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INTRODUCTION

This document contains reproductions of the technical papers
presented at the NACA — University Conference on Aerodynamics held
at the Langley Aeronautical Iaboratory nn June 21, 22, and 23, 1948,
The conference was held in recognition of the difficulties, imposed
by security restrictions, in keeping abreast of the rapid advances
in aerodynamics. The papers were prepared to review the status of
- a number of fields of interest, to summarize the more important
wartime advances that are no longer classified, and to orient
reference material for Tigther study.

The papers in this document are in the same form in which they
were presented at the conference so that distribution of them might
be prompt. The original presentation and this record are considered
as complementary to, rather than as substitutes for, the Committee's
system of complete and formal reports.

A 1ist of the conferees is included.
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STABILITY OF THE LAMINAR BOUNDARY IAYER
By Neal Tetervin

Langley Asronautical Laboratory

This paper treats the stability theory for the laminar boundary
layer and its applications. First, a short history of the theory similar
to that in a paper by Pillow (reference 1), which contains a comprehensive
list of references, is glven; then, an outline of the theory for ,
incompressible flow (reference 2) is presented. This is followed by a
summary of the recent applications of the theory for incompressible flow.
Finally, the results of investigations concerming the effect of com—
pressibility and the effect of curvature on the stability of the laminar
boundary layer is summarized.

In Prandtl®s paper of 1904 (reference 3) s which founded boundary—
layer theory, the reglion of flow around a body was divided into two parts.
One region includes almost the entire flow fleld and has the property
that the viscosity of the fluid in this reglon has no effect on its
motion. The other reglon is a narrow one next to the body where the
fluild velocity rises rapidly from zero at the surface to a value which
then changes slowly or not at all with further Increase in distance from
the surface. The narrow region in which the welocity changes so rapidly
that the viscous forces are not negligible even in fluids of small
viscosgity is called the boundary layer. To this boundary layer can be
traced the origin of the differences between the behavior of bodles in
real and in nonviscous fluids.

Boundary layers are generally clasgified as either laminar or
turbulent. Iaminar flow is defined as one in which almost all of the
interchange of momentum between adjacent layers of flowing fluid takes
place by molecular diffusion (reference 4). At the stagnation point of
a body and usually for some distance downstream, the flow in the boundary
layer i1s laminsr. Far enough from the stagnation point, however, the
flow in the boundary layer changes from the smooth laminar flow to a
violently fluctuating one — the turbulent flow. As shown in figure 1,
the turbulent flow is associated with a different msmner of increase of
the average velocity with distance from the surface and with a higher
skin friction. The sgkin friction for turbulent flow is usually several
times the skin friction for laminar flow.

In normel flight attitudes the profile drag of wings and fuselages
is almost directly proportional to their skin friction. It is thus
possible to reduce greatly the drag of ailrcraft by so constructing them
that extensive regions of laminar flow can exist. One method is to
design shapes that are favorable for long lengths of laminar flow;
another is to act directly upon the laminsr boundary layer. The first
method has led to the NACA 6-series airfoils (reference 5); the second

which includes various types of suction and blowing is still in the
relatively early stages of development (reference 6). The close connec—
tion between alrcraft drag and the type of flow in the boundary layer
thus maskes 1t important to understand how the change from laeminar to



turbulent flow occurs. Such an understanding may eventually lead to
aircraft with considerably lower drag (reference 7).

The change from laminsr to turbulent flow is known as transition.
Several causes of transition are (1) disturbances that originate in the
outer gtream such as those that occur when the free stream is turbulent,
(2) disturbances introduced into the laminar boundary layer itself, for
example, by surface roughness, and (3) a rising static pressure in the
direction of flow that causes a complete reversal of the flow and eddies
near the surface. Historically the subject first attracted attention
because an apparently smooth flow would suddenly become turbulent.

It is interesting to note that the problem of the stability of
laminar flow drew the attention of investigators years before modern
aeronautics and boundary—layer theory began. The first recorded
suggestion that the Navier-Stokes equation of motion might have unstable
golutions was made by Stokes in 1843 (reference 8). Twenty—five years
later Helmholtz (see reference 1l of reference 1) .showed that, in a
nenviscous fluid, surfaces across which shere was a discon‘ti_nuity in
the velocity were inherently unstable. Rayleigh (reference 9) was the
first to really attack the problem. He published his first paper on
the subject of stability in 1879 and his last on thé same subJject
thirty-five years later (references 10 and 11). Rayleigh investigated
the stability of various hypothetical velocity distributions with the
effect of viscosity on the disturbed motion neglected.

