

CONTOUR ON AN NACA 651-210 AIRFOIL SECTION

By William J. Underwood, Albert L. Braslow, and Jones F. Cahill

Langley Memorial Aeronautical Laboratory Langley Field, Va.

WASHINGTON

NACALIBRARY

NACA

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

L - 151

3 1176 01363 9035

7

NACA ACE No. L5F27

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ADVANCE CONFIDENTIAL REPORT

TWO-DIMENSIONAL WIND-TUNNEL INVESTIGATION OF

0.20-AIRFOIL-CHORD PLAIN AILERONS OF DIFFERENT

CONTOUR ON AN NACA 65,-210 AIRFOIL SECTION

By William J. Underwood, Albert L. Braslow and Jones F. Cahill

SUMMARY

An investigation was made of three interchangeable sealed-gap 0.20-airfoll-chord plain ailerons of different contour on the NACA 65-210 airfoil section. The three aileron contours tested were the true airfoil contour, straight sides, and a peveled trailing edge. The effects of aileron contour on the section aerodynamic characteristics of the airfoil and aileron are presented herein.

The results of the tests indicated that thickening or beveling the alleron trailing edge by the amount investigated would decrease the aileron effoctiveness, the rate of change of section lift coefficient with section angle of attack, and the waximum section lift coefficient; would increase positively the rate of change of section hings-moment coefficient with both section angle of attack and aileron defloction; would shift the acrodynamic center forward; and would cause no significant change in the section profile-drag coefficient with aileron neutral or in the increment of section pitching-moment coefficient induced by aileron deflection at constant lift. The balancing action of the alloron and the loss in alleron effectiveness caused by beveling the trailing edge were accentuated by the application of standard leading-edge roughness to the airfoil. The computed characteristics of the three sealed internally balanced ailerons, based on the data for the hingemoment and seal-pressure-difference coefficients of plain_ailerons, showed an appreciable effect of aileron contour on the hinge moments at the larger aileron deflections even though all three ailerons were computed to have the same hinge-moment slope at small alleron deflections.

INTRODUCTION

The use of thin airfoil sections to delay the effects of compressibility on the wings of modern high-performance airplanes has emphasized the need for data on the aerodynamic characteristics of ailerons on thin airfoils. The effects of aileron contour on the aerodynamic characteristics of ailerons have been shown previously by investigations of a limited number of airfoils equipped with control surfaces. Since very little section aerodynamic data are available for ailerons on thin NACA 6-series airfoils, tests were made of an NACA 65_1 -210 airfoil equipped with three interchangeable sealed-gap 0.20-airfoilchord plain ailerons of different contour.

The investigation was made in the Langley twodimensional low-turbulence pressure tunnel. The three ailerons tested differ only in contour and are designated herein as true-contour, straight-sided, and beveled ailerons. The hinge moments and effectiveness of the aileron and the pitching-moment and profile-drag characteristics of the airfoil were determined. Tests were made with the airfoil surface aerodynamically smooth and with standard roughness applied to the leading edge of the airfoil. The differential pressures across the aileron seal were obtained for use in calculating the hinge-moment characteristics of ailerons having any amount of scaled internal balance.

COEFFICIENTS AND SYMBOLS

The coefficients and symbols used herein are as follows:

airfoil section lift coefficient $\left(\frac{l}{q_{0}c}\right)$

 \mathbf{c}_7

 c_{d_0} airfoil section profile-drag coefficient

 $c_{m_{c/4}}$ airfoil section pitching-moment coefficient about quarter-chord point $\left(\frac{m}{q_{o}c^{2}}\right)$

- Δp/q seal-pressure-difference coefficient; positive when pressure below seal is greater than pressure above seal
- c_h aileron section hinge-moment coefficient based on aileron chord $\left(\frac{h}{q_0 c_a^2}\right)$
- $c_{\rm H}$ alleron section hinge-moment coefficient based on airfoil chord $\left(\frac{h}{q_0c^2}\right)$

where

ι	sirfoil	lift per	unit span
---	---------	----------	-----------

- do airfoil profile drag per unit span
- m airfoil pitching moment per unit span
- h aileron hinge moment per unit span; positive when aileron tends to deflect downward

 $\left(\frac{1}{2}\rho_0 v_0^2\right)$

- c chord of airfoil with aileron neutral
- c_a chord of alleron behind hinge axis

q free-stream dynamic pressure

- Vo free-stream velocity
- ρ_0 free-stream density

and

- a airfoil section angle of attack, degrees
- δ_a aileron deflection with respect to airfoil, degrees; positive when trailing edge is deflected downward

Reynolds number R $= \left(\frac{\partial c_{l}}{\partial \alpha_{0}}\right)_{\delta_{E}}$

 $\alpha_{\delta} = \left(\frac{\partial \alpha_{0}}{\partial \beta_{\alpha}}\right)_{\mathcal{O}_{T}}$

aileron section effectiveness parameter

 $\Delta \alpha_0$ increment in airfoil section angle of attack $\Delta \delta_\mu$ increment in aileron deflection

 $\left(\frac{\Delta \alpha_{0}}{\Delta \delta_{\mathrm{a}}}\right)_{\delta_{\mathrm{a}}=\pm20^{\circ}}$

aileron section effectiveness parameter (ratio of increment of airfeil section angle of attack to increment of aileron deflection required to maintain constant lift coefficient)

