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EESEARCH MEMORANDUM
AN EIERMNI‘AL INV'BTIGATION Ol' THE IEIGI YARIABLBS
FOR RACA SUWD IUCT ENTRANCES

By Emmet A. Mossman and Lauros M. Randall

. SUMMARY

Information concerning the parameters and design variables
affecting an NACA submerged duct design is presented. The prin—
cipal variables investigated include entrance width-to-depth ratio,
ramp-vall divergence, ramp angle, and deflector size. Tests were
alsc made to show the effect of variution of boundary—layer thick-
ness and ramp-floor contour.

Preassure recovery at the duct entrance and after slight
diffusion, pressure distridbution over the lip and ramp, and dreg
are given as functions of the inlet velocity ratio of the emtrmnce.
An evaluation of the NACA submnerged entries indicates that satis—
factory duct characteristics may be found for a range of the test
variables. It appears that an optimum MACA luburaod inlet design
should employ curved diverging ramp walls, a 5° to 7° remp angle,
and a width—-to~depth ratio of from 3 to 5. The boundary-layer
thickness of the surface.into vhich the inlet is placed way found
to have a large orroct on the pressure recovery.

Possgible applicatione of this type of inlet an(.\ their
particular advantages are discuased.

IRTRODUCTION

For the development of a satisfactory air-induction system of
an aircraft, soveral aerodynamic criteria must be evaluated in con—
Junction with those involving structural design and installation.
Aerodynamically, the system should not reduce the available energy
of the entering air, the drag of the body into which it is placed
¢ shouid not be increased, and the high-speed characteristics of the
3 body or aircraft should not deteriorate. Although, in practice, an
! air-induction system possidly does not meet all these requirements,
the merits of a system can be determined dy the degree to which its
characteristics approach the imm,
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A previous investigation of an air intake submerge’ below the
body surface (reference 1) was exploratory in nature and was meant
to indicate the trend for future research of this type inlet. This
present report givea the results of more extensive investigations of
NACA submerged duct entrances conducted at the Ames Aerocnautical
Laboratory. The work includes further development of certain con-—
figurations found to be desirable from preliminary tests and the
investigation of other design parameters not previously considered.

SYNBOLS
A duct—entrance area, square feet
B distance ramp floor is submerged delow reference contour
at station where entrance area is mesasured
Cpp duct drag coofficient( 71% )
D drag, pounds
d duct depth
H total pressure, pounds per square foot
ol loss in total pressure, pounds per square foct
M mach mmbor
Mcr critical Mach number
P , pressure coefficlent < 4 ;‘oPo
P static pressure, pounds per square foot
q dynamic pressure (}pvz) , pounds per square foot
U velocity outside boundary layer, feet per second
u local velocity in doundary layer, feet per second
v velocity, feet. per second
v duct width
(-] air density, slugs per cubic foot
CONE ZppweriC
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0 « diffuser otﬁoimcy< s = s

u. x‘ u6,~ uB
(1 + 1) 1+T+E+l6°o— 50,000 *°*

H-p q(1 + n), ram pressure, pounds per square foot

> X 100, percent

E-Ppo

ram recovery ratio
Hy - Do

V¥ inlet-velocity ratio

Subsoripte

o free stream

1 duct~entrance station
2 station after diffusion

MODEL AND APPARATUS

Various models of submerged-duct entrances were tested in the
Ames 8- by 36-inch wind tunnel of the 7- by 10-foot wind-tunnel
section, which 1s shown schematically on figure 1. Each entrance to
be investigated was placed in a removable portion of cne of the
36-inch walls of the test section, this wall thus simulating the
fuselage skin for a typical submerged—inlet applicatiom. Air vas
drawvn through the inlet by a constant~speed centrifugal pump, the
quantity flovw deing measured by a calidbrated venturi and regulated
by a motor-controlled plug-type valve located at the pump exit. The
tests vere made at tunmel speeds runging from 180 to 260 feet per
second.