In 1883, Reynolds (see reference 48 of reference 1) published the
results of his classic experiments on the transition from laminar to
turbulent flow in pipes. Iater, in 1895 (reference 12), he investigated
the transition problem theoretically by seeking to determine the smallest
Reynolds number above which an arbitrary disturbance would increase
initially. The work was criticized by Sharpe in 1905 (see reference L6
of reference 1) and by Lorentz (see reference 29 of reference 1) in 1907
on the ground that the critical Reynolds number depended strongly on
the form of the disturbance. Between 1907 and 1909, Orr (reference 13)
improved Reynolds?! method by using the calculus of variations to find
the largest Reynolds number below which all disturbances decrease. Orr's
work, however, has in turm been criticized because it allows all
disturbances and, therefore, gives critical Reynolds numbers that are
mich smaller than those observed for quiet flows.

In 1908, .a short time after Orr's work was publisghed, Sommerfeld
(see reference 26 of reference 1) independently set up the problem for
the two-dlimensional flow in which the velocity i1s parallel to the wall
and is dependent only on the distance from the wall. Sommerfeldls
and Orr's investigations formed the basis of the work leading up to the
present theory of boundary-layer instebility. During the following
years, Von Mises (see references 27 and 28 of reference 1) and Hopf
(reference 1), by making use of the work of Orr and Sommerfeld, found



plane Couette flow, the flow which exists when two parallel planes
separated by fluid slide past one another, to be stable for all the
Reynolds numbers that were investigated. For the plane Couette flow
the velocity varies directly with the distance from the wall.

Taylor, in 1923, (reference 15) investigated the Couette motion
between rotating cylinders theoretically and checked the results
experimentally. In contrast to most of the work on plame flows where
the disturbances were assumed to be two dimensional, Taylor's theory
was based on three—dimensional disturbances. For a number of years
Taylorts work was a high-water mark in the understanding of the break—
down of laminar flow.

In 1924, Heisenberg (reference 16) successfully studied the stability
of a variable continuous vorticity distribution by making use of the
work of Orr and Sommerfeld. As an example he showed that plane
Poiseuille flow, the flow under a uniform pressure gradient between
fixed parallel planes, is unstable for sufficiently large Reynolds
numbers. This flow has a parabolic velocity distribution. Heisenberg®s
-theory was not generally accepted, perhaps, because his computations
were incomplete and rough.

The first to investigate the stability of the boundary layer was
Tiet jens (reference 17) in 1925. He replaced the velocity profile by
line segments and applied Rayleigh’s theory, taking account of viscosity
near the wall. TietJens did not obtain a critical Reynolds number for
the flat plate. The use of line segments to replace a velocity profile
had already been shown to be invalid by Heisenberg. The next to investigate
the stability of the boundary layer were Tollmien in 1929 (reference 18)
and Schlichting in 1932 (reference 19). Both used what was essentially
Heisenberg!s theory and during the 1930's developed it sufficiemtly for
use as a research tool (references 20 and 21). In 1945, Lin published
his comprehensive work on the stability of two~dimensional parallel flows.
(See reference 2.) This work made the theory more rigorous mathematically,
provided a rapid approximate means of determining the minimum critical
Reynolds number of a flow, and improved the physical picture of the
instability. In addition it provided stability limits for the flow over
a flat plate that agree better with experimental results than do the
calculations of Tollmien and Schlichting.

The following is an outline of Lin's stability theory (reference 2).
The purpose of the theory is to determine whether a particular flow is
unstable for sufficiently large Reynolds numbers, to determine the
minimum critical Reynolds number at which instability begins, and to
understand the physical mechanism of the growth or decay of disturbances.
The basic assumptions of the theory are that (1) the disturbances are
small, (2) two—dimensional disturbances alone are considered, (3) the
flow is essentially parallel to one direction (thus, the boundary—layer
approximation that the derivative parallel to the surface of any
quantity connected with the main flow is negligible compared with the



derivative normal to the surface of the same quantity is applicable),
(k) the velocity distribution normal to the surface is everywhere the
same, and (5) the boundary conditions are everywhere the same.

The development of the theory is begun by writing the Navier—Stokes
equation of motion for two—dimensional incompressible flow in a form
that uses the vorticity { and thereby eliminates the pressure. The
equation of motion then appears as: '

Oy + Vgl — VAU = VOAY : (1)
where x 1is the coordinate along the surface, y is the coordinate

normal to the surface,

oy o
Y dy
is the velocity paraellel to the surface,

oy
V=—\lfx=—é—x-

is the velocity normal to the surface,

and V is the kinematic viscosity.