 $c_{h_{\delta_{T}}}$ total $\frac{dc_{h}}{d\delta_{a}}$ in steady roll

n response parameter (reference 1)

- $\left(\Delta c_{h}\right)_{\delta}$ increment in alleron section hinge-moment coefficient due to alleron deflection at a constant section angle of attack
- $\begin{pmatrix} \Delta c_h \end{pmatrix}_{\alpha}$ increment of aileron section hinge-moment coefficient due to change in section angle of attack at constant aileron deflection
- Δc_{HT} increment of total aileron section hinge-moment coefficient in steady roll

$\frac{\Delta c_{H_T}}{\Delta a_0 / \Delta \delta_a}$ at leron section hinge-moment parameter

The subscripts to partial derivatives denote the variables held constant when the partial derivatives were taken. The derivatives were measured at zero angle of attack and zero alleron deflection.

MODEL

The model had a 24-inch chord and a 35.5-inch span and was constructed of leminated mahogany with the exception of the interchangeable ailerons, which were constructed of solid dural (fig. 1). Ordinates of the NACA 65_1 -210 airfoil section are given in table I.

The three aileron shapes tested are shown in figure 2 and consist of the true airfoil contour, straight sides, and a beveled trailing edge. The ordinates of the truecontour aileron were the same as the ordinates given in table I for the trailing-edge part of the NACA 65_1 -210 airfoil section. The contours of the straight-sided and beveled ailerons were formed by straight lines as shown in figure 2. A rubber seal was used at the gap at the nose of the aileron.

For the tests of the smooth airfoil, the model was finished with No. 400 carborundum paper to produce aerodynamically smooth surfaces. For the tests of the airfoil with standard leading-edge roughness, the model

 $c_{h_{\delta_{T}}}$ total $\frac{dc_{h}}{d\delta_{a}}$ in steady roll

n response parameter (reference 1)

- $\left(\Delta c_{h}\right)_{\delta}$ increment in alleron section hinge-moment coefficient due to alleron deflection at a constant section angle of attack
- $\begin{pmatrix} \Delta c_h \end{pmatrix}_{\alpha}$ increment of aileron section hinge-moment coefficient due to change in section angle of attack at constant aileron deflection
- Δc_{HT} increment of total aileron section hinge-moment coefficient in steady roll

$\frac{\Delta c_{H_T}}{\Delta a_0 / \Delta \delta_a}$ at leron section hinge-moment parameter

The subscripts to partial derivatives denote the variables held constant when the partial derivatives were taken. The derivatives were measured at zero angle of attack and zero alleron deflection.

MODEL

The model had a 24-inch chord and a 35.5-inch span and was constructed of leminated mahogany with the exception of the interchangeable ailerons, which were constructed of solid dural (fig. 1). Ordinates of the NACA 65_1 -210 airfoil section are given in table I.

The three aileron shapes tested are shown in figure 2 and consist of the true airfoil contour, straight sides, and a beveled trailing edge. The ordinates of the truecontour aileron were the same as the ordinates given in table I for the trailing-edge part of the NACA 65_1 -210 airfoil section. The contours of the straight-sided and beveled ailerons were formed by straight lines as shown in figure 2. A rubber seal was used at the gap at the nose of the aileron.

For the tests of the smooth airfoil, the model was finished with No. 400 carborundum paper to produce aerodynamically smooth surfaces. For the tests of the airfoil with standard leading-edge roughness, the model

surfaces were the same as those of the smooth airfoil except that 0.011-inch carborundum grains were applied to both surfaces at the leading edge over a surface length of 0.09c measured from the leading edge. This roughness is defined in reference 2 as the standard roughness for a 24-inch-cherd medel.

APPARATUS AND TECTS

The lift, drag, and pitching moment of the model were measured by the rethods described in reference 2. The alleron hinge-moment measurements were made with electrical-resistance strain aages mounted on the beems that supported the alleron. This method of mounting eliminated the possibility of friction due to the use of bearings at the alleron hinge axis. The pressure difference across the alleron seal was neasured with surface static-pressure orifices located inside the gap above and below the flexible rubber seal.

Tests of the model with each of the three allerons were made in the Largley two-dimensional low-turbulence pressure tunnel at Reynolds numbers of 1×10° and 9×10^{6} and at Mach numbers of 0.07 and 0.17, respectively. The tests included measurements of lift, alleron hinge moment, eileron balance pressure, and airfoil pitching moment for each aileron deflected in incre-ments of 5° between -20° and 20°. Drag measurements were made at both Reynolds numbers through the complete range of aileron deflection for the rodel with the truecontour alleron and, for the models with the straight-sided and bevaled allerons, at a Roynolds number of 9×10^6 and $\delta_{\mu} = 0^{\circ}$ only. In addition, the model with each of the three allerons was tested at a Feynolds number of 9×10^{6} with standard roughness applied to the leading edge of the airfoil. For the airfoil with leading-edge roughness, only lift, aileron hings moment, and aileron balance pressure were measured through the range of alleron deflections.

The following fectors were applied to correct the tunnel data to free-air conditions:

$$c_l = 0.977c_l'$$

 $c_{d_0} = 0.994c_{d_0}'$

 $q_0 = 1.006q_0'$ $a_0 = 1.015a_0'$

where the primed quantities represent the values measured in the tunnel (reference 2).

