
NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTICS 

TECHNICAL NOTE 

--~- , 
No. 1263 

STRESSES IN AND GENERAL INSTABILITY OF MONOCOQUE 

CYLINDERS WITH CUTOUTS 

ill - CALCULATION OF THE BUCKLING LOAD OF CYLINDERS 

WITH SYMMETRIC CUTOUT SUBJECTED TO PURE BENDING 

By N. J. Hoff, Bruno A. Boley, and Bertram Klein 
I 

PolytechniC Institute of Brooklyn 

Washington 

May 1947 ~ AFMDC 



I c .... rI L1t:11HA!tv kAt-... , NM 

! illm 1111 I~] [In ~IIUI t~ !II 
0069303 

NATIONAL ADVISOBY ccw..n'TEE FOR AERONAtJrICS 

TECHNICAL N~ NO. 1263 

STRESSES IN .AND GENERAL INSTABILITY SF MONOCOQUE CYLINIIErnS M,ITa :CUTOVl'S 

III - CALCULATION OF THE BUCKLING LOAD OF CYI..INDERS 

WITH ~RIC CUTOUT SUBJECTED T3 PURE BENDING 

By N. J. Hoff 1 Bruno A. Boley I, and Bertram Klein 

STJIo.t:MARY 

, ' 

A strain-energy theory is developed for the calculation of the 
buckling load in pure bending of reinforced monccoque cylinders which 
have a symmetric cutout on the c~ression s!de and buckle according to 
the general instability pattern. Compu.tations are carri.ed cut fo.!.' the 
cylinders tested 'earlier at the Polytechnic Inatltute of Brooklyn . 
Aerone:utical Laboratories. The the"llretical curve is similar in shape to 
that obtained exper.!.mentally .. but the theoretical values are consistently 
too high. The ,deviation is 39.3 pe~ent in the worst case. 

'lNTROIXJCTION 

General'instability is 4,efined as the s1multaI:.~ous. b,uckling ,of, the, 
l.ongi tud1nB.l and. c1"rcumfer~mtlai reinforoing elements ,of. a: monoco'lue, 
cylinder together with' the sheet attaChed to then.. The general. Instabi~ 
ity of reinforced Circular monocoque cyllnde~8_ subjected ,to pure bending 
has been invest:i.gated in SOIll6 detail. at PolYte,c~q Instlt1.j.te of Brooklyn. 
Aeronautical. Laboratories·.and. GuSgenheim, AeX'!?D?--qtlca.;L ~boratory .. 
Californ1~ ~titute ?f ~e~hriology,under the sponsorship of the National 
Advisory Committee for A~roDautics (references 1 to,B). This theoretical 
and experili:lental work dealt with complete 'cylinders not ha'ring cutoutB. ' 
It 'can be expected, that a out out decreases the 1?uckling load in general 
instabi~ity since part o~ the elastic support is loet,when a portion of 
the structure is remOved. This conjecture was' verified. in recent 'exper
iments oarried out 'at Polytechnic Institute of'Brooklyn Aeronautical 
Laboratories which dealt with the general ins~bility of and the stress 
distribution in monocoque cylinders with a sJ'lIlliletri.c cutout. Reference· 
9 contains a report on these experiments. A theoretical study of the· 
stress distribution in the cylindera 1s presented in reference 10. ' 
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Reference ~~ deals with an exPerimental investigation of cy~indera having 
a side cutout. 

In the present report the buckling ~oad of reinforced monocoque cy~
inders with a symmetric cutout·on the c~ression side is ca~cu1ated by 
straln-energy methods. The def~ected shape at buckling is represented 
by a full sine wave extending over the ~ength of the cutout in the axial 
direction and by the first seven ter.ms of a Fourier expansion in the eir
cum:f'erential direction. The circumi'erentlal. coordinate is measured f'rom 
the edge of' the cutout and the length of' the interval in which the 
Fourier series is defined is considered as one of the parameters of' the 
problem. The boundary cond1tions at the end of the 1nterva~ determine 
four of' the seven coefficients of' the series while one of them is inde
termd.nate as in all buclding problems. The remaining two coeffiCients, 
as well as the wave-~ength parameter, are calculated from the requirement 
that the buckling load be a minimum.. 

The following strain-energy quantities are considered: radia~ and 
tangential bending as we~l as torsion of the stringers; bending of the 
rings in their plane; anc1 shear in the sheet. The e.x:tensiona~ strain 
energy stored in the sheet is taken into account by adding an effective 
width of' sheet to the stringers and the rings. In the calculation 01' 
the work of' the external forces a linear force distributiqn is assumed 
in preference to a linear strain distribution in bending. This ass~ 
tion is in better agreement with the experiments described in reference 9. 

The buckling load is calculated from the requirement that the strain 
energy correspcnding to the transition from. the unbuckled into the buck
lea.. shape be equal. to the work done by the applied loads. The minimum 
value of the buckling load is found by assuming the circum:f'erential wave 
length to be equal to the length of same integral number of stringer 
fields, calculating the values of the two Fourier coefficients that min
imize the buc~ng load in the case of the assumed wave length, determin
ing the buckling load, and comparing it with values obtained on the as
sumption of other differen~· ·wave lengths. The final results of the 
numerical. work are presented in the form. of buckling loads calculated for 
three different circumferential. wave lengths for each of the three sizes 
of the cutouts tested. In each case these buckling loads define a mini
mum. All the calculations were carried out for one-half the cylinder 
because of the symnetry of bQth structure and loading. 

