
i 
•   I    •  •*   ^rj 

> • -v • 

NATIONAL ADVISORY COMMITTEE 
FOR   AERONAUTICS 

(NASA-TH-80403)  HÄCÄ:  OHIVEESITY 179-79449 
CONFERENCE ON ÄEHODYNAHICS (national THEO 
Advisory Committee for Aeronautics.)  391 p        N79-79470 

Unclas 
_00/01  35404 

NACA - UNIVERSITY  CONFERENCE 

ON   AERODYNAMICS 

A COMPILATION OF THE PAPERS PRESENTED 

^ Lang ley   Aeronautical   Laboratory 

Langley   Field,   Va. 

June   21-23,   1948 

'/.- •V 

REPRODUCED BY 

NATIONAL TECHNICAL     > 
INFORMATION SERVICE/ 

U.S. DEPARTMENT OF COMMERCE 
SPRINGFIELD, VA.  22161 I 

-A\ 



NACA - UNIVERSITY CONFERENCE 

OK AERODYNAMICS 

A Compilation of the Papers Presented 

Langley Aeronautical Laboratory 
Langley Field, Virginia 

June 21-23, 19^8 





TABLE OF CONTENTS 

Page 

INTRODUCTION        v 

LIST    OF    CONFEREES.......   vii 

TECHNICAL PAPERS PRESENTED 

BOUNDARY LAYER   ......  1 

Stability of the Laminar Boundary Layer . . . 
"by Neal Tetervin   3 

SUBSONIC COMPRESSIBLE FLOW    ........  27 

A Review of Approximate Methods in Subsonic 
Compressible Flow . . . "by Carl Kaplan ........... 29 

WIND-TUNNEL-WALL CORRECTIONS  i+7 

Wind-Tunnel-Wall Corrections . . . "by S. Katzoff ........ ^9 

PROPELLER THEORY  69 

A Review cf Propeller Theory . . . by Blake W. Corson, Jr. . . . 71 

WINGS  107 

Characteristics of Wing Sections at Subcritical 
Speeds ... by Albert E. von Doenhoff and 
Laurence K. Loftin, Jr  .......... 109 

Characteristics of Wing Sections at Transonic 
Speeds ... by John Y. Becker  127 

Prediction of Wing Characteristics . . . 
by Thomas A. Toll and Franklin W. Diederich 151 

Maximum-Lift and Stalling Characteristics of 
Wings ... by James C. Si veils 167 

STABILITY AND CONTROL   .............. 185 

Factors Affecting Static Longitudinal Stability and 
Control ... by Charles J. Donlan ............. 187 

Preceding page blank iii 



Page 

Factors Affecting Lateral Stability . . . 
by John P. Campbell 203 

Dynamic Stability ... by Leonard Sternfield   231 

Flying and Handling Qualities of Airplanes . . . 
by William H. Phillips 25I' / 

HELICOPTER RESEARCH 265 

Helicopter Research Problems ... by Alfred Gessow 267 

FLUTTER . . . 287 

A Survey of Flutter  ... by I.  E. Garrick 289 

AIR ULETS ' 305 

Air Inlets  ... by Norman F. Smith 307 

SUPKRSONICS 323 

Two-Dlmensional Supersonic Wing Theory . . . 
by Walter G. Yincenti 325 

The Use of Conical and Cylindrical Fields in 
Supersonic Wing Theory ... by Robert T. Jones 3^1 

The Use of Source and Sink Concepts in the Calculation 
of Wing Characteristics at Supersonic 
Speeds ... by Clinton E. Brown. 355 

Unsteady Lift in High-Speed Flight ... by Harvard Lomax . . 367 

A Survey of Methods for the Calculation of Flow 
around Bodies of Revolution at Supersonic 
Speeds ... by Antonio Ferri . . 377 

AERODIHAMIC HEATING  . . 397 

Some Considerations of Aerodynamic Heating . . . 
bj Coleman duP. Donaldson 399 

iv 



INTRODUCTION 

This document contains reproductions of the technical papers 
presented at the NACA — University Conference on Aerodynamics held 
at the Langley Aeronautical Laboratory on June 21, 22, and 23, 1948. 
The conference was held in recognition of the difficulties, imposed 
"by security restrictions, in keeping abreast of the rapid advances 
in aerodynamics. The papers were prepared to review the status of 
a number of fields of interest, to summarize the more important 
wartime advances that are no longer classified, and to orient 
reference material for father study. 

The papers in this document are in the same form in which they 
were presented at the conference so that distribution of them might 
be prompt. The original presentation and this record are considered 
as complementary to, rather than as substitutes for, the Committee's 
system of complete and formal reports. 

A list of the conferees is included. 
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sTABnrrr OF THE LAMINAE BOTMDARY LAYER 

By Neal Tetervin 

Langley Aeronautical Laboratory 

This paper treats the stability theory for the laminar boundary 
layer and its applications. First, a short history of the theory similar 
to that In a paper by Pillow (reference l), which contains a comprehensive 
list of references, is given; then, an outline of the theory for 
Incompressible flow (reference 2) is presented. This is followed by a 
summary of the recent applications of the theory for incompressible flow. 
Finally, the results of investigations concerning the effect of com- 
pressibility and the effect of curvature on the stability of the laminar 
boundary layer is summarized. 

In Prandtl*s paper of 190^ (reference 3)., which founded boundary- 
layer theory, the region of flow around a body was divided into two parts. 
One region includes almost the entire flow field and has the property 
that the viscosity of the fluid In this region has no effect on its 
motion. The other region is a narrow one next to the body where the 
fluid velocity rises rapidly from zero at the surface to a value which 
then changes slowly or not at all with further increase in distance from 
the surface. The narrow region in which the velocity changes so rapidly 
that the viscous forces are not negligible even in fluids of small 
viscosity is called the boundary layer. To this boundary layer can be 
traced the origin of the differences between the behavior of bodies in 
real and in nonviscous fluids. 

Boundary layers are generally classified as either laminar or 
turbulent. Taminar flow is defined as one in which almost all of the 
interchange of momentum between adjacent layers of flowing fluid takes 
place by molecular diffusion (reference k).    At the stagnation point of 
a body and usually for some distance downstream, the flow in the boundary 
layer is laminar. Far enough from the stagnation point, however, the 
flow in the boundary layer changes from the smooth laminar flow to a 
violently fluctuating one — the turbulent flow. As shown in figure 1, 
the turbulent flow is associated with a different manner of' increase of 
the average velocity with distance from the surface and with a higher 
skin friction. The skin friction for turbulent flow is usually several 
times the skin friction for laminar flow. 

In normal flight attitudes the profile drag of wings and fuselages 
is almost directly proportional to their skin friction. It is thus 
possible to reduce greatly the drag of aircraft by so constructing them 
that extensive regions of laminar flow can exist. One method is to 
design shapes that are favorable for long lengths of laminar flow/ 
another is to act directly upon the laminar boundary layer. The first 
method has led to the HACA 6—series airfoils (reference 5)) the second 
which includes various types of suction and blowing is still in the 
relatively early stages of development (reference 6). The close connec- 
tion between aircraft drag and the type of flow in the boundary layer 
thus makes it important to understand how the change from laminar to 



turbulent flow occurs. Such an understanding may eventually lead to 
aircraft with considerably lower drag (reference 7). 

The change from laminar to turbulent flow is known as transition. 
Several causes of transition are (l) disturbances that originate in the 
outer stream such as those that occur when the free stream is turbulent, 
(2) disturbances introduced into the laminar boundary layer itself, for 
example,  by surface roughness, and (3) & rising static pressure in the 
direction of flow that causes a oomplete reversal of the flow and eddies 
near the surface. Historically the subject first attracted attention 
because an apparently smooth flow would suddenly become turbulent. 

It is interesting to note that the problem of the stability of 
laminar flow drew the attention of investigators years before modern 
aeronautics and boundary—layer theory began. The first recorded 
suggestion that the Havier-Stokes equation of motion might have unstable 
solutions was made by Stokes in 18*1-3 (reference 8). Twenty—five years 
later Helmholtz (see reference 11 of reference l) showed that, in a 
nonviscous fluid, surfaces across which "fehere was a discontinuity in 
the velocity were inherently unstable. Rayleigh (reference 9) was the 
first to really attack the problem. He published his first paper on 
the subject of stability in 1879 and his last on the same subject 
thirty—five years later (references 10 and 11). Eayleigh investigated 
the stability of various hypothetical velocity distributions with the 
effect of viscosity on the disturbed motion neglected. 

In 1883, Reynolds (see reference k8  of reference l) published the 
results of his classic experiments on the transition from laminar to 
turbulent flow in pipes. Later, in 1895 (reference 12), he investigated 
the transition problem theoretically by seeking to determine the smallest 
Eeynolds number above which an arbitrary disturbance would increase 
initially. The work was criticized by Sharpe in 1905 (see reference k6 
of reference l) and by Lorentz (see reference 29 of reference l) in 1907 
on the ground that the critical Reynolds number depended strongly on 
the form of the disturbance. Between 1907 and 1909, Orr (reference 13) 
improved Reynolds1 method by using the calculus of variations to find 
the largest Reynolds number below which all disturbances decrease. Qrr^s 
work., howevers has in turn been criticized because it allows all 
disturbances and, therefore, gives critical Reynolds numbers that are 
much smaller than those observed for quiet flows. 

In 1908, a short time after Orr's work was published, Sommerfeld 
(see reference 26 of reference l) independently set up the problem for 
the two-dimensional flow in which the velocity is parallel to the wall 
and is dependent only on the distance from the wall. Sommerfeld*s 
and 0rrfs investigations formed the basis of the work leading up to the 
present theory of boundary—layer instability. During the following 
years, Ton Mises (see references 27 and 28 of reference l) and Hopf 
(reference 1*0, by making use of the work of Orr and Sommerfeld, found 



plane Couette flow, the flow -which exists when, two parallel planes 
separated "by fluid slide past one another , to "be stable for all the 
Reynolds numbers that were investigated. For the plane Couette flow 
the Telocity varies directly with the distance from the wall. 

Taylor, in 1923, (reference 15) investigated the Couette motion 
"between rotating cylinders theoretically and checked the results 
experimentally. In contrast to most of the work on plane flows where 
the disturbances were assumed to "be two dimensional, Taylorfs theory 
was "based on three-dimensional disturbances. For a number of years 
Taylor18 work was a high^water mark in the understanding of the break- 
down of laminar flow. 

In 192h,  Heisenberg (reference l6) successfully studied the stability 
of a variable continuous vorticity distribution by making use of the 
work of Orr and Sommerfeld» As an example he showed that plane 
Poiseuille flow, the flow under a uniform pressure gradient between 
fixed parallel planes, is unstable for sufficiently large Reynolds 
numbers. This flow has a parabolic velocity distribution. Heisenberg1s 
theory was not generally accepted, perhaps, because his computations 
were incomplete and rough. 

The first to investigate the stability of the boundary layer was 
Tietjens (reference IT) in 1925. He replaced the velocity profile by 
line segments and applied Eayleigh,s theory, taking account of viscosity 
near the wall. Tietjens did not obtain a critical Reynolds number for 
the flat plate. The use of line segments to replace a velocity profile 
had already been shown to be invalid by Heisenberg. The next to investigate 
the stability of the boundary layer were Tollmi en in 1929 (reference 18) 
and Schlichting in 1932 (reference 19)- Both used what was essentially 
Heisenberg1s theory and during the 1930*s developed it sufficiently for 
use as a research tool (references 20 and 21). In 19^5* Lin published 
his comprehensive work on the stability of two—dimensional parallel flows. 
(See reference 2.) This work made the theory more rigorous mathematically^ 
provided a rapid approximate means of determining the minimum critical 
Reynolds number of a flow, and improved the physical picture of the 
instability.  In addition it provided stability limits for the flow over 
a flat plate that agree better with experimental results than do the 
calculations of Toll mi en and Schlichting. 

The following is an outline of Lin,s stability theory (reference 2). 
The purpose of the theory is to determine whether a particular flow is 
unstable for sufficiently large- Reynolds numbers,, to determine the 
minimum critical Reynolds number at which instability begins, and to 
understand the physical mechanism of the growth or decay of disturbances. 
The basic assumptions of the theory are that (l) the disturbances are 
small, (2) two—dimensional disturbances alone are considered, (3) the 
flow is essentially parallel to one direction (thus, the boundary—layer 
approximation that the derivative parallel to the surface of any 
quantity connected with the main flow is negligible compared with the 



derivative normal to the surface of the same quantity is applicable), 
(k) the velocity distribution normal to the surface is everywhere the 
same, and (5) the "boundary conditions are everywhere the same. 

The development of the theory is begun "by writing the Navier-Stokes 
equation of motion for two—dimensional incompressible flow in a form 
that uses the vorticity £ and thereby eliminates the pressure. The 
equation of motion then appears as: 

Ai|rt + iyAtx - tjAty = VA£a|r        . (l) 

where x is the coordinate along the surface, y is the coordinate 
normal to the surface, 

U = * = & 
r dy 

is the velocity parallel to the surface, 

is the velocity normal, to the surface, 

i = — - — = -*y 
öx öy 

öx2 +Öy2 

and V ia the kinematic viscosity. 

The stream function y is assumed to be the sum of the stream 
function of the steady flow •$ and of the stream function of the 
disturbance W.    The introduction of the stream functions makes both 
the mean and the disturbance velocities satisfy the equation of 
continuity. Thus, let 

t = f (x,y) + i|f,(x,7,t) 

and substitute into equation (l). Then, because the disturbance is 
small, terms quadratic in y* and its derivatives can be neglected. 
Equation (l) then becomes 

At»t + fyAt
s
x - V^V + +V*x " *V*y = VA^' (2) 



The flow is now assumed to be essentially parallel to the x-axis, thus 
making the boundary—layer approximations applicable. Therefore, it is 
permissible to neglect the x-derivative of any quantity connected with 
the main flow compared with the y-derivative of the same quantity. For 
the disturbance, however, the quantities t'y and ifx> vhich are the 
disturbance velocities uf and —v* along the x— and y-axes, respectively, 
are of the same order of magnitude. After making the boundary—layer 
approximation, equation (2) becomes 

A*»t + iyfi+«x - +'x ^"* = V^Ai» (3) 
öy 

The approximation that the velocity distribution normal to the wall is 
independent of x now makes it permissible to use the local values at a 

given value of x for ü = -*- = f an^ for  — = T« Equation (3) 
07   7 Öy2  öy3 

then becomes « 

ö2_ü(y) 

03 
Ai|r«t + tl(y)A>|r'x —^- t'x = vAA(rf (4) 

A main flow with an arbitrary distribution of velocity u(y) is now 
assumed to exist between two parallel planes y = y^_ and y = y2. Then 
the disturbance stream function ijf,(x,y,t) must be made to satisfy 
both equation (k)  and the conditions uf = v* = 0 at y = y-,  and y = y2 
where u8 and Vs are the disturbance velocities. The disturbance 
stream function is now assumed to be given by 

t» = 0(y)eia(3Mt) 

where 0 disturbance amplitude function 

2« a =   
Wave length of disturbance 

x coordinate along the plate 

t time 

and c is complex; the real part of c, that is, cr, is the velocity 
with which the disturbance moves downstream; and the imaginary part of 
c, that is, ci, determines whether the disturbance dies out (c-j_ < 0), 
does not change with time (c1 =  0), or increases in amplitude with 
time (c± >  0) 
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After all the velocities have teen referred to a reference velocity U 
and all lengths, to a reference length 2, a Reynolds number E = 21 

has "been defined, and the equation for i|r* has "been used, equation (k) 
becomes the linearized differential equation for 0(y) which is known 
as the Orr-Sommerfeld equation. 

W J      Ö72      ^W      Öy2     7 
(5) 

Equation (5) is a homogeneous, linear, ordinary differential 
equation of the fourth order. Its solution is 

0 = C-L0! + C202 + 
c303 + 

clA (6) 

where the 0®s are particular solutions and the C*s are constants of 
integration. 

The four boundary conditions which are independent of x and which 
must "be satisfied are 

that is, vs = 

0(7i) = 0 

0(72) = 0 

0    at    y = y-j_    and   y = y2, and 

?1 

©•«>' 
^2 

that is, uf = 0 at y = y-j_ and y = y2< 

> (7) 



When these "boundary conditions are used with equation (6), the result 
is the determinant 

jÄjfri)     02to.)     03(yi)   . 0h(yi) 

01 (72)       .02^2^        03 (y2^        0^(72 ^ 

y2 

= o (8) 

•which involves the solution of equation (5). After the functions 0-j_, 

02, 0o? and 0j^ which contain the parameters a, E, and c have 

been determined with sufficient precision, which is a very involved 
process, the determinant (8) is written out and the real and imaginary 
parts equated to zero. Dae result is two real equations involving the 
parameters a, B, c. 

Tß and i±.    If Cl is made zero and cr is 

eliminated between the two real equations, the result is a relation 
between a and B. Tnis relation between a, a quantity inversely 
proportional to the wave length of the disturbance, and B, the Eeynolds 
number, defines the neutral curve along which the disturbances are 
neither damped nor amplified. The curve divides the a,E—plane into 
a stable region and an unstable region. The smallest value of the 
Eeynolds number for which amplification can occur is called the minimum 
critical Eeynolds number. Above the minimum critical Eeynolds number, 
disturbances in the correct frequency range are amplified and, if they 
grow large enough, cause transition to turbulent flow. Lin has found 
that all velocity distributions of the symmetrical type and of the 
boundary—layer type are unstable for sufficiently large, but finite, 
Eeynolds numbers. In his paper, Lin has given a useful approximate rule 
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for the determination of the minimum critical Eeynolds number; the 
rule is 

% - 
<i\ 

•where 

E6 = 
U56 

and where c is equal to the value of u for which 

—a (i, 3 - •©x'1 '•©} 
U 

.©' 
= 0.58 

XL is the velocity at the edge of the "boundary layer, 
ness of the "boundary layer, and subscript 1 denotes "at surface 

is the thick- 
The 

velocities are referred to the velocity at the "boundary—layer edge and 
the lengths, to the distance from the wall to where ü = 1. 

The physical interpretation of the instability process (references 2 
and 22) is that the viscosity shifts the phase between the x— and 
y—components of the disturbance in such a way that energy is drawn from 
the main flow and builds up the amplitude of the disturbance. 

The validity of the assumption that for a parallel flow it is 
necessary to investigate only two-dimensional disturbances was confirmed 
by Squire (reference 23). In 1933 he showed that a two-dimensional 
disturbance produces instability at a smaller Eeynolds number than a 
corresponding three-dimensional disturbance. 

In 19^1, Pretsch (reference 2*0 showed that the relations between 
the parameters a, E, and c are the same whether both the mean and 
the disturbance velocities in the boundary layer are functions of x and 
y or of y alone as assumed in the development of the theory. This 
important result means that the stability of the boundary layer at any 
value of x is dependent only on the local velocity distribution. The 
present theory can therefore be used when both the velocity distribution 
in the boundary layer and its thickness change along the surface. 
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It should be kept in mind that the theory is a small-disturbance 
theory. Therefore, conclusions drawn from it should not be applied to 
cases where finite disturbances are introduced into the boundary layer. 
Such disturbances are often introduced by roughness particles, -which 
although small, may easily produce disturbances much greater than the 
vanishingly small disturbances allowed by the theory.  It should also 
be noted that the theory merely predicts when infinitesimal disturbances 
will begin to grow. The disturbance cannot be traced by the theory to 
the stage where the disturbance has grown large enough to produce 
turbulent flow. The growth of the infinitesimal disturbance takes time; 
and, therefore, when transition develops from the growth of infinitesimal 
disturbances, the transition point lies some distance downstream of the 
instability point. The magnitude of the distance depends on the rate of 
amplification of the disturbance and therefore on the flow conditions. 

Because of the many assumptions and because of the complexity of 
the mathematical development, the theory and its predictions were not 
taken seriously by many until fairly recently. In 19^3 the results of 
the outstanding experimental work of Schubauer and Skramstad appeared 
(reference 25). The results showed that the laminar boundary—layer 
oscillations predicted by the stability theory of Tollmien and Schlichting 
not only were present but that the theory correctly predicted their 
characteristics. Figure 2 shows the neutral curve calculated by Lin, 
probably the most accurate calculation to date, and the experimental 
points obtained by Schubauer and Skramstad for flow over a flat plate. 
The circle symbols should lie on branch I; the cross symbols, on branch II, 

In Germany during the war, the theory was used to calculate stability 
limits for flows in which there were small velocities through the surface. 
For these suction or "blowing flows, the same stability theory was used 
as for impervious walls. This use is permissible because both the 
equations describing the motion and the boundary conditions that have to 
be satisfied by the disturbances are unchanged by small flows through 
the wall. The stability limits were computed for four exact solutions 
of the Prandtl boundary—layer equations. A boundary—layer velocity 
distribution must be known precisely before its stability limits can 
be determined accurately. The following results were taken from a 
paper by Ulrich (reference 26). The first case is the "Asymptotic Case»" 
It applies to flow over a flat plate with a constant flow velocity into 
the plate and concerns only the region that is so far from the leading 
edge that no Boundary-layer characteristic changes with a further increase 
in distance from the leading edge. For this case, the surface friction 
coefficient is independent of the viscosity and, for equal boundary—layer 
Eeynolds numbers, is 1.75 times greater than the surface friction on the 

plate without suction. The minimum critical Eeynolds number ——, 
v 

where S* is the displacement thickness, is given "by Pretsch as 55,200 
(reference 27) in contrast to 575 obtained by Schlichting for the flat 
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plate •without suction. Other German investigators have obtained the 
value 70,000 for Kg* (reference 28) instead of 55,200 so that there 
seems to he some differences caused- by different calculating procedures. 
In order to keep the boundary—layer Reynolds number always less than the 
minimum critical Reynolds number, and thus to keep the "boundary layer 

stable, making the suction ratio — — > 1.8 x lO""-5 is sufficient when 
uo 

55,200 is used for the value of R5* ; v  is the suction velocity and 

is negative when its direction is into the plate and U0 is the free- 
stream velocity. 

The second case is the "Constant Suction" flow. Here also, there 
is a constant suction velocity through the surface of the plate, hut 
the entire plate is treated and the velocity profiles are not similar to 
one another. Near the leading edge of the plate, the profile is the 
Blasius flat-plate profile (reference 29); hut as the distance from the 
leading edge increases, the profile becomes more convex and finally 
approaches the asymptotic profile at large distances from the leading 

—v0        _k 
edge. When the suction ratio —^ > 1.2 X 10 , the flow is stable 

0 -k over the entire plate. This suction ratio, 1.2 x 10"~^ is about seven 
times the ratio necessary for stability with the asymptotic profile. 
The greater suction is necessary because the velocity profiles near the 
leading edge of the plate are not as stable as the more convex asymptotic 
profile. Kote, however, that the required suction ratio is still very 
small.. The flow velocity through the plate is about 0.001 of the free- 
stream velocity. 

Another case for which the stability computations based on exact 
solutions of the boundary—layer equations were made is the one in which 
the suction velocity varies inversely as i/x from the leading edge of 
a flat plate. The results are shown in figure 3« For this flow all 
the velocity profiles are similar to one another and change their form 
only when the suction coefficient CQ is changed. The suction 
coefficient is defined by 

CQ 

where 

1 length of plate 

b width of plate 

u
0 free—stream velocity 

Q total suction quantity 

Q 
2bU0 
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The value 575 for Eg* corresponds to the value 1.1 X 105 for Bx; 

the value ICr" for Eg* corresponds .to the value 8.3 X 10? for E^., 

an increase in B^. of about 750 times. Figure 3. clearly shows that 

sucking, positive CQ, increases the stability of the flov over that 

on an impervious flat plate and that blowing, negative CQ, decreases 
the stability. In general, suction increases the stability of a boundary 
layer both because the boundary layer is kept thin and because the 
velocity profile is made more convex. 

The fourth case for which stability computations based on exact 
solutions of the boundary—layer equation exist is that for the flow near 
the stagnation point of a two-dimensional body which has a constant 
suction or blowing velocity through its surface. The region considered 
is that region where the velocity at the edge of the boundary layer 
varies directly as the distance from the stagnation point. The results 
are shown in figure h.    In  this region U = XLJX,    where U is the 
velocity at the edge of the boundary layer, uj_ is a constant, and x is 
the distance from the stagnation point measured along the surface. Here 
again, all the velocity profiles are similar to one another and change in 
shape only when CQ, the suction coefficient, is changed. The boundary- 

layer thickness is independent of x. It should be noticed that the flow 
near the stagnation point has a falling pressure in the direction of the 
flow; the previously mentioned flows were all for zero pressure gradient. 
The increased stability caused by the falling pressure is shown in 
figure k.    An amount of blowing corresponding to C0 < -3, where 

—v_ 
is necessary before stability is reduced from that for no 

flow through the surface to that for the impervious flat plate. When 
there is no flow through the surface, the boundary layer near a stagna- 
tion point has a critical Eeynolds number of 12,300 in contrast to the 
value of 575 for the flat plate; the increase of about 20 times is 
caused by the falling pressure along the surface. 

In figure 5 is shown the theoretically predicted drag reduction for 
two types of flow over flat plates with just enough suction to maintain 
stability; one is the "Constant Suction" case and the other is the case 
for which the suction velocity is inversely proportional to /x. The 
drag reduction is a large percentage of the drag of a plate with a 
completely turbulent boundary layer and, for E^ less than 10°, a 
constant suction velocity is better than a suction velocity inversely 
proportional to /x. 

The skin—friction values upon which the comparison in figure 5 
is based are obtained from the velocity derivative at the surface. The 
sucked—in fluid remains at rest in the plate and the power required to 
suck the fluid into the plate is not considered. If, however, it is 



Ik 

assumed that the sucked—in fluid is ejected with free—stream total head 
and that., in order to do this, total head is added to the fluid with an 
efficiency of unity, then the drag reduction shown is the true drag 
reduction if the total-head loss through the surface is equal to the 
free—stream dynamic pressure. If the total-head loss through the surface 
is greater than the free—stream dynamic pressure, then the drag reduction 
will be less than shown and vice versa. Because only small quantities 
of suction air are required to maintain laminar flow, the percentage drag 
reduction changes fairly slowly with a change of total-head loss through 
the plafce. 

These results are the sum total of the known stability computations 
based on exact solutions of the laainar boundary—layer equations. The 
only case directly applicable to flow about an airfoil is the stagnation- 
point flow. 

Before the stability boundaries for an airfoil can be computed, the 
velocity distributions through the boundary layer must be known. During 
the war, Schlichting developed an approximate method for the computation 
of the laminar boundary layer over an arbitrary two—dimensional body 
with an arbitrary distribution of suction along the surface (reference 30). 
The method is related to the Pohlhausen method which treats flows without 
suction. Schlichting*s method uses the boundary—layer momentum equation 
for the case where there is flow through the surface and assumes a one- 
parameter family of curves for the boundary—layer velocity distributions» 
The parameter for the velocity distribution depends on the pressure 
distribution over the body and on the suction flow through the surface. 

The critical Keynolds number of a velocity profile is sensitive to 
its shape. Therefore, the accuracy of an approximate method, such as 
Schlichting3s, when the results are to be used for stability computations, 
can be tested only by comparing the critical Eeynolds numbers with those 
•p ra m an accurate computation of the boundary layer. 

The foregoing discussion was restricted to incompressible flow. 
The problem of the stability of the laminar boundary layer in a com- 
pressible gas has, however, not been neglected. The increase in flight 
speeds has given the problem practical, as well as purely scientific, 
importance. 

!The stability theory for compressible flow has been developed by 
Lees and Lin (references 31 and 32) to about the same state as the theory 
for incompressible flow.  The development of the theory for compressible 
flow is similar to that for incompressible flow. In the theory for 
compressible flow, however, in contrast to the theory for incompressible 
flow, the heat energy is important and the physical properties of the gas 
are not fixed. Nevertheless, the main physical mechanism is not changed. 
The stability cf a velocity distribution depends on the distribution of 
the product of density and vorticity and on the effect of the viscous 
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forces but not directly on the heat conductivity. The expression — (p — 
d /du\  öy Vöy/ for compressible flow takes the place of the expression —- ( — j for 
oj \öy/ 

incompressible flow as an important factor in determining the stability. 
It is noted, however, that as yet for compressible flow there is no 
rigorous proof that the two-dimensional disturbances upon which the 
theory is based are more unstable than three-dimensional disturbances. 

The main results of Leesf and Lins' work can be summed up in the 
following statements: 

(1) When the free—stream velocity is subsonic, every laminar 
boundary—layer flow is unstable at sufficiently large Reynolds numbers. 

(2) At all free—stream Mach numbers the flow is unstable at 

sufficiently large Reynolds numbers if the y derivative of p — is 
1 °y 

zero for a value of u > 1 — —. 

(3) An approximate expression for the minimum critical Reynolds 
number is obtained, similar to the expression obtained by Lin for 
incompressible flow. 

(k)  As shown in figure 6 the stability of the laminar boundary 
layer on an insulated surface decreases with increase in Mach number. 
At MQ = 1, Rx     is less than half its value at MQ = 0. 

crmin 

(5) As shown in figure 7j the ratio of the surface temperature to 
the free-etream temperature has a large effect on the boundary—layer 
stability. Thus, at a Mach number of 0.7 the value of the boundary- 
layer Reynolds number Rg, based on the momentum thickness as the 
length, at which the boundary layer first becomes unstable increases 
about kO  times when the surface temperature is changed fron 110 percent 
of the free-stream temperature, the stagnation—temperature ratio for a 
Mach number of 0.7, to 70 percent of the free-stream temperature. On 
the other hand, an increase of surface temperature from 110 percent of 
the free-stream temperature to 125 percent of the free—stream temperature 
halves the Reynolds number at which the flow becomes unstable. 

(6) At supersonic free—stream velocities, the boundary layer can 
be made stable at all Reynolds numbers by maintaining the surface 
temperature at a small enough fraction of the free—stream temperature» 
For MQ > 3 at 50,000 feet altitude and for MQ > 2 at 100,000 feet 

altitude, the radiation of heat from a surface can make the ratio of 
the surface temperature to the free—stream temperature small enough to 
ensure a stable boundary layer at all Reynolds numbers, in the absence 
of an adverse pressure gradient. 
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The stability theories for both the incompressible and the compressible 
laminar boundary layer, which have just been discussed, were developed far 
flows in which the effects of surface curvature were negligible. Because 
most aircraft components are curved, it was not clear whether the stability 
theory for flat surfaces was directly applicable. The effect of curvature 
on the stability of the incompressible boundary layer was investigated 
theoretically by Gortler about 19^0 (references 33 to 35) and experimentally 
by Liepmann (references 36 and. 37) in the following years. 

Görtier found that the two-dimensional wavelike disturbances were 
hardly affected by wall curvature. When, however, the stability of the 
boundary layer on curved walls was considered by investigating the behavior 
of vortices with their axis parallel to the main flow, analogous to the 
Taylor vortices in flow between concentric rotating cylinders, an 
instability caused by these vortices was found to be possible only on 
concave walls. The effect was so large that the effect of the usual two- 
dimensional disturbances was completely overshadowed. Gortlerfs theory 
is, like the two-dimensional disturbance theory, a small-disturbance 
theory that assumes the main boundary—layer flow to be the same over the 
entire surface. Also, the boundary—layer thickness is assumed to be 
small compared with the radius  r  of the wall. It was found, as shown 

in figure 8, that the wall curvature and the Eeynolds number occur in 

the combination Egtf — and that instability occurs above a value of Eg J— 

that depends on <x0, where a is inversely proportional to the wave 
length and 0 is the boundary—layer momentum thickness. The neutral 
curve shown is for the Blasius velocity distribution. Görtier found that 
the instability region was only slightly affected by the shape of the 
velocity distribution through the boundary layer when the momentum 
thickness 0 was used as the measure of the boundary—layer thickness. 

In agreement with Gortler's theoretical work, Liepmann found experi- 

mentally that Eg y —   was the parameter defining the stability of the 

boundary layer on concave surfaces. Liepmann concluded that transition 

can be expected when the value of Eg j/^- reaches about 9.0.    It may be 

observed that Gö'rtler found the minimum critical value of E0 j/p to 

be O.58. It should be noted, however, that Liepmann,s criterion concerns 
transition, whereas Gortler*s concerns the stability' of the boundary 
layer. Liepmann also found, in agreement with Gortler*s work, that in 
contrast to flow over convex or plane surfaces, a pressure gradient 
along the wall had a negligible effect on the stability of the flow over 
concave walls. Thus, on convex and plane surfaces instability of the 
boundary layer is caused by the Tollmien-Schlichting waves; whereas the 
instability on concave walls is caused by three-dimensional disturbances. 
In figure 9 is shown the dependence of Eeynolds number for transition Eg, 

on the effective curvature 0/r. The value of Eg   is practically 
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independent of curvature for convex walls and is about equal to the value 
for the flat plate. The value of Bfl   for concave walls, however, Dtr 
decreases rapidly as the effective curvature increases. Hie data in 
figure 10 show that the experimentally determined stability limits for 
the boundary layer on a convex wall and the calculated stability limits 
for the boundary layer on a flat plate are about the same except at 
the lowest Reynolds numbers. The upright triangles should lie on the 
upper branch of the neutral curve; the inverted triangleSL, on the lower 
branch. The neutral curve for the experimental points for r = 20 feet 

and also the curve for the points for r = 2^- feet, not shown in the fig- 

ure, have a slightly higher minimum critical Eeynolds number than the 
neutral curve for the flat plate. The reason for the difference is not 
definitely known. 

This paper has attempted to present a short history of the theory of 
the stability of laminar flow, an outline of the theory for incompressible 
plane flow, a summary of the applications of the theory in combination 
with suction flows, a resume" of the results of the theory for compressible 
plane flow, and a. summary of the theoretical and experimental results for 
curved flows. The stability theory based on infinitesimal disturbances 
may be regarded as experimentally verified for incompressible flow over 
plane surfaces and, probably, also for curved surfaces. Experimental work 
remains to be done in verifying the stability theory for compressible 
flows. Aa extension of the stability theory to the realm of finite 
disturbances for the purpose of calculating transition points is 
desirable. 
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A REVIEW OF ÄPPKOXIMATE METHODS IN SUBSONIC COMPRESSIBLE FLOW 

By Carl Kaplan 

Langley Aeronautical Laboratory 

INTBODUCTION 

The purpose of this paper is to review several methods developed 
in recent years for the calculation of the flow of a compressible fluid 
past a prescribed "body. These methods have evolved largely "because of 
the inherent difficulty of handling the nonlinear partial differential 
equations which govern the flow of a compressible fluid.  la the dis- 
cussion of these methods several points of mathematical interest will be 
noted for possible future investigations.' 

The study of fluid—flow phenomena at high speeds requires the 
consideration of compressibility and therefore of the thermodynamics of 
the fluid. For a real fluid, this would be a practically impossible 
problem. In this review, therefore, the fluid is considered to be a 
perfect one with vanishingly small viscosity and heat conductivity. The 
discussion is confined,moreover, mainly to irrotational flow in two 
dimensions with a subsonic undisturbed flow. 

It is assumed that the fluid is a perfect gas so that the equation 
of state is 

p = KTp 

The equations of motion for the fluid are 

du   du    1 dp 
ox       ay P ax 

or       ov _  1 op 

ax       ay P ay 

and the equation of continuity is 

dpu  dpy 

ax       ay 

where 

x, y rectangular coordinates in plane of flow 

u, v components of velocity vector 

p pressure in fluid 

(1) 

> (2) 

(3) 
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p 

T 

density of fluid 

temperature of fluid 

gas constant 

With the assumption of vanishingly small -viscosity and heat 
conductivity., the "behavior of the fluid in motion is closely isentropic 
so that p and p are related "by the equation 

P = kp7 00 

where 7 is the ratio of specific heats at constant pressure and constant 
volume and k is an arbitrary constant. The Bernoulli integral of the 
equations of motion (2) then becomes 

C2 . 02 1 - 
2  q_c 

«.^ - x (5) 

where 

local velocity of sound S^VP 

1 

u 

M. 

velocity of sound in undisturbed stream 

magnitude of fluid velocity 

velocity of undisturbed stream 

Mach number in undisturbed stream  — 

With the assumption of irrotationality, a velocity potential 
introduced, where 

0 can be 

u = 
Ox 

> (6) 
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Then, the elimination of p from equations (2) and (3) yields the 
fundamental differential equation governing the flow; namely. 

s2r 

,2 - u2) Ü _ 2uv |4 + (C2 - y2) Ü _ 0 
öx2     dxöy 

v     J  ^2 (T) 

a nonlinear, second—order partial differential equation. 

METHODS OF APPROXIMATE SOLUTION 

The rigorous treatment of the fundamental differential equation (7) 
for nonlinearized flow past closed shapes with general "boundary conditions 
has up to the present time proved to he impossible. In place of rigorous 
analytical solutions it is necessary to be satisfied in general with 
approximation methods essentially "based on the linearization of 
equation (7). . The mathematical difficulties are considerably greater for 
subsonic flow (elliptic potential equation) than for supersonic flow 
(hyperbolic potential equation), for which the theory of characteristics 
leads to very simple approximation methods. Three of the methods which 
have been utilized for subsonic flow will be described in the remainder 
of this paper. 

Method of Expansion in Powers of the Mach Number 

In the Bayleigh—Janzen method the velocity potential $    is expanded 
in a series of powers of M„, 

0   =   00   +   Moo20i   +   MooV2   +    • • ' (8) 

where $Q    is the velocity potential of the incompressible fluid flow 

and thus satisfies the boundary conditions. The appropriate form of 
the differential equation for $    is obtained by rewriting equation (7) 
with the aid of equation (5). Thus 

1 - 2LZ2 Mj^ - 1 
2 

A0 = J M 2 
öx axVu2/   öy ö

ATJ2. 
(9) 
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where the symbol A denotes the Laplacian operator 

ox   dy 

The expression for $ from equation (8) is then inserted in equation (9) 
and coefficients of corresponding powers of M„ on either side are equated, 

yielding successively the equations for 0Q, 0-j/ • • • * Tnus 

*#0 = 0 

= I 
2 

^0 a_(VV ^oi(V 
äx ox V ^2/ dy oy V ^2 

0  «  • 

(10) 

where q  is the magnitude of the incompressible flow velocity. 

Bayleigh (reference 1) and Janzen (reference 2) were the first to 
consider the second of equations (10) and gave a series solution for 0. 

in the case of the flow past a circular cylinder. Later, Poggi 
(reference 3) introduced a method that consists essentially in considering 
the compressible fluid to he an incompressible fluid with a continuous 
distribution of sinks and sources in the entire region external to the 
solid "boundary. According to Poggi, the right—hand sides of equations (10) 
represent successive terms in an infinite series giving this sink—source 
distribution. Poggi and later Kaplan (references k  and 5) and Imai 
(reference 6) obtained the solution from this point of view for the flow 
past such shapes as a circular cylinder, an elliptic cylinder, and a 
Joukowski profile with angle of attack and circulation. The calculations 
proved to "be extremely laborious, involving a large number of double 
integrals. In order to ease the labor involved in the original Poggi 
method, Imai and Aihara (reference 7) and Kaplan (reference 8) developed 
elegant and useful methods which utilized the theory of functions of a 
complex variable. The one to be described in this review is that due to 
Kaplan, which makes use of the calculus of residues. Thus, if new 
independent variables z = x + iy and z" = x — iy are introduced, the 
expression for the strength of the sink—source distribution obtained from 
the right-hand side of the second of equations (10) may be written as 
follows: 

dw 
1     2  ° —±— WQ^   + w, 2

 ^o 

dz 
dx dy (11) 
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where wQ and w  are, respectively, the complex and conjugate complex 

velocities of the incompressible fluid past the prescribed shape; that 
is, v = -u + iv and w'   - —u — iv and these are, respectively, 

functions of z and z    only, since they are obtained from solutions of 
Laplace*s equation. Now, the expression, equation (11), involves non- 
analytic functions of z and z". In order, however, to utilize the 
methods of the calculus of residues, functions of only a single complex 
variable must appear. For this purpose the plane z of the obstacle 
is represented conformally on the plane Z of the corresponding circle» 
Since the strengths of the sink—source distribution of corresponding 
elements of the two planes are equal, the expression for the strength 
of the sink—source distribution of an element of the plane Z is 

kid2 
W° dz dZ V Wo dz r     ° dz dZ V ° dz 

dX dY   (12) 

where ¥Q and' ¥0 are, respectively, the complex and conjugate complex 

velocities of the incompressible fluid past the circular profile in the 
plane Z. . 

It is a simple matter to obtain an expression for the complex 
velocity ¥x induced at any point 7^    external to the circular boundary 

by a sink—source distribution originating in the physical plane z and 
at the same time to preserve the boundary conditions of zero normal 
velocity at the circular boundary and zero induced velocity at infinity. 
The essential fact to remember is that corresponding to a unit external 
source there is a unit source at the inverse point with respect to the 
circle and a unit sink at the center of the circle. The actual 
velocity Wn of the fluid in the physical plane z is related to the 

velocity ¥-j_ at the corresponding point in the plane Z of the circle 

by the equation 

»l - *! 3T (13) 
dz 

The expression for ¥•]_ consists of double integrals' whose integrands 

are non—analytic functions of Z and Z. The double integrations over 
the entire region external to the circular boundary can be replaced by 
line integrals involving functions of Z and Z only ~bj  the use of 
Stokes1 theorem for the plane. Thus, it can be shown that if F(z,Z) 
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Is a function of Z and Z, continuous and differentiable in the area 
enclosed "by the contour C, then 

F(Z,Z)dZ = - 21/ — dS 

/ F(Z,Z)dZ = 21 / äE dS 
;c JS ÖZ 

"^ 

0*) 

^ 

The line integrals, in the present case, are taken around the circular 
boundary corresponding to the actual profile In the z—plane, around 
an infinitely small circle surrounding the point at which ¥•,  is to 

"be evaluated, and around an infinitely large circle concentric with the 
internal circular boundary. The important point to note is that, since 
all the contours involved in the line integrations are circular, the 
integrands can he made analytic in Z or Z,  since on a circular 
"boundary ZZ = Constant. It then follows that the line integrals can he 
evaluated Tby means of Cauchy's theorem on residues. This theorem states 
that, if a function is analytic on a contour C and throughout its 
Interior except at a number of poles inside the contour, then 

G(Z)dZ = 2«iM 

C" 
> 

H(Z)dZ = -2rtiN 

(15) 

where M and IT are, respectively, the sum of the residues at those 
poles which lie within the contour C. 

The device of introducing z and z as independent variables, 
then utilizing the conformal mapping of the plane of the obstacle into 
the plane of a circle, and finally replacing the double integrals by line 
integrals thus enables one to evaluate by the method of residues the 
first effect of compressibility on the velocity of the fluid past an 
arbitrary shape. The point of interest to an applied mathematician is 
that here is a method whereby a Poisson equation involving rather 
complicated boundary conditions can be solved with the aid of analytic 
functions of a single complex variable. The subject is certainly worthy 
of further investigation. 
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Method of Small Perturbations 

Whereas the preceding treatment started with the incompressible 
flow, the Prandtl-Busemann or Ackeret method starts with the undisturbed 
flow. It is applicable to the flow past thin shapes placed in a uniform 
stream, in which the changes in the velocity of the fluid as it passes 
over the body are small compared with the main stream velocity. The 
velocity potential is developed in a power series of a perturbation 
parameter e (which may be the thickness coefficient, the camber coeffi- 
cient, or the angle of attack) in which the first term is the velocity 
potential of the undisturbed stream d    = TJx. Thus, it is assumed that 

<j>  = TJx + e d.  + e 202 + e 3 d   + ... (16) 

where the 0n are functions of x, y and of M«,- and show successively 

the effects of compressibility on the flow. 

The assumed series, equation (l6), is inserted into the combined 
nonlinear equations (7) and (5) and the successive linear equations 
for d     0p, ... can then be obtained by equating the coefficients of 

successive powers of the perturbation parameter e . The first two 
equations obtained by this procedure are 

(I-MJO 2^ *\       *\       n — +   = 0 
ox£ 

(l - M.2) 

dy£ 

Ö20P  ö20: 

öxc äyc 
2    ? = M00

d 
(7 + 1) ^ 

#1 *2d! 

**• ox2 
/  (17) 

O0! ö2^   hd± tfd± 
+ (7-1) r — + " 

öx öys "oy öxdy 

J 

These differential equations may be put into more familiär forms by 
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introducing a new set of independent variables X and Y by means of 
the following affine transformation: 

X = x 

Y =  1 - H      y 

-> 

(18) 

Thus, for M < 1, the first of equations (17) is transformed into a 
Laplace equation and the succeeding equations for 02, $?,   ...  into 

Poisson equations in which the right—hand sides are known functions of X 
and Y determined from the preceding approximations. The solution of 
the first of equations (17) yields the well-known Prandtl-G-lauert rule, 
whereas the solutions of the succeeding Poisson equations provide higher 
approximations to the flow of the compressible fluid and thus will apply 
for larger departures from the undisturbed uniform flow. 

The general procedure followed in solving equations (17) is simple 
in principle. The first step is to obtain an expression for the velocity 
potential of the incompressible flow past the prescribed "boundary in the 
form of a power series in the perturbation parameter e. Then the solution 
for the first approximation ^ to the compressible flow is easily obtained 

by analogy from the coefficient of the first power of e. The higher 
approximations ^2> 0o.» • • • are obtained by solving the corresponding 

Poisson equations, at the same time satisfying the boundary conditions to 
the same power of the perturbation parameter e as is involved in the 
expression for the velocity potential 0. 

Thus,"consider the first approximation 0i* if 

0 = UX + 6^. (X,Y) (19) 

represents the incompressible flow past a body, then to the same order 
of approximation, 

0 = Ux + | 0-L (x,ßy) 

-V- M. 
> (20) 

represents the compressible flow past the same body. 
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How, if qc and q^ denote the magnitudes of the velocity at the 

surface of the prescribed shape for the compressible and incompressible 
flows, respectively, then to the first power of €  the perturbation 
term (evaluated at the boundary) is the same for the two cases. The 
result is a relation between q  and q., independent of the 

C 1 

particular shape prescribed; namely, 

3s = I _ f i i\JL 
*i   *  v»    Ai (21) 

Equation (21) represents the so—called velocity correction formula for 
the Prandtl-Crlauert approximation. 

This method of iteration by powers of a perturbation parameter e 
has been applied to a family of symmetrical shapes (bumps, reference 9) 
and to a family of circular arcs (reference 10), specifically chosen 
because they possess no stagnation points and hence satisfy the primary 
assumption of the method;  namely, small disturbances to the oncoming 
uniform stream. - The iterations included the third power of the thickness 
coefficient in the case of the family of symmetrical shapes and the third 
power of the camber coefficient in the case of the family of circular 
arcs. It is important to remark that, although extensive use was made 
of the affine transformation, equation (18), the boundary conditions 
were always satisfied in the plane of the actual profiles. 

In general, the affine transformation, equation (l8), introduces 
a distortion of the solid boundary which depends on the stream Mach 
number. This distortion, therefore, in general precludes the use of 
analytic function methods. In the case of a family of elliptic profiles,, 
however, the affine transformation produces another family of elliptic 
profiles. Since one ellipse differs from another only with respect to 
the thickness coefficient, it is possible to treat the problem in the 
plane of the circle corresponding to the plane of the affine ellipse. 
For this purpose it is simpler, from the point of view of satisfying the 
boundary conditions, to treat the equations for the stream function 
corresponding to equations (IT). The results obtained in the plane of 
the circle, making extensive and elegant use of functions of a single 
complex variable, are easily transferred into the physical plane of the 
actual elliptic profile. Such calculations have been performed for the 
case of an elliptic cylinder with both angle of attack and circulation 
(references 11, 12, and 13). Typical of the results obtained is the 
following formula relating the lift on an elliptic cylinder in a 
compressible and an incompressible flow: 

LJL . 1 + 1 d - e-^ 
Lj[  ß  2 ^•^•»(^ 

2\2 
~! 

(22) 
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where 

3 -, V L - M^2 

7  ratio of specific heats at constant pressure and at constant volume 

e^ proportional to radius of circle conform! to actual ellipse in 
physical plane 

Equation (22) is an extension of the well-known Prandtl-Glauert rule to 
thicker profiles and is applicable not only to an ellipse hut to an 
arbitrary symmetrical shape. 

The method just described, utilizing the powerful tool of complex- 
function theory, could he extended to arbitrary profiles if the answer 
to the purely mathematical question of the effect of an affine trans- 
formation on the coefficients of the conformal mapping function to a 
circle were known. Another interesting and important problem is the 
convergence of the procedure herein described.  Calculations indicate 
that the power—series development of the velocity potential or of the 
stream function in powers of a perturbation parameter may converge somewhat 
beyond the critical stream Mach number, but a rigorous discussion of this 
question has yet to be given. 

In order to show the entent to which the methods of Eayleigh and 
Janzen and of Prandtl and Busemann apply to practical airfoils, figure 1 
has been prepared. The stream Mach number M^ is the abscissa and the 

thickness coefficient t is the Ordinate. The critical stream Mach 
number curve bounds the subsonic flows. The method of Eayleigh and 
Janzen proceeds in the direction of increasing stream Mach number and 
yields at each stage exact information with regard to the geometry of 
the profile. The vertical lines separate the regions of the second and 
third approximations, the line M^, = 0 being the incompressible solution. 
It is clear that many approximations would be necessary to penetrate into 
the region of interest to aeronautics, that is, between t = 5 percent 
and t = 15 percent. 

The method based on the Prandtl-G-lauert linearized result proceeds 
in the direction of increasing thickness and yields at each stage exact 
information with regard to the stream Mach number. The horizontal lines 
separate the regions in which the Prandtl-Glauert correction holds and 
the first additional step. This figure shows clearly that, already by a 
first—step improvement of the Prandtl-Glauert result, significant results 
are obtained in the region of interest to aeronautics whereas similar 
success by means of the Bayleigh-Janzen method would entail a prohibitive 
amount of labor. 
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Method of the Hodograpii 

It is clear from the discussion in the foregoing sections that both 
the Rayleigh—Janzen and the Prandtl-Busemann procedures "become rather 
laborious after one or two steps; moreover, such calculations must he 
repeated from the beginning for each prescribed solid boundary. Conse- 
quently, many attempts hare been made to set up a correspondence between 
incompressible flows and compressible flows of the nature of correction 
factors. Among the better known results of such attempts are the 
Prandtl-G-lauert (reference Ik),  von Karman—Tsien (reference 15), Temple— 
Yarwood (reference l6), and Garrick-Kaplan (references 17 and 18) velocity 
correction formulas — all of which depend only on the incompressible fluid 
velocity and the stream Mach number. 

Before proceeding with the discussion of velocity correction 
formulas, a rather instructive comparison is given of the compressibility 
effect on the maximum velocity of a series of bumps and circular arcs. 
The thickness coefficients of the bumps and the camber coefficients of 
the corresponding circular arcs were so chosen that the incompressible 
speeds were the same. Table I shows the results calculated by the Prandtl- 
Busemann iteration method — the calculations included the third power of 
the thickness and camber coefficients. For moderate values of thickness 
and camber the differences are seen to be negligible over most of the 
subsonic range. These calculations indicate that, to a very good approxi- 
mation, the effect of compressibility in the subsonic range depends 
essentially only on the incompressible fluid velocity and on the undisturbed 
stream Mach number and is largely independent of the particular solid 
boundary treated. This result substantiates the feasibility of velocity 
correction formulas in the subsonic range of speeds. 

From the nature of velocity correction formulas it would seem that 
the hodograph plane variables are the appropriate ones to consider. The 
hodograph variables are q,, the magnitude of the fluid velocity, and 0, 
the angle included by the velocity vector and the positive direction of 
the x-axis. Corresponding to q*    in the incompressible case, there 
appear functions Pj^q.) and Qfc(q.) in the compressible case, where 

1 
log Qk = log q. + fk(T) 

i log Pk = log q. + gk(T) 

7 (23) 

/ 

The functions P]£(q.) and Q^(q.) are associated, respectively, with the 

velocity potential and the stream function in the compressible case; the 
functions fv(T) and g-k.(

T) are related to the particular solutions of 

Chaplygin's basic differential equation of the hypergeometric type 
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for compressible flow. 
defined•as follows: 

The variable is a dimensionless speed variable 

T = 
±maxr 

Uc 

7-1 
+ Uc 

where qmaT is the maximum fluid velocity corresponding to expansion into 

a vacuum. Figure 2 shows the graphs of several of the (hypergeometric) 
functions fk and gfc for positive values of k with the Mach number 

as abscissa. The value of j    chosen was 1.4 for air. Note that, as the 
subscript k is increased, both sets of functions approach the single 
function f«, = q«, = h(-r) defined between the limits M = 0 and M = 1. 

According to equations (23) then, as k->«>, 

pk ~ Qk * q.e Mr) (2k) 

The nature of the correspondence between incompressible and 
compressible flow is assumed to be such that 

*k(T) 

—\ 

gk(r) 
qce           ,   9_ 

) 

(25) 

where i denotes the stream function and the subscripts i and c refer, 
respectively, to incompressible and compressible flow.  In order to obtain 
a correspondence of velocities, it is necessary that also for the compress- 
ible case the speed variable be the same for both the velocity potential 
and the stream function. The function h(i")  separating, as it does, the 
two sets of functions fv(T) and gk(T) is peculiarly suited for this 

purpose. Thus, the correspondence of velocities in the incompressible 
and the compressible case is given by 

*i = %e MT) (26) 

Equation (26) constitutes the geometric-mean type of velocity correction 
formula introduced in reference 16 and is limited to the subsonic range 

As already noted, for positive values of k, h(r) lies <  < 
0 = M = 1. 
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"between fjj-(T) aad g]j-(T)  in magnitude. Moreover, the deviation 

h(T)      fv(T)      Sv(T) 
of e     from e     and e     is quite small in the entire 
subsonic range. 

The geometric-mean type of velocity correction formula contains the 
results of Chaplygin, von Karman and Tsien, Temple and Yarwood, and, in 
the limiting case of small disturbances to the main flow, the exact Prandtl— 
Glauert rule. For example, the von Karman-Tsien velocity correction 
formula is obtained from the geometric-mean type of approximation by 
taking y = —.1. The geometric-mean type of velocity correction formula 
Just described seems to be the most logical one from a mathematical point 
of view. It is interesting to note, however, that the choice of 7 = —1, 
yielding the Karman—Tsien formula, appears to cancel the effect of boundary 
distortion inherent in the correspondence equations (25). This fortuitous 
circumstance, together with the simplicity of the calculations involved,, 
makes it very useful for most purposes. Figure 3 illustrates in general 
the usefulness of velocity correction formulas and in particular the one 
given by von Eärmän and Tsien. The solid curves show the variation of the 
maximum pressure coefficient with the stream Mach number for several 
members of a family of symmetrical profiles (bumps) calculated by means 
of the Prandtl-Busemann iteration in powers of the thickness coefficient 
(reference 9)» The small circles show the results obtained by means of 
the von Karmah—Tsien velocity correction formula. The agreement between 
the two methods over such a wide range in thickness coefficients and 
stream Mach numbers is remarkable. Indeed, the development of velocity 
correction formulas and their use in the prediction of compressibility 
effects should be considered as an outstanding achievement of theoretical 
aerodynamics. For, consider that the problem of compressible flow involves 
a nonlinear differential equation for which very little mathematical treat- 
ment is available; nevertheless, with the aid of a few simple ideas and 
very little labor the essential results can be obtained by means of velocity 
correction formulas. One must be cautioned, however, that their use is 
limited to the subsonic range and must not be extended into the transonic 
or mixed subsonic and supersonic range of speeds. 
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TABLE I.- VALUES OF MAXIMUM TELOCITY FOE CORRESPONDING 

BUMP ARD CIRCULAR ARC PROFILE 

• M 

"max 

Camber coefficient, h Thickness coefficient,  t 

0.02 0.04 0.06 

1.2527 

0.08 0.10 0.052 0.100 0.145 0.186 0.226 

0 1.08l5 1.1659 1.3415 1.4320 1.08l6 1.1660 1.2527 1.3414 1.4320 

.2 I.O834 1.1701 1.2597 1.3520 1.4466 I.O834 1.1701 1.2595 1.3513 1.4454 

• 3 I.O859 1.1759 1.2695 1.3668 1.4673 1.0859 1.1757 I.2689 1.3651 1.4641 

.4 I.O899 1.1851 1.2855 1.3913 1.5024 1.0900 1.1847 1.2840 1.3876 1.4950 

.5 I.O96O 1.1997 1.3116 1.4324 1.5627 1.0959 1.1988 1.3084 1.4245 1.5467 

.6 I.IO56 1.2239 1.3572 1.5078 1.6780 1.1052 1.2217 1.3492 1.4879 1.6373 

.7 1.1223 1.2705 1.4530 1.6780 1.1213 

1.1557 

1.2640 

1.3701 

1.4298 1.6197 

»o 1.1594 1.3979 

.9 1.2055 I.I960 
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Figure 1.-   Regions of application of the approximation methods. 
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Figure 2.-   The   fk   and   gk   functions against   M. 
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WIKD-TOHIIEL-WALL COEEECTIONS 

By S. Katzoff 

Langley Aeronautical Laboratory 

BOUNDARY CONDITIONS 

When the wind tunnel was first developed as a practical approach to 
experimental aerodynamics, it was recognized that the flow ahout a "body 
in a -wind tunnel was not the same as the flow about the same body in 
flight. Since that time, mainly during the past 30 years, there has 
appeared a steady stream of research papers, some offering improvements 
in recognized corrections in keeping with the improvements in wind-tunnels, 
equipment, techniques, and general understanding of aerodynamics and others 
deriving necessary corrections-for new types of aerodynamic configurations 
or new types of measuring techniques. 