PRESENTATION OF DATA

For use in aileron design, basic section data are presented for a range of aileron deflection in figures 3 to 9 for the true-contour aileron, in figures 10 to 15 for the straight-sided aileron, and in figures 16 to 21 for the baveled aileron. These figures include data for the airfoil with aerodynamically smooth surfaces and with standard roughness applied to the leading edge.

These basic section data may be used to predict the section hinge-moment characteristics of allerons of similar contour and chord with any amount of sealed internal balance by the following equations:

$$\Delta c_{h_{a}} = \frac{\Delta c}{2q_{0}} \left[\left(\frac{c_{b}}{c_{a}} \right)^{2} - \left(\frac{t/2}{c_{a}} \right)^{2} \right]$$
(1)

 $c_{h_{a}}$ = $c_{h_{a}}$ + $\Delta c_{h_{a}}$ (2)

where

- Δcha increment in alleron section hinge-moment coefficient produced by an internal-balance arrangement
- cb chord of overhang from sileron hirge axis to middle of scaled gap
- c_a chord of aileron behind hinge axis
- t twice nose radius of plain aileron

Equation (1), in which the overhang is assumed to extend to the middle of the gap, can be used for determining the overhang moments of sealed internally balanced ailerons of normal configuration, that is, ailerons for which the overhang extends straight forward into the balance chamber and the sealed gap width is small.

The data obtained at a keynolds number of 1×10^{6} are not so accurate as those obtained at a Reynolds number of 9×10^{6} because of the small dynamic pressure. The results for the lower Reynolds number, however, are believed to be useful for inficating qualitative effects of Reynolds number on the alleron characteristics in the range of Peynolds number from 1×10^{6} to 9×10^{6} .

The effects of aileron contour on section characteristics are compared by means of section parameters. Variations of these parameters and coefficients with other independent variables are presented in graphical and tabular form.

The following discussion refers to the data obtained at a Psynolds number of $\gamma \times 10^6$ with the sirfoil surfaces aerodynamically smooth unless otherwise stated.

NOISERCERIC

Aileron Effectiveness

The effects of sileron contour are shown in table II for the alleron section effectiveness parameter $\mathfrak{a}_{\mathfrak{Z}}$ and Cla end in figure 22 in which a_0 is plotted against for at a constant c1. Thickening or beveling the trailing δρ edge of the aileron resulted in a decrease in both ag and cy. The value of the effectiveness parameter aم of each of the three allerons tested was slightly greater than the value (-0.450) obtained for a 0.20c plain aileron of true airfoil contour on an MACA COO9 sirfoil section (reference 3). The percent loss in as due to trailingedge modifications to the true-contour alleron is given in the following table:

Aileron	Airfoil			
	Smooth	Rough		
True-contour	0	4.7		
Straight-sided	1.5	4.7		
Beveled	2.5	12.1		

The value of the effectiveness parameter $\left(\frac{\Delta \alpha_{0}}{\Delta \delta_{g}}\right)_{\delta_{g}} = \pm 20^{\circ}$

when measured over a range of aileron deflection of $\pm 20^{\circ}$ at a constant section lift coefficient of 0.20 was greater for the straight-sided eileron on the airfoil with a smooth surface or with leading-edge roughness than for the other two ailerons. The value of this parameter for the beveled aileron was also greater than for the true-contour aileron with the airfoil smooth but was lower with standard leading-edge roughness splied to the airfoil. An increase in the section lift coefficient from 0.20 to

0.80 caused the offectiveness parameter

 $\begin{pmatrix} \Delta \alpha_{0} \\ \Delta \delta_{a} \end{pmatrix}_{\delta_{a} = \pm 20^{\circ}}$

to decrease for the true-contour aileron and to increase for the straight-sided and beveled ailerons. The value

 $\left(\frac{\Delta \alpha_{\rm c}}{\Delta \tilde{\sigma}_{\rm a}}\right)_{\tilde{\sigma}_{\rm a}} = \pm 20^{\circ}$ for the beveled aileron is question-

+ 0

able because of a joy in the lift curve at $c_l = 0.80$ and $\delta_a = 20^{\circ}$ (fig. 16(b)). The elleron effectiveness decreased slightly when the Reynolds nurber was increased from 1 × 10⁶ to 9 × 10⁶, as shown in table II and figure 22.

Aileron Hinge Moments

Section characteristics. - The effect of aileron contour on various aileron section hinge-moment parameters is presented in table II. Changes in the aileron contour from the true airfoil contour to straight sides or to a beveled trailing edge increased the values of $c_{h_{\alpha}}$ and $c_{h_{\beta}}$. positively. It is evident from figure 17(b)

that the exact value of $c_{h_{\alpha}}$ at $a_{0} = 0^{0}$ for the beveled alleron is considerably less than 0.0069 as given in table II but, because of the sharp changes in the variation of c_h with α_o near a section angle of attack of 0°, an average slope was used for cha of -2° and 2° . An increase in between values of a o the Reynolds number from 1×10^6 to 9×10^6 provided a positive increase in cha for all three allerons and for the beveled Aileron only (table II). chs. in Α comparison of the alleron hingermoment characteristics for a Reynolds number of 9×10^6 (figs. L, 11, and 17) shows that as the alleron was thickened and beveled near the trailing edge, abrupt changes in ch occurred in the low angle-of-attack range.