All parts of the entrances for the greater portion of the
investigation were flush with or below the surface of the tunnel
vall. The area of the various entrances vas held constant at 16
square inches and the width-to-depth ratio varied from 1 (4— by i—
inch) to 6 (9.81= by 1.64~inch). A separate model was required to «
test each of the six width-to-depth ratios. (See rig. 2.)

For each model four remp plan forms wers investigated (fig. 3).
Ranp angle could be varied from 5° to 15°. Pigure 4 shows the
gecmetric change of the ramp with ramp angle for one entrance con-
figuration. Provision was also made for testing a curved remp floor
shape, with the v/d = 4 entrunce for ramp lengths which corresponded

CONPIIRINIGAL-.
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to the 5°, 79, 99, and 11.5° straight ramp floors. This curved ramp
floor, shown on figure 5, represented the upper-surface profile shape
of the aft portion of a 65-geries low—drag airfoil.

Deflectors, or small ridéoe along the top edge of the ramp wall
with heights of 0.25, 0.50, 0.75, and 1.00 inch and lengths of 25, 250,
75, and 100 percent of the ramp length were tested (fig. 6).

The basic lip shape (fig. 7) was the same for all modsls, but
the dimensions of the 1lip varied directly as the depth of the duct
entrance. In every case the lip incidence could be varied through
an angle range of + 5°,

The models included a transition section which simulated an
internal duct gystem with gradual diffusion. This section started
8 inches aft of the lip leading edge and for each model transformed
from the rectangular cross section of the submerged duct inlet to a
circu'ar cross section 5.25% inches in diameter. The transition

section was 36 inches long with a 1.35 expansion in area, constant
for all models.

Rakes of pressure tubes for measuring rem recovery were located
at two stations (fig. 2), one at the duct entrance and the other after
diffusion in the 5.25-inch—diameter circular section. The rakes
located at the entrance contained 64 evenly spaced total—pressurs
tubes and 4 static-pressure tubes. These rukes were mounted slightly
behind the leading edge of the lip in each case ot & station where
the lip inner contour faired into a constant area section. The rake
aft of the diffuser section had 33 total pressure tubes and 4 static-
prev-ure tubes. The wind—tunnel air downstream of the inlet was
surveyed by a series of individual rakes, located 8 inches aft of the
lip station, which completely bracketed the wake caused by the
entrance., Each of the individual rakes contained 15 tubes and were
located at 8 spenwige staiions.

Pressure distributions were obtained from small flush static—
pressure orifices built into the submerged duct entrances along the
center lines of the lip and ramp and also along a section of the lip
1 inch from the side wall of the entrance.

TESTS

To eid in the analysis of the data it was necessary to evaluate
the existing testing conditions. The boundary layer of the test
section tunnel wall, measured at the duct-entrance station, le given
on figure 3. It should be noted that this boundary layer is consider—
ably thicker than would be normally experienced if a submerged

ComERATL.
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. entrance were located at or forward of the wing on a similarly -
scaled fuselage. Efforts to reduce this natural boundary-layer
thickness did not (rove successful, dve mainly to the wiund-tumnel

eomotri. The ratio of total boundary-layer thickness to duct depth
?w/d = 4) is 0.80 for these tests as compared to 0.31 for a typical
fighter installation (station 0, reference 2). From this it is
evident that the pressure recoveries presented in this report must
not be considered as the raximm values cbtainable with NACA sub—
merged duct entries. The lips of all models of the submerged
entrance were located at the same position along the test section
wall.

To determine the diffuser or intermal duct efficiencies, bench
tests of the six diffusers were made. A cone was attached to the
entrance in place of the ramp and lip to assure satisfactory flow
conditions. The pressure losses vere measured aft of the diffusers
in the circular portion of the diffuser at the same location and
with the same reke that was used to determine the pressure recovery
aft of the diffusers in the wind-tunnel tests. Results of these

tests (fig. 9) show the efficiencies (np) of all six diffusers to
be about 91 pexrcent.