The gtream function ¥ is assumed to be the sum of the streanm
function of the steady flow ¥ &and of the stream function of the
disturbance V! The introduction of the stream functions makes both
the mean and the disturbance velocities satisfy the equation of
continuity. Thus, let

¥o= ¥(x,y) + vix,y,t)
and substitute into equation (1). Then, because the disturbance is

small, terms quadratic in ¥' and its derivatives can be neglected.
Equation (1) then becomes

Dty + AV = T+ VAT, — VA = vy (2)



The flow is now assumed to be essentially parallel to the x—axis, thus
making the boundary—layer approximations applicable. Therefore, it is
permissible to neglect the x—derivative of any quantity connected with

the main flow compared with the y—derivative of the same gquantity. For

the disturbance, however, the quantities *, and ‘l”x’ which are the
disturbance velocities u' and -v* along the x— and y-exes, respectively,
are of the same order of magnitude. After making the boundary—layer
approximation, equation (2) becomes

3 .
oty + YAt~ Vy é‘% = voayt (3)
' dy

The approximation that the velocity distribution normal to the wall is
independent of x now makesg it permissible to use the local values at a

2. ~
given value of x for WU = oF _ ¥_ and for o _ O3y. Equation (3)
oy 7 352 dy3
then beccmes * ,
Fu(y) o
oyt + u(y)ay'y - ; g Vi = vAAy! (%)
Y

A main flow with an arbitrary distribution of velocity u(y) is now
assumed to exist between two parallel plames y =y; and y = Yyo. Then
the disturbance stream function ¥*(x,y,t) must be made to satisfy

both equation (4) and the conditions u' =v?* =0 at y = y; emd y=yp

where u' and v! are the disturbance velocities. The disturbance
stream function is now assumed to be given by

1[!' - ¢(y)eia(x;ct )

vhere ¢ disturbance amplitude function

: 21
Qa4 =
Wave length of disturbance

x coordinate along the plate

t time

and c¢ 1is complex; the real part of c, that is, cn, 1s the velocity
with which the disturbance moves downstream; and the imaginary part of
c, that is, c;, determines whether the disturbance dies out (c; < O)

does not change with time (c; = 0), or increases in amplitude with
time (c; > 0)

3



After all the veloclities have been referred to a reference veloqity U
and all lengths, to a reference 1éngﬁh 1, a Reynolds number R =
has been defined, and the equation for ¥?' has been used, equation (L)

becomes the llnearized differential equatlon for ¢(Y) Whlch is known
as the Orr-Sommerfeld equation.

u-—c ———-— 2 = - ¢ a2 éfg aﬁ')
(3 - c) 99 —<ay dauts 2L, (5)

Equation (5) is a homogoneous, linear, ordinary differential
equation of the fourth order. Its solution is

§ = Cify + Coffp + Caffy + Cufy (6)

vhere the @'s are particular solutions and the C!s are constants of
integration.

The four boundary condltions which are independent of x and which -
migt be satisfied are

-

It
o .

¢(Y1)
¢(Y2)

that is, v' =0 at y=y; and y =y, and

<§§2ﬁl
@ -

that is, ut* =0 at y-= y; and y = yo.

il
o -

]
o
\

(7)




When these boundary conditions are used with equation (6), the result
is the determinant :

$G) Bl #61) | BGn)

6 (2)  folv)  F302)  Aulsp)

2, @@ @ e
& d‘”ﬁ) &, d"“)y

2

which involves the solution of equation (5). After the functions ¢1 R
o 5253,~ end @, which contain the paramsters «, R, and c have

been determined with sufficient precision, which is a very involved
process, the determinant (8) is written out and the real and imaginary
parts equated to zero. The result is two real equations involving the

parameters «, R, c,,, &and cy. If cy 18 made zero and c, 1is

eliminated between the two real equations, the result is a relation
between o and R. This relation between a, &a quantity inversely
proportional to the wave length of the disturbance, and R, +the Reynolds
number, defines the meutral curve along which the disturbances are
nelther damped nor amplified. The curve divides the «o,R—plane into

a stable region and an unstable region. The smallest value of the
Reynolds number for which amplification can occur is called the minimm
critical Reynolds number. Above the minimum critical Reynolds number,
disturbances in the correct frequency range are amplified and, if they
grow large enough, cause transition to turbulent flow. ILin has found
that all velocity dlstributions of the symmetrical type and of the
boundary—layer type are unstable for sufficiently large, but finite,
Reynolds numbers. In his paper, Lin has given a useful approximate rule
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for the determination of the minimum critical Reynolds number; the

rule is
25(0

where

and where c¢ is equal to the value of u for which

Ué is the velocity at the edge of the boundary layer, & 1is the thick-—
ness of the boundary layer, and subscript 1 denotes "at surface." The

velocities are referred to the velocity at the boundary—layer edge and
the lengths, to the distance from the well to where u = 1.

The physical interpretation of the instability process (references 2
and 22) is that the viscosity shifts the phase between the x— and
y—components of the disturbance in such a way that energy is drawn from
the main flow and builds up the amplitude of the disturbance.