For a substantial share in the numerical. work the authors are in
debted to Bernard. Levine. The investigation was conducted under the 
sponsorship and with the flnancla~ aid of the National ~dvisory Committee 
for Aeronautics. 
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SYMBOLS 

a,eo,a~,a21as Fourier coefficients 

A cross-sectional area of a stringer plus its effective wiQth 

b,b~,b2,b~ Fourier coefficients 

c 

d 

E 

G 

I 

Ir 

J . 

L 

m 

M 

ge~tric fa.ctcr in torei0L9.1 rigidity GC 

width of panel ~asured alcng the circumference 

Young r S modulue 

shear modu1.ue 

shear modulus of sheet c07ering at zero compressive load 

effective shear modulus 

index indicating positicn along circumference 

moment of inertia 

moment of inertia of rir.g section and its effective width 
of sheet for bending in its own plane 

moment of inertia of stri~~er section and its effective 
width of sheet for bending in the radial direction 
(about a tangential e.:tis) 

moment of inertia of stringer section and its effecti~e 
width of sheet for bending in the tangential direction 
(about a radial axis) . 

index indicating position along axial direct~on 

trigonometric functions of ~,x, n, a, b 

length of cutout 

distance between adjacent rings 

number of rings involved in the failure 
, 

applied bending moment; function of n, a, b appearing 1n 
the strain energy of bending in the rings 



n 
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applied bendins moment at general inetabili ty 

parameter def'in:L. .. g the length of the gener.:U.. installili ty 
in the circumferential direction 

N = 0 .0275 ~2Jfr/d) + 1] _, 

PlI 1> 2 

r 

R 

s 

s 

t 

u 

Ustr r 

polynomial functions of So and b 

force carried by one of the stringers at the odge ot the 
cutou.t at general instability 

force carried by the i th st~'inger 

function of' x appearing :i.n the s."lear strain enorgy 

radiu.s of cylinder 

function o.f 'q>, n .. a', b appearing in the shen.r atr1.in 
energy 

number of stringers involved. in one-hali' the ge11e!'3.l.
instability bulge 

total number of stringers in the cyllncer 

thickneas of sheet covering 

strain r:mercy 

atr~in ene'1'g{ st.ored in tho r-'..LIigs because of bendinl3 (of the 
rings) in their own :plane 

strain energy 8tore,~. in the sheet covering because of 
shear 

s tra:!.n energy stored in the a tringers because of bending 
about a tangential axie 

strain enel'gy store,-·, in the stringers beca.use of bending 
about a radial axis 

strain energy stored in the strtngers becauso of' torsion 

effective width of sheet 

radial. displacement of a point m: a ,ring or a. stringer 
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w 

x 

20. 

'Y 

8 

E 

tangential displacement'of a point on a ring or a stringer 
" 

work done by the applied forces 

coordinate measuring distance along the a..x.1s of the cylin
der from the edge ot the cutout 

cutout angle 

coefficients used ~ the calculation of the s~ear strain 
in a panel due to disple.cements of its corners 

shear strain 

distance of neutral axis from horizontal diameter of' cyl
inder 

normal strain in a. ptrinser 

buckling strain cf a panel. of' sheet covering 

angular coordinate with origin at the edge of' the cutout 

THE DEFLEOTED SHAPE 

In the experiments described in reference 9 it vas observed that at 
bucklir.g the wa7e length in the axial direction wes almost eX3.ctly equal. 
to the l"t;lSth of the cutout. For tl:de reason it is ass;umed in the theolY 
that the rings, bordering the cutout are rigid in their planes. The cylin
der is then thought o~ as being cut through these rings and the external. 
moments are applied. in the sections. With the notation of fIgure l the 
distorted. shape of' the strLcgers ~' eeaumed to be 

where wr is the radial deflection, and k~ a proportione.ll ty factor 
dependent upon the a.ngJ..e q> " 

The circumferential wave'pattern could not be deter.mined with suffi
cient accuracy in the tests. It is assumed, therefore, to be represented 
by the following trigonometric expression: 

wr = k2 [ (8.0 + B.l. coe ncp + 8,2 cos 2nq> + as cos 3ncp + bl. sin up 

+ b2 sin 2n<p + bs sin 3ncp) J (2) 
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where ,k2' .is a proportionali ty fao~or .4e;~,nd.ent u~on, x. (Beca.use of 
equation (1) k2 is sin2 (~/L).) Equation (2) is 'valid, provided 

o ::: cp S 'Jt/n (28.) 

When cp ia greater than ,'nln, 'the def~ect1ons are assumed to be zero. 
Consequent~y n is the parameter defining the length of the bu1g6. 

