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STRESSES IN AND GENERAL INSTABILITY 6F MONOCOQUE CYLINDERS WITH, CUTOUED
IIT — CALCULATION OF THE BUCELING LOAD OF CYLINDERS
WITH SYMMETRIC CUTOUT SUBJECTED T3 PURE BENDING

By N. J. Hoff, Bruno A. Boley, end Bertrem Klein
SUMMARY

A ptrain-—energy theory is developed for the calculatien of the
buckling load in pure bending of reinforced monccoque cylinders which
have a symmetric cutout on the compression side and buckle eseccrding to
the generdl instability pattern. Computations are carried cut for the
cylinders tested earlier at the Polytechnic Institute of Brocklyn
Aeronsutical ILeboratories. The thearetical curve is similar in shepe to
that obtained experimentelly, but the thsoretical values are consistently
too high. The deviation is 39.3 percent in the worst case.

“INTRODUCTION

General- ingtability is defined as the simultaneous buckling of the
longitudinal and elrcumferential reinforoing elements of a:monocoque.
cylinder together with the sheet attached tu them. The general instebll-
ity of reinforced circular monocoque cylindere subjected %0 pure bending
has been investigated in soms detail at Polytechnic Institute of Brooklyn
Aeronautical Laberatories’ and Guggenheim.ﬁeronautical Latoratory,
California Ingtitute. of Technelogy,under the sponscrship of the National
Advisory Committee for Asronautics (referencee 1 to-8). This theorstical
ard experimental work deslt with complete cylinders not having cutouts.’
It can be expected. that a cutout decreases the buckling load in general
instability since part of the elastic support is lost . when a portion of
the structure is removed. This conJecture was verified in recent exper—
iments carried out at Polytechnic Institute of Brooklyn Aeronsutical
Laboratories which dealt with the general instability of and the stress
distribution in monocoque cylinders with a symmetric cutout. Reference -
9 contalins a report on these experiments. A theoretical study of the-
stress distribution in the cylinders is presented in reference 10.
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Reference 11 deals with an experimental investigation of cylinders having
a side cutout.

In the present report the buckling load of reinforced monccogue cyl—
inders with a symmetric cutout on the compression side is calculated by
strain—energy methods. The deflected shape at buckling is represented
by a full sine wave extending over the length of the cutout in the axial
direction and by the first seven terms of a Fourler expansion in the cir—
cumferential direction. The circumferential coordinate is measured from
the edge of the cutout and the length of the interval in which the
Fourier series is defined is considered as ome of the parameters of the
problem. The boundary conditions at the end of the interval determine
four of the seven cocefficients of the series while one of them is Iinde—
terminate as in all buckling problems. The remaining two coefficients,
as well as the wave—length parameter, are calculated fram the requirement
that the buckling load be & minimum.

The following strain—energy quantities are considered: radial and
tangential bending as well am torsion of the stringers; bending of the
rings in their plane; and shesxr in the sgheet. The extensional strain
energy stored in the sheet 1s taken into account by adding an effective
width of sheet to the stringers and the rings. In the calculation of
the work of the external forces a linear force dlstribution is assumesd
in preference to & linear strain distribution in bending. This assump—
tion is 1n better agreement with the experiments described in reference G.

The buckling load 1s calculated from the requirement that the strain
energy correspcnding to the transition from the unbuckled into the buck—
led shape be egual to the work done by the applied loads. The minimum
value of the buckling lcad is found by assuming the circumferential wave
length to be equsl to the length of some integrel number of stringer
fields, calculating the values of the two Fourier ccefficients that min—
imize the buckling load in the case of the assumed wave length, determin—
ing the buckling load, and comparing it with values obtained on the as—
seumptlon of other different wave lengths. The final results of the
numerical work are presented in the form of buckling loads calculated for
three different circumferential wave lengths for esch of the three sizes
of the cutouts tested. In each case these buckling loads define a minl—
mum., All the calculations were carried out for one-half the cylinder
because of the symmetry of both structure and loading.

For a substantisl share in the numerical work the asuthors are in—
debted to Bernard Levine. The investigation was conducted under the
sponsorshlp and with the financial aid of the National Advisory Cammittes
for Aeronautice.
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SYMBOLS

Fourier coefficlernts
cross—sechional ares of & stringer plus its effective width
Fourier coefficilents

gecmetric factcr in torsional rigidity GC

width of panel mesasured alcang the circumference

Young's modulus

shear modnlus

shear modulus of sheset covering at zero compressive loed
effective shear modulus

index Indicating positicn along circumference

monent of inertis

moment of irertia of ring section and lta effective width
of sheset for bending in its own plane

moment of inertia of stringer section and its effective
width of sheet for bending in the radial direction
(ebout e tangential axis)

moment of inertia of stringer sectlion and 1ts effective
width of sheet for bendiag in the tangential direction
(sbout & radial axis)

index indicating position along axial direction

trigonometric functions of @, x, n, &, b

length of cutout

distance Between adjecent rings

number of rings involved in the failure

applied bending moment; function of n, a, b appearing in
the strain energy of bending in the rings
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Moy applied bending moment at general instabiliiy

n parameter defining the length of the general instebility
in the circumferential direction

N = 0.0275 [{enr/d) + 1]

D1y P2 polynomial functions of a .and D

Por force carried by one of the siringers at the odge o the
cutout at general instability

Py force carried by the ith stringer

Q function of x appearing in the shear strain enorgy

r ) radiuve of cylinder

R function of ‘9, n, a, b appearing in the shear strain
onergy

8 number of stringers involved in one-halfl the general-
instabllity bulge

S total number of stringers in the cylinder

] thickneas of shest covering

i) strain energy

Up Btrain energy stored in the rings because of bending (of the
rings) in their own plans

Ugn . strain energy stored in the sheet covering because cf

: shear '
Ustr straln energy stored in the stringers because of bending
r about & tengential axis

Ustrt - 8traln energy store . in the stringers because of bending
about & radial axis

Uy, strain energy stored in the stringers because of torsion

2w effective width of sheet

Wy radial displacement of & point or a ring or a stringer
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Wi tangential displacement of a point on a ring ¢r a stringer

W work done by the aﬁpliéd fé:rlces

x coordinate measuring distance along the axis of the cylin—
der from the edge of the cutout

2 cutout angle

ar,at coefficients izsed. in the calculation of the shear strain
in a panel due to displecements of its corers

4 shear strain . .

L distance of meutral axis from horizontel dilametsr of cyl—
inder

€ normal strein in & siringex

€Ecp ] buckling strain ef a penel of sheet covering

P angular coordinate with origin et the edge of the cutocut

TEE TEF1IECTIED SHAFE

In the experiments described in reference ¢ 1t was observed that at
buckling the wayve length in the axial direction wes almest exactly equal
to the lesngth of the cutout. For this reason it 1s assumed in the theoxy
that the rings bordering the cutout are rigid in their planes. The cylin—
der is then thought of as being cut through these rings and the external
moments are applied in the secticns. With the notation of figure 1 the
distorted shape of the strirgers ls essumed to be

" W = ao(ky/2)[1 — cos (2mwx/L) ] = acky sin® (xx/L) (1)

where Wy 1s the radiel deflection, and k; = proportionf_lity factor
depsndent upon the angle o,

The circumferentiasl wave pattern could not be determined with suffi—
clent accuracy in the tests. It is assumed, therefore, to be represented
by the follcwing trigonometric expression:
wy = kp[(ag + 2) cos np + a5 cos 2np + &5 co8 3P + by sin P

+ bz 8in 2n9 + ba sin 3ng) ] (2)
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vhere .kz .18 a proportionality faoior .dependent upon . X. (Because of
equation (1) k» is sin2 (nx/L) ) Equation (a) is valid, provided

a

O<cp<:t/n T (2a)

When ¢ is greater then .n/n, - the deflections are aseumed to be zero,
Consequently =n 1s the parameter defining the length of the bulge.

Since in thin rings extensional deformationa involve much more
strein energy than do bending deformstions, the deflections of the ringe
are assumed to be inextensiornal. This assumption determines the tengen—
tial displecements wt when the radial displacements are given. The
connection between the two was developed in reference 3 and stated in
equation (ha) of that reference:

-awt/acp (3)
It follows from equations (2) éﬁd.(3).that- Wi may be taken as
ﬁt = k2[‘ﬂ0¢.;:k&1/n) sin np — (az/2n) sin 2np — (;3/3n) sin 3ng
+ (by/n) cos np + (bo/2n) cos 2np + (bs/3n) cos 3opl (&)
provided
<o < % /n
Becauée of the symmetry cf both structure and lo;ding thege expres—
sions are equally applicatle when the angie ¢ ip measured from elther
one, of the edge stringers.  An obvious limitation of the formulas is -

¥ I

'a.+(sr/z:§5!rc | S )

If it is required that there te a smooth transition between the
bulge and the nendistorted part of the cylinder at ¢ = {x/n), then the
following conditions must bte gatisfisd:

(l) The tangential displacement must venish:

" wg =0 . .%when @=x/n .. ., ... .+ (6a)

(2) The rediel displacement must vanishs: - | R

Wp =0 . when @=ax/mn .. . . . 7 = (6D)

(3) There must be no. sudden change in the direction of the tangent:
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vy /Op =0 whem @ = xw/n - (éc)
(4) There must be no sudden change in the curvature:
3%, /392 =0 when @ =nx/n (6d)

The mathematicel forrmlation of these requirements was discussed in
detail on pages 10 end 11 of refersesnce 3. The four conditions contained
in equations (6a) to (6d4) esteblish four relationships between the
Fourier coefficients in equation (4) and make it possible to express any
four coefficients by means of the remaining three. If &g, &3, and b
are retained as the basic paramsters s the following four eguations are
obtalined:

‘ax = (8/5)ay — (9/5)a, : A
as = (3/5)a; — (&/5)20
' s (7)
bo = (16/5)by + (18/5)nec
 ba = (9/5)bs + (12/5)na, )
With the notation
(a1/80) = a  and (b1/20) =1 (8)

and after substitution of the expressions contained in equations (7),
a combination of equations (1) and (2) gives for the radisl displacement