A comparison of figures 17 and 20 shows that the abrupt changes in c_h for the beveled aileron disappear when roughness is applied to the lading edge of the airfoil. The hings-moment characteristics of a beveled aileron, therefore, may be sensitive to wing-surface roughness.

Data showing the variation of the increments of $c_{h_{\alpha}}$ and $c_{h_{\delta}}$ with changes in trailing-edge angle of various ailerons on some NACA airfoil sections are given in reference μ . When based on the change in trailing-edge angle from the true-airfoil contour, the increments of $c_{h_{\alpha}}$ and $c_{h_{\delta}}$ for the straight-sided and boysled ailerons with the airfoil either smooth or with standard roughness applied to the leading-edge fall within the experimental scatter of the date of reference μ .

The effects of keynolds number on $\Delta n/q_0$ can be seen in figure 22. An increase in the Reynolds number from 1 × 10⁶ to 9 × 10⁶ decreased the available pressure difference ecross the aileron seal.

Easis for corparison. - The rate of roll generated by the aileron has an important effect on the hinge moment because the rate of roll alters the mean angle of attack at which the aileron is operating. For comparison of ailerons from section data, therefore, the aileron hingemoment characteristics are usually determined by use of

the constant-lift concept, that is, the assumption that the aileron portion of the wing acts at constant lift during a steady roll. In reference 1, however, Gates and Irving indicated that the constant-lift concept overstresses the importance of the hinge-moment parameter $c_{h_{\alpha}}$ and gave the equation for the rate of change of the hinge-moment coefficient with aileron deflection in steady roll as

$$c_{h_{\delta_{T}}} = c_{h_{\delta}} \left(1 - n \frac{c_{h_{\alpha}}}{c_{h_{\delta}}} \right)$$
(3)

rather than

١

$$e_{h_{\bar{o}_{T}}} = e_{h_{\bar{o}}} \left(1 + \frac{\partial \alpha}{\partial 5} \frac{e_{h_{\bar{o}}}}{e_{h_{\bar{o}}}} \right)$$
(4)

which is the equation for the constant-lift concept. Although equation (3) is inadequate for computing finite-span characteristics, it is satisfactory for comparing the three allerons of different contour. In order to simplify the application of equation (3) to nonlinear curves, the equation was converted to $\Delta c_{\rm H_m}$ by

$$\Delta c_{\mathrm{H}_{\mathrm{T}}} = \left(\frac{c_{\mathrm{a}}}{c}\right)^{2} \left\{ \left(\Delta c_{\mathrm{h}}\right)_{\delta} \left[1 - \frac{1}{\Delta \mathbf{x}_{\mathrm{o}}/\Delta \tilde{c}_{\mathrm{a}}} \frac{\left(\Delta c_{\mathrm{h}}\right)_{\alpha}}{\left(\Delta c_{\mathrm{h}}\right)_{5}}\right] \right\} \quad (5)$$

A typical value of 1/5 is given for n in reference 1. The value corresponds to several wing-alleron combinations, one of which is a wing with an aspect ratio of 9 and with a 0.20c alleron having an equal up-and-down deflection and extending from 55 percent semispan to the wing tip. The value $n = \frac{1}{5}$ was used in equation (5). The method of analysis used herein is considered suitable for comparing the relative merits of the three allerons.

The analysis is presented in the form of the equivalent change in section angle of attack $\Delta \alpha_{n}$ required to

maintain a constant section lift coefficient for various deflections of the aileron from neutral. The hinge-moment Δc_{H_T} which is the netter of the increase. which is the ratio of the increment parameter $\Delta \alpha_0 / \Delta \delta_a$ in hinge-moment coefficient in steady roll (equation (5)) to the aileron effectiveness, is plotted against the equivalent change in angle of sttack. The method of analysis takes into account the aileron effectiveness. the hinge moment, and the possible mechanical advantage between the controls and the eilerons. The span of the ailerons and possible effects of three-dimensional flow are not considered except as indicated in equation (5). The smaller the value of the hinge-moment parameter for a given value of Δa_0 , the more advantageous the combination should be for providing a lower control force for a given helix angle of the wing tip $\frac{pb}{2v}$.

<u>Plain aileron</u>. In order to compare the plain ailerons of different contour, values of the hinge-moment parameter $\Delta c_{\rm H}$

 $\Delta \alpha_0 / \Delta \delta_a$ are plotted against $\Delta \alpha_0$ in figure 23. Figure 23

indicates that thickening and beveling the trailing edge of the aileron would improve the control-force characteristics of a sealed-gap 0.20c plain aileron. The application of standard roughness to the airfoil causes the hingenoment parameter to decrease in magnitude for small values of Δa_0 and to increase for large values of Δa_0 .