The principal peremeters investigated in the wind tunnel were
ramp plan form, width-to—depth ratio, remp angle, and deflectors.
A limited number of tests was made to show the effect of wvariation of
ramp~floor contour and dboundary-layer thickness at the location of
the duct entrance. For eveluation of the relative merits of the
various configurations measurements were taken to determine the
pressure recovery aft of the diffuser section and at the entrance,
pressure distribution on the lip and ramp, and dreg of the config-
urations, through a range of inlet velocity ratios from O to 1.5.

Tables I and II are indices showing the range of mndifications
to the submerged duct eantry.

RESULTS ARD DISCUSSION

This investigation to obtain data for the develorment and
application of NACA submerged—duct entries was concerned with the
offect of various configuration changes upon the degree of fulfill-
ment of the criteria set forth. The measurements necessary for
evaluation, as menticned previously, were pressure recovery after
diffusion and at the entrance, pressure distridution, and dreg.
Under these categories the following parameters are discussed:

1, Ramp plan form .

—t
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2. Width-to-depth ratio

3. Ramp engle
L. Ramp floor shape

5. Boundary-layer thickness

Because of the nature of the investigation, the results and
discussion of deflectors are presented separately from the other
"divisions at the conclusion of this section.

A figure guide 1s given in table III. Only the more pertinent
drag and pressure~distribution results are presented, the greater
portion of the data being given in terms of pressure recovery.

Pressure Recovery

. On this type inlet the velocity distridbution is not uniform

over the entrance area, and determining the entrance losses

(Appendix A) becomes a difficult process. Consequently, a large
portion of the data is evaluated from consideration of the pressure
recovery after diffusion. Since the diffuser efficiencies fram

bench tests are equal, a comparison, for two inlet configurations,

of the results after diffusion is a direct measure of their relative
merits with respect to pressure recovery. This comparison, of course,
includes the effect of the inlet on the diffuser efficiency. Entrance
pressure recovery was obtained only for the most important values of
the design parameters.

Pressure Recovery after Diffusion.-

.— The results of previous investigations (refer—
ences 1 and 2) showed that the ram presswre recovery of the
submerged duct entrance could be appreciably increased by
diverging the walls of the ramp. The effect of ramp plan form
is shown in figure 10, which gives the pressure recovery
measured after the diffuser section for two width-to—depth
ratios. In all cases the curved diverging ramp which was
proeviously developed (reference 1) gave the highest ram pressure
recovery for the lov inlet-velocity-ratio range (V1/Vo <0.6).
However, the effect of remp plan form is also a function of
width-to~depth ratiq and ramp angle and will be discussed in
later sections,

In the instances vhere the pressure recovery ls increased
by diverging the ramp plan form, the proceses is apparently one

coN,gM.’,
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of diverting the boundary layer outside the ramp around the
entrance. Experimental data show this possibly to be due to
two causes. The first is indicated from a comparison of the
ramp pressure distridbution with that on the suxface in the
izmmediate , voximity of the entrance. These pressures indicate
that at velocity ratios below 1.0 the boundary layer outside
the ramp would have a tendency to flow away from the inlet.
Second, i1t has been found that if the top edge of the diverg-
ing remp walls were rounded, the effect of divergence would be
greatly reduced. It was surmised that some of the improvement
was caused by the resistance of the external boundary-layer air
to flow over the rather sharp edge of the remp walls.

‘Width—to~depth ratio.— The effect of varying the width—to—depth

ratio of a submerged entrance is given in figure 11 for a con—
stant ramp angle of 7°, Figure 11 shows that for the parallel
wall, nondiverging ramp changing from & w/d ratio of 6 to a

v/d ratioc of 1 increases the maximum prossure recovery after
diffusion from 70 to 80 percent. This trend was expected since
most of the dboundary-=layer air in front of a nondiverging ramp
flows into this type of entrance. Comsequently, for the deeper
and narrover entrances this low-energy air is a smaller percent—
age of the total quantity admitted. Increasing the divