have been determined.

Stability Boundaries and Motions

Computations were made to determine the changes in the stability
boundaries and in the motions of an airplane caused by changes in the
stubility derivatives resulting fraom using wings of different profile.
The geometric and mass characteristics of the airplane remained the same
in each case, and the stability derivatives of the airplane differed only
by the different contribution of the wing profile used in cambination
with the airplane.

The airplane configuration used, shown in figure 8, is similiar to
the model used in references 2 and 4 and the contribution of the fuselage
and tail to the stability derivatives was obtained from the data of
these references. The contributions of the different wings to the stability
derivatives were obtained fram results of the present tests and from tests
of reference 3. The mass characteristics assumed were those of a typical
transonic airplane,

The stability derivatives and mass characteristics used in the
camputations are given in tables I and II. The boundaries and motions
were calculated by meens of the equations listed in reference 6. -

In figure 9 are presented the oscillatory and spiral stability
boundaries as functions of an and Cl‘3 for the three airplanes which

differ only in wing profile. Fram the figure, it can be seen that the
effect of airplane wing profile on both the oscillatory and spiral stability
boundaries ie comparatively small at a 1lift coefficient of 0.2. At the
higher 1ift coefficients there are much larger effects of airfoil section
on both boundaries. At 1ift coefficlents of 0.5 and 0.8 there is a
stabilizing shift of the spiral stability boundary as the sharpness of

the leading edge 18 *ncreased. At 0.5 1ift coefficient there is a large
stabilizing shift ir the oscillatory boundary when changing from the

NACA 0012 wing to either of the other sections which have sharper leading
odges. There is little difference, however, in the oscillatory boundaries
obtained for the NACA 65;-012 and the biconvex wings. At 0.8 1lift
coefficient there is a progressive stabilizing shift of the oscilla-—

tory stability boundary as well as the splral stability boundary as the
sharpness of the leading edge is increased.
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The stability boundaries are presented in figure 10 with a point
to show the position of the particular airplane configuration with
recect to the boundaries. At a 1lift coefficlent of 0.2 oscillatory
instabllity 1s indicated for all the alrplans configurations. The
large stabllizing shift of the oscillatory boundaries resulting from
a change of 1lift coefficlent from 0.2 to 0.5 1s malnly caused by the
change in 1y, the inclination of the principal longitudinal axis with
respect to the flight path, from about -3° at 0.2 1ift coefficient to
about 2.5° at 0.5 1lift coefficient. Reference 6 indicates that the
inclination of the principal longitudinal axie above the flight path
generally causes & stabilizing shift of the oscillatory boundary while
an inclination below the flight path results in a destabilizing shift
of the ocsclillatory boundary. At a lift coefficlient of 0.5 all the
airplane configurations fall in tle stable region. As the sharpness of
the leading edge of the wing increases, the position of the alrplane
becomes closer to the spiral etability boundary. At a lift coefficlent
of 0.8, there 1s a shift in position of the airplane into the spiral
divergence region with an increase in sharpness of the wing leading
edge; the airplane with NACA 00)12 wing falls in the stable region,
the airplane with the NACA 65,-012 wing falls in the spiral divergence

region near the spiral stability boundary, and the airplane with the wing
of bilconvex section falls well in the spiral divergence region. It
should be noted that although increases in the sharpness of the leading
edge of the wings generally affect the derivatives in such a way as to
cause a stabllizing shift in the stability boundaries, there 1s at the
same time a detrimental effect on C;B from the standpoint of spiral

stability.

The motions 1n bank and sideslip due to a small initial angle of
sldeslip for each of the airplane configurations is shown in figure 11
for a 141t coefficient of 0.8. The motions are presented as angles of
sldeslip or bank, relative to the initlial sideslip angle, and should dbe
reliable provided the sideslipr angle does not exceed that at which the
derivatives become nonlinear. The airplane with the dbiconvex section
shows extreme spiral divergence, the angle of eideslip increasing and
the alrplane banking rapidly in the direction of sidsslip to excessive
values of both sideslip and bank. The airplans with the NACA 651-012

wing is elightly spirally unstable, banking to only a small angle in the
first second, but the amplitude of the oscillation increases with time.
8light spiral instabllity i1s not considered serious from the standpoint
of control.