The validity of the assumption that for a parallel flow it is
necessary to investigate only two—dimensional disturbances was confirmed
by Squire (reference 23). In 1933 he showed that a two—dimensional
disturbance produces instability at a smaller Reynolds number than a
corresponding three—dimensional disturbance.

In 1941, Pretsch (reference 24) showed that the relations between
the parameters o, R, and c¢ are the same whether both the mean and
the disturbance velocities in the boundary layer are functions of x and
y or of y alone as assumed in the development of the theory. This
important result means that the stability of the boundary layer at any
value of x 1is dependent only on the local velocity distribution. The
present theory can therefore be used when both the velocity distribution
in the boundary layer and its thickness change along the surface.



It should be kept in mind that the theory is a small-disturbance
theory. Thersfore, conclusions drawn from it should not be applied to
cases where finite disturbances are introduced into the boundary layer.
Such disturbances are often introduced by roughness particles, which
although small, may easily produce disturbances much greater than the
vanishingly emall disturbances allowed by the theory. It should also
be noted that the theory merely predicts when infinitesimal disturbances
will begin to grow. The disturbance cannot be traced by the theory to
the stage where the disturbance has grown large enough to produce
turbulent flow. The growth of the infinitesimal disturbance takes time;
and, therefore, when transition develops from the growth of infinitesimal
disturbances, the transition point lies scme distance downstream of the
instebility point. The magnitude of the distance depends on the rate of
anmplification of the disturbance and therefore on the flow conditions.

Because of the many assumptions and because of the complexity of
the mathematical development, +the theory and its predictions were not
taken seriously by many until fairly recently. In 1943 the results of
the outstanding experimental work of Schubauer and Skramstad appeared
(reference 25). The results showed that the laminar boundary-layer
oscillations predicted by the gtability theory of Tollmien and Schlichting
not only were present but that the theory correctly predicted their
characteristics. Figure 2 shows the neutral curve calculated by Lin,
probably the most accurate calculation to date, and the experimental
points obtained by Schubauer and Skremstad for flow over a flat plate.
The circle symbols should lie on branch I; the cross symbols, on branch IT.

In Germany during the war, the theory was used to calculate stability
limits for flows in which there were small velocities through the surfacs.
For these suction or blowing flows, the same stability theory was used
as for impervious walls. This use is permissible becauss both the
equations describing the motion and the boundary conditions that have to
be satisfied by the disturbances are unchanged by small flows through
the wall. The stability limits were computed for four exact solutions
of the Prandtl boundary—~layer equations. A boundary-layer velocity
distribution must be known precisely before its stability limits can
be determined accurately. The following results were taken from a
paper by Ulrich (reference 26). The first case is the "Asymptotic Case.”
It applies to flow over a flat plate with a constant flow velocity into
the plate and concerms only the region that is so far from the leading
edge that no boundary-~layer characteristic changes with a further increase
in distance from the leading edge. For this case, the surface friction
coefficient is independent of the viscosity and, for equal boundary—layer
Reynolds numbers, is 1.75 times greater than the surface friction on the

*
plate without suction. The minimum critical Reynolds number géé—,

where &* 1is the displacement thickness, is given by Pretsch as 55,200
(reference 27) in contrast to 575 obtained by Schlichting for the flat
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plate without suction. Other German investigators have obtained the
value 70,000 for Rg* (reference 28) instead of 55,200 so that there
seems to be some differences caused by different celculating procedures.
In order to keep the boundary—layer Reynolds number alwsys less than the
minimim critical Reynolds number, and thus to keep the boundary layer

v -
stable, making the suction ratio —-ﬁ9-> 1.8 x 102 is sufficient when
o

55,200 is used for the value of Rs*cri Vo

is negative when its direction is into the plate and U, is the free—
gtream velocity.

i1s the suction velocity and

The second case is the "Constant Suction" flow. Here also, there
is a constant suction velocity through the surface of the plate, but
the entlire plate is treated and the veloclty proflles are not similar to
one znother. Near the leading edge of the plate, the profile 1s the
Blagius flat-plate profile (reference 29); but as the distance from the
leading edge increases, the profile becomes more convex and finally
approaches the asymptotic profile at large distances from the leading

-V
edge. When the suction ratlo ﬁyg >1.2 X 10_#, the flow is stable

over the entire plate. This suc%ion ratio, 1.2 X 10")+ is about seven
times the ratio necessary for stability with the asymptotic profile.

The greater suction is necessary because the velocity profiles near the
leading edge of the plate are not as stable as the more convex asymptotic
profile. Note, however, that the required suction ratio is still very
small., . The flow velocity through the plate 1s about 0.001L of the free—
stream velocity.

Another case for which the stability computations based on exact
golutiong of the boundary-layer equations were made is the one in which
the suction velocity varies inversely as VX from the leading edge of
a flat plate. The results are shown in figure 3. For this flow all
the velocity profiles are similasr to one another and change their form
only when the suction coefficient CQ is changed. The suction
coefficient is defined by

% =" Zég
o
where
1 length of plate
b width of plate
U, free—stream velocity

Q total suction quantity
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The value 575 for RS* corresponds to the value 1.1 X 102 for Rys
the value 10% for RS* corresponds .to the value 8.3 X 107 for Ry,

an increase in Rx of about 750 times. Figure 3 clearly shows that
sucking, positive CQ, increagses the stability of the flow over that

on an impervious flat plate and that blowing, negative Cgq, decreases

the stability. In general, suction increases the stability of a boundary
layer both because the houndary layer is kept thin and because the
velocity profile is made more convex.

The fourth case for which stability computations based on exact
golutions of the boundary—layer equation exist is that for the flow near
the stagnation point of a two-dimensional body which has a constant
suction or blowing velocity through its surface. The region considered
is that region where the velocity at the edge of the boundary layer
varies directly as the distance from the stagnation point. The results
are shown in figure 4. In this region U = ujx, where U is the
velocity at the edge of the boundary layer, wu; 1s a consgtent, and x is
the distance from the stagnation point measured along the surface. Here
again, all the velocity profiles are similar to one another and change in
shape only when C,, the suction coefficient, is changed. The boundary—

layer thickness is independent of x. It should be noticed that the flow

near the stagnation point has a falling pressure in the direction of the

flow; the previously mentioned flows were all for zero pressure gradient.

The increased stability caused by the falling pressure is shown in

figure 4. An amount of blowlng corresponding to C, < —3, where

Co = -/ is necessary before stability is reduced from that for no
Vuly

flow through the surface to that for the impervious flat plate. When
there 1s no flow through the surface, the boundary layer near a stagne—
tion point has a critical Reynolds number of 12,300 in contrast to the
value of 575 for the flat plate; the increase of about 20 times is
caused by the falling pressure along the surface.

In figure 5 is shown the theoretically predicted drag reduction for
two types of flow over flat plates with Just enough suction to maintain
stability; one is the "Constant Suction" case and the other is the case
for which the suction velocity is inversely proportional to ¢x. The
drag reduction is a large percentage of the drag of a plate with a
completely turbulent boundary layer and, for R, less than 10°, a
constant suction velocity is better than a suction velocity inversely
proportional to Vx. )

The skin—friction values upon which the comparison in figure 5
is based are obtained from the velocity derivative at the surface. The
sucked—in fluld remains at rest in the plate and the power required to
suck the fluid into the plate is not considered. If, however, it is
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assumed that the sucked—in fluid is ejected with free—stream total head
end that, in order to do this, total head is added to the fluid with an
efficiency of unity, then the drag reduction shown is the true drag
reduction if the total-head loss through the surface is equal to the
free—gtream dynamic pressure. If the total-head loss through the surfiace
is grester than the free—stream dynamic pressure, then the drag reduction
will be lesg than shown and vice versa. Because only small quantities

of suction air are required to maintain laminar flow, the percentage drag
reduction changes fairly slowly with a change of total-head loss through
the vlate.

These results are the sum total of the known stability computations
based on exact solutions of the laminar boundary-layer equations. The
only case directly applicable to flow about an airfoll is the stagnation-
point flow.

Before the stebility boundaries for an airfoil can be computed, the
veloclty digtributions through the boundary layer must be known. Iuring
the war, Schlichting developed an approximate method for the computation
of the leminsr boundary layer over an arbitrary two-dimensional body
with an arbitrary distribution of suction along the surface (reference 30).
The method is related to the Pohlhausen method which treats flows without
suction. Schlichting's method uses the boundary—layer momentum equation
For the casge where there is flow through the surface and assumes a one—
varameter family of curves for the boundary-layer velocity distributions.
The parameter for the veloclty distribution depends on the pressure
distribution over the body and on the suction flow through the surface.

The critical Reynolde number of a velocity profile 1s sensitive to
ity shape. Therefore, the accuracy of an approximate method, such as
Schlichting's, when the results are to be used for stability computations,
can be tested only by comparing the critical Reynolds numbers with those
from an accurate computation of the boundary layer.

The foregoing discussion was restricted to incompresgsible flow.
The problem of the stability of the laminar boundary layer in a com—
pragsible gas has, however, not been neglected. The increase in flight
speeds has given the problem practical, as well as purely scientific,
importance. .