The problem arises from the fact that, although the differential 
equations of the flow are the same in the tunnel as in flight, the 
outer boundary conditions are different. In flight, the condition is 
simply that the flow at infinity is uniform; in the tunnel, certain 
other conditions, depending on the type of tunnel, must be satisfied 
at the tunnel boundaries. For the closed tunnel, the condition is 
obviously that the velocity component normal to the wall be zero. 
For the open tunnel, where the jet traverses a region of comparatively 
quiescent air, the condition is that the pressure at the boundary be 
uniform. By Bernoulli's law, it follows that the tunnel velocity must 
be uniform on the boundary. If this velocity is considered as the sum 
of the undisturbed tunnel velocity U and a small perturbation 
velocity (u, v, w) resulting from the presence of the body in the 
jet, the condition is then that (U + u)2 + v2 + w23 U2 + 2Uu 
be constant, from which it follows that u is constant over the entire 
surface. Furthermore, since u is obviously zero far in front of the 
body, it must be zero over the entire surface, whence it can be easily 
shown that the perturbation potential itself is constant over the 
entire surface. The somewhat obvious condition that the perturbation 
velocity (u, v, w) is zero far in front of the body may need special 
emphasis; neglect of this condition has in the past sometimes led to 
erroneous results (reference l). 

Some attention has been directed recently to a third case; namely, 
that of an open tunnel in which the body is so far forward in the jet that 
the presence of the closed entrance bell cannot be neglected. Thi3 case 
involves a mixed-boundary-value problem in which the normal velocity is 
zero on the closed portion of the boundary and the longitudinal perturba- 
tion velocity u is zero (or constant) over the open portion of the bound- 
ary. An interesting further boundary condition arises here, namely, that 
the flow velocities be continuous at the edge of the entrance bell. This 
condition is similar to the Eutta condition at the trailing edge of an 
airfoil. It arises because of the finite viscosity of air, and it provides 
uniqueness where otherwise an infinity of solutions would exist. 
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BASIC VIEWPOINT 

The approach to the problem usually follows a fairly well defined 
pattern, although variations are sometimes necessary. In general, no 
effort is made to predict the complete flow and the corresponding aero- 
dynamic characteristics for the model in the tunnel. These are normally 
measured "by the wind-tunnel survey apparatus, the wind-tunnel "balances, 
or other measuring equipment. The usual problem is rather to determine, 
primarily, "by how much the' presence of the tunnel "boundaries modifies 
the "free-stream" flow at the model location and, secondly, "by how much 
the model characteristics are altered "by this flow modification. 

The mathematical approach, for example, is first to assume within • 
the model a set of singularities - sources, sinks, doublets, vortices - 
that, on the "basis of model geometry, air-flow measurements, force • 
measurements, and any other sources of information, are "believed to 
effectively represent the contribution of the model to the flow field. 
These singularities induce a field that, in general, violates the desired 
condition at the tunnel "boundary. An additional potential flow is now 
sought, having singularities only on or outside the tunnel "boundary, such 
that when it is added to the field of the model, the desired "boundary 
conditions will be satisfied. This additional flow is called the tunnel 
interference flow.  Its determination and, in particular, its evaluation 
in the neighborhood of the model constitutes the previously mentioned 
primary problem. Vertical components of this additional flow are nor- 
mally interpreted (after division "by the main tunnel velocity) as a 
correction to the local flow angle5 horizontal components are normally 
interpreted as a correction to the tunnel velocity* 

In figure 1 is indicated an airplane model in a closed wind tunnel, 
together with several of the more important components of the inter- 
ference flow. " Associated with the lift of the model is a strong down- 
flow of the air behind it; and the corresponding tunnel interference 
flow is essentially an upflow which neutralizes the downflow at the walls 
and, in the neighborhood of the model, introduces the upflow velocities 
indicated in the figure.  The upflow velocity has a certain value near 
the wing, rapidly approaches twice this value behind the wing, and 
rapidly approaches zero in front of the wing. Since the lift of an air- 
foil section in a curved flow is determined roughly by the angle of 
attack as measured at the three-quarter-chord point, the upflow at the 
three-quarter-chord line is used to correct the- angle of attack of the 
airplane. Since the lift itself (or the bound vorticity) is centered 
about the quarter-chord line, however, the drag correction is determined 
from the product of the lift and the upflow velocity at the quarter-chord 
line. This flow curvature is effectively an induced camber of the wing 
and restilts in a corresponding change in the wing moment and in its maxi- 
mum lift coefficient. Since the upflow at the tail is greater than that 
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at the wing three-quarter-chord line, the difference must "be applied as 
a correction to the stabilizer setting or to the downwash angle. A 
correction would also "be applied for the additional moment of the fuse- 
lage caused "by its presence in a curved flow field. 

Because the tunnel walla prevent the normal outward displacement of 
the streamlines about the model, there is a corresponding effective 
increase of the airspeed in the neighborhood of the "body (constriction 
effect), indicated by the horizontal vector at the left of figure 1.  If 
the drag of the model becomes fairly high, as in tests with extended flaps 
or at supercritical speeds, a large wake of slowly moving air exists 
downstream of the model, and the surrounding air of the main stream 
experiences a corresponding velocity increase that persists far behind 
the model (indicated by the horizontal vector at the right of the figure). 
Somewhat over half of this increase is considered to apply in the neighbor- 
hood of the model itself, in addition to the normal constriction effect 
due to the volume of the body, the sum is indicated by the horizontal 
vector near the center of the figure. Associated with the longitudinal 
increase of velocity along the model resulting from the wake, there is a 
decrease of stream static pressure toward the rear of the model. Corre- 
sponding to this effect is a longitudinal buoyancy force, roughly equal 
to the product of the model volume and the pressure gradient, which should 
be applied as a correction to the drag. Normally, however, this last 
correction is fairly small, and it may be noted, in any case, that if this 
longitudinal pressure gradient is large enough to cause a fairly large 
correction, it may also appreciably affect the flow phenomena, such as 
separation, associated with the high drag. 

METHODS OF SOLUTION 

Almost any interference problem for two-dimensional closed tunnels 
can be solved by complex-variable methods. The interference is merely the 
field of the system of mirror images of the model extending to infinity 
above and below the model. If the model can be considered as adequately 
represented by several simple singularities - for example, a doublet and 
a vortex - the interference field is simple to compute since the flow 
fields for infinite rows of such singularities are given by relatively 
simple expressions (references 2 and 3). For the exact solution of an 
airfoil in a closed tunnel, modern cascade theory provides applicable 
methods (reference k). Corresponding solutions for an open two-dimensional 
tunnel (that is, a tunnel with vertical walls, but open at the top and 
bottom) can be similarly derived. Solutions for singularities in the open 
tunnel with closed entrance and exit regions are also readily possible 
(references 5 and 6). In all such solutions for an open tunnel, however, 
it is assumed that the tunnel boundary is not appreciably deformed by the 
singularities within the jet. Yarious experimental results indicate that 
this assumption introduces no significant error in the interference flow 
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near the airfoil but may lead to some error in the region, "behind the 
airfoil (references 7 ^cL 8). Exact solutions, taking into account the 
"boundary deformation, hare "been obtained for special cases (reference 9)j 
in general, however, the deformation is not considered. 

For three-dimensional tunnels the problem, is much more difficult. 
For a small-chord, unswept, and unyawed wing, however, the interference at 
the wing can be readily shown to reduce to a two-dimensional flow problem - 
that of a vortex within a contour having the shape of the tunnel cross 
section and on which the normal or the tangential velocity is zero for the 
closed or the open tunnel, respectively. Many interesting two-dimensional 
problems of this nature have been solved by complex-variable methods (for 
example, references 10 to 12). For the interference at swept or yawed 
wings, or for the problem of corrections to the downwash angle at the tail, 
no similar simplification is possible. 

For rectangular tunnels with closed, open, or partly open cross 
sections, solutions can be obtained by the method of images in which the 
interference field is that due to the doubly infinite array of mirror images 
of the model reflected in the tunnel walls (reference 13).  The infinite 
summation can generally be readily approximated with adequate accuracy. 

For singularities within circular tunnels, solutions can be found by 
expansions in Bessel functions (references 14 to 16); either the open or 
the closed tunnel, or- the open tunnel with closed entrance and exit 
regions, can be treated in this way (reference 17). Solutions for ellip- 
tical tunnels are found in terms of Mathieu functions (reference Ik). 

For tunnels of other cross-section shapes, as the MACA full-scale 
tunnels or the octagonal tunnels, results for the nearest rectangle or the 
nearest ellipse or, perhaps, an average of the results for the nearest 
rectangle and the nearest ellipse may be used. An indication of the accu- 
racy of such an approximation (and also some indication of the direction 
in which further modification might be made) can be found by comparing the 
estimated interference flow at an unswept lifting line with that for the 
true shape (which, as previously mentioned, can be rigorously solved as a 
two-dimensional problem). 

It may also be mentioned that solutions of the boundary-value problems 
that arise in the study of tunnel interference can be found by electrical- 
analogy methods (references 18 and 19) or by empirical comparisons between 
the characteristics of the model in the tunnel and those of the same model 
in a tunnel that is so large relative to the model that interference is 
negligible (reference 7)• 

It is not possible in the present paper to describe in' further detail 
any of the solution procedures that have just been mentioned or the analy- 
tical studies that have been made of the reaction of the model to the 
interference flows (for example, reference 20). Instead, in the remainder of 
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the paper are discussed several problems that may he of interest to those 
currently associated with wind-tunnel laboratories, namely, tunnel inter- 
ference for swept wings, compressibility corrections, and choking. 

TUMEL IHTERFEEMCE FOE SWEPT WINGS 

It might he supposed that, in order to he prepared with tunnel- 
interference calculations for any swept wing that might he proposed for 
test in a given tunnel, calculations would be needed for a series of wings 
having a range of sweep angles and a range of spans - that is, a two- 
parameter set of calculations. Actually, however, such extensive calcu- 
lations are quite unnecessary, at least for rectangular tunnels. Consider 
the sweptback wing (yawed for greater generality) shown at the top center 
of figure 2. Associated with some point concentration of lift on the wing 
is a horseshoe vortex of zero span (that is, a doublet line) extending 
downstream to infinity from the point. The lower part of figure 2 shows 
the rear view of the wing in the tunnel, together with the doublet line 
and the image system of tunnels and doublet lines. The doublets are marked 
plus or minus according as they are the same as or opposite to the wing 
doublet. Examination of the doublet system shows that it is composed of 
two superimposed lattices, one of which is indicated by circles and the 
other, by squares. The vertical spacing in each lattice is equal to the 
tunnel height; the lateral spacing in each is equal to twice the tunnel 
width.  The two lattices are thus identical and, furthermore, are deter- 
mined only by the tunnel dimensions and not by the location of the lifting 
element in the tunnel. Accordingly, once the field of such a lattice has 
been calculated for the horizontal center plane of the tunnel, it can be 
used for determining the complete flow field regardless of the location 
of the lifting element. The- interference flow field for the given lifting 
element is found by subtracting from the field of the two complete lattices 
the field of the single doublet that trails from the lifting element itself. 
Finally, by repeating the indicated procedures for a series of lifting 
elements on the wing, distributed according to the estimated wing lift 
distribution, the net tunnel interference is obtained. 

Contour charts of the vertical component of the flow in the field 
of the lattice have been prepared for several TJÄCA tunnels, including 
the 7- by 10-foot tunnels. 

This procedure would not apply to nonrectangular tunnels. For cir- 
cular tunnels, the NACA has published fairly complete interference fields 
for lifting lines of various spans and various sweep angles (reference 15). 
The sweep angles do not exceed 45°j however, it should be pointed out that, 
when necessary, interference calculations for any sweep angle can be used 
for any other sweep angle. This fact follows from the observation that a 
reasonably rough approximation to the wing loading is generally adequate 
for predicting tunnel interference;  and the procedure is illustrated in 
figure 3.  In the left half of the figure is shown how the loading on a 
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pairs of unswept horseshoe vortices, where the inner vortex of each pair 
has the same strength as the superimposed outer vortex "but has opposite 
rotation. In the right half of the figure is shown similarly how a pair 
of horseshoe vortices and a single horBeshoe vortex, all swept 45°, might 
be used for the same purpose. 

FIRST-ORDER COMPRESSIBILITY CORRECTIONS 

Consider a streamline object (fig. h,  upper left) in the (x, y, z) 
space, to "be flown or tested at Mach number M and velocity U. It is 
desired to predict the perturbation velocities (u, v, w) at various 
points on the object or in the field about the object. According to the 
Glauert-Prandtl method, which takes into account only the first-order 
compressibility effects, the procedure for predicting the perturbation 
velocities involves the three following steps.  (A short derivation of 
this procedure is given in the appendix. See also references 21 to 23.)' 

1. An object is constructed in the x', y', z'  space that is related 
to the physical object according to the relations 

x' = 
VTTM2 

y' = y 

= z 

Essentially, this corresponds merely to a longitudinal stretching of the 

object by the factor   . For the model indicated in the figure, 

Vl - M2 
the fineness ratio of the fuselage, the wing chord, and the sweepback 
angle are increased by this stretching; the aspect ratio, the wing thick- 
ness ratio, and the angle of attack are reduced. If the model is in a 
tunnel, the cross section of the tunnel remains unchanged. 

2. The incompressible flow about this elongated body is found. 
Specifically, the perturbation velocities u', v1, w' .on, or near, the 
object are found for an incompressible flow of stream velocity U. The 
problem of determining this flow may, of course, be quite difficultj how- 
ever, since it is an incompressible-flow problem, it can presumably be 
solved by known methods. 
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3• The desired perturbation velocities u, v, W in the desired 
compressible flow are related to the perturbation velocities u?, v', w' 
in the incompressible flow about the elongated object at corresponding 
points by the following equations: 

u = u 

1 - M2 

v = V" 

\/l - M2 

w = w 

\ll  - M2 

To within the accuracy of the first-order approximation, this 
procedure applies for determining velocities on the object in flight or 
in the tunnel, or for determining tunnel interference velocities. In 
particular, constriction corrections are found by first determining the 
constriction effect in the x', y', z' space and then multiplying 

hy  -. Angle-of-attack or downwash-angle corrections are found by 
1 - yt 

first determining the correction in the x', y', z'  space and then 

multiplying by —-======. The measured lift multiplied by V1 - M2 

V 1 - M2 

gives the value of the lift that should be assumed for the incompressible 
flow in the x', y', z' space. Because the aerodynamic characteristics 
of the elongated object, in general, may bear no simple relation to those 
of the actual object .in low-speed flight, combining the preceding three 
steps into a simple formula for the "compressibility effect" on tunnel 
interference is not possible for most cases. The constriction effect on 
short objects, however, does permit such a simple correction formula. 

Consider an airfoil in a two-dimensional closed tunnel.  It is 
roughly represented by a source-sink body on the left side of figure 5, 
where are also shown the nearest images. The constriction effect is 
merely the velocity contributed by these images in the region of the body. 
For incompressible flow, the constriction of the first upper image is 
indicated by the velocity vectors shown.  The lower vector is due to the 
source at the nose of the imagej the upper vector is due to the sink at 
the rear of the image; and the short horizontal vector is the resultant. 



56 

A similar construction applies to all the other images. Now, if the 
constriction effect at some Mach number M. is desired, it is first 
necessary to construct an elongated body and determine its interference 
in incompressible flow. Examination of the right side of figure 5 

shows that, if the body is elongated by       -, the constriction 
U^ 

Telocity due to the first image is roughly —,  .    as much as before, 

Vl - M2 

and similarly for the constriction velocity due to all the other images. 
If now, according to step 3 of the indicated procedure, .this increase is 

multiplied by ,. it follows that the constriction effect for a 

1 - M2 

reasonably short body in the tunnel varies as  i . Furthermore, 

(l  - $3/2 

although the preceding derivation was for an airfoil in a two-dimensional 
tunnel, it can be readily seen that the identical derivation method and 
final formula would apply for the open two-dimensional tunnel or for a 
body in a three-dimensional tunnel, either open or closed (reference 2k). 

From considerations of the field of the airfoil and its images in 
the two-dimensional closed-tunnel case, a simple rule can he derived for 
the body-constriction effect in the ahsence of an appreciable wake, namely, 
that the constriction effect at the airfoil is one-third the total veloc- 
ity increase at the wall opposite the airfoil. This rule, which applies 
for "both compressible and incompressible flow, provides a means of esti- 
mating the constriction effect from simple pressure measurements at the 
wall. For bodies in three-dimensional tunnels the factor is about one- 
half. 

CHOKING 

The choking speed of a closed tunnel containing a model is that speed 
for which the passage around the model serves roughly as a sonic throat 
and prevents further increase of the flow. Although all the flow in this 
minimum section may not be precisely at sonic speed, the choking speed is 
usually fairly accurately predicted, on the basis of the one-dimensional 
flow equations, from the ratio' of the tunnel cross-sectional area to the 
minimum cross-sectional area of the passage around the model. After this 
condition has been reached, any further reduction of the back pressure 
results merely in an increase in the extent of the supersonic flow region 
just after the minimum without increasing the flow quantity or the up- 
stream Mach number. Any measurements made under such conditions will 
obviously bear no relation to the characteristics of the model in flight. 
The question still remains, however, as to whether results obtained just 
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at choking are meaningful, or, if not, what is the highest Mach number 
for which meaningful results can he ohtained. Certain investigators 
have concluded that tunnel Mach numbers should not he closer than 0.02 
to 0.03 to the choking Mach numbers; others, "by comparing results for 
models of different size in the same tunnel, have concluded that the 
safe margin is 0.04 to 0.05, depending on the model size (reference 25); 
still others have concentrated on the study of constriction effects almost 
up to choking itself, presumably with the hope of using the measure- 
ments made under such conditions. A review of these studies seems to 
indicate some variations among the types of results ohtained in the differ- 
ent tunnels. Possibly the differences are related to the differences in 
relative houndary-layer thicknesses on the tunnel walls; in any case, It 
seems desirahle, for the present, that further studies he made in the 
different wind tunnels where the prohlem arises. 

Figure 6 illustrates the nature of the phenomena ohserved. Several 
5-inch-chord airfoils were mounted across the Langley 2k-inch high-speed 
tunnel and pressures were measured on the wall opposite the models 
(reference 26). On the left side of the figures, these pressures, inter- 
preted in terms of local wall Mach number, have "been plotted against 
distance along the wall for several tunnel indicated Mach numbers.  It 
can he seen that the constriction effect is quite small at indicated = ®°^0- 
hut hegins to "become appreciahle at 0-705- At higher Mach numbers it 
"becomes quite large and, In addition, ihe wake constriction effect "becomes 
very large (indicated hy the fact that the wall Mach number downstream of 
the model never returns to the wall Mach number upstream of the model). 
Finally, just "before choking, the peak Mach number rises very rapidly 
toward 1.0.  On the right side of figure 6, the peak Mach number at the 
wall has "been plotted against tunnel indicated Mach number in order to show 
more clearly how rapidly the peak Mach number rises just "before the tunnel 
chokes. 

In the case of the lifting airfoil (fig- 7, left side), a variation of 
the choking prohlem arises. The stagnation streamline effectively splits 
the flow into two parts which pass, respectively, ahove and helow the 
airfoil.  The distribution of cross-sectional areas, generally, is such that 
choking of the upper passage, in the region just ahove the airfoil leading 
edge, occurs hefore choking of the lower passage. In this case, the tunnel 
flow quantity can continue to increase until the lower passage is also 
choked, although, ohviously, any data ohtained in this flow regime hears no 
relation to the true airfoil characteristics. It is therefore desirahle to 
determine, hy some means other than ohservation of the tunnel indicated 
Mach number, the existence of a choked condition in the upper passage. 
Pressure orifices on the wall opposite the model should he useful to detect 
the approach of choking, as shown in figure 6. It may also he possible to 
compute the streamline pattern hy the method previously discussed (indicated 
on the right of fig. 7) - the airfoil is considered to he elongated In the 

stream direction hy the factor    •*- and the incompressible flow 

\'l - M2 
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pattern about this airfoil is determined. The area ratios above the 
stagnation streamline in this flow 3hould apply to the compressible flow. 
Determination of the location of this streamline involves the solution 
of the flow in the infinite double cascade of airfoils consisting of the 
airfoil and all its mirror images.  (The cascade is referred to as 
"double" "because it consists of two superimposed cascades, one containing 
airfoils at a positive angle of attack and one containing airfoils at a 
negative angle of attack.) Although modern cascade theory can provide 
exact solutions to this flow, an approximate solution, such as that calcu- 
lated in reference 27, should "be satisfactory for this purpose. 

Unsymmetrical choking of a type similar to that just discussed is a 
"basic characteristic of any test setup in which the model supports extend 
"below the model to the floor of the tunnel. The normal slight asymmetry 
introduced "by such supports at low speeds "becomes progressively more 
pronounced as the Mach number increases, and, finally, choking occurs in 
the region "between the supports or perhaps in most of the region below 
the wing. Such a support system therefore "becomes quite unacceptable at 
high speeds, and other arrangements have accordingly "been developed. In 
one of these, a half-span model is mounted from the tunnel wall or, to 
avoid the thick wall "boundary layer, from a plate in the center of the 
tunnel. In another arrangement, the complete model is supported from a 
sting at the rear. 

The use of an open instead of a closed tunnel is also of interest 
with regard to choking (reference 28). At the lower speeds, the tunnel 
constriction effect is, in any case, ahout half as much as for a closed 
tunnel (and of opposite sign)j and at very high speeds it offers the 
advantages that the wake constriction effect is inappreciable and that 
choking in the sense previously described cannot occur. The disadvantages 
of the open tunnel are, of course, the greater flow irregularity and the 
lower energy ratio,'as compared with the closed tunnel. 
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APPENDIX 

THE PEAJSDTL-GIAUEKT METHOD FOE THREE-DIMENSIONAL FLOW 

A "brief derivation of a form of the Prandtl-Glauert method, correct 
for three dimensions, may "be given as follows: A first-order approxi- 
mation to the subsonic compressible flow about a thin "body B, the sur- 
face of which has the equation 

S(x, j,  z)  = 0 

may "be obtained by finding a solution of the linearized differential 
equation for the potential cp of the incremental velocities, 

*\x + <Pjy + ^zz = ° . ^ 

where the x-axis is in the stream direction and the incremental velocities 
cpx, cp, and cp„ are small compared with the stream velocity U. At all 

points on the surface of B, the potential cp must satisfy the boundary 
condition 

(U + cpx)Sx + cpySy + cpzSz = 0 (A2) 

which states that the flow is tangential to B. Since B is assumed 
thin, Sx is small compared with S  and Szj consequently, the second- 

order term 9XSX may be neglected, and the boundary condition becomes 

US x + Vy + Vz3z  = ° 
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In order to solve the "boundary-value problem given by equations (Al) 
and (A2) in terms of incompressible flow, the following transformation of 
variables is used 

i _ x 
"ß 

cp* = ßcp 
(A3) 

Under this transformation, equations (Al) and (A2) become, respectively, 

'x'x' +(P,yy + cP'zZ = ° 
(A4) 

US. :- + cpyv + cp,A = 0 (A5) 

Equations (A4) and (A5) are, respectively, the differential equation and 
boundary condition for the potential cp' of the incremental velocities of 
an incompressible flow with free-stream velocity U, in the x', y, z 
space, about a thin body B', the surface of which has the equation 

S(ßx', y, z) = 0 

The incremental velocities in the compressible flow are thus given by 

U=CD-,=_Cp'i = JL u' 
X  ß2  X   ß2 

v = cp = i cp' = i v' 
<y    ß    y    ß 

w = cp = 1 cp' = i w* z  ß  z  ß 

where u, v, and w and u', v', and w' are the incremental velocities 
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at corresponding points in the compressible flow about 
incompressi"ble flow about B',  respectively. 

B and the 

The foregoing analysis establishes the Prandtl-Glauert method for 
three-dimensional flow in the following form: The incremental velocities 
at a point P on the surface of a thin "body B in compressible flow may 
be obtained in three steps: 

(l) The x-coordinates of all points of 
l/ß, where 

B are increased by the factor 

-fi Mc 

and where the x-axis is in the stream direction. 
changes B into a stretched body B1. 

This transformation 

x- 
(2) 

7-, 
The incremental velocities 
and 

u }  v ,  w ,    in the direction of the 
z-axes, respectively, at the point P' on B'  corresponding 

to the point P on B are calculated as though B1 were in an incompress- 
ible flow having the same free-stream velocity as the original compressible 
flow. 

(3) The values u, v, and w of the incremental velocities at the 
point P on the original unstretched body 
then found by the equations 

B in compressible flow are 

u = — u' 
ß2 

1  , 
V = — V 

ß 

w = — w' 
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Figure 1.-   Airplane model in closed wind tunnel.   Several of more 
important components of interference flow shown. 
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Figure 2.-   Image system of doublets for a lifting element in a closed 
rectangular wind tunnel. 
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Figure 3.-   Representations of the loading on a 60   swept wing by means 
of horseshoe vortices of other sweep angles. 

x,y,z 

x = 
Vl-M2 

y'-y, z'=z 

v w 
   ,W: 

M2  '    V | -M2'    Vl-M2 

Figure 4.-   Scheme for calculation of first-order compressibility effects. 
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Figure 5.-   Source-sink body in a two-dimensional tunnel, and its 
nearest images. 

DISTANCE ALONG  WALL, 
CHORDS 

NACA 16-215 

NACA  16-106 

M INDICATED 

Figure 6.-   Variation of wall Mach number with tunnel indicated Mach number. 
Five-inch chord airfoils in the Langley 24 -inch high-speed tunnel. 
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Figure 7. -   Figure illustrating calculation of choking for a lifting airfoil in a 
closed two-dimensional tunnel. 
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• A REVIEW OF PROPELLER THEORY 

By Blake ¥• Corson, Jr. 

Langley Aeronautical Laboratory 

INTRODUCTION 

Although the use of screw propellers for "boats was introduced at 
least as.early as 1836, the scientific study of propellers may he 
regarded as having "begun in 1865 with the introduction of the slipstream- 
momentum theory "by Rankine which was followed in 1878 "by an alternative 
concept, the simple "blade -element theory of W. Froude. In view of the 
extreme simplicity of the assumptions upon which the early theory is 
"based, the agreement of the analytical results with experience is 
remarkably good. The fact that no further major advances in propeller 
theory were made until about I9I5 is due in part to the relatively 
satisfactory results obtained with the early simple theory and indicates 
that progress in propeller theory awaited the development of aircraft 
and airfoil theory. 

In the history of propeller theory there appear to he five out- 
standing contributions which serve as a background for a great number of 
associated significant contributions- The major contributions are the 
axial-momentum theory introduced by Rankine (reference 1) in 1865, the 
simple blade-element theory of W. Froude (reference 2), 1878, the 
concept of the vortex propeller theory by Lanchester (reference 3), 
1907^ the screw propeller with minimum induced energy loss by Betz 
(reference W),  1919, and Goldstein's solution for the radial distri- 
bution of circulation for highest efficiency for a lightly loaded pro- 
peller having a finite number of blades (reference 5), I929. Since 1929 
a number of notable contributions have been made to aerodynamic pro- 
peller theory, most of which stem from an attempt to extend the work of 
Betz and Goldstein to consideration of a heavily loaded propeller and 
the development of dual-rotation propeller theory. 

A review of only the significant contributions to propeller theory 
affords material for a voluminous textbook. The purpose of this paper 
is to mention briefly the significant features of the major contributions 
and to discuss some of the more important developments made since the 
introduction of Goldstein's work, especially those made during the recent 
war years which have not received widespread publicity. 

A list of the symbols used in this paper is included in the appendix. 
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EARLY THEORY 

Simple Momentum Theory 

In the development of the slipstream-axial-momentum, theory Rankine 
regarded the propeller as an actuator disk immersed in a fluid having a 
uniform relative motion normal to the plane of the disk as shown in 
figure 1. The thrust exerted by the propeller results in a discontinuous 
increase in total pressure of the slipstream as it passes through the 
disk which is manifest as a continuous increase in slipstream axial 
velocity and an abrupt rise in static pressure- In the derivation, use 
is made of the laws of motion, Bernoulli 's equation, continuity equation, 
and conservation of energy. The analysis indicates that the axial- 
velocity increase in the fully developed slipstream, where the static 
pressure is the same as that of the BUrrounding medium, is twice the 
increase at the propeller- The fundamental and very useful relation for 
jet propulsive efficiency is 

tl - r^- - CD 
1 + a 

By assuming conservation of energy, an alternate expression involving 
power coefficient, advance ratio, and efficiency is derived: 

Cp-t'31^ (£> 

Equation (2) represents the absolute ultimate in efficiency obtainable 
with a loaded propeller operating in an undisturbed streamj the only 
loss considered is the axial kinetic energy in the slipstream which is 
inseparable from the production of thrust. The variation of ideal 
efficiency with advance ratio as indicated by the simple momentum theory 
is shown in figure 2 and is compared with the efficiency indicated by 
modern theory. 

The simple momentum theory was inadequate in that it gave no 
indication of the rate of slipstream contraction, failed to deal with 
the friction losses of a real propeller, and failed to fix propeller 
geometry except to demand the largest possible diameter. 

Simple Blade-Element Theory 

The simple blade-element theory introduced by W- Froude in 1878 
and extended by Drzewiecki (reference 1 on p. 179 of reference 6) in 
1892 ignored the concept of slipstream momentum and considered only the 
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force and velocity vectors acting on the propeller blade sections. The 
"blade section at each radial distance from the axis of rotation was 
treated as an airfoil of indefinitely short span operating in a fluid 
whose relative velocity was determined only "by the propeller 's rotational 
speed and its forward motion- Application of the theory required the 
use of experimentally determined airfoil characteristics (lift and drag 
coefficients) and arbitrary assumptions of effective aspect ratio. 

This theory, though far from "being satisfactory, did enable 
designers to fix propeller size and shape for given operating conditions 
and permitted the calculation of propeller thrust, power, and profile 
efficiency. The efficiency computation accounts for no losses except 
the blade-section profile-drag or friction losses. The efficiency of a 
"blade element fj' is expressed as 

tan CL . . 
n = , ,   x (3) 

tan (*o + r) 

where 0  is the nominal helix angle and y    is the angle whose tangent 

is the drag-lift ratio. The foregoing relation is simply the efficiency 
of any screw involving friction and working without slip. The theory is 
useless for conditions of low rates of advance "but gives reasonably good 
results at high advance ratios and does indicate that highest efficiency 
can "be obtained when the most effective parts of the propeller "blade have 
helix angles slightly less than k^°•    Inasmuch as the energy relations 
"between the propeller and the surrounding medium are ignored, the theory 
is incomplete and gives no information for selection of optimum number 
of "blades or optimum "blade shape- The optimum diameter indicated would 
"be merely that which resulted in lowest profile losses which is entirely 
dependent upon the arbitrary selection of airfoil characteristics. 

MODERN TBEOEf 

The Vortex Theory 

In the quarter century preceding World War I, considerable effort 
was spent in trying to develop the older basic theories to have a more 
realistic application to actual propellers. Most investigators realized 
that the axial-velocity increment demanded by the simple momentum theory 
must also exist to some extent for the blade-element theory, and early 
attempts to improve the latter theory followed this approach. That is, 
the effective axial velocity in which the propeller operated was assumed 
to be the sum of the flight velocity and the velocity increment (at the 
disk) calculated from the simple momentum theory or an empirically 
determined portion thereof (reference 1 on p. l8o of reference 6 and 
references 7 and- 8). Also, during this period the slipstream-momentum 
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theorj was extended to include the slipstream rotation resulting from 
propeller torque and vas designated as the general momentum theory. 

With the advent of modern airfoil theory characterized "by the 
association of lift with circulation and the related concept of a vortex 
system for a finite airfoil consisting of hound and trailing vortices, a 
new approach to the propeller problem was opened. 

The concept proposed "by Lanchester in I9O7 (reference 3), upon which 
the vortex theory of the propeller is "baaed, is that the effective 
velocity at which the "blade sections of a propeller operate includes, .in 
addition to the translational and rotational velocities, the velocity 
induced "by the propeller itself which is the strength at the propeller 
"blades of the velocity field of the trailing vortex system. This concept 
is "based on Prandtl's airfoil theory. The simplest possible represen- 
tation of such a system, analogous to the use of a horseshoe vortex to 
represent a finite lifting airfoil, is shown in figure 3- The diagram 
illustrates the propeller "blades, each with a bound vortex and its 
associated pair of trailing vortices, all of equal strength. From each 
propeller "blade one vortex trails directly downstream with circulation 
about the axis of rotation in the same sense as the propeller rotation, 
the other vortex springing from the propeller tip trails along a helical 
path with circulation opposite in sense to that of the axial trailing 
vortex. It was realized, of course, that the real vortex system would 
be determined by the radial distribution of load on the blade and would 
be composed of a helicoidal sheet of vortex filaments springing from all 
points along the blade. Employing such a concept, Joukowski developed a 
vortex theory of screw propellers in 1912 (reference 8 on p. l8o of 
reference 6) which he presented in final form in I9I8, being forced by 
the involved nature of the problem to the simplifying assumption of an 
infinite number of blades. Original contributions in the development 
of the vortex theory of propellers with an infinite number of blades have 
been made by other investigators (references A5 and A7 of reference 9 and- 
re ferences 10 to 13) of whom the most widely known in English speaking 
countries is H. Glauert. 

The essential feature of the vortex theory is that the induced 
velocity at the propeller blade can be calculated from a knowledge of 
the vortex system of the wake and that in the resultant flow the blade 
elements can be assumed to operate with the characteristics of an air- 
foil having infinite aspect ratio. A further assumption made in the 
application of blade-element theory is that the operation of a blade 
element is not influenced by the operation of adjacent elements of the 
same blade» Though not theoretically tenable, experiment has shown 
that the assumption of independence of blade elements results in no 
appreciable error (reference Ik)• 

A  typical vector diagram of the velocities assumed to act on a 
propeller blade element for the vortex theory is presented in figure k. 
The axial and rotational components, v and 2jtrn, respectively, are 
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specified "by the operating conditions- The critical problem in any 
screw -propeller theory is the determination of the induced velocity wj_ 

which is the real velocity at the propeller blade element of the air 
adjacent to the vortex sheet in a direction normal to the sheet. In the 
application of the vortex theory it has "been customary to resolve the 
induced velocity into axial and rotational components and to compute 
these "interference " velocities "by means of the general momentum 
equations. Satisfactory routing procedures for application of the vortex 
theory have "been set up "by Glauert and "by Weick (references 15 and 16, 
respectively)• 

Again referring to the vector diagram (fig. h)  the efficiency of a 
"blade element "by the vortex theory is shown to ~b<=> 

,    tan öf   1 - a' ,, •> 
n = -r-  (4) 

tan ((p +  7) 1 + a 

Equation (k)  conveniently indicates the magnitudes of the three sources 
of loss considered, that is, profile-drag loss and the axial and rota- 
tional induced losses. 

When the vortex theory is simplified "by the assumption of a pro- 
peller having an infinite number of frictionless "blades, the induced 
velocity at the propeller v-j_ of the trailing-vortex system is the 

same as that obtained by the general momentum equations and is given by 

4itr sin <f 

•where the product Br is the total circulation about all blade elements 
at the radius r. 

In spite of the necessary simplifying assumptions, the vortex theory 
has given results which agree reasonably well with experience and forms 
the basis of modern propeller theory. It did fail, however, in the 
important detail of showing the effect of the number of blades and, as 
originally developed, did not indicate the optimum radial distribution 
of blade loading. 

Screw Propeller with Minimum Induced Energy Loss 

Adopting the concept of a propeller operating in accordance with 
the vortex theory and producing a slipstream composed of a system of 
trailing vortices, Betz proposed to determine the radial distribution of 
circulation along the propeller blade (or distribution of vorticity in 
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the slipstream) which for a given thrust would result in the smallest 
energy loss (reference h). Prandtl had shown that the condition of 
minimum induced energy loss for a lifting airfoil is obtained when the 
induced velocity in the wake, opposed to the direction of the lift, is 
uniform along the span, which results in an elliptical spanwise loading. 
Betz'a solution represents an extension of Prandtl 's airfoil theory to 
the case of a propeller. Just as in the case of a finite wing, the 
system of vortex filaments trailing the spanwise wing elements is 
regarded as forming a rigid sheet; so, for a propeller the vortex 
filaments trailing along helical paths downstream from the propeller 
"blade elements are regarded as forming, "behind each "blade, a rigid 
helicoidal vortex sheet (without any assumption at this point as to 
whether the individual filaments continue to maintain their positions 
relative to one another as they pass downstream). 

In the wake of a thrusting propeller the helicoidal sheets have 
"both axial and rotational velocity components which, if the sheets are 
rigid, can "be resolved into a pure apparent axial motion or pure apparent 
rotation. In any case the fluid "between adjacent sheets adopts the same 
general motion and, in addition, a radial velocity produced "by its 
tendency to flow around the edges of the sheets which produces the so- 
called "tip loss" associated with a finite number of blades- In his 
early treatment Betz assumed a lightly loaded propeller with negligible 
slipstream contraction. He dealt with conditions in the wake far behind 
the propeller and made use of Munk 's displacement theorem by which a 
small change in circulation can be assumed to be added at a point in the 
wake rather than at the propeller blade. 

Betz assumed that the radial distribution of circulation could be 
varied at will by adding or subtracting increments of circulation at 
various radii. He showed that to maintain a constant value of over-all 
thrust an increment of circulation removed at one radius had to be 
replaced at another by an increment having a strength inversely propor- 
tional to the respective radii. He then investigated the possibility 
of reducing the circulation at those radii where the induced lo3S was 
high and increasing the circulation at radii where the induced loss was 
small and thereby established the condition of minimum induced energy 
loss to be that for which the helicoidal vortex sheets formed apparently 
rigid screw surfaces of uniform pitch, under which conditions the blade 
elements at all radii operated with equal efficiency (drag losses not 
being considered). 

Betz used rigorous proofs to establish the condition for minimum 
induced energy loss for a screw propeller, to justify the use of Munk's 
displacement theorem, and to show that the induced velocities in the 
fully developed slipstream were twice as great as for corresponding 
points at the propeller blades. 

The condition for minimum induced energy loss is illustrated by the 
vector diagrams of figure 5 for velocities in the wake far downstream 
from the propeller. Betz 's conclusion was that the induced velocity w^ 
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normal to the local surface of the vortex sheet should vary radially so 
that 

x = w = Constant 
cos 0 

where w is the apparent axial motion of the rigid vortex sheets. The 
real velocity w-, of the air at the surface of the helicoidal sheet has 

both axial and rotational components which vary continuously along the 
blade. However, to an observer far to one side of the slipstream viewing 
the wake system in a direction normal to its axis, the vortex sheets 
would appear to form, rigid screw surfaces of uniform pitch and would 
appear to move as a whole without rotation with the pure axial velocity w- 

The foregoing concept of a rigid-wake system is adopted for conven- 
ience in the mathematical treatment of the potential flow in the propeller 
wake. Because the induced velocities in the far wake are twice as great 
as at the propeller, the helicoidal vortex sheets undergo an initial 
distortion in the region where the slipstream contracts and are assumed 
then to form rigid screw surfaces of infinite length. Actually, the 
surfaces roll up into concentrated spiral vortices, one for each blade; 
and a single vortex along the axis equal to the combined.strength of 
the spiral vortices. 

In the development of propeller theory various authors deal some- 
times with conditions at the propeller blades and at other times with 
those in the fully developed slipstream. In nearly all modern treatments 
of the vortex theory conditions in the final wake (especially, the 
apparent axial motion of the trailing helicoidal sheets) are the design 
criterions. It is the responsibility of the individual to make certain 
of an author's nomenclature before applying his results. The symbol w 
is found in the literature to represent axial velocity of the helices 
both in the final wake and at the propeller blades. 

Effect of Number of Blades 

In the development of the vortex theory the treatment of the pro- 
peller was simplified by the assumption of an infinite number of blades. 
In this way the spacing between adjacent helicoidal vortex sheets is 
made indefinitely small, the radial velocity components of the flow 
around the edges of the vortex sheets are eliminated from the consider- 
ations, and the circulation in a bound vortex does not become zero at 
the blade tip. For physical propellers the foregoing simplification 
must be abandoned) the spacing between the helicoidal sheets increases 
as a function of advance ratio and inversely as the number of blades; 
and further, the circulation in a bound vortex must become zero at the 
blade tip as well as at the axis. However, the Betz condition for 
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minimum induced energy loss that the helicoidal vortex sheets form screw 
surfaces of uniform pitch remains valid. 

Prandtl 's solution.- In an addendum to Betz 's paper (reference k), 
Prandtl gave an approximate solution for the radial distribution of 
circulation for a propeller having few "blades. Prandtl ignored the 
helical nature of the flow "behind a propeller and assumed the helicoidal 
vortex sheets to he replaced "by a succession of semi-infinite, rigid- 
plane laminae normal to the propeller axis. The distance "between laminae 
was taken equal to the normal distance at the slipstream "boundary "between 
the corresponding helicoidal surfaces, and the edges of the laminae were 
taken to lie in a plane tangent to the slipstream "boundary. Prandtl 
investigated the two-dimensional field of flow around the edges of the 
laminae when the ambient fluid moved normal to their planes with a 
relative velocity w- Regarding the circulation as equal to the change 
in the velocity potential across the laminae, Prandtl ohtained a 
distribution of circulation which was zero at the edge and increased with 
distance from the edge. The results applied to a propeller give a radial 
distribution of circulation which is a function of number of "blades and 
advance ratio and is zero at the "blade tip. When equations presented 
in reference 17 are combined, the approximate solution for optimum 
distribution of circulation along the "blade ohtained "by Prandtl is 
given "by equation (6) in terms of the circulation function 

K(x) = S& = -j£— 2 arc cos e 
^  1 + x

2 « 

¥^\M 2 
+1 

(6) 

When Goldstein 's exact solution (discussed subsequently) is used as a 
criterion, Prandtl's approximate solution gives good results for pro- 
pellers having a large number of "blades or having a small advance ratio, 
that is, when the spacing "between adjacent helicoidal sheets is 
relatively small. For operation at large values of advance ratio, or 
with few "blades, the approximate solution is not accurate. In all cases 
the approximate solution gives values of circulation larger than those 
ohtained by Goldstein's exact solution. 

Goldstein 's solution.- An exact solution for the radial distribution 
of circulation in the helical wake of a propeller having few blades was 
obtained by Goldstein and presented in I929 (reference 5)« Lock 
(reference l8) states that the problem of pure hydrodynamics considered 
by Goldstein is that of the potential flow of fluid past a rigid body 
of a certain- form moving with a uniform velocity. The form of the body 
is a helicoidal surface of infinite length but finite radius, moving 
parallel to its axis with uniform velocity w, or more generally any 
finite number of such surfaces equally spaced on the same axis and of 
the same radius, corresponding in number to the number of blades of the 
airscrew. 
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Goldstein deals with a propeller having few "blades operating in an 
inviscid fluid so that the consideration of "blade drag loss is elimi- 
nated. He accepts as valid the Betz condition for minimum energy loss 
as being realized when, at a great distance from the propeller, the 
vortex sheets trailing the propeller "blades form screw surfaces of 
uniform pitch. Goldstein notes that acceptance of the foregoing condi- 
tion is equivalent to neglecting the slipstream contraction and is 
therefore valid only for lightly loaded propellers. In obtaining his 
solution Goldstein deals only with conditions in the final wake and 
states, as does Betz, that the induced velocity at a propeller "blade is 
one-half as great as that at a corresponding point in the wake. 

In a few "brief steps Goldstein establishes the differential 
equation for the potential flow which satisfies the "boundary conditions - 
However, the mathematical procedures used to obtain a solution are 
intricate. The solution is obtained in terms of a circulation function 
K(x) 

K(x) = 5£L = f (B, 0, x) 
VW 

The determination of the value of K(x) for a specific operating 
condition involves the use of Bessel functions and the evaluation of 
infinite series. 

A diagram of a propeller with its trailing vortex system is 
presented in figure 6 to illustrate the definition of the circulation 
function K(x) • This figure was taken in part from one presented in 
reference 19» A four-blade propeller operating at a flight speed V 
and rotational tip speed «nD is represented. On the lower blade in 
the figure the bound vorticity is represented by equipotential lines 
which, when shed, continue downstream as trailing-vortex filaments, 
the aggregate of which build the helicoidal vortex sheets- Goldstein 
assumed a lightly loaded propeller with negligible slipstream contraction 
so that at the surface of a vortex sheet in the far wake the circulation 
at a given radius could be equated to the circulation about the propeller 
blade at the same radius. The circulation r at a point on a vortex 
sheet is equivalent to the difference in the velocity potential between 
the upstream and downstream faces of the sheet taken along a path around 
the edge of the sheet. 

By hypothesis the wake vortex system conforms to the Betz condition 
for minimum energy loss and moves axially with velocity w with respect 
to the surrounding medium. The axial spacing between adjacent helicoidal 
sheets.is 

V + w 
Bn 
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The quantItj 

(T^> 

represents the equivalent velocity potential resulting from the action 
of the velocity w through the axial distance "between adjacent sheets. 
The circulation function K(x) is defined as the ratio of the circu- 
lation r to this velocity potential: 

K(x) = 
Y + v 
Bn 

=   BPa 
(T + w)w 

The helix angle in the far wake is determined "by the relation 

V + w tan (fi  = 
2jtrn 

In defining the circulation function for lightly loaded propellers, 
Goldstein regarded the wake velocity w as small compared to the flight 
speed so that 

K(x) = l£l V ;   Tw 

For propellers with a moderately heavy loading he notes that it is 
more exact to define 

K(x) =   BFn 
(Y + w)w 

One concept of the circulation function K(x) is that it represents 
the fraction of the axial spacing "between surfaces which, if acted 
through "by the constant velocity w, produces the same potential as does 
the average of the real axial-velocity component acting through the full 
distance of the axial spacing.  In other words, K(x)w is the average 
value of the axial component of the induced velocity at a given radius- 
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In the simple case of a propeller with an infinite number of "blades 
this is easily visualized. The helicoidal surfaces are indefinitely 
closely spacedj there is no radial flow} and the average axial induced 

velocity is the same as at the helicoidal surface and is w cos2 $% 

K(x)v = w cos2 (j> 

Br 
Y + v" 
n 

The total circulation 3T at a given radius is equivalent to the 
velocity potential produced hy the average axial induced velocity acting 
through the axial distance traversed in one turn. 

In figure 6 a qualitative representation of the streamlines 
referred to axes fixed in the surrounding fluid is shown on a plane 
approximately normal to the helicoidal sheets at their edges. The 
component of air velocity normal to a helicoidal sheet at any radius 
is the same on "both faces of the sheet. The radial component of the 
velocity, however, is different, "being directed inward at the upstream 
face and outward at the downstream face as a result of the tendency of 
the air to flow around the edge of the sheet. This discontinuity of 
the radial velocity at opposite faces of the helicoidal surface is a 
measure of the vortex strength or circulation. The energy of the radial 
flow accounts for the so-called "tip loss. " 

Goldstein presents values of the circulation function for a two- 
"blade propeller plotted as a function of the cotangent of the helix 
angle with jt/j as a parameter. He compares the values obtained hy his 
exact solution with those ohtained from Prandtl's approximate solution. 
Goldstein's results are shown in figure 7« 

A comparison of the radial distrihution of load for the simple 
momentum theory, the vortex theory (B = °°), and Goldstein theory is 
presented in figure 8. In each case the propeller operates at an 
advance ratio of 2.0 and a power coefficient of 0.2. The comparison is 
of the thrust-grading curves- For the simple momentum theory this 
curve is a straight line through the origin corresponding to a uniform 
pressure rise across the disk. For the vortex theory for an infinite 
number of "blades there is no tip loss, and thrust is assumed to "be 
maintained at the "blade tips- The curve for the Goldstein theory 
illustrates that the circulation must drop to zero at the tip. The 
tahle in the figure indicates the values of apparent axial velocity of 
the vortex system resulting in each case, as well as the respective 
values of efficiency. 
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Lock.- Prior to Goldstein 's work on propeller theory, the vortex 
theory for an infinite number of blades had come into widespread use, 
and propeller investigators were familiar with the somewhat standardized 
form of equations by which the vortex theory was applied. Lock and 
Yeatman, in reference 20, show that the insertion of a factor K     into 
the standard equations for the vortex theory made these equations 
applicable to propellers having a finite number of "blades where 

2. 
cos (p 

The circulation function K(x) is defined by Goldstein for 
moderately loaded propellers as 

K(x) = - Brtl x v    (V + w)w 

For the vortex theory for infinite number of blades the circula- 
tion function so defined is found to he 

K(x) = -M±  
(V + w)w 

H = cos 

Hence, for an infinite number of "blades the function K    defined "by 
Lock is unity: 

K = H±)_«i.o- 
cos & 

The critical velocity.component in propeller-blade-element theory 
is the induced velocity w-j_ at the propeller "blade normal to the 

resultant velocity. For the vortex theory for infinite number of blades 
this induced velocity, where BT is the total circulation around the 
disk at radius r, is 

=   BT 
1  4itr sin $ 
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Lock shows that the equivalent expression for the vortex theory -with 
Goldstein's correction for a finite number of "blades is 

Br v, = 
x k-KTK sin y 

Values of  K lie, in general, "between zero and unity. When the number 

of "blades approaches Infinity, Goldstein 's K(x) approaches cos^ and 
K    approaches unity. Lock and Yeatman have extended the computation of 
Goldstein's K(x) to cases for propellers having two, three, and four 
"blades and have presented the results in charts shoving K as a function 
of sin $   with the radius as a parameter (reference 20). A sample chart 
is shown in figure 9- 

Crigler and Talkin (reference 21) present charts of K(x)/cos20 
for propellers having two, three, four, six, and eight "blades. For such 
propellers they also give very useful charts of ideal efficiency (blade- 
section drag neglected) as a function of power coefficient, with "blade 
loading 0C^ at x = 0-7 and advance ratio as parameters, and show 

how these charts may "be used to estimate quickly the over-all efficiency, 
thrust coefficient, and power coefficient, including the effects of drag. 

Effect of Blade Profile Drag 

In the development of propeller theory the potential-flow problem 
is usually set up for idealized conditions. The flow field of the 
propeller is regarded as "being established "by the flight speed, pro- 
peller rotational speed, and the velocities induced by the vortex system- 
The propeller "blades are replaced by bound vortices of the desired 
strength, and the physical shape of a blade is ignored. The effects of 
the blade section drag on potential flow are regarded as of second order 
and are neglected. This is a logical procedure for establishing optimum 
ideal blade loading and the associated induced flow field- 

In the application of theory to design the blade section drag must 
be considered because a large -portion of the energy loss for a pro- 
peller is that due to profile drag. Lock (reference 22) makes a direct 
computation of the profile-drag power loss as being, for each blade 
element, the product of section drag and resultant velocity, which, 
when integrated, gives the loss for the entire propeller. Weick (refer- 
ence l6) bases propeller drag loss on the section drag-lift ratio, 

, _   tan $ 
0   tan (0 + 7) 
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where 

tan 7 = — 

He shows that highest elemental efficiency is obtained when 

0 = 45° - | 

and, consequently, that from consideration of only drag, a propeller of 
highest efficiency should "be designed for an advance ratio slightly less 
than 2.20 which corresponds to a helix angle of V?° at x = O.J. 

In a study of the induced flow field of propellers of highest 
efficiency haying a finite number of "blades, Ferri (reference 23) 
considers the effect of "blade section drag upon the ideal radial distri- 
bution of circulation. He shows that as the drag-lift ratio is 
increased an inboard shift of the "blade loading is required to maintain 
highest over-all efficiency. 

Hartman and Feldman (reference 2k),  "basing their work on that of 
Goldstein and Lock, offer a systematic procedure for the design of 
propellers of hignest efficiency including the effect of "blade-section 
profile drag. They investigate the relation "between the induced loss 
and drag loss for a propeller and show that when a specific propeller 
operates at its highest efficiency the drag lo3s is equal to the induced 
loss. Their treatment of the propeller is analogous to that which, for 
a finite wing, shows the maximum lift-drag ratio to "be obtained when the 
induced drag equals the profile drag. Although their analysis is not 
rigorous, the conclusion is apparently substantiated by experiment.  In 
figure 10 the envelope efficiency and corresponding values of power 
coefficient plotted against advance ratio are shown as solid-line curves- 
These data, from reference 25, were obtained in the Langley propeller- 
research tunnel for a 10-foot-diameter three-blade propeller, designated 
as 5868-9, with spinner. For identical values of power coefficient and 
advance ratio, the ideal efficiency of a three-blade propeller is shown 
as a dash line. At the advance ratio for maximum efficiency the induced 
loss is found to be very nearly equal to the drag loss. Similar compu- 
tations for a number of different propellers have yielded like results. 
This type of analysis provides one means of judging the excellence of a 
propeller design. Also, in selection of diameter, when the propeller 
geometrical shape and operating conditions are fixed, the optimum 
diameter is that which results in equal induced and profile-drag losses. 

The systematic design procedure offered by Hartman and Feldman is 
most readily applied when the KACA l6-series airfoil sections 
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(reference 26) are used. These sections which, were developed especially 
for application to propellers have very high critical speeds and, at 
present, are the blade sections most widely used in the design of high- 
speed propellers. 

Dual-Rotation Propellers 

The history of dual-rotation propellers in the inventional stage 
begins almost as early as that for single-rotation propellers, hut the 
development of fundamental theory for dual propellers has not progressed 
to a comparable stage- Wo rigorous proof for the optimum wake configu- 
ration comparable to Betz's treatment for single-rotation propellers has 
been established, nor has a mathematical solution for the distribution 
of the circulation along the blade been obtained. A large amount of 
literature exists which deals with the practical phases of dual rotation. 
An approximate design procedure, proposed by Lock, based essentially on 
single-rotation-propeller theory is presented in reference 2rj.    A 
consideration of the periodic effects in dual-rotation propellers is 
treated in reference 28. A treatment of dual-rotation-propeller theory 
and design believed to be basically sound, but dependent upon an 
experimental approach, has been presented by Theodorsen (references 29 
to 33)- A simplified design procedure for dual propellers based upon 
Theodorsen's work has been presented by Crigler (reference 3*0 • 

The principal contributions to propeller theory made by Theodorsen 
are (1) the demonstration that the circulation function for any pro- 
peller could be determined by an electrical analogy with relatively 
simple apparatus and (2) the experimental determination of the circu- 
lation function for dual-rotation propellers, a problem which presents 
formidable difficulties to the mathematical approach. 

Circulation function.- In dealing with single-rotation propellers 
having a finite number of blades, both Prandtl and Goldstein solved for 
the radial distribution of circulation along the propeller blade which 
they expressed as a nondimensional ratio equal to a function of number 
of blades, helix angle, and radius- For lightly loaded propellers, 

K(x) = ?£n = f (33, <j>,  x) 
Vw     ' r> 

or alternatively for moderately loaded propellers, 

K(x) =  Brn  = f (B, 0, x) 
(V + w)w 

Theodorsen uses the latter definition- 



Mass coefficient.- A factor which Theo&orsen uses extensively 
in his treatment of propeller theory is the mass coefficient k which 
is the average value over the propeller disk of the circulation 
function K(x) • The mass coefficient is the ratio of the equivalent 
mass of air accelerated to the uniform velocity w in unit time to 
the mass of air which passes through the propeller disk during the same 
time. For a propeller with a finite number of "blades, the equivalent 
mass of air in a cylindrical element of thickness dr to which is 
imparted the axial velocity w in one turn is 

dm = p(2irr dr)K(x) Y + w 
n 

By an integration over the disk, the equivalent total mass accelerated 
to velocity w is 

m = patE2 "L±JL 
n 

By definition, 

prtR2 

.0 

-S = k = 2   ( K(x)x dx 
V      T    W 

n 

Theodorsen has used an electrical-analogy method to determine 
values of "both the circulation function and the mass coefficient for a 
wide variety of propellers. 

Electrical analogy.- For dual-rotation propellers with symmetri- 
cally loaded front and rear units, there is no net rotation in the 
slipstream; the wake is composed of two sets of helicoidal surfaces 
spiraling in opposite directions. The configuration of the wake 
helices is the same whether the oppositely spiraling surfaces of 
vorticity are regarded as intersecting each other, or as "being reflected 
from one another. For conditions far downstream in the wake of a single - 
rotation propeller, the value of K(x) at a specified radius on the 
helicoidal surface is obviously independent of axial position.. This 
independence of axial position does not hold for the circulation function 
for dual-rotation propellers. The oppositely spiraled vortex sheets 
intersect (or reflect) to form a symmetrical pattern moving downstream 
with the velocity w. The circulation function K(x, 0) for dual- 
rotation propellers is a periodic function of axial position, one cycle 
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"being the axial distance "between successive intersections. The problems 
involved in determining mathematically the circulation function for 
dual-rotation propellers were regarded as insurmountably difficult, and 
Theodorsen turned to the more expedient method of devising a 
calculating machine to obtain this function- Theodorsen considered 
investigation of the flow field about and forces on a rigid helicoid 
when immersed in a liquid and oscillated axially but discarded this 
scheme as too dependent upon mechanical perfection. However, the 
mathematical identity of the flow of an ideal fluid with the flow of an 
electric current in a field of uniform resistance, when boundary condi- 
tions are the same, made possible the experimental solution of this 
problem by electrical analogy. 

In the electrical method the counterpart of the rigid helicoidal 
surfaces trailing the propeller blades is a geometrically similar 
model of the wake surfaces made of nonconducting material (celluloid). 
A photograph of several of the wake models is presented as figure 11. 
The wake model is immersed in a weak electrolytic solution (tap water) 
in which an electric current flows in a uniform field parallel to the 
model axis•  In this setup electric current and electrical potential 
are analogous to the velocity and velocity potential of fluid motion, 
respectively- 

Apparatus • - The two types of measurements made with the electrical 
method were determination point by point of the radial distribution of 
the circulation function K(x) and determination of the mass coef- 
ficient k- 

A diagram of the apparatus used for measuring the value of the 
circulation function K(x)  at points along the radius of the helical 
surface is shown in figure 12. The arrangement is simply a Wheats tone 
bridge with the usual galvanometer replaced by earphones, and the power 
supply is alternating current having a frequency of 1000 cycles per 
second. The null point is established by adjusting the variable 
resistance until the signal becomes inaudible- The measurement is very 
precise. The drop in electrical potential SE across a helicoidal 
surface can be measured accurately at any radius and compared with the 
potential drop E in a length of the uniform flow field equivalent to 
the axial spacing between adjacent sheets. The electrical analogy shows 
the circulation function to be 

K(x) = §E 
v    E 

Somewhat similar apparatus (fig- 13) is used for measuring the mass 
coefficient k which, being an integrated quantity, requires only a 
single measurement for each model. Two arms of the Wheatstone bridge 
are known resistances and the other two are the identical tanks of 
electrolyte. The tank walls are nonconducting, but the top and bottom 



are copper plates in contact vith the electrolyte* Between the copper 
plates of one tank is Inserted a model of the helicoidal wake coaxially 
•with the tank. The increase in electrical resistance caused by the 
presence of the wake model is equivalent to the addition of a potential 
opposing that of the uniform flow and results in a decreased current. 
Theodorsen gives rigorous proof that the mass coefficient is 

k =   £ 

s )X° 

where ? and S are the cross -sectional areas of the wake model and 
tank, respectively, IQ is the current flowing in the unobstructed tank, 

and AI is the change in current due to the presence of the wake model- 

The reliability of the electrical-analogy method was verified "by 
a comparison of the experimental results with those obtained by the 
exact theory (Goldstein) for the known case of a single-rotation pro- 
peller having two blades. The comparison is given in figure Ik  which 
presents the mass coefficient plotted against the advance ratio of the 
wake. The agreement is excellent. 

The difference in radial distribution of the circulation function 
for single-rotation and dual-rotation propellers is illustrated in 
figure 15 for four-blade propellers operating at an advance ratio of 6-0. 
The dual-rotation propeller is composed of two units of two blades each, 
rotating in opposite directions. The value of K(x) is of necessity 
zero at the blade tip for both propellers and zero at the axis also for 
the single-rotation propeller, but for the dual-rotation propeller K(x) 
increases continuously with distance from the tip and reaches a maximum 
value at the axis of rotation. In order to draw an analogy between the 
propeller and a wing, the single-rotation-propeller blade behaves in 
effect as a wing having a span equal to the propeller radius, whereas 
the dual-rotation-propeller blade acts as the semispan of a wing the 
full span of which is the propeller diameter. Consider two oppositely 
rotating blades of an ideal dual-rotation propeller when l8o° apart. The 
bound circulations on the two blades are symmetrical, equal, and are in 
the same sense} hence there is no concentration of vorticity shed along 
the axis of rotation as in the case of the single-rotation propeller. 
If a comparison were made of the radial distribution of thrust for the 
two propeller types, the thrust-grading curves for both would be zero 
at the axis and at the tip, but the elemental values of thrust for the 
dual-rotation propeller would, at all radii, be greater than those for 
the single-rotation propeller if the same value of wake velocity w is 
assumed for both cases. 

As mentioned in the discussion of the mass coefficient this factor 
represents the portion of the slipstream flow effectively worked on by 
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the propeller- A comparison of the mass coefficients for four-'blade 
single-rotation and dual-rotation propellers is shown in figure 16. 
At values of advance ratio currently in use for cruising operation, 
J = 1.5 to 3*0, the mass coefficient for the dual-rotation propeller is 
a"bout twice that for the single, and about three times as great at 
values of advance ratio from 4.0 to 5-0. This comparison shows that for 
the case selected, for operation at equal values of induced loss the 
power capacity of a dual-rotation propeller is much greater than that of 
a 3ingle-rotation propeller of equal diameter and solidity. 

DISCUSSION 

In his book on propeller theory (reference 33) Theodorsen comments 
that the theory for dual-rotation propellers may be overidealized. The 
ideal distribution of circulation cannot be obtained in practice by any 
means known at present, because the theory demands a cyclic change in 
the circulation function which in turn requires a cyclic change in blade 
angle. The required cyclic pitch change is different for each radial 
station and, therefore, cannot be obtained by a simple oscillation of a 
blade in the hub. 

The validity of the electrical analogy, though apparently well 
verified by comparison with theory for single-rotation propellers, is 
not completely established for dual-rotation propellers. The radial 
lines of intersection of the sets of oppositely spiraling vortex sheets 
represent regions of discontinuity. There is no guarantee that the 
application of the electrical analogy with celluloid models of dual- 
propeller wakes faithfully represents the operation of actual dual- 
rotation air propellers, especially in the practical case in which the 
dual units operate in tandem rather than in the same plane- 

All propeller theory has been developed for operation in an 
incompressible fluid. The theories apply well in a compressible fluid 
at subsonic speeds up to those at which the blade sections reach their 
critical values of Mach number. At higher subsonic speeds some portion 
of the blade always operates in a region of transonic flow, the blade 
section lift and drag characteristics undergo rapid changes, and the 
load distribution calculated for ideal conditions is meaningless. "With 
adequate knowledge of airfoil characteristics at transonic speeds, how- 
ever, a propeller can be designed to operate with the ideal load 
distribution for one particular operating condition in the transonic 
region. The design of an efficient propeller with least induced energy 
loss for operation at transonic and low supersonic speeds depends only 
on the availability of airfoil characteristics for the corresponding 
values of blade-section Mach number. Inasmuch as the propeller wake 
velocity is only a few percent of the velocity of flight, the induced 
velocities are entirely subsonic even for transonic and supersonic pro- 
pellers- The theoretically desirable distribution of circulation along 
the blade for incompressible flow should hold for transonic and low 
supersonic flight speeds as well as it does in the low subsonic range- 
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APPENDIX 

SYMBOLS 

a Inflow velocity factor (B = ») 

a' rotational interference Telocity factor (B = oo) 

B number of "blades 

"b "blade width (chord) 

c, section drag coefficient 

c^ section lift coefficient 

Cp      power coefficient (p/pn3l)5) 

(T/pn^) Crp      thrust coefficient 

D       propeller diameter 

E       electrical potential, volts 

F       cross-sectional area of model helicoidal wake projected on a 
plane normal to axis 

H       total pressure 

I       electric current, amperes 

IQ      electric current in uniform field, amperes 

J       advance ratio (Y/nD) 

/      "BFii K(x) the circulation function 
(Y + w)w 

11.0 

mass coefficient ( 2 I K(z)i di 

L       lift 

m       mass flow, slugs per second 
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n rotational speed, revolutions per second 

P power 

p static pressure 

p free-stream static pressure 

E propeller tip radius; electrical resistance, ohms. 

r radius to "blade element 

S electrolytic-tank cross-sectional area 

T thrust 

Y velocity of advance 

W resultant velocity at "blade section 

v apparent axial velocity of wake helicoidal vortex sheets 

v-, induced velocity normal to helicoidal surface (w cos 0) 

x       fraction of propeller-tip radius (r/E) 

r       circulation 

7 - tan"
1 ^L 

cl 

T]       efficiency 

T\ ideal efficiency, when no drag loss is assumed 

r\ '      "blade-element efficiency 

Ti '     blade-element efficiency, when no Induced energy loss is 
assumed 

0       angle measured in any plane normal to the axis of rotation, 
with axis as center 

loci's factor (l£L) 
\ cos20 / 

p       mass density of air, slugs per cubic foot 
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propeller solidity (Bt/nxD) 

aerodynamic helix angle 

geometric helix angle ( tan"-*- — ) 
V    «xy 

angular velocity, radians per second 
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Figure 1.-   Simple momentum theory. 
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Figure 2.-   Ideal efficiency (Motionless propeller);   C    = 0.4. 
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Figure 3.-   Basic vortex system for a propeller. 
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Figure 4.-   Vector diagram of vortex blade-element theory; infinite num. 
of blades. 
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Figure 5.-   Radial distribution of induced velocity in rigid helicoidal wake. 
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Figure 6.-   Circulation function,   K(x); finite number of blades. 
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Figure 7.-   Goldstein's circulation function; two-blade propeller. 
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Figure 8.-   Comparison of thrust grading curves;   C    = 0.2;   J = 2.0. 
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(c)   Six-blade dual rotation. 

Figure 11.-   Typical celluloid wake models used in the electrical-analogy 
experiments. 
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CBABA.CTEEISTICS OF WING SECTIONS AT SUBCBITICAL SPEEDS 

By Altert E* von Doenhoff and'Laurence E. Loftin, Jr. 

Langley Aeronautical Laboratory 

The characteristics of wing sections at subcritical speeds hare been 
the subject of intensiTe research sines the airplane was first invented. 
The problem has been attacked both experimentally and theoretically. As a 
result of these investigations, we have today a qualitative understanding 
of nearly all the flow phenomena associated with the various character- 
istics and we are able to calculate many of the characteristics theoret- 
ically. The present paper represents an attempt to summarize briefly som? 
of the more important aspects of our theoretical and experimental knowl- 
edge of the flow about airfoil sections and to indicate the way in which 
this knowledge was used in the design of NACA 6-series or low-drag airfoils, 
Acknowledgement is gratefully expressed for the expert guidance and many 
original contributions of Mr. Eastman N. Jacobs, who supervised much of 
the experimental work to be discussed and the application of the theoret- 
ical methods to the design of improved airfoil sections. 

One of the concepts most useful in understanding the behavior of 
airfoil sections is that of the thin airfoil. _For the purpose of deter- 
mining the chordwise load distribution at various angles of attack, and 
hence the angle of zero lift, the slope of the lift curve, and the 
pitching-moment coefficient, the airfoil is considered to be replaced by 
a curved line that is midway between the upper and lower surfaces of the 
airfoilj that is, the airfoil is considered to be replaced by its mean 
line. The usual form of mean-line theory as developed by Munk, Birnbaum, 
Glauert, Theodorsen (references 1 to 5) and others assumes that the angle 
of attack is small and that the slopes and ordinates are sufficiently 
small that all effects of these quantities are proportional to their magni- 
tude. In other words, the mean-line theory is a linearized theory. For 
the purposes of the theory, the air is assumed to be nonviscous and 
incompressible. 

The basic relations of thin-airfoil theory are given in figure 1. 
Abscissas and ordinates are represented by x and y, respectively. 
The vertical component of induced velocity is v, the free-stream 
velocity is V, and the angle of attack is a. Circulation of strength 7 
per unit length is assumed to be distributed along the mean line.  This 
circulation per unit length is equal to the difference in tangential 
components of velocity between the upper and lower surfaces.  Equation (l) 
in figure 1 states that the flow must be tangential to the surface, that 
is, there can be no flow through the mean line. Equation (2) is a formula 
for calculating the vertical component of induced velocity at any 
station xQ in terms of the distribution of circulation along the chord. 

A problem can be solved by simultaneous solution of equations (l) and (2) 
either by finding the distribution of 7 associated with a given mean 
line at a given angle of attack, or by finding the mean line for a given 
distribution of 7. 
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Most practical airfoil sections are sufficiently thin that the 
approximations of mean-line theory hold with good accuracy, numerous 
comparisons "between theoretical and experimental results are available 
in the literature for many types of airfoil sections.  (See references 6 
and 7») In general, good agreement can he expected except in cases where 
the flow has separated from the surface of the airfoil, as at high angles 
of attack, large flap deflections, and so forth. 

In spite of the many useful results ohtained from thin-airfoil or 
mean-line theory, the nature of the information required for a particular 
prohlem may frequently he "beyond the scope of this simplified approach. 
Wo information, of course, is given concerning the actual distribution of 
pressure over the surfaces of an airfoil, and as will be pointed out later, 
such information is necessary for the design of improved airfoil sections. 
In order to he able to compute the actual pressure distribution about an 
airfoil, as opposed to the calculation of the chordwise loading, the more 
elaborate methods of thick-airfoil theory must he used. This theory as 
developed by Theodorsen and Garrick (references 8 and 9) is a rigorous 
treatment of the prohlem of finding the perfect-fluid pressure distri- 
bution about an airfoil of arbitrary shape. The method consists essen- 
tially of finding suitable conformal transformations to relate the known 
flow ahout a circle to the unknown flow ahout the airfoil. An analysis 
made by Joukowski which permits the direct transformation of the flow 
ahout a circle into the flow ahout a particular type of airfoil, called a 
Joukowski airfoil, has heen known for a long time.  In the Theodorsen 

p 
method, as shown in figure 2, the Joukowski transformation t,  = Z' + — 

Z' 
is applied, in reverse, to the arbitrary airfoil. Since all airfoils can 
be roughly approximated hy a Joukowski airfoil of ahout the same thickness, 
the application of the Joukowski transformation to the arbitrary 
airfoil (£-plane) results in a nearly circular curve in the Z'-plane, the 
equation of which is given "by the relation Z' = ae•+1®). According to the 
Keimann theorem, any simple closed curve can he transformed into a circle. 
Theodorsen found a particularly convenient process for accomplishing this 
result. By a process of successive approximations, the first one or two 
steps of which are generally sufficient in practice, the distorted circle 

ijr» is a constant. The transformation is given hy 

is transformed into a true circle whose equation is Z = aevO r'     where 

z 
where the quantities Nf  - tyQ)  an<i (e - 0) represent the radial and 

angular distortions between corresponding points in the near- and true- 
circle planes. The flow ahout the arbitrary airfoil is found hy applying 
these transformations in reverse order to the known field of flow ahout 
the true circle. 

A comparison between the pressure distrihution found experimentally 
and that computed hy the Theodorsen method at a low angle of attack is 
given in figure 3.  (See also reference 7.) The solid line is the result 
of the theoretical calculation and the test points represent the experi- 
mental results. 
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At higher angles of attack and lift coefficients, the agreement 
"between theory and experiment is generally not so close. This is due 
to the formation of a relatively thick- "boundary layer primarily along the 
rear portion of the upper surface. Under such conditions, the angle of 
attack at which a given lift coefficient is obtained experimentally is not 
the same as the theoretical angle of attack. Pinkerton (reference 10) 
found that it was possible to obtain nearly perfect agreement between 
measured and calculated pressure distributions by reducing the theoretical 
circulation at a given angle of"attack to the value corresponding to the 
measured lift coefficient and then modifying the trailing-edge shape in 
such a manner that the Kutta-Joukowski condition is satisfied.  The modi- 
fication of the airfoil shape corresponded closely to the estimated change 
in the effective shape of the airfoil caused by the thickening of the 
boundary layer. 

It is often desirable to determine the effects of airfoil thickness, 
thickness form, and type and amount of camber on the pressure distribution 
for large numbers of airfoils. Such calculations could, of course, be 
carried out by using the Theodorsen method for each individual case.  The 
amount of computational labor involved in such a procedure, however, would 
probably be excessive. Great simplification of methods for calculating 
airfoil pressure distributions approximately was made possible by the work 
of Allen which showed that the effects of thickness form and load distri- 
bution could be considered separately.  (See reference 11.') 

The method is based essentially on the assumption that the velocity 
distribution about an airfoil may be approximated by the following three 
independent components (see fig. h): 

(1) The velocity over the symmetrical airfoil at zero angle of attack 
(thickness). This velocity distribution can be obtained by the Theodorsen 
method as previously discussed. 

(2) The incremental velocity distribution corresponding to the load 
distribution of the mean line at the design lift coefficient (camber). 
The design lift coefficient is the lift coefficient at which the flow 
enters the leading edge of the mean line smoothly.  This type of incre- 
mental velocity distribution is a function only of the mean-line geometry 
and can be obtained by the methods of thin-airfoil theory. 

(3) The additional type of incremental velocity distribution associ- 
ated with departure of the angle of attack or lift coefficient from the 
design conditions (angle). This type, of velocity distribution is, according 
to thin-airfoil theory, independent of airfoil geometry and depends only 
on this departure of the angle of attack. The additional type of velocity 
distribution obtained from thin-airfoil theory is of limited practical 
application, however, because this simple theory leads to infinite values 
of the velocity at the leading edge. This difficulty, together with the 
slight dependence of the additional velocity distribution on airfoil 
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shape, is taken into account "by calculating the velocity increments for 
each symmetrical airfoil "by the methods of thick-airfoil theory. 

The final pressure distribution at an arbitrary angle of attack is 

found "by summing the three components of velocity: S = f — i — -   J . 

The plus sign is used for the upper surface and the minus sign for the 
lower surface. The final diagram in figure k  shows the results of 
summing the various components of the pressure distrihution.  The short- 
dash line represents the pressure distrihution about the symmetrical 
airfoil at zero lift. The long-dash line gives the pressure distrihution 
ahout the cambered airfoil at the design lift coefficient. The solid 
line gives the pressure distrihution ahout the cambered section at a lift 
coefficient higher than the design value. 

The convenience of this method of calculating the pressure distri- 
bution is primarily due to the availability of tabulated values of the 
necessary component velocity distributions for large numbers of symmet- 
rical airfoils and mean lines.  (See reference 7-) 

Although the theories just discussed permit the calculation of a 
number of airfoil characteristics with good accuracy, since they are 
essentially based on the concept of a perfect fluid, they give no direct 
information about one of the most important airfoil characteristics, 
namely, the drag. As will be 3hown later, however, these theories have 
proved invaluable in the design of low-drag airfoil sections. Another 
important characteristic about which no direct theoretical information 
has been obtained is the maximum lift coefficient. Some discussion of 
the maximum lift coefficient will be given in a paper by Sivells entitled 
"Maximum-Lift and Stalling Characteristics of Wings." The present 
discussion is concerned primarily with the drag. 

From 1929 to 1937, extensive experimental investigations were made 
of families of related airfoil sections in the NACA variable-density 
wind tunnel.  (See references 6 and 12 to 15«) A large amount of infor- 
mation on the drag was accumulated in these investigations. In figure 5 
are shown typical drag data at a low lift coefficient for one of the air- 
foils tested.  (See reference 1**-.) The drag coefficient c,  is plotted 

as a function of Reynolds number R. The upper line is the drag coef- 
ficient for a flat plate with completely turbulent boundary-layer flow. 
The lower line is the drag coefficient for a flat plate with completely 
laminar flow. The comparison between the airfoil drag data and the flat- 
plate skin friction indicates that nearly all the profile drag is attri- 
butable to skin friction. Comparisons, such as this, made it apparent 
that any pronounced reduction of the profile drag must be obtained by a 
reduction of the skin friction through increasing the relative extent of 
the laminar boundary layer. Theoretical and experimental work on this 
problem was begun late in 1937' 
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The "basic requirement for obtaining extensive regions of laminar 
flow is that the pressure continuously decreases in the direction of flow 
throughout the region in which laminar flow is expected. This requirement 
necessitated the development of methods which would permit the design of 
airfoil sections having specified types of pressure distrihution. The 
method developed consists of a process of successive approximations in 
which the ordinates and corresponding pressure distrihution are calculated 
with a high degree of accuracy. The pressure-distrihution characteristics 
thus ohtained are compared with the characteristics desired.  The nature 
of the Theodorsen relations (shown in fig. 2) for thick airfoils is such 
that it is not feasihle to express the airfoil velocity distrihution 
directly as a function of the airfoil coordinates. There are, however, 
relatively simple relations hetween the distortion parameters (V - TJTQ^ 

and (0 - 0) relating the near and true circles and the airfoil coordi- 
nates on one hand, and hetween these distortion parameters and the air- 
foil velocity distrihution on the other hand.  (See reference 5-) The 
airfoil coordinates and corresponding velocity distrihution were, there- 
fore, calculated from assumed values of the distortion parameters. The 
choice is subject to certain simple conditions that insure closed symmet- 
rical shapes for the hasic thickness forms.  (See reference 7«) Approxi- 
mate relations were found "by means of which it is possihle to modify 
successively the original choice of parameters so as to yield airfoils 
having the desired type of velocity distrihution.  (See references 7 
and 16.) Another method of solving this prohlem has heen developed "by 
Goldstein and was descrihed in his recent Wright Brothers lecture.  (See 
reference 17-) 

A typical pressure distrihution for one of the low-drag airfoils 
derived is shown in figure 6. It was noted previously that the type of 
loading resulting from changes in angle of attack tends to make the pres- 
sures along one of the airfoil surfaces increase in the direction of flow. 
Because of the desirahility of ohtaining low drag over a range of lift 
coefficient, the magnitude of the favorahle pressure gradient over the 
forward part of the hasic thickness form at zero lift should, therefore, 
be greater than that of the unfavorable gradient corresponding to the 
additional type of loading throughout a reasonable range of lift coefficient 
The requirements of a wide low-drag range, good characteristics at high 
subsonic speeds, and good maximum-lift characteristics are somewhat con- 
flicting. These conflicting requirements place an upper limit on the mag- 
nitude of the low-drag range of lift coefficient for which the airfoil 
should be designed. The optimum form for the pressure distribution is such 
that at the extremities of the low-drag range of lift coefficient, the 
pressure gradient on the suction side of the airfoil becomes substantially 
flat from a point near the leading edge to the original position of mini- 
mum pressure. For the airfoil shown in figure 6, this condition exists at 
a lift coefficient of 0.22. A more complete discussion of the problem of 
finding the proper type of pressure distribution is given in reference J. 

The. desirability of obtaining low drag corresponding to extensive 
laminar flow at lift coefficients higher than those possible with the basic 
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thickness form alone indicated the necessity for mean camber lines which 
would shift the low-drag range to higher values of the lift coefficient, 
"but which would not at the same time decrease the range of lift coeffi- 
cient for low drag» These requirements define a type of mean line that 
has, at design conditions, a uniform chordwise distribution of load at 
least as far "back as the position of minimum- pressure on the "basic thick- 
ness form. The method of deriving mean lines to have such prescribed 
load distributions employs the previously discussed thin-airfoil theory, 
and is relatively simple compared with the more usual problem of finding 
the load distribution corresponding to a given mean line. 

By the use of the theoretical methods discussed, a large number of 
related airfoil sections designed for extensive laminar flow were derived. 
Some method of designating members of this group of airfoils is necessary. 
The NACA method can be explained by the designation shown in figure 6: 

MCA 642-015 

The first digit is merely a series designation. The second digit gives 
the position of minimum pressure on the basic thickness form at zero lift 
in tenths of the chord measured from the leading edge. The subscript 
gives the range of lift coefficient on either side of the design lift 
coefficient through which the pressure gradients on both surfaces are 
favorable for laminar flow. The first digit following the dash gives the 
design lift coefficient in tenths,  (in this case, since the airfoil is 
symmetrical, the value is Q.) The last two digits give the thickness 
ratio in percent of the chord. 

Approximately 100 of these related airfoils were investigated 
experimentally.  (See reference 7-) In order actually to achieve exten- 
sive laminar flow at high Reynolds numbers, it is necessary that the 
turbulence level of the wind-tunnel air stream be extremely small so as 
to simulate flight conditions correctly. A description of the develop- 
ment of low-turbulence wind tunnels is given in recent papers by Dryden 
and Schubauer (reference 18) and Von Doenhoff and Abbott (reference 19)• 

Some of the results obtained from the experimental investigation 
of NACA 6-series airfoils are presented in the next few figures. The 
value of the drag coefficient in the low-drag range for smooth airfoils 
is mainly a function of the Eeynolds number and the relative extent of 
the laminar layer and is moderately affected by the airfoil thickness 
ratio and camber. The effect on minimum drag of the position of minimum 
pressure, which determines the possible extent of laminar flow, is shown 
in figure 7 for some NACA 6-series airfoils.  (See reference 7-) The data 
show a regular decrease in drag coefficient with rearward movement of min- 
imum pressure. Also shown in this figure is the minimum drag coefficient 
of the older NACA 2^15 airfoil section.  Comparison shows that savings in 
minimum drag of from 20 percent to 50 percent, depending upon the position 
of minimum pressure, are possible by the use of the newer NACA 6-series 
airfoils. 
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The effect of Reynolds number upon the minimum drag of the 
NACA 65^-421 airfoil section is illustrated in figure 8.  The data show 
that the drag first decreases with increasing Reynolds number, after 
which it levels off, then increases, and finally levels off again as the 
Reynolds number is further increased. The behavior of the minimum drag 
with increasing Reynolds number can be attributed to the variation in 
relative strength of two interacting boundary-layer changes. The initial 
decrease in minimum drag coefficient can be explained by the usual 
decrease in skin-friction coefficient which accompanies an increase in 
Reynolds number. After a certain Reynolds number is reached, however, 
the transition position begins to move forward along the airfoil. The 
forward movement of transition, of course, decreases the relative extent 
of low-drag laminar flow on the airfoil, and hence, the drag increases. 
The Reynolds number range in which the data in the figure show the drag 
to be relatively constant is a region in which the general decrease in 
skin friction and forward movement of transition are balanced with respect 
to their opposite effects upon the drag. The subsequent increase of drag 
with Reynolds number indicates that forward movement of transition is 
predominating in this region. The drag ceases to increase when the 
transition position comes fairly close to the leading edge. The data in 
the chart for the highest Reynolds number correspond to this condition. 
Further increases in Reynolds number should cause the drag coefficient 
to decrease. The scale-effect curve shown in the figure is character- 
istic of those obtained for NACA 6-series airfoils.  The Reynolds number 
at which the transition position moves forward, however, depends upon the 
degree to which the pressure gradients on the airfoil are favorable. The 
Reynolds number at which the different effects occur depends, therefore, 
upon the detail design of the particular airfoil. 

The development of mean lines designed to shift the low-drag range 
to different values of the lift coefficient has already been discussed. 
The effect of the addition of camber on the experimental drag polar is 
shown in figure 9«  (See also reference 7.) The solid curve represents 
the polar for a symmetrical 6-series airfoil section. The "bucket" in 
the curve is the low-drag range; that is, the range of lift coefficient 
through which extensive laminar flow is obtained on both surfaces. As 
shown by the dash-line curve, the primary effect of the addition of camber 
is to shift the low-drag range. The center of. this range corresponds to 
the design lift coefficient. The width of the low-drag range increases 
with increasing airfoil thickness ratio. 

The results discussed have been obtained from airfoil tests in which 
the model surfaces were smooth and fair. Unfortunately, the surfaces of 
airplane wings are oftentimes both rough and unfair. Since laminar flow 
cannot be maintained at practical values of the Reynolds number unless 
the airfoil surfaces are aerodynamically smooth, it seemed desirable to 
investigate the characteristics of HA.CA 6-series airfoils with surfaces 
roughened sufficiently near the leading edge that fully developed turbu- 
lent layers would exist. Results corresponding to such a surface condi- 
tion would give the most pessimistic view of what might be expected from 
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an airplane wing under any conditions short of physical damage or heavy 
accretions of ice or mud, whereas the results for the smooth condition 
would correspond to an optimum for which to strive. The effect of 
roughness on the lift and drag characteristics of a typical NACA 6-series 
airfoil section is shown in figure 10.  (See also reference 7-) It is 
apparent that the roughness causes large decreases in the maximum lift 
and large increases in the drag. Similar data from tests of various 
types of airfoil sections show that the lift and drag characteristics of 
airfoils of a given thickness ratio are relatively insensitive to the 
shape of the "basic thickness distributions when the leading edges are 
rough. 

The entire discussion so far has "been limited to Mach numbers 
sufficiently low so that the flow could he considered incompressible. As 
the Mach number is increased, the first-order effects of compressibility 
are given "by the Prandtl-Glauert relation (reference 20) which states 
essentially that, in two-dimensional flow, the values of all pressure 
coefficients formed from differences "between local static pressure and 
free-stream static pressure are increased "by the relation   ^       ., 

f1 - Mo§ 

where MQ is the free-stream Mach number. This means, of course, that 

the lift-curve slope is theoretically increased "by the same factor, thus, 

where the subscript c indicates compressible flow and the subscript i 
indicates incompressible flow. A comparison of the theoretical and experi- 
mental values of the lift-curve slope for an NACA 6-series airfoil secticn 
of 10-percent thickness is shown in figure 11.  (See also reference 21.) 
The expression for the first-order effects of compressibility appears to 
he valid for thin airfoils up to surprisingly high values of the Mach 
number. A second-order correction developed "by Kaplan (reference 22) gives 
results in tetter agreement with experiment at high subcritical values of 
the Mach number. In general, the increase of lift coefficient with Mach 
number "becomes le3s as the airfoil thickness ratio is increased, and the 
agreement "between theory and experiment for the thicker sections is less 
satisfactory. 

The effect of compressibility on the drag at speeds "below the 
critical is rather difficult to evaluate. This difficulty arises from the 
fact that most high-speed test equipment is incapahle of separating the 
effect of increasing Reynolds number which accompanies an increase in Mach 
number. Some indication of the relative importance of the effect of Mach 
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number on the drag at su"bcritical speeds, however, may "be gained from 
figure 12.  (See also references 23 and 2k,)    The drag of the 
KACA 0012-3^ airfoil section at zero lift is plotted against Mach number 
for a range of Reynolds number from 0-3*1- x 10° to 0.^2 x 10° and for a 

range of Reynolds number from 2.3 x 10° to k.6 x 10°. The large' incre- 
ment in drag "between the high- and low-scale data in the subcritical 
region is of about the magnitude that would "be expected for such a change 
in the Reynolds number. The data for the higher Reynolds number range 
are in agreement with recent low-speed tests  (M < 0.2) of a similar 
airfoil which show a negligible scale effect on the minimum drag between 

Reynolds numbers of 3.0 x 10 and 6.0 x 10 . From this discussion, it 
would seem- that the effect of Reynolds number is far more important at 
subcritical speeds than the effect of Mach number. Since in any case 
the pressure drag is a small part of the total drag, it would not be 
expected that changes in local—pressure coefficients in accordance with 
the Prandtl-G-lauert relation would hare any direct effect upon the drag. 

The rather brief summary of the status of the airfoil problem just 
presented indicates that we hare a fairly complete understanding of the 
behavior of airfoil sections at subcritical speeds. The attainment of 
laminar flow on airplane wings remains a problem because the surfaces of 
such wings are usually not sufficiently fair and smooth. Methods of 
reducing the sensitivity of the laminar layer to surface imperfections 
are now being investigated. The flow phenomena about an airfoil at 
maximum lift also remain a problem. We have a qualitative understanding 
of this problem, but research is needed before our ideas can be extended 
to quantitative calculation. 
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Figure 1.-   Basic relations of thin-airfoil theory. 
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Figure 2.-   Transformations used to calculate pressure distributions. 
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CHARACTERISTICS OF WING SECTIONS AT TRANSONIC SPEEDS 

By John Y. Becker 

Langley Aeronautical Laboratory 

INTRODTJCTION 

The transonic regime is presumed to begin with the first appearance 
of a local region of supersonic flow near the airfoil surface and to end 
when the flow field has become entirely supersonic. The development of 
theory for transonic flows has been impeded by the coexistence of sub- 
sonic and supersonic flow regions and the presence of shock. Shock 
boundary—layer interaction effects which exert a controlling influence 
in the transonic region cannot be treated by rigorous theory. The major 
part of existing knowledge of wing—section behavior at transonic speeds 
is therefore derived from experimental research, and any review of the 
current status such as the present one must depend largely on experimental 
results. 

FLOW CHANGES IN THE TRANSONIC REGIME 

The progressive changes in flow pattern which occur in the transonic 
regime are illustrated schematically in figure 1. The diagram at the 
upper left (M = 0.70) represents a condition slightly beyond the critical 
Mach number (M at which sonic velocity is attained locally). A small 
region of supersonic flow exists, usually terminated by shock. The 
possibility that local supersonic flows of this type can exist without 
shock is a matter of considerable speculation. Theoretical studies have 
indicated that shock—free flows in an ideal fluid are possible in certain 
special cases.  (See references 1 to h,  for example.) From the practical 
standpoint,  however,  the important fact is that the presence of shock 
does not have any seriously adverse effects on airfoil performance unless 
it precipitates "boundary—layer separation. 

As the Mach number is increased, the shock moves rearward and the 
local supersonic region expands rapidly. The rearward movement is 
analogous to shock behavior in channels, which has been treated theoreti- 
cally in reference 5. Shock—stall occurs (diagram for M = O.90 in 
fig. l) when the adverse pressure gradient through the shock becomes 
large enough to precipitate separation. Considerable compression of the 
flow takes place ahead of the main shock (references 6 and 7) as a 
consequence of thickening of the boundary layer. It is important to 
note that shock—stall is "basically a shock boundary—layer interaction 
phenomenon and that there is no adequate method for predicting the shock- 
stall Mach number.  "Limiting" or "upper critical" Mach numbers predicted 
by theories which do not consider shock boundary—layer interaction 
(references k  and 8) are at variance with experimental shock—stall Mach 
numbers. 
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Bearward movement of the shock continues at speeds beyond shock- 
stall. When the shock nears the trailing edge, reattachment of the flow 
takes place, accompanied by an increase in lift coefficient and pressure 
drag. The flow over the airfoil surface is now predominantly supersonic 
except for a region near the nose.  (See diagram for M = 0.95 in. fig. 1.) 

The diagram for M = 1.05 in figure 1 indicates that the nature of 
the flow at the airfoil surface is similar to that for M = 0.95- A bow 
wave of weak intensity has appeared, marking the forward boundary of the 
field of influence of the airfoil but having no first—order effect on 
the airfoil characteristics. The transition from high subsonic to low 
supersonic speeds has been the subject of recent theoretical studies by 
Busemann and Guderley (references 9 to 12); no theoretical reasons have 
been found to prohibit the existence of stable flows at and near sonic 
velocity, and no abrupt or discontinuous changes in airfoil characteris- 
tics are anticipated in traversing sonic velocity. 

As the supersonic Mach number advances, the bow wave moves closer 
to the airfoil nose with an attendant shrinking of the subsonic region 
near the nose (see diagram for M = 1.30 in fig. l). For sharp—edge 
sections the region of subsonic flow will disappear entirely at a speed 
dependent on the angle through which the flow must be deviated (refer- 
ences 13 and Ik,  for example). Guderley's theoretical work (reference 10) 
leads to the conclusion that the process of bow-^rave attachment is 
entirely continuous. 

Force data for wings throughout the transonic range of speeds have 
been obtained by the "wing—flow" method both in flight (reference 15) 
and in the wind tunnel (reference 16). Typical data (reference l6) for 
a wing of aspect ratio 6.k  and NACA ^Ötyyp)~21^ section 3re  presented in 
figure 2. The results are considered illustrative of transonic wing- 
section characteristics. It is striking that all the major changes in 
lift, drag, and moment coefficient take place between M = 0.75 and 0.95; 
the aerodynamic center shifts from 0.25 chord at low speeds to about OAO chord 
at speeds beyond M = 0.95; the angle of zero lift changes from a 
negative low—speed value to a slightly positive value. Reattachment 
appears to start at M = 0.90, becoming complete at M = 0.95- These 
changes are in qualitative accord with theoretical requirements for 
transition from subsonic—type to supersonic—type flow. The wing 
performance at M = 0.95 is obviously more nearly supersonic than sub- 
sonic in character. In fact, the coefficients are in crude agreement 
with calculated values appropriate to M = 1.30, for a sharp—edge 
cambered wing in pure supersonic flow. It may therefore be reasoned that 
no first-order changes in performance will appear at speeds beyond 
M ~ 0.95. 

Typical changes in pressure distribution in the transonic region are 
shown in figure 3 for the NACA 23012 section (references 17 and 18). 
Lift and drag data corresponding to the pressure distributions are given 
in the upper left diagram. The effect of increasing Mach number on the 
pressure coefficients at subcritical speeds (compare curves for M = 0.29 
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and M = 0.59 in fig. 3) is predictable "by approximate theoretical 
methods.  (See reference 3, for example.) The presence of supersonic 
flow terminated by a strong shock (but no obvious flow separation) is 
clearly evident in the diagram for M = 0.7^ in figure 3. In the last 
diagram in figure 3j for M = 0.88, the shocks lie just ahead of the 
trailing edge. The supersonic character of the flow is illustrated "by 
comparison of the measured pressures with those predicted "by supersonic 
(Prandtl-Meyer) theory applied to the part of the section aft of the 
sonic point. The shapes of the measured and computed curves are similar 
although the measured suction pressures are, of course, considerably 
lower because the depth of the supersonic region is actually finite rather 
than infinite as assumed by the theory. The development of pressure 
drag is apparent from the progressive increase of pressure at the nose 
beyond Mcr together with the large decrease of pressure over the rear 

portion beyond shock—stall. 

SYSTEMATIC INVESTIGATION OF SHAPE PARAMETERS 

AT HIGH SUBSONIC SPEEDS 

Wind—tunnel investigations of a large number of related wing sections 
have been made at speeds up to M = 0.9^. The succeeding discussion 
consists of a brief review of the effects of the more important shape 
parameters as determined from this research. 

Thickness ratio.— The transonic characteristics of two symmetrical 
airfoils differing only in thickness ratio (reference 19) are shown in 
figure k.    The thinner airfoil has not only a higher shock—stall speed 
but also smaller undesirable changes in force characteristics after 
shock—stall. It will be noted that the critical Mach number does not 
coincide with the speed of shock—stall. In fact, the 6—percent—thick 
airfoil which has the higher force-break speed and superior supercritical 
characteristics has the lower critical speed. This result leads to the 
conclusion that the critical Mach number is useful only to denote the 
beginning of the transonic region; it does not coincide with the speed 
of force-break and is no criterion of airfoil behavior beyond the point 
of force—break. 

The values of the drag coefficients at sonic velocity were estimated 
from wing—flow data (references 15 and 1.6),  the transonic similarity rule 
(reference 20) being used to correct the available data to the desired 
thickness ratio. The drags of the two sections at M = 1.0 (fig. k) 
are about three times and eight times the low—speed values, respectively, 
for the 6— and 12—percent—thick sections at these Reynolds numbers. 

Figure 5 is a- plot of minimum drag coefficient against thicknec 
tio. At subcritical speeds (curve for M = 0.65) the drag is not 
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greatly affected "by thickness ratio "but, "beginning at a speed somewhat 
"below shock—stall, the drag rises steeply with increasing thickness. 
According to the transonic similarity rule (references 20 and 21) the 
drag coefficient of a family of thin airfoils differing only in thickness 
is related to the thickness and Mach number as follows: 

M2cd 

(t/c)5/3 

At M = 1 this relation yields 

= f. 
M - 1 

273 (t/c) 

cd aM=1.0 
(t/c)5/3 

Systematic drag data (fig. 5) at the highest speed for which data were 
obtained in reference 19 (M = 0.9*0 appear to agree with this five—thirds 
power rule.  (The theoretical (dashed) curves of figure 5 were fitted 

to the test data at — = 0.09). For cambered sections the agreement is 

somewhat less satisfactory than for symmetrical sections. In purely 
supersonic flow the pressure drag varies approximately as the second power 
of the thickness ratio. Thus, the effect of thickness ratio will probably 
not change appreciably in the region between sonic speed and the speed at 
which bow-wave attachment occurs. 

Camber.— Figure 6 compares the performance of two sections differing 
only in camber (reference 22). These sections are modified versions of 
the NACA four—digit series and are designed to have higher critical 
speeds than the four-digit series. The significance of the designation 
numbers can be seen from the following specifications for the cambered 
section 2, 35,12-.55,1+0: 

Maximum camber, percent chord   2 
Position of maximum camber, percent chord   35 
Maximum thickness, percent chord   12 

/t\2 
Leading-^edge radius 0.55c(—] 

Position of maximum thickness, percent chord 1+0 

The symmetrical section operating at c^ = 0.20 has not only higher 

force—break Mach numbers but also much smaller undesirable changes in 
angle of attack and changes in moment after force—break; the change in 
angle of attack, for example, is only 1.7° for the symmetrical section 
as compared with 1+.50 for the cambered airfoil. A contributing factor 
to the large trim change of the cambered section is the shift in angle of 
zero lift inherent in the transition from subsonic—type to supersonic—type 
flows.  (See fig. 2.) 
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The 0,00,12-. 55,40 airfoil of figure 6 is identical with the 
HA.CA 0012-34 airfoil of figure k  except for leading-edge radius. The 
results shown for the two sections were obtained at Beynolds numbers 
differing by a factor of about 10. Comparison of the data from the 
two tests indicates differences which are believed to be attributable 
primarily to scale effects, although the model—support methods used 
also differed and some uncertainty exists as to the possibility of 
tunnel-wall constriction effects, particularly for the 0,00,12-.55,40 data 
at the highest test speeds. It is important to note, however, that 
analysis of the data from either of these investigations (reference 19 
or 22) leads to the same conclusions regarding optimum shapes. 

Further insight into the effects of camber on shock-stall character- • 
istics can be obtained by a study of typical pressure distributions such 
as those shown in figure J.    When operating at an appreciable lift 
coefficient, the thin symmetrical section has a high suction peak near 
the leading edge, while the cambered section chosen for comparison has 
a flat pressure—distribution diagram. The symmetrical section obviously 
has the lower critical Mach number of the two, but it is important to 
note that sonic velocity and shock will first occur near the nose. The 
cambered section, on the other hand, will develop shock on the rear of 
the airfoil where the boundary layer is more susceptible to separation. 
The high-speed lift characteristics of these two sections, which are 
also shown in figure 7,  indicate that shock—stall occurs shortly after 
the formation of shock on the rear portion of the cambered airfoil. 
Shock develops at a lower free—stream speed on the symmetrical section 
but has no deleterious effects on performance until M^ is exceeded 
by about 0.17. The critical Mach numbers in this figure were obtained 
from high—speed pressure—distribution data; thus, there is no question 
involved as to the adequacy of methods of estimating Mcr from low- 
speed data. In spite of its lower critical speed, the symmetrical 
section has a higher lift—break Mach number than the cambered section 
for either of the two angles of attack shown in figure 7« 

Substantiation of this line of reasoning is obtained from schlieren 
flow photographs for these two airfoils obtained in the Langley rectangular 
high-speed tunnel. Figure 8 for the symmetrical section indicates that 
the main shock is still near the leading edge, even though the critical 
Mach number has been exceeded by 0.10. There is no evidence of flow 
separation; measurement of the wake width at the trailing edge indicates 
the same value as was found for M = O.30. The schlieren photograph 
for the cambered section (fig. 9) indicates the occurrence of shock just 
ahead of the trailing edge and the presence of flow separation at a 
Mach number only 0.05 above the critical. The flow separation was actually 
observed to start at a Mach number about 0.02 above the critical value. 
An analysis of the schlieren diagrams of figures 8 and 9 is made in 
figure 10. A maximum local Mach number of 1.20 was measured for the 
symmetrical section as compared with 1.11 for the cambered section. It 
would, therefore, be expected that the shock at the nose of the symmetrical 
section is considerably more intense than the shock for the cambered 
section. This difference in shock strength is probably accentuated by the 
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fact that the "boundary layer thickens extensively ahead of the main shock 
on the cambered airfoil, thereby reducing the local Mach number to a 
value close to unity just ahead of the shock (reference 23). Flow 
separation is thus precipitated "by a very weak shock when the shock occurs 
near the rear of the airfoil. Hals explains the "behavior of high-critical— 
speed and low-drag types of airfoils when operating at lift coefficients 
near their design values (references 2k  to 26). Figure 11 shows the force- 
break characteristics of the NACA 66—210 airfoil (reference 26) as an 
example. In the vicinity.of design lift the force—"breaks occur shortly 
after the first appearance of shock at M^. At lift coefficients 

appreciably higher or lower than the design value, high suction pressure 
peaks develop at the airfoil nose but the existence of shock in this 
position does not cause force-break, and the critical Mach number is 
exceeded by a wide margin before the occurrence of force—break. 

A photograph of the flow taken near the Mach number of force—break 
of the symmetrical KACA 0009-64 section is shown in figure 12. Tne 
main shock has moved from the vicinity of the nose to the 0.^5-chord 
position, where it causes an appreciable disturbance of the boundary 
layer but no extensive flow separation. An analysis of this photograph 
and comparison with the cambered section is made in figure 13 in which 
both sections are operating at the same speed, the same geometric 
angle of attack, and approximately the same lift coefficient prior to 
force—break. 'The cambered section again has a weak shock preceded by 
a maximum Mach number close to unity. As in the p'revious illustration, 
appreciable flow separation and force—break have occurred, although the 
critical Mach number has been exceeded only by 0.05- The symmetrical 
section, on the other hand, carries a relatively strong shock of about 
equal depth normal to the airfoil without any evidence of shock stall. 
The shock losses for the symmetrical section will obviously be high, 
but no appreciable separation losses are present. Tne  cambered section 
on the other hand encounters no appreciable shock loss but has a high 
separation loss. It is therefore difficult to determine from this analy- 
sis the relative lift-drag values of the two sections and this question 
must be answered by force data. An analysis of typical force—test 
results for related airfoils of varying camber (reference 22) is shown 
in figure Ik.    The camber in percent of chord which resulted in the 
maximum lift-drag ratio is plotted against Mach number for various 
operating lift coefficients. At low speed appreciable camber is desirable, 
but the optimum camber is seen to decrease as the Mach number increases. 
When the critical Mach number is exceeded, the optimum amount of camber 
drops rapidly to zero. For the 12—percent—thick sections used in the 
illustration, the symmetrical section has the best lift-drag ratios at 
all Mach numbers beyond O.76 for all the lift coefficients tested. An 
NAC.A. investigation of l6-series sections of various camber (reference 2k) 
revealed a similar trend of decreasing optimum camber with increasing 
Mach number.- Previous discussion of. figure 6 revealed that symmetrical 
sections are desirable for transonic applications from consideration 
of trim and moment changes as well as from consideration of best lift- 
drag ratio. 
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Trailing-edge angle.— Virtually no information is available showing 
the effect of trailing-edge angle as an isolated variable. If the angle 
is large,  the flow is subject to separation at transonic speeds which 
results in high drag, low lift-curve slope, and poor control-surface 
effectiveness (references 27 to 29)- The maximum recommended values for 
trailing-edge angle lie in the range of 10° to 15°; smaller values are 
preferable. 

Positions of maximum thickness.— Test data bearing on the optimum 
position of maximum thickness for symmetrical sections are given in 
references 19 and 30. The best location appears to lie between O.k  chord 
and 0.5 chord. 

Leading-edge radius.— At lift coefficients near zero (say, less than 
0.1) the value of the leading—edge radius is not critical for symmetrical 
sections at high subsonic speeds (reference 31). At higher lifts the 
best lift-drag ratio is obtained with a leading-edge radius of about one- 
half the value used in the NACA four-digit series. The radii used on 
the NACA 16—series and 6—series airfoils are near the optimum value. The 
leading edge should be sharp in supersonic flow if the speed is high 
enough to permit bow-^wave attachment (reference 32), in order to avoid 
the relatively high shock losses occurring near the apex of a detached 
bow wave. If, however, the supersonic Mach number is so low that an 
attached shock is not possible even if the leading edge is sharp 
(reference 1*0, then there is no reason to believe that sections having 
a small leading—edge radius will have inferior characteristics to 
comparable sharp-edge sections. 

The behavior of sharp—edge supersonic—type sections has been the 
subject of a recent investigation at high subsonic speeds (reference 33). 
An unexpected phenomenon was discovered which is illustrated in 
figures 15 and l6. At all speeds up to M = 0.75 the anticipated 
extensive region of separated flow starting at the sharp leading edge 
was present as depicted in figure 15• Local supersonic velocities 
terminated by shock are present over the forward part of the section 
outside of the region of flow separation. The separated flow vanished 
abruptly when the Mach number was increased by 0.02 to M = 0.77 
(fig. l6). The ability of the flow to negotiate the sharp edge is 
explained by the fact that the local velocity field in the vicinity 
of the leading edge is supersonic (reference 3*0- A small bubble of 
separation is present immediately behind the corner. In expanding 
about this bubble the flow is directed towards the surface, giving rise 
to the oblique compression shock. The origin of the foremost oblique 
disturbance apparent in figure l6 is uncertain. It is believed, however, 
that since the disturbance.disappears at some distance above the airfoil 
it doe3 not have any major effect on the reattachment phenomenon. 

This reattachment of the flow is accompanied by an increase in lift 
and, in a majority of cases, little change in drag. The increased 
pressure drag after attachment tends to offset the reduction of separation 
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losses. It Is importaat to note that, although the lift-drag ratio 
is increased "by this phenomenon, the lift-drag ratios reached are not 
as high as are obtainable with round—edge sections at the same speeds 
(reference 33)» 

OPTIMUM SHAPES FOE LOW SUPERSONIC SPEED RANGE 

The high-subsonic test data utilized in the foregoing discussion 
point towards an optimum section shape for the high-subsonic speed 
range which has no camber, a maximum—thickness position near the 
midchord point, as small values as possible of the thickness and 
tralling-edge angle, and a small hut finite leading—edge radius. 
With the exception of the leading-edge radius, these specifications 
closely approach the theoretical requirements for an optimum section 
in purely supersonic flow at low supersonic speeds. There is little 
reason to suspect that a sharp leading edge would prove more desirable 
than a small rounded edge in the transonic speed range where a detached 
bow wave would occur with either shape. It may be conjectured, 
therefore, that the airfoil shape which is optimum for high—subsonic 
speeds will also have the best characteristics in the supersonic part 
of the transonic regime. It is obvious, however, that further research 
is needed to establish the details of airfoil performance at low 
supersonic speeds. 

PROFILES SUITABLE FOR TRANSONIC APPLICATIONS 

The following symmetrical profiles meet the approximate specifi- 
cations for optimum shape discussed in the preceding sections of this 
paper: 

NACA 0009-1(4 (see reference 35) 
NACA 65-009 (see reference 36) 
NACA 65A-OO9  (see reference 37) 

The latter two sections could be made thicker than 9 percent without 
exceeding the arbitrary limit imposed on the trailing-edge angle (15°) • 
The use of thicker sections, however, Is usually prohibitive for transonic 
applications from consideration of power requirements as well as adverse 
trim and moment changes.  Obviously, thinner sections having the same 
thickness distribution as the above profiles will also meet the approximate 
optimum shape requirements. 
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Figure 5.-   Effect of thickness ratio on minimum drag. 
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= •90. Figure 8.-   Schlieren flow photograph of NACA 0009-64 airfoil,   a = 2U; 
M = 0.75 = Mcr + 0.10. 
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Figure 9.-   Schlieren flow photograph of NACA 16-209 airfoil,   a = 0°; 
M = Ö.83 = Mcr + 0.05. 
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Figure 12.-   Schlieren flow photograph of NACA 0009-64 airfoil,   a = 
M = 0.80 = Mcr + 0.15. 
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Figure 15.-   Schlieren flow photograph of NACA IS-(70) (03) (70) (03) airfoil. 
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Figure 16.-   Schlieren flow photograph of NACA IS-(70)(03)(70)(03) airfoil. 
a = 5.5°:   M = 0.77. 
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PREDICTION OF WING- CHARA.CTEEESTICS 

By Thomas A. Toll and Franklin W. Diederich 

Langley Aeronautical Laboratory 

INTRODUCTION 

The problem of the prediction of wing characteristics is not 
necessarily restricted to the characteristics of the main lifting wing 
of an airplane. The characteristics of tail surfaces and of movable 
controls usually are also included since the factors that influence such 
characteristics are very similar to•the factors that influence the 
characteristics of the main lifting wing. The general problem, there- 
fore, is very broad and the number of aerodynamic quantities that need 
to be evaluated is considerable. Some of the important quantities are 
the lift, drag, and aerodynamic center, corresponding to various attitudes 
of the wing, the distribution of lift over the wing surface, the various 
forces and moments that affect the stability of the wing under dynamic 
flight conditions, the effectiveness of tail surfaces or of controls, and 
the aerodynamic forces that must be overcome in order to operate the 
controls. The present discussion is concerned with the various theoret- 
ical and empirical processes that have been found suitable for use in 
evaluating such quantities at flight speeds below the critical Mach number. 

DISCUSSION 

In order to evaluate the desired quantities, the theory of wing 
sections must be either supplemented or replaced by a theory of finite- 
span wings. In many instances, the desired quantities bear only a second- 
ary relationship to the characteristics of wing sections. An example is 
the spanwise distribution of wing loading, which is influenced largely 
by the flow about the wing tips rather than by section characteristics. 
The chordwise distribution of loading also is affected by finite spanj 
but in many instances, this effect is relatively unimportant. The 
assumption of a two-dimensional chordwise load distribution, therefore, 
is one reasonable simplification of the finite-wing theory. 

A number of wing theories, based on various simplifying assumptions, 
have been developed.  (See references 1 to 8.) The theories differ in 
accuracy and in the extent of their applicability. Before discussing 
specific details of the various theories, consideration will be given to 
3ome of the important factors that determine the usefulness of a wing 
theory. One important factor concerns the variety of wing plan forms to 
which the theory can be applied.  Of equal importance, is the number of 
aerodynamic characteristics that may be treated by a given wing theory. 
A third factor concerns the suitability of a wing theory for consideration 
of appropriate wing section characteristics. This is important, since 
experiments have indicated that, through the action of the boundary layer, 

2V 
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there may tie large effects of the profile shape or of the surface condition. 
A fourth factor concerns the suitability of the theory for engineering 
applications or, more specifically, the time required for routine compu- 
tations. With these items in mind,, some of the physical concepts upon 
which the present-day theories are based might now he considered. 

The practical wing theories make use of. vortex lines for determining 
the load carried "by the wing.  (See fig. 1.)  The theories differ in the 
manner in which the vorticity is assumed to he distributed over the wing 
surface and in the method,employed for fixing the strength of the vortic- 
ity and, thereby, the magnitude of the lift. According to a yery simple 
concept, which was proposed by Prandtl about 30 years ago and which is 
commonly called lifting-line theory (reference l), the rorticity is 
assumed to be diTided into bound and trailing elements, with the bound 
elements concentrated in a single line which should run approximately 
through the centers of pressure of the wing sections. The trailing 
vorticity leaves the wing in the form of a sheet and extends downstream 
to infinity. Downwash angles usually are calculated at a finite number 
of control points along the lifting line. The effective angle of attack 
of the wing is assumed to be the difference between the geometric angle 
of attack and the downwash angle. The strength of the vorticity, and 
hence the wing lift, is determined from section characteristics corre- 
sponding to the effective angle of attack. The lifting-line method, 
therefore, provides no indication of any possible distortion of the chord- 
wise load distribution. Also, because the lifting line is necessarily 
straight, the method must be restricted to small angles of sweep. 