<u>Balanced eileron</u>. - For congruinens of the three ailerons of different contour with scaled internal balance, the effects of small changes in the pressure difference across the aileron scal and changes in wing roughness are important. For a conservative design, the internally balanced aileron should be so proportioned as to avoid overbalance when the wirg has the roughest surface that would be expected in service. For the airfoil with standard leading-edge roughness, the chord of overhang cb necessary to balance each aileron to $c_{h_{OT}} = -0.001$

was computed by means of the following equations:

 $+ \frac{P_{\delta}}{2} \left| \left(\frac{c_{b}}{c_{a}} \right)^{2} - \left(\frac{t/2}{c_{a}} \right)^{2} \right|$ (6) = c_{hôno} balance ^ch_ôbalance

ł

$$c_{h_{\alpha_{balance}}} = c_{h_{\alpha_{no} balance}} + \frac{F_{\alpha}}{2} \left[\left(\frac{c_{b}}{c_{a}} \right)^{2} - \left(\frac{t/2}{c_{a}} \right)^{2} \right] \quad (7)$$

$$c_{h_{\delta_{T}}} = c_{h_{\delta}} \left(1 - \frac{1}{5} \frac{c_{h_{\alpha}}}{c_{h_{\delta}}} \right)$$
(3)

The computed overhangs c_b/c_a were 0.536, 0.531, and 0.396, respectively, for the true-contour, straight-sided, and beveled ailerons. The hinge-moment coefficients for the anglo-of-attack and aileron-deflection ranges were then calculated from the data on the hinge-moment and seal-pressure-difference coefficients for the plain aileron by use of equations (1) and (2). The approximate limiting deflections of the three scaled internally balanced ailerons of true airfoil contour, straight sides, and a beveled trailing edge were $\pm 15^{\circ}$, $\pm 15^{\circ}$, and $\pm 20^{\circ}$, respectively. The maximum deflections were limited by the lengths of the scaled internal balances.

For comparison of three sealed internally balanced ailerons, values of the hinge-moment parameter

40-<u>ت</u>م are plotted against Δa_0 in figure 24. Δα./Δδ. Figure 21 shows that the streight-sided alleron should provide the smallest control force of the three sealed internally balanced allerons. The order of merit of the three allerons changed when the internal balance was added because of the effects of aileron contour on the available seal-pressure-difference coefficient at the higher aileron deflections. For a wing with a smoother surface than that for which the conservative amount of sealed internal balance was determined. the control force for the straight-sided aileron would change the least of the three allerons. This small change in the control force for the straightsided sileron can be seen in figure 24 by a comparison of ∆c_Hπ for the smooth airfoil with those the values of $\Delta a_{0} / \Delta \delta_{0}$ for the airfoil with stunderd leading-edge roughness.

1

Lift

The effects of aileron contour, Reynolds number, and standard airfoil leading-edge roughness on the lift-curve slope $c_{l_{\alpha}}$ for the NACA 65_1 -210 airfoil section with the aileron neutral are shown in table II. A study of table II shows that $c_{l_{\alpha}}$ is changed by either roughness or Reynolds number by less than 2 percent regardless of the aileron contour. A roduction in lift-curve slope, however, of approximately 2 and 7 percent, respectively, resulted when the aileron was changed from the true airfoil contour to straight sides or to a beveled trailing edge.

A comparison of figures 3, 10, and 16 shows that for the airfoil with smooth surfaces the maximum section lift coefficient of the NACA 65-210 airfoil section with the aileron neutral was approximately 5 percent less for the model with the straight-sided or Leveled ailerons than with the true-contour eileron. This loss in maximum section lift coefficient is attributed to the change in camber over the rear part of the airfoil section caused by the aileron-contour modification. A comparison of figures 7, 13, and 19 shows that, for the airfoil with standard leading-edge roughness, the maximum section lift coefficient was the same for the true-ccutour and straightsided ailerons but that the maximum section lift coefficient for the beveled aileron was less than that for the true-contour eileron.

Pitching Moment

The effect of aileron contour on the airfoil section pitching moment is snown in table II and figure 22. The rate of change of $c_{me}/4$ with c_i becomes less negative, which corresponds to a forward shift in the aerodynamic center, as the aileron contour is changed from the true airfoil contour to straight sides or to a beveled trailing edge. This change in aerodynamic center agrees with the results of references 5 and 6. An increase in the Reynolds number from 1 × 10⁶ to 9 × 10⁶ had no appreciable effect on the variation of $c_{me}/4$ with δ_{a} at a constant section lift coefficient of 0.20⁶ (fig. 22).

Because the changes in section pitching moment of an sirfoil induced by aileron deflection are of primary importance in determining the lateral-control reversal speed, the variation of the increment in section pitchingmoment coefficient ^{∆c}mc/4 with the equivalent change in section angle of attack required to maintain a constant section lift coefficient was plotted for the three ^{∆c}mc/4 ailerons (fig. 25). The variation of with Δa was approximately the same for the three ailerons tested (fig. 25). The rate of change of 4cmc/4 with Δa_{α} is 0.0205, which agrees with the theoretical and experimentel values given in reference 7.

Drag

The effect of eileron contour on the airfoil section profile-drag coefficient is presented in figure 26. With the aileron neutral, changes in the aileron contour within the range investigated show no significant effect on the airfoil section profile-drag characteristics.

The variation of airfoil section profile-drag coefficient c_{d_0} with section angle of attack a_r for various alleron deflections is presented in figure 6 for the true-contour alleron at Reynolds numbers of 1×10^6 and 9×10^6 . At a Reynolds number of 9×10^6 , a lowdrag " bucket" was realized at all alleron deflections (fig. 6). Because the change in c_{d_n} with alleron con-

tour was small with the aileron neutral, the section profile-dreg characteristics of the airfoil with either the straight-sided or beveled dileron deflected would probably be the same as for the airfoil with the truecontour aileron.

CONCLUSIONS

A two-dimensional wind-tunnel investigation was made of an NACA 651-210 airfoil equipped with three interchangeable sealed-gap 0.20-airfoil-chord plain ailerons of different contour. The airfoil was tested with smooth surfaces and with standard leading-edge roughness. The data obtained indicated the following conclusions:

1. Changing the eileron contour by thickening or beveling the trailing edge would cause

L NACA ACR No. 15F27

(a) The alleron section effectiveness parameter $a_{\tilde{\mathbf{0}}}$ to decrease

(b) The rate of change of alleron section hinge-moment coefficient $c_{\rm h}$ with both section angle of sttack $a_{\rm h}$ and alleron deflection $\delta_{\rm g}$ to increase positively

(c) The rate of charge of section lift coefficient c_1 with section angle of attack a_0 to decrease

(d) The maximum section lift coefficient to decrease

(e) The corodynamic center to shift forward

(f) The increment of section ritching-moment coefficient induced by aileron deflection at constant lift to remain the same

(g) The section profile-drag coefficient with the fileron neutral to retain substantially unaffected throughout the section angla-of-attack range

2. The application of roughness to the leading edge of the airfoil would accentuate the belancing action of the aileron and the loss in aileron effectiveness caused by beveling the aileron treiling edge.

3. The affect of alleron contour on the hings romants of sealed internally balanced allerons, as computed from data on the hinge-moment and seal-pressure-difference coefficients of plain allerons, showed an appreciable effect of alleron contour on the hinge moments at large alleron deflections even though all three allerons were computed to have the same hinge-moment slope at small deflections.

Langley Perorial Abronautical Esborstory National Advisory Cosmittee for Aeronautics Langley Field, Va. 60

REFERENCES

- Gates, S. B., and Irving, H. B.: An Analysis of Aileron Performance. 4652, S. & C. 1154, Rep. No. B.A. 1624, British R.A.E., July 1940.
- Abbott, Ira H., von Doenhoff, Albert E., and Stivers, Louis S., Jr.: Surmary of Airfoil Data. NACA ACR No. L5C05, 1945.
- Ames, Milton B., Jr., and Sears, Richard I.: Determination of Control-Surface Characteristics from NACA Plain-Flap and Tab Data. NACA Rep. No. 721, 1941.
- 4. Purser, Paul F., and Gillis, Clarence L.: Preliminary Correlation of the Effects of Reveled Trailing Edges on the Hinge-Yomant Characteristics of Control Surfaces. NACA CB No. 3E14, 1943.
- 5. Grane, Robert V., and Holtzclaw, Ralph W.: Wind-Tunnel Investigation of Ailerons on a Low-Drag Airfoil. I - The Effect of Aileron Profile. NACA ACE No. 4414, 1944.
- Purser, Paul E., and Johnson, Harold S.: Effects of Trailing-Edge Vodifications on Pitching-Voment Characteristics of Airfoils. NACA CB No. 14730, 1944.
- 7. Purser, Paul E., and McKinney, Elizabeth G.: Comparison of Pitching Moments Produced by Plain Flaps and by Spoilers and Some Aerodynamic Characteristics of an NACA 23012 Airfoil with Various Types of Aileron. NACA ACR No. L5024a, 1945.

17

وخيافات نوعا بانداف

8-----

TABLE I

ORDINATES FOR NACA 651-210 AIRFOIL SECTION

[Stations and ordinates given in percent of airfoil chord]

Upper	surface	Lower surface				
Station	Ordinate	Station	Ordinate			
$\begin{array}{c} 0\\ .435\\ .678\\ 1.169\\ 2.408\\ 4.898\\ 7.394\\ 9.899\\ 19.909\\ 24.921\\ 29.936\\ 34.951\\ 39.968\\ 450.0014\\ 50.027\\ 65.036\\ 70.045\\ 85.038\\ 95.014\\ 85.028\\ 95.014\\ 100.000\end{array}$	$\begin{array}{c} 0 \\ . & 819 \\ . & 999 \\ 1.273 \\ 1.757 \\ 2.491 \\ 3.069 \\ 3.558 \\ 4.938 \\ 5.338 \\ 5.3937 \\ 5.937 \\ 5.937 \\ 5.962 \\ 5.217 \\ 4.128 \\ 5.217 \\ 4.128 \\ 5.217 \\ 4.128 \\ 5.217 \\ 4.128 \\ 5.217 \\ 1.322 \\ 0 \end{array}$	$ \begin{array}{c} 0 \\ $	$\begin{array}{c} 0 \\719 \\859 \\ -1.059 \\ -1.3859 \\ -2.221 \\ -2.521 \\ -2.521 \\ -2.521 \\ -2.521 \\ -3.608 \\ -3.608 \\ -3.9925 \\ -3.809 \\ -3.9869 \\ -3.9268 \\ -3.9258 $			
L.E. radius: 0.687 Slope of radius through L.E.: 0.08425						
NATIONAL ADVISORY						

IACA
ACR
No.
L5F27

ទីភ្

TABLE II SECTION PARAMETERS MEASURED AT $\alpha_0 = 0^\circ$ AND $\delta_a = 0^\circ$														
			• •	÷	EXCEPT	FOR $\left(\frac{1}{4}\right)$	$\left(\frac{\Delta a_{o}}{\Delta \delta_{a}}\right)_{\delta_{a}} = \pm 20^{\circ}$	MEASURED AT	o _l = 0.20	D AND C	e _l = 0.	.80		
Surface			R	cla	°ı́s	αδ	$\overline{\left(\frac{\Delta a_{0}}{\Delta \delta_{a}}\right)_{\delta_{a}} = \pm 20^{\circ}}$	$\left(\frac{\Delta a_{0}}{\Delta \delta_{a}}\right)_{\delta_{a}=\pm 20^{0}}$	°ha	c _{hō}	^P α,	*Po	°ma	° _{mõ}
(1)							(2)	(3)						
True-contour aileron														
Smooth	9	×	106	0.108	0.052	-0.472	-0.455	-0.449	-0.0066	-0.0136	0.025	0.075	-0.0017	-0.0100
Rough	9	×	106	.107	.049	450	428		0062	0122	.024	.075		
Smooth	1	×	106	•106	.053	490	480		0092	0134			0008	0100
·							Straig	ht _w sided aile	ron		•			
Smooth	9	×	106	0.106	0.050	-0.465	-0.465	-0.480	-0.0050	-0.0112	0.029	0.074	-0.0007	-0. 0094
Rough	9	×	106	.105	.047	450	435		0040	0110	.025	.074		*****
Smooth	1	×	106	.105	.051	485	480		0071	0113			0002	0104
				L - <u></u>	L	I	Ве	veled alleron						
Smooth	9	x	106	0.100	0.046	-0.460	-0.459	-0.470	0.0069	-0.0070	0.026	0.079	0.0010	-0.0086
Rough	9	×	106	.100	.042	415	400		.0019	0059	.024	.077		••
Smooth	1	×	10 ⁶	•099	.047	475	454		0027	0100	•••		0001	 0098

¹"Smooth" and "Rough" refer to the airfoil with aerodynamically smooth surfaces and with standard leading-edge roughness.

 ${}^{2}c_{l} = 0.20.$ ${}^{3}c_{l} = 0.80.$

. W

NATIONAL ADVISORY COMMITTEE FOR A ERONAUTICS

Figure 1.- NACA 651-210 airfoil section with aileron, as tested in the Langley two-dimensional low-turbulence pressure tunnel.

ч

jg

NACA

ACR

No.

L5F27

). .

Des

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Fig. 2

(a) $R = 1 \times 10^6$.

Figure 3 .- Lift and pitching-moment characteristics of an NACA 651-210 airfoil section equipped with a sealed-gap 0.20c plain aileron of true airfoil contour. Tests, TDT 847, 849, and 850.

Ð

(b) $R = 9 \times 10^6$.

Figure 3 .- Concluded.

Fig. 3b

э.

Fig. 4a

Figure 4 .- Concluded.

NACA ACR No. L5F27

Fig. 4b

(a) $R = 1 \times 10^6$.

Figure 5... Pressure difference across the gap seal of a 0.20c plain aileron of true airfoil contour on an NACA 651-210 airfoil section. Tests, TDT 847 and 848.

(b) $R = 9 \times 10^6$.

Figure 6.- Drag characteristics of an NACA 651-210 airfoil section equipped with a sealed-gap 0.20c plain aileron of true airfoil contour. Tests, TDT 845, 847, and 848.

Fig. 6

ã

(b) $R = 9 \times 10^6$.

Figure 6 .- Concluded.

Fig. 6b

NACA ACR No. L5F27

Figure 7.- Lift characteristics of an NACA 65_1 -210 airfoil section equipped with a sealed-gap 0.20c plain aileron of true airfoil contour. Standard leading-edge roughness; $R = 9 \times 10^6$; test, TDT 869.

Figure 8.- Hinge-moment characteristics of a sealed-gap 0.20c plain aileron of true airfoil contour on an NACA 65_1 -210 airfoil section having standard leading-edge roughness. R = 9×10^6 ; test, TDT 868.

Fig. 8

en .

Figure 9.- Pressure difference across the gap seal of a 0.20c plain aileron of true airfoil contour on an NACA 65_1 -210 airfoil section having standard leading-edge roughness. R = 9 × 10⁶; test, TDT 869.

Figure 10.- Lift and pitching-moment characteristics of an NACA 651-210 airfoil section equipped with a sealed-gap 0.20c plain aileron with straight sides. Tests, TDT 854, 861.

Fig. 10b

(b) $R = 9 \times 10^6$. Figure 10.- Concluded.

Figure 11.- Hinge-moment characteristics of a sealed-gap 0.20c plain aileron with straight sides on an NACA 651-210 airfoil section. Tests, TDT 852 and 860.

Fig. 11b

Figure 11.- Concluded.

(a) $R = 1 \times 10^6$.

Figure 12.- Pressure difference across the gap seal of a 0.20c plain aileron with straight sides on an NACA 65_1 -210 airfoil section. Test, TDT 85_4 .

(b) $R = 9 \times 10^6$. Figure 12.- Concluded.

Fig. 13

Figure 13.- Lift characteristics of an NACA 65_1 -210 airfoil section equipped with a sealed-gap 0.20c plain aileron with straight sides. Standard leading-edge roughness; $R = 9 \times 10^6$; test, TDT 864.