The stability theory for compressible flow has been developed by
Iees and Lin (references 31 and 32) to about the same state as the theory
for incompressible flow. The development of the theory for compressible
flow ig similar 1Lc that for incompressible flow. In the theory for
compressible flow, however, in contrast to the theory for incompressible
flow, ithie heat snergy is important and the physical properties of the gas
are not fixed. Nevertheless, the main physical mechanism is not changed.
The stability cf a velocity distribution depends on the distribution of
the product of density and vorticity and on the effect of the viscous
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forces but not directly on the heat conductivity. The expressicn — <i :>
5 Bu\ a

for compreséible flow tekes the place of the expression =— 1

incompressible flow as an important factor in determining the utabllwty.
It is noted, however, that as yet for compressible flow there is no
rigorous proof that the two-dimensional disturbances upon which the
theory is based are more unstable than three—dimensional disturbances.

The main results of Lees? and Lins'! work can be summed up in the
following statements:

(1) When the free—stream velocity is subsonic, every laminar
boundary—layer flow is unstable at sufficiently large Revnolds numbers.

(2) At all free—stream Mach numbers the flow is unstable at
du

sufficiently large Reynolds numbers if the y derivative of p S; is
1
zero for a value of u > 1 — —.

M,

(3) An approximate expression for the minimum critical Reynolds
number is obtained, similar to the expression cbtainéd by Lin for
incompressible flow. ’

(1) As shown in figure 6 the stability of the laminar boundsry
layer on an insulated surface decreases with increase in Mach number.

At My =1, Ry roin is less than half its value at M, = O.

(5) As shown in figure 7, the ratio of the surface temperature to
the free—stream temperature has a large effect on the boundary—layer
stability. Thus, at a Mach number of 0.7 the value of the boundary—
layer Reynolds number Ry, based on the momsntum thickness as the

length, at which the boundary layer first becomes unstable increases
about hO times when the surface temperature iz changed fram 110 percent
of the free—stream temperature, the stagnation—tempersture ratio for a
Mach number of 0.7, to 7O percent of the free—sitrsam tewperature. On
the other hand, an increase of surface temperature from 110 psrcent of
the free-stream temperature to 125 percent of the {ree—strean temperature
halves the Reynolds number at which the flow becomes unsteble.

(6) At supersonic free—stream velocities, the boundary layer can
be made stable at all Reynolds numbers by maintaining the surface
temperature at a small enough fraction of the free—stream temperature.
For M > 3 at 50,000 feet altitude and for M > 2 at 100,000 feet

altltude the radiation of heat from a surface can make the retio of
the surface temperature to the free—stream temperature small enough to
engsure a stable boundary layer at all Reynolds numbers, in the absence
of an adverss pressurs gradient.
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The stability theories for both the incompressible and the compressible
laminar boundary layer, which have just been discussed, were developed far
flows in which the effects of surface curvature were negligible. Because
most aircraft components are curved, it was not clear whether the stability
theory for flat surfaces was directly applicable. The effect of curvature
on the stability of the incompressible boundary layer was investigated
theoretically by Gortler about 1940 (references 33 to 35) and experimentally
by Liepmann (references 36 and 37) in the following years.

GOrtlér found that the two—dimensionsl wavelike disturbances were
hardly affected by wall curvature. When, however, the stability of the
boundary layer on curved walls was considered by investigating the behavior
of vortices with their axis parallel to the main flow, analogous to the
Taylor vortices in flow between concentric rotating cylinders, an
instability caused by these vortices was found to be possible only on
concave walls. The effect was so large that the effect of the usual two—
dimensional disturbances was completely overshadowed. Gortlerts theory
ig, like the two-dimensional disturbance theory, a small-disturbance
theory that assumes the main boundary—layer flow to be the same over the
entire surface. Also, the boundary—layer thickness is assumed to be
small compared with the radius r of the wall. It was found, as shown

in figure 8, that the wall curvature and the Reynolds number occur in
the combination RQV@§. and that instability occurs above a value of Ry /gj

that depends on af, where o is inversely proportional to the wave
length and 6 ig the boundary—layer momentum thickness. The neutral
curve shown is for the Blasius velocity distribution. Gortler found that
the instability region was only slightly affected by the shape of the
velocity distribution through the boundary layer when the momentum
thickness 6 was used as the measure of the boundery—layer thickness.

In agreement with Gortler's theoretical work, Liepmemn found experi—
mentally that RQL/E: was the parameter defining the stability of the

boundary layer on concave surfaces. Liepmann concluded that transition

can be expected when the value of RQV@§ reaches about 9.0. It may be
observed that Gortler found the minimum critical value of R, g- to

be 0.58. Tt should be noted, however, that Liepmamn's criterion concerns
transition, whereas Gortler's concerns the stability of the boundary

layer. ILiepmann also found, in agreement with GOrtler's work, that in
contrast to flow over convex or plane surfaces, a pressure gradient