Because of the recent emphasis on highly swept wings, consideration 
is being given to a more general (or lifting-surface) concept such as 
has been used by Falkner (reference 5) a^ä- Cohen (reference 6). According 
to this concept, the vorticity is assumed to be distributed both chord- 
wise and spanwise over the wing surface. The strength of the vorticity 
is fixed by the condition that, at any point on the surface, the flow 
must be tangent to the surface. This method gives both the chordwise and 
the spanwise load distributions under potential-flow conditions. 'Wing 
section characteristics do not enter into the solution and, therefore, 
the effects of viscosity can be accounted for only in an indirect manner. 
For practical applications, the surface lift must be represented by a 
finite number of vortex lines and the boundary conditions must be satis- 
fied at a finite number of control points. The simplest arrangement, 
which uses only one lifting vortex, is designated in figure 1 as the 
"simplified lifting-surface concept." This particular concept was sug- 
gested by Wieghardt (reference 3) and has been developed by Weissinger 
(reference 7) and Mutterperl (reference 8). The single lifting vortex 
is located along the wing quarter chord, and the boundary condition is 
satisfied along the wing three-quarter-chord line. Because the boundary 
condition is not satisfied at the lifting vortex, as in the case of 
lifting-line theory, the lifting vortex does not have to be a straight 
line; and the method, therefore, is applicable to swept wings. As in the 
case of lifting-line theory, however, this method does not account for 
any distortion of the two-dimensional chord loading. 
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All of the subsonic--wing theories are "based on the assumption of 
incompressible potential flow. The so-called first-order effects of 
compressibility can he accounted for, however, "by resorting to a general- 
ization of the Prandtl-G-lauert rule (references 9 to 11), as indicated 
in figure 2. This rule implies that characteristics of a wing in compre3s- 
ihle flow can he ohtained "by analyzing an equivalent wing in incompress- 
ible flow. The equivalent wing is ohtained hy increasing all longitudinal 

7\/i - "2 dimensions of the actual wing hy the factor l/N/1 - M • T^3 results in 
a decrease in the aspect ratio A and an increase in the sweep angle A, 
as indicated hy the equations given in figure 2. The compressihle-flow 
pressures P     are ohtained hy multiplying the incompressihle-flow 

pressures p     for the equivalent wing hy the factor 1 / uL - M .  This 
einc ' 

procedure, of course, does not account for changes in "boundary-layer 
effects which may accompany changes in Mach number. 

The general utility of the three wing-theory concepts is summarized 
in tahle I. The comparison is made on the "basis of the Multhopp, Falkner, 
and Weissinger adaptations, which are considered to he the most suitahle 
for practical use. With regard td applicahility to wing geometry, the 
lifting-line method is subject to the most severe restrictions inasmuch 
as it is limited to high aspect ratio and low sweep angle. The lifting- 
surface theory has general applicahility, and the simplified lifting- 
surface theory of Weissinger is applicahle to all -wings having straight 
leading and trailing edges. The lifting-line theory is readily applicahle 
to a wide variety of wing characteristics (references 12 to 21)j whereas, 
the lifting-surf ace and simplified lifting-surface theories, "being 
considerahly more cumbersome, have so far "been applied to only a limited 
number of characteristics. Wing section characteristics can he easily 
accounted for only hy the lifting-line concept. The lifting-line theory 
is most desirahle from the standpoint of the time required for solutions. 
"For example, in calculating a spanwise load distrihution, the lifting- 
surface method takes ahout 60 times as long as the lifting-line method 
which uses four control points, and the simplified lifting-surface method 
take3 ahout eight times as long as the lifting-line method for the same 
number of control points. Doubling the number of control points approxi- 
mately quadruples the time required for solutions. 

The importance of one of the factors considered in tahle I, that is, 
the suitahility of a theory for consideration of wing section character- 
istics, is illustrated in figure 3- Chordwise load distributions resulting 
from angle of attack and from flap deflection,  (AP)  and  (AP)5,  are 

shown. The particular distributions shown were ohtained from two- 
dimensional thin-airfoil theory (references l6 and 22) and from tests of a 
two-dimensional NACA 0009 airfoil with a thickened trailing-edge portion 
(reference 23). As has "been mentioned previously, some distortion of the 
two-dimensional chordwise load distrihutions would he expected to result 
from finite-span effects. The comparison of the experimental and theoret- 
ical load curves for the two-dimensional airfoil nevertheless provides a 
qualitative indication of differences that exist for finite-span wings. 
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The areas of the chordwise load curves represent the lift due to 
angle of attack and the lift due to flap deflection. The rates of change 
of these quantities with angle of attack and with flap deflection are 
commonly represented "by the symbols. Cy  and CT , respectively. Inte- 

gration for moment, about the flap hinge point, of the parts of the loads 
carried "by the flap yields the hinge moment due to angle of attack and the 
hinge moment due to flap deflection.  The rates of change of these latter 
quantities with angle of attack and with flap deflection are convention- 
ally represented "by the symbols C^ and C, , respectively.  The 

greatest differences "between the experimental and theoretical distributions 
are in the trailing-edge region where the "boundary layer is relatively 
thick. Because of the convex contour in the vicinity of the trailing edge 
of the selected airfoil, the differences between theory and experiment are 
greater than would normally "be obtained. The indicated differences do, 
however, provide a qualitative representation of usual conditions. Com-" 
parison of the total areas of the load curves indicates that the theoret- 
ical value of the lift due to angle of attack CT  would be subject to 

only a small error and that the lift due to flap deflection C,  would be 

subject to a somewhat larger error. The theoretical values of the hinge 
moment due to angle of attack C,   and of the hinge moment due to flap 

a 
deflection CT.  would be considerably different from the experimental 

5 
values because of the large differences in the loads near the trailing 
edge. If a theory is to be applied to determination of the effectiveness 
and hinge moments of finite-span controls, it is important; therefore, that 
some means be provided for accounting for the effects of viscosity on the 
wing section characteristics. 

The effects of viscosity also influence the variation of character- 
istics with Mach number, as is illustrated in figure k.    Comparisons are 
shown for the actual and theoretical variations with Mach number of the 
lift-curve slope CT  and of the rate of change of aileron hinge-moment 

-4* 
coefficient with deflection C^  for the wing of a fighter-type airplane 

(reference 2k).    The calculated curves are based on applications of the 
generalized Prandtl-dauert rule which assumes no viscosity (reference 9). 
The calculated results for the lift-curve slope C-r  are in good agreement 

with experiment almost up to the Mach number for which the force break 
occurs. Good agreement was not obtained, however, for the hinge-moment 
parameter C,   even at moderate Mach numbers. The poor agreement 

probably is caused by variations, with Mach number, of the characteristics 
of the boundary layer, which were shown in figure 3 to have an important 
effect on hinge moments. As' yet, there is no satisfactory method of 
accounting for such boundary-layer effects. 
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The fact that the lifting-line theory is inadequate at small aspect 
ratios, such as may "be employed for tail surfaces or for high-speed wings, 
is illustrated in figure 5. This figure Shows theoretical variations 
with aspect ratio of the lift-curve slope CL  and of the hinge-moment 

ex 
parameters Cj,  and C, . Results given "by lifting-line-theory equations 

are compared with results indicated "by a lifting-surface-theory method. 
(See references 25 to 28.) In the latter method, lifting-surface theory 
was used only to obtain corrections that could "be applied to the usual 
lifting-line-theory equations. By this procedure, equations in terms of 
arbitrary section parameters could "be retained. The curves shown were 
calculated from the measured section characteristics of an EA.CA 0009 air- 
foil equipped with a 30-percent-chord plain, sealed flap. The results 
indicate that the difference "between the two theories increases as the 
aspect ratio decreasesj and, in the case of the hinge-moment parameters, 
the differences may "be very large. The two test points in figure 5 repre- 
sent results obtained from tests of two specific configurations.  The 
results tend to be in better agreement with the lifting-surface theory 
than with the lifting-line theoryj and, in general, tests of other models 
have given similar results. The errors of the lifting-line theory are of 
such a magnitude as to be intolerable for most design purposes. 

As had been mentioned previously, the lifting-line theory cannot be 
applied to wings with large sweep angles. The simplified lifting-surface 
theory of Weissinger (reference 7) has been found to be very useful for 
the calculation of certain swept-wing characteristics, as, for example, 
the 3panwise load distribution. Calculations of the load distributions 
have been carried out for a wide variety of wing plan forms (reference 29); 
and, in general, good agreement has been obtained with experiment, at least 
for low lift coefficients.  (See reference 30-) Comparisons of measured 
and theoretical load distributions for an unswept wing, a sweptback wing, 
and a sweptforward wing are shown in figure 6. The agreement is fairly 
typical of what has been obtained for all but the most extreme plan forms. 
Comparison of the load curves for the unswept and sweptback plan forms 
shows the usual reduction in load near the wing root and increase in load 
near the wing tip as the wing is swept back. An increase in load near the 
root and a decrease in load near the wing tip is obtained as the wing is 
swept forward. These effects of sweep on the load distribution cause a 
tendency for the tip sections of sweptback wings to stall before the root 
sections; whereas, for sweptforward wings, the root sections generally 
stall before the tip sections. 

The peculiar stalling characteristics of swept wings limit the lift- 
coefficient range over which any theory, if based on potential-flow 
concepts, can be expected to give reliable results. This fact is illus- 
trated in figure 7. Comparisons of theoretical and experimental values 
of the aerodynamic-center location are given for an' unswept wing and a 
wing with ^5° sweepback (reference 31). Both wings had an aspect ratio 
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of 4.1. For the unswept wing the aerodynamic center showed little 
movement to a lift coefficient at least as high as 1.0, and the experi- 
mental results were in good agreement with the Talue given "by the 
Weissinger theory. For the wing with 45° sweepback, however, the aero- 
dynamic center showed a large rearward movement, starting at a lift 
coefficient of about 0.6. Although the theoretical value was in good 
agreement with experiment at low lift coefficients, the agreement was 
very poor in the high lift-coefficient range where the wing probably was 
partially stalled. This limitation of the theory is illustrated only 
for the case of the aerodynamic center, hut similar limitations have "been 
observed for almost all of the aerodynamic characteristics. At the pre- 
sent time, it is possible only to make qualitative estimates of the charac- 
teristics at high lift. Wind-tunnel tests must he relied upon in order to 
ohtain quantitative answers. 

Rigorous theories have not yet heen applied to all of the character- 
istics which are of Interest. For certain purposes, however, reasonahly 
reliable indications of the effects of a given geometric variahle can be 
obtained from very simple considerations. The effects of sweep on finite- 
span wings, for example, are sometimes assumed to be the same as the 
effects of sweep on infinite-span wings.  (See reference 32.) This 
approach neglects any consideration of the induced angle of attack or of 
the effects of sweep on the span loading. An example of the reliability 
of such an approach for one particular characteristic is shown in figure 8. 
This figure gives a comparison of experimental and calculated values of 
the aileron rolling-monent effectiveness C, . Infinite-span considerations 

indicate that the aileron rolling-moment effectiveness should decrease as 
the square of the cosine of the sweep angle. By applying this correction 
factor to the effectiveness parameter measured for the unswept wing, the 
dashed curve is obtained. Test results (reference 33) obtained with two 
sweptback wings were in reasonably good agreement with the calculated 
curve. Since unswept wings have been investigated rather thoroughly, both 
by theory and experiment, rough estimates of the aileron rolling-moment 
effectiveness for almost any swept-wing plan form can be obtained by this 
simple procedure. Several other wing characteristics have been handled 
in a similar manner. A somewhat different approach, in which consideration 
is given to the induced angle of attack, as well as to the infinite-span 
effect but with the effects on the load distribution still neglected, has 
been applied to the estimation of the stability derivatives of swept 
wings (reference 34). 

There are certain problems that can be handled most satisfactorily 
by purely empirical procedures. An example is the determination of the 
control-surface balance configuration required in order to obtain specified 
values of the hinge-moment parameters. Theoretical procedures have so far 
b9en indequate for analyzing the characteristics of the various balancing 
devices; consequently, the effects of the many details of control-surface 
balances have been studied experimentally (references 35 to 38)« Some of 
the important results of this work are summarized in figure 9- 
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The form of figure 9 has teen found convenient for a number of 
different analyses of hinge-moment characteristics.  It is a plot of the 
parameter C^,  against the parameter C^; and the dashed line repre- 

sents combinations of these parameters that would result in zero control 
force for a typical aileron. Lines of constant values of the control 
force for a given flight speed and a given altitude could be represented 
"by lines drawn parallel to the zero-force line. Increasing heaviness, 
or underbalance, is obtained in moving to the left of the zero-force line, 
and increasing overbalance results from moving to the right of the zero- 
force line. A point, determined by the characteristics of a plain aileron 
(•without balance), is represented on the chart by the small circle. The 
manner in which the hinge-moment parameters are altered through the 
addition of various aerodynamic balances is indicated by the lines radiating 
from the point for the plain aileron. The distance moved along a given 
line depends, of course, on the size or geometry of the balancing device. 
Empirical procedures are available for estimating the extent to which the 
geometry of the various balances must be altered in order to produce pre- 
scribed changes in the hinge-moment parameters (reference 37) • The chart 
shows that the different devices vary considerably in the manner in which 
they affect the hinge-moment parameters. The balancing tab, for example, 
may have a large effect on C, , but a negligible effect on C, • The 

addition of a beveled-trailing-edge balance, on the other hand, affects C 

and C^ almost equally. Intermediate variations are obtained with a 

sealed internal balance and with balances of the plain overhang type. By 
proper choice of the balance or by combinations of various balances, it is 
possible to obtain almost any desired values of the hinge-moment parameters 

CONCLUDING K1MAKKS 

In the foregoing discussion, a brief description has been given of 
the physical principles of the wing theories that are presently available 
to the aerodynamicist, and an indication has been given of some of the 
procedures that are being used to obtain solutions to specific problems. 
The procedures in use do not always utilize sound fundamental principles. 
The reason for this-is not lack of a sound theory, but rather that the 
present theories are, in many -instances, too cumbersome for practical 
applications. None of the present theories is satisfactory with regard 
to all of the points mentioned at the beginning of this paper. A theory 
that would combine applicability to arbitrary geometry with the many 
advantages of the present lifting-line theory would be extremely useful. 
The effects of compressibility, particularly for thick finite-span wings, 
and the effects of the boundary layer cannot yet be adequately accounted 
for. There is no reliable method of anticipating the conditions under 
which the flow first begins to break down on swept wings or of estimating 

ha 
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the characteristics after the "breakdown occurs. Many of the problems 
are complicated by the fact that wing flexibility enters as an important 
additional factor for some of the wing plan 'forms that are of current 
interest. The extent to which wing flexibility may hare to be considered 
has not yet been well-established. 
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TABLE    I.-    COMPARISON.   OF   WING    THEORIES 
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Figure 1.-    Basic wing-theory concepts. 
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Figure 2„-   Actual and equivalent wings in compressible flow. 
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Figure 5.-   Lift and hinge-moment parameters for 0.3 chord flaps. 
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Figure 6.-   Experimental and theoretical spanwise load distributions. 
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MAXIMUM-LIFT M) STALLING- CHARACTERISTICS OF WINGS 

By James C. Sivells 

Langley Aeronautical Laboratory 

The maximum-lift and stalling characteristics of wings constitute 
a subject that is common to all types of airplanes, small or large., 
low speed or high speed. The prohlems associated with each type may, 
however, he widely different. The old "biplanes and early monoplanee 
had stalling characteristics which were usually fairly good. The wing 
loadings were low so that the landing speeds were relatively low. The 
relatively thick, rectangular wings tended to stall near the center and 
gave the pilots adequate stall warning. As the airplane designs became 
more efficient, the structural designers demanded that the wings be 
tapered to decrease the stresses at the wing roots. Tapering the wings, 
however, tended to move outboard the spanwise position of the incipient 
stall, so that a compromise has to be made between the structural and 
aerodynamic desiderations. Recently the use of thinner and smoother 
wing sections, higher wing loadings, and unconventional plan forms has 
resulted in further compromises, both structural and aerodynamic, since 
the factors which are necessary for high—speed performance are usually 
not conducive to low—speed performance. All present—day airplanes 
represent the results of such compromises which have been made in their 
designs. 

Since it is desirable to he able to predict the maximum—lift and 
stalling characteristics of an airplane at a very early stage in its 
design, a large amount of research has been done with this end in mind. 
This research has been undertaken along three lines — theoretical work, 
wind—tunnel experiments, and flight tests — which must be closely 
correlated to provide the maximum amount of useful information. The 
theoretical work can indicate trends due to variations in the wing 
geometry hut cannot adequately include the interference effects of the 
fuselage or nacelles. The wind—tunnel experiments can determine the 
maximum lift values for a smooth model or one with standard leading—edge 
roughness but oftentimes at values of Reynolds number or Mach number 
different than those at which the airplane will fly. Moreover, the 
stalling characteristics determined in most wind tunnels are obtained for 
models which are restrained at a given attitude so that the motions of a 
stalled airplane cannot be simulated. The final analysis of the maximum- 
lift and stalling characteristics of an airplane comes in the flight 
tests where all the factors which influence the characteristics are 
integrated. At this stage of the design, however, it may be too late 
or very expensive to make alterations necessary to improve the character- 
istics. In spite of all the research which has been done along these 
lines, much more remains to be done before accurate predictions can be 
made of the characteristics of every type of airplane. 

One of the major factors which influence the maximum-lift and 
stalling characteristics of a wing is its airfoil section. Comparisons 
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of various airfoil sections can "best be made from the results of two- 
dimensional wind—tunnel tests. The NACA 6—series airfoil sections 
hare "been described in the paper "by von Doenhoff and Loftin. In figure 1, 
the values of the maximum lift coefficient^of the NACA 6k—series sections 
are shown for a Reynolds number of 6 X 10 .  (See reference 1.) In 
order to provide an indication of the maximum—lift capabilities of an 
airfoil with various types of high—lift flaps, nearly all sections are 
tested with and without 20—percent-chord split flaps deflected 60°. 
Yarying the airfoil thickness ratio has approximately the same effect on 
the maximum lift of the NACA 6—series airfoils as it does on the older 
k—  and 5—digit airfoil sections.  (See reference 2.) Without flaps, the 
highest values are for thickness ratios of about 12 to 15 percent. With 
flaps, the highest values are for thickness ratios of about 18 
to 21 percent. The airfoil thickness also has an appreciable effect on 
the sharpness of the lifb-curve peak (reference 3) which, in turn, may 
influence the stalling characteristics of a wing. The very thin sections, 
up to about 6 percent thick, have flat—top lift curves, characteristic of 
flat plates. The sections from about 9 to 12 percent thick have relatively 
sharp—peak lift curves characterized by abrupt separation of the flow from 
the entire upper surface initiated by laminar separation near the leading 
edge. The actual flow mechanism is quite complex but is described more" 
fully in reference 3« The thicker sections have more rounded lif-b-curve 
peaks characterized by separation of the turbulent boundary layer starting 
at the trailing edge. Not only the thickness but also tha airfoil 
contour, particularly the forward part, has an effect on the section 
stalling characteristics so that different families of airfoils do not 
necessarily exhibit the same characteristics. For example, for equal 
thicknesses, the UACA 6—series sections do not have as sharp lift—curve 
peaks as the NACA 230—series sections. 

The addition of camber of the uniform—load type generally increases 
the values of maximum lift coefficient as shown- in figure 1 for values 
of design lift coefficient c7  of 0.2 and O.k.     Still greater amounts 

'i 
of camber do not further increase the maximum lift coefficient. These 
curves are typical of all the NACA 6—series sections. The values for 
NACA 63—series sections are generally a little higher than those shown 
while those for the NACA 65— and 66—series are a little lower. The 
effects of Reynolds number on the values of maximum lift coefficient are 
about the same as for the older types of airfoils. These data were all 
obtained with the airfoils in a smooth condition. With so-called 
standard leading—edge roughness applied to the forward 8 percent of the 
airfoil surface, the effects of thickness and Reynolds number are 
materially reduced. For example, at the Reynolds number of 6 X 10°, 
the values of maximum lift coefficient for the 6—percent—thick sections 
are little affected by roughness, for the 12—percent—thick sections 
losses of 0.3 to 0.5.are caused by roughness, and for the thicker sections 
the losses due to roughness are of the order of 0.2 to 0.3. These losses 
in c7    are accompanied by a rounding—off of the lift-curve peaks. tmax 
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The thicker sections with split flaps give fairly high values of 
maximum lift coefficient, of the order of 2.8. For high—speed performance, 
however, much thinner sections must he used, usually less than 12 percent 
thick. It then becomes imperative to use some more powerful type of high- 
lift device in order to obtain high values of maximum lift coefficient. 
In figure 2 are shown typical values which can be obtained for various 
types and combinations of high—lift devices. The difference between the 
two sections shown is mainly that of camber. The double slotted flap 
is one of the most powerful types of trailing—edge flap and on the 
NACA 64TA212 section produces a value of c,    of about 2.85 for a Reynolds 

J- 'max 
number of 6 x 10° as compared with a value of 2.41 obtained with a split 
flap.  (See references k  and 5«) The addition of a leading—edge slat 
increases the value of c7    to about 3-38. A still further increase 

'max 
can be obtained by removing part of the boundary layer by suction through 
one or more slots. For a single slot located at kO  percent of the chord 
and a flow coefficient of 0.025, a maximum lift coefficient of 3.72 has 
been obtained in conjunction with a double slotted flap and a leading- 
edge slat. 

Another type of leading—edge device is the extensible leading—edge 
flap.  (See reference 6.) Two types of flap are shown with the 
NACA 64-|_-012 section; one is intended to be hinged at the lower surface 

near the nose of the airfoil and the other is intended to be retracted 
into the upper surface. The lower—surface flap is probably simpler from 
a construction standpoint but produces a discontinuity at the nose and 
is, therefore, not as effective as the upper—surface flap. Used in 
conjunction with a split flap, however, the lower—surface leading—edge 
flap produces a fairly high value of c?     One advantage of the imax 
leading—edge flap as a high—lift device is that it produces approximately 
the same values of c7    on still thinner airfoil sections (reference 7) 

even though the values obtained for the plain airfoil decrease rapidly 
with decreasing thickness. 

Although the two—dimensional data give a fairly good indication of 
the relative merits of various airfoil sections, the other factors which 
influence the maximum-lift and stalling characteristics of wings must be 
investigated in three—dimensional flow on wings of finite span.  Complete 
wings may be divided into two catagories: those having little or no 
sweep and those which are sweptback or sweptforward enough that the sweep 
has an influence on the wing characteristics. Since much more is known 
about the characteristics of unswept wings, these are discussed first. 

Except for wings of very low aspect ratio, the various sections of 
an unswept wing behave very much as they do in two—dimensional flow but 
at an effective angle of attack as predicted by lifting—line theory. 
Even the nonlinearity of the section lift curves in the vicinity of 
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maximum lift can be taken into account "by a method developed for calcu- 
lating the wing characteristics using actual two-dimensional data. 
(See reference 8.) Figure 3 shows'the results of such calculations for 
one of a series of wings.  (See references 9 to 11.) The calculated 
curve is here superimposed on the points obtained experimentally. This 
particular wing haB the fairly high aspect ratio of 10 and a taper ratio 
of O.k.    The sections varied in thickness from 20 percent at the root 
to 12 percent at the tip and account was taken of the variation in 
Reynolds number from root to tip due to the taper. The agreement 
between the calculated and experimental results was very good for this 
wing and at least reasonably good for all the wings of the series investi- 
gated. In all cases the agreement was better than if no account were 
taken of the nonlinearity of the section lift curves. 

In addition to the value of the maximum lift coefficient, the 
stalling characteristics of a wing can be predicted by this method as 
shown in figure k.    This is for the same wing as the previous figure. 
The upper, or dotted, curve shows the Bpanwise variation of the maximum . 
lift coefficient for the various sections as determined from two- 
dimensional tests. The variations of thickness and Reynolds number 
along the span are taken into account. The lower, or solid, curve is 
the spanwise variation of the local section lift coefficient at the 
maximum value of wing lift coefficient as calculated by the method 
mentioned. Where the curves are tangent, the sections have reached 
their maximum values of lift coefficient and the stall has begun. The 
divergence between the curves is an indication of the progression of 
the stall. In this particular case, the difference between the curves 
at the root is probably insufficient to prevent separation, so that the 
wing would be predicted to be stalled over about 90 percent of the semi- 
span. From wind—tunnel tests with tufts attached to the wing, the area 
indicated was stalled at maximum lift. The agreement between the wind- 
tunnel tests and the predicted stall is reasonable. Whether this wing 
would have satisfactory stalling characteristics in flight cannot be 
predicted from these data inasmuch as the motions of the stalled airplane 
are not known. It can be conjectured that some loss in aileron effective- 
ness would be experienced near maximum lift but, because of the thick 
root sections which experience separated flow at values of lift coeffi- 
cient somewhat below the maximum, the pilot may have warning of the 
incipient stall in the nature of tail buffeting. 

Although the maximum—lift and stalling characteristics of unswept 
wings are believed to be predicted better by the method using nonlinear 
section lift data than by older methods in which the section lift curves 
are assumed to be linear, much useful information has been obtained by 
the latter methods as to the* effects of various geometric parameters. 
One such theoretical investigation (references 12 and 13) provides the 
information shown in figure 5» It has been generally accepted that a 
rectangular wing (taper ratio of 1) will possess good stalling character- 
istics inasmuch as the stall tends to start, at the root and progress 
slowly outboard as indicated by the lower left-hand curves. There may 
be certain combinations of variables, however, for which such a 
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generalization is not true. Furthermore, too early a root stall may 
seriously reduce the maximum lift or cause too much tail buffeting. 
It may, therefore, he desirable from an aerodynamic as well as a 
structural standpoint to taper the wing. A taper ratio of l/2, which 
many designers consider to be moderate, mores the incipient-stall 
position dangerously far outboard for a wing with this particular 
combination of airfoil sections. If other design criterions allow 
the root thickness to be increased to 21 percent, the stall can again 
be moved inboard because the thicker sections have lower values 
of c7  . It is thus readily seen that it is extremely important to tmax 
consider not only the taper ratio but also the airfoil section and other 
variables in the design of a wing with good stalling characteristics. 
The lower right—hand curves show that more taper again shifts the stall 
outboard even though the root section is quite thick. 

A few general remarks should be made at this time. The use of 
nonlinear section lift data has oftentimes indicated that the stall 
would be more severe than that indicated by the use of linear data. 
These four examples shown are for an aspect ratio of 6, constant camber 
from root to tip, and no washout. The effect of increasing aspect ratio 
is to level off the local—lift-coefficient distributions thereby making 
the stalling characteristics better or worse depending upon the shape of 
the maximum-section—lift-coefficient distribution. An increase in 
camber from root to tip will usually improve the stalling characteristics 
if the maximum section lift coefficients are increased near the tip. 
Washout will also improve the stalling characteristics by increasing the 
local lift coefficients near the root and decreasing them near the tip. 
The use of either camber increase or washout may be limited, however, 
by the high—speed requirements for the airplane. The high—speed require- 
ments may also dictate the shape and thickness of the airfoil section 
which may greatly influence the stalling characteristics in a manner not 
shown in the above type of analysis or even in wind-tunnel tests. The 
use of an airfoil section with a sharp—peak lift curve may result in a 
rapid roll-off or pitching motion when the airplane stalls in flight. 
Another factor which may affect the stalling characteristics of an 
airplane is the slipstream from a tractor propeller.  (See reference Ik.) 
The increased velocity in the slipstream increases the local Reynolds 
number of the wing sections behind the propeller. The downwash behind 
an inclined propeller tends to reduce the effective angle of attack of 
the wing sections. Both of these effects tend to delay stalling in the 
affected regions and may allow the outboard sections of the wing to 
stall first. Another effect is that of slipstream rotation which causes 
the sections behind the upgoing propeller blades to stall before the 
sections behind the downgoing propeller blades. 

Where the high—speed requirements influence the design so that a 
poor-stalling wing results, the designer may resort to the use of stall 
control devices such as the sharp leading edge and leading—edge slat. 
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Fig-are 6 shows the use of a sharp leading edge on a wing with a taper ratio 
of 1/3.  (See reference 15.) The outboard stall of the plain wing is 
corrected by decreasing the maximum'section lift coefficients near the 
rootj the stall is thereby caused to more inboard. The use of this type 
of stall control device results in a lower maximum lift coefficient of 
the wing and would probably not be used except where absolutely necessary. 
Figure 7 shows the use of a leading—edge slat over the outboard part of 
the wing.  (See reference 12.) In this case the tip stall is prevented 
by increasing the maximum—lift capabilities of the outboard sections and 
a higher wing lift is obtained. Although this analysis indicates that 
the stall would be localized near the inboard end of the flap, it is 
extremely difficult to predict the flight characteristics. 

Associated with the maximum-lift and stalling characteristics of 
airplanes is the sinking speed in the landing approach. This may be a 
deciding factor as to what type of high—lift device to use. Figure 8 
shows the lift-drag polars of a wing—fuselage combination with three 
types of 60—percent—span flaps.  (See reference 16.) To place the flaps 
on a more comparable basis, a tail length was assumed and the negative 
lift on the tail, necessary to trim out the pitching moment due to the 
flaps, was added to the wing lift to give a value of trimmed lift 
coefficient.  Superimposed on these polars is a grid of lines of constant 
sinking speed Tv and constant gliding speed calculated for a wing 

loading of 60 pounds per square foot.  Although neither the drag of 
nacelles, landing gear, tail, and protuberances nor the effects of power 
is included, a comparison of the various types of flap can be made. The 
lowest sinking speed for any of the flapped-wing configurations would 
be obtained with the single slotted flaps but the lowest gliding speed 
would be obtained with the double slotted flaps. These data are for 
a 10—percent—thick wing with an aspect ratio of 9- For this particular 
wing, the flaps had practically no effect on the stalling characteristics. 

In ths estimation of full—scale flight values of maximum lift coef- 
ficient from wind—tunnel data, due account must be taken of the difference 
in Mach number as well as the difference in Eeynolds number between the 
flight and wind—tunnel conditions. Although the effects of compressi- 
bility are usually associated with relatively high subsonic Mach numbers, 
such effects are also important at Mach numbers as low as 0.2 in studies 
of maximum lift.  Some of the interrelated effects of Mach number and 
Eeynolds number are shown in figure 9-     (See reference 17.) These data 
were obtained by testing the same wing at atmospheric pressure and at a 

pressure of about 2T~ atmospheres. At each pressure-, tests were made 

over the range of Mach number. The same data are plotted as a function 
of both Eeynolds number and Mach number. The peak values of maximum 
lift coefficient in each case were obtained when the critical pressure 
coefficient, corresponding to a local Mach number of 1, was reached. At 
speeds lower than this critical speed, the Eeynolds number had more effect; 
c,    increased with increasing Eeynolds number. At speeds higher than 
max 
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the critical speedy Mach number had more effect; c7    decreased with tmax 
increasing Mach number. At the higher Reynolds number, the pressure 
coefficients were more negative and the critical pressure coefficient 
was reached at a lower free—stream Mach number. The pressure coefficients 
were still more negative with the flaps deflected and the critical pressure 
coefficient was reached at still lower free—stream Mach numbers. Although 
these data pertain to one particular wing, they do show the importance of 
considering both the Reynolds number and the Mach number when estimations 
are made of the maximum lift coefficient of a wing. 

Up to this point, only unswept wings have "been considered. Although 
many of the factors which influence the maximum—lift and stalling charac- 
teristics of unswept wings also affect the characteristics of swept wings, 
such effects are often masked by the effect of sweep. The characteristics 
of swept wings are not as amenable to calculation as those of unswept 
wings.  Some qualitative effects of sweep, however, may be discussed. As 
shown in the previous paper "by Toll and Diederich from calculations by 
lifting—surface theory, sweepback tends to load up the outboard sections 
of a wing while sweepforward tends to load up the inboard sections. In 
addition to these effects on the span loading, the spanwise component of 
the air flow tends to sweep the boundary layer outboard on sweptback 
wings and inboard on sweptforward wings. The thickened boundary layer 
which results is more susceptible to separation than the thinner.boundary 
layer on an unswept wing. The effects are additive, causing severe tip 
stall on sweptback wings and severe root stall on sweptforward wings as 
shown in figure 10.  (See reference 18.) For these tests the same semi- 
span wing was rotated to give the various angles of sweep, and different 
tip and root sections were added for each angle. The aspect ratio was 
thus decreased as the sweep was increased. In addition to the loss in 
lateral control at the stall of the sweptback wings, sweep, either for- 
ward or backward, may cause longitudinal instability at the stall for 
some aspect ratios. This is discussed more fully in another paper but 
is mentioned here "because subsequent values of maximum lift shown may 
not "be usable "because of longitudinal instability. 

The effect of sweepback on maximum lift coefficient is shown in 
figure 11.  (See reference 19«) These results were obtained in a turbu- 
lent wind tunnel and the values of Reynolds number are the so-called 
"effective" values obtained by multiplying the test values by a factor 
which is a function of the amount of turbulence in the air stream.. The 
validity of the use of this concept of effective Reynolds number has not 
been established for swept wings. The important point shown by these 
curves is that Reynolds number must be taken into account when discussing 
the effect of sweep on the maximum lift coefficient of a wing and low- 
scale wind—tunnel results may not apply to full-scale airplanes. 

Sweep also has a pronounced effect upon the increment in lift 
coefficient due to flap deflection as shown in figure 12.  (See 
reference 20.) These are low—scale results obtained at a Reynolds number 
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of 1 x 10u to 2 X 10°. All the wings tested had the same chord normal to 
the leading edge., -were untapered, and had the same span. The aspect 
ratio decreased, therefore, with increasing sweepback. The increment in 
lift coefficient is due to the deflection of 50-percent-span, 20-percent- 
chord, split flaps deflected 60°. At low angles of attack, the increment 
in lift coefficient varies approximately as the empirical cosine—squared 
curve multiplied "by the factor r\    to take -into account the difference in 
aspect ratio. The increment in maximum lift coefficient is somewhat 
lower, falling to zero for 60 sweepback. 

As mentioned previously, the tip stall of a sweptback wing causes 
a loss in lateral control and may cause longitudinal instability. It is 
oftentimes possible, however, to eliminate this tip stall "by some stall 
control device. Figure 13 shows the results of using partial—span, 
properly located, leading—edge slats on a highly tapered, moderately 
sweptback wing.  (See reference 1^.) In this case, not only was the tip 
stall eliminated, hut the maximum lift coefficient was increased "by the 
addition of the slats. It should be re—emphasized that the slats must 
he properly located both as to span and position to improve the stalling 
characteristics of such a wing because improperly located slats on this 
same model did not give any improvement. 

In conclusion, the present status and future needs of research on 
maximum—lift and stalling characteristics can be summarized. Theoretical 
methods of analysis for unswept wings have been developed for predicting 
the effects of variations in wing geometry. Similar methods are needed 
which can include the effects of sweep and low aspect ratio. Wind—tunnel 
experiments have been useful for determining some of the effects of sweep 
and of various airplane components. Further wind—tunnel investigations 
are desirable in which the models are allowed some degree of freedom, 
such as rolling, so that flight conditions can be partly simulated. 
Further flight tests are desirable for investigating the effects of 
variables which cannot be taken into account at present either by theory 
or in the wind tunnels and for defining more nearly exactly what are 
satisfactory stalling characteristics. Finally, close correlation must 
be maintained between the theoretical analyses, wind—tunnel experiments, 
and flight tests so that the information from each field of research can 
be applied to the others. 
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Figure 1.-   Maximum-lift characteristics of NACA 64-series airfoil sections 
at a Reynolds number of   6 x 10 6 
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Figure 2.-   Maximum lift coefficients of NACA 641A212 and 641-012 airfoil 

sections with various high-lift devices.   Reynolds number,   6 x 10°. 
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Figure 3.-   Experimental and calculated maximum-lift characteristics of a 
wing with NACA 64-series sections. 
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Figure 4.-   Experimental and calculated stalling characteristics of a wing with 
NACA 64-series sections. 
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Figure 5. -   Spanwise lift-coefficient distributions at maximum lift for four 
wings with NACA 230-series sections.   Aspect ratio, 6; Reynolds number, 
8 * 106. 

NACA  23009 
NACA  23014   AT ROOT AT  TIP 

SHARP 
h *- LEADING EDGE' 

Figure 6.-   Effect of a sharp leading edge on the calculated stalling character- 
istics of a wing. 
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Figure 7.-   Effect of leading-edge slats on the calculated stalling character- 
istics of a wing. 
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Figure 10.-   Stall progressions for wings with and without sweep. 
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Figure 12.-   Effect of sweep on the increment in lift coefficient due to flaps. 
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Figure 13.-   Effect of leading-edge slats on the stalling characteristics of a 
swept back wing. 
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FACTORS AFFECTING STATIC LONGITUDinAL 

STABILITY AM) CONTROL 

By Charles J. Donlan 

Langley Aeronautical laboratory 

INTRODUCTION 

The purpose of this paper is to review the various factors that 
constitute static longitudinal stability and control and to indicate 
how these factors may he influenced "by power effects and Mach number 
effects. 

SYMBOLS 

cm pitching-moment coefficient 

CL lift-coefficient 

h wing span 

S wing area 

it stahilizer incidence, degrees 

€! increment of power-off downwa 
given angle of attack) from zero—lift downwash, degrees 

A e      increment in downwash, at a given angle of attack, due to 
power, degrees 

Tc      thrust coefficient /Thrust\ 

ATC      increment in thrust coefficient from power-off condition to a 
specified power condition 

F       plan-form factor 

M       Mach number 

BASIC CONCEPTS 

Static stability relates to the "behavior of an airplane in a series 
of steady states of motion. It is of interest, therefore, to aline the 
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practical conditions for stability as desired by pilots with the con- 
ditions for stability that result from a mathematical treatment of the 
subject. From the pilot's point of.view an airplane possesses stick- 
position stability if the stick must be moved rearward to retrim the 
airplane at a speed lower than the initial trimmed speed or moved 
forward to retrim the airplane at a speed higher than the initial 
trimmed speed. If the rearward movement of the stick requires a pull 
force or if the forward movement of the stick requires a push force, 
the airplane also possesses stick—force stability. 

The basic mathematical condition for static stability is that the 
constant term E of the quartic stability equation be positive: 

\^ +  BX.3 + CX.2 + DX  + I = 0 (1) 

The development of equation (l) for the stick—fixed condition may be 
found in references 1 and 2 and for the stick—free condition in 
reference 3« 

Physically, a positive value of E indicates that one of the 
longitudinal modes of motion of the airplane will consist of a long- 
period oscillation, classically termed a phugoid oscillation- The 
question of the characteristics of this oscillation, and whether it is 
stable or unstable, is one of dynamic stability and therefore is not 
discussed herein. A discussion of its importance from the pilot's 
point of view may be found- in reference k-    It will suffice to say 
that if E is positive, the phugoid oscillation will be present in 
some form but, more important, the previously mentioned relationships 
concerning stick-position and stick-force stability will be satisfied. 

On the other hand, if E is negative, the long—period phugoid 
oscillation is replaced essentially by a slow divergence and 'the pilot 
will find it necessary to reverse his customary procedure for retrimming 
the airplane. This reversal of customary flight procedure, while not 
particularly desirable, is generally not catastrophic because the 
divergence that develops as a consequence of this type of instability 
depends on speed changes that take considerable time to develop. 

The expression "static stability" has also been used to describe 
the weathercock tendencies of an airplane while flying at a constant 
speed. This type of stability is essentially angle—of—attack stability 
and is extremely important in that it prevents, for example, the 
airplane from developing excessive load factors when encountering a 
gust or other disturbances." Static stability is frequently referred 
to as "maneuvering stability," inasmuch as it also controls the 
inherent maneuverability of the airplane. The mathematical condition 
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for this type of stability is that the coefficient C of equation (l) 
be positire. Physically, if C is positive, a short-period oscilla- 
tion is presentj if C is negative, the oscillation is replaced by a 
very rapid and dangerous divergence.  It should be emphasized that 
from the point of view of safety it is the type of stability 
associated with C that is most important to the pilot. 

In simplified treatments of stability where power effects and 
compressibility effects are ignored, little misunderstanding results 
from the different interpretations attached to the term "static 
stability" because the same factor, the slope of the curve of pitching— 
moment coefficient against lift coefficient, usually determines the 
sign of both I and C. When the effects of power and compressibility 
are taken into account, however, the terms E and C are no longer 
dependent on the same parameters and a more precise interpretation 
of their significance is essential. 

The four concepts and definitions commonly employed in current 
discussions of longitudinal stability are summarized in table I. The 
type of stability associated with E is manifested as stick—position 
stability or as stick—force stability. The degree of stability is 

/dCm\ measured by the static margin, defined as —(-77- )   . The 

parameter — -777-     oan be evaluated from wind—tunnel tests wit:: 

the controls either fixed or free if the tests are conducted to 
simulate the appropriate power condition and flight plan. The center— 
of—gravity position for which the static margin vanishes for either 
the stick—position or stick—force condition defines the neutral point. 

The type of stability associated with the term C is interpreted 
and measured by the pilot in terms of the control movement or control 
force required to effect a given acceleration at a constant speed. 
The degree of stability is proportional to the so—called maneuver 
margin. The maneuver margin can be evaluated from wind—tunnel tests" 
as the sum of the slope of the pitching—moment curve obtained at a 
constant Mach number and for a fixed power condition and a term 
representing the damping—in-pitch characteristics of the airplane. 
For heavily loaded airplanes flying at high altitudes K is negligible 

and the maneuver margin is given essentially as — I ^-= 1  which can 
\dCVM 

easily be obtained from wind—tunnel'tests. The maneuver point coincides 
with the center—of—gravity position corresponding to zero maneuver 
margin.• 
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If the mariner In which the pitching—moment coefficient varies 
•with the lift coefficient is known, all the essential stability 
parameters can "be evaluated. 

STABILITY AT SUBCKITICAL SPEEDS 

The • stability of a conventional—type airplane is determined by 
the relative contributions of the -wing—fuselage combination and the 
horizontal tail. At subcritical speeds the contribution of the basic 
wing—fuselage combination can be estimated fairly reliably, and 
numerous papers and charts are available for simplifying such calcu- 
lations.  (See references 5 to 10.) The contribution of the 
horizontal tail in the absence of slipstream or jet effects can also 
be estimated fairly reliably for both the flaps—retracted and flaps- 
deflected conditions (reference 11) with the aid of downwash charts 
such as those prepared by Silverstein and Katzoff (reference 12). 
Reliable methods are also available for estimating the hinge—moment 
characteristics of the elevator/ thus, rational estimates of the 
stick—free stability characteristics can be made.  (See reference 13.) 
The addition of a propeller or a jet may, however, cause important 
changes in the contributions supplied by the various components, and a 
knowledge of the manner in which these effects are manifested is 
extremely helpful in design. 

POWER EFFECTS 

Propeller effects.— Successful methods have been developed for 
estimating the effects of the slipstream on the wing—fuselage charac- 
teristics (references Ik  to 18), but attempts to predict the complex 
changes in flow at the tail plane have been less successful. 

I>uring the war years a large amount of experimental data pertaining 
to propeller effects were obtained particularly for single-engine 
airplanes. Typical investigations are reported in references 19 to 28. 
These data have been analyzed and a method has been developed for 
estimating the effects of power- on the contribution of the tail to 
stability. The essence of the method is presented in figures 1 and 2, 
which were taken from an unpublished analysis. 

The data of figure 1 constitute a correlation of the change in down- 
wash angle resulting from an increment in thrust coefficient above the 
windmilling condition. A correlation study of 26 specific model configu- 
rations has indicated that the most powerful factors influencing the incre- 
mental downwash angle are the initial downwash angle e' and a factor F 
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dependent on the wing plan form.  It has "been observed that taper 
ratio is of particular importance, and the manner in which the plan- 
form correlation factor F varies with wing taper ratio is also 
shown in figure 1. The dashed lines parallel to the design curve 
represent the order of accuracy which might "be expected in applying 
this chart to a new design. 

A correlation chart for estimating the power—on tail effectiveness 
is shown in figure 2. The dependency of the tail—effectiveness ratio 
on the relative position of the slipstream and tail position should "be 
noted. The lines parallel to the design curve again indicate the 
order of accuracy of the correlation. These correlation charts at 
present are applicable only to single—engine tractor monoplanes with 
flaps retracted,hut it is hoped eventually to obtain similar correla- 
tion charts for the flap-down condition. 

From correlation charts such as those shown in figures 1 and 2 
it is possible to construct curves of the variation of pitching—moment 
coefficient with lift coefficient for any power condition, and from 
these curves all of the essential stability parameters can be 
evaluated. References 29 and 30 contain graphical methods for 
determining the location of the neutral point. 

The scarcity of systematic data on multiengine installations has 
thus far prevented the development of similar correlations for these 
configurations. 

Jet effects.— The influence of jets on the longitudinal stability 
is, in general, not as pronounced as propellers.  (See reference 31.) 
Direct jet effects are easily computable and charts are available for . 
estimating the inflow field about a jet; thus, the calculation of 
downwash changes in the vicinity of the horizontal tail is possible 
(reference 32). 

COMFEESSTEILITY EFFECTS 

Up to the speed at which the critical Mäch number of the wing is 
exceeded, the effects of compressibility on the stability characteristics 
of an airplane are relatively small, and rational estimates of these 
effects can be made utilizing formulas based on linear perturbation 
theory. The more significant changes in stability occur when the 
critical speed of the wing is exceeded and shock waves are found which 
result in large pressure changes over the wing. As a consequence, the 
lift and the lift—curve slope decrease rapidly, and for cambered 
sections the angle of attack for zero lift shifts in a positive 
direction. These changes are generally more pronounced for wings 
having greater camber. 
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The aerodynamic center of the wing may shift either in a forward 
or rearward direction depending upon the thickness and shape of the 
airfoil section and the wing plan form. The wing-aerodynamic-center 
shift associated with a particular airplane will also he affected "by 
the fuselage or nacelles. 

An example of the manner in which compressibility effects were 
manifested on a World War II fighter is shown in figure 3-  (See 
reference 33.) The characteristics exhibited at M = 0.5 are 
typical of the behavior below the force break. As the critical speed 
of the wing was exceeded the aerodynamic center of the wing—fuselage 
combination moved forward as evidenced by the increased slope 'of the 
tail—off pitching—moment curve at M = O.76. Despite the forward 
movement of the wing aerodynamic center, however, the slope fdC^/öCiJ,, 

for the tail-on configuration was actually increased. A noticeable 
change in trim is also evident. Thus, while the maneuver margin 
is considerably increased the static margin, as a consequence of 
the trim change, becomes unstable. The cause of this behavior 
usually is that the airplane will experience a nose-down tendency 
that is so great that either the elevator is not powerful enough 
to pull the nose of the airplane up or the control forces become 
too great for the pilot to handle. This behavior is referred 
to as the tucking under tendency. 

If an airplane has an adjustable stabilizer, severe trim changes 
of this type can be compensated for without much difficulty. If the 
airplane has a fixed stabilizer, however, another solution to this 
problem is required. The solution adopted for the airplane having the 
characteristics shown in figure 3 involved the use of dive—recovery 
flaps. The essential characteristic of a dive—recovery flap is 
illustrated in figure k  (reference 34). The dive flap is located on 
the under surface of the wing and, when deflected, causes an increase 
in the local downwash at the tail and a change in the angle of zero 
lift. The effect is the same as though the stabilizer had been moved 
nose downward, and a powerful positive pitching moment is created. 
The optimum flap deflection for a particular configuration, however,. 
must be determined experimentally. 

Severe compressibility effects may be delayed to higher Mach 
numbers by utilizing thinner wing sections and by employing plan forms 
having low aspect ratios or plan forms incorporating sweepback.  (See 
references 35 s^d 36.) The incorporation of sweepback is particularly 
beneficial and can significantly increase the Mach number at which 
serious longitudinal—stability problems are encountered and might be 
expected also to reduce the trim changes and stability changes' 
encountered at supercritical speeds. 
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LOW-SPEED PROBLEMS OF SWEPTBACK WINGS 

One of the factors that limits the amount of sweepback that can 
"be employed, however, is the difficulty of providing satisfactory 
stability and control in the landing condition. 

Basic—wing characteristics.— At lift coefficients prior to that 
at which separated flow ensues on'the wing, the position of the 
aerodynamic center of the wing can he estimated fairly reliably. The 
shift in the aerodynamic—center position that occurs at high lift 
coefficients is less amenable to theoretical computations, and 
numerous experimental investigations have "been concerned with this 
effect. From the data examined thus far it appears that aspect ratio 
and sweep angle are still the two most important factors that 
influence the type of pitching-moment variation to he expected at 
the stall. The familiar manner in which sweep angle and aspect ratio 
affect the character of the pitching-moment variation at the stall is 
illustrated in figure 5, which is taken from reference 37. Combinations 
of sweep and aspect ratio that fall above the line in the figure have 
"been found to yield the characteristically unstable pitching-moment 
variation indicated. Other factors such as airfoil section, wing 
taper, Reynolds number, and surface roughness have been found to 
influence the lift coefficient at which instability is first mani- 
fested, but the ultimate variation at the stall has still been found 
to be consistent with that indicated in figure 5. 

While figure 5 reflects the behavior of plain wings, it has been 
found that the addition of trailing-edge flaps has resulted in an 
unstable pitching-moment variation even for wings falling in the stable 
region. A considerable number of investigations have, therefore, been 
concerned with the development of devices designed to alleviate the 
tip stalling that is responsible for this behavior. 

Stall control devices.— Jfethods that have been tried in attempts 
to alleviate the tip stalling of sweptback wings have included wing 
twist, changes in wing plan form at the tip, flat-plate separators - 
which attempt to control the lateral flow of the boundary layer — and 
leading—edge flaps and slats. Combinations of these methods have also 
been tried on specific configurations. Perhaps the most successful 
stall control device thus far investigated has been the leading-edge 
slat. Figure 6 illustrates the behavior of this device on a moderately 
'swept wing.  (See reference 38.)  It will be noticed that in this 
example the slat had to be extended over approximately 50 percent of 
the wing semispan before the desired stable pitching moment at the 
stall was attained. Inasmuch as the leading-edge slat modifies the 
span loading along the wing it might be expected that the optimum 
extent of flap for a particular configuration would depend on the wing 
plan form and the location of the wing on the fuselage. 
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Iffeet of tail location.— The attainment of satisfactory pitching— 
moment characteristics for the wing-fuselage combination does not 
guarantee that the configuration with a horizontal tail added will also 
"be satisfactory. The optimum location of the tail must usually he 
found experimentally. Figure 7 which is taken from reference 39 
illustrates a case where the "basic wing—fuselage pitching—moment 
"behavior was satisfactory hut the resultant pitching—moment "behavior 
with the tail in position was unsatisfactory. It is generally easier, 
however, to find a tail location that will result in satisfactory 
stahility for the complete configuration if the basic wing—fuselage 
combination also possesses a stable pitching—moment variation at the 
stall. 

COHCLUDIUG REMARKS 

It must constantly he borne in mind that even if ample rigid- 
model wind-tunnel data are available on which to base predictions of 
stability, the effects of aeroelastic distortion may result in the 
airplane having completely different characteristics from those 
estimated. Some of the effects of elevator—fabric distortion are 
indicated^, for example, in reference kO.    At the same time the basic 
concepts of stability discussed still apply and if wind—tunnel data 
on an aeroelastically similar model were available reliable stability 
estimates could be made. There is, however, a great deal of research 
necessary before satisfactory methods of predicting aeroelastic 
effects can be developed. 
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TABLE I 

TYPE CRITERION 

STICK- 
POSITION 
STABILITY 

STATIC MARGIN '- i^)          WITH ELEV.   FIXED 

STICK- 
FORCE 
STABILITY 

STATIC   MARGIN--(4I2^          WITH ELEV.   FREE 

STICK- 
POSITION 
MANEUVERING 
STABILITY 

MANEUVER   MARGIN«-  (-^T2)    +K \«CL /|m 
WITH  ELEV.  FIXED 

STICK- 
FORCE 
MANEUVERING 
STABILITY 

MANEUVER   MARGIN •- (-rr)    +K 
\ »CL /M 

WITH   ELEV. FREE 

'=^Z3&CAPr 

A*0, 
DUE TO 
POWER 

Figure 1.-   Downwash correlation for single-engine tractor airplanes. 
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Figure 2.-   Tail-effectiveness correlation for single-engine tractor airplanes. 

M«.76 

.3- 

'•- 

-.3-1       i 
-.4 

TAIL  0N- 
TAIL OFF 

r- 

i   i 

0 .4 

M-.5 

Figure 3.-   Typical effect of compressibility on airplane pitching-moment 
characteristics. 
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Figure 4.-   Effect of dive-recovery flap on airplane pitching-moment 
characteristics. 
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Figure 5.-   Pitching-moment behavior of sweptback wings. 
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SLATS I AND 2  
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Figure 6.-   Effect of leading-edge slats on pitching-moment characteristics. 
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Figure 7. -   Effect of tail on pitching-moment characteristics at stall. 
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FACTOKS AFFECTING LATERAL STABILITY 

By John P. Campbell 

Langley Aeronautical Laboratory 

INTRODUCTION 

The term "lateral stability" used in this paper is intended to 
include all airplane stability other than longitudinal stability. That 
is, lateral stability includes directional (or weathercock) stability, 
rolling stability, bank stability (or dihedral effect) and, in fact, 
any form of stability that involves displacement of the plane of 
symmetry of the airplane by rolling, yawing, or sideslipping. Sometimes 
the term "lateral stability" has been used to mean only the stability 
associated with rolling moment due to sideslip or dihedral effect but 
this usage is not recommended because of the likelihood of confusion 
with the more general meaning of the term. 

During the past few years many advances have been made toward an 
understanding of the complex problem of lateral stability. In the war 
years a great amount of experimental data on the subject was obtained 
from studies of military airplane designs. Analysis and correlation of 
these data have afforded an insight into the causes of lateral-stability 
difficulties and have in some cases permitted empirical methods to be 
set up for estimating certain stability characteristics. Basic lateral- 
stability research, both experimental and theoretical, was necessarily 
somewhat curtailed during the war but since that time this research has 
been accelerated to supply the ever—increasing demand for fundamental 
knowledge in the field of lateral stability. 

SYMBOLS 

CL      lift coefficient ' 14ft' 

0^      rolling-moment coefficient 
Boiling moment 

§pV2Sb 

^»^ ,          /Yawing moment - 
Cn      yawing-moment coefficient • 

\  |pV2Sb 

Cn'      fuselage yawing—moment coefficient [ — r —  

I f^V2] (Fuselage volume) 
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Cy      lateral—force coefficient 

Drag' 
Hf 

p"b 
2Y 

r"b 
2T 

C-Q      wing—drag coefficient 

p mass density, slugs' per cuhic foot 

S wing' area, square feet 

"b wing span, feet 

z vertical height of wing ahove fuselage center line, feet 

T airspeed, feet per second 

v sideslip velocity, feet per second 

ß angle of sideslip 

i|/ angle of yaw (ß = — i|r) 

a angle of attack 

p rolling angular velocity, radians per second 

r yawing angular velocity, radians per second 

rolling—angular—velocity factor or wing-tip helix angle 
generated "by wing tip in roll, radians 

yawing-angular—velocity factor, radians 

Cn      rate of change of yawing-moment coefficient with angle of 

sideslip, per degree ( ^—-& 

C7      rate of change of rolling—moment coefficient with angle of 
ß -XT X f^l' sideslip, per degree ( ^--^ 

C-y      rate of change of lateral—force coefficient with angle of 

sideslip, per degree I ^—— 
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Cn      rate of change of yawing-moment coefficient with rolling— 

angular—velocity factor, per radian 

C7      rate of change of rolling-moment coefficient with rolling— 

Cy      rate of-change of lateral—force coefficient with rolling— 

angular—Telocity factor, per radian   •—r- j 

^n_     rate of change of yawing-moment coefficient with yawing— 

angular—velocity factor, per radian / —-~ 

C7      rate of change of rolling-moment coefficient with yawing— 

angular—velocity factor, per radian [  •' 

Cy      rate of change of lateral—force coefficient with yawing— 

angular—velocity factor, per radian I -—— 

\% 

8•      flap deflection, degrees 

A       angle of sweep of wing leading edge, degrees 

A       aspect ratio (— 

IATERAL-STAB3XITY DERIVATIVES 

In a discussion of lateral stahility it is necessary to "break up 
this rather complex subject into its several related parts in order to 
get a clear picture of the advances that have recently "been made in 
this field. One logical "breakdown of lateral stability, illustrated 
in figure 1, involves the conventional lateral—stability derivatives 
used in dynamic lateral—stability work. (See references 1 to 6.) These 
stability derivatives are abbreviated expressions for the variations of 
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the rolling and yawing momentB and lateral force with sideslipping, 
rolling, and yawing velocities. In order to make these derivatives 
nondimensional, the velocities v,. p, and r are replaced by ß 

for ~)3 -E^, and 2^, respectively, as indicated at the bottom of 

figure 1.  (See reference 1.) 

The geometric designs around the derivatives in figure 1 indicate 
their relative importance as determined from an analysis, of many 
theoretical and experimental studies of lateral stability. The circled 
derivatives have been found to be most important in that, if they are 
properly adjusted, the other derivatives usually have only minor 
effects on stability. In a discussion of lateral stability, these 
derivatives may logically be divided into three groups — sideslip, 
rolling, and yawing derivatives. 