Since in thin rings extensional deformations invo~ve much more 
strain energy than do bending deformations, the deflections of the rj,nge 
are assumed to be inextensionaL This assumption determines the tangen
tial displ.e.cements wt when the radial displacements are given. The 
connection between the two was developed in reference 3 and stated in 
equation (4a) of that reference: 

, ' 

It follows from equations (2) 'and (3) that Wt may be taken as 

= k2 [ -aocp ~ (a~/n) si~ i..q> - (a2/2n) sin 2nq> - (as/3n) sin 3n<p 

+ (b~/n) cos ~ + (b2/2n) cos 2nq> + (be/3n) cae 3~1 (4) 

provided 

Booause of the symmetry of both structure and loading these expres
siOns are eq~y appllca1:1e when ,the angle cp is measured from either 
one', of the edge stringers. .An. obviOUS lim ta tion of the formulas is 

If it ia reqUired that there be a smooth transition between the 
bulge and the nGndistorted part of the cylinder at, cp = .(i/n) , then the 
folloWing condi tiona must be aatief'ied: 

(1) Th'a tangential displacement must vanish: 

,. ' Wt ,= ,0 , ,when cp Ie .,./n , L, .. ~ . ... .J' (6a) 

(2) The radial dlsplaceInent inuet vanish: 
.. " . 

w r =, 0 ,when cp:;:: 1(./n " (61)') 

(3) ~here must be no.sud~en change in the direction of the tangent: 
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when q> = 7C/n ' (60) 

(4) There must be no sudden change In the curvature: 

when cp ;:: ~/n (6d) 

The mathematicel formulation of these requirements was discussed in 
detai1. on pages 1.0 end II of reference 3. The four condi tiona contained 
1n equations (6a) to (6d.) establish :four relat1onsh1,Ps 'between the , 
Fourier coe:fficients in equation (4) and ~e it possib1.o to express any 
:four coefficients by means of the remaining tbre.e. If ao,. a~,. and b~ 
are retained as the basic parameters,. the following four equations are 
obtained: 

With the notation 

a2 ~ (8/5)a~ - (9/5)ao 

as ,.. (3/5)a~ - (4/5}.ao 

b 2 z (1.6/5)b~ + (l8/5)~ac 

, bs = (9/5)b~ + (l2!5)7C!3.0 

and. (8) 

and. after subst1tution of the expressions contained in equations (7) 1 

a combination of equations (l) and (2) ghes for the radial. displacement 

Wr = B.ok~ sin2 (lCC/L) 

where 

k~ = [1. + a cos ~ + (1..6a - 1..8) COB 2a?' 

+ (0.00. -"0.8) cos ~ + b s:'n lXp + (3.2b' + 3.&t:) sin 2nql 

+ (1..& + 2.4rc) sin 3n<p] 

Simi] ar1.y the tangential. displace!llent becomes 

ks = (1./n)[-'IlCp - a Sin n:p - (1./2) (LSa. - 1..8) sin 2ncp 

(10) 

(1./3) (0.6a - 0.8) sin 3n<p + b cos ~ + (1./2) (3.2b + 3.6rc) cos ~ 

+ (1./3(L & + 2. 4rc) cos 3nc:p] (1.0a) 
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Equations (9) and (10) are valid, :provided 

o S cp ~ 1f./n (lOb) 

When cp 1s greater than 1f./n the deflections are aBstuned to van~sh. A 
typical example of the deflections at buckling in the :plane of the rings 
1a shown in figure 2. 

C.o.LCULATION OF THE grp.AIN EN.ERGY 

S train Energy Stored in the Rings 

The strain energy stored in half of any ring is 

U = (1/2) [(EI)r/r s ] !/l"r + (O"wrfd<p2) ] 2 d<p (11) 
o 

1n accordance w1th equations (c) on :page II and (7) on page 12 of refer
ence 3. Substi tutio,n of the value of wr :from. equation (9) and sumna
tion over all the rings contained in the axial wave length yield 

.m., ,,, n/n 

Ur = (1/2) (ao2 IrS) j~(EI)rsin 4 (nxJ/L) 'r [1 + ael - n2
) cos ncp 

+ (1.6a - 1.8)(1 ~ 4n2 ) cos ~ + (0.6a - 0.8)(1 - 902
) coe 3nv 

+ b (1 -- n2
) s1n n<p + (3.211 + 3 .6rr) (1 - 4n2

) sin 2nI:p 

+ (1.8b + 2.41f.) (1 - 9n2
) ain 3~] 2 ~ (12) 

where Ur is the strain energy stored in all the rings in one-half' of 
the cylinder. The subscript j refers to the individual rings the 
total number of which is m wi thin the length of the cutout. If' the 
integration is carried out and the value"of the definite 1nte~a1. 1s de
noted by Mit is .:possible to write 



NACA TN No. 1.263 9 

tiM = [~ + 10.053096(1 - 9n2 ) + 206.01005(1 ~ 4n2 )2 + 90.303387(1 - 9n2
)2 

- 18.095573 (1 - 4n2
) (1 - 902

)] 

+ a [-9.0477868(1 - 4n2 )2 - 1.5°79645(1 - 9n2 )2 

+ 30.159289 (1 - n2 ) (1 - 4n2 ) -t, 18.095573 (1 - 4n2
) (1 - 9n2

) ] 

+ b [4(1 - n 2 ) + 2.4 Cl - 9n~) + 113.69784 (1 - 4n2 ) 2 + 42.636690(1 - 9n2
)2 

+ 2.4(1 - n2
) (1 - 4n2

) - 3.68(1 - 4n2
) (1 - 9n2

)"] 

+ a 2 [(1(/2) (.1 - n2 )2··+ 4.0212386(.1 .;,... 4n2 )2 + 0.5654867(1 - 9zi2rJ 

+ b 2 [(It!2) (1 - n 2
) 2 + 16.084954(1 _ 4n2

) 2 + 5.08938(1 ~ 902
)2 J 

+ ab [6.4(1 - n2 )(1 - 4n2 ) + 3.84{1 - 4n2 ) (1 - 9n2 ) J 

The strain energy is therefore 

In. 
:--, 

Ur = (1/2) (so 2jr S ) M ). (EI)r sin 4 (1CX:J /L) 
J=l. 