along the wall had a negligible effect on the stability of the flow over
concave walls. Thus, on convex and plane gurfaces instability of the
boundery layer is caused by the Tollmien—Schlichting waves; whereas the
ingtability on concave walls is caused by three—dimensional disturbances.
In figure 9 is shown the dependence of Reynolds number for transition Retr

on the effective curvature 6/r. The value of Retr is practically
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independent of curvature for convex walls and is about equal to the value
for the flat plate. The value of Ret for concave walls, however,
T

decreases rapidly as the effective curvature increases. The data in
figure 10 show that the experimentally determined stability limits for
the boundary layer on a convex wall and the calculated stability limits
for the boundary layer on a flat plate are about the same except at

the lowest Reynolds numbers. The upright triangles should lie on the
upper branch of the neutral curve; the inverted triangles, on the lower
branch. The neutral curve for the experimental points for r = 20 feet

and also the curve for the points for r = 2%—feet, not shown in the fig-

ure, have a slightly higher minimm critical Reynolds number than the
neutral curve for the flat plate. The reason for the difference is not
definitely known.

This paper has attempted to present a short history of the theory of
the stability of laminar flow, an outline of the theory for incompresgsible
plane flow, a sumary of the applications of the theory in combination
with suction flows, a resums of the results of the theory for compressible
plane flow, and a summary of the theoretical and experimental results for
curved flows. The stability theory based on infinitesimal disturbances
mey be regarded as experimentally verified for incompressible flow over
plane surfaces and, probably, also for curved surfaces. Experimental work
remaing to be done in verifying the stability theory for compressible
flows. An extension of the stability theory to the realm of finite
disturbances for the purpose of calculating transition points is
desirable.
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A REVIEW OF APPROXIMATE METHODS IN SUBSONIC COMPRESSIBLE FLOW
By Carl Kaplan

Langley Aeronautical Laboratory
INTRODUCTION

The purpose of this paper is to review several methods developed
in recent years for the calculation of the flow of a compressible fluid
past a prescribed body. Thess methods have evolved largely bscause of
the inherent difficulty of handling the nonlinear partial differential
equations which govern the flow of & compressible fluid. In the dis—
cussion of thegse methods several polints of mathematical interest will be
noted for possible future Investigations.’

The study of fluid—flow phenomena at high speeds requires the
congideration of compressibility and therefore of the thermodynamics of
the fluid. For a real fluild, this would be a practically impossible
problem. In this review, therefore, the fluid is considered to be a
perfect one with vanishingly small viscosity and heat conductivity. The
discussion ig confined, moreover, mainly to irrotational flow in two
dimensions with a subsonic undisturbed flow.

It is assumed that the fluld is a perfect gas so that the equation
of gtate is

P = RTp (1)

The equations of motion for ths fluid are

+ V===
ox oy P x
) (2)
ox oy P dy
Py
and the equation of continuity is
dou v
—+ =0 (3)
ox 9y
where |
X, ¥ rectangular coordinates in plane of flow
u, v components of velocity vector

P pressure in fluid
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o density of fluid
T temperature of fluld
R gas constant

With the assumption of vanishingly emall viscosity and heat
conductivity, the behavior of the fluid in motion is closely isentropic
so that p and p are related by the egquation

p = kp’ , (&) -

where 9 1s the ratio of specific heats at constant pressure and constant
volume and k 1is an arbitrary constant. The Bernoulli integral of the
equations of motion (2) then becomes

2
2 = ¢ 2|1 _l%.l;mf@?- 1> (5) .

where

. dp P
c local velocity of sound {c = ES = 75

velocity of sound in undisturbed stream

Q

magnitude of fluid velocity
U velocity of undisturbed stream

U
M Mach number in undisturbed stream (E”)

oo
oo

With the assumption of irrotationality, & velocity potential ¢ can be
introduced, where

-\

¥

> (6)

<
i
Y
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Then the elimination of p from equations (2) and (3) yields the
fundamental differential equation governing the flow; namely,

<c2 - u2> %Eg —.euv g;gj+ (ce = v2> éfg =0 (7
x

a nonlinear, second—order partial differential equation.
METHODS OF APPROXIMATE SOLUTION

The rigorous treatment of the fundamental differential equation (7)
for nonlinearized flow past closed shapes with general boundary conditions
hag up to the pressent time proved to be impossible. In place of rigorous
analytical solutions it is necessary to be satisfied in general with
approximation methods essentially based on the linearization of
equation (7). The mathematical difficulties are considerably greater for
subsonic flow (elliptic potential equation) than for supersonic flow
(hyperbolic potential equation), for which the theory of characteristics
leads to very simple approximation methods. Three of the methods which
have been utilized for subsonic flow will be described in the remainder
of this paper.