Sideslip Derivatives 

The sideslip derivatives Cn , C^ , and Cy  are probably the 

most significant as well as the most familiar derivatives. They can be 
determined theoretically (references 1, 2, 6, and 7) and are also 
easily determined by ordinary wind—tunnel tests (references 8 to 19) 
in which the lateral forces and moments are measured with the model in 
a yawed (or sideslipped) attitude. From plots of the force—test data, 

I , °°Y 
the slopes *c-r—, "%X~}    ax1^   Try (wnere ^ *s "kne angle of yaw) are 

determined and these values are exactly equal to but opposite in sign 
"to Qnoj c2fiJ 

anä-    CYDJ respectively. The yawing moment due to 

sideslip Qng is the static directional stability or weathercock - 

stability factor (references 20 to 3*0 • The rolling moment due to 
sideslip C^  is the well-known effective-dihedral parameter which 

has received an increasing amount of attention in connection with 
highly swept wings.  (See references 5, 19, 35, 36, and 37.) The 
lateral force due to sideslip Cy  is the effective lateral-area 

p 
parameter, which is usually negligible if the weathercock stability Cn 

is adequate. This derivative will not be discussed further in this 
paper but more information on it can be obtained in references 1, 2, 
6, and 38« 

Boiling Derivatives 

The rolling derivatives C_ ,  C7 , and Cy  have been treated 
IJp   «'p-'       •lp 

theoretically in references 2, 6, and 39 and are measured by various 
experimental methods including continuous rotation tests (reference 40) 
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in which forces and moments are measured on a rolling model and rolling- 
flow tests in which the model remains stationary while the air stream in 
the wind tunnel is rotated (langley stability tunnel, reference kl). 
Both the yawing moment due to rolling Cn  and the rolling moment due 

to rolling (damping—in—roll factor) C^  are important from considera— 

tions of controllability as well as stability. The lateral force due 
to rolling Cy  is of measurable magnitude only for swept-^wing 

airplanes and, since in all cases this derivative has been found to 
have an insignificant effect on stability, it will not be discussed 
further. 

Yawing Derivatives 

The- yawing derivatives C^ , C^ , and Cy  are of secondary 

importance compared with the sideslip and rolling derivatives. These 
derivatives are treated theoretically in references 1, 6, k2,  and k-3 
and have been determined experimentally by several methods including 
the whirling-arm method, forced-oscillation or free—oscillation method 
(reference kk), ^axA  the curved—flow method (Langley stability tunnel, 
reference 6), in which a model is held fixed in a curving air stream 
produced by curving the flexible side walls of the tunnel test section. 
The yawing moment due to yawing (damping—in—yaw parameter) Cn  is the 

most important of the yawing derivatives but usually has no pronounced 
effects on stability and control if the weathercock stability Cng is 

adequate. Since the rolling moment due to yawing C^  and the lateral 

force due to yawing Cy  are even less important than Cn , no further 

discussion of the yawing derivatives will be given. More information 
on these derivatives can be found in the references 1, 6, 43, and kh„ 

MOST IMPORTANT LATERAL-STABILITY DERIVATIVES 

The four most important derivatives Cn   C2R, Cn , and C^ 

will now be considered in more detail. The main emphasis will be placed 
on the two sideslip derivatives Cn  and Cj      since these derivatives 

have been the subject of a large, part of the lateral—stability research 
during the past few years. 

Yawing Moment Due to Sideslip Cn ß 

The yawing moment.due to sideslip Cng is a direct indication of 

the tendency of an airplane to weathercock, that is, to keep alined with 
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the relative wind. Since the wing-fuselage combination is usually 
unstable in this respect, a vertical tail is used which is large enough 
to "balance out this instability and to provide a satisfactory amount of 
weathercock stability. This concept is very simple, hut in practice 
proportioning an airplane to obtain a desired amount of weathercock 
stability has proved to be quite difficult because so many factors 
affect this stability. The effects of some of the more important 
factors will now be treated briefly. 

Effect of vertical—tail aspect ratio.— One rather obvious point, 
but one which has not been fully appreciated until recent years, is the 
effect of the aspect ratio of the vertical tail on weathercock stability. 
This effect is illustrated in figure 2. Most airplanes prior to 
World War II had low-aspect—ratio vertical tails like that shown in 
solid lines on the sketch. The desire to get increased stability 
without an increase in tail area on many of our military airplanes led 
to use of vertical tails of higher aspect ratio which, because 'of their 
higher lift—curve slopes, gave more weathercock stability. This effect 
is clearly shown in figure 2 by a comparison of the slopes of yawing— 

moment curves Irx- or Cng I for a model tested with two tails of equal 

area but"of aspect ratios of 1.0 and 2.3. 

End—plate effect of horizontal tail.— Another factor which has to 
be taken into account in estimating vertical—tail effectiveness is the 
end—plate effect of the horizontal tail. Eecent NACA research on this 
subject (references 29 and 31) bas helped to put the estimation of this 
effect on a rational basis. In figure 3 a part of this research is 
summarized to show how the vertical—tail effectiveness is increased by 
the end—plate effect when the horizontal tail is located near the bottom 
or top of the vertical tail. In general, the effects of the fore and 
aft position of the horizontal tail and the relative sizes of the 
horizontal and vertical tails are small when compared with the effect 
of the vertical position of the horizontal tail. 

Effect of wing position.— The effect of the vertical position of 
the wing on the fuselage on weathercock stability is illustrated in 
figure k}  which is a plot of the increment in Cno produced by changing 

from a midwing configuration to a high— or low-wing configuration. It 
is apparent from these data that a pronounced decrease in stability 
occurs as the wing is moved from a low to a high position. The amount 
of this reduction in C^g (over 0.001) is more than one—half the 

increment in Cn  provided by a vertical tail of average size. This 

effect of wing position results primarily from the difference in the 
sidewash induced at the vertical tail by the high—wing and low—wing 
configurations. More information on this effect is given in references 9 
to 13 and reference "$0.    Some of these references also cover the effects 
on Cn„ of flaps, wing plan form, fuselage shape, and other factors. 
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Effect of power.— The effect of power on the weathercock stability 
of propeller-driven airplanes (references 32 to 3k  and 45 to 53) has 
"been the subject of extensive study in the last few years because the 
tremendous increase in the power of our military airplanes has greatly 
increased the difficulty of obtaining satisfactory stability under all 
operating conditions. In the case of multiengine airplanes one of the 
principal problems has been to design the airplane so that directional 
stability and trim characteristics are satisfactory with one or two 
engines on the same side inoperative. (See reference 33.) 

In the case of high—powered single—engine airplanes there is an 
asymmetry in the power—on condition that is similar to the asymmetry 
caused on multiengine airplanes by the failure of one engine. This 
asymmetry is illustrated in figure 5 by the yawing-moment curve for the 
single—rotation power condition for a typical high—powered single—engine 
airplane. The effect of power is to increase the slope of the curve 
(indicating an increase in weathercock stability) and to displace the 
curve so that at zero yaw there is a large negative or left yawing 
moment. A 20° right rudder deflection was found necessary in this case 
to trim the airplane at zero yaw. ¥ith this single—rotation condition 
the propeller slipstream is displaced to the right at the vertical tail 
so that the tail passes out of the slipstream sooner when the airplane 
yaws to the right than when it yaws to the left. This effect causes 
the yawing-moment curve to break at about 10° for right yaw and about 25° 
for left yaw when the tail loses effectiveness as it passes out of the 
slipstream. The airplane tends to become directionally unstable when 
the tail passes out of the slipstream because the instability of the 
wing—fuselage—propeller combination is greatly increased by the applica- 
tion of power. This increased instability is caused partly by the 
lateral force on the propeller itself and partly by the slipstream 
effect on the wing—fuselage combination. 

The undesirable asymmetry with power on is of course not present 
on jet—propelled airplanes, and it appears that power in this case has 
little, if any, effect on weathercock stability.  Efforts at minimizing 
the asymmetry on propeller-nlriven airplanes have been attempted by 
several methods, such as offsetting the vertical tail, shifting the 
center of gravity to the right of the thrust axis (reference 54), 
skewing the thrust axis (reference 55), or using dual—rotating propellers 
(references 32 and 47). A comparison of dual and single rotation is 
shown in figure 5. It is apparent that dual rotation entirely eliminates 
the asymmetry but that the undesirable tendency toward instability at the 
higher angles of yaw is still present. Since this instability, when 
accompanied by rudder—force reversal, can lead to the dangerous "rudder- 
lock" condition (reference 28), methods have been sought to improve the 
weathercock stability at high yaw angles. In order to improve this 
condition, many high—powered airplanes have dorsal or ventral fins. 
The functioning of these fins is explained in figure 6. 
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Effect of dorsal and ventral fins.— Figure 6 shows the weathercock 
stability of a fuselage with and without dorsal and ventral fins. The 
solid—line curve shows the normal fuselage instability which decreases 
with increasing angle of yaw. The dashed—line curve shows that the fins 
do not greatly affect the stability at small angles of yaw hut that they 
make the fuselage very stable at high angleB of yaw where increased 
stability is needed when the vertical tail loses effectiveness. This 
stabilizing effect of the dorsal and ventral fins has been attributed 
to a "spoiling" of the flow over the after part of the fuselage but a 
further analysis based on the experimental data of reference 25 
indicates that the effect can be partly accounted for by the increasing 
slope of the fin normal—force curve with increasing angle of yaw. Such 
an effect is characteristic of surfaces having extremely low aspect 
ratio. (See references 56 and 57-) 

Boiling Moment Due to Sideslip 

The rolling moment due to sideslip Cjg is known as the effective- 

dihedral derivative because the principal effect of varying the 
geometric dihedral angle of the wing is to change this derivative. 
(See references 35 and 36.) As pointed out in the introduction, C^o 

is sometimes called "lateral stability" because it is the derivative 
which tends to return the airplane to a wing—level attitude when it 
banks and starts sideslipping. Interest in this derivative has recently 
been greatly increased because of its extreme variation with sweepback 
and aspect ratio, as illustrated in figure 7. 

Effect of wing plan form on C^ .— The.effect of wing plan form 

on the variation of Ci  with lift coefficient C^ is shown in 

figure 7. The solid—line curves are from experimental data from 
reference 6 and the dashed—line curves are theoretical values obtained 
from the same reference. The value of —Ci  for unswept wings of 

normal aspect ratio 5.2 increases slightly with increasing lift- coeffi- 
cient and the theoretical variation is in good agreement with the 
experimental data. In the case of the sweptback wings, at low lift 
coefficients -Ci  increases rapidly with lift coefficient as indicated 

by theory but at some moderate lift coefficient —Ci„    reaches a maximum 

value and then drops off as the maximum lift is approached. This 
"drop-off," which is not predicted by the theory, is attributed to a 
partial separation of flow over the wing which cannot be taken into 
account by any of the theoretical methods now being used. The lift 
coefficient at which the experimental results drop off and no longer 
agree with the theory is influenced by many factors such as wing plan 
form, airfoil section, Reynolds number, and wing roughness. The drop- 
off occurs earliest with the more highly swept wings and with wings 
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having airfoils with a sharp leading edge. Increasing the Reynolds 
number usually makes the experimental results agree with the theory 
up to a higher lift coefficient hut if the wing surface is rough the 
drop-off occurs at a fairly low lift coefficient regardless of the 
Reynolds number. The use of high—lift devices such as flaps and slots 
usually increases the maximum value of- CS  for a given wing.  (See 

reference 19.) 

The data of figure 7 show that the use of sweepforward tends to 
reverse the variation of -^IQ    with lift coefficient. For the 

particular wing shown, the effect of the sweepforward at low lift 
coefficients is to eliminate the variation of —C^g with lift coeffi- 

cient associated with the unswept wing. 

Effect of wing position on C^ .— The vertical position of the 

wing on the fuselage has a pronounced effect on the value of Cv  for 

a complete airplane. This effect has been treated theoretically in 
reference 7 a^d- has "been investigated experimentally in several NACA 
research studies (references 9 to 13). The results of some of this 
experimental work are summarized in figure 8 which is a plot of the 
increment in G^g produced hy changing from a midwing position to a 

high— or low—wing position. These data show that lowering the wing 
causes a large reduction in effective dihedral (—Czß) and that 

raising the wing causes a corresponding increase in effective dihedral. 
The scale at the right side of the plot indicates that changing from a 
low—wing to a high-^wing position corresponds approximately to increasing 
the geometric dihedral angle of the wing hy 9° or 10°. (A. change of 1° 
in geometric dihedral angle corresponds to a change in C^g of about 

0.0002.)  The data presented in figure 8 are for unswept wings hut the 
same general trends would probably be obtained with swept wings. 

Effect of power on C
IQ.— Eor high—powered propeller-driven 

airplanes, the application of power usually causes a reduction in C2R 

which is most pronounced in the flap-down condition.  (See references 37, 
k7,  and 51.) This effect is,illustrated in figure 9 in which rolling- 
moment data are presented for a high—powered single—engine airplane 
with power off and with single— and dual—rotating propellers operating. 
In the power—off condition a large amount of effective dihedral is 
indicated by the steep slope of the rolling-^aoment curve. For the 
single—rotation condition the application of power causes a large 
reduction in effective dihedral and also causes a negative rolling 
moment at zero yaw. The reduction in effective dihedral is caused by 
the fact that in a yawed or sideslipped attitude a greater portion of 
the propeller slipstream passes over the trailing wing than over the 
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leading wing. Since the dynamic pressure in the slipstream is much 
greater than that outside the slipstream, the trailing wing then 
produces a greater increment of lift due to power than is produced 
"by the leading wing. A rolling moment therefore results which tends 
to raise the trailing wing. This effect is called a negative dihedral 
effect "because it is the same as that exhibited "by a wing having 
negative geometric dihedral. The out—of—trim rolling moment at zero 
yaw is caused "by the propeller torque which is, of course, to the left 
for right—hand propeller operation. 

This out—of—trim rolling moment is not obtained with the dual- 
rotating propeller because the propeller torques balance out. There 
is, however, an even more pronounced reduction in effective dihedral 
than in the case of single rotation. This reduction in effective 
dihedral with power corresponds to putting about 18° negative dihedral 
in the wing of this airplane. It should be pointed out, however, that 
this extreme effect is shown for the flap-down, power—on condition 
(usually called the "wave—off" condition) and that much smaller effects 
are usually obtained in the flap—up conditions. One proposed method 
for reducing the effect of power on the effective dihedral is the use of 
a linked differential flap system.  (See reference 37.). In the case 
of jet—propelled airplanes the effect of power on C2g is probably 

nea;lis;ible in all cases. 

Yawing Moment Due to Boiling 

The yawing moment due to rolling Cn  has some effect on lateral 

stability but its most important effect is usually on lateral maneuver- 
ability.  It is the derivative which, together with the aileron—yawing— 
moment factor C^ , largely determines the sideslipping tendencies in 

•^a 

an aileron roll. For unswept wings this derivative is usually negative 
as shown in figure 10 which means that in a right roll it causes a left 
or adverse yawing moment which tends to yaw the airplane out of the turn. 

The theoretical and experimental results in figure 10 which were 
taken from reference 6 show that the value of Cn  increases with lift 

coefficient up to the stall which means that the adverse yawing tendency 
should be greatest at high lift coefficients. 

For the sweptback wing (fig. 10), the theory indicates greater 
negative values of Cn  than for the unswept wing. The experimental 

data, however, do not agree with the theory in this case. These data 
show even larger negative values of Cn  at low lift coefficients than 

are indicated by theory, but at a moderate lift coefficient (about 0.5 
in this case) the data show a sharp change which results in very large 
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positive or favorable values of C_  at the higher lift coefficients. "P 
As in the case of the abrupt drop-öff in the value of Cj0 of the 

p 
sweptback wings,  this sharp change in CL  is attributed to a partial 

separation of flow over the wing which is not taken into account by 
this theory (reference 6). An approximate indication of the lift 
coefficient at which this change takes place, however, can he obtained 

d°Dw 
ci " 1'1 ST by means of the simple expression Cn = 75  from 

reference 1. 

Boiling Moment Due to Rolling 

The rolling moment due to rolling C7  is called the damping—in— 
P 

roll derivative because it is the factor which is a measure of the 
resistance of an airplane to pure rolling motions.  Considerable 
theoretical and experimental work (references 2, 6,  39, k03 kl,  57, 58, 
and 59) has been done on this derivative because of its importance in 
both lateral stability and maneuverability. Some of the principal 
points regarding this derivative are illustrated in figure 11 which is a 
plot of the experimentally determined variation of Cj  with lift coeffi- 

cient for swept and unswept wings. The symbols at zero lift coefficient 
indicate the theoretical values of C7  for the swept and unswept wings. 

Theory indicates no variation in C^  with lift coefficient. 

The curve shown on figure 11 for the unswept wing is for a wing of 
aspect ratio 5.2 but it shows characteristics that are typical of unswept 
wings of all aspect ratios. The experimental value of 'Cj  is in agree-- 

ment with the theory and remains essentially constant from zero lift to 
the stall but at the stall it abruptly decreases to zero and to positive 
values which indicates that the wing is unstable in roll beyond the stall 
and will autorotate or continue to roll once it has started. Various 
stall—control devices such as leading—edge slots have been used to 
eliminate the autorotation tendency of unswept wings at the stall 
because in some cases this, tendency causes airplanes to become uncon- 
trollable and to go into spins. Increasing the aspect ratio of unswept 
wings increases the damping in roll but does not materially alter the 
characteristics at the stall«, 

The data of figure 11 show that changing from an unswept to a swept 
wing causes a pronounced change in the damping—in—roll characteristics. 
The solid—line curve is for a ^5° sweptforward wing and the dash9d-line 
curve for a V?° sweptback wing. Both wings have an aspect ratio of 2„6„ 
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The fact that the swept wings have a smaller value of Cj  than the 

unswept wing at zero lift is partly because of the sweepback hut mostly 
"because the swept wings are of much lower aspect ratio.  (See 
reference 6.) The experimental data are in agreement with the theory 
at zero lift. The derivative Cj  for the sweptforward wing increases 

rapidly with lift coefficient, however, and at the stall it decreases 
sharply and becomes positive or unstable as in the case of the unswept 
wing. The rapid increase of Ci      with lift coefficient is not 

accounted for by present theories but it can be explained by the 
change in span load distribution which takes place on the sweptforward 
wing. 

In the case of the sweptback wing, a slight increase occurs in C2 

with increasing lift coefficient up to some moderately high lift coeffi- 
cient and then the Cj  changes abruptly. This change, however, is 

more gradual than in the case of the unswept or sweptforward wings and 
the value of Ci      remains negative or stable even beyond the stall. 

For swept wings having a very large amount of sweep or a very small 
aspect ratio, 02^ does become unstable at the stall or at even lower 

lift coefficients. The fact that the sweptback wings of moderate sweep 
and aspect ratio maintain damping in roll at the stall is very important 
for it means that any roll—offs at the stall should be less violent than 
on most unswept wings. 

EFFECT OF IMPORTANT STABILITY DERIVATIVES ON FLYING CHARACTERISTICS 

The effects of the two most important stability derivatives — the 
directional or weathercock stability derivative Cng and the effective- 

dihedral derivative C-^     — have been the subject of extensive studies, 

both experimental (references 60 to 68) and theoretical (references 69 
to 71). The results of these studies have generally been in good agree- 
ment and consequently only a typical set of results will be discussed. 
The results of an investigation in the Langley free—flight tunnel of 
the effects of Cn  and Cjg (reference 65) are presented in figure 12. 

In this investigation a model was flown with a large number of combi- 
nations of vertical—tail area and geometric dihedral which provided the 
changes in Cng and C^g. The results are plotted in the form of a 

stability chart with Cn  as the ordinate and —C^g as the abscissa 

and with the flight behavior obtained with the different combinations 
of Cn  and Cv  indicated by the crosshatched regions on the chart. 
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These results are for a lift coefficient of 1.0 and for ailerons-alone 
control (rudder fixed) and only represent a small part of the results 
of the comprehensive investigation reported in reference 65. 

The stability chart of figure 12 can he explained more clearly "by 
considering the flight behavior of the model with-the three combina- 
tions of Cno and Cj„ marked (l), (2), and (3), each within a 

different region on the chart. Point (l) represents a satisfactory 
combination because with this condition the model was easy -to fly and 
responded satisfactorily to the controls with little adverse yawing. 
Point (?), which has a lower value of Cn„ hut the same value of ~^IQS 

was not considered entirely satisfactory because with the decreased 
weathercock stability excessive adverse yawing occurred during aileron 
rolls. This point was considered satisfactory when rudder was coordi- 
nated with the ailerons to eliminate this adverse yawing. Point (3), 
which has low Cnß and high ~^lo)  represents an unflyable condition 

with ailerons alone. £1 this case, the low weathercock stability 
permitted excessive adverse yawing which, in combination with the 
large value of effective dihedral or rolling moment due to sideslip, 
caused reversal of aileron effectiveness. That is, when right aileron 
control was given, the model started to roll to the right but it also 
started to yaw to the left (or sideslip to the right) and the large 
value of rolling moment due to sideslip C^g then caused large adverse 

rolling moments which overpowered the ailerons and caused the model to 
roll to the left instead of to the right. Here again, when the rudder 
was coordinated with the ailerons, flights could be made but even in 
this case the flying characteristics were not considered satisfactory 
because of a weak weathercocking tendency and a lightly damped Dutch 
roll oscillation. This oscillation is discussed in detail in the next 
paper "Dynamic Stability," by Sternfield. 

CONCLUDING PEMAEKS 

During the war years and since the war, a great amount of experi- 
mental and theoretical research in the field of lateral stability was 
carried out and many advances were made toward a better understanding 
of the problems involved. Mich of the information, however, is still 
not in a form to be used directly in airplane design, and in many 
cases, further correlation and analysis are required to realize the 
full potential usefulness of the results. 



216 

Some experimental work has "been done to determine the effects of 
Beynolds number, and theoretical work, to determine the effects of Mach 
number (references 72 to 75) on the various stability derivatives. 
Mich more research appears to "be necessary, however, to determine fully 
these effects. Further studies should also he made of the effects on 
lateral stability and control of other factors such as aeroelasticity, 
wing airfoil section and surface roughness, -and wing—fuselage—tail 
interference. 
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DYNAMIC STABILITY 

By Leonard Sternfield 

Langley Aeronautical Laboratory 

The problem of dynamic stability of airplanes is concerned with the 
motion of an airplane following a disturbance from an initial condition 
of equilibrium. Such disturbances may be caused by sudden gusts of wind 
or by deflection of the control surfaces. If the motion of the airplane 
caused by the disturbance damps, the airplane is said to be dynamically 
stable; if the motion caused by the disturbance builds up, the airplane 
is dynamically unstable. The mode of motion which may characterize 
dynamic instability is either an aperiodic divergence or an unstable 
oscillation. For many airplanes, the divergence of the aperiodic mode 
occurs at a slow rate and therefore pilots do not find this type of 
instability troublesome; hence, these airplanes are considered satisfactory, 
from the dynamic—stability viewpoint, even though the aperiodic mode is 
divergent. The oscillatory mode, however, may be objectionable to the 
pilot despite the fact that the oscillation is stable. The present paper 
on dynamic stability, therefore, will be mainly concerned with the 
oscillatory mode of motion. 

The general "equations of motion representing the motion of an airplane 
are referred to a system of axes which are fixed in the airplane and move 
with it. A system of axes that is commonly used by NACA authors is known 
as the stability system of axes.  (See fig. 1.) The stability axes 
constitute an orthogonal•system of axes having its origin at the center 
of gravity and in which the Z—axis is in the plane of symmetry and 
perpendicular to the relative wind, the X-axis is in the plane of symmetry 
and perpendicular to the Z—axis, and the Y—axis is perpendicular to the 
plane of symmetry. An equation of motion referred to these axes is set 
up for each o:.ie of the six degrees of freedom. Three of the equations 
are obtained by equating the aircraft mass accelerations along each axis 
to the aerodynamic forces and the other three equations are obtained by 
equating the rate of change of moment of momentum about each axis to the 
aerodynamic moments.  (See references 1 to k.) 

A complete treatment of the dynamic stability of airplanes using the 
six equations would be extremely lengthy and very complex. Certain 
simplifying assumptions have therefore been made to facilitate the 
analysis.  Since the airplane is symmetrical with respect to the plane 
that includes the fuselage axis and is perpendicular to the span axis 
and the steady motion about which the disturbances occur is symmetrical 
with regard to that plane, the six equations can be separated into a 
symmetric or longitudinal group consisting of three equations and an 
asymmetric or lateral group consisting of the other three equations, with 
no coupling between the two groups. The dynamic—stability investigation 
is therefore divided into two parts, a lateral—stability analysis and a 
longitudinal-stability analysis. The second assumption consists of the 
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application of the theory of small oscillations to "both lateral and longi- 
tudinal stability, which means that second—order terms are neglected. The 
third assumption is that the aerodynamic forces depend solely upon the 
instantaneous motion of the airplane and not upon the rate at which the 
motion is changing. That is, it is assumed that when the angle of attack 
of the wing changes suddenly from one steady value to another, the lift 
changes instantaneously — although actually the lift approaches asymptoti- 
cally the value corresponding to the new angle of attack. 

The general methods involved in a dynamic—stability investigation will 
he presented for the lateral-stability analysis but a similar procedure is 
also applicable to the longitudinal—stability analysis. The linearized 
equations of motions, referred to the stability axes, used in the lateral- 
stability analysis for the condition of controls fixed are as follows: 

Boll 

Yaw 

ß     c      p       c     r 

s^feV*+ %zVV) = cnßß+ i%V+ i%V 

Sideslip 

2n*(Dbß + V) = °Y ß + |°y ^ + CI> + |°y »b* + (°L ^ 7)* 

Aa equation of motion is presented for each one of the three degrees of 
freedom involved in lateral motion: roll, yaw, and sideslip. On the left- 
hand side of the equations are written the moment of inertia and product of 
inertia times the acceleration and on the right—hand side are written the 
aerodynamic forces or moments expressed as stability derivatives.' These 
equations are linear differential equations with constant coefficients and, 
therefore, the solution of the equations of motion follows the usual 

procedure for linear differential equations. When ^0e^
8 is substituted 

for 0, toe  for ^»  ajL(i ßoe  for ß in "k*19 equations written in determinant 
form, \  must be a root of the equation 

^ + BX3 + CX2  + DA. + E = 0 AX 

Where the coefficients A, B, C, D, and E are functions of the mass and 
aerodynamic parameters of the equations. The roots of this stability 
equation determine the modes of motion. A real root indicates an aperiodic 
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mode and a complex root indicates an oscillatory mode. The signs of the 
roots determine the stability of the system. If the real roots are 
negative and the real part of the complex roots is negative, the airplane 
is dynamically stable. If any one of the real roots is positive or the 
real part of the complex root is positive, the airplane is dynamically 
unstable. The conditions for complete stability (reference 5) are 
that all the coefficients of the stability equation and the 
discriminant E = BCD — AD2 — B2E, known as Bouth' s discriminant, be 
positive. However, as mentioned previously, the mode which is of parti- 
cular interest is the oscillatory mode. The first step in the analysis 
of the oscillatory mode is to determine the boundary for neutral oscill- 
atory stability. This boundary is usually plotted as a function of two 
of the most important stability derivatives affecting lateral stability — 
the directional stability parameter Cn„, which expresses the variation 

of yawing-moment coefficient with sideslip, and the effective dihedral 
derivative C-, , which expresses the variation of the rolling-^noment 

coefficient with sideslip. The necessary and sufficient conditions for 
neutral oscillatory stability are that the coefficients of the stability 
equation satisfy Routh's discriminant set equal to zero and that the B— 
and B-coefficients have the same sign.  (See reference 5.) The lateral- 
stability boundaries for a high—speed airplane are given in figure 2(a). 
The ordinate in this figure is (L,'  and the abscissa is C7 . The solid nß 4ß 
boundary labeled R = 0 is the boundary for neutral oscillatory stability. 
This boundary divides the quadrant into a stable and unstable region. For 
example, for combinations of Cn  and C,  located below this boundary, 

that is, on the shaded side of the boundary, the oscillation of the airplane 
is unstable. The dashed boundary labeled R = 0 satisfies the condition 
that Routh*s discriminant is zero but violates the condition that the B— 
and D-coefficients must be of the same sign, because the B—coefficient is 
positive and the D-coefficient is negative for combinations of Cno p 
and C,  below the boundary D = 0. Hence this curve R = 0 is not a 

neutral—oscillatory boundary. The curve obtained by setting the E— 
coefficient equal to zero is known as the spiral—stability boundary. This 
boundary determines the stability of the numerically small real root, known 
as the spiral mode. For combinations of Cn  and C^  on the shaded side 

of the line E = 0, the airplane is spirally unstable. There is one more 
mode which usually occurs in lateral motion. This mode corresponds to the 
heavy damping of the rolling motion due to the damping—in—roll derivative Cj  , 

y 
Ih general, therefore, the four roots obtained from the lateral—stability 
equation usually consist of one conjugate complex pair and two real roots. 
For some airplane configurations, both branches of R = 0 are true 
neutral-oscillatory—stability boundaries, as shown in figure 2(b). The 
significance of the two boundaries can best be understood by analyzing 
the modes of motion for combinations of Cn  and C^  represented by 

the points (A), (B) , (C, D; , and (E' in this figure. At point (A,, 
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the roots of the stability equation are two, negative real roots and one 
conjugate complex pair with the real part negative. Hence, the airplane 
is dynamically stähle. Passing through the "boundary E = 0 to point (B) 
causes one of the real roots to change sign, which indicates that the 
airplane is dynamically unstahle "because of spiral instahility. Upon 
crossing the "boundary B = 0 to point ©/the real part of the complex 
root changes sign as expected, which indicates that the oscillatory mode 
is unstahle. Thus far, the roots consisted of two real roots and one 
conjugate complex pair. At point (5), however, the solution of the 
stahility equation results in two pairs of complex roots with the real 
part of each pair of roots negative. The period of the oscillation 
which corresponds to one pair of the complex roots is ahout the Bame 
order of magnitude as the period of the oscillation at points ®,(B), (§) — 
approximately 3 seconds. The period of the other oscillation is much 
greater — for some airplanes, the period of this oscillation is of the 
order of magnitude of 15 seconds. It is this long—period oscillation 
which "becomes unstahle upon crossing the "boundary E = 0 from point (5) 
to point (l). That is, at point (Ey two pairs of complex roots are 
ohtained with a positive real part of the complex roots that corresponds 
to the long—period oscillation so that an unstahle oscillation is indicated, 
and a negative real part of the complex roots that corresponds to the short- 
period oscillation so that a stähle oscillation is indicated. • Thus the 
two curves for E = 0 represent neutral—oscillatory—stahility "boundaries, 
one "boundary for the long—period oscillation and the other "boundary for 
the short—period oscillation. 

The second step in the analysis of the oscillatory mode is to 
determine the relation hetween the period and damping of the oscillation 
in the stähle region. As mentioned previously, a pair of complex roots 
indicates an oscillatory mode. The real part of a complex root gives 
the damping factor and the imaginary part of the complex root gives the 
angular frequency of the oscillation from which the period is computed. 
A convenient measure of the damping is the time required for the amplitude 
of a disturbance to damp to half amplitude. The ratio of the time 
required to damp to half amplitude to the period results in the 
number of cycles required to damp to half amplitude. Figure 3 shows the 
curves of constant period and constant damping for a hypothetical air- 
plane plotted as a function of Cn  and Cj .  (See reference 6.) The 

values corresponding to the solid curves represent the time in seconds 
to damp to half amplitude. As this time increases, the damping of 
the oscillation decreases. The solid curve laheled °° is the neutral- 
oscillatory—stahility "boundary; combinations of CL  and C7  located 

ß      'ß 
helow this "boundary will result in an unstahle oscillation. The period 
of the oscillation in seconds is indicated hy the values corresponding 
to the dashed curves. There are, at present, two schools of thought on 
the question as to which region in the Cn , C-,      plane would result in 

ß   ß 
a more satisfactory type of oscillation. For example, if the valueB 
of C   and C,  for a given airplane correspond to point A and it is 

nß       Lß 
desired to improve the relation hetween the period and damping of the 
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oscillation, one group is of the opinion that the weathercock stability 
of the airplane should he increased. Thus, in going from (A) to (B) , the 
damping of the oscillation is increased from 16 seconds to damp to 
half amplitude at (A) to 6 seconds at (B) . But the period is shortened,, 
thereby causing the number of cycles to damp to half amplitude to increase 
from k  cycles at (A) to 6 cycles at (5) . For this modification in the 
design of the airplane, therefore, the damping in seconds is improved 
but the damping in cycles is worsened. The opinion of the other group 
is that the combinations of C_  and C7  should be restricted to a nß       'ß 
small region near the origin, from point (A) to point (C). The damping 
in seconds is now reduced but because the period is lengthened the damping 
in cycles is improved, from h  cycles at (A) to 1.67 cycles at (c) .  It is 
apparent that the desired criterion cannot be determined by the dynamic- 
stability investigator but must be based upon the opinions of pilots from, 
more extensive flight—test results. Once this criterion is established, 
however, a figure similar to figure 3 which shows the curves of constant 
period and constant damping is necessary to indicate the possible 
combinations of CL  and C7  that will satisfy'the criterion. nß       4ß 

The dynamic—stability calculations have thus far yielded only an 
indication of the character of the free motion. The motion of the 
airplane, subsequent to a disturbance from its trimmed condition, is 
compounded of the several modes of motion in different proportions. The 
motion can be calculated by applying the Heaviside Operational Calculus 
or the Laplace transform to the equation of motion. The Laplace transform 
is considered a more powerful method than the Heaviside method because 
the initial conditions of the problem, initial displacements or initial 
velocities, are inherently taken into account by the Laplace transform. 
The application of these methods to the calculation of airplane motions 
can be found in several NACA and British reports.  (See references 7 
to II.) 

The present discussion has thus far been mainly concerned with the 
general methods of dynamic—stability analysis. The effects of some of 
the more Important mass and aerodynamic parameters on the lateral stability 
will now be illustrated by showing the relative location of the neutral- 
oscillatory—stability boundaries in the Cn , C7  plane as these mass 

ß   ß 
and aerodynamic parameters are varied. 

Until recently, the product—of—inertia effect, which results from 
the inclination of the principal longitudinal axis of inertia relative 
to the flight path, has usually been neglected in lateral—stability 
analyses because some calculations for conventional airplanes had indicated 
that to neglect the angularity of the principal longitudinal axis to the 
flight path did not seriously affect the lateral stability. (See reference 12, 
The angularity of the principal axis relative to the flight path causes 
the inertia forces to produce a coupling between the rolling and yawing 
motions so that a rolling acceleration produces a yawing moment and a 
yawing acceleration produces a rolling moment. Eecent studies have 
shown, however, that the product of inertia may have a very pronounced 
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effect on the lateral stability of present-day airplanes designed for 
high—speed high-altituie flight because of high wing loadings, large 
differences "between rolling and yawing moments of inertia, and the 
aerodynamic characteristics of low—aspect—ratio or swept wings.  (See 
references 13 to 15») 

There has been- a trend in the design of recent high—speed airplanes 
toward the use of relatively large angles of wing incidence to permit 
the fuselage to remain at a low angle of attack while the wing goes up 
to the high angles of attack required because of the high sweep and 
low aspect ratio. The purpose in designing the airplane so that the 
fuselage remains at a small angle of attack is to reduce the fuselage 
drag for high altitude or cruising flight or to reduce the fuselage 
ground angle and thereby simplify the landing-gear design. The important 
factor to consider in analyzing the effect of wing incidence on the 
lateral oscillatory stability is the inclination of tho principal longi- 
tudinal axis relative to the flight path. Figure k  shows the calculated 
oscillatory—stability boundaries as a function of C   and C,  for a 

xiß      '•ß 

model tested in the Langley free—flight tunnel with the wing set at two 
angles of incidence, iw = 0° and iw = 10°. In each of these configu- 

rations the model was flown at the same lift coefficient which corresponded 
to an angle of attack of 10° for the wing. The results indicate that when 
the wing was set at 0° incidence, both the wing and'the principal longi- 
tudinal axis of the model, which coincided with the fuselage reference 
axis, were inclined 10° above the flight path to obtain the lift coeffi- 
cient for trim. For that condition, illustrated by the lower sketch in 
the figure, the boundary falls in the lower region of the quadrant; thus, 
oscillatory stability is indicated for a large number of combinations 
of Cr,  and C-,  located above the boundary. However, if the wing is nß       Lß 

set at an angle of incidence to obtain lift (for this case 10°), as has 
been proposed in several designs, and the principal axis is alined along 
the flight path, the oscillatory boundary falls in the upper region of 
the quadrant and thus it is very difficult to obtain oscillatory stability 
because the stable combinations of C_  and C,  are limited to the nß      *ß 
small region above this boundary. The stabilizing shift in the boundary, 
from iw = 10° to i¥ = 0°, is caused by the fact that the principal 

longitudinal axis is inclined 10° above the flight path for iw = 0°. 

The boundaries indicate that the model with values of C,~  and C\ X1ß       «-ß 
shown by the test point on the figure, that is, Cn  about 0.0025 

ani C-,  approximately -O.OO3, is stable when the incidence is 0° and 

unstable when the incidence is 10°. This fact was verified by flight 
tests of the model in the Langley free—flight tunnel.  (See reference 1^.) 

The important effect of the product of inertia on the oscillatory 
stability is emphasized by figure 5. The boundaries presented in this 
figure are for a high—speed airplane with a wing loading of 70 pounds 
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per square foot cruising at an altitude of 30,000 feet. The boundaries 
are again plotted as a function of Cn  and C\  for two cases: Thj 

upper boundary represents the case in which the principal axis is 
inclined at an angle of 2° below the flight path at the nose, TJ = -2°, 
and the lower boundary represents the case in which the principal axis 
is alined with the'flight path, r\  = 0°. A comparison of the two 
boundaries shows a large destabilizing shift in the boundary as the 
principal axis falls below the flight path. That is,- as the boundary 
shifts upward from r\  = 0° to T) = —2°, the stable region located above 
the boundary is reduced. Such a marked shift in the boundary is caused 
by only 2° variation in the inclination of the principal longitudinal 
axis to the flight path. 

The effect of wing loading and altitude on the oscillatory—stability 
boundary is illustrated by figure 6. The effects of these two parameters 
are treated simultaneously by considering variation in the relative- 
density factor ntj, the ratio of the airplane density to air density, since 

this factor varies directly with both wing loading and altitude. The 
boundaries are shown for various values of u, . The values of ^ can 

be interpreted in terms of wing loading and altitude as follows: A value 
of \xh    of 5 corresponds to a light plane with a wing loading of 10 pounds 

per square foot at an altitude of 10,000 feet; a value of ^ of 30 

corresponds to a World War II fighter with a wing loading of kO  pounds 
per square foot at an altitude of l<-0,000 feet; and a value ix,  of 1000' 

would correspond to a postwar high—speed design airplane with a wing 
•loading of 100 pounds per square foot flying at an altitude of 60., 000 
feet. It is apparent from this figure that an increase in wing loading 
or altitude, or an increase in u^, shifts the boundaries upward so 

that a decrease in the stable region is indicated. However, it is impor- 
tant to note that the most pronounced effect of wing loading and altitude 
on stability occurs for values of JJ- less than 30, in the range of light 

aircraft design, whereas for values of u^ above 30, wing loading and 

altitude have very little effect on stability.  (See reference l6.) 

One of the most important stability derivatives affecting lateral 
stability is the damping—in—roll derivative Cj ,    which becomes smaller 

Jtr 

as the sweepback is increased and as the aspect ratio is decreased. 
Figure 7 shows the effect of C7  on the oscillatory—stability boundary. 

LV 
The boundaries are plotted for several values of C7 : 0, -O.l, and -0.2. 

P 
The value of C7  for a straight-wing conventional airplane is about —O.k 

4P 
or -O.5. These boundaries were calculated for a hypothetical transonic 
airplane and are intended only to indicate the trends obtained as C. 

LV 
is varied. It is evident from the boundaries that reducing C7  reduced 

4P 
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the lateral stability.  Although the effect shown is typical for most 
airplane designs, calc-alations have indicated that the reverse effect 
might he present for some airplane configurations. The effect of some 
of the other stability derivatives and mass characteristics on the lateral 
oscillatory stability are presented in several BTACA reports.  (See 
references 15 and 17 to 19.) 

The dynamic longitudinal stability of airplanes with controls fixed 
has received very extensive .treatment by many authors, among whom may 
be mentioned Bryan, Bairstow, Wilson, and Zimmerman.  (See references 1 
to 3 and 20 to 22.) In general, the longitudinal motion consists of two 
oscillatory modes — a slightly damped long—period oscillation, known as 
the phugoid, and a heavily damped short—period oscillation. Because of 
the relation between the period and damping of each one of the oscillations, 
the longitudinal stability of most airplanes has been satisfactory to the 
pilots. 

An analysis of lateral or longitudinal motion of the airplane with 
controls free involves an equation for an additional degree of freedom, 
that is, for the motion of the control itself. The discussion of control- 
free stability will be mainly concerned with the rudder—free case, 
although similar analyses have been carried out for the case of elevator 
free and aileron free.  (See references 23 to 28.) Flight tests have 
shown that, under certain conditions of rudder balance, undamped lateral 
oscillations may occur when the rudder is freed. The oscillations 
involve coupling between the yawing motions of the airplane and movements 
of the rudder and depend on the amount of friction in the control system. 
Two of the most important parameters affecting the control—free stability 
are the restoring moment parameter C^, which expresses the variation of 

rudder hinge-moment coefficient wi'th rudder deflection, and the floating- 
moment parameter C^ , which expresses the variation of the hinge-moment 

coefficient with the angle of yaw. Figure 8 shows the calculated rudder- 
free—stability boundaries with the effect of friction in the control 
system taken into account. These boundaries are plotted with ' C^  as 

abscissa and On. as ordinate. Positive values of Cv  correspond to 

positive floating tendency, that is, surfaces whose free movements tend 
to oppose any disturbance of the airplane. The boundaries indicate that, 
for combinations of Cj.  and Cj,  located on the shaded side of R = 0, 

the oscillation is -unstable. If there is no solid friction in the system, 
the completely stable region is between E = 0 and the divergence boundary. 
However, if there is solid friction in the system, constant-amplitude 
oscillations occur for combinations of Ou  and (X,  located 

between R = 0 and the curve labeled "friction boundary." The amplitude 
of the steady oscillation is proportional to the amount of solid friction 
In thts control system. Flight tests will be necessary to indicate the 
^Hximum amount of steady oscillation that is allowable in an airplane. 
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The present paper indicates in general the effect of some of the 
mass and aerodynamic parameters on the lateral oscillatory stability. 
The results are illustrated for an airplane or model with a given set 
of values of mass and aerodynamic parameters. However, as shown in 
more complete lateral—stability studies, small variations in some of 
these parameters may cause a pronounced change in the oscillatory stability. 
On the basis of these detailed studies, therefore, it appears necessary 
to make a separate stability analysis for each airplane. 

Some of the subjects that require further theoretical or experimental 
research are: 

1. The effects of the aeroelasticity of wings on stability 
derivatives and hence on dynamic stability 

2. The effects of power on stability 

3. Analysis of the snaking or lightly damped short—period 
oscillations encountered recently in high—speed flight 

k.  Stability derivatives for transonic region 

5. Analysis to determine important combinations of mass and 
aerodynamic parameters which affect dynamic stability 
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APPENDIX 

SYMBOLS ARD COEFFICIENTS 

(f angle of bank, radians 

Tjr       angle of azimuth, radians 

ß       angle of sideslip, radians f ^) 

v sideslip velocity along the Y-axis, feet per second 

Y airspeed, feet per second 

p mass density of air, slugs per cubic foot 

q dynamic pressure, pounds per square foot ( ^pV J 

"b wing span, feet 

S "wing area, square feet 

¥ weight of airplane, pounds 

m mass of airplane, slugs (—) 

g       acceleration due to gravity, feet per second per second 

(i-,       relative—density factor (——) 

TJ       angle of attack of principal longitudinal axis of airplane, 
positive when principal axis is above flight path, degrees 

7       angle "between flight path and horizontal axis, positive in a 
climb, degrees 

ky      radius of gyration in roll about principal longitudinal axis, 
o        feet 

kz      radius of gyration in yaw about the principal vertical axis, 
°        feet 

E"       nondimensional radius of gyration in roll about principal 

/kX \ 
longitudinal axis ( —-) 
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Kz               nondimensional radius of gyration in yaw about principal 

•vertical axis  (  i V w 
K_      nondimensional radius of gyration in roll about longitudinal 

stability axis ( \ / % c COS^TJ + Kz Sin^ 
2 COS

2
TI + K„ 2~'-2 

K^. nondimensional radius of gyration in yaw about vertical 

stability axis   (\/Kz 
2 COS

2
TI 

+ % 2sin2t 
>-o 

K32     nondimensional product-of—inertia parameter 

((V - V)(sin * COB 1)) 
t       time, seconds 

Sjj      distance along flight path, in spans i-r-) 

B^      differential operator /*— 

CT      trim lift coefficient /
v cos 7\ L v  <is ; 

,,.       ,           /Boiling moment \ 
C.      rolling-moment coefficient 1 ~ •) 

Cn      yawing-moment coefficient Rawing moment\ 
\     qsb     y 

r.       -,  u       •,  * „*,.  *    x /lateral force\ Cv      lateral—force coefficient   — 
\ q.S J 

Cj      effective-dihedral derivative, rate of change of rolling- 
ß        moment coefficient with angle of sideslip, per radian 

/OCA 
in equations and per degree in figures I —- 

\dß / 

Cn      directional—stability derivative, rate of change of yawing— 
ß        moment coefficient with angle of sideslip, per radian in 

equations and per degree in figures I —- 
\ dß / 
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Cy      lateral—force derivative,.rate of change of lateral—force 
ß .^       /öCY\ 

coefficient with angle of sideslip, per radian  —±- 
\oß / 

CL      damping—in—yaw derivative, rate of change of yawing-moment 
r        coefficient with yawing—angular—velocity factor, per 

/öcnN 
radian I —•— 

CL      rate of change of yawing-moment coefficient with rolling— 
*P 

r 

^n 
angular—velocity factor, per radian I   

C|      damping—in—roll derivative, rate of change of rolling-moment 
P        coefficient with rolling—angular—velocity factor, per 

radian   ) 

\ 27/ 

C       rate of change of rolling-moment coefficient with yawing— 

angular—velocity factor, per radian  —- i 

\ 27/ 

CY      rate of change of lateral-force coefficient with rolling- 
/acT 

angular—velocity factor, per radian    

Cy      rate of change of lateral—force coefficient with yawing- 

angular—velocity factor, per radian [ —- 

o^ 
27/ 
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direction 

Figure 1.-   The stability system of axes.   Arrows indicate positive directions 
of moments, forces, and control-surface deflection. 
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Figure 2.-   Lateral-stability boundaries for two hypothetical high-speed- 
airplane configurations. 
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Figure 3. -   Curves of constant period and constant damping. 
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Figure 4.-   Effect of wing incidence on the oscillatory stability of a model 
tested in the Langley free-flight tunnel. 
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Figure 5. -   Effect of the angle of attack of the principal longitudinal axis on 
the oscillatory-stability boundary. 
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Figure 6.-   Effect of the relative-density factor   n,    on the oscillatory - 
stability boundary. 
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Figure 7. -   Effect of damping in roll on the lateral stability of a high- 
speed airplane. 
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FLYOT3- AHD HABDLUJG QUALITIES OF AIEPLAHES 

By William H. Phillips 

Langley Aeronautical Laboratory 

By the flying qualities of an airplane are meant those stability 
and control characteristics which have an important hearing on the 
safety of flight and on the pilot's impressions of the ease of 
controlling an airplane in steady flight or in maneuvers. This paper 
will describe briefly the progress which has been made in setting up 
requirements for satisfactory flying qualities and will discuss some 
of the methods for predicting these qualities from calculations and 
wind—tunnel tests. 

In the years prior to the war., relatively little was known about 
what characteristics of an airplane constituted satisfactory handling 
qualities. This does not mean that there had been no research on the 
subject of airplane stability. A great deal of theoretical work on 
this subject had been done. This theoretical work, however, was not 
able to take into account the characteristics of the human pilot and 
his relation to the airplane. On the other hand, human pilots had for 
many years expressed opinions with regard to the handling qualities 
of aircraft, and it was known that in some cases their opinions 
conflicted with the results of the theory. In developing a new airplane, 
therefore, there was no reliable procedure to provide for satisfactory 
flying qualities in the original design. Generally, it was necessary 
for a series of trial-end—error changes to be made in flight tests 
until the test pilot was satisfied with the qualities of the new 
airplane. The success of this procedure depended on the skill of the 
test pilot and unfortunately it did not provide a basis for avoiding 
poor characteristics in future designs. 

It was thought that the main factors influencing the pilot*s 
opinions of an airplane were the control motions and forces required in 
normal flight and in maneuvers. The first attempt to formulate a set 
of requirements based on these characteristics was made in 1937.» but 
it was realized immediately that a great deal of information was required 
on the handling qualities of existing airplanes before a reliable set 
of requirements could be written. As a result the HACA undertook a 
program to measure the flying qualities of various airplanes. The 
initial results of this progräm are given in reference 1. Most of the 
available knowledge of flying qualities has been obtained from these 
flight tests which have been carried out on about 75 airplanes of all 
types, ranging from light planes to the largest bombers.  In these 
tests, recording instruments were used to obtain quantitative measure- 
ments of control movements, control forces, and airplane motions while 
the pilots performed certain specified maneuvers. Procedures for making 
tests of this type are presented in reference 2. The results of many 
of these tests have been published as HACA wartime reports. From the 
fund of information accumulated in these reports it has been possible 



to prepare a set of requirements for satisfactory handling qualities 
in terms of quantities that may he measured in flight or predicted from 
wind—tunnel tests and theoretical'analyses (reference 3')- When an 
airplane meets these requirements, it is fairly certain that the airplane 
will he safe to fly and desirahle from the pilot's standpoint. Additional 
sets of requirements have "been prepared "by the military services 
(reference k)   in order to provide for the requirements of military 
aircraft. Similar research has "been carried out in England and an 
attempt along these lines was also made in Germany, hut the number of 
airplanes which were tested in flight was considerably more limited. 

A report (reference 5) has been recently published which discusses 
the reasons for the flying qualities requirements, the design factors 
involved in obtaining satisfactory flying qualities, and the methods 
used in predicting the stability and control characteristics of an 
airplane. Some of the methods for predicting the handling qualities 
of a proposed airplane will- now be described. 

The flying—qualities requirements tie in with the concepts of 
dynamic stability in that certain requirements are specified for the 
characteristics of the uncontrolled motion of the airplane. The great 
majority of the requirements, however, pertain to the control positions 
and forces required in certain specified flight conditions and maneuvers. 
In order to predict the ability of an airplane to satisfy these require- 
ments, solution of the equations of motion is not generally required. 
The required control positions and forces may be predicted by considering 
the airplane to be in an equilibrium condition. The forces and moments 
acting may then be estimated either by means of wind—tunnel tests or 
simply by calculations based on the dimensions of the airplane. 

Investigations of varying complexity are required for these 
predictions depending on the flight conditions, speeds, and types of 
airplane involved. For conventional airplanes, the control positions 
required in straight flight or in steady maneuvers in conditions where 
the thrust coefficient is low may be estimated with sufficient accuracy 
for practical design purposes simply from a knowledge of the dimensions 
of the airplane. The effects of power on longitudinal and directional 
stability, in the case of propeller—driven airplanes, cannot be 
predicted with such a high degree of accuracy. Wind—tunnel tests of 
a powered model are desirable in estimating these effects.  If accurate 
predictions of the control forces are desired, particularly on a large 
airplane, tests may be made of the actual control surfaces in a large 
wind tunnel, or at least tests of large—scale models of the control 
surfaces. Finally, the effects of compressibility should be determined 
from tests of a complete model in a high—speed tunnel. Such a complete 
investigation is not usually required, however, particularly for 
conventional airplanes, because of the large amount of data accumulated 
during the war on the characteristics of many airplane configurations. 
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Some of the data applicable to the prediction of flying qualities 
will now "be given. Methods for predicting the longitudinal stability in 
the power—off condition from a knowledge of the dimensions of the airplane 
are given In references 6 and 7» 

In these methods, the effects of the fuselage, idling propeller, 
wing, and tail are calculated. The effect of the upwash ahead of the 
wing on the fuselage and propeller pitching moments and of the downwash 
from the wing and propeller on the tail must be taken into account in 
order to obtain accurate results. 

Calculation of the directional stability likewise involves estimating 
the contributions of the various airplane components and their mutual 
interference effects. The data of references 8 and 9 may be used to 
estimate many of these quantities. The effects of the propeller may 
be obtained from reference 10. 

Comparison of calculated values of directional stability on a large 
number of airplanes with measured values has shown that this quantity 
may be predicted fairly accurately for airplanes with smoothly 
streamlined canopies. On airplanes with poorly designed canopies, the 
wake of the canopy passing over the vertical tail greatly reduces its 
effectiveness and it is rather difficult to estimate what percent of 
the vertical tail area should be considered effective. Some wind—tunnel 
data' on the effects of canopies on directional stability may be found 
in reference 11. 

Another item of importance which may be estimated quite accurately 
is the rolling velocity obtained in a steady roll with a given aileron 
deflection. Methods for making this calculation are described in 
detail in a report which summarizes the results of HACA lateral—control 
research (reference 12). 

Several reports have been published comparing stability and control 
characteristics predicted from the dimensions of the airplane with those 
measured in flight (references 7> 9,  and 13). In general, these results 
are in good agreement for flight conditions where the thrust coefficient 
is low. Calculations of the effects of power on. the stability character- 
istics are more difficult, and usually it is desirable to resort to 
wind—tunnel tests of a powered model in order to obtain accurate results. 
Yarious attempts have been made, however, to devise semiempirical methods 
to determine the effects of power, based on the large number of wind- 
tunnel tests of powered models which were conducted during the war years 
(reference 1^). It is also possible to estimate the effects of power 
by comparison with the results of tests for a similar design. The 
effects of power on longitudinal stability as measured in flight on a 
number of airplanes are given in reference 15- 

The procedure for conducting wind—tunnel tests of a powered model 
is described in detail in reference 16. Methods for analyzing the 
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results of wind—tunnel tests for determination of flying qualities are 
given in references 17 and 18. 

Several reports have been published comparing the flying qualities 
of aircraft as measured in flight with those predicted from wind—tunnel 
tests (references 19 and 20). Usually the agreement with regard to 
control positions is satisfactory. The prediction of control forces 
is subject to more uncertainty.  One point which may be mentioned in 
connection with the prediction of control forces is that generally the 
hinge-moment parameters' Cj,  and Cw may be predicted only with a 

certain degree of accuracy.  In cases where this much variation will 
cause large changes in the stick forces it is apparent that the control- 
force characteristics will be difficult to predict accurately. The 
accuracy may be Improved, however, by designing the airplane in such a 
way that the control forces are lesB sensitive to small changes in the 
hinge-moment characteristics. 

Inasmuch as in the past much emphasis has been placed on the* 
classical theory of stability, an attempt will be made to show how the 
items considered important in connection with flying qualities tie in 
with the classical theory of stability. First, the subject of 
longitudinal stability and control will be considered. The theory 
predicts that a statically'stable airplane will perform two types of 
oscillation: the long period or phugoid motion, which is generally 
poorly damped, and the short period oscillation, which is always well 
damped when the controls are fixed. It has been frequently demonstrated 
that the period of the phugoid motion is so long that the damping of this 
oscillation has no correlation with the pilot1s opinion of the handling 
qualities (reference 21). This fact is so well established that any 
explanation of it may seem superfluous. The emphasis placed in the 
past on the calculations of the characteristics of this mode of motion, 
however, has lead many engineers to be reluctant to discount its 
importance.  In order to demonstrate the ease with which the pilot 
can damp out this oscillation, therefore, figure 1 Is presented. This 
figure illustrates that not only can the pilot damp out the phugoid 
motion very rapidly but that only a very small motion of control is 
required. 

Though the short—period oscillation is always stable with controls 
fixed, it may become violently unstable with controls free if certain 
unfavorable combinations of elevator hinge-moment characteristics are 
employed. When this motion ia unstable, it results in an oscillation 
which produces accelerations approaching the structural strength of the 
airplane within a period of 1 or 2 seconds. Flight records of the type 
of oscillation are shown in figure 2 for both well-damped and unstable 
oscillations. A condition such as this unstable oscillation obviously 
cannot be tolerated and it is, therefore, required that this mode of 
motion be well damped. A theoretical analysis of this type of oscillation 
presented in reference 22 indicates that the motion may become unstable 
if the variation of hinge-moment coefficient with deflection Ci^g 
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(the restoring tendency of the elevator) is reduced to zero, and stability 
is obtained by use of a bobweight or an elevator •which tends to float 
against the relative wind.  In the example shown in figure 2, the value 
of Ch~ was reduced to approximately zero by use of a balancing tab. 