The ailrplane with the NACA 0012 wing falls in the stable region of
the stability dlagrem (as can be seen in fig. 10) and the motion in dbank
and sideslip 1s stable. Although the motion in bank 1s stable, the air-
plane attalns a relatively high angle of bank in the firet second end e
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half. In about four and & half seconds, the amplitude decreases to less
than one-quarter of the maximum value.

It should be mentioned that the derivatives used in calculating the
boundaries and motions are those obtained from tests at low Reynolds numbers.
Although airfoil sectlon effects similar to those demscridbed would still
occur at & higher Reynolds number they might not be important at as low
11ft coefficients, since, at higher Reynolds numbers, the derivatives
obtained for the wings might continue their initial linear trends to higher
1ift coefficlients. This would alter considerably ."e boundaries and
motions at 0.8 1ift coefficient and would probably cause an appreciable
change in the boundaries and motions for 0.5 1ift coefficient. Calculations
(not wresented) of the boundaries were mede using straight-line extrapo-
lations of the data for the NACA 0012 wing for a 1lift coefficlent of 0.8.
The results showed & stabillizing shift of the oscillatory boundary end a
destabilizing shift of the spiral stability boundary. The position of
the airplane with the NACA 0012 wing was shifted up and to the right in
the stability diagram @ZB becaming more negative and Cnﬁ more posit:we)

and it appears that similar extrapolations of the curves for the NACA 651-012
and biconvex wings would at least glive negative values of C.,B and might

shift the airplenes having these wing sections into the stable reglon
(even though there might be & concurrent destabilizing shift of the spiral
boundary) .

CONCLUSIONS

The results of low-scale tests made to dntermins the effect of air-
foll profile of symmetrica’ sections on the low-speed rolling stability
derivatives of untepered 45° sweptback-wing models of aspect ratio 2.61,
and the results of calculations made to determine the effect on the
dynamic stabllity at subsonic speeds of & transonic alrplane configuration
using the different wing profiles indicate the following conclusions:

l. Increasing the sharpness of the leading edge of the airfoll
decreased the range of 1ift coefficlents over which the rolling deriva~
tives maintained their initial trends end usually decreased the maximum
values of the derivatives obtalned in the unstalled renge.

2. In general, the effect on the rolling derivatives of adding an
inboard leading-sdge spoiler to the NACA 0012 airfcil appeared to be
equivalent to increasing effectively the sharpness of the entire leading
edge to some value between that of the NACA 0012 section and that of the
NACA 65;-012 section.
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3. Changes in airfoll section had only & small effect on the
osclllatory and spiral stability boundaries of & typical transonic air-
plane configuration at 0.2 1ift coefficient. At higher 1ift coefficients
(0.5 and 0.8) increases in leading-edge sharpness usually caused & stabi-—
lizing shift in both the oscillatory and spiral. stability houndaries.

The stabilizing shift in the spiral stebility boundary was more than
ccmpensated for, however, by the changes in effective dihedral of the
wings. An increessed sharpness of the leading edge, therefore, caused an
increased tendency toward spiral instability, particularly at the higher
1ift coefficients.

Langley Aeronautical Laboratory
National Advisory Committee for Aercnautics
Langley Air Force Base, Va.
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TABIE I

GEOMETRIC AND MASS CHARACTERISTICS

USED IN STABILITY CALCULATIONS

CL 0.2 0.5 0.8
W, 10 ¢ 0 0 oo 11250 11250 11250
8,80t «.. 352 352 352
L . 30.4 30.4 30.4
P, slugs/cu £t 0.001266 | 0.001266 | 0.001266
V, ft/sec . . . ko3 316 250
H e ooooos 25.8 25.8 25.8
R AT 2.875 2.875 2.875
Kz s £t o o o 9.391 9.391 9.391
K2 oo o nns 0.00918 | 0.00913 | 0.01054
£E%...... 0.0951% | 0.09523 | 0.09385
Kxs® o o o o o -0.00470 | 0.00395 | 0.01163
a, deg ¢ o o+ o 3.88 9.65 14.82
n,de8 .« ¢ o & a-7 a-=-17 a-17
7,308 « o o & 0 0 0
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Figure l.- System of axes used. Positive directions of forces, moments,
and angles are indicated.
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Figure 2.— System of axes and anguler relationships used in calculations
of stability boundaries and motions., nN=0a-—e¢
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Figure 3.— Sketch of the plan form and airfoll profiles of the models
investigated. All dimensions are in inches. Wing area equals
3.56 square feet.
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