(2..4) 

When the bending rigidity (EI)r is the sazn:e fer a.l.l the rings, the 
summation yields a result in closed form a.s was sho.wu in the appendix 
of' ref"erence 12: 

provided 

m 

~ sin 4 (ltXJ/L) = (3/8) (m + 1) 

j=~ 

m>1 

1-Then m = 1 the value uf' the uumma.tlon is l. The strain eI:eI'gy of" 
bending stored in all the rings is consoquently 

2 S 
Ur = (3/16)(80 /r )(~I)r(m + l)M 

(15) 

(15a) 

(16) 

In eqqa.tlon (.16) the value of M depen9-B upon n.1 a.1 and b. Values of' 
M ccm;puted f'or n = 4, 2.666 ... , 2.1 1..6, 1..333. . . ~ to 
s = 2, 31 4, 51 6, respectlve~1 are listed in table I. These values of' 
n correspond to bUCkling patterns in which the bulge ends at one of' the 
l6 stringers contained 'in the specimens tested. 
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Strain Energy Stored in the Stringers 

The strain energy stored in the stringers because of bending in the 
radial direction is 

L 

where the summation is extended over all'the stringers contained in one
half' the cylinder. Substitution of the value of wr from equation (9) 
into equation (17) and integration yield 

L 

Ustrr :: ~ (1/2) (EI)strr J' e.a k1.
2 (2lt2 /L2)2 cos2 (21tx/L) d.x 

o 

2(4/3)\ 2{)" = ao 1{ L I kl. EI etrr ,-4 

(1.8) 

The moment of inertia Istrr of the stringer varies around the 

circumference of the cylinder because the effective width of the sheet 
to be added to the stringer section changes. The values of Istrr were 

determined, for each of the cutout sizes investigated, accord~ng to the 
principles stated in reference L Similarly k1.2 was computed for each 
stringer. 

The strain energy stored in the str:!.ngera because of bending in the 
tangential direction ia 

L 

Ustrt = ~ (1/2) (EI) strtL «(j2WtfOx2) 2 d.x (l9) 

where the SUllllllB.tion is extended over all the stringers contained in one
half the cylinder. With the aid of equation (lO) the strain energy can 
be given as 

(20) 

Since both ks and Istrt v~ from stringer ,to stringer the summation 
indicated in equation (20) was evaluated numerically for each cutout size 
investigated. 

The strain energy stored in the stringer because of" torsion is 
L 

Ut :c I (1/2)GC [ (1ft:)2 [(d~r) I(o%. acp) t dx (21) 
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In this equation' (l/r )(olawi') / (ox Oq)) fe" ¢e utlit' ~·si~ pf twis.t of 
the stringer, and the summation"must b~ q'ai-:ri~d. Q~t, oyer J;I.ll, the " 

, . stringers oontained in one-hal.f' the cyliIider. IIi the' expression fer 
the Saint-Venant torsional. rigidi ty,-

(2L::.) 

since the test specimens were provided with square section atringera 
of edge length a. Differentiatian gives 

,where 

k 4 = n [- a sin ncp - (3 ~2a - '3 '.6) sin 2n<p - (1.& - 2'.4) sin 3nq> 

+ b cos nrp + (6.4b + 7.21,) cos 2ntp t (5.4b + 7.21r) cqs' 3nCP].. (226.) 

Hence the s trD:i~~ r::n'erf!:i of torsion ,is 

Ut = aa2("Jt;!j4) nGC)j(Lr:2ll ['k~2 (23) 

where the summation is extended to includ.e a:u. the stringers contained 
in one-half the cylinder. 'BIe term GC is before the summation Sign 
in equation (23) since according to SSj.nt Venant the -va.riation of' the 
toraional rigidity, caused by the different ~tUltB of effective 
width of sheet.! is 60 sma.ll. th~t it was conaid.ared permissible to 
assume GO a ,constant. 'Again a numerical. eve.l.1.lation of the sun!lIIit

tion Wd.S carried out when the' strain -energy was cal.culated. 

Strain Energy of Shear Stored in the Sheet 

The shear strain energy in a panel is ~.:iken as beir.g propor~ional. 
to, the average ef'fe'Cti ve shear nvdul.l.iB Geff' 'iliul tipl?-ed by the square 
of the average shea:r strain "1 in the pa.n~l. 'l'he latter la, ,Calcu
lated from the displacernen"ts of the' four cOrners of the panel as was 
done in reference 3. Then the total atrain energy o:f shear stored 
in the sheet is '-

(24) 

where the summation extends over all !;he panels contained in one-
half the cylinder.. ~ . - . . I 
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The value of the effective shear modulus depe~ds upon the magnitude 
of the compressive strain in tho panel, as was shown in reference 13. 
The empirical formula recommended there ~or the camputaticn o£ Gerf is 

where 

N = O.0275[2n(r/d) + 1] 

and Go is the shear modulus in the absence of compressive stressee, 
e: the compressive strain prevailing in the . panel, and E'cr the com
pressive strain when the ~~l of s~et buc~es. 