Method of Expansion in Powers of the Mach Number

In the Rayleigh—Janzen method the velocity potential ¢ is expanded
in a series of powers of Mm2,

=g+ M0 + MG, + ... (8)

where @ 1s the velocity potential of the incompressible fluid flow
and thus satisfies the boundary conditions. The appropriate form of

the differential equation for ¢¢ is obtained by rewriting equation (7T)
with the aid of equation (5). Thus
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where the symbol A denotes the Laplacian operator
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The expression for ¢ from equation (8) is then inserted in equation (9)
and coefficients of corresponding powers of M, on either side are equated,

ylelding successively the equations for ¢O’ ¢l’ eses Thus

NV

(20)

1 2] ox\ ¢2 Ua

where q, 1is the magnitude of the incompressible flow velocity.

Rayleigh (reference 1) and Janzen (reference 2) were the first to
congider the second of equations (10) and gave & series solution for ¢l

in the case of the flow past a circular cylinder. ZLater, Poggil

(reference 3) introduced a method that consists essentially in considering
the compressible fluid to be an inconpressible fluid with a continuous
distribution of sinks and sources in the entire region external to the
golid boundary. According to Poggi, the right-hand sides of equations (10)
represent successive terms in an infinite series giving this sink—source
distribution. Poggi and later Kaplan (references 4 and 5) and Imai
(reference 6) obtained the solution from this point of view for the flow
past such shapes as a circular cylinder, an elliptic cylinder, and a
Joukowegki profile with angle of attack and circulation. The calculations
proved to be extremely laborious, involving a large number of double
integrals. In order to ease the lebor involved in the original Poggi
method, Tmai and Aihara (reference 7) and Kaplan (reference 8) developed
elegant and useful methods which utilized the theory of functions of a
complex varigble. The one to be described in this review is that due to
Kaplan, which makes use of the calculus of residues. Thus, if new
independent variebles z =x + iy and Z = x — iy are introduced, the
expression for the strength of the sink—source distribution cbtained from
the right-hand side of the second of equations (10) may be written as
follows:

divr dw
1,20, g0 >dx &y (1)
Lyt \ dz o dz
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where W, and "1?0 are, respectively, the complex and conjugate complex

velocities of the Incompressible fluld past the prescribed shape; that
is, wy=-u+1iv and ?«‘o = —u — iv and these are, respectively,

functions of 2z and % ‘only, since they are obtained from solutions of
Laplace's equation. Now, the expression, equation (11), involves non-
analytic functions of z &and %. In order, however, to utilize the
methods of the calculus of residues, functions of only a single complex
variable must appear. For this purpose the plane 2z of the obstacle
ig represented conformally on the plane Z of the corresponding circle.
Since the gtrengths of the sink—source digtribution of corresponding
elements of the two planes are equal, the expresgion for the strength
of the sink—source distribution of an element of the plane Z 1I1s

1 24z a az 24z 4 az
- oW A — £ ) ax ay
L2 Yo dz dZ< o dz> dZ< z> (3=

Nl'gl

vhere W, and Wo are, respectively, the complex and conjugats complex

velobities of the incompressible fluid past the circular profile in the
plane Z. .

It is a simple matter to obtain an expression for the complex
velocity Wl induced at any point Zp external to the circular boundary

by a sink—gource distribution originating in the physical plane z and
at the same time to preserve the boundary conditions of zero normal
velocity at the circular boundary and zero induced velocity at infinity.
The essentlal fact to remember is that corresponding to a unit external
gource there is a unit source at the inverse point with respect to the
circle and a unit sink at the center of the circle. The actual
velocity w; of the fluld in the physical plane 2z 1is related to the

velocity W, at the corresponding point in the plane Z of the circle
by the equation

az
Vl = Wl E-ZT (13)

The expression for W, consists of double Integrals whose integrands

are non-analytic functions of Z and Z. The double integrations over
the entire region external to the circular boundary can be replaced by

line integrals involving functions of Z and Z only by the use of
Stokes! thsorem for the plane. Thus, it can be shown that if F(Z,Z)
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is & function of Z and 2; continuous and differentiable in the area S
enclosed by the contour C, then

j
f F(2,Z)aZ = — 2:1‘/‘@ as
C S dZ
| S (1)
fF(z,:“z‘)dz = 2ih/‘-a—§ as
c Vs oz
J

The line integrals, in the present case, are teken around the circular
boundary corresponding to the actual profile in the z-plane, around
an infinitely small circle surrounding the point at which W, 1is to

be evaluated, and around an infinitely large circle concentric with the
internal circular boundary. The important point to note 1s that, since
all the contours involved in the line integratiens are circular, the
integrands can be made analytic In Z or Z, since on a circular
boundary 2ZZ = Constant. It then follows that the line integrals can be
evaluated by means of Cauchy's theorem on residues. This theorem states
that, if a function is analytic on a contour C and throughout its
interior except at a number of poles inside the contour,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>