Wy = agk; sin? (mx/L) ‘ (9)
where | |
k; = [1 + acos op + (L.6a — 1.8) cos 2np’
+ (0.6a —0.8) cos 309 + b 8in np + (3.2_b'+ 3.6x) sin Znp
+ (1.80 + 2.4x) sin 3up] ' \ - (ga)
Sim:t;La.rly :bhe tangential displacement becomes |
Wy, = 8gls 8in® (ex/L) (20)
= (1/n)[~np — a sin np — (1/2)(1.%a — 1.8) sin 2ng
- (1/3)(0.6e — 0.8) 8in 309 + b cos np + (1/2)(3.2b + 3.6x) cos 2no

+ (1/3)(1.81)- + 2.4x%) cos 3ngl (10a)
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Equations (9) and (10) dre valid, provided

0<9p<n/n (10b)
When ¢ 1is greater than n/n the deflections are asstmed to vanish. A

typical example of the deflections at buckling in the plane of the rings
is ghown in figure 2. :

CALCULATICN OF THE STRAIN EVERGY

Strain Energy Stored in the Rings

The strain energy stored 1n half of eny ring is

..S

U= (1/2) [(EI)Q/r 1 f /n[v;« + (azwrfdcpz)] 2 a (11)
[o]

in accordance with equations (c) on page 11 and (7) on page 12 of refer—
ence 3. Substitution of the value of wr from equation (9) and swumma-

tion over all the rings contained in the axial wave length yield

n/n

a, , ~ .
Up = (1/2) {803/ 2€ _(EI)r_s_in4 (foﬁL) lf [1+a(l ~n%) cos oo
J= ! '

+ (1.6a — 1.8)(L ~ 4n®) cos 2ng + (0.6a — 0.8)(1 — 9n®) cos 3np
+ b(L—-n%) sinnp + (3.2b + 3.6n) (L — kn®) sin 2ng .
+ (1.8b + 2.4x) (1 — 9n®) sin 300l % ap (12)

where Uy 18 the straln energy stored in all the rings in one—half of
the cylinder. The subscript J refers to the individual rings the
total number of which i1s m within the length of the cutout. If the

integration is carried out and the value of the definite integral is de—
noted by M 1t i1s poamslble to write
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oM = [x + 10.053096(1 — 9n2) + 206.01005(L — 4n®)2 + §0.303387(1 — 9n°)~
~18.095573 (1 — kn®) (1 — 9n%)]

& [~9.0477868(1 — 4n2)2 — 1.5079645 (1 ~ 9n%)2

30.159289 (1 — n®) (1 — 4n?) + 18.095573 (1 — %) (L - 9n®)]

+b [4(L -2%) + 2,80 - 90®) + 113.69784 (1L - hna)é + b2.636690(1 ~ 9n®)®

2.4(1 - %) (1 - 4%) ~ 3.68(1 — W®) (2 ~ ;%)] ‘ |

o+

+

+
+ a2 [(z/2) (1 — n®)2+ k.0212386(1 — bn2)2 + 0.5654867(1 — on2f]
+ b2 [(n/2) (1 - n%) % + 16.084954(1 — kn?) 2 + 5.08938(L ~ 9n2)2]
+ &b [6.5(1 - n2) (1 — 4n®) + 3.84(1 = kn2) (L — 9n?) } _ (13)

The strain energy is therefore

18

U, = (172) (8,%/x%)u (EI),. sin* (;ch/L) (1h)

d

When the bending rigidity (EI)y is the same fer all the rings, the

sumnation ylelds a result in closed form as was shown 1n the apperdix
of reference 12:

I, ™~
© el

sin® (xx /L) = (3/8) {mf 1) (13)

[~]#

Cn
1
-

provided )
m>1 {15a)

When m = 1 the value vf the gummation is }. The strain erergy of
bending stored in 211 the rings is consaquently

Up = (3/16) (a0 /r ) (BD)r(m + 1)M . (16)

In equation (16) the vaine of M depends upon n, a, and b. Valunes of
M computed for n =%, 2.666. . ., 2, 1.6, 1.333. . . carrespending to
8 =2, 3, 4, 5, 6, respectively, are listed in table I. These values of
n correspond to buckling pettsrons In which the bulge ends at one of the
16 stringers contained in the specimens tested.
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Strain Fnergy Stored in the Stringers

The straln energy stored in the stringsys because of bpending in the
radial direction is L.

[um I
Vetry =) (1/2) EDstr, | @Q%we/ax®) ax an

where the summation is extended over all the stringers contained in one—
half the cylinder. Substitution of the value of w, from equation (9)

into equation (17) and integration yleld
L

Ustrr = Z <l/2) (EI)strr J/; 2o k12(2“2/L2)2 cos? (Eﬂx/L) d.x

ec® (/1)) 1 (ED)gtry (18)

The moment of inertia Igty, of the stringer varies around the

circunference of the cylindsr because the effective width of the sheet
to be added to the stringer section changes. The valuee of Igtr, Were

determined,for each of the cutout sizes investigated, according to the
principles astated in reference 1. Similarly k;2 was computed for each
stringer.

The atrain energy storsd in the stringers because of bending in the
tangential direction is

L

—

Uatey = ) (1/2) @Dotay, | (0%w/ox)” (19)

where the summation is extended over all the stringers contained in one—
half the cylinder. With the ald of equation (10) the strain energy can
be given as

Ustry = 8o (n*/1.%) S—‘ksz(EI)s'brt - - (20)

Since both kg &and Igitry very from stringer to stringer the summation

indicated in eguation (20) was evaluated numerically for each cutout size
inveatigated.

The straln energy stored in the stringer because of torsion is

Usg =Z‘ (1/2)_Gc[ (147 [ (3%} /(3x 3p) T ax (21)
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In this equation (1/r}(d2wy)/(3x 39) is_the unit a.ngla of twist of

the stringer, and the summation mst be carried. Qut over all. the
. ‘stringers contalned in one-half the cylindsér. In the expression for
the Saint-Venant torsional rigidity,-

C = 0.1ha% ' (1)

since the test specimens were provided with square section striﬁg’era
of edge length a. Differentigtion gives

(3%x)/ (3x 30) = aok, (x/L) sin (2nx/L) (e
_where | | ' ' Lo
ky,=n[ a sin ng - (3.2a - 3.6) sin ong - (L.8a - 2'.11-.)h sin 3n£p
+ b cos np 4 (6.413 + T-QJC') cos 2nf + (5..% + T.2n) cqs'3ncp].._ (22s)
Hence the stra,;h": energy of torsion is - )
UG = agP(xe/h) [(00)/(w2]] ) k- (23)

where the summation is extended to include all the stringers contained
in one-half the cylinder. Tie term GC is before the summation sign
in eguation (23) since accerding to Sdint Venant the variation of the
torsional rigidity, caused by the different omounts of effective
width of sheet, is so amall that it was considered permissible to
assume GC a .constant. Again a numerical eveluation of the summa-
tion was derried out when the strain energy was calculated.

Strain Energy of‘ Shear Storsd in the Sheet

The shear strain ehergy in a pansl ig tuken as ‘being proportional
to- the a.verage effective shear modulis G of P mrltiplied by the sguare

of the average shesar strain 7?7 3in the panel. The latter is: calcu-
lated from the dlsplacements of the four corners of the penel as was
done in reference 3. Then the total atrain energy of shesr stored
in the sheet is - Lo ' -

= (1/2)272 Cors i.l_td : (2#)

where the summation extend.s over a._.l the pa.nels contained. in one-
half the cylinder. -
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The value of the effective shear modulus depends upcn the magnitude
of the compressive strain in the penel, as was shown in reference 13.
The empirical formmle recommendecd there for the computaticn of Gegff is

Oupe/ag = (1 - Mo (/o) g (25)

where

N = 0.0275[2#(r/d) + 1] (z58)

and Go 1s the shear modulus in the absence of compressive stresses,
€ the compressive straln prevailing in the panel, and €gp the com—
pressive strain whern the panel of sheet buckles.

Since the dileplacemsnta in the axial direction are emell and of the
second order, the displacements of the cormers of ths panel need be in—
vestigated only in the plene of the rings. The effect of rotation of
the ring upon the shear was neglected. Formules for the calculation of
the shear strain frum the displacements of the corners were developed in
reference 10 and were presented in figure 23 of that reference. With
the notation and sign convention of figure 3 of the present report the
shear strain 1s

-
/

Y = (ar/Ll)'[ Ti,3 7 Y¥iea, g —'wri,JTi i #ri+l:J+lJ

= (/1) iwti,J T Wi, T Wb, g T wti+1,J+1J (26)

where the first subscript refers to the circumferentisl, and the second
to the axjal location of the corner of the panel. In reference 1li the
values of the numerical factors opr and o Wwere determined. Simpii-
fied formules were given on page 27 of reference i which represent
these factors very asccurately when the engle ' d/r is of the order of
megnitude found in monocoque fussleges. The formmles can be written in
the following slightly changed form: '

(1/10) (a/x) = (1/10) (2x/S)

az‘ =
(a7
ay =~ 1/2
Substitutions yield
. m 81 L
Uan = (1/2)(t/12)G, ) Q5 ) (Cere/Go); By (28)

J=o i=o
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.fhare Q is 2 function of =x cn.ly a.ncl R a function of ¢ only. The

summaticn Z Q gives a result in closed. form:
o o _
y Qy = T sih® [(n:,j)/(m+l)]-sin [x (J+1)/m+1 )]1
IR~
= (l/ll-)(m + 1) f}. ~ cos [(2n)/(m + 1) ]} - ORI ¢°)
provid.ec}. ) | _ .
- ﬁ> 1. (292)
When m =1,
;)—IQ =2 : (29p)

The results of the summation were listed. in equations (24) of reference 3.

The meaning of the gymbol - R 1is
. . , ; . 2 & -
R'= 802 lar(ky,; — ko 341) — ag(ks,1 + ka,142) ] - (30)

The values of I¥;,i, kj,i+1, ka,i, end ks,i+1 are obtained from those
of ky and ks (equatiors (9a) and (10a)), respectively, by replacing

the angle ¢ by 2ni/Ss or 2r(i + 1)/s:
ky,1 = [1+a cos (2xmi/s)+ (1.6a — 1.8) cos (kmni/s)
+ (0.6a — 0.8) cos (6;m1/5) + b sin (2xni/S)
+ (3.2b + 3.6x) sin (bxmi/S) + (1.8 + 2.kx) sin (6mmi/S)] (302}

kg 3 = (1/n)[—(2mmi/S) — a sin (2mi/S) — (1/2)(1.6a — 1.8) sin (4mni/S)
— (1/3)(0.6a — 6.8) sin (6mni/S) + b cos (2mi/s)
+ (1/2)(3 2b + 3.6xn) cos (Bmni/S) + (1/3)(1.8b + 2.4x) cos (Gxni/s)]
(30‘n)

In the calculations the R quantities were summed up numerically.
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' WORK DONE BY THE EXTERNAL FORCES

It was observed 1n the experiments described in reference 9 that
the stress distribution was not linear im the cutout portion of the cyl-—
inder, although the deviatlions from linesrity were not lerge as a rule.
A good approximation to the experimental curves was cbtained by assuming
a linear force distribution which is not equivalent to a linear stress
distributlion because of the varying amount of effective sheet added to
the stringer section. Strain-distribution curves calculated on the as—
gimption of a linear force distribution are compared in figure U4 with
stralns measured in the experiments. The sxpression used for ‘the calcu—
lation of the force acting upon the 1ith stringer is

Py = Por {;os fx + (2ni/8) ] + (S/r)}/[cos a +.(5/r)] (31)

vhere DPpry 1s the chmpressive force acting upon the stringer at the

edge of the cutout, and & i1s the distance of the neutral axis frcm the
horizontal diameter of the cylindex. .

The work done by the external forces acting upor the atringers is
equal to the summation of the forces times the displacement of the poimts
of applicatlon of the fcrces. The displacements of theme points are
equal to the shortening of the distence between the end points of the
stringere during buckling. Ccnsequently the work is

L - P
1/2) 2JP1-jp [(&wr/ax)z + (Bwt/ax) 21 ax (32)

where the summation has to be extended over all the stringers contained
in one-half the cylinder. Substitutions snd integration yield

L _
W= (1/2):;5??1(::/1,)2 (;Z + koo) f sin® (2mx/L) ax
- o
= (1/8) (/L) Pep 802 ) (Py/Poz) (k2 + KoP) (33)

The summation in the right~hand member of equation (33) was carried out
numerically.
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CALCULATICN OF THE BUCXLING LOAD

. The buckling condition is
" Up + Ugtry + Ugtry + U4 + Ush = W (3%)

where the values of the quantities must be taken from equations (16),
(18), (20), (23), (28), and (33). Equation (3L4) was solved for Per,
contaeined in W, Dy the use of the following procedure:

First, & value of n was assumed coxresponding to & circumferen—
tlal wave length extending over an integral number of stringer fields.
With this valus M, k;, ks, and k4 Wwere computed. Next, Per was
assumed. This assumption permitted the calculation of the effective .
width of sheet and consequently the moments of inertia of the stringers
as well -as Ger#/Go. The summations were then carried out. Substitution
of the results in equation (34) yields e polyncmial of the second degree
in 8 and b in the left—hand member, and another polynomial of the
gsecond degree in the right—hand mwember, the latter mmltiplied by Pgp.

Solution for Por gives a fraction which can be represented symbolically
as . )

ri(a,b)

PGI‘ = P2(a,b) (35)

where p; &end p- are sscond—degree polynomisls in & and b. The
values of & and b, the parameters defining the buckled shape, must
be chosen s0 as to make Pgr a minimm. It is known from the calculus

that P,y can be minimized by setting

_ D (a,b) 3pp/da 3pi/3b

For - p=(a,b) - 3;02/3& =IBP2fa'b (36)

The partial differential coefficients of the polynomials py and Do
ere linear functicms of a and b. Eguations (36) represent three con—
necticns between Pgr, &, and b. They were solved by a rapidly conm—

verging trial-and—error method. First, 'a and b were calculated from
the linear equations with the ald of en assumed value of " Per. The val—

ues of a and b 8o determined were then substituted into the quedratic
expression for Pey. The procedure was repeated with the aid of new as—

sumptions for Per until the value obtained from the quadratic expres—
slion was clome enough to the assumed value.
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When the value of FPop obtained in these calculations differed

materially from that assumed at the outset, the moments -of inertia and
the effective shear modulus had to be calculated agaln and the entire
procedure repeated. All the calculations were carried ocut with different
values of n. The buckling loads corresponding to these different values
were compsred, and the smallest one was considsered as the true buckling
load. Detalls of the procedure may be seen from the numerical example
given in the eppendlx.

COMPARISON OF THECRY AND EXPERIMENT

 Numerical calculations were carried ocut for the cylinder shown in
figure 1 for all three of the sizes of the cutout indicated. In each
cagse the minimum value of the buckling load Pgy was obtalned for

= 2.666, . that 1s, when the bulge extended over three stringer filelds.
A typical buckling pattern is shown in figure 2. It corresponds to a
cylinder havirng a 90° cutout. : .

Some details of the results of the calculations are presented in
table IX. The bending moments corresponding to the minimum buckling
load are plotted against the size of the cutout in figure 5, which also
contains the cobserved bending mtment at buckling taken from the experi—
mental report (reference 9).

CORCLUSIONS-

A strain—energy theory has been dsveloped for the calculation of the
buckling load in general instebility of reinforced circular monocogue
cylinders which have a symmetric cutout on the compression gide and are
subjected to pure bending. When the theory was applied to the test cyl—
indsrg of the sarlier experimental report it was found that at buqkling
the bending mément applied to the cylinders baving a 45°, 90°, and 135
cutout wag 69.3, 64.8, and k.5 percent, respectively, of the bending
moment undsr which the geme type of cylinder buckled when there was no
cutout. The corresponding velues obtained in the experimental investiga—
tlons were €6, 47, and 31 percent when based on the experimental averages,
and 68.2, 50. 6, and 31 3 percent when based on the highest buckling loads
observed :

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., July 8, 19Lé.
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APPENDIX

As a numerical example of buckling load determination, calculations
are presented which correspond to cylinders 19, 20, and 23 of the test
series described in reference 9. The followlng characteristics of these
specimens will be needsd for calculation:

Radive, r . . . . . e e e s s s s e« & e 4 o s s e s o s e «din. . .10
Length of cubtout, L.l...'......._..‘...-....in. 19.29
Distance between adlacent rings, Ly « - « « « « « = = « = « o in... 6&3
Number of rings contained in the length of cutout, m .

Ring cross section . . . - . . . . 1/8 by 3/8 in, (2hsr aluminum a.lloyi
Number of stringers in fu...l portion of the cylipnder, S. . . . . . . 16
Stringsr spacing along circmnfnrence, d.. . « « In., 3.927

Stringsr cross section. . . . . in. . .3/8 X 3/8 (ELI-S—‘I' aluminum alloy)
Sheet covering thickness, t . . : . . . . in. 0.012, . {245-T Alclad)
Cutou'ba_ngie,Ea.......'.................d.eg..90
Young!s modulus, E .................pexi..J.osx_m‘5
Stringer shear modulus, G . « v v 4 = « « o oo .« . PSi.. . 39X10
Sheet shear modulus &t zero conpressive lcad, Gg . .psl . . 3.9 X 10°

Computations are firet given corregponding to an assumed integral
number s of stringer fields, say & = 3, included in the bulge on cne
slde of the cylinder. The corresponding value of n can be obtained
from equation (Al)

= s8/(2s) (A1)

In this case n = 8/3 = 2.666 . . . Substitution of this value in equa—
tion (13) gives . ) -

M = 180,623.6027 + 8,829 .585%a + 93,272.2882b.
+ 1,999.4498a2 + 12,140.0843b2 + 2,892.27684kab _ (A2)

as can be seen from table I..- Substitution in equation (16) yields:
= (3/16) (252/1000) (10.5 x 10% x 80.35 x 10°S)(2 + L)M  (43)

wheré the moment of inertia I, of the ring cross section augmented by
an effective width of sheet (taken equal %o the width of the ring) is

» =, (1/12)(0.125 + 0.012)%(0.375) = 80.35 x 10 © in.®  (ah)
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With the aid of equation (A2), the ring strain ensrgy becomes:
Up = ao-(85,718.0013 + 4,190.2299a + Lk,263.5500b
+ 948.8729a2 + 5,761.283kb2 + 1,372.57998b) . (a5)

The functions X;, ks, k4 can be calculated from the assumed value

of n.. For this purpose it is convenient to arrange the trigonometric
functions needed and thelr coefficlents in tabular form, as shown In
- table III. :

In this table the first three rows contain the trigoncmetric func-
tions of the engle .@. 'As only values of k;, ks, ks which correspond
to integral nuwbers of stringer fields will be used in the summations to
be evaluated later, the angle ¢ was replaced by its equivalent (2xi/Ss),
where 2xn/S is the angle subtended by one .stringer field.

The third, fourth, and fifth roﬁs contaln the coefficlents of the
trigonometric functions appeering in each column above them. These coef-—-
ficlents are different for k,, ks, and kg, &and can be obtained from

equations (9a), (10a), and (22a), respectively.

The velue of Xy for i =0 is obtained by multiplying the expres—
sions appesring in the same columm in the firest and fourth rows, and by
adding the resulting eight products. Products of the elements of the
second and fourth rows will lead to the value of k; for i =1, and
gimilarly for all others. The results are tabulated in table IV.

The next step is the assumption of the critical load P, . for the

purpose of obtaining the effective width of sheet 2w to be added to
the stringers, the moments of inertis of the stringers, the effective
shear modulus Gerg, and the shift of the neutral axis from the horizon—
tal eaxis of the cylinder &. From an assumed value of Pgp = 3370.5 1lb,
® was found to be 2.4 in.; the other quentitles are listed in table V.
In teble V column (2) is obtained from equation (31); columm (3) by di-
viding column (2) by E = 10.5 X 10° psi. Columms (), (5), and (6) can
be most conveniently obtained by the use of a previously drawn curve of
the strain ¢ against the area Agff Of stringer and effective width
combination. A curve of this type was used in the present calculations

and wag constructed with the aid of the following formila for effective
width: . : . : :

-

2w.=.(1/e)(d/r) -'10.31:. + 1.535 {(t/d) (ex — 9-3’0)1'1/2}2/3}
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Columns ) -and (8) were calculsted according to the principlees stated in
refersnce 1. In column (9) the valug of the buckliing load of the sheet
€.p wag calculated to be 3.3 10 . Columm (10) wes obtained from

equation (25).

The strain energy stored in the stringers beceuse of bending in the
redial direction is from eguation (18):

Ustr, = Lr /(19 29) :} 10.5 X lO Y 2 try, (A6)

i-o
since the modulus E 1is congtent for all atringers. The summation in—
dicated is the sum of the product of the values in column (7) in table ¥
for any valune of i, .and the squarés of the gquantity k; in table IV
for the sams value of 1. Ugyyr, 18 obtained by substituting colum (8)
for column (7) in table V and ks for ki in teble IV. These opera—
tions yleld:

Ustr = Ustr, * Ustry = 2(102 ,882. 5969 -1, h53 8391a
+ 53,374.56800 + 3,91»5.3160a2 + 7,242.35580% — 409. 4065ab) (a7)

The torsional atrain energy in the stringers conta.ins the smuma.ticn
y&;a as can be seen from eque.tion (23). This is the sum of the squares

of the values of X, given in table IV. The complete result for the
torsionmal strein energy was found to be: -

Uy = ao-(300,981.0280 + 25,092.1760a + 165,584.300b

+ 1,656.7116a2 +. 22,830.3864b2 + 6,k26:.610ab) (a8)

Tke expression given in equation (28) for the strain energy due to
shear in the sheet covering required the evaluastion of the guantity -Ri.
This quantity, given in equetion (30}, can be easily obtained if it is
noticed that the terms ki, — k1,141 &nd kg, i + Ks,i41 8IYe respec—
tively the difference and the sum of terms appeering in adjacent rows of
the k; and kg colums of teble IV. With the values of Gefrs/Go
taken from teble V and with ap = 0.03927 and ot = 0.5 from equation
(27) the shear strain ensrgy wes found to be:
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Usp = 853(16,645.4078 + 6,416.0112a + 5,515.5294b + 1,1.80.0227a%
+ 1,232.0806b2 + 188.3523ab) (A9)
The work done by the extornal forces is glven in equation (33). Fach
term of the sumaation coniaingd in that equation is the sum of the squarss

of the velusy of &k and k  (tadble IV) multiplied by P3/P.,., which
cen be obvalned from tabie V. The result of these calculations was:

W = Poyp 8,°(17.522403 - 2.594795a + 9.796509b
+ 152266827 + 1.426108b% - 0.429835ab) (A10)

The values of the strain gner?ies and external work taken from equa-
tions (A5), (A7), (48), (A9), and (Al0) were substituted in equation (34),
wilth the reswit:

8,°(506,227.034 + 34,244.,578a + 268,738,347

+ 7,730.92278% + 37,066.1019b" + 7,578.1357ab)

= 85" Pop(17.522403 - 2.594795e + 9.796509b

+ 1.422668a% + 1.426108b% - 0.429835ab) ' (A11)
According to'equation (36), equation (All) was solved for P,,, and the

numberator and denominator of the resulting expression were differenti-
.ated with respect to & and b. The result is glven in equations (a12):

-

3k, 24k 578 + 15,461,845k + 7,578.1357b _ p
-2.504795 + 2.845336a - 0.429835b cr

> (A12)

268,738.347 + 7,578.1357a + 74,132.2038p _
94796509 - 0.129835a + 2.852216b

Pch

These equations were reduced to two linear equations In & and b by
assuming & value of Pey = 3770  and clearing fractions. These equations
were solved simultaneously for a and b, with the following result:

' "3 |05’h’l

o
%

(A13)
- 3 .21’-&2

o’
]
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Substitution of 'bhese valuses 1in equation (All) led to a new value of

Per = 3793 1b. This result was considered to be suffici ently close to
the originel asgsumption to meke it unnecessary to repeat the calculations
for this value of n.

Repetition of the entire procedure for values of n corresponding
to 8 =2 and s =L gave Pgp = 11544 1b and P,p = 3902 1b, respec—
tively. The value Pgp = 3793 1b was the lowest of the three and was
therefore considered the true buckling load.

‘REFERENGES

1. Hoff, N. J., and Klein, Bertram: The Inward Bulge Type Buckling of
Monocogue Cylinders. I — Calculation of the Effect upon the Buck—
ling Stress of a Compressive Force, a Nonlinear Direct Stress
Distri‘bution, and & Shear Force. KACA TN No. 938, 1okh,

2. Hoff, N. J., Fuchs, S. J., and Cirillo, Adam J.: Thq Inwerd Bulge
Type Buckling of Monocogque Cylinders. II — Experimental Investiga—
tion of the Buckling in Combined Bend_ing and Compression. NACA
TN No. 939, 19kk.

3. HOff, K. J., end Klein, Bertram: The Inward Bulge Type Buckling of
Monocogue Cylinders. III — Revised Theory Which Considers the
Shear Strain Energy. NACA TN No. 968 1945,

. Guggenheim Aeronamutical laboratory, Ca.lifornia Institute of Technology:
Some Investigations of the General Instgbility of Stiffened Metal
Cylinders. I ~ Review of Theory and Bibliography. NACA TN No.

905, 1gh3.

5. Guggenheim Aercnautical Laboratory, California Institute of Technology:
Some Investigations of the General Instability of Stiffened Metsal
Cylinders., II — Preliminary Tests of Wire—Braced Specimens and
Theorsticel Studies. NACA TN No. 906, 1g43.

6. Guggenheim Aeronsutical Laboratory, California Institute of Technology:
Some Investigations of the General Instability of Stiffened Mstal
Cylinders. III -~ Continuation of Tests of Wire-Braced Specimens and
Preliminary Teats of Sheet—Covered Specimens. NACA TN No. 907, 1943.

T. Guggenheim Aeronautical Lasboratory, California Institute of Techrology:
Some Investigations of the Gensral Instability of Stiffened M:tal
Cylinders. IV — Continuation of Tests of Sheet—Covered Specimens
and Studies of the Buckling Phenomens of Unstiffened Circular Cylin—
ders. NACA TN No. Q08. 1ok,



22 NACA TN No. 1263

8. Guggenheim Aeronmeutical Laboratory, Celifornis Institute of Technology:
Some Investigations of the Gemeral Instability of Stiffened Metal
Cylinders. V — Stiffened Metel Cylinders Subjected to Pure Bending.

NACA TN No. 909, 1943.

9. Hoff, N. J., and Boley, Brunoc A.: Siresses in and General Instability
of Monocoque Cylinders with Cutouts. I -~ Experimental Investigetion
of Cylinders with a Symmetric Cutout SubJected to Pure Bending.

NACA TN No. 1013, 1gu6.

10. Boff, N. J., Boley, Bruno A., and Klsin, Bertram: Stresses Iln and Gen-
eral Instebility of Monocogue Cylinders with Cutouts. II -~ Calcula~
tion of the Stresses in a Cylinder with a Symmetric Cutout. RACA TN
No. 1014, 19L6.

11. Hoff, N. J., Boley, Bruno A., and Viggiano, Louls R.: Stresses in and
Generel Instability of Monocogue Cylinders with Cutouts. IV — Pure
Bending Tests of Cylinders with Side Cutout. NACA TN No. 126k
(to be published)

12, Hoff, N. J.: General Instability of Monocogque Cylinders. Jour. Aero.
Sei., vol. 10, no. 4, pp. 105-114, 130, April 19h43.

13. Hoff, N. J., end Boley, Bruno A.: The Shearing Rigidity of Curved
Panels under Compression. NACA TN No. 1090, 19k46.

14. Hoff, N. J., Klein, Bertram, and Libby, Paul A.: Numerical Procedures
for the Celculation of the Stresses in Monocoques. IV — Influence
Coefficients of Curved Bars for Distortions in Their Own Plene.
NACA TN No. 999, 19u6.



8 n Constant a b . a° b2 ab
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TABIE IT
Peroont Mo 1Pamen't .
8ize of Mor Mer difference] highest | difference
cutout B% n a b Per caloulated averege of experi—| experi—{ of highest
(deg) experimental | mental mental | experimental
noment | moment
_ average 2oy _ |
s 2. _ k 0.3011( —3.6903 | 13,56k
3 | 2.666...] =3.1734| -3.1720} 3,722 | 258,109 192,800 33.9 197,600 30.6
ll. 2 —2.7612 “'302710 3:875
90 2 k 3417} ~3.6809 | 11,544 _
i 3 {2.666...] —3.0541( -3.2142] 3,793 | 187,216 135,800 37.9 1%6,600 28.2
i 2 ~2.72h81 -3.2881} 3,902
135 | 2 ] 23921} -3,6881 | 14,549
3 | 2.666...] -2.9556{ -3.25531 3,847 | 126,471 89,500 13.5 92,200  39.3
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TABLE IIT
i Comatant mTﬂ'cnq} cos -Qg—’ri cos ll_né_zrd_ coB 61;(1 sin Enéd. 8in EEE sin i‘.‘is-’g‘.
0 1 e 1 1 1 0 0 0
1 ' 1 1.047197 0.5 ~0.5 -1 0.8660255 | 0.8660255 0
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Multiplier | a 1,68 ~ 0.6a - b 3.2b + 1.8 +
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Multiplier 17.0666...b + | 14.1b 4+ 83,6664 408 | ~8.53330002 + | =4.8a +
for k, 0 0 |2.666...p |60.3185789 60.3185780 9.6 6.1
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TABLE IV

E i Iy ks ky
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TABLE V |
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