Since the displacements in the axial direction are emall and. of the 
second. order, the displacements of the corners of the panel need be in
vestigated only in the ple.ne of theringe. The effect of rotation of 
the ring upon the shear was neglected. Formu..les for the calculation of' 
the shear strain frum the displa.cel.IlBn"ts of the corners were developed in 
reference 10 and were' presented in figure 23 of that reference. With 
the notation and Sign conve~tion or fisure 3 of the present report the 
shear strain is 

(26) 

where the first subscript refers to the Circumferential, and the second 
to the axial location of the corner of the panel. In reference 14 the 
values of .the numerical. factors ~ end ctt were determined. Simpli
fied f'ormulas were given on page 27 of reference 14 which represent 
these f'actors very accurately when the angle' d/r is of the order of: 
magnitude found in monocoque f1-tSelagee. The formulae can be written in 
the following slightly chBnged form: ' 

Or = (1/10) (d/r) = (1/10) (21(/S) 

ctt = - 1/2 

SUbstitutions yield 
m '-., 

Ush = (1/2) (t.d/~l.)Go ) Qj 

j~ 

S-l. 

') 
:......J 

i=o 
(28) 
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wh~re Q is e. function of x cnl.y, and R a function of <p only. The 
,..-, , 

s'U.IlllllB.ticn > Q gi ~es a result in closed form: 
:.......s m m . 

>. ~J = 'I {eih2- q:n:jU(~ +,~) J - sin2 [:n: (.1 + 1.) /m + l) 1}2 
.f=:b j=o . . . . . 

= (1./4)(m + l) {l - cos [(2:n:)/(m + l))} (¥9) 

provided. 

m>1. (29a) 

When m = 1., 
;-1 

) Q = 2 
--' 

(291)) 

. 
The results of the summation were listed in equations (24) of reference 3. 

The meaning of the symbol·:R is 

The values of k~,i, k~,i+~, ks,i, and ks,i+~ are obtai~ed f~ those 
of k~ and ks (equatioz:.s (9a) and (1.0a», respecti-.rely, by replacing 
the angle Ii> by 2Xi /S or 2:n: (i + 1.) Is: 

ki,l= [1. + e. cos (2:n:n1/S)+ (1..6a -1..8) COB (4:n:ni/s) 

+ (0.6a ~ 0.8) cos (6:n:r..i/s) + b sin {2:n:nl/S). . 

+ (3.2b + 3.6:n:) sin (4r.ni/S) + (1..& T 2.4:n:) Sin (6m:rl/S) ] (30a) 

ks,i = (l/nH-(2:n:ni/S) - a sin (21m1/S) - (1./2)(1..6a - 1..8) sin (41tIl1/s) 

- (1./3)(0.66 - G.B) sLn (6:n:nl/S) + b ccs (2~i/s) 

+ (l/2)(3.2b + 3.6:n:) cos (4lffii/S) + (l/3 )(1..& + 2.4n;) cos (6Jrni/S)] 

(3Cb) 

In the calculations the R quantities were summed up numerically. 
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. ' 

WORK OONE BY TBE. EX.TEBN.AL FOBCES 

It was observed in the experiments described in reference 9 that 
the stress distribution was not linear 11\ the out out portio)l. of the cyl
inder, although the deviations from linearity w~re' not large as a rule. 
A good. approx:1llla.tlon to the experimental curves was obtained by assum:tng 
a linear force distribution which is not equivalent to a linear stress 
distribution because of the varying amount of effective 8hee~ added tc 
the stringer section. Strain-distribution curves calculated an the as
silmption of' a linear force d1strlbut:l.on are com;pared in figure 4 with 
strains measured in the experiments. The eAPreesion used for 'the calcu
lation of' the force acting upon the ith stringer is 

Pi = Pcr {cos [Il:. + (27t'i/S) J + (S/r) }/[cos a. + ,(5/r) ] (3l) 

where Pcr is the c~re8s1ve force ~cting upon the stringer at the 
edge of the cutout, and e 1s the distance of the neutral axis frem the 
horizontal dian.eter of the cylinder. 

The work done by the external forces acting upo~ thA Atringers i~ 
equal to the summation of the forces times the ~splacemB~t of the points 
of' application of the fcrces. Thf! displacelllBnts of theA~ pOints are 
equal to the shortening of the distance between the end. pointe of' the 
stringers dur~ buckling. Ccnsequently the work is 

L 

W = (1/2) ')' Pi r [(dwr /dX)2 ,-+ (dWt/dX ) a} d.x (32) 
'-J Jo 

where the SUlIlIllB. tion has to be extended over all the stringers contained 
in one-hall the cylinder. Substitutions and integration yield 

L 

W =: (l/2)ao2 I Pi (,./L) 
2 (k~2 + k S

2)J sina (2ra./L) dx 
o 

\~ , 

= (l/4)(,.2/L)Pcr a o 
2

) (Pi/Pcr)(k1
2 + ks2) (33) 

'---J ' 

The'summation in the right-hand member of' equation (33) was carried out 
numerically. 
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C.ALCULATIC'N OF THE BUCXLING LOAD 

" The buck1"1ng. condi tion is 

Ur + Ustrr + Ustrt + Ut + Ush = W (34) 

where the vaJ.ues of the quantities 1IIUSt be taken :from equations (16), 
(18), (20), (23), (28), and (33). Equation (34) was solved for Per, 
contained in W, by the use of the following procedure: 

First, e value of n was assumed oorresponding to a circumferen
tial wave length extending over an integral number of stringer fields. 
With this value M, k:t., ks, and 14 were computed. Hert, Pcr was 
assumed. This assumption permitted the calc~tion of the effective 
width of sheet and consequently" the- moments of inertia of the stringers 
as well "as Geff/Go. The summations were then carried out. Substitution 
of the "results in "equat1on (34) yields a pOlYnC'IIlial of the second. degree 
in a and b in the left-hand member, and another polynomial of the 
second d8gree in the right-hand ~er, the l.B.tter multiplied by Pcr -

Solution for P~r gives a fraction which can be represented symbolic~ 
as 

where lh and P2 are seoond-degree polynomials in a and b. The 
va.J.ues of a and b, the parameters def'ining the buckled shape, must 
be chosen so as to make Per a min1mum. It is known from the calculus 
that Pcr can be minimized by setting 

(36) 

The partial differential coefficients of the polynomials P:t.' and :P2 
are linear functions of a and b. Equations (36) represent three con

"neeticnS between Per, a, and b. They were sol~ed by a . rap idly con
verging trlal-e.nd-e.rror method. First, 'a and b Were calculatea'from 
the linear e~uatione with the aid of an assumed value of . Per. The val
ues of a and b so determined were then substituted into the quadratic 
eXpression for Pcr . The procedure was repeated with the aid of neW as
sumptions for Per until the value obtained from the qUadratiC expres
sion was close enough to the assumed value. 
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When the value of Pcr obtained in these calculations differed 
materially f'rom that assumed at the outset~ the moments ·.of inertia and 
the effective shear modulus had to be calcuJ.ated again and. the entire 
procedure repeated. All the calculations were carried out With different 
values of n. Tb.e buckling loads corresponding to these different values 
were cOlIlflared, and the sma]Jest one was considered as the true bucklins 
load. Details of' the procedure may be seen from the numerical exa.mple 
given in the appendix. ' 

COMPARISON OF TEEORY .AND EXPEBDmNT 

Numerical calculations were' carried out for the cylinder shown in 
figure 1 1'01' all three of the sizes of' the ~utout indicated. In each 
case the minimum value of the buckling load Pcr was obtained for 
n = 2.666, that· is, when the buJ.g~ extended over .twes. stringer fields. 
A typical buckling pattern is 'shown iu'figure,2. It .cbr,responds to a 
cyl~nder having ~ 900 cutout. . 

Some det~ils of the results of the calculations are presented in 
table II. The 'bending moments corresponding to the minimum buckling 
load are plotted against the size of the cutout in figure 5, which also 
contains the observed bending ~t at .buckling taken from the experi
mental report (reference 9). 

CONCLUSIONS' 

A stra~nergy theory has been developed for the calculation of the 
buckling load in general instability of reinforced circular monocoque 
cylinders which have a symmetric cutout on the compression side end are 
subjected to pure bending. When the theory was applied to the test cyl.
inders of the. sarlier experimental report it was found th;at at bUQkli~ 
the bending moment applied to the cylinders having a 45,0" 900, and 135 
cutout was 89.3, 64.8, and 44.5 percent, respectively, of the bending 
moment under which the same type of cylinder buckled when there was no 
cutout. The corresponding values obtaaned in the el';per1nental invest1ga
tions were 66, 47; and 31 percent wh€lll based on tlw e:q>er1Inental averages, 
and 68.2; 50.6, and 31.3 percent when 'based on the highest buckling loads 
observed. 

Polytechnic Institute o~ Brooklyn 
Brooklyn, N. Y., July 8,. '1946. 
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APPENDIX 

As a nUlIlerical. exampJ.e of buckling load d.etennination, calcul.ations 
are presented which correspond to cylinders 19, 20, and 23 of the test 
series described in reference 9. The following characteristics of these 
specimens will be needed for calculation: 

Radius, r . III • • • • • • • • • • •••••• ". • • in ... 10 
Length ,of. cutout, L • ~ • . • .•••.••... '."-. • '0 ••• in. 19.29 
Distance between adjacent rings:' L~ 0 ••• '. • • • • in .... 6.43 
Number of rings contained in the length of' cutout, m • . • . • .. 2 
RiDg cross section . . . . . . • . 1/8 b~ 3/8 in. (24s-Jl' aluminum ail.')J7 
Number of' stringers in full portion of' the cylindqr, S. . . . 0 •• l6 
Stringer spacing along c'ircumference, .d • . . . • . 0 • • •• in. 3.927 
Stringer crcas section. • in. .3/8 x 3/8 (2~ ~l~num alloy) 
Sheet covering thickness, t . • • • • in. 0.012. (a4s-lr Alclad) 
Cutout angle, ~. • • . . • . • deg . • 90 
~oungts modulus, E • • • • • • ••••• psi •. lO.5 x lOB 
Stringer shear modulus, G .' • • • • • • •• ps i .. 3 .9 x lOS 
Sheet shear modulus at z'ero compressive'lead, Go .• psi • . 3.9 x lOS 

Computations are f'irst g1 ven corresponding to an assumed 1nte~ 
nUIIiber a of stringer f'ields, say a = 3, included in the bulge on cne 
aide of' the cylinder. The qorresponcling value of' n can be obtained 
from equation (Al) 

n = S/(2s) (Al..) 

In this case n = 8/3 = 2.666 . 
tion (13) gives 

Substi tution of this value in equa-

M = l80,623.6027 + ·8)829.5B55a + 93, 272.2882b. 