The requirement for dynamic longitudinal stability is only one of 
a large number of requirements which must be satisfied in order that 
the longitudinal stability and control characteristics should be 
satisfactory. The other requirements deal with the characteristics 
of the elevator control in steady flight, in accelerated flight, in 
landing, and in take-off, and also with the trim changes due to power 
and flaps,' and the characteristics of the longitudinal trimming device. 
An example of one of the requirements will be given to show how a 
quantitative requirement of this type aids in establishing certain 
features of the airplane design. The requirements for longitudinal 
control in accelerated flight specify the variations of elevator angle 
and elevator force with acceleration in maneuvers in which the angle 
of attack is increased rapidly to produce a condition of accelerated 
flight without much change in airspeed. Inasmuch as the elevator force 
per g change in normal acceleration is fairly independent of speed 
on conventional airplanes, this quantity is used as one means of 
specifying the elevator—force characteristics. The control—force 
gradient should not exceed about 6 pounds per g on highly maneuverable 
airplanes such as fighters and should be less than 50 pounds per g on 
transports, heavy bombers, and so forth.  In order to prevent the pilot 
from inadvertently overstressing the structure, a pull force of at 
least 30 pounds should be required to reach the allowable load factor. 
An excessive value of force per g will result in an airplane which is 
difficult to fly or maneuver, whereas a negative value will make the 
airplane extremely dangerous to fly because a rapid divergence would 
result if the pilot released the control stick. Some factors which 
influence the force characteristics in accelerated flight are illustrated 
in figure 3. From this figure it is seen that the force per g increases 
as the center of gravity is moved forward. The variation of force 
per g with center—of-gravity position may be reduced by reducing the 
variation of elevator hinge-^noment coefficient with deflection C^g. 

The curve, may be shifted by a constant amount at any center—of-gravity 
position by changing the variation of elevator hinge—moment coefficient 
with angle of attack Ch-,« 0n a given airplane the range of center-of— 

gravity positions over which satisfactory flying qualities are obtained 
may be limited by this force-per-g variation. An increase in the center— 
of-gravity range over which satisfactory force characteristics in steady 
maneuvers are obtained might be provided by reducing the value of C^ 

and obtaining forces in the desired range by use of a positive value 
of Cjj. Flight tests have shown, however, that this procedure, if 

carried too far, may result in undesirably light control forces in 
rapid maneuvers, because the pilot.is able to deflect the control 
rapidly with very little force; then the force builds up as the acceler- 
ation increases. This condition is discussed more fully in reference 23. 
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The desire for light control forces, over a large center-of-gravity range, 
therefore, conflicts with the requirement for desirahlc control feel. 
The requirements may he more easily satisfied, however, if the center— 
of-gravity range Is located well forward of the position for neutral 
stability with the elevator fixed. 

A few of the requirements for lateral stability and control will 
now be discussed. Here, again, the first requirement ties in with the 
classical concepts of dynamic stability. There is no requirement for 
spiral stability inasmuch as the spiral divergence is very slow and 
easily controlled and also because in most conventional airplanes the 
friction in the control system may hold the controls in a position to 
cause a much more rapid divergence than the spiral divergence with the 
controls in the trim position. The Dutch roll oscillation has a 
relatively short period, however, and it should be well •damped so as 
not to require constant attention on the part of the pilot. On 
practically all conventional airplanes the Dutch roll oscillation with 
controls fixed is sufficiently well damped. Continuous lateral 
oscillations, known as snaking oscillations, have, however, been 
encountered on many airplanes as a result of slight motion of the 
controls induced by the oscillation. A report which presents a 
theoretical analysis of this type of motion and indicates means of 
avoiding it is available (reference 24). While the classical Dutch roll 
oscillation has given little trouble in the past, it has assumed a 
status of increased importance in connection with recent airplane designs 
employing swept wings. 

Other lateral stability and control requirements deal with the 
aileron—control characteristics, the yaw due to ailerons, the limits 
of rolling moment due to sideslip, the directional stability, the side- 
force characteristics, and the pitching moment due to sideslip. In 
addition, the characteristics of the rudder and aileron trimming 
devices are specified. 

Some unusual features of airplane stability and control which have 
been shown to be important for many types of airplanes and which have 
not been given a great deal of attention in the past will now be 
presented. 

One factor which has been found to be very important in affecting 
the flying qualities of many high—speed airplanes is the distortion 
of the control surfaces and of the airplane structure under aerodynamic 
loads. Data presented in figure k  illustrate one effect which is quite 
frequently encountered. This figure shows the effect of stabilizer 
incidence on the variation of stick force with speed in straight flight. 
An analysis based'on the assumption'of a rigid airplane would indicate 
that there should be no change in the curve of stick force against speed 
due to changing the stabilizer incidence provided the airplane were 
retrimmed at the same speed by use of the trim tab. In practice it 
is found that a negative stabilizer incidence, which requires down 
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elevator deflection for trim in high-speed flight, usually results in 
rapidly increasing push forces at high speeds. This effect is caused 
by progressively increasing distortion of the elevator covering and 
twisting of the stabilizer as the aerodynamic forces are increased. 
This condition is very undesirable because if the pilot should release 
the stick at high speeds, excessive acceleration would be encountered 
in the pull—out. The effect of positive stabilizer incidence is to 
produce rapidly increasing pull forces at high speeds which violates 
the requirement for static longitudinal stability. These effects 
cannot, of course, be predicted from wind—tunnel tests of a rigid model. 
These distortion effects may be avoided, however, by use of the correct 
stabilizer setting so that the elevator is lined up with the stabilizer 
in high-speed flight. A similar effect of distortion on the rudder—force 
variation with speed is obtained by varying the setting of the vertical 
fin. These and other effects of distortion due to aerodynamic loads 
may be isolated from compressiblity effects in flight tests by making 
runs at different altitudes. Distortion effects set in at a given 
value of indicated airspeed, whereas compressibility effects occur at 
a given Mach number. A theoretical analysis of the effects of fabric 
distortion on stability is given in reference 25« 

Many of the design factors which may be used to aid in meeting 
certain of the flight—qualities requirements are of a-conflicting 
nature so that compromises in the design will generally have to be 
made in order to meet all the requirements as closely as possible. 
The most frequently encountered problem is that of providing sufficiently 
light control forces without reducing the effectiveness of the control 
surfaces below the specified values. All the control—force values 
which enter into the requirements, such as the force per g, the aileron 
force required in a roll, the rudder force required to offset aileron 
yaw, and so forth, tend to increase as the product of the span and the 
square of the chord of the control surface,' and as the.dynamic pressure. 
As airplanes are made larger and faster, therefore, an increasing degree 
of aerodynamic balance is required on all the control surfaces to meet the 
handling—qualities requirements. For example, figure 5 illustrates the 
approximate reduction in Chg of the elevator required to meet the 

elevator control—force requirements as a function of airplane weight. 
A great deal of research has been done during the war years on means 
of balancing control surfaces, some of which is summarized in reference 11. 
Nevertheless, it is impractical to balance control surfaces more than 
a certain amount because variations in contours of the control surfaces 
of different airplanes of the same type, within production tolerances, 
result in variations of C^ of the same order as the value required. 

On large airplanes, therefore, some aerodynamic or mechanical device 
is required to multiply effectively the pilot's effort by a large factor, 
in order that light forces may be obtained without utilizing an 
impractically large degree of balance. Such devices include spring 
tabs (reference 26) and hydraulic booster mechanisms. 
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Inasmuch as the handling—qualities requirements are "based largely 
on experience with conventional airplanes, further research will' 
probably be required to find whether additional requirements are 
necessary for the unconventional types of airplanes that are now being 
contemplated for very high speed flight. Because of the great range 
of speed and altitude encountered by such airplanes it may be impossible 
to meet the handling-qualities requirements without relying on 
mechanical devices to provide stability and desirable control forces. 
With such devices the method of the control of the airplane may differ 
considerably from that normally used. Besearch will therefore be 
required to find the reaction of the pilot to these unusual control 
forces. Preliminary research on this subject may be carried out 
without making actual flight tests by the use of simulators designed 
to behave In the same manner as the airplane. 
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HELICOPTER RESEARCH PROBLEMS 

By Alfred Gessov 

Langley Aeronautical Laboratory 

INTRODUCTION 

This paper is restricted to a presentation of the more important 
problems associated with the development of the most successful type of 
rotating-wing aircraft - the helicopter - and to an indication of the 
present status of research of these problems. 

The helicopter as thought of at present is an aircraft in which 
lift, propulsion, and control are all provided by one or more propeller- 
like rotors turning about an approximately vertical axis. The funda- 
mental advantage of such an arrangement is that the means for obtaining 
and controlling flight is separated from the translational speeds of the 
fuselage.  In spite of the many advantages afforded by this feature, 
notably that of vertical flight, it was only during the last decade that 
helicopters having satisfactory performance and handling qualities have 
been built and flown- Their success can be attributed to improved 
power plants, an increased knowledge of general aerodynamics as well as 
the aerodynamics of rotating-wing flight, and the backlog of experience 
gathered from the hundreds of unsuccessful helicopter builders since the 
time of Da Vinci. 

The present-day helicopter is still in an early stage of development. 
Its performance, handling characteristics, safety, and reliability, how- 
ever, though still poor when Judged by modern airplane standards, are 
already acceptable for a number of important applications where its 
special capabilities are at a premium. Prospects for further improvement 
are good and a wide field of application, both military and commercial, 
is assured. 

DISCUSSION 

The general helicopter research field is, for the present discussion, 
divided into four broad classifications: performance, vibration and 
flutter, stresses, and stability and control. A description of the 
problems encountered in each of these fields is given, and lines of 
future research are pointed out. 

Performance 

The problem of determining the aerodynamic characteristics of a 
lifting rotor for purposes of design or performance estimation is com- 
plicated by the large number of variables involved. Consequently, the 
approach could not be wholly empirical, and some theoretical frame work 
was required to correlate experimental data. The performance problem has 
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"been attacked therefore "by trying to develop a method of calculating the 
characteristics of the rotor from the characteristics of the "blade airfoil 
sections. The method is similar to that of calculating propeller charac- 
teristics "by blade element or strip theory "but is much more complicated 
because of the flapping motion of the hinged blades and because the trans- 
lational (edgewise) component of velocity in forward flight must also be 
accounted for- 

In order to make the problem capable of practical solution,, certain 
assumptions and simplifications had to be incorporated in the theory in 
addition to the primary one of using two-dimensional airfoil character- 
istics in summing up the forces acting on the blades of the rotor.  A 
principal assumption specified that the rotor induced velocity could be 
calculated by the momentum theory and could be considered to "be uniform 
across the rotor disk.  (See reference 1.) The resulting calculations, 
which were extremely lengthy and complicated, were simplified and 
condensed into design charts that give a good insight as to the effects 
of changes in rotor design parameters.  (See reference 2.) Sufficient 
comparisons of the theory with experimental data have teen obtained, from 
flight and full-scale tunnel tests to prove the validity of theory. 
(See references 3 to 9 for an experimental verification of the theory 
in various flight conditions.) 

The accuracy of the theory is illustrated by figure 1, which shows 
the good agreement between the calculated and measured characteristics, 
as obtained in flight, of a test rotor in terms of a plot of power 
against velocity. It might be mentioned that model tests in general are 
not satisfactory for helicopter-performance work because of the effects 
of scale on the aerodynamic characteristics of the blade elements. 

The transition region between hovering and about 30 miles per hour 
shown in the figure represents a speed range in which accurate data 
could not be obtained in flight because of instability and control 
difficulties or in full-scale wind tunnels because of the largely 
unknown interference corrections at low airspeeds. Full-scale data 
were obtained in this region, however, by means of a relatively new 
research tool - the helicopter test tower-  It was found that the test- 
tower results checked closely with theoretical calculations over most 
of the transition region- 

As a result of the experience gained through the use of the theory 
and its experimental verification, several factors were found to influence 
considerably the performance characteristics of rotors- One such factor 
was the importance of smooth, nondeformable blade surfaces in reducing 
the power required by the rotor in all flight conditions-  (See refer- 
ences 9 a^d 10 -) The importance of well-built blades arises from the 
fact that in cruising and high-speed flight blade profile drag accounts 
for from one-half to two-thirds of the total rotor losses- 

Rotor theory and experiment have also shown that rotor performance 
is dependent to an appreciable extent on the amount of twist and taper 
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built into the blades of the rotor. Studies (reference 11) have indicated, 
for example, that' the rotor induced losses, which are the penalty that 
must he paid for the thrust produced by the rotor, comprise approximately 
75 percent of the total power losses in the hovering condition and that 
these losses can be reduced to the extent of increasing the hovering pay 
load by approximately 20 percent if the blades were designed with a 
moderate amount of taper and twist, instead of being untapered and 
untwisted. 

Theory and experiment have also pointed out the values of design 
variables that would result in maximum performance. An example of this 
is illustrated in figure 2, which shows the importance of low rotor 
speeds and high blade lift coefficients for hovering and vertical-flight 
performance. The top curve shows that a reduction of tip speed from 
600 feet per second to kOO  feet per second would reduce the power 
required to hover at fixed thrust by approximately 25 percent. The lower 
curve shows that at a fixed power and thrust, the same reduction in tip 
speed results in a substantial increase in the vertical rate of climb, 
namely from 200 feet per minute to approximately 1150 feet per minute- 
The question might naturally arise as to what constitutes a lower limit 
to the tip speed and why the helicopter couldn't always operate at that 
limiting condition. The answer lies in the fact that low tip speeds are 
very undesirable at high speeds and that a good helicopter design must 
either compromise between the two conditions or must deliberately favor 
one at the expense of the other.  (See reference 12.) 

The choice of the proper tip speed and other design parameters for 
efficient high-speed flight must be investigated as part of the general 
problem of rotor-blade stalling. This problem has received and is 
getting a great deal of attention, inasmuch as it considerably reduces 
the efficiency of a helicopter flying at high speeds and is the decisive 
factor in limiting the top speed of present-day helicopters. 

Blade stalling results from the fact that as the lifting rotor 
moves forward, the advancing blades encounter progressively higher 
velocities, whereas the retreating blades encounter progressively lower 
velocities. Thus, in order to maintain approximately equal lift on both 
sides of the rotor so as to prevent the helicopter from rolling over, 
the low-velocity retreating blade must operate at higher angles of 
attack than the high-velocity advancing blade-  It follows that as the 
helicopter increases its forward speed, the angles of attack of the 
retreating blade will increase proportionally until at some value of 
forward speed the angles of attack of the retreating blade will reach 
the stall. As still higher speeds are reached, the stalling becomes 
progressively more severe and spreads to a larger part of the rotor disk 
until the severe vibrations and the loss.' of control brought about by the 
stall prevents the helicopter from flying faster. 

The effect of forward speed and rotor tip speed on stalling is 
illustrated in figure 3- The circles represent plan views of the rotor 
disk, the direction of flight and direction of rotation being as shown. 
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The dark region at the center represents the swept area of the hub and 
"blade shanks and the shaded crescents represent the regions -where the 
direction of flow oTer the retreating blades is reYersed. For this heli- 
copter, at kO miles per hour and 210 rotor rpm, stall is "beginning to 
occur near the tip of the retreating blade; When the speed 1B increased 
to 70 miles per hour, still keeping the same rotor rpm, the stalled area 
has increased considerably. The reduction in stalled area brought about 
by increasing the rotor speed to 225 rpm is shown on the bottom circle- 
At the same forward speed, the higher rotational speed reduces the 
differential in speed "between the advancing and retreating blades and so 
cuts down the stalled area. 

A criterion has been developed for predicting the limiting speed 
due to stalling.  (See reference 13«) It has "been found that the 
operational limit can "be considered as reached when the calculated angle 
of attack at the tip of the retreating "blade exceeded the stalling angle 
of the "blade airfoil by approximately k  . One use of this criterion is 
illustrated in figure k which shows the variation of the minimum allowable 
rotor speed, as set "by "blade stalling, with forward speed. The minimum 
rotor speed was calculated for each value of forward speed by setting a 
l6 tip angle of attack at the retreating blade as the operational limit. 
Thus, for a given forward speed, a helicopter cannot be operated in the 
hatched portion of the plot but must Increase its rotor tip speed until 
the tip angle of attack is 16° or less (that is, it must be operated to 
the right of the curve.) 

Although a helicopter can be flown until the k°  tip-angle limit is 
exceeded^ the profile-drag loss due to stalling begins as tip stalling 
sets in.  It has "been found that the profile drag approximately doubles 
by the time the limiting top speed is reached.  (See reference Ik.) 
The effects of stalling on rotor profile drag can be seen in figure 5, 
in which the profile-drag power absorbed by two sets of blades are 
plotted against speed. The dashed lines in the figure represent the 
calculated power with no allowance for blade stalling, whereas the solid 
lines include losses due to stalling and thus represent the actual 
profile-drag power absorbed. Note that stalling losses are large in 
comparison to the profile-drag power absorbed by the unstalled blades 
and that, therefore, the top speed of the helicopter is also reduced 
because of the additional stall power. 

Once the effects of blade stalling were understood, means for 
alleviating or delaying these effects were investigated. A satisfactory 
way to delay the stall was to twist the rotor blades so that the tip 
sections worked at lower angles of attack than they would if the "blades 
were untwisted.  (The effects of "blade twist were investigated in flight 
and the results are reported in reference 15«) The effectiveness of 
blade twist in reducing the detrimental effects of stalling can be seen 
in figure 5. The figure shows that an increase of about 10 percent in 
the limiting speed of the test helicopter appears possible with the use 
of -8° of "blade twist. Alternatively, twist reduces the stalling profile- 
drag losses by approximately kO percent of the profile-drag power absorbed 
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"by the rotors in the unstalled condition once stalling had developed on 
"both rotors. The use of "blade twist is desirable, inasmuch as, at the 
very least, it appears to hare no detrimental effect on rotor performance 
in any other flight condition. 

Another and somevhat obvious means for minimizing the effects of 
"blade stalling i.s "by increasing the "blade-section stalling angle of 
attack. The "benefits to "be had "by so doing, in terms of an increase in 
permissable load at a fixed tip speed, is shown in the left part of 
figure 6. It can "be seen from the figure that the permissable helicopter 
load could "be increased "by a factor of 3 if the section stall angle could 
"be increased from 12° to 20°. The successful application of various high- 
lift devices that would substantially increase the section stall angle 
without prohibitive drag Increases in the high-velocity low-angle-of - 
attack regions of the disk will prove a fertile field for future heli- 
copter research. 

Just as "blade stalling presents a lower limit to the allowable 
rotor tip speed, another limit exists that prevents operation at extremely 
high tip speeds. That limit Is compressibility effects on the high- 
velocity tip sections of the advancing blade. Jor a given stalling angle, 
a higher section critical Mach number will permit operation at larger 
gross weights "because It permits the use of higher tip speeds. It can "be 
seen from the right part of figure 6 that large increases in pay load can 
"be realized "by increasing the critical Mach number of airfoil sections 
used in the "blades. 

Although most rotor "blades at the present time are composed of 
conventional wing sections, attention is "being given to the development 
of airfoil sections designed especially for rotors as distinguished 
from wings or propellers. In addition to a high stall angle and a high 
critical Mach number, the desirable aerodynamic characteristics of air- 
foil sections suitable for use as rotor-blade sections are:  (1) nearly 
zero pitching moment, (2) low drag throughout the range of low and 
moderate lifts, and (3) moderate drag at high lifts. 

Most of the NACA low-drag airfoils that have been developed have 
too high a pitching-moment coefficient to warrant consideration for use 
with current helicopter designs.  (High pitching-moment coefficients 
lead to undesirable periodic stick forces and to vibrations brought about 
by periodic blade twist.) Although this objection is removed with the 
low-drag symmetrical sections, these sections are not applicable because 
half of the low-drag "bucket, ' or, in other words, half of the limited 
range of lift coefficients in which the important drag reductions are 
achieved, is below zero lift} whereas the faster moving portions of the 
helicopter blade are nearly always operating at positive lift coefficients. 

In order to place the low-drag "bucket" in a useful range of lift 
coefficients and still retain zero or almost zero moment coefficient, a 
number of special airfoils have been derived.  (See reference l£.) One 
of these, the HAD A 8-H-12, shows the most promise. A comparison of the 
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UACA 8-H-12 section with the conventional HACA 23012 airfoil is given in 
figure 7, -which shows a reduction in drag over most of the lift coeffi- 
cient range combined with an earlier stall. Calculations of the perfor- 
mance of rotors incorporating the new section have indicated the 
superiority of the special section over the conventional sections. Full- 
scale tests of practical-construction "blades incorporating the KACA 8-H-12 
section are needed, however, to determine the true worth of the airfoil 
under actual operating conditions. 

Titration and Flutter 

It is commonly accepted that where large, rotating masses are 
involved, vibrations of some kind are likely to appear - and the heli- 
copter is no exception. In fact, the designers of most of the earlier 
types of helicopters had as much difficulty in reducing the vibration 
to acceptable levels as they had in obtaining adequate performance- A 
good deal of the trouble was caused by poorly built, unbalanced blades 
and was largely eliminated with more accurate designs and an increased 
knowledge of blade balancing and tracking procedure- A second source 
of the vibration difficulties encountered were inherent in the helicopter 
itself and could only be avoided when the phenomenon that caused it was 
thoroughly analyzed and understood- An example of such a phenomenon is 
a self-excited mechanical vibration known as "ground resonance, " which 
has been responsible for the destruction of several autogiros and 
helicopters - 

Essentially, "ground resonance" is a self-excited mechanical 
vibration that involves a coupling between the motion of the rotor blades 
about their drag hinges and the motion of the helicopter as a whole on 
its landing gear- When the frequencies of the two motions approach each 
other, a violent shaking of the aircraft occurs which, if undamped, would 
result in its complete destruction- This phenomenon was theoretically 
investigated and a theory was developed which suggested means for 
avoiding "ground resonance." (See references 17 to 19.) In order to 
make the theory easy to use, it was put in the form of simple charts 
which predicted the range of rotor speeds in which the instability 
occurred and the amount of damping necessary to avoid dangerous fre- 
quencies . 

Another example of a vibration problem peculiar to helicopters was 
encountered in the operation of two-bladed rotors- The phenomenon was 
called blade "weaving" from the appearance of the wavy path traced by 
the blade tips and was found to be an aerodynamic instability or type 
of flutter. The problem was investigated theoretically (reference 20) 
and also "by means of model tests- The general result of the study was 
that a see-saw rotor with a coning angle is more unstable than an air- 
plane wing having corresponding parameters- The additional unstabilizing 
effect is associated with the difference in moments of inertia in flapping 
and in rotation. In fact, it was found that with certain combinations of 
coning angles and blade design parameters, flutter could occur even when 
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the chordwise center of mass of the "blades was well ahead of the 25- 
percent -chord point- Proposed remedies for the flutter investigated 
included decreasing the coning angle of the "blades, designing the blades 
so that their mass tends to "be confined to the plane of rotation, 
increasing the control-system stiffness and forward position of the center 
of mass, and adding mechanical damping to the rotor system. 

The helicopter is subjected to a third type of vibration that cannot 
he eliminated inasmuch as it is a forced vibration inherent In the aero- 
dynamics of the rotor itself. This type of vibration is encountered, for 
example, with two-hladed helicopters in the transition region hetween 
hovering and forward flight wherein cyclic variations of induced and 
profile drag give rise to horizontal hub vibrations or, for example, when 
"blade stalling is encountered in high-speed flight.  (See reference 21.) 
Although inherent vibrations of these types cannot he eliminated, they 
can he isolated "by suitahly shock mounting the rotor system, and "by 
using irreversible controls that cannot transmit vibratory forces to the 
pilot's controls. A great deal of work remains to he accomplished in 
reducing the over-all vibration level of the helicopter so that it can 
he flown for long periods of time without unnecessarily adding to pilot 
fatigue• 

Stresses 

Although the achievement of maximum helicopter performance and 
reliahility calls for a thorough knowledge of the stresses imposed on 
the rotor and fuselage of the helicopter in all steady and accelerated 
flight conditions, the general field of helicopter stress analysis has 
"been considered secondary to the aerodynamic prohlems. Literature on 
helicopter stress analysis does exist, hut, in the main, conventional 
methods have "been applied in analyzing the fuselage and rotor "blades. 
Blade analyses, for example, have "been made "by propeller strip methods 
although an additional complication that has "been taken into account 
is the spanwise "bending of the "blades, which tends to change the direction 
of the centrifugal loading on the "blades-  (See references 22 to 26 for 
information on "blade stress analysis.) As yet, however, actual stress 
values, and the various assumptions regarding "blade loading that are 
incorporated in these methods, have not "been directly verified "by reliable 
full-scale test measurements. Aside from a direct check on the actual 
stresses, the significance of these calculations would he greatly 
strengthened if experimental data were obtained on the induced flow in 
forward flight, so that the aerodynamic loading can he more accurately 
calculated.  (The induced flow in hovering has been directly verified 
by British flight tests.) 

In connection with induced-flow measurements, it might be mentioned 
that the over-all magnitude and general distribution of the induced 
velocity have been verified by rotor-blade-motion and performance tests 
made in flight. The induced velocity actually appears to vary nonlinearly 
in magnitude across the disk, however, and would therefore be expected to 
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influence considerably local stress values along the "blade. .The problem 
of determining induced velocities is amenable to theoretical solution^ 
and although some work has been done along these lines (reference 27), a 
good deal still remains to be done before rotor-blade stresses can "be 
predicted with confidence» 

StaMlity and Control 

The information that has been accumulated on the stability and 
control of helicopters during the past years has been rather limited. 
In their desire to establish the practicability of the helicopter as a 
flying machine, designers have concentrated on improving the performance 
and reducing the vibrations of the helicopter, while accepting marginal 
stability and control characteristics. As a result, the helicopter in 
its present stage of development is different and more difficult to fly 
than most fixed-wing airplanes. In response to the increasing demands 
placed upon the helicopter by the armed services and by commercial 
operators, however, the improvement of the stability and control 
characteristics of the helicopter and of its flying and handling 
qualities is perhaps the most important helicopter research problem at 
the present time. 

A number of theoretical paperB have been written on the subject of 
helicopter stability and control.  (See references 28 to 32.) Although 
the theories presented in these papers are somewhat different and some- 
times contradictory, it is generally agreed that (l) if the helicopter 
is disturbed while hovering, and if the control stick remains fixed, 
the helicopter will describe an oscillation about its original hovering 
position, and (2) the amplitude of the oscillation will increase with 
time. According to definition, the helicopter is thus dynamically 
unstable in hovering. Calculations- indicate that the period of the 
oscillation of a two-place, 2700-pound helicopter is of the order of 
10 seconds and that the rate of divergence is small. Limited flight 
data, obtained in this country (reference 33) &nd in. England, have 
roughly checked the calculations and have indicated that the instability 
of the hovering oscillation is not a problem to the pilot. 

The helicopter does have some handling characteristics in hovering 
that are frequently objectionable, especially to the novice pilot. One 
of the handling problems that the trainee must overcome with the smaller 
sized helicopter arises from the high control sensitivity of the heli- 
copter in roll or, in other words, the high rate of roll per inch of 
stick displacement. This sensitivity frequently leads to over-controlling, 
which may result in a short-period pilot-induced lateral oscillation. 
Control sensitivity becomes less of a problem with large machines because 
for a given stick displacement the rolling velocity obtained will vary 
inversely as the diameter. Frequently, undesirable stick-force gradients 
are additional factors that add to the control problems of the unexperi- 
enced helicopter pilot. 
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Another control difficulty that might be mentioned has "been encoun- 
tered in the partial-power vertical-descent region "between approxi- 
mately 500 and 1500 feet per minute. In this vertical-descent range, 
the vibration of the helicopter becomes quite pronounced. Bather violent, 
random yawing motions then occur with some roll} the rate of 
descent apparently increases rapidly} the rotor rotational speed varies 
noticeably) and more often than not the helicopter eventually pitches 
nose down and recovers by gaining speed, despite application of consid- 
erable rearward control. There is much to be learned about this regime 
of operation, but preliminary indications are that the fundamental cause 
of the phenomenon is an unsteady, mixed flow of air through the rotor. 
Irregular flow in this intermediate flight condition might logically be 
expected inasmuch as air is blown downward through the rotor in 
hovering, whereas in completely power-off descent an upward flow of air 
takes place. Although pilots have experienced no difficulty in recovering 
from the maneuver at any stage desired, the phenomenon could be dangerous 
if it occurred at very low altitudes. 

The helicopter has certain undesirable stability and control charac- 
teristics in forward flight as well as in hovering and in vertical 
descents. The major complaint reported by pilots is that they find it 
quite difficult to hold steady conditions in forward flight because of 
a strong tendency of the machine to diverge in pitch. Investigation has 
shown that this tendency results from the fact that the helicopter in 
general is unstable with angle of attack. There are two logical 
sources for this instability. The first source is the usual unstable 
fuselage, and the second results from the flapping of the rotor. When 
a flapping rotor is subjected to an angle-of-attack change in forward 
flight, the resulting change in blade flapping will, be such as to further 
Increase the rotor angle change. 

Theoretical calculations indicate that the instability of the rotor 
and fuselage with angle of attack, if not overcome by a stabilizing 
means such as a tail surface, results in an unstable dynamic oscillation. 
Flight test results of stick-fixed oscillations, reported In reference 3k, 
qualitatively checked the calculations. An example of an oscillation 
obtained at kO  miles per hour is shown in figure 8. The oscillation was 
initiated by a momentary aft motion of the stick. The period of the 
motion is about Ik  seconds, which is long enough so that the pilot does 
not have trouble controlling the oscillation. The motion doubles in 
amplitude in about 1 cycle. Results obtained at higher speeds, however, 
have indicated that the motion following a disturbance is a divergence, 
rather than an oscillation. As you can well imagine, a divergent motion 
that could be brought about by a sudden gust is a dangerous maneuver if 
corrective action is not immediately initiated. 

An example of such a maneuver obtained at 65 miles per hour is shown 
in figure 9- Again the helicopter was disturbed by an intentional stick 
motion, after which the stick was held fixed at the trim position. The 
helicopter nosed up mildly and then nosed down. It was still nosing down 
at an increasing rate, as the acceleration curve indicates, about k  seconds 
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after the 1 g axis -was crossed, and recovery had to he made hy control 
application. In fact, considerable difficulty was encountered in 
recovering from the maneuver "because the acceleration continued to "build 
up 2 seconds after the cyclic control stick was at its forward stop. The 
pilot had to reduce the total pitch and had to roll the machine as in a 
wing-over "before steady flight could be reached. 

In general, it was found that though the helicopter is unstable over 
the entire speed range, its instability is least in the ho to 6b miles 
per hour region. At higher speeds, the pilot has progressively less 
time to initiate recovery from a disturbance and the machine becomes 
rapidly more unstable. 

It should be understood that the undesirable stahility and control 
characteristics juBt discussed do not prohibit the present-day helicopter 
from being a useful tool for specialized purposes. "Various means for 
eliminating these characteristics are under consideration in order to 
utilize all the potentialities of the helicopter, but the choice and 
application of these solutions depend upon continued research and 
development. 

Future Besearch Heeds 

An attempt has "been made herein to acquaint the reader with the 
present status of helicopter research. It may therefore he appropriate 
to conclude with a statement on future research needs. 

Requirements for satisfactory flying qualities of helicopters should 
be established, similar to those already set up for the airplane, and 
means for meeting these requirements should he investigated. In particu- 
lar, methods should he found to give the helicopter stick-fixed and stick- 
free stability in hovering and in forward flight. With this in mind, 
automatic-flight devices should be investigated} and the effectiveness 
and application of aerodynamic servocontrols and other control arrangements, 
including power controls, should be studied. Also., theoretical and 
experimental studies are needed to explain and correct the control diffi- 
culties encountered hy pilots in the transition region between hovering 
and cruising flight and when descending vertically at partial-power 
conditions • 

The trend toward large-diameter load-carrying helicopters calls for 
a more extensive knowledge of rotor -"blade aerodynamic loading and blade 
stresses. Induced velocity and stress measurements should, therefore, 
be made and thoroughly analyzed. The use of more than one lifting rotor 
on the large load-carrying helicopters callB for a thorough investigation 
of the aerodynamic characteristics of the various multirotor arrangements 
that are being proposed. la particular, induced flow studies should be 
made for the various configurations that are now being used. Such studies 
would he useful for stability work and, also, for performance inasmuch as 
induced power requirements appear to be the primary unknown in computing 
the performance characteristics of multirotor configurations. 
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The application of jet propulsion to helicopters has long "been 
considered as a desirable means for increasing the simplicity and the 
load-carrying ability of the helicopter. Several helicopters utilizing 
the jet principle hare already "been "built and flown- A great deal of 
research, ho-wever, is still needed to establish the aerodynamic require- 
ments of jet-driven helicopters and to produce an efficient Jet system. 
The use of Jets also "brings about additional problems involving blade 
design, vibration, and stability characteristics that should be 
anticipated and solved. 

It is hoped that an early and successful solution of these problems 
•will make the helicopter a truly dependable and indispensable aircraft. 
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A SURVEY OF FLUTTER 

By I. E. Garrick 

Langley Aeronautical Laboratory 

The field of flutter is concerned largely -with a study of the 
circumstances whereby a complicated elastic structure such as an aircraft, 
or the components of an aircraft, can interact with the surrounding air 
stream and spontaneously extract energy to an extent that may cause damage 
or destruction. The problems of the flutter field have expanded with 
modern aircraft developments so that they involve and overlap very large 
parts of aerodynamics and mechanics. It is the purpose of this paper to 
dwell on various aspects and concepts of this broad field. 

A particularly simple example of flutter is the "fish tail" motion 
due to mass unbalance of a control surface (common during World War I). 
Suppose that a very heavy mass is placed at the trailing end of a control 
surface. If the motion of the wing is, say, upwards the inertia of the 
mass tends to create a fixed point at the control—surface trailing edge. 
Hence the control surface deforms in such manner as to tend to increase 
the lift, that is, the unbalanced mass brings into being an aerodynamic 
force tending to increase the motion. In the downward part of the cycle, 
similarly, there is a force tending to increase the motion. This "tail 
wagging the dog" type of control-surface flutter is satisfactorily 
eliminated by proper dynamic mass balancing. 

Modern aircraft are subject to various types of flutter troubles. 
There is the classical type of flutter associated with a clean efficient 
flow pattern, which usually, though not necessarily, involves the coupling 
of several degrees of freedom of the structure. And there is another type 
that is difficult to analyze which may involve separated flows, periodic 
breakaways and reattachment of the flow, stalling conditions, shocks, and 
various hysteresis or time—lag effects between the flow pattern and the 
motion. In this type of flutter only a single degree of freedom of the 
structure may be prominently involved (example, stall flutter). There 
is also a possible merging of the types. 

Common cures and remedies for flutter troubles are increased 
stiffnesses (particularly torsional), decreased coupling as, for example, 
mass balancing of control surfaces, and increased damping. Because of 
the great number of structural parameters, however, and of the various 
kinds of modes and types of flutter, there is no field in which it is 
more true that exceptions can be found .for every rule of thumb. This 
means that (along with usual statistical, empirical, and experimental 
studies) the problem should be examined analytically along fundamental 
lines. Since the primary source of the self—excited motion is the (uniform) 
air stream itself, it will perhaps be worthwhile to examine first the 
basis of the nonstationary potential air forces. 

For the purpose of classifying the aerodynamic problems at both low 
and high speeds, it is desirable to look at the general nonstationary 
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flaw equations for irrotational potential flow of a compressible fluid. 
The governing differential equation for the velocity potential follows 
from Euler1s equations of motion .and from the equation of continuity, 
with the assumption that the pressure is a function of density only and 

with the use of the local speed of sound as c2 = -£. 
dp 

The general equation satisfied "by the velocity potential may be put 
into a very pretty invariant form, 

i(|_+T.v)V*« (1) 

where ;-— and v.v fwhich is Tx ^— + vv ^— + vz ^— in rectangular 
ot V       •*• dx   *  dy    dz 

Cartesian coordinates) operate only on 0, not on v, and where, for 
example, for the adiabatic pressure-density' relation, the local variable 
speed of sound is given by 

c2 = c02 - IZJ: v2        ' (2) 

Here 7 is the adiabatic index (ratio of specific heats), and c0 is 
the velocity of sound corresponding to v = 0. The invariant "wave equation* 
form shows that the potential is propagated in the manner of a wave 
disturbance of finite amplitude.  (For a derivation of'equation (l) see 
appendix B of reference 1.) 

Equation (l) serves to unify the discussion of the whole compressible- 
potential—flow picture and it shows up the difficulties inherent in the 
nonstationary, nonviscous flow problem in its unrestricted form. For 

example, when ^— is absent and the flow disturbances are not necessarily 
ot 

small, the equation becomes one treated by Eayleigh, Janzen, Poggi, 
and Kaplan. In a space of one dimension, for example, it reduces to the 
equation of Eiemann for aerial plane waves of finite amplitudes. 

^tt + 20x^xt-(g-0x2)0xx = O (3) 

It is known that aerial plane waves of finite amplitudes cannot 
preserve their forms (reference 2) but that compression wave fronts 
steepen and rarefactions become less steep. Just as a shock condition 
awaits a compression front so too the past history of a rarefaction wave 
cannot be indefinitely prolonged without encountering discontinuities. 
Thus the existence of the continuous shockless pattern is for only a 
finite time. In a certain physical sense we must question the existence 

s> 



291 

or creation of continuous steady flow patterns in the whole of space. 
The steep front must he treated then by Bankine—Hugoniot relations as a 
shock condition» The temptation to assign similar phenomena to the 
general flow, of which the one-dimensional unsteady case is a special 
one, is very great. Then, it should not be surprising if the potential- 
flow equations for continuous flow impose conditions impossible of physical 
fulfillment just as in the Biemann case. Physical phenomena such as shocks 
and instabilities and mathematical phenomena such as "limiting lines" can 
then arise. Precise discussions of these phenomena in relation to boundary 
conditions are matters of great difficulty. This subject must be 
considered to be in an incomplete state. 

If the Telocity of propagation of disturbances is assumed infinite 
(c. = °°), equation (l) reduces to Laplace's equation for the incompressible 
fluid: 

V20 = 0 (k) 

Even this deceptively simple—looking equation leads to recondite matters 
both of a physical and a mathematical nature, for it embraces the whole 
of two— and three-dimensional incompressible potential flow, stationary 
or nonstationary, for small or' large disturbances. 

Before discussing certain aspects of the physical picture, it is 
of special interest to look at the small—disturbance linear equation to 
which the original nonlinear equation may be reduced. For stability 
studies the main interest is often precisely in the small—disturbance 
form of the equations« For small disturbances from a main—stream 
velocity V in the x—direction and with c now regarded as a constant, 
the disturbance velocity potential satisfies the equation 

This equation contains, for T = 0, the equation- for the propagation of 

sound. For steady flow, ~f- =  0, it is the general equation for 
dt 

linearized subsonic and supersonic flow which leads, for example, to the 
Brandt1-G-lauert rule for subsonic flow and to the Ackeret rule for 
supersonic flow. In the general nonstationary case it is the theoretical 
basis for much of the existing work on' the aerodynamical background of 
flutter, both at subsonic and supersonic speeds. This is perhaps the proper 
place to mention that equation (5) can also be associated with the purely 
acoustical problem of moving sources of sound. 

In the near—sonic region, however, the linearized theoretical basis 
clearly requires modification as indicated by the Prandtl-G-lauert and 
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Ackeret rules leading to infinite slopes of the lift curve at M - 1. 
It is likely that in this region it is necessary to employ iterative 
methods and to take into account second-order and other effects including 
viscosity and shape factors, but even the small—disturbance equation 
appears differently. Thus if all velocities are only slightly different 

from the critical local velocity of sound ' c* ( c* = >/—-— c0 ) and if 
\    V 7 +  1 v 

the main stream is in the x-direction, there is obtained for the equation 
satisfied by the velocity potential 

c*2Vöt    hnj    Y ^ (6) 

or 

0tt  + 2C*0Xt " <7 + 1)^C*2 • C*0X)  0XX - C*2  (0yy  +  0ZZ)  = 0 

This equation reduces in the steady case to a nonlinear equation 
leading to the transonic similarity rules discussed recently by Ton Karman 
and others. Its use in conjunction with boundary conditions for solving 
flow problems has not as yet been attempted. Clearly, difficulties of 
mathematical and physical conceptions arise here too. There is a noteworthy 
similarity of the structure of this equation with that of equation (3). 

Physical conceptions bearing on the origin of lift and the genesis 
of flow patterns are of special interest for nonstationary flows. The 
role of the trailing edge in subsonic aerodynamics in distinguishing an 
airfoil from a nonlifting body cannot be overstated. It Is remarkable 
that the nature of the KuttarJoukowski condition for smooth flow at the 
trailing edge has not been more deeply studied but rests only on descriptive 
and plausible grounds. A fuller study of the flow mechanism must of course 
involve, in some measure, dissipation, the boundary layer, and the wake. 

The trailing edge may be considered the means for separating a zero 
circulation into equal positive and negative parts, one part being left 
bound to the airfoil, the other free floating in the wake. It may be 
recalled that the total circulation — the bound circulation over the 
airfoil and the free circulation over the surface of discontinuity which 
the airfoil has left behind — satisfies the Helmholtz-Eelvin theorem and 
vanishes.  It is instructive to describe this key mechanism in another way. 
Consider the nature of the disturbance flow pattern of a flat—plate airfoil 
of infinite span undergoing a vertically downward motion; the main features 
are the acceleration of the fluid downward on the top and bottom sides and 
the spilling of fluid upwards along both edges, the whole pattern akin 
to that of two equal and opposite vortices. This flow pattern superposed 
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with a uniform stream yields the noncirculatory flow pattern past a 
straight—line airfoil at an angle of attack. Then the further effect of 
the forward motion and of the trailing edge consists in effectively 
"sliding ahead and slicing off" the back part of the disturbance flow- 
pattern thus leaving a hound circulation on the airfoil and a 
countercirculation in the wake. Of course, the influence of the field 
of floating vortices left behind in the wake must also be taken into 
account in analyzing the resulting pattern at the airfoil. 

These conceptions are not self—evident but have since Lanchester 
slowly evolved and are still crystallizing. It is of some interest to 
note that without these concepts everyday natural phenomena such as the 
dynamic nature of the flight of birds, which supposedly first stirred 
man's imagination to attempt imitation of flight, remain Imperfectly 
understood.  (See reference 3») 

The potential type of flow is actually more nearly realized physically 
in the nonstationary than in the steady case. Thus for quick movements, 
very high lift coefficients and more nearly theoretical values of the 
slope of the lift curve can be realized. All this appears to be related 
to the nonstationary processes in the boundary layer which "effectively" 
yield a thinner boundary layer for higher frequencies] though to bring 
in these effects directly is a highly complex affair. A basic 
nondimensional parameter for comparing similar flows in the harmonically 
oscillating case, directly relating- in a significant manner frequency, 
size, and velocity, is the "reduced" frequency defined by the ratio of the 
circular frequency times the half—chord to the main—stream velocity: 

(*-f) 
In the incompreasible nonstationary case there are two basic 

procedures which turn out to be completely equivalent:  (a) the Birnbaum 
method followed up in particular by Cicala and Küssner and (b) the Wagner 
method followed up in particular by Glauert and Theodorsen. 
(See references k  to 10.) 

In the Birnbaum method a distribution of vorticity over the mean 
chord is assumed in a particular form of an infinite series (implicitly 
going to zero at the trailing edge)j relations between the bound vorticity 
and the free vorticity are evaluated with consideration of the conditions 
at the trailing edge and the boundary condition that the main flow plus 
the induced flow at the airfoil surface corresponds with the actual motion 
of the airfoil, so that the resulting combined flow is at all times 
tangential to the airfoil surface. Knowledge of the local pressures is 
obtained directly from the vorticity distribution. It is of considerable 
mathematical interest that an explicit solution can be obtained in the 
two-dimensional incompressible case.  (For example, see reference 1.) 

In the Wagner method (which conveniently utilizes the principles 
of conformal mapping) the trailing-edge condition plays a more explicit 
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role. The flow pattern may be thought of as built up by superposition 
of many elementary flows, each elementary flow being that of the straight- 
line airfoil with an infinitesimal segment locally deflected; each 
elementary flow is composed of two parts, a noncirculatory flow pattern 
corresponding to a source-sink or doublet distribution in the presence of 
a finite line and the wake flow pattern corresponding to a distribution 
of Yortices generated at the trailing edge during the past history of 
the motion. Again, from the local pressures, the integrated forces and 
moments follow by integration. 

It is instructive to point out that in the Wagner approach to the 
problem, the velocity potential or response to a sudden change of angle 
of attack plays an important part while in the Theodorsen developments 
the steady—state response for the harmonically oscillating airfoil is 
significant, and that these two functions are mated ones in the sense 
of the Laplace or Fourier integral transforms.  (See reference 12.) This 
observation is an aid to the further application of the superposition 
theorem and to the treatment of gusts and other transient conditions. 
(See reference 13-) 

The extension of the procedures to higher Mach numbers has been 
the objective of much of the more recent work. Solutions of the original 
linearized compressible—flow equations (equation (5)) are sought which 
can' serve to solve the boundary problem. Main references in the subsonic 
case are the original paper by Possio, a subsequent general formulation 
by Küssner, and a calculation procedure by Dietze (references Ik to 16). 
It is noteworthy that the methods of the acceleration potential have 
found prominent application in these subsonic—flow studies. Difficulties, 
even in the plane case, arise:  (l) The elementary solutions corresponding 
to sources and doublets have a different structure and (2) the boundary 
conditions lead to an integral equation with a highly complicated kernel 
function,  (it should be remarked that the problem has also been treated 
by utilizing directly the velocity potential.  (See reference 17.) A 
simpler kernel function occurs, but certain Mathieu functions are required 
for further practical developments.) 

Several procedures have been tried to obtain numerical solutions 
of the integral boundary equation. Frazer and Skan (references 18 and 19) 
give a method of collocation in which boundary conditions are satisfied 
at a set of points, leading to n equations in n unknowns. Another 
procedure, a more flexible one, is the iteration procedure of Dietze 
which in contrast with the other procedures also lends itself to aileron 
calculations. Applications to flutter problems have been made in 
several papers (for example, references 19 and 20). Of practical interest 
are the facts that the Prandtl-G-lauert rule appears as a limiting case- 
for static instabilities and for low "reduced" frequency cases corresponding 
to high-density wings and high altitudes and that, while in general the 
compressibility effects are very complicated, the magnitudes of the effects 
are not large in the range of validity of the linearized theory 
(approximately M < 0.75) for structural parameters of normal and practical 
concern. 
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Of much, interest too is the study of nonstationary air forces at 
supersonic speeds.  (See reference 21.) There is a peculiar reversal 
of the role of the leading and trailing edges as compared with subsonic 
conditions. Thus, there are the conditions necessary for an attached 
shock at the leading edge that require a sufficiently sharp leading-edge 
angle. Otherwise a detached shock ahead of the "body and a mixed supersonic- 
subsonic type of flow are involved. The trailing edge need play no 
determining role as it does in the subsonic case and, in fact, a compression- 
expansion wave mechanism is involved in the generation of lift. In general 
the flow pattern must be pieced together (as in method of characteristics) 
of several regions with various edge conditions and various conditions at 
the Mach lines. 

In the small-disturbance linearized treatment of oscillating air forces 
(with no strong shocks or other large disturbances assumed present in the 
underlying steady flow pattern) elementary source—type solutions play a 
key role. The elementary source effect may be associated with a locally 
deflected flow pattern and, in accordance with the similarity of the 
acoustical and hydrodynamical problem as already observed, behaves as a 
source of spherical sound waves in motion uniformly through the medium 
with supersonic speed. 

The moving-source solutions have a considerable interest in themselves. 
Historically, they are involved in the Doppler effect and were encountered 
also in electrodynamics at the turn of the century (reference 22), in 
somewhat disguised fashion from present forms, in the study of electrons 
moving at speeds both above and below that of light.  (The doctrine of 
special relativity was still, young.) 

In order to illustrate briefly the source effects at supersonic speeds 
there are presented figure 1 and the velocity potential relation 
(reference l): 

where 

r = 

0 = i [f(t - T-L) + f(t - T2)] 

±-  >/(x - I)2-  (M2 - l)[(y - T,)
2
 + (z - £)

2] 
M2-l 

M x-|_r 
~ + 7? X>2 " C M2 - 1 

The field point (x,y,z) at any time t is influenced by two waves 
which originated at times T-J_ and T2 earlier. A given field point 
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at successive times T + T-J_ and T + T2 experiences, respectively, the 

effect of penetration into the spherical vave front of a pulse created 
at the origin at time 1    and the emergence out of the same wave front. 
At penetration of the wave front for a positive source there is a 
compression and subsequent equal expansion and, at emergence, the opposite 
effect. The distance r occurring in the'velocity—potential relation, 
which in the case of a fixed source is the actual distance from the source 
to the field point, is shown geometrically in figure 1. At subsonic 
speeds there is only the single effect of penetration into the wave front 
because the field point never emerges from within the wave front. 

The synthesis of solutions of boundary problems in terms of the 
source solution (and its normal derivative corresponding to a doublet 
solution) is of considerable general scope and validity. The applications 
form a wide field of research activity and it is regretted that they 
must be passed by with so few words at this time.  It is of interest to 
mention that there are many papers now appearing in Russian dealing with 
similar problems.  (See for example, reference 23.,) 

These aerodynamic considerations have heen dwelt on because the 
motivating source of energy for flutter is the air stream itself and 
it is necessary to have some ideas of the nature of the oscillating air 
forces and moments which act, and their relative phases and amplitudes, 
in order to assess or analyze flutter effects. 

Attention is now diverted to the mechanical nature of the flutter 
problem. For simplicity a configuration as in figure 2, an idealized 
wing on springs, is first considered. Corresponding to the two degrees 
of freedom, vertical deflection h and rotation a, there are two 
simultaneous differential equations, representing the equilibrium of 
vertical forces and of moments about the axis of rotation: 

hA + aB + hC = P 

ÖD + ÜB + ccE = MQ 

where A and D are structural inertia terms, B is the coupling term 
due to mass unbalance about the axis of rotation, C and E are elastic 
restoring terms, and P and M,-, are terms of aerodynamic origin. 

If the air forces appropriate to small sinusoidal motions are 
employed, the flutter solution appears as a certain determinant put equal 
to zero, (which represents the condition for a nontrivial solution of the 
algebraic equations in h and a): 

Aaa  Aah 

•A-ca  -A-ch 
= 0 
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The individual terms are combinations of the inertia, elastic, and 
aerodynamic effects. This solution states that mechanical equilibrium 
is possible, that is, the laws of motion are satisfied, in the border 
sinusoidal case at a certain airspeed with a certain frequency and with 
certain amplitude and phase relations between the degrees of freedom. 
The question of whether the border stability condition, corresponding 
to a vanishing of the damping for the particular sinusoidal motion, 
separates a damped oscillation from a growing (negatively damped) 
oscillation, or vice versa, or is merely a resonance condition, is 
answered by other considerations — for example, by further study of the 
effects of the parameters, particularly structural damping, at the border 
condition, or by physical arguments. 

The flutter determinantal equation (which contains complex elements, 
and hence is really two simultaneous equations) yields information on 
both the flutter frequency and the flutter speed. Several procedures, 
numerical, graphical, algebraic, and vectorial, for obtaining its solution, 
or for varying the parameters in the neighborhood of a definite solution 
have been developed. This phase of the flutter problem is a popular one 
and is the subject of many papers in the literature.  One procedure which 
deserves special mention is the plotting of structural damping against 
airspeed as in reference 2k which treats directly the complex roots of 
the equation. The imaginary parts can be interpreted as the damping needed 
to obtain a flutter condition, negative damping then meaning that external 
energy must be added, stability thus being indicated. The plots of the 
imaginary parts of the complex roots against airspeed serve to measure the 
nearness to flutter and to give an indication of the violence and the type 
of flutter involved.  (Of course after the flutter condition is encountered 
and small disturbance limits are exceeded, nonlinear effects may take over 
to limit the amplitude of oscillation, provided the structure holds 
together.) It should be briefly mentioned at this point that in addition 
to the dynamic instability conditions, the determinantal equation also 
contains the static instability conditions corresponding to wing 
divergence or control reversal. As pointed out previously, in these 
static cases in particular, the theoretical values need modifications 
to represent more closely experimental values for example, of the slope 
of the lift curve, center—of—pressure location, and hinge-moment coefficients. 

In order to improve the foregoing idealized simple picture it is 
necessary to take into account a larger number of degrees of freedom and 
to bring in three—dimensional-structural considerations.  (See references 2k 
to 28.) This end is readily accomplished by the classical methods of 
Lagrange in which each degree of freedom may represent a spanwise mode 
of vibration (generalized coordinate) and the kinetic energy and the 
potential energy of the mechanical system play a central role. The terms 
representing the aerodynamic energy are obtained from the work done by the 
air forces in each coordinate. 

The Lagrangian equations of motion representing the equilibrium in 
the chosen degrees of freedom then lead, as before in the sinusoidal case, 
to a characteristic flutter-stability equation in which the spanvise-mode 
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effect is properly weighted and., conveniently, the mechanical potential 
energy (as in the Rayleigh vibration-mode methods) may involve the 
natural uncoupled frequencies of the structure. In this approach, matrix 
methods arise in a very natural manner. In recent years the matrix 
methods have become increasingly popular even with "practical" vibration 
people and it is believed this trend should be fostered rather than 
feared.  It is however always a matter of taste and judgment and often 
very difficult to choose the degrees of freedom and their number to 
compromise properly between time, labor, physical grasp, and accuracy. 

The problem of a continuous wing structure can also be set up as 
an integro—partial differential equation (instead of a system of 
simultaneous ordinary differential equations) in which the modes of 
vibration in the flutter condition are solved for rather than assumed. 
It is recognized however that, in general, the problem involves elastic 
problems which are too complex to be exactly handled even without 
consideration of the air forces and includes aerodynamic problems which 
are complicated enough even in the steady case and for rigid structures. 
In practice the procedures are iterative or approximate.  (See reference 29.) 
The uniform cantilever wing has recently been given such a treatment 
(reference 30) with two-dimensional air forces assumed. 

In fact in most flutter treatments two-dimensional air forces have 
been employed, frequently with over-all corrections for finite span 
inserted. Appropriate corrections for finite—span effects have occupied 
the attention of several authors.  (See references 31 to 35-) The subject, 
however, is not in a too satisfactory state mainly because of complexity. 
The nonstationary effects attributed to aspect ratio are, in general, 
fairly small for' moderate aspect ratios. There is room for both theoretical 
and experimental contributions in this field for wings of small aspect 
ratio. 

A few words should perhaps be devoted to the subject of flutter of 
sweptback wings, a study which has been only lightly touched on by 
several writers. With sweepback the problem is complicated in both its 
structural and its aerodynamic aspects. Structurally, there exists a 
greater degree of coupling between bending and torsion as, for example, 
for a curved or bent—back elastic axis. Even the conception of an elastic 
axis, commonly used for unswept wings without large cut—outs, may, because 
of cross—stiffness effects, need to be replaced by the more general 
conception of influence-coefficients. In its aerodynamic aspect there is 
a greater degree of coupling in the air forces; for example, the bending 
deformation (dihedral effect) enters into the angle of attack of a wing 
section. Thus a small dihedral leads to second—order effects for unswept 
wings and to first-order effects for highly swept wings. 

For an infinite uniform yawed wing (yawed at an angle not near 90°) 
two—dimensional (low speed) considerations indicate that the flutter 
speed increases by a factor of one over the cosine of the angle of yaw 
or sweep- A finite yawed wing, mounted on springs permitting it to 
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move vertically and to rotate about an axis, would "be expected to have 
a flutter speed with a factor of sweep higher than one over the cosine. 
However, for a finite sweptback wing clamped at its root, the combined 
effect of the elastic and aerodynamic coupling adversely affects the 
flutter speed so that, in general, the factor is«considerably lowered. 

There are many indications, however, that the static instability 
aileron reversal (in which the rolling power vanishes at a certain 
airspeed) rather than the dynamic instability may impose more severe 
design requirements for sweptback wings (for example, reference 35) at 
high speeds. 

It has been possible to present here only a selection of aspects of 
the flutter field. The whole story of modern experimental techniques 
and research has had to be omitted. It is clear that measurement of 
aerodynamic coefficients for nonstationary flow throughout the subsonic., 
near-6onic, and supersonic speed ranges requires very exacting experimental 
techniques and critical tests. In testing for flutter in some of these 
speed ranges, it has been found convenient to employ, in addition to wind- 
tunnel research, techniques utilizing bomb drops and rocket missiles. 
Also required are the modern developments in pressure cells, strain gages, 
and electronic, telemeter, and vibration equipment. 