Figure 14.- Hinge-moment characteristics of a sealed-gap 0.20c plain aileron with straight sides on an NACA 65_1 -210 airfoil section having standard leading-edge roughness. R = 9 × 10⁶; test, TDT 863.

Ŗ

Figure 15.- Pressure difference across the gap seal of a 0.20c plain alleron with straight sides on an NACA 65_{1-210} airfoil section having standard leading-edge roughness. $R = 9 \times 10^6$; test, TDT 864.

Fig. 15

W

Figure 16.- Lift and pitching-moment characteristics of an NACA 651-210 airfoil equipped with a sealed-gap 0.20c plain aileron with beveled trailing edge. Tests, TDT 858, 859.

Fig. 16b

(b) $R = 9 \times 10^6$.

Figure 16 .- Concluded.

(a) $R = 1 \times 10^6$.

Figure 17.- Hinge-moment characteristics of a scaled-gap 0.20c plain aileron with beveled trailing edge on an NACA 651-210 airfoil section. Test, TDT 862.

(b) $R = 9 \times 10^6$. Figure 17 .- Concluded.

(a) $R = 1 \times 10^6$,

Figure 18.- Pressure difference across the gap seal of a 0.20c plain aileron with beweled trailing edge on an NACA 651-210 airfoil section. Test, TDT 859.

Fig. 18b

(b) $R = 9 \times 10^6$. Figure 18.- Concluded.

Figure 19.- Lift characteristics of an NACA 65_1-210 airfoil section equipped with a scaled-gap 0.20c plain aileron with beyeled trailing edge. Standard leading-edge roughness; $R = 9 \times 10^6$; test, TDT 866.

Figure 20.- Hinge-moment characteristics of a sealed-gap 0.20c plain aileron with beveled trailing edge on an NACA 65_1 -210 airfoil section having standard leading-edge roughness. R = 9 × 10⁶; test, TDT 865.

Figure 21.- Pressure difference across the gap seal of a 0.20c plain alleron with beveled trailing edge on an NACA 65_1 -210 airfoil section having standard leading-edge roughness. R = 9 × 10⁶; test, TDT 866.

-

Figure 22. - Variation of aerodynamic characteristics with aileron deflection at a constant section lift coefficient of 0.20 for an NACA 651-210 airfoil section equipped with three interchangeable sealed-gap 0.20c plain ailerons of different contour.

Fig. 22b

Fig. 22c

Figure 22.- Concluded.

Fig. 23a,b

(b) Airfoil with standard leading-edge roughness.

Figure 23.- Variation of the hinge-moment parameter $\frac{\Delta c_{H_{T}}}{\Delta a_{o}/\Delta\delta_{a}}$ with equivalent change in

section angle of attack required to maintain a constant section lift coefficient of 0.20 for deflection of sealed-gap 0.20c plain allerons of different contour on an NACA 65_{1} -210 airfoil section. R = 9 × 10⁶.

(b) Airfoil with standard leading-edge roughness.

```
Figure 24.- Variation of the hinge-moment parameter \frac{\Delta c_{\rm H_T}}{\Delta a_0/\Delta \delta_{\rm R}}
```

with equivalent change

in section angle of attack required to maintain a constant section lift coefficient • of 0.20 for deflection of sealed 0.20c internally balanced ailerons of different contours on an WACA 65_1 -210 airfoil section. R = 9×10^6 . The second se

Figure 25.- Variation of increment of section pitching-moment coefficient of an NACA 651-210 airfoil section with equivalent change in section angle of attack required to maintain a constant section lift coefficient of 0.20 for deflection of the three sealed-gap 0.20c plain ailerons of different contour. R = 9 × 106.

Figure 26.- Effect of aileron contour on the section profile-drag coefficient of a. NACA 65_1 -210 airfoil section equipped with sealed-gap 0.20c plain ailerons. $\delta_a = 0^\circ$; $R = 9 \times 10^6$.

· · · · · · · · · · · · · · · · · · ·	
TITLE: Two-Dimensional Wind-Tunnel Investigation of 0.20-Airfoil-Chord Plain Allerons of Different Contour on an NACA 65 -210 Alreraft Section AUTHOR[5] : Underwood, W. J.; Braslow, A. L.; Cahili, J. F. ORIG. AGENCY : Langley Memorial Aeronautical Laboratory, Langley Field, Va. PUBLISHED BY : National Advisory Committee for Aeronautics, Washington, D. C.	ATI- 7919
ean boot class courner calculate in 2213 Rubinanoes Dec '45 Unclass U.S. English 56 photos, tables, graphs ABSTRACT:	
Effects are given of aileron contour on the section aerodynamic characteristics of th aileron. Results show that thickening or beveling of the aileron trailing edge would d aileron effectiveness, the rate of change of section lift coefficient with section angle the maximum section lift coefficient. It would increase the rate of change of section coefficient with both section angle of attack and aileron deflection.	e airfoil and ecrease the of attack, and binge-moment
DISTRIBUTION: All requests for copies must be addressed to: Publishing Agency	
DIVISION: Aerodynamics (2) '' SECTION: Wings and Atriotis (6) ' SUBJECT HEADINGS: Atterns - Aerodynamics (03201) Atterns - Effectiveness (03205)	
ATI SHEET NO.:	
Control Air Documents Office AIR TECY INDEX	