+ 1,999.4498a2 + 12,l40.0843b~ + 2,892.2784ab (A2) 

as can be seen :f'rom. tab~e I. ' Substitution in equation (1.6) yields: 

where the lIlOlllent of inertia 'Ir of' the ring cross section augmented by 
an ef'fective width of 'sheet (taken equal ~o the width of ,the ring) is 

Ir =. (J-/12)(0.1.25 + 0.012) 3(0.375)= 80.35 x 1.0--6 in.4 (A4) 
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Wi th the aid of equation (A2), the ring strain energy becomes: 

Ur = 80
2

(85,718.0013 + 4,190.2299a + 44,263.9)00b 

+ 948.8729a~ + 5,761.2834b2 + 1,372.5799ab) . 

The functions k~, ks, 14. can be calculated from the assumed value 

of n.. For ·this purpose it is convenient to arrange the trigonometric 
functions need.ed and their coefficients in .tabular form, as shown in 

. table III. 

In this table the first three rows contain the trigonometric func
tions of the angle .cp. 'AB onJ..y ~ues of k~, ks, 114 which correspond 
to integral numbers of stringer fields will be used in the summations to 
be evaluated later, the angle cp was replaced by ita equivalent (2~i/S), 
where 2n/S is the angle subtended by one.stringer field. 

The third, fourth, and fifth rows contain the coefficients of' the 
trigonometric functions a:ppearing in each coJ.umn. above them. Tl;I.ese coef'
f'icienta are d1f'f'erent for kl.J. ks, and. k4, and can be obtained :frOm 
equations (9a), (lOa), and (22a), respectively. 

The value of k~ f'or i = ° is obtained by :o:u.lti:p1ying .the. eXllres
siona a:p~earing in the same column in the first and f'ourth rows, and. by 
adding the resulting eight products. Products of the e:lements of' the 
second and f'ourth rows will lead to the value of k~ for i = 1, and 
similarly for all others. The results are tabulated in table IV. 

The next step is the assumption of the critical load P cr' for the 

purpose of obtaining the effective width of sheet 2w to be added to 
the stringers, the moments of inertia of the stringers, the ef'f'ective 
shear modulus Geff and the shift of the neutral axis from the horizon-, 
tal axie of' the cylinder e. From. an assumed value of P cr 0:: 3370.5 1b, 
8 was found to be 2.4 in. j the other quantities are listed in tabJ.e V. 
In table V column (2) is obtained :from equation (31); .column (3) by di
viding column (2) by E = 10.5 X 106 psi. Columz:o (4), (5), and (6) can 
be most conveniently obtaineQ by the use of a previously drawn curve of 
the strain € against the area :Aeff of stringer and effective width 
combination. A curve of this type was used in the present calculations 
and "Was constructed With the aid of the following formula for effective 
wid.th: 

r 
2w.=.(l/€)(d/r) to.3t+ ~.535 
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Columns t'r)·e.nd (8) were ca.lcula.ted according to the principles stated in 
ref'erence 1.. In eol.uJnn (9) the va1.~ of the bl1Ckl.1ng load of the sheet 
E'er was ca.l.culated to be 3.3~: 10 • ColJ.min (10) was obtained from. 
equation (25) •. 

The strain energy stored in the. stringers because of bending in the 
radial dj.rection is from equation (1.8): 

(A6) 

since the modulus E is conste.nt for all str..ngers. The summation in
dicated is the sum of the prolil.:.et of the values in column (7) in table V 
for any value of' i, ·ann the. equares of' the quantity k~ in table IV 
for the same value of' i. Ustrt is obtained by substituting column. (8) 

for C01UIllIl (7) in table V B;lld. :Irs for kl. in table IV. These opera-:
tiona yield: 

. .. 
Uatr = Ustrr + Ustrt = aa2 (102,882.5969 - 1,453.83918 

. ' 

The torsional strain energy in the ~tringers contains the sttmmat1cn 

I ~2, as can be seen from: equation (23). -This is the sum of the squares 

of the values of' k4 gi ven in table IY. The cOIqplete result for the 
torsional- strain energy- vas found, to be: 

+ 1,656.711.002 +. 22,.8-30.3894b:': +.6,426":61~b) (AB) .. 

The expression given in equation (281 ;for the s~rain energy due to 
shear in the sheet cover~ng required the evaluation of the quantity ·Ri. 
This quantity, .8i van in .. eq~tion (30), can be easily obtained if' 1 t is 
noticed that the terms k~,i - kl.,i+~ and ks,i + k3,i+~ are respec--
ti vely the difference and the sum of' terms appearipg in adJacent rows of 
the kl. and ks columns of table IV. With the values of' Gaff/Go 
taken from. table V and. with ~ = 0.03927 and ct.t = -0.5 from equation 
(27) the shear strain energy was found to be: 
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Ush = 8.0 2 (16,645.4078 + 6,~16.0112a + 5,515.5294,b + 1,J.80.0227a2 

+ 1,232.0806b 2 + l88.3523ab) (A9) 

The wOl'k done by the exto!'llaJ. forces is given in equat:J,on (33). :Each 
term of tr.a sUl11'nat!cr.n co,;').':'.a:lliea. in th~t equation ir;! the sum of the squares 
of the vE.lur:H:I of 'k a':'),c!. k (taoJe IV) multiplied by Pi/Pcr, which 
can be ob"Gained from to:o.i..e V'. The result of these calculations waB: 

W = Pcr aa:?(17.5221~03 - 2.5911-795a + 9.796509b 

+ 1 .'~22668a.? + 1 .42610& 2 
- 0 .429835ab) (AlO) 