In closing this survey of flutter, it is again emphasized that the 
physical classification of the flutter problem of a given structure i3 
not easy for an attempt must be made to recognize which of the abundant 
sources of modes may be significantly involved and whether the type of 
flow is primarily of the potential classical type or includes a merging 
with other types of flow.  In the near—sonic range, in particular, there 
is a clash between the potential and separated flows and a susceptibility 
to both kinds of flutter troubles. It is believed that refinements made 
in the aerodynamic and mechanical aspects of the flutter problem to be 
significant should to an extent keep in step with each other. It is 
hoped that some of the many facets and challenges of the flutter problem 
have been indicated. 
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Figure 1.-   Field of influence of a spherical source moving at a constant 
supersonic velocity. 
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Figure 2.-   Idealized wing configuration with two degrees of freedom. 
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AIR INLETS 

By Norman F. Smith 

Langley Aeronautical Laboratory 

The first radial-engine cowling, developed by the NACA in 1927 
(fig. l), marked the transition from the external to the internal 
cooling system. This development provided an important improvement 
in airplane performance "by removing engine and heat-exchanger com- 
ponents , which are poor aerodynamic shapes, from the full velocity of 
the air stream and "by providing gains in cooling efficiency and 
control of engine temperature. 

Some years later, airplane speeds had advanced to the point 
where the critical speed of components "became important. The critical 
speed of the original cowling was recognized as "being low, and an 
investigation was initiated in 1939 to develop a shape having as high 
a critical speed as possible and proportions to fit then—existing 
radial engines. The result of this effort was NACA cowling C (fig. l), 
which has a critical Mach number of O.63 (480 mph at sea level) and 
has been virtually a standard on American radial—engine aircraft since 
its development (reference l). A short time later, nose B was 
developed (reference 2 and fig. l). This shape is a- longer nose 
inlet designed for use with submerged engine designs or jet propulsion 
installations, and has a critical Mach number of 0.84 (6k0  mph at sea 
level). These two inlets, NACA cowling C and nose B, were derived on 
the same basis, that is, to have a flat pressure distribution and, 
therefore, the optimum critical speed for the particular proportions 
involved. 

The fuselage nose position for air inlets has received considerable 
attention at the Langley Laboratory because of the aerodynamic advan- 
tages offered by this position. Such an air intake is located in a 
natural stagnation region wherein external compression can be 
accomplished at an efficiency of 100 percent. Also, no boundary- 
layer problem is encountered, and there exists the fact that the 
external drag of a body with a properly designed nose inlet is as low 
as or lower than the drag of a streamlined body. Experimental data 
(from reference 2) illustrating this last item are shown in figure 2„ 
The tick at the left is the drag coefficient of the basic body, whereas 
the curve shows the external drag of the body with nose B inlet through 
a range of internal flow. At flow rates above a certain minimum value, 
the external drag is clearly seen to be equal to or slightly less than 
the drag of the basic body. The higher drag at low flow rates is due 
to the fact that a pressure peak exists at the lip for this condition, 
and this peak fixes transition at a point well forward and produces 
higher skin—friction drag. 



308 

From the aircraft designer's point of view, it was highly 
desirable to'expand the information available on nose inlets to permit 
design of a nose inlet for any desired subsonic Mach number. Upon 
examination, the nose B and MCA •cowling C ordinates, reduced to 
nondimensional form, were found to be practically the same.  Since 
the very different critical speeds of these air inlets were apparently 
due to the different geometric proportions, it appeared possible that 
a whole series of nose inlets might be based upon common ordinates. 
By use of the nose E ordinates, therefore, the systematic family of nose 
inlets shown in figure 3 was designed and was tested to determine the 
effects of proportions on critical speed characteristics (reference 3). 
The length ratio (X/D) is shown across the top and the inlet diameter 
ratio d/D down the side. The inlet shown in the upper left is 
approximately nose B, whereas the one in the lower right is very close 
to NACA cowling C. 

The results of tests of one of these nose inlets are shown in 
figure h.     In the left figure are the pressure distributions over the 
external surface of the inlet at three values of inlet- velocity ratio, 
which is the ratio of inlet velocity to free—stream velocity. It can 
be seen that the pressure distribution remains flat, with a low peak 
value, down to some low value of ^±1^0,  below which the high local 

angle of attack of the lip causes a pressure peak to occur. This peak 
continues to increase in height as VJ/VQ is further decreased. The 

estimated critical Mach numbers obtained from these pressure distri- 
butions are shown in the right half of figure k  plotted against inlet- 
velocity ratio.  It can be seen that the critical Mach number of the 
nose inlet remains approximately constant as the inlet—velocity ratio 
is decreased until the point'is reached where a pressure peak appears 
at the lip. Below this value of inlet—velocity ratio, the critical 
Mach number decreases rapidly. 

The values of critical Mach number below the "knee" of the curve 
are of course in need of qualification because they were estimated 
from sharp local peak pressures, and it has been shown in various 
wind—tunnel tests of airfoils and bodies that such local peaks may 
disappear at higher Mach numbers or have little effect upon the Mach 
number at which adverse compressibility effects occur. This phenomenon 
is discussed in connection with airfoils in the paper by Becker 
entitled "Characteristics of Wing Sections at Transonic Speeds." It 
is, however, desirable aerodynamically to avoid this condition for 
reasons of possible compressibility effects, separation, or, as was 
shown in figure 2, higher skin friction. 

The region to the right of the knee of the critical Mach number 
curve of figure k,  therefore, is of primary interest. Since in most 
airplane installations the minimum inlet—velocity ratio is encountered 
at the maximum speed of the airplane, the knee of the curve becomes 
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a logical "design point" for the particular nose inlet.  In other words, 
an airplane for which maximum Mach number and air—flow requirements at 
the maximum Mach number correspond to the "knee" of the curve will, 
at speeds other than maximum, be operating "below and to the right of 
the design point in the region where a flat pressure distribution 
exists. 

The values of M^ and V-J/VQ 
a-t 'fclie ä-esign point was found in 

the wind—tunnel tests to "be a function of the proportions of the nose 
inlet. Accordingly, the design points of the series of nose inlets 
shown in figure 3 have "been arranged in the form of design charts, 
from which the proportions of a nose inlet can "be selected to fulfill 
any design requirements of air flow and critical Mach number. The 
design chart is shown as figure 5- A sample selection is shown "by 
the arrows. Entering the lower section with the desired value of 
mass flow ratio and proceeding vertically to the value of critical Mach 
number desired, the entrance diameter ratio d/D can he read. 
Continuing to the top section of the chart, the length ratio X-/D is 
obtained. Combining these proportions with the 1—series ordinates 
the required nose inlet shown at left center is obtained. Two other 
selections, for Mach numbers of approximately O.63 and 0.9, are shown 
to scale and illustrate the variation in proportions with Mach number. 

The design charts actually cover a number of different types of 
inlets, the first of which is of course the plain open—nose inlet as 
applied to a jet machine. Mention has been made previously of the 
excellent drag characteristics of this type of installation. 

Two additional types of installations which can be designed from 
these charts are shown in figure 6. The upper one is a more or less 
conventional configuration where the propeller is located on a spinner 
ahead of the air inlet. An analysis (reference 3) of  existing data 
from various cowling tests provides an indication that the effects of 
a spinner of reasonable size upon the characteristics of a cowling are 
small. Cowlings for use with spinners can therefore be selected from 
the design charts, taking into account only the flow area blocked out 
by the spinner. An additional problem exists with this type of inlet, 
however, in that the boundary layer on the spinner will separate if 
the inlet—velocity ratio is too low. This phenomenon is purely a 
result of the pressure gradient ahead of the air inlet, produced 
principally by the inlet—velocity ratio. Analysis (reference 3) of 
data from tests of many cowlings indicates that a value of inlet- 
velocity ratio of at least O.k  is required to eliminate separation 
from the spinner. This value is, of course, higher than that which 
might otherwise be used in order to minimize internal losses. More 
on this problem is presented herein in connection with fuselage scoops. 

The lower installation shown in figure 6 is an NACA rotating 
cowling in which the forward part of the cowling rotates with the 
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propeller (reference k). Although more complicated mechanically, this 
type of installation offers several aerodynamic advantages. The problem 
of "boundary—layer separation at the entrance (due to inlet—velocity 
ratio) is eliminated since no surface protrudes beyond the inlet. Also, 
the propeller shanks, which are often difficult to make optimum "both 
aerodynamically and structurally, can be housed in generous fairings 
in the lover velocity region within the spinner. By this means, the 
internal efficiency is improved, particularly on installations of high 
power where a large number of wide "blades are needed. The propulsive 
efficiency is also improved "because only the more efficient outboard 
sections of the propeller are exposed to the air stream. Several tests 
of these types of installations have indicated that the aerodynamic 
advantages of the rotating type are larger than the weight and 
structural penalties incurred, particularly for installations of very 
high power. 

Another type of "stagnation inlet" is, of course, the wing—leading- 
edge inlet. The problems involved in the design of wing inlets are 
more numerous than for other types. The effective—angle—of—attack 
range through which the inlet must operate is higher because of the 
induced angle of attack which occurs ahead of the wing. If the inlet 
is located behind a propeller, the effective angle will also be 
affected by propeller power. The inlet must have a high critical Mäch 
number at one end of the speed range and a high value of maximum lift 
at the other, while maintaining reasonable drag characteristics through- 
out the operational range of lift coefficient and inlet—velocity ratio. 
The wing inlet is of interest primarily for aircraft having wings of 
high or medium thickness since the very thin wings of high—speed aircraft 
do not offer the thickness or internal space for inducting the large 
volume of air required. 

Because of the large number of variables and problems involved, 
design data for wing inlets are not available from which an inlet can 
be chosen without a development program being required. However, the 
general physical configuration required for satisfactory characteristics 
is known from numerous development programs. Figure 7 compares such a 
configuration (reference 5) with an earlier and less satisfactory 
development (reference 6). The early inlet shown in the sketch at the 
lower left is characterized by relatively sharp lips, a large opening 
height, and no lip stagger. The pressure distribution over the upper 
lip at zero lift is flat, with a value of peak pressure which, although 
not shown, appears low. At a lift coefficient of O.55, however, a high 
pressure peak exists at the lip, which is undesirable from the standpoint 
of drag (transition), critical speed, and, at a still higher angle of 
attack, maximum lift. 

The inlet at the right shows a more rounded pressure distribution, 
although a slightly higher value of peak pressure, and it evinces only 
a small pressure peak at a lift coefficient of 0.66. This inlet possesses 
thicker lips, a small inlet height, and a noticeable lip stagger. 
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The maximum lift characteristics of these two configurations and 
of a basic airfoil section are shown in the left half of figure 8. 
Aa might "be expected, the sharp—edge inlet (a) has a very low maximum 
lift at low flow rates, rising to about the same as the "basic airfoil 
section when the favorable effects of air flow are felt at the higher 
inlet—velocity ratios. The air inlet ("b) has a higher maximum lift 
than inlet (a) or the basic airfoil section through a wide range of 
air—flow quantity. 

The inlet losses for inlets (a) and (b) are shown in the right 
half of figure 8. Again, the sharp lips of inlet (a) have produced 
large losses outside a narrow range of lift coefficient. Inlet (b), 
however, shows essentially zero inlet losses through a wide range of 
lift coefficient, adequate for the particular airplane involved. 

Thus, a wing—leading—edge inlet which has good aerodynamic charac- 
teristics has a small entrance-to-thickness ratio and relatively thick, 
staggered inlet lips well—rounded into a bell-mouth shape. 

Several advantages of the stagnation type of air inlet have already 
been listed and discussed. In spite of these advantages, it often 
happens that other factors dictate the use of an air scoop or air inlet 
located aft on the fuselage. Such factors may include armament in the 
nose, pilot visibility, ducting length and weight, over—all structural 
weight, and airplane stability. 

The two primary problems involved in scoop design are boundary 
layer and interference. Figure 9 illustrates the boundary—layer 
phenomena (reference 7)•  In the upper left is a sketch of a fuselage 
and scoop. Below the sketch is plotted the boundary—layer thickness 
along the fuselage ahead of the scoop for three values of inlet—velocity 
ratio. At the highest value, 0.9, the boundary layer grows at a normal 
rate up to the scoop entrance. At an inlet—velocity ratio of 0.5 some 
thickening at the entrance is found; and at the lowest inlet—velocity 
ratio, 0.2, the boundary layer has apparently separated and has reached 
a thickness equal almost to the scoop entrance height. A cross plot of 
the boundary—layer thickness shown at the right indicates that separation 
apparently occurs when the inlet—velocity ratio is decreased below 
approximately 0.6. This phenomenon is the same as that which was 
previously mentioned as occurring on cowling spinners. The consequences 
of the separation shown were, of course, a reduction in air—flow quantity 
and a substantial increase in inlet losses. Providing the scoop shown 
with a boundary—layer bypass which removed a thickness slightly more 

than the boundary—layer thickness for ==• = 0.9 eliminated the 

separation entirely and restored the pressure, recovery to essentially 
100 percent. 
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In figure 10 (from reference 3) is shown the critical Mach number 
characteristics of three longitudinal planes of the scoop with "boundary- 
layer removed: the "bottom plane, shown "by the solid line, the side 
plane, shown-by short dashes, and'the fillet plane, shown "by long 
dashes. The scoop was designed "by use of the NACA 1—series nose inlet 
ordinates. For comparison, the critical Mach number curve for the 
corresponding NACA 1—series nose inlet is shown as the top curve. The 
curves for the two lower planes have essentially the same shape as the 
curve for the nose inlet but are displaced downward because the scoop 
is located in the flow field of the wing. The curve for the fillet 
plane is displaced still farther and its shape is changed somewhat. 
These data show that the external contour of a fuselage scoop can be 
designed with the aid of the WACA 1—series nose inlet charts provided 
that proper allowance is made for the interference of wing or fuselage. 

"While problems do exist in the design of efficient air exits, 
their magnitude and number ,are by no means comparable to those involved 
in the design of air inlets. The optimum location for emitting air is, 
of course, at the tail of the fuselage or body, since here mutual 
interference of fuselage and the air jet are minimized.  In cases 
where the air exit must be located elsewhere, a few simple rules should 
be followed: First, the air exit should be located in a region of low 
induced velocity to minimize interference effects; second, the air 
should be directed outward parallel to the passing-air stream; and 
third, the body aft of the exit should be undercut to allow for the 
thickening effect of the air jet. 

Figure 11 illustrates this third item and shows pressure distri- 
butions over an air exit with and without undercutting (reference 8). 
It should be noted that a pressure peak (solid line) is induced at 
the exit by the effective bump produced by the mass of air flowing 
from the exit. Undercutting the exit (dashed line) reduced this peak 
to only a small Increment above the value of pressure coefficient 
measured with the exit faired over. Doubtless, this dashed profile 
could be improved by still more undercutting and the superstream 
velocities eliminated altogether, at least for certain operating 
conditions. 

Although this paper deals primarily with the subject of air inlets, 
it is appropriate to include several references on duct and internal- 
system design (references 9 to ll). These references do not in them- 
selves constitute complete coverage of the subject, but, like many of 
those listed at the end of this paper, provide a digest of much of the 
available information. Each paper contains a list of references which 
may be used in an extended study of the subject. 

In considering briefly the problem of supersonic air inlets, it 
is interesting to consider the case of a subsonic nose inlet operating 
at transonic and supersonic speeds.  (See fig. 12.) At supersonic 
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speeds, a conventional nose inlet with rounded lips is found to have a 
"bow wave ahead. Through this tow wave there is a loss in total 
pressure of the air, "both that entering the inlet and that going 
around the "body. The total pressure loss through a normal shock, which 
approximates the loss through the center part of a how wave, is shown 
in the upper right corner of figure 12. It can he seen that the loss 
is small at low supersonic Mach numbers — of the order of 2 percent 
at M = 1.3. This means that the losses encountered at low supersonic 
Mach numbers with this type of inlet will he small. This inlet is 
suitahle for use, then, in the transonic range, with the added advantage 
of good characteristics through the subsonic range. 

At higher supersonic Mach numbers, however, the losses increase 
significantly, and other types of inlets must he considered. If the 
"blunt lips of the subsonic inlet are replaced with suitahle sharp- 
edged lips and if the inlet—velocity ratio is increased to 1.0, the 
how wave may he eliminated and replaced "by an external oblique shock 
and "by a normal shock in the diffuser, as shown in the lower half of 
figure 12. 

If a normal diverging subsonic diffuser is used, the shock will 
occur at a Mach number equal to or higher than the flight Mach number. 
This means that, although the .external conditions may he improved hy 
using this type "of inlet, the internal losses will he higher than for 
the suh80nic configuration of figure 12. 

The configuration shown in figure 13 incorporates a converging- 
diverging diffuser (reference 12) in an attempt to compress the flow 
supersonically and cause the shock in the diffuser to occur at a 
lower Mach number. 

The upper curve at the right gives the contraction ratio between 
entrance and throat for isentropic compression to M = 1 at the throat. 
This throat area is, however, too small for the establishment of supersonic 
flow in the converging section, since in order to "swallow" the shock, 
the throat must first pass the mass flow required for an inlet—velocity 
ratio of unity at the reduced density and total pressure due to the bow 
wave. The lower curve gives the maximum contraction ratio which can be 
used if a diffuser is to start or "swallow" the shock. The permissible 
contraction ratio is seen to be about half that required at M = 1.6 
and less at higher Mach numbers; Thus, the requirements for starting a 
converging-diverging diffuser reduce the effectiveness of this configu- 
ration seriously in that large losses are still encountered through the 
normal shock in the diffuser at higher supersonic Mach numbers. 

The type of air inlet shown schematically at the lower left was 
suggested by Oswatitsch in Germany (reference 13) and makes use of the 
more efficient compression through several oblique shocks on a conical 
body ahead of the inlet. After compression to a low supersonic Mach 
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number ahead of the entrance,  the flow enters a converging-diverging 
diffuser in vhich a normal shock occurs as in the previous case, but 
at a very low supersonic Mach number with, of course, improved 
pressure recovery. 

The following statements are made in summary: 

Design charts are available from which optimum-critical-speed 
nose inlets can he selected for any required subsonic Mach number. 
These charts may also be used in the design of rotating cowlingB, 
cowlings for use with Bpinners, and to aid in the design of fuselage 
scoop contours. In configurations where boundary layer exists ahead 
of an air inlet, either the inlet—velocity ratio must be kept high 
enough to prevent separation or a suitable scoop or bypass must be 
provided to remove the boundary layer. 

Wing-inlet shapes have been developed which have maximum lift 
higher than plain airfoil sections and which have critical Mach number 
and internal pressure—recovery characteristics adequate for the 
airplanes involved. 

The subsonic nose inlet can be used effectively at low supersonic 
Mach numbers because losses through the normal shock (or bow wave), are 
small at low supersonic Mach numbers. At higher supersonic Mach numbers 
a different configuration is needed which has sharp leading edges and 
which utilizes the most efficient arrangement of shocks possible for 
compressing the inlet flow. One such configuration utilizes a series 
of oblique shocks on a central conical body for compression to low 
supersonic Mach numbers ahead of the inlet. 
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TWO-DIMENSIONAL SUPERSONIC WING THEORY 

By Walter G. Vincenti 

Ames Aeronautical Laboratory 

INTRODUCTION 

The problem of an airfoil section in two-dimensional supersonic 
flow, which is fundamental to a consideration of other, more general 
wing problems in supersonic flight, was first treated theoretically in 
a paper "by Ackeret published in Germany in I925. Shortly thereafter - 
in I928 - experimental results were reported in England by Stanton. As 
a result of the work of these and a number of later investigators, the 
fundamentals of the problem were well, though perhaps not widely, under- 
stood "before the beginning of World War II.  During the wartime and 
postwar periods, detailed advances in both theory and experiment have 
been made, as well as increased application of the available knowledge, 
usually on classified projects. The fundamental ideas in the field, 
however, can be discussed almost completely in terms of results available 
prior to 19^0. 

FUNDAMENTAL CONSIDERATIONS OF 

SUPERSONIC FLOW 

Before proceeding to the discussion of the theory, it is desirable 
to review briefly the fundamental difference between subsonic and super- 
sonic flow (references 1 to k)• This difference is illustrated in 
figure 1, which shows the wave pattern set up by a disturbance point in 
both a steady subsonic stream and supersonic stream.  In either case, if 
the disturbances from the point are small, each elementary disturbance 
is propagated spherically at the speed of sound relative to the moving 
stream. Because of the motion of the stream, however, the center of 
each elementary sphere is at the same time carried downstream relative 
to the original source of the disturbance.  If the speed of the stream 
is less than the speed of sound, as shown on the left in figure 1, the 
elementary disturbances will travel upstream against the flow faster 
than their centers are swept downstream. As a result, the disturbances 
move ahead of their source and affect all parts of the flow field.  In. a 
supersonic stream, as shown on the right in this figure, the centers of 
the disturbance spheres are carried downstream faster than the disturbance 
itself can be propagated forward. As a- result, all disturbances in the 
supersonic stream are confined to the interior of a cone known as the 
Mach cone- The flow outside this region is, so to speak, unaware of the 
presence of any disturbance- It is apparent that the greater the super- 
sonic speed, the smaller the included angle at the apex of the Mach cone. 
These simple considerations must be modified somewhat if the disturbances 
are not smallj however, the results serve as a reasonable first approxi- 
mation in most actual cases.. 
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The concept of the Mach cone has important implications with regard 
to the applicability of two-dimensional theory and data to parts of 
three-dimensional wings. The relationship of this concept to three- 
dimensional wings is illustrated in figure 2. In the case of the 
straight wing, for example, the effect of the finite span of the wing is 
confined approximately to conical regions extending downstream from the 
leading edge of each tip. The flow over the remainder of the wing 
(shaded area) is not influenced "by the presence of the tips and this 
shaded area is thus a region of two-dimensional flow. For the more 
complex plan forms shown, the flow over the shaded regions is similarly 
unaffected "by the presence of the tips and, for these examples, of the 
root of the wing as well. Within these regions the flow can "be treated 
as essentially two-dimensional "by utilizing the components of the flow 
quantities and deflection angles normal to the swept straight-line 
elements which generate the wing surface (reference 5)• 

FLOW FIELD ABOUT AN AIRFOIL SECTION 

With this "background, consider the general character of the two- 
dimensional flow field about an airfoil section at supersonic speed. 
Figure 3 is a diagram of the idealized, inviscid flow around a simple, 
double-wedge section at angle of attack for a free-stream Mach number of 
approximately 2. The pattern shown Is that predicted "by theory when the 
local velocity in the flow field is everywhere supersonic. In accordance 
with the previous considerations of supersonic flow, the oncoming stream 
(fig. 3) continues undisturbed until it reaches the region of influence 
of the airfoil. Within this region the flow changes are of two general 
kinds. When the flow is turned around a concave corner, as on the lower 
surface at the leading edge, a compression takes place. When the flow 
is turned around a convex corner, as on the upper surface at the same 
location, an expansion results. The compression from the concave corner 
takes place discontinuously through an oblique shock wave with an accom- 
panying dissipation of energy - that is, with an increase in entropy. 
The expansion takes place continuously and isentropically in a fan-shaped 
region originating at the convex corner. Thus, if the flow is along a 
streamline some distance above the present airfoil, the air first under- 
goes reductions in pressure through two successive expansion regions, one 
originating at the leading edge and one at the ridge line, and is then 
recompressed by a shock wave originating at the trailing edge- The air 
beneath the lower surface is, in the same general manner, first compressed 
through a shock wave and then successively expanded through two expansion 
regions -  It is interesting to note that along the surface of the airfoil 
itself the expansions as well as the compressions take place discontinu- 
ously. Thus, contrary to the condition which would exist in subsonic flow, 
there is no stagnation point in the vicinity of the leading edge and no 
tendency toward an infinite velocity at the sharp convex corners. 

As the angle of attack of the airfoil is changed, the flow pattern 
will, of course, change correspondingly.  In particular, the flow 
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disturbance on a given surface at the leading or trailing edge will 
change from an expansion to a compression, or vice versa, as the 
required deflection of the stream is altered. Of more importance, as 
the angle of attack is increased, a condition is eventually reached in 
which the flow "behind the shock wave at the leading edge .is no longer 
supersonic but becomes subsonic instead- At a slightly higher angle of 
attack, the wave detaches and moves forward of the airfoil- These 
latter effects also occur at a given angle of attack when the Mach 
number is reduced toward unity. Once such changes have taken place, the 
entire character of the flow pattern is altered and the purely supersonic 
considerations of the foregoing discussion no longer apply. 

For simplicity, the discussion herein has been carried out in terms 
of a simple, flat-sided section- The same considerations apply to a 
curved profile so long as the leading edge is sharp, except that in such 
a case the expansion along the convex curved surface takes place gradu- 
ally rather than discontinuously-  (The restriction of the discussion to 
airfoils with a sharp leading edge is of no serious consequence, since an 
edge of this type appears desirable for optimum performance.in the two - 
dimensional case when the velocity is more than slightly supersonic-) 

METHODS OF MALYSIS 

Several theoretical methods are available for determining the 
characteristics of an airfoil in a two-dimensional supersonic flow- The 
methods all assume that the fluid is inviscid, that the leading and 
trailing edges of the airfoil are sharp, that any shock waves originating 
from these edges are attached to the airfoil, and that the flow behind 
the leading-edge shock wave is supersonic They differ only in the 
degree of mathematical accuracy involved- In order of decreasing 
accuracy, the methods may be described as the shock-expansion theory, 
the second-order theory, and the linear (or first-order) theory. 

Shock-Expansion Theory 

The shock-expansion method follows directly from the application to 
the airfoil problem of known analytical results for an oblique shock 
wave and an expansion region (references 1 to 3 sad.  6 to 9)- From simple 
considerations of momentum, energy, and continuity, the change in 
pressure and Mach number across a single shock wave can be calculated in 
terms of the Mach number of the oncoming flow and the angle of deflection 
of the flow in passing through the wave. Similar results can be obtained 
for an isolated expansion region- On the basis of these results together 
with the assumption that interaction effects between the individual 
shock waves and expansion regions are negligible, the pressure distri- 
bution over the airfoil surface can be calculated by a step-by-step 
procedure beginning at the leading edge and proceeding rearward (refer- 
ences 10 and 11). For example, on the lower surface of the double-wedge 
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section in figure 3, if the free-stream. Mach number and the deflection 
angle at the leading edge are known, the pressure and Mach number on the 
forward lower surface can he found.from the equations for an oblique 
shock wave. By use of these quantities to provide the initial conditions 
for the flow approaching the ridge line, the pressure on the rear lower 
surface can then he found from the known results for an expansion. 
Because of the nature of the equations for_an expansion, the procedure 
applies equally well to a section with a curved profile.  Once the 
complete pressure distribution is known, the lift, pitching moment, and 
pressure drag of the airfoil are determined by graphical or numerical 
integration. 

As compared with the theories to be discussed later, the shock- 
expansion method has the advantage of greater mathematical accuracyj in 
fact, in instances for which the assumption of no effective interference 
between the shock waves and expansion regions is satisfied, the method 
provides the complete inviscid solution to the problem-  (The case 
illustrated in figure 3 can be shown to be of this type since the regions 
of flow influenced by the eventual intersections of the different dis- 
turbances lie completely downstream of the airfoil.) In other instances, 
notably on airfoils with curved surfaces, some interference does occur ' 
with a resulting approximation in the theory. The main disadvantage of 
the method, however, is that no analytical expressions are provided for 
the section characteristics, a separate set of calculations being 
required for each airfoil at each angle of attack. 

Second-Order and Linear Theories 

The disadvantage of the shock-expansion theory is overcome, at the 
expense of further approximation, by the second-order and linear 
theories (references 12 to 15)* The relationship upon which these 
theories are based is given as equation (1) in figure k-    This equation, 
which is derived by series approximation to the complete equations for 
two-dimensional supersonic flow, expresses the pressure coefficient P 
at any point on the airfoil in terms of ascending powers of the local 
deflection angle r\.    The coefficients of the terms in the series are 
functions primarily of the free-stream Mach number MQ and, secondarily 

of the ratio of the specific heats of the gas 7. By proper definition 
of the sign of the angle r\     -  positive when the surface is facing toward 
the oncoming free stream and negative when facing away from the oncoming 
free stream (see diagram in fig. k)   - and by limitation of the power 
3eries to the first two terms, the same equation can be made to serve 
for Loth a compression and an expansion- This result illustrates the 
fact that in a given supersonic stream the pressure at a point on an air- 
foil in two-dimensional flow is, to the second order of approximation, 
determined solely by the local inclination of the airfoil surface.  This 
is contrary to thb situation in subsonic theory, in which the conditions 
at one point ,n an airfoil section depend, even to the first order, upon 
conditions at every other point. 
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On the "basis of the foregoing simple result for the surface pressure, 
general second-order expressions for the lift, pitching-moment, and 
pressure-drag characteristics of any airfoil section can "be obtained •by- 
direct integration. The final equations involve the coefficients C^_ 
and Cp, the angle of attack of the airfoil, and certain simple integrals 

which depend upon the airfoil shape only. These equations have "been 
worked out in their most general form by Lock (references 15 and 8). For 
cases in which the shape of the airfoil can "be expressed analytically, 
the integrals involved are readily evaluated to obtain direct equations 
for the airfoil characteristics in terms of the parameters which define 
the profile. These results are especially useful in studying the effects 
of systematic variation in thickness and camber for families of sections. 

When "both the terms C-j_ and Cg are retained, the general equations 

(see fig- k)  constitute the second-order theory. If the coefficient Cg 

is in all cases set equal to zero, a linear (or first-order) theory is 
obtained. This latter approximation, which is sufficient for many pur- 
poses, is also known as the Ackeret theory since the linear theory was 
first proposed "by Ackeret in his original treatment of the supersonic 
airfoil problem (reference 12). This elementary theory leads to certain 
exceedingly simple results- It indicates, for example, that the aero- 
dynamic center of the airfoil is at midchord irrespective of the shape 
of the section and that the minimum pressure drag for a family of sections 
of given thickness distribution varies as the square of the thickness 
ratio- The second-order approximation, which modifies these results some- 
what, was developed by Busemann (reference Ik)  at a later date when it was 
found that certain of the first-order results were not in complete accord 
with experiment. It is interesting to note, however, that even to the 
second order the lift-curve slope (per radian) for any airfoil section 

has the simple value of 2C^ or 

vV -1 

COMPARISON BETWEEN TBEOKY AND EXPERIMENT 

Since the various theoretical methods have been reviewed, a 
comparison of the theoretical and experimental results for specific air- 
foils can now be made- 

Pressure Distribution 

Of first interest is an examination of a typical pressure distri- 
bution. Calculated and measured results are shown in figure 5 for a 
10-percent-thick symmetrical, biconvex section at a Mach number of 2.13 

and an angle of attack of 10°. The local pressure is plotted in 
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coefficient form, as a function of the chordwise positionj positive 
pressures are plotted "below the horizontal axis and negative pressures, 
above- The pressure distributions calculated by the three theories are 
indicated by different lines in the figure- Experimental data obtained, 
as part of an extensive investigation, "by Ferri (reference 16) are 
shown as individual points. 

A noticeable improvement is seen in the accuracy of the theoretical 
calculations in going from the linear to the more refined theories. 
Over most of the section, both the second-order and shock-expansion 
theories show reasonable agreement with experiment although the check is 
slightly better when the shock-expansion theory is used. Over the rear 
kO  percent of the upper surface, however, the experimental pressures 
depart noticeably from the values given by any of the theories. 

The discrepancy between the theoretical pressure distributions 
calculated by the linear theory and those calculated by the more precise 
theories has, curiously enough, little effect upon the value of the 
integrated lift.  In fact, the area between the curves for the upper and 
lower surfaces, which gives a representation of the lift, is exactly the 
same for the linear and second-order theories. In other words, these 
two theories, although they disagree in chordwise lift distribution, 
agree in the value of the total lift for the present section. It is 
apparent from the difference in lift distribution, however, that the 
second-order theory gives a position of the center of pressure (or aero- 
dynamic center) forward of that predicted by the linear theory.  (The 
discrepancies noted between the various theories would, of course, be 
smaller for thinner airfoils and at lower angles of attack-) 

The failure of even the higher-order theories to predict the 
pressure distribution over the rear part of the upper surface is known 
to be due to shock-wave, boundary-layer interaction (reference 16). As 
was previously indicated (see fig. 3), the idealized inviscid flow over 
a lifting airfoil section is characterized by an oblique compression 
wave originating on the upper surface at the trailing edge-  In the 
real, viscous fluid the flow pattern is modified by an interaction 
between this trailing wave and the boundary layer on the airfoil surface. 
The boundary layer separates from the upper surface some distance ahead 
of the trailing edge, with the formation of a weak compression wave at 
the separation point and a consequent increase in pressure between this 
point and the trailing edge. 

The difference between the pressure distributions shown herein and 
those characteristic of an airfoil in subsonic flow is apparent. Here, 
the pressures on both surfaces of the section decrease progressively 
toward the trailing edge with no pressure recovery such as that which 
occurs in the subsonic case- This lack of pressure recovery over the 
rear of the section at supersonic speeds gives rise, even in the theo- 
retical inviscid flow, to an appreciable pressure drag.  In the subsonic 
case the drag in a two-dimensional inviscid flow is, of course, exactly 
zero- 
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Over-All Aerodynamic Characteristics 

With the foregoing results in mind, consider the over-all charac- 
teristics of a typical airfoil. Figure 6 presents theoretical and 
experimental lift and moment results, at the same Mach number as "before, 
for a cambered, double-wedge airfoil of 6.3 percent thickness-  A 
straight-sided airfoil was chosen here, instead of the previous "biconvex 
section, in order to simplify the calculations "by the shock-expansion 
method• 

As indicated from the plot of lift coefficient and angle of 
attack, the three theories give approximately the same lift-curve slope, 
at least at small angles. A curve through the experimental points, 
taken again from the results of Ferri (reference l6), would have a slope 
about 10 percent less than the common theoretical value- This reduction 
is due to the shock-wave, boundary-layer interaction previously 
discussed. With regard to the angle of zero lift, the linear theory 
shows a value of exactly zero- - The higher-order theories show a small 
positive value in agreement with experiment.  (This experimental result, 
incidentally, is in direct contrast with the result" in subsonic flow, 
where positive camber leads to a negative angle for zero lift.) In 
general, it may "be said that the check between theory and experiment 
with regard to lift is within acceptable practical limits. 

The agreement with regard to pitching moment is generally less 
satisfactory.  In figure 6 the moment coefficient of the double-wedge 
airfoil - for moments taken about the midchord point - is plotted as 
a function of the lift coefficient. The inclination of the moment 
curves toward the right may be taken as an approximate measure of the 
displacement of the aerodynamic center forward of the midchord. The 
experimental moment coefficients are seen to be more positive than the 
theoretical at all lift coefficients. A straight line through the 
experimental data would indicate a position of the aerodynamic center 
forward of the midchord by about 9 percent of the airfoil chord. This 
displacement is significantly greater than the theoretical displacement 
of zero according to the linear theory or of k percent according to the 
second-order and shock-expansion theories- Both the general positive 
shift in the experimental moment coefficients and the relatively forward 
displacement of the aerodynamic center are attributable to shock-wave, 
boundary-layer interaction on the upper surface near the trailing edge- 

Drag results for the double-wedge airfoil are shown in figure 7 as 
a function of the lift coefficient. Theory indicates that the variation 
of pressure drag with lift is essentially parabolic - exactly so in the 
case of the linear and second-order theories, nearly so in the case of 
the shock-expansion method. The second-order and shock-expansion 
theories give virtually coincident curves. It is seen that the experi- 
mental data agree fairly closely with these latter results- The exact 
agreement in the magnitude of the minimum drag is at first surprising. 
The effect of skin friction, which is completely neglected in the theory, 
would be expected to raise the measured minimum drag relative to the 
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theoretical value. This tendency is opposed, however, by the unexpectedly 
high pressures in the vicinity of,the trailing edge as the result of shock- 
wave, "boundary-layer interaction.. These two effects are probably compen- 
sating in the present case- Such compensation is not to he expected, how- 
ever, on all airfoils or at all Mach numbers and Eeynolds numbers- 

The results of the foregoing figures are all for a single Mach number. 
Figure 8 illustrates the typical effect of variation in Mach number upon 
a given section characteristic, in this case the drag coefficient at 
zero angle of attack. The theoretical curves show an increase in the 
pressure drag coefficient as the Mach number decreases toward unity.  (The 
linear and second-order theories give identical results in the present 
case, though this fact is not always true.) The two available experi- 
mental points confirm the theoretical tendency- The theoretical results 
are, as previously implied, valid down to the Mach number at which the 
flow behind the leading-edge shock wave becomes subsonic Below this 
point, the problem is one of mixed subsonic and supersonic flow} the 
theoretical solutions to this problem are only now being developed. 

CONCLUDING REMARKS 

Only a brief outline of existing knowledge regarding the basic two- 
dimensional wing problem at supersonic speeds has been presented. Many 
subsidiary problems have been studied on the basis of the available 
theories, including the effects of systematic variations in airfoil 
shape (reference 17), the properties of flaps (reference l8), the 
influence of sweepback for cases in which two-dimensional theory is 
applicable (reference 19), and the characteristics of two-dimensional 
biplanes (references 20 and 21). For many such problems, valuable 
results have been obtained with one or another of the inviscid theories, 
depending upon the degree of, accuracy required. In other case3, however, 
such as those concerning the determination of the optimum airfoil shape 
for a given operating condition, consideration of the effects of viscosity 
and the boundary layer is essential (reference 22). In the study of the 
effects of viscosity and the boundary layer, in particular, there is an 
opportunity for much valuable research. 
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APPENDIX 

SYMBOLS 

C-i, Cg coefficients in series expansion for P 

c-7 section lift coefficient 

c section pitching-moment coefficient for moments about the 
^V2        midchord point 

c^ section drag coefficient 

CJ section drag coefficient at zero angle of attack aa=0 

MQ free-stream Mach number 

p local static pressure at point on airfoil 

/P - P0\ ? local pressure coefficient I  j 

p free-stream static pressure 
•^o 

q free-stream dynamic pressure 

a angle of attack 

7 ratio of specific heats of gas ( c 

Cp specific heat at constant pressure 

c specific heat at constant volume 

p/°v) 

local inclination of surface of airfoil measured relative to 
free-stream direction 
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Figure 1.-   Disturbance point in subsonic flow and supersonic flow. 
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Figure 2.-   Regions of two-dimensional flow. 
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Figure 4.-   Basic equations for linear and second-order theories. 
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THE USE OF CONICAL AND CYLINDRICAL FIELDS Iff 

SUPERSONIC WING- THEORY 

By Robert T. Jones 

Ames Aeronautical Laboratory 

Some of the recent advances in the theory of thin airfoils are 
presented with particular reference to extensions of the theory to 
three-dimensional flows and to supersonic speeds. 

The thin-airfoil theory is essentially a linearized theory of small 
disturbances and the orgin of the concepts may be traced back to the 
older theories of Munk and Ackeret. The present emphasis on three- 
dimensional flows arose from the discovery that the type of two-dimensional 
supersonic flow considered by Ackeret is aerodynamically inefficient. The 
search for aerodynamically efficient forms for supersonic flight also 
focuses attention on the linear, or smaJ1-disturbance, theory since bodies 
and wings creating large disturbances are thought to be aerodynamically 
inefficient. 

The newer development of the theory is the work of many investigators. 
The present discussion, however, is based largely on the conical—flow 
theory first employed by Busemann (reference l). 

The term "thin airfoil" is used to denote a thin, essentially flat 
body, the surface of which departs only slightly from the xy—plane. In 
the general problem no restriction is made on the shape of the plan form, 
but it is essential that the body be thin and flat in all vertical cross 
sections] hence, slender bodies of revolution are avoided. 

The problem discussed herein is the calculation of the small 
disturbance velocities u, v, and w in the external field produced by 
the flight velocity T of the airfoil. 

As is well known in acoustics, air motions of small amplitude are 
governed primarily by the simple properties of elasticity of volume and 
density. In order to depict such motions mathematical 1y, a frictionless, 
perfectly elastic fluid is, therefore, adopted and a velocity field uw 
must be found which is consistent with Newton's laws and which 
agrees at the airfoil surface with the outward, or normal, velocity 
imparted by the motion of the airfoil. The application of Newton's laws 
to the motions of small elements of such ,a simplified model fluid results 
in the familiar wave equation for the velocity potential 9, 

<Pxx + <Pyy + <PZZ = "^ <J>tt W 

where c is the velocity of sound and cpx = u, cpu. = v, cpz = w. 
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The description of the whole velocity field by a single scalar 
potential 9 is, of course, a great simplification and, as explained in 
text books on hydrodynamics, this, scalar potential occurs in every case 
of frictionless motion in which the density p is a function of the 
pressure only. The elements of such a fluid move only under the action 
of "buoyancy" or pressure forces. When the density is dependent on the 
pressure only, variations of density occur, only along the direction of 
the buoyant force. This force then passes through the center of gravity 
of each element and no rotation is produced. The existence of 9 follows 
from the absence of rotation. 

Of first interest in the airfoil problem are steady flows. The 
steady flow consists of a fixed pattern of streamlines attached to the 
airfoil and moving with it. In order to represent the steady flow, it 
will be necessary to transform the stationary axes of equation (l) to axes 

moving with the airfoil at the flight velocity T. The quantity — 9^. 

Y2 °2 is then replaced by •L— 9.^. and the equation becomes, after transposition, 
c^ 

"^ xx + V + <Pzz = ° (2) 

in which — is the Mach number M. The problem is now the mathematical 

one of finding a solution of equation (2) which agrees with the normal 
boundary velocity imparted by the airfoil. When the thin airfoil as 
specified is used, it is found sufficient to replace the actual boundary 
condition by an equivalent condition on the vertical velocity w in 
the chord plane; that is, 

where — ±B  the slope of the airfoil surface. It is important to note 
dx 

that the sliding component of the airfoil surface imparts no motion to the 
fluid since the fluid is frictionless. The error made in the equivalent 
boundary condition at z = 0 becomes appreciable only at distances of the 
order of one wing thickness from the edge. The pressure distribution over 
the airfoil surface may likewise be taken as the pressure in the chord 
plane and is obtained from the well—known formula for the pressure in a 
sound wave 

Ap = -p£& 
öt 
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or, in steady flow 

Ap = -pv|£ 
ox 

from which 

q.   v 

Thus far, nothing has been said about subsonic— or supersonic—flight 
yelocities. This distinction arises in equation (2) and in the form of its 
solutions when M ^ 1. 

Except for this distinction, variations of M are of no consequence 
mathematically since they can be represented "by an equivalent change in 
the scale of x relative to the other coordinates. This change of scale 
is known as the Prandtl-Glauert transformation and is given as 

x« = \/r ip 
or 

x« = 
\/M2 - 1 

The formula to "be used depends on whether the flight velocity is subsonic 
or supersonic. In the latter case, the significance of the transformation 
is easily seen, since this transformation serves to maintain the correct 
inclination of the Mach waves to the line of flight at different speeds. 
It should be noted that the sudden transit-ion of the differential equation 
from the elliptic to the hyperbolic type at M = 1.0 is a feature of the 
steady—flow equation (equation (2)) and does not, of course, arise in 
connection with equation (l). 

The essential features of the steady flow at subsonic or supersonic 
speeds can then be ascertained from solutions of the reduced or normalized 
equations. For M = 0, 

^xx + <Pyy + ^zz = ° (3) 
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and for M = 1.41, 

*xx " «Pyy " *« = ° (J+) 

As may "be shown ~by  direct differentiation, - equations (3) and (k)  possess 
the primary solutions 

qp = f(ox + ßy + 7z) 

where a, ß, and 7 are quantities determined so that for equation (3) 

aß +  ß2 + 72  = 0 

and so that for equation (k) 

a2 - ß2 - 72 = 0 

The cylindrical flow field, which is the "basis of the two-dimensional or 
wing section theory, is obtained "by specializing the primary solution 
to the two coordinates x and z. In this case for equation (3) 
a = 1.0 and 7 = 1;  and for equation (k)    a =  1.0 and 7 = 1.0 so that 
the general solutions for the cylindrical or two—dimensional flow field 
"become 

q> = f (x ± iz) 

or 

u = f*(x ± iz) 

w = ±  iu 

The general solution is the "basis of the Muhk theory, as well as the more 
exact wing section analyses which depend on the theory of functions of a 
complex variable. At supersonic speeds the corresponding solutions are 
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cp = f (x ±  z) 

or 

u = f*(x ± z) 

w = ± u 

This latter form of solution, which represents a plane sound wave of 
arbitrary intensity at 45° to the normalized coordinate axes, is the 
"basis of the Ackeret theory. 

The general form of flow field given by solutions of the two 
foregoing types is illustrated in figure 1. The sketch on the left-hand 
side is the familiar subsonic streamline pattern for a symmetrical biconvex 
wing section. In the subsonic pattern the velocity and pressure disturbances 
diminish uniformly with distance and in the case of steady flow the field 
possesses a fore and aft symmetry which results in no pressure drag or wave 
drag. The sketch on the right—hand side (fig. l) illustrates the marked 
difference in streamline pattern that arises when the crosswise velocity 
of the cylindrical field is supersonic. In this case the phase relation 
of u and w is shifted (from 1 to i) and the pressure distribution 
is antisymmetric, resulting in a wave drag. This drag appears as the 
energy in the plane sound waves emanating from the airfoil. The change 
from subsonic to supersonic type of flow field arises when the rate of 
progress of the flow pattern through the still fluid exceeds the velocity 
of sound. With cylindrical flow, the field is not affected by an axial 
velocity of the cylinder and the pattern progresses at a rate determined 
only by the crosswise motion of the cylinder. Hence, the subsonic type 
of flow may persist on a yawed wing even though the flight velocity is 
supersonic.  (See reference 2.) 

The sketch in the lower part of figure 1 represents a cross section 
of a conical flow field of the type originated by Busemann. The particular 
case used for illustration herein is the flow produced by a flat plate 
of triangular plan form moving point foremost at a • small angle of attack 
(fig. 2). The Mach cone originates, of course, at the apex of the triangle 
and the field inside this cone is geometrically the same in all downstream 
cross sections except for an expansion in scale along the x-axis. The 
conical flow field may be obtained by the superposition of primary solutions 
of the form 

u = F(ccx + ßy + 7z) 
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If    u = e    ,  then the solution 

u = F[-2HX + (1 + n2)7 + 1(1 - p2)z] 

represents a plane sound wave at an angle 0 to the y—, z—axes. 
Superposition of such vaves of strength ff (p.) from 0 = 0 to 0 = 2« 
results in a solution analogous to Whittaker's solution; that is, 

u = (if«(n) F[-2^X + (1 + p2)y + 1(1 - p2)z] ^ 

The quantity —2p.x + (l + v£)y  + i(l — M-2)z may "be factored into 

(li. - e) f p. - iJ (y - iz) where 

y + iz  
e = 

x + V x2 — y2 — z2 

The general solution for 0° is obtained when F is replaced by log; 
that iSj 

u = (Af'(n) log [(u - €)(n - =)(y - iz)] an 

f(u) 
1    1  +  

U - €   ^ _i 
e 

ä*i 

= 2*i [f(e)] 

if the contour does not include =• and if (h   f (n) dji = 0 or, in other 

words, if f is an analytic function (see reference 3). 

If the flight velocity is subsonic3the argument e is replaced "by 

       -  • The latter solution was given by W. F. Donkin in 1857 
x + V x2 + y2 + z2 

(see reference k).    In either case the form of the argument shows an 
essential similarity to an expanding cylindrical field (see reference 5)• 

In fact, for the slender conical field, where y2 + z2 may be neglected 

in comparison with x2, the argument becomes simply - . 
2x 
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Although no analytic function of € -which removes the distortion of 
the conical field relative to the cylindrical field can "be found,, it is 
possible to transform the field in such a way that the distortion is 
removed in the neighborhood of the airfoil in the plane z = 0. The 
desired transformation is obtained from the fact that 

y + iz _  2e 

x    1 + ef 

Since ee approaches e^ near z = 0, the analytic variable 

2e z = 
1 + 6 2 

+ iz V ~r IZ will approach *•  in the neighborhood of the chord plane inside the 
x 

Mach cone. The new variable z greatly simplifies the boundary conditions 
inasmuch as the Mach cone is transformed into the positive and negative 
branches of the real axis outside ±1 and the interior of the Mach cone is 
mapped into the whole plane. Figure 3 illustrates the effect of this 
change of variable. 

The relation between u and w in the conical field is found from 
the conditions for irrotational flow; that is, 

ow _ 5u 
öx  öz 

In terms of the variable e 

-*(-*) 
dw = i e - i du 

or in terms of the variable z 

w = —l /   du 

It is interesting to note that the condition for a flat airfoil surface in 
two—dimensional flow holds also for the conical field. In the two- 
dimensional flow w = iu and the condition for a flat surface (constant w) 
is simply that the function adopted for u has no imaginary part over the 
region of the real axis covered by the airfoil (assuming that the real 
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solutions for u and v are used). In the conical flow, the quantity 

\/l — z^" 
 • is a real number over that part of the real axis "between ±1 so 

z 
that in this region the condition is unchanged. 

Figure h  illustrates the solution for. the flat triangular airfoil at 
a small angle of attack as obtained by H. J. Stewart and M. I. G-urevich 
(references 6 and 7) and also by Bartels and LaPorte (reference 8). The 
constant value of w, denoted by wc, must he calculated to give the 
relation between the lifting pressure and the angle of attack. The 
quantity m is the cotangent of the sweepback angle for M = \/~2;  for 
other Mach numbers m = / M2 — 1 times the cotangent of the sweep angle. 

Other wing forms generally require the superposition of conical and 
cylindrical fields. Thus, in the case of the rectangular wing of wedge- 
shaped section (fig. 5) "the field is cylindrical up to the Mach cone 
originating at the corner of the wing and is conical inside this cone. 

The solution for the flat triangular wing can be used as a starting 
point to obtain the pressure distribution over a sweptback wing. In this 
process, which is explained in references 9 and 10, the desired wing plan 
form is, in effect, cut out of the triangle "by the superposition of conical 
fields which cancel the lifting pressure over portions of the triangular 
area extending "beyond the desired outline. The process is simplified in 
the supersonic case by the limited zone of influence of the superimposed 
fields. The lifting pressure distribution over a wing with 63° sweepback 
is shown in figure 6. It will be noted that the lift distribution over the 
foremost section is flat, as in the Ackeret theory, while farther along 
the span the subsonic type of pressure distribution appropriate to the 
reduced crosswise velocity appears. In this example the wing tips were 
cut off in a direction parallel to the air stream and, in such cases, the 
lift drops sharply to zero in the region behind the Mach cone from the 
tip corner. 

The solution for a swepthack wing having curvilinear sections cannot 
be obtained by the superposition of a finite number of conical fields but 
requires an integration. Such a case is illustrated in figure J,  which 
shows the pressure distributions at several sections of a symmetrical 
biconvex wing at 0° angle of attack. This example serves to illustrate 
the change in proceeding from subsonic to supersonic speed. Since the 
angle of sweepback is large, the change is not pronounced and occurs 
primarily at the center sections of the wing. It is interesting to note 
that the center sections of the wing have a pressure drag at subsonic speeds. 
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Figure 6.-   Lifting pressure distribution over a wing with 63   sweepback. 
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Figure 7. -   Pressure distributions at several sections of a symmetrical 
biconvex wing at 0° angle of attack. 
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THE USE OF SOURCE AND SINK CONCEPTS IN THE CALCULATION 

OF WING CHARACTERISTICS AT SUPERSONIC SPEEDS 

By Clinton E. Brown 

Langley Aeronautical Laboratory 

The calculation of wing characteristics within the line- 
is performed "by a superposition of known solutions of a mor 
elementary nature. In incompressible flow the use of sourc 
and vortex solutions has proven very useful, perhaps because . 
elementary solutions themselves have been easy to visualize; certa^^,, 
the idea of building up a body of revolution by a continuous distribu- 
tion of sources and sinks is a natural one. At supersonic speeds the 
use of sources, doublets, and vortices can lead to many simplifications 
and give the student a physical picture of what is occurring in the flow. 
Ton Karman and Moore (reference 1) were first to introduce source and 
sink concepts to supersonic .aerodynamics when they calculated the flow 
about bodies of revolution by an axial distribution of sources. In 1935j> 
at the Yolta Congress, Yon Karman (reference 2) suggested the use of 
Surface source distributions in the calculation of wing characteristics 
and thus laid the ground work for much of the present work. 

Unfortunately, the spherical symmetry of incompressible source flow 
is lost as the velocity of the stream becomes greater than the speed of 
sound, as may be seen by comparison of the potential function 0 of a 
source in incompressible flow and supersonic flow: 

^=o =    K  — CD 
Vx2 + y2 + z2 

and 

0M>1 = K „ (2) 
Vx2 - (M2 - lXy^-Tz2} 

where El is the strength of the source and M is Mach number of the 
undisturbed stream. Prandtl (reference 3) has given a very good 
derivation of the potential function of a supersonic source system that 
uses a superposition of sources fixed in the fluid but varying in strength 
with time. Consider a body moving at supersonic speed through a 
compressible fluid originally at rest. The motion produced must satisfy 
a differential equation which, upon restriction to motions that are small 
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compared with the velocity of sound,, "becomes the wave equation in three 
dimensions, well-known in mathematical physics. That is, 

±¥l = ^l+ #£ + ¥£ (3) 
c2 ät2  äx2  öy2' öz2 

where c is the speed of sound. 

The solution of this equation representing a fixed source of fluid 
is also known and more complicated solutions may "be "built up "by distri- 
buting sources in the fluid. In order to get to the solution for a "body 
or disturbance moving through the fluid, Prandtl assumes the x-axis or 
flight axis to "be covered with sources, each source "being fixed and 
having strength vary with time.  (See fig. 1.) As a given disturbance 
moving along the z-axis reaches any source, that source starts to flow, 
flows according to a common law, and ceases to flow when the disturbance 
has passed. The potential at any point (x,y,z) in the fluid is then 
made up of the contribution from each source in accordance with the 
known expression for the potential function of the source flow. This 
expression is given in figure 1 for a source located at a point on the 
x-axis and is as follows:' 

d0 = - -A C-L dx' 
E 

where t is the time,  T is the time at which the source started to 
flow, c is the speed of sound, E is the distance between the source 
and field point, and f is the law which governs the strength of the 
source flow. As no disturbance can be produced at the point (x,y,z) 
until the sound or pressure wave reaches the field point, the potential 
is only affected by those sources, the initial waves of which have already 
reached the field point at the time t.  It should be noticed that lines 
from the initial point of the disturbance tangent to the wave fronts 
from the sources form the Mach cone or region of influence of the distur- 
bance. The potential will then be expressed as an integral and will be 
a function of the space coordinates and time. If, however, the obser- 
vation point is allowed to move along at the same speed as the distur- 
bance, the time element disappears, and finally an integral expression 
is obtained for a system of sources moving at ^a supersonic Mach number M. 
The following expression was used by Von Kanaan and Moore (reference l) in 
computing the flow over slender bodies of revolution at supersonic speeds: 

Pa2 f.'x^dx-, 
K - - 2 / a— LiLi—— w 
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In this equation, the field point is at (x,y,z) and the position on the 
axis x-j_ may be considered to be the location of a supersonic point 

source having as its potential field the expression of equation (2). 

For wing problems, however, lifting surfaces, and therefore surface 
source distributions, are of interest. The potential at any point in the 
space will then be made up of the contributions from sources distributed 
over a region of the xy—plane and may be written as a double summation or 
integral: 

(^2  na2 
d  g(x1,y1)ax1dJl  

fe--       (5) 

Ub-L Ja-L I/ (x - X-L)2 - (M2 - l) [(y - yx)
2 + z2J 

In this expression the quantity g(x-, *y-i) *s ^e expression describing 
the source intensity at the point (x2_ty±)'    Care must be taken in 
choosing the limits in the integral so that the area of integration 
includes only those sources which can effect the field point, that is, 
the sources which contain the field point in their Mach cones« 

The velocity component normal to the xy—plane containing the sources 
is obtained by differentiating the potential function with respect to z. 
Puckett (reference k)  and others have shown that this normal velocity at 
a point on the surface z = 0 is affected only by the sources in the 
immediate vicinity of the point and is given by the expression 

vz = & = ±*g(x,y) (6) 
oz 

±z->0 

It is seen that the normal velocity is discontinuous at the surface and 
of magnitude proportional to the local—source strength. This result is 
not surprising if it is remembered that the source solutions used in the 
previous derivation produced a radial flow and therefore could not 
produce a velocity normal to the plane containing the source except 
directly at the source itself. 

At the surface, the slope of the streamlines is given to a first 
approximation by 

_£. = tan 0 S 0 (7) 
V0 
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The source distribution over the surface then produces a splitting 
of the flow streamlines and is therefore capable of representing the 
effect of thickness on a wing plan form. For example, on a wing of 
given plan form the surface slopes are known and, hence, from equations (6) 
and (T) the source distribution is known. The potential function for the 
wing can therefore be calculated by inserting for gCflc^y^) in equation (5) 
the expression obtained from equations (6)' and (7) to obtain 

1^2 \\B-2 

S*c 
Vr K*!'7!)**!*7! 
kx  Ja-L  \/(X-X1)

2-(M2-l)[(y_y1)2+ z2 
(8) 

Once the potential function is known, it is possible to obtain the 
velocities by differentiation. The method for calculating the pressure 
distribution and drag of symmetrical wings at zero angle of attack is 
thus direct and involves only the solution of definite integrals. This 
method has numerous applications in calculating the drag of supersonic 
wings. Rectangular wings, triangular wings, and tapered and untapered 
sweptback wings having various airfoil sections have been calculated and 
are available. 

As has been seen, a source distribution produces a parting of the 
flow and hence an identical flow pattern above and below the xy—plane. 
Sources alone, therefore, will not produce a lifting force on a body. 

What is needed is a potential function which iB discontinuous at 
the plane of the wing and which will, therefore, produce a difference 
of pressure or lift on the wing. If the vertical velocity produced by a 
source distribution is used as a new potential function, this type of 
potential function can be obtained because, as demonstrated previously, 
the normal velocity is discontinuous at the plane of the sources. The 
new potential function, which is the derivative of a source potential, 
is called a doublet potential because it can be formed by an operation 
on a double sheet of positive and negative sources. The doublet potential 
may be written now as 

0fe bz        öz 
s _ a 

nb2 pa2 k(x1,y1)dx1dy1 

>   (9) 

bx Jax \j(* -x±f -(M2 - l)U -7lf +  z2 
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and by referring again to equation (6) it is seen that the potential at 
the surface z = 0 is 

= +rtk(x,y) 

±z->0 (10) 

where k(x,y) is the doublet- or source-distribution function. At the 
surface, the x—, y—, and z—component velocities may be written as follows: 

v = 2£ = + „<& 
z   rVy  ~" OX 

±z-^0 dX 
(11) 

±z^0 Öy    * 
(12) 

v„ = 
a? _ ö£ 

z
  öz ÖZ2 

1^2 pa2 

< - 
k(Xl'yi)dXldyi 

>i JLL \|(
X
-

X
I)

2
-

(M2
-

I) 

> (13) 

x2   2 
(7-7l) + z 

Inasmuch as the pressure is proportional to the x-component velocity, 

it can be seen that'there is a difference in pressure or lift wherever — 

exists. The z-component of the disturbance velocity is found to be contin- 
uous at the surface and the streamlines above and below the surface are 
therefore deflected in the same direction. The doublet distribution is 
thus capable of representing the effects of camber and angle of attack of 
wings. 

In problems in which the camber or angle of attack is given and the 
pressure distribution is required, the doublet-distribution method is 
rather difficult to use because the doublet distribution function is not 
known but is beneath the integral sighs, as in equation (13). The camber 
or angle of attack can give the value of the vertical velocity vz, but 
the function k(x1,y1), the doublet distribution, is not known. This 

type of equation, called an integral equation, ia often quite difficult 
to evaluate. 
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When the presstore distribution is given, the potential on the 
surface and, therefore, the doublet distribution can be calculated 
directly. The camber can then be obtained by calculating the vertical 
velocity at each point. The difficulty of solving an integral equation 
is therefore not met in this case. 

In order to illustrate briefly the manner in which camber lines may 
be calculated, consider a uniformly loaded triangular wing. The pressure 
coefficient may be prescribed as a constant A and, therefore, from the 
pressure equation, vx is constant; that iB, 

1 

2v, 
= A UM 

Inasmuch as the potential is the integral of the velocity vx by 
definition, the potential on the surface becomes 

0z=o = J Tx a* - - -^ X + F(y)J (15) 

At the leading edge, however, $ = 0 and, therefore, the unknown 
function F(y) may be evaluated as follows: 

x = |y| tan A (16) 

hence 

F(y) = - |y| tan A (17) 

where A  is angle of sweepback. 

Since the surface potential distribution and doublet distribution 
are equal except for a constant factor it, the potential of the complete 
flow is given by the doublet distribution as 

b2 pa2 
AV0 (xi - |yi|  tan A) ^i^i 
_ >   (18) 

L Jai  . P " xl)2 ~ (M2 " l} [(y " yl)2 + z' 
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This integral can now be evaluated and, from the potential function 
obtained, the vertical velocity at the surface may be computed; thus 
the camber lines can be found. The camber on such a wing has been 
given already by Jones in reference 5» 

In the solution of the integrals used in this paper the order of 
integration and differentiation is found to be quite important. The 
solutions are difficult because the elementary solution is not defined 
at its Mach cone. Hadamard (reference 6) has treated such problems, 
however, and Heaslet and Lomax (reference 7) have applied his procedure 
to the solution of wing problems. 

The foregoing method of doublet distributions can be tied in with 
the familiar vortex—theory concept of incompressible flow. Consider a 
three—dimensional wing represented by a certain doublet or surface- 
potential distribution. The circulation I about a chordwise strip can 
be computed in the usual manner by integrating the velocities along a 
line directly above and below the surface. The circulation thus becomes 

iT.E. 

r =1   (V^z)**"*1"^ (19) 

'L.E. 

The integration is complete at the trailing edge because the 
x—component-velocity difference vanishes at this point. The potential 
difference in the wake becomes, then, only a function of y. The pressure 
on the strip is given by the relation 

Ap = - pV0vx (2°) 

The lift on the strip of width dy is then 

.T.E. 

dl 

dy 
,(Apz -Apu)dx = pYQr (21) 

This equation shows that the Joukowski hypothesis is valid also in the 
supersonic range of flight and the familiar concepts of vortex flow must . 
apply. It will be interesting to show how a horseshoe vortex can be found 
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by a doublet distribution. In the sketch, consider the area in the xy-plane 
enclosed by the straight lines to be uniformly covered by doublets. 

Vo 
-e- 

•© 

 e  
The surface potential in this region will also be constant as discussed 
previously. The circulation computed along any circuit enclosing the 
boundary of the region will then be a constant which is proportional to 
the strength of the doublet distribution. The doublet distribution is 
therefore seen to be equivalent to a single vortex line along the 
boundary of the region considered. This result is directly analogous 
to that found in incompressible flow; however, the induced velocity 
fields in the two cases are different except at a large distance behind 
the lifting line where they become the same. Any wing and its wake may 
be represented by a vortex distribution in the usual manner, although 
for supersonic wing problems the lifting—line theory is unsatisfactory 
because of the discontinuities present in the solutions which make the 
assumptions used in lifting—line theory very poor indeed. The alternative 
is, of course, to proceed to a surface distribution of vortices or 
doublets in which case the objections are overcome. Calculations of this 
type have been performed by Schlichting.  (See reference 8.) At a great 
distance behind the wing, the change in potential with respect to the 
flight direction approaches zero and the differential equation of motion 

, p        a20    *2<t    ö20 
(M2 - 1 —£ = —r-  + —T- 

2    2    2 
dx   dy   dz 

approaches Laplace's equation in two dimensions involving only the cross- 
flow velocities. The downwash produced by the wing is then seen to be 
affected by only the trailing vortex system as in incompressible flow. 
(See reference 9.) It might be supposed that the induced drag of the 
wing could be calculated from the energy in the wake; however, an 
additional amount of energy due to lift is found to be transported to 
infinity by the sound waves produced at the wing.  (See reference 10.) 
The calculation of the induced drag for certain cases requires the use of 
second-order terms, which were originally dropped in the analysis. The 
use of such terms is, therefore quite a controversial subject. Available 
information on the subject, however, indicates that a procedure in which 
these terms are included is at least qualitatively correct. 
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Puckett and others have demonstrated that under certain conditions the 
flow over lifting surfaces may "be obtained by source distributions instead 
of doublet distributions which involve integral equations.  Such conditions 
arise when the flow component normal to a leading edge is supersonic; then, 
the two sides become independent. This fact is illustrated by the first 
sketch of figure 2. The region of influence of a disturbance on one side 
of the triangular wing does not intersect the leading edge; hence, the 
effect of the disturbance is not felt on the opposite side. The pressure 
distribution on the surface for the case in which the opposite surface 
forms a wedge is the same as that for the case in which the opposite side 
is coincident with the original surface. The potential can therefore be 
found for both cases by the source—distribution method. 

The second sketch in figure 2 indicates that when the flow component 
normal to the leading edge is subsonic, the two surfaces are not indepen- 
dent, and the source distribution method cannot be used without further 
consideration. Eward (reference 11) has found a very ingenious way to 
extend the source-distribution method for calculating lift to those cases 
in which the leading—edge components of velocity become subsonic.  It is 
assumed that the wing leading edge is extended until the normal component 
of flow is supersonic and the two sides become independent. The problem 
is then to determine the proper source distribution over the wing extension 
that makes the potential difference in this region zero. In figure 2 the 
region on the wing extension affecting the field point shown is labeled A. 
Evrard discovered that the effect of the proper source distribution over 
this area was equal but opposite in sign to the effect produced by the 
sources in region B. The potential at the field point can therefore be 
calculated by performing an integration of the sources over region C. 
Problems involving the use of two interacting wing extensions are no 
longer as simple but can still be done. The aforementioned method is 
indeed of great utility as it is,very simple to apply and obviates the 
necessity for solving integral equations. 

The theoretical work discussed herein must be carefully checked 
experimentally before it can be trusted to any great extent. At this 
time it is too early to set down the limits of applicability, such as 
the Mach number range, maximum angle of attack, or thickness ratios; 
however, the fact that the theory is of great value cannot be questioned 
inasmuch as the results provide analytic expressions from which trends 
and the effects of variation of parameters may be found. 
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Figure 1.-   Source system in motion. 
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Figure 2.-   Illustration of Eward's method. 
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UNSTEADY LIFT HT HIGH-SPEED FLIGHT 

By Harvard Lomax 

Ames Aeronautical Laboratory 

The problems discussed in this paper involve the initial time 
history of forces on a two-dimensional flat—plate wing section. The 
first of these problems is the calculation of the transient pressure 
on the flat plate starting from rest and continuing at a constant 
speed and angle of attack. This can correspond physically to a sudden 
angle—of-attack change. The second problem is the calculation of the 
transient pressure on the flat plate entering a sharp-edge gust. For 
large values of time, both of these solutions approach the more familiar 
steady—state value of the lift on the plate at a given angle of attack. 

The problem involving the angle—of—attack change is the same as 
that studied by Wagner (reference l) for the case of incompressible 
flow. In the present paper, this well—known solution is extended to 
include the effects of both subsonic and supersonic Mach numbers. This 
study shows that the effect of Mach number on the load distribution is 
entirely different at the beginning of the motion than at the end of 
the motion when the Prandtl—Glauert or Ackeret formula applies. 

Previous studies have been made in the field of high—speed unsteady 
lift by Garrick and Rubinow (reference 2), and by Chang (reference 3). 

The method of solution employed in this paper differs from that 
used by Garrick and Rubinow in their study of flutter in that emphasis 
is placed on the development of lift following a sudden unit change in 
angle of attack rather than on the lift of a harmonically oscillating 
wing. This unit-angle—of-attack method was used by Heaslet and Lomax 
(reference h)  and proceeds as follows: First, the basic partial dif- 
ferential equation is obtained and simplified to its linearized form; 
then a solution for a sudden "unit" displacement is found in terms of 
the pressure distribution; finally, since the basic equation has been 
linearized, these solutions for the unit displacement are superimposed 
with the result that the pressures on a flat plate undergoing any 
arbitrary motion can be found. The usefulness of the result is greatly 
increased by its ready adaptation to the operational methods used in 
similar problems by Jones (reference 5) and presented in detail by 
Churchill (reference 6). 

The solutions which this type of analysis yields is given the 
name "indicial solutions." As an example, consider that the unit 
displacement is the angle of attack of the wing. This means by 
definition that a is zero for negative values of time and equal to 
unity for all positive values of time. The load distribution resulting 
from such a unit displacement is called the indicial angle—of—attack 
load. Similarly, the integrated value of this loading is called the 
indicial angle—of—attack lift. 
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Proceeding now In the manner which haa been outlined, the "basic 
partial differential equation is obtained. This governing equation 
used in the study of unsteady lift problems comes from a combination 
of the equations of motion, continuity, and state. The approximations 
used in reducing these equations to the linearized form suitable for 
analysis are simply that the induced velocities are small enough to 
be neglected in comparison with the free—stream velocity and that the 
velocity gradients are all of similar magnitude. These assumptions 
in simplifying the partial differential equation are consistent vith 
those of thin airfoil theory in simplifying the boundary conditions — 
namely, that the boundary conditions be specified in the plane Z = 0 
and that the tangent of the angle of attack be replaced by the ang.le. 
Such approximations result in an indeterminate error in the induced 
velocities of the solutions, so that for terms like the lift, velocity 
of sound, and entropy which can be expanded in terms of, say, the 
induced velocity u, only the lowest nonzero power of u should be 
used in the expansion. 

The resulting linearized partial differential equation is the same 
as that studied by the various authors mentioned. The two—dimensional 
form of this equation for the perturbation velocity potential in terms 
of the space coordinates X', Z', the time t1 and the free—stream 
velocity of sound aQ and Mach number MQ can be written as follows: 

2A ö2$ N2 2M        ^2 o      o $ 
.2 

10$ 
ÖZ«2 a0    ÖX'   of a02 ^2 

M   1 o <P   , O <P O   O <P X  O <P  _ n fl \ 

'  5X«2  '"~-';>  c ' -VY'  M' ° -   -° ' '  ' 

In such a form, it is rather formidable, but by USJ of the transformation 

It can be reduced to 

X = X' - ly^t« 

Z = Z* 

t = a0t» 

;)2$ ö2$ d2$ 

at2 ox2 az2 

the normalized form of the wave equation. 

= 0 (3) 
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The wave equation, of course, has "been extensively studied, since 
it is one of the most important equations of mathematical physics. 
Most of this study, however, has "been directed toward pro'blems in 
which the "boundary conditions are given for t = 0.  (See, for instance, 
reference 7„)  In such cases "both the function and the initial values 
of its derivatives must be specified in order that a unique solution can. 
he obtained. This is the so-called Cauchy problem.  In unsteady lift 
pro'blems, on the other hand, the boundary values are known only in 
the plane Z = 0; that is, the slope of the lifting surface is speci- 
fied for all values of time. This difference in orientation completely 
changes the nature of the problem. And, in fact, it can be shown that 
when boundary values are specified for Z = 0, a unique solution can 
be found, Just as in Laplace's equation, by specifying only the deriva- 
tive of the function. This same situation — that of having the data 
given in another than the classical t = 0 plane — arose in the study 
of three—dimensional supersonic lifting—surface problems and a rather 
complete discussion of it in that connection is given in reference 8. 

This analogue with the supersonic lifting—surface problem can be 
quite useful in establishing the data necessary for the unsteady lift 
cases.  In order to construct this analogy, however, it is first 
necessary to discuss the boundary values for some typical unsteady 
lift problems. Consider a wing at an angle—of—attack a starting 
suddenly from rest at t = 0.  (See fig. 1.)  In the X,t plane, this 
wing would sweep out a region shown as the shaded area in figure 1(a) . 
It is to be remembered from the transformation given as equation (2) 
that the coordinate t represents true time t'  except for the 
stretching factor aQ, and, for a given t, a change in the coordinate X 

represents a change in the true distance X'. Thus at t = 0, the 
shaded area extends from X = 0 one chord length back to X = c0. 
At some later time, the wing will have moved in the negative X—direction 
to a new position such as the point A in'figure 1(a). The trailing edge 
at such a time remains one chord length behind at the point C. The 
dash lines in the figure represent the traces of the characteristic 
cones. Physically, these lines represent the foremost and rearmost 
positions to which a pressure disturbance starting at their apex can 
travel in a given time. Thus a disturbance starting on the leading edge 
at t = 0 can be felt only between the points B and D when the 
wing has traveled so that its leading edge is at A. Hence, for a 
wing traveling at supersonic speeds, point A will fall to the left 
of the characteristic line and for a wing traveling at subsonic speeds 
it will fall to the right. 

If the wing is to attain its unit angle of attack without rotation, 
then the boundary values are such that the vertical induced velocity 
is a constant over the entire shaded region of figure l(a), and the 
loading is zero over the rest of the plane z = 0. 
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Compare these boundary conditions with those for a supersonic 
three—dimensional, flat—plate, lifting-surface problem. If the shaded 
region is thought of as a wing plan form, the problems are identical. 
The characteristic cones represent the familiar Mach cones; and since 
the dash lines have a k^°  slope, the equivalent Mach number is \/2. 
The wing in unsteady lift flying at supersonic speeds has for its 
equivalent a three-dimensional lifting surface with supersonic edges. 
The solution to such a lifting—surface problem is relatively simple 
to find.  On the other hand, the wing in unsteady lift flying at 
subsonic speeds has for its equivalent a three-dimensional lifting 
surface with some subsonic edges. Although this complicates the 
problem considerably, still by methods such as those introduced by 
Evvard (reference s),  solutions can be found. 

Another type of boundary—value problem iB shown in figure l(b). 
This figure represents a wing at zero angle of attack traveling at 
supersonic speeds entering a sharp—edge gast the front of which is 
situated along the line X = 0. The vertical induced velocity over 
the shaded region is a constant, the value of which is equal and 
opposite to the gust intensity, and is zero in the unshaded region 
between the t—axis and the trailing—edge trace. Over the rest of the 
plane, the loading must be zero. Again by constructing the analogue 
with the three—dimensional lifting—surface problem a solution can 
easily be obtained. 

The solution for the load coefficient for a wing starting from 
rest and continuing at supersonic speeds — that is, the indicial load 
coefficient for a — is shown in figure 2(a). At t = 0 the wing 
suddenly attains an angle of attack (without rotation). Immediately 
the load coefficient jumps to a constant value of magnitude tao/M 

over the entire chord. At a subsequent time this value moves off the 
chord with the trailing characteristic trace, the apex of which is at 
the origin. Between the traces of the characteristic cone a transition 
occurs, the load falling below the value tat/M0 and then rising to the 

higher value ka MM 2 — 1. This latter value is the familiar steady- 

state two-dimensional value for load commonly called the Ackeret 
loading. As the leading characteristic trace leaves the wing, the 
Ackeret loading covers the chord and the wing has reached its steady- 
state value. 

Compare this loading with the indicial load coefficient due to 
angle of attack for a wing flying at subsonic Bpeeds (fig. 2(b)). Again 
at t = 0, the incremental load jumps immediately to the constant 
value halM      over the entire chord. However, in this subsonic case, 

the load near the trailing edge immediately falls so that for all 
values of time greater than zero the loading at the trailing edge is 
continuous and zero. That is to say, the Eutta—Jbukowski condition is 
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satisfied except at the instant t = 0. Subsequently, the load distri- 
bution approaches asymptotically the normal additional load distribution 
associated with steady two-dimensional subsonic theory '— that is, very 
high values near the leading edge fall to zero at the trailing edge. 

Figure 3 shows the indicial load coefficient due to angle of attack 
for a restrained wing flying at supersonic speeds and entering a sharp- 
edge gust. The gust is located in the region from X = —«to X = 0. 
Initially the loading over the chord is zero. As the leading edge 
begins to penetrate the gust, however, in the region between the 
characteristic traces the load begins to rise from zero to the Ackeret 
loading, and again as the loading characteristic trace crosses the 
trailing edge the wing has reached its final steady—state Ackeret value. 

Further discussion of these phenomena can best be completed by 
considering the integrated values of these loadings plotted against a 
variable representing time. Thus figure h  shows a plot of lift—curve 
slopes against s, the number of half—chords traveled by the wing, 
for a wide range of Mach number. The curve for M = 0 — that is, the 
curve for the two-dimensional wing with incompressible flow — was first 
studied by Wagner. Since the starting value is always 4/M, this 
incompressible flow value of CT  must initially jump to infinity. 

The infinite value, which results from the infinite acceleration imposed 
in the boundary conditions by the step function, lasts only for an 
infinitesimal time; however, CT  then falls to it    and rises 

gradually to the asymptotic value 2n. The calculations for the curves 
in the region 0 < MQ < 1 were completed only to the time necessary 

for a pressure signal to travel from the trailing to the leading edge. 
Further computations are possible but would have been more complex. 
On the other hand, the qualitative nature of the curves for larger 
values of time is fairly obvious. Thus at a Mach number of 0.8 the 
starting value is 5. The lift—curve slope falls linearly for the 
time required to travel about a half-chord length and then rises to 

approach asymptotically the value 2« /\'l — M . The curve for a Mach 
number of 0.1* is similar. Such a behavior obviously invalidates the 
use of the Frandtl—Glauert Mach number correction to unsteady lift 
analysis. Between t = 0 and t = « the correction factor must lie 

between l/M and 1 j\l — M , but the exact value is quite complex. 
The variation of this transient- CT  with Mach number is accentuated 

most sharply by considering the value at M = 1. 

The curve in figure h  for M = 1 presents the build—up of lift- 
curve slope for a wing starting from rest and traveling at the speed 
of sound. Since the Mach number is unity, the starting value of CT 

is 4. The magnitude of CT,  increases with time and is infinity 

at s = «. However, since the whole theory is based on the assumption 
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that the induced velocities are small compared with the free—stream 
velocity^, the number of half-chords' traveled "before the theory "breaks 
down is severely limited. Just how much so depends, of course, on the 
angle—of-attack change chosen, nevertheless, some insight into the 
nature of sonic flow has "been gained. 

Curves for supersonic Mach numbers of'1.2 and l.k  are also plotted 
in figure k.    At a Mach number of 1.2 the variation of CT  with time 

approximates rather closely Wagner's curve for M = 0.  In the super- 
sonic case, however, Cr  is initially constant at k/K   for ahout 

one—half chord length traveled and then rises and reaches its steady- 

state Ackeret value of k jsjyß — 1    after a few chord lengths; 
whereas, in the subsonic case, the value is nowhere constant and 
approaches its steady—state value asymptotically. For higher super- 
sonic Mach numbers, the magnitudes of the curves decrease and the 
difference "between the starting and final values "becomes less. 

So far, the discussion has "been limited to the indicial lift for a 
sudden angle-of—attack change. A comparison "between this lift and that 
developed "by a supersonic wing entering a sharp—edge gust is given in 
figure 5» The curves shown are "both for a Mach number of 1.2, the 
dash curve representing the change in lift coefficient for the wing 
entering the gust. The principal difference "between the curves is in 
the initial value, the gust curve Starting at zero and the angle—of- 
attack curve starting at k/U.    After about 12 chord lengths, however, 
the curves are identical, since both have assumed the Ackeret value. 

A simple but important dynamic maneuver can be studied by means 
of the two indicial lift functions, the one for a and the other for 
a gust. This maneuver is the response of an unrestrained airfoil to 
a gust when the effects of pitching are neglected. Such a maneuver 
for sharp-edge gusts has been studied in reference k. 

The study of the unsteady lift problem is far from being complete. 
It is believed that the effect of the indicial lift on the downwash at 
the vertical tail plane at supersonic speeds has not been touched, nor 
has the effect of gusts on wings traveling at high subsonic speeds. 
Furthermore, the methods described in this paper might be used as 
another approach to the study of compressible flutter problems for Mach 
numbers less than 1 — especially the problem of aileron flutter. 
Another type of research, the study of which has just been started at 
the Ames Aeronautical laboratory, is that of the two-dimensional wing 
accelerating through the speed of sound. The results already presented 
for the indicial lift around a Mach number of 1 indicate that further 
research along these lines might produce worthwhile results. 
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LEADING   EDGE  TRACES 

TRAILING    EDGE    TRACES 

X-C0 = - M0 + 

(a )   Subsonic and supersonic wing receiving sudden angle-of-attack 
change at   t = 0. 

Figure 1.-   Sketches showing different types of boundary conditions for 
two-dimensional unsteady lift problems. 

LEADING   EDGE   TRÄGE 

X = -M0f 

'RAILING   EDGE   TRACE 
X ~~ GQ = **" M o f 

(b)   Supersonic wing entering sharp-edge gust at   X 

Figure 1.-   Concluded. 

= 0. 
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AP 

(e> SUPERSONIC (b) SUBSONIC 

Figure 2.-   Pressure distributions on wing receiving sudden angle-of-attack 
change at   t'= 0. • * 

Figure 3t-   Pressure distribution on supersonic wing entering sharp-edge 
gust at   X = 0. 
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Figure 4.-   Indicial lift-curve slope for Mach numbers between 0 and l'A 
shown to time required to travel 12 half-chords. 

ANGLE   OF ATTACK 

•a 

o* 

/ ^-SHARP   EDGED GUST 

8 12 

S, DISTANCE   TRAVELED  IN  HALF CHORDS 

Figure 5.-   Indicial lift-curve slopes for restrained wing. 
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A SURVEY OF METHODS FOE THE CALCULATION OF FLOW AROUND 

BODIES OF REVOLUTION AT SUPERSONIC 'SPEEDS 

By Antonio Ferri 

Langley Aeronautical Laboratory 

The theoretical determination of aerodynamic characteristics of 
todies traveling at supersonic speed has "been considered only recently 
in relation to flying problems hut has been for a long time an 
important problem in ballistics. For this reason and because, for 
bodies of revolution, the problem is sensibly more simple, the bodies 
considered in the theoretical work are bodies having circular cross 
section, while small attention has been given heretofore to bodies 
having a cross section different from the circular, although these 
bodies are important for practical applications. A bibliography of 
information on this subject is presented at the end of this paper. 

For bodies of revolution of good aerodynamic shape, in general 
the physical phenomena are well understood and the analysis of the 
flow phenomena can be made with good approximation when the boundary 
layer along the body does not separate. If the body analyzed is a 
sharp, slender body of revolution axially alined with the direction 
of the undisturbed stream, an axial—symmetrical shock is produced at" 
th9 apex of the body (fig. l).  If the body is a cone of revolution, 
the generatrix of the shock is a straight line, while in the general 
case it is a curve that becomes more inclined with the direction of 
the undisturbed stream, moving away from the body and tending to 
become parallel to the Mach line. 

Across the shock an increase of entropy occurs that corresponds 
to a variation of momentum in the flow, and, therefore, the shock 
produces a drag called shock drag. Because the variation of entropy 
changes with the inclination of the shock, the flow behind a curved 
shock is not any longer an isentropic flow. The entropy is constant 
along every streamline in the zone between two shocks, but a variation 
of entropy exists in a direction normal to the streamlines and, 
therefore, the flow is rotational flow. 

Along the surface of the body, when the generatrix of the body is 
a curved line, the pressure decreases.  If the radius of curvature of 
the generatrix of the body is small, in the zone in which the 
generatrix becomes parallel to the undisturbed stream the local 
pressure is lower than the free—stream pressure.  If a cylindrical 
part of some extent follows the ogive, along the cylindrical part, 
the pressure increases and tends to become equal to the static pressure. 
If the back part of the body finishes with a tail as shown in figure 1, 
the pressure along the tail continues to decrease and at the end of the 
body another shock wave is produced. 
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At the surface of the "body the "boundary layer grows and a wake 
exists at the tail of the "body. The wake changes the actual shape 
of the streamlines at the end of the body, and, therefore, in this 
zone a theoretical analysis of the phenomenon made with perfect—flow 
theory cannot reproduce correctly the physical phenomenon. 

However, the phenomenon can "be foreseen theoretically with good 
accuracy in the zone of the flow in which the effect of the "boundary 
layer on the shape of the streamlines is negligible. 

When the "body has an angle of attack the phenomenon changes and 
the axial symmetry disappears; the theoretical analysis then "becomes 
more difficult. 

For small (infinitesimal) angles of attack the shock that is 
produced at the apex of the "body remains approximately a surface of 
revolution, hut its axis is not coincident with the axis of the body 
nor with the direction of the undisturbed stream. Because the 
phenomenon is not the same in every meridian plane passing through 
the axis of the "body, a velocity component in a direction normal to 
the meridian plane exists, and a force component normal to the 
undisturbed stream can he found. This component produces a lift 
and a moment on the "body. At the tail of the body when the body has 
an angle of attack, the wake produced by the boundary layer is not 
symmetrical with respect to the axis of the body. The wake has an 
effect on the value of the lift; therefore, because the lift is 
related to the boundary—layer phenomena, the lift of a body of 
revolution that ends with a point cannot be analyzed with good 
approximation if only perfect-flow theory is used. 

If an open—nose body of revolution is considered, the analysis 
of the flow phenomena does not change if the flow enters the body with 
supersonic speed. In this case, at the lip of the body the phenomenon 
is two dimensional. The shock moving far from the lip decreases in 
intensity in a similar way to that of the pointed nose of revolution. 

The theories used for the determination of pressure along a body 
of revolution are of two types: the small—disturbance theory and the 
characteristics theory. Both systems deal with adiabatic perfect 
flow, and the effect of viscosity and conductivity are neglected. 
The small—disturbance theory uses more simple hypotheses in the flow 
determination and allows in some cases analytical expressions for the 
aerodynamic phenomena, whereas the characteristics theory takes into 
account all the physical aspects of the phenomena for adiabatic 
perfect flow but does not solve practical problems of axial symmetrical 
flow in an analytical form and requires a numerical determination of 
every particular case considered. 
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The simplification accepted by the small—disturbance theory is 
that the.variations of Telocity components produced "by the presence 
of the body in the stream are so small that the square terms of the 
disturbance velocities and of their derivatives can be neglected with 
respect to the first—order terms in the equation of motion. In this 
approximation the entropy remains constant throughout the stream and 
a velocity—potential function can be used. The equation of motion 
for potential flow and cylindrical coordinates (fig. 2),  is expressed 
as: 

V  a2/ 0x2  V   a2j öy2  I,   a.2j y2 Öcp2   a2 öx ay 
2uw 1    o20 
a2 y ax acp 

_ 2w 1    d20    + v A  + ^\ - 
a2 y ay öcp      y ^       a2/ " 

0 (1) 

wnere 0 is the total—velocity potential; u, T,    and w are 
velocity components; and a is the speed of sound. Then, in the 
small-disturbance approximation the expression becomes: 

k-*)l£*& + k&-&-° 
where Mj_ is the Mach number of the undisturbed stream assumed 

parallel to the x-direction, and 0' is the potential function that 
represents th9 variations of velocity components produced in the stream 
by the movement of the body (disturbance velocities). The theory of 
small disturbances can be used in every case in which the more simple 
hypotheses are respected, and, therefore, for every free—stream Mach 
number considered. However, from a practical point of view it is 
necessary to remember that the theory cannot be used in the neighbor- 
hood of Mj_ = 1,  while the precision of the results decreases at high 

Mach numbers because for a given geometrical shape of the body the 
disturbance velocities increase in intensity when the Mach number 
increases. 

The equation of motion in the simplified form (equation (2)) is 
a linear differential equation of second order with constant 
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coefficients and therefore permits a superimposition of solutions that 
simplifies notably the problem. The solution of any problem in the 
approximation of equation (2) can "be obtained by the superimposition 
of simple solutions, known from sound-wave theory, that in aerodynamics 
represent sources, sinks, and doublets. The problem of determining 
the flow properties of a given phenomenon is transformed in this way 
to the problem of determining the correct distribution of sources or 
doublets that respect the boundary conditions considered in the 
problem. 

For bodies of revolution axially alined with the undisturbed 
stream, the solution of the problem can be obtained by considering a 
source—sink distribution along the axis of the body, the intensity 
of which depends upon the free—stream Mach number and upon the shape 
of the body. The intensity of the source—sink distribution can be 
obtained generally by a step—by—step calculation of simple form or in 
some cases in analytical form. The step-by-step calculation is 
usually required when the boundary conditions are exactly fulfilled 
by imposing the condition that the disturbance—velocity components at 
the surface of the body must produce a stream that, when superimposed 
on the undisturbed stream, must be exactly tangent to the body. For 
very slender bodies of revolution with a generatrix having finite 
curvature the step—by—step calculation can be avoided.  In the neighbor- 
hood of the axis of the body the component of the disturbance velocity 
normal to the axis can be determined directly from the intensity of 
the source distribution along the axis, and vice—versa. Now, if the 
body is a slender body of revolution, the component of the disturbance 
velocity normal to the axis at the surface of the body is essentially 
equal to the same component in the neighborhood of the axis. But the 
component of the disturbance velocity normal to the axis at the 
surface of the body is given by the boundary conditions and depends 
upon the stream velocity and upon geometrical parameters of the body 
and, therefore, is known. In this case, the intensity of the source 
distribution can be obtained directly from the shape of the body 
without a step—by—step calculation. 

The intensity of the source distribution is given in this 
approximation by 

( j = II ds(xl 
IW  2« dx 

where s(x) is the cross—sectional area of the body at the 
abscissa x. The value of the drag obtained by this approximation 
is independent of the Mach number. 
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This result depends upon the simplifications assumed; however, 
it gives an indication that the effect of variation of Mach number 
in the aerodynamic phenomena of slender "bodies of revolution is not 
very large. 

When the "body of revolution has a small (infinitesimal) angle of 
attack, the solution is obtained "by considering two potential 
functions, the potential function 0]_ that represents the phenomenon 

dependent on the component of the stream in line with the axis of the 
"body, and the potential function 02 that considers the part of the 

phenomenon dependent on the component normal to the axis. The first 
potential function is identical in the approximation accepted to the 
function used in the axial symmetrical phenomena, while the second 
potential function corresponds to the potential of a doublet distri- 
bution placed along the axis of the body. The intensity of the 
doublet distribution must be determined as a function of the boundary 
conditions. Again, for very slender bodies of revolution having 
generatrices with finite curvature, the doublet distribution depends 
only on geometrical parameters of the body considered and can be 
determined directly. In this case, the lift coefficient is dependent 
only on the end section of the body and is independent of the Mach 
number. Th9 lift obtained with the small-disturbance theory for 
bodies pointed at both ends is zero but is different from zero if 
the end section is different from zero. This result depends on the 
assumptions made; however, it shows that the lift is a function of 
the dimension of the wake and, therefore, of the phenomena in the 
boundary layer. Indeed, the cross section of the wake corresponds 
physically for the flow outside of the boundary layer to an end 
section of the body» 

By use of the small—disturbance theory, it is possible to 
determine some general properties of bodies of revolution and to 
obtain some indications of the shapes of bodies having low shock drag. 
For example, if the length and diameter of an ogive body are fixed, 
th9 shape that corresponds to minimum drag has a blunt nose. The    ! 

radius of curvature of the meridian curve at the nose is very small, 
and, therefore, the zone in which the nose is blunt is very small. 
This result is found also when more approximate treatment is used. 

In order to give an idea of the approximation of the small- 
disturbance theory, comparison between the pressure coefficients Ap/q 
given by this theory for different stream Mach numbers and the results 
obtained by exact—perfect—flow theory is shown in figure 3. The bodies 
considered are cones of revolution with different apex angles. 

In the small—disturbance theory it is assumed that all the 
disturbances are transmitted along surfaces that have constant 
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inclination with respect to the axis of the "body. The inclination 
corresponds to.the free-stream Mach angle. In this approximation 
no shock waves can he found. 

When phenomena of bodies at an angle of attack are considered, 
the Mach cones move rigidly with the "body or in some cases do not 
move with respect to the direction of the 'stream. 

In order to obtain the effect of the presence of the shock and 
in order to determine with greater precision the phenomena outside 
of the "boundary layer, the characteristics system must he used. The 
principal idea of the characteristics method is "based on the fact 
that every small disturbance produced in a supersonic stream-is 
transmitted only in the flow inside the Mach cone from the point in 
which the disturbance is produced; therefore, the Mach cone from the 
point in which the small (infinitesimal) disturbance is produced is a 
surface across which the phenomenon changes. In mathematical language 
this surface is a characteristic surface, because as the disturbance 
is small and the phenomenon continuous,  the flow properties repre- 
sented, for example, by the stream velocity components must be the 
same at the inside and outside surface of the Mach cone; since the 
analytical expression of the flow properties must change across the 
surface, therefore, the partial derivative of the flow properties 
(in our case the velocity components) must change in discontinuous 
form. The characteristic surfaces exist only if the flow is anywhere 
supersonic because only in this case the disturbances are transmitted 
along the surface correspondent to the Mach cone. 

The characteristic surfaces are constituted by the envelope of 
all the Mach cones that have their vertices at the points in which a 
disturbance is produced. They separate the zone of the flow in which 
the perturbation is transmitted from the undisturbed zone. Because 
the Mach angle is not constant in the flow, the characteristic surfaces 
are curved and at the inclination any point is a function of the local 
velocity. When the body considered is a body of revolution at zero 
angle of attack, the phenomenon has axial symmetry and also the charac- 
teristic surfaces are surfaces of revolution. The velocity at any 
point is defined by two velocity components and the analysis of the 
phenomenon can be made by determining the motion in a meridian plane. 
In place of the characteristic surfaces the characteristic lines are 
considered. These lines are obtained by the intersection of the 
characteristic surfaces with the meridian plane. 

At every point of the meridian plane the characteristic lines 
are inclined at the local Mach angle with the local direction of the 
velocity, and at every point two characteristic lines pass corre- 
spondent to the two directions in which a Mach line can be drawn with 
respect to the direction of the velocity. If u is the local Mach 
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angle and 0 the local inclination of the velocity with respect to 
the axis of the body, a characteristic line is inclined at \i + 8 
and the other at 0 — n. The value of |i and 0 is different at 
different points of the flow; therefore, the characteristic lines 
are curved. 

The characteristics theory consists in the analysis of the 
changes of flow properties along characteristic surfaces or, for 
"bodies of revolution, along characteristic lines. 

By use of the law of continuity, the law of conservation of 
energy, or the law of variation of momentum, a partial differential 
equation for the law of motion can he obtained. Because of the 
presence of curved shocks in the flow, the flow analyzed is 
rotational and, therefore, in general in the analysis the use of a 
potential function is not possible. For two-dimensional or axial 
symmetrical phenomena a special stream function can he used which 
permits the obtaining of a partial differential equation corre- 
spondent to the equation of motion for potential flow. This stream 
function for rotational flow, or differential expressions for the 
velocity components, the pressure, and the density can he used to 
obtain the equations of motion in differential form. The equation 
which defines the motion "becomes much simpler if the variation of the 
flow properties is analyzed along the characteristic surfaces, 
•because some terms of the differential equation disappear. 

If a body of revolution axially alined with the free stream is 
analyzed, the variation of flow properties must be analyzed along the 
characteristic lines«, Because across every point of the flow two 
characteristic lines pass, two equations are obtained which give in 
differential form the variation of the flow properties along the 
lines. Because the flow properties at any point are defined if two 
quantities (for example, the two velocity components) are known, the 
two equations permit the problem to be defined. 

The equations that give the law of motion along the characteristic 
lines still are differential equations with variable coefficients but 
permit the numerical determination of the problems if a method of 
finite differences is used in place of the differential equation in 
order to determine the variation of flow properties along the 
characteristic line. 

The equation of motion along the characteristic line can be 
given in the following form (see fig. k):. 
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g = tan(n + 0) 

~ — tan (i do + dx sin3u  dS _1_ __ 
cos(0 + u) dn 7E 

sin 0 sin u tan 6 1 
cos(0 + u)    y 

(3a) 

= 0 (31) 

and 

g = tan(0 - ^ 

dV + tan u d0 — dx sin^u  dS _1_  sin 0 sin it tan 0 1 
cos(0 - u) dn 7R cos(0 - n)    y 

(3c) 

0  (3d) 

•where 'V is the intensity of velocity, 0 the inclination of velocity 

with respect to the axis, -=— the gradient of entropy in normal 

direction to the streamlines, and 7 and E are constants. 

From the equations (3), the flow property at a given point can 
he determined, when the flow properties at two points near to the point 
considered and along the characteristic lines are known (fig. h). 

If the flow properties in Pj. and P2 near each other are known, 

the values of 0 and \i    are also known; therefore, from PQ_ the 

tangent to the characteristic line given "by equation (3a) and from P2, 

the tangent to the characteristic line given "by (3c) can he drawn, and 
a point Po can he determined. On the assumption that in the first 

approximation the coefficients in equations (3d) and (3h) are constants 
between P^ and P2 and P2 and P3, and applying equation (3h) 

between P^_ and Po and equation (3d) "between P2 and Po allows 

two equations to he obtained that permit determination of the 
variation d0 and dV between Po and Pj  (equation (3b)) and the 

variation dV and d0 between Po and P2  (equation (3d)).  Indeed, 

the variation dx is known, and all the coefficients are constants and 
known. When the values of Y and 0 at Po in the first approximation 

are determined, a second approximation can be obtained by assuming for 
the coefficients in equations (3h) and (3d), and for the direction of 
the characteristic in equations (3a) and (3b) the average values between 
the values at the points Pj and P2 and the values obtained in the 

first approximation for the point Po.  In equations (3b) and (3d), 
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the term — appears only if the flow is rotational flow. This term 

can "be determined at every point "because the entropy is constant 
along every streamline "between shock waves, and the equation of the 
shock gives the variation of entropy that occurs when a streamline 
crosses a shock wave. 

The system permits the determination of the phenomenon when 
shock exists and allows any required precision to "be obtained, "because 
the precision depends on the distance "between the points P? and P2 

or Po and P-j_, a distance that can "be reduced to any value. 

The system is numerical "but the solution can "be obtained in 
computing machines of large size that can. give numerical results in a 
very short time. The only approximations introduced are that viscosity 
and conductivity can "be neglected. 

In order to apply the characteristic system to any "body of 
revolution the flow must "be determined initially along a characteristic 
line. If the "body is a sharp-nosed "body of revolution the calculation 
starts with the determination of the flow at the apex, flow that is 
conical flowj while if the "body is an open-nosed "body of revolution 
the calculations start "by determining the shock at the lip of the nose 
with the two-dimensional theory. Figure 5 shows a comparison "between 
experimental results and values determined with the characteristic 
system for a "body of revolution of simple shape. Figure 6 shows a 
practical determination of the supersonic part of the flow inside a 
conical diffuser. The shock produced at the lip of the "body increases 
in intensity and "becomes normal at the axis. The increase in intensity 
of disturbances produced at the wall of circular tubes is a general 
phenomenon and is Important for supersonic circular tunnels. 

"When the body is not a body of revolution or has an angle of 
attack, the characteristic system can still be applied but becomes 
much more involved, because it is necessary to determine the flow 
variations not along two characteristic lines, but along two charac- 
teristic surfaces. Practically, the determination of the flew- 
properties at any point can be obtained by the analysis of the 
variations along the intersections with a meridian plane of two 
characteristic surfaces that pass at the point considered and along 
the intersection of one of two characteristic surfaces with a plane 
perpendicular to the axis.  In this way a system of three linear 
equations is obtained, when the method of finite differences is used, 
that permits the determination of one of the flow properties, for 
example, of the velocity at the point considered. 

The numerical solution becomes very involved, especially if the 
flow with shock is analyzed, and requires that the initial conditions 
can be determined at the front part of the body. 
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When a "body of revolution with small angle of attack is analyzed, 
the hypothesis can he accepted that, the effect of cross flow is very 
small and in this case a cross flow can he superimposed to the axial 
flow, the characteristic lines of the two flows are coincident, and 
the calculations can he simplified. For example, this system can he 
used easily in order to determine the flow around a cone of revolution 
in yaw. 

In this approximation the velocity component in normal direction 
to every meridian plane of the "body changes with the sine of the angle 
that defines the position of the meridian plane as. in the small- 
disturbance theory. 

This is the status of the analysis along "bodies of revolution. 
Both theories can pro'bahly he extended to similar prohlems. The 
extension of the small-disturbance theory to "bodies of cross section 
different from the circular hut having constant shape must not he too 
difficult. 

The use of the small-disturbance theory for interference problems 
seems also possible, and some results of this application are yet to 
he ohtained. 

.For the small-disturbance theory a complete analysis of the 
approximations that can he ohtained would he very useful. Discrepancy 
of opinions exists especially on the possibility for this theory of 
evaluating the Mach number effect on phenomena for hodies unclined 
at an angle of attack. 

In order to give an idea of the precision that can he ohtained 
from the theory of small disturbances, a comparison of the lift- 
coefficient—curve slope dCWda given with the assumption of small 
disturbances and without this assumption is presented in figure 7 
for different Mach numbers. The hodies are cones of revolution of 
different apex angles T)0. 

The development of an analytical theory having higher approxi- 
mation than the small-disturhance theory for hodies of revolution 
would he very useful hut seems at present very difficult. The charac- 
teristics theory can he extended to the analysis of any shape of "body 
having anywhere supersonic flow, if the initial conditions can he 
determined; therefore, the determination of general conical flow in 
more exact form is essential for the extension of the field of 
application of this theory. 
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Interference problems can "be analyzed with the characteristics 
theory. This analysis, however,  requires a large amount of numerical 
work in every application. This obstacle, which exists at the 
present time, can perhaps be eliminated by using for the numerical 
calculations large size computing machines. The characteristics 
system can probably be extended to viscous—flow phenomena or to 
phenomena with variable total energy. 
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Figure 1„-   Axial-symmetrical shock at apex of slender body of revolution. 
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Figure 2.-   Coordinate system. 
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Figure 4.-   Diagram illustrating scheme of characteristics method. 
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Figure 6. -   Determination of supersonic flow in a conical diffuser. 
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SOME CONSIDERATIONS OF AERODYNAMIC HEATING 

By Coleman duP. Donaldson 

Langley Aeronautical Laboratory 

With the contemplation in recent years of flight at ever-increasing 
Mach numbers, the problem of aerodynamic heating has "become increasingly 
important to the aeronautical engineer. Unfortunately, much of the work 
on this subject has not been done from tiie point of view of the aero- 
dynamicist but has been based on the conventions of the varied branches 
of specialized fields of heat exchange. From considerations, therefore, 
of this difficulty and of the increasing importance of this subject to 
the aerodynamicist, a brief review of boundary-layer heating phenomena 
appears to be desirable at this time. 

If air is brought to rest near the surface of an insulated plate 
and no energy is assumed to be transferred to or from any element of mass, 
then from the equation for the conservation of energy 

U2 T + -Ü— = Const = Ta 
2CP 

where T is the local temperature, U is the local velocity, c  is 

specific heat at constant pressure, and Ts is the stagnation temperature. 
Then, the temperature rise from the free stream to the surface AT is 
found to be 

U2 AT . ATad = JE. 
P 

This temperature rise is called the adiabatic temperature recovery 
and is used as a reference temperature rise in most heat-transfer 
discussions. 

The importance of this temperature rise at high Mach numbers is clear 
if the equation for the stagnation temperature is written 

/ 
T = T/l + — M< 
•s " -(;   5 

which is the equation relating this adiabatic stagnation temperature -Ta 

to the free-stream temperature T, where M is the stream Mach number. 
At a Mach number of 5-0"the surface temperature is six times the free- 
stream temperature, so that the problem of aerodynamic heating requires 
serious attention. 

Consider now the energy per unit area transferred into an element of 
height äj    while the air is brought to rest first by the temperature 
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gradient set up and secondly by the friction work done. The energy 
transferred into the element "by heat conduction per second is, then, 

ä2^ 

and that by frictional work is 

kY + u ^u 
dy / Sy2 

dy 

where k is thermal conductivity, \i    is viscosity, and 
velocity component in the x-direction.- 

u is the 

These two effects are of oppoaite sign and if they are equal in 
magnitude the energy per element remains constant and the energy equation 
holds through the "boundary layer. If the two effects are assumed equal, 
then 

dy£ 
= M- 

Now, from the energy equation 

öy2 " 

or 

öy 

uc. 

+ u öfu 
dy2 

+ u £5ä 
Öy2 

= 1 

The  quantity ^2 
k 

is called the Prandtl number a    and is a measure 

of the relative magnitude of the friction and heat-conduction effects in 
an insulated flow.  This parameter is very important in all heat-transfer 
phenomena.  If the Prandtl number is 1.0, the temperature 'recovery on an 
insulated body is equal to the adiabatic recovery ATa(j_; thus, 

AT = AT. ad 2cT 

The value of the Prandtl number for air has "been variously measured 
and placed at "between 0.72 and 0.j6  and hence the temperature recovery on 
an insulated body should be lower than the adiabatic recovery.• The ratio 
of the actual recovery to the adiabatic recovery AT/ATai is called the 
temperature-recovery factor. 
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If the Prandtl number is not equal to 1.0 or if there exists a heat 
transfer in or out through the surface at which the velocity is zero, 
then, in order to 3olve for the temperatures that exist for a particular 
Telocity profile, three differential equations may "be set up. The first 
two are the well-known continuity and momentum equations. 

and 

d(pu)  + d(pv)  = 0 (-jj 
dx dy 

><"£+T$-*(*£) (2! 

where p is density. 

The third equation is an expression of the fact that all the energy 
transferred into an element by frictional work, conduction, and convection 
must be carried away "by these same processes so that the temperature of 
the element does not increase with time. For simplification, variations 
of v in the x- and y-directions are neglected as well as variations 
of u in the x-direction, with the result that 

" *§•"©'-4£+'!} 
In order to solve these three equations Eckert and Drewitz (referencs l) 

assumed that the continuity equation could he satisfied "by the use of a 
stream function and then, use can he made of the new variables 

«-H3 
and 

if 
Vvu ox 

where UQ is free-stream velocity, v  is kinematic viscosity, and if 

is the stream function. Equations (2) and (3) can he put into convenient 
form "by use of these variahles and the solution can then be ohtained.  The 



U02 

result for the heat transfer per unit area    h    through the surface, when 
0.5 < a < 2, was 

h «0.332 kß|^ö (?w " To)   - ^  V 

where Tw Is the wall temperature and T  is free-stream temperature. 

This result is all that is needed for comparison with the results of 
experimental measurements on an insulated flat plate, for when h = 0, 

uo2 r- 

2CP 

and the temperature-recovery factor is 

AT 
ATad 

= /a" 

For air with a Prandtl number a  = 0-72 the theoretical temperature- 
recovery factor is O.85. 

Figures 1 and 2 show the full solution by Eckert and Drewitz (refer- 
ence l) for the local temperature rise and stagnation temperature for the 
laminar-boundary-layer profile. It may be seen from figure 2 that, since 
the air near the surface of the plate has a stagnation pressure less than 
free stream, conservation of energy requires the air in the outer portion 
of the boundary layer to have a stagnation temperature greater than free 
stream. 

The temperature recoveries measured experimentally on an insulated 
flat plate are shown in figure 3 as a function of local Reynolds number R. 
The theoretically determined recovery factor _^i_ =0.85 agrees well 

A?ad 
with the experimental values in the laminar region, but as the Reynolds 
number increases along the plate, transition occurs and the temperature- 
recovery factor increases from the laminar value to a value at the begin- 
ning of the turbulent layer of 0-90. 

Before further discussion is made of the results of this laminar 
analysis to predict the temperature recoveries ahout bodies other than 
flat plates, some discussion should be given to one of the methods of 
analyzing the heat-transfer characteristics of the turbulent boundary 
layer. 

Figure k is an illustration of the type of velocity profile that 
will be assumed. The method of solution is as follows (reference 3): 
The laminar sublayer will be assumed to have a linear velocity profile and 
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2 
a parabolic temperature profile T = A + By + Cy . The local heat and 
momentum transfers of this layer are determined and, when made to agree 
with the local heat and momentum transfers of the turbulent layer at 
the outer edge of the laminar sublayer, a unique solution for the heat 
transfer through the combined layers results. 

For the analysis of the turbulent layer the following equations are 
at our disposal. They are the continuity equation 

5(PU) | d(Py) = o (10 

the momentum equation 

öx     dy 

p^ = .|L (5) 
dt   dy 

and the energy equation 

where 

pjL(cT + ^) = -f(uT)  -I* (6) 
dtVp 2/ Sy dy 

du 
y dy 

= A^i 

h = 

öy 

öy 

The transfer term Pv'Zy is assumed to be equal in both the transfer of 

heat and momentum; that is, the mixing length I      In the two cases is 

the same so that 

A = cpA 
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The momentum and energy equations (equations (5) and (6)) then become 

dt    dy V dy 

p J_fc T + Ü?) = - 
dt\p   2/    äy 

a /l m . u2 
A -^ a_T + _ 

öy\J?   2 

and the total energy and the Telocity satisfy the same linear differential 
equation, a significant fact first pointed out by Crooco.  (See refer- 
ence 3.) All boundary conditions may be satisfied if 

u2 c_T + 4r = au + b 
P   2 

where a and b are constants independent of y. 

Frankel used the foregoing procedure to obtain the following result 
for the heat transfer through a turbulent boundary layer: 

uQ2  Ul2 Cp(To-Tw) +-f-+-^(a-D K =  
TW        u0 + M±(a  - 1) 

Again,  if the case of an insulated plate is considered,  the temperature 
recovery is 

u0
2      (1 - a)u2

2 

AT = —— — 
2cp 2cp 

or 

-**- = l .   (i . o(^\ 
ATad Vuc Oy 

From the work done on the turbulent boundary layer at low speeds the 
value of the square of  the ratio    u-^/u      is found to be proportional to 
the friction stress at the wall divided by twice  the dynamic pressure 

(?? - 135 1= VW 21 
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The temperature-recovery factor for air becomes 

7^ = 1-37.8 1^ 
ATad      °   2q 

Figure 5 is a plot of this relationship for ralues of Tw/2q 
usually encountered. The results are found to "be of the right order of 
magnitude for the temperature-recovery factors of turbulent layers. 
Experimental measurements on turbulent layers have given temperature- 
recovery factors ranging from O.89 to 0-93 but no auch linear dependence 
as is indicated by the equation has been shown experimentally. Research 
is needed to determine the proper relationship between u-j_ and uQ at 

high speeds as the use of the low-speed relationship at high Mach numbers 
is not at all logical. 

The next step is to determine whether it is possible to apply the 
results just obtained for insulated flat plates to the prediction of 
temperatures in insulated bodies of other shapes. 

If the velocity distribution about a body is known, the local 
temperature distribution outside the boundary layer can be found; each 
element of the body is then assumed to have the flat-plate recovery factor 
based on its own local conditions. The temperature rise above local 
temperature for a laminar boundary layer is then 

2    # 

„  U7 
AT, = O.85 _±- 

and the local recovery factor will be O.85.  The recovery factor based 
on free-stream temperature and the adiabatic recovery of the free-stream 
velocity is 

ATo /u7 0 = 1 - 0.151-i 
ATad0 Vuc 

Figure 6 show3 this last recovery factor AT0/ATa,  as measured 

around a circular cylinder at a Mach number of O.526 and a Reynolds 

number of 1.8l x ±(P.    The only part of these data that can be compared 
with our analysis are those obtained at stations less than 8o° from the 
leading edge, because at larger angles the vortex street shed by the body 
completely alters the phenomena with the result that surface temperatures 
are much lower. When these data are converted into the form AT?/ATad 

(the dashed line) the agreement with the flat-plate results is good except 



k06 

in the region near the stagnation point. This result seems to indicate 
that it is permissible to use flat-plate r33ults to predict temperature 
distributions over insulated "bodies of different shape. 

Finally, the measurements on this cylinder over a large range of 
Mach number indicate that the theoretical prediction - namely, that the 
local temperature-recovery factor is independent of Mach number - is 
correct for all moderate Mach numbers.  This result is shown in figure 7/ 
which is a plot of the local temperature-recovery factor at a station 70° 
from the leading edge of the cylinder for a range of free-stream Mach 
numbers.  Since the local Mach numbers are well in excess of unity, these 
data indicate that the local recovery factor is independent of Mach number 
up to local Mach numbers approaching 2.0. 

These results indicate that the theoretical analysis of the laminar 
•boundary layer on a flat plate presented is an adequate tool for predicting 
the temperature recoveries on the surfaces of insulated "bodies moving at 
high speeds.  It may also "be used for calculating moderate heat transfers, 
tut the theory fails if the heat transfer is of a magnitude large enough 
to change appreciably the common laminar-boundary-layer profile of 
figures 1 and 2. 

The analysis of the turbulent "boundary layer indicates that the 
temperature-recovery factor of an insulated flat plate depends upon the 
friction stress at the wall and that experimentally it is desirable to 
measure this quantity simultaneously with the temperature-recovery factor. 
Certainly further research is needed on the nature and extent of the 
laminar sublayer of the turbulent boundary layer at high speeds. 

Finally, it must be pointed out that the methods of analysis presented 
herein are not the most refined available to the specialist in the field 
of heat transfer today (see references k  to 6) but are presented because 
they represent the basic methods of approach and serve as an introduction 
to the problems of aerodynamic heating. 
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