The values of the strain enerSies and external ~iOrk taken from equa
tions (A5), (A7), ,(A8), (A9), end (A10) were substituted in equation (34)" 
with the result: 

a02(506,227.034 + 34,244.578a + 268,738.347b 

+ 7,730.9227a2 + 37,066.l019be + 7,578.1357ab) 

= ao
2 

Pcr(17.522403 ~ 2.594795a + 9.796509b 

+ 1.422668a2 + 1.426l08b2 
- 0.429835ab) (All) 

Accordins to equation (36), equation (All) was Bolved for Pcr , and the 
numberator and denominator of the resulting expression were differenti
,ated with respect to a and p. The result is given in equations (Al2): 

(A12) 

Theee equations were reduced to two linear equations in a and b by 
assuming avalu,e of. J?cr' = 3770 and clearing fractions. These equations 
were solved s:l.mul taneously for a and. b, wi th tho . folloWing re sul t : 

(A13) 

b :: -3.2142 
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SUbsti tution of these val.ues in equation (All) ~edo tOd
O 
a ne"tj ~1.ue of 

Per = 3793 1.b. This resul.t was conslde~ed to be sufficient1.y c1.ose to 
the original. assUmption to make it unnecessary to repeat the cal.cul.atians 
for this va1.ue of n. 

Repetition of the entire procedure for 'values of n corresponding 
to s =:2 and a = 4' gave 'Per '= 1.1.544 1.b and Pcr = 3902 ~b, reSpec-
tively. The va1.ue Pcr == 3793 1.b was the l.owest of the three and was 
therefore considered the true buckling 1.oad. 
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T..ABD!: I.- VAlllKS OF M 

8 n Constant a b 
2 

b
2 

ab ·a 

2 4 624952.2978 31194.1304 322964.0316 6969.3405 42066.8361 101.60.6399 

3 2.666 ••• J.80623.6027 8829.5855 93272.2882 1999.4498 12140.0843 2892.2784 

1; 2 73562·5088 3487.1679 37945.9796 805.8J.86 4933.8711 1151.0000 

5 1.6 35969.3603 1634.3092 18527.8397 388.6488 2405.8392 546.4166. 

6 1.333 ••• 19654.0645 . 843·6900 10105.7565 208·7710 1310.0('00 286.8150: . 

: . 



TABLE II 

Mer 
Peroant Mer Paroent 

Size of Mer d1fferenoe highest difference 
cutout B~ n a b Per caloulated average of expert- experi- of highest 

(deg) experimental. mental mental exper1Jllental 
average manent moment 

45 2 .. 4 O·30il -3.6903 13.564 
3 2 .. 666 .... -3.1734 -3.1710 3,7?2. 2,5$,109 192.800 33.9 197.600 30.6 
4 2 -2.7612 -3.2']10 3.875 

90 2 4 .3417 -3·6809 U,," 
3 2.666 ••• -3.0541 -3.21.42 3.793 187.216 135.800 37.9 12!6.000 28.2 
4 2 -2·7248 -3.2831 3,902 

135 -- 2 4 .3921 -3.6881 14.549 
3 2.666 ••• -2-.9556 -3·2553 3,847 123,471 ~J500 43.5 92,200 39·3 
4 2 -2.6519 -3.3001 3,956 

- -



TABlE m 

1 CODStant 2rud.=DlP 
S 

cos 2nJt1 
S 

C06 4nrl 
S 

009 6nrl 
S 

Bin~ 
S 

ain 4nn1 
S 6in

6nrl 
S 

0 1 0 1 1 1 0 0 0 

1 1 1.047197 0·5 -0·5 -1 0.8660255 0.8660255 0 

2 1 2.094395 -0·5 -0.5 1 0.8660255 -0.8660255 0 

Multiplier a 1.6a - 0.6a - b 3.2b + 1.& + 
for kl 1 0 1.8 0.8 3.6. 2.41£ 

Multiplier 0.6b + O.225b + -o·375a -0.38. + -O.075a + 
for ks 0 -0.375 0.375b 2.1205750 0.9424778 0.3375 0.10 

Multiplier 17.0666 ... b + 14.4b + -2.666 ••• a -8.5333 ••• a + -4.8a + 
f'or k4 b 0 2.666 ••• D 6o.3l85789 6o.3lB5789 9.6 6.4 
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TABLE rv 

1I:J. ks k.t. 

-1.6 + 3.2a 3.0630528 + 1.2b 120.637166 + 34.13333 ..• b 

12.~945177 .- 0.9a + 3.6373071b -2.10318072 - 0.5845672a - 0.3375b -82.164026 - 9.6994800. - 21.6b 

-8.6945177 - 0.7a - 1.9052561b -1.19549133 - 0.064951918 - 0.2605b 21.845445 + 5.080683a + 4.533 ... b 

TABLE V 

(2) (3) (4) (5) (6) (7) ca) (9) (10) 
. 

Pi €A € Aatf 2w Ietrr Ietrt €/€cr GafriGo 

3370.5 3.21 x 104 21.4 X 104 0.1505 1.567 2025 x 10
6 3,500 X 106 6.06 0,495 

2215.815 2.1103 12.8 .. 10. 2.000 

853·75 0.8131 4.33 
.. 

,l878 3.927 

2340 

2392 

10,000 3.88 . .562 
.. 

62,200 1,312 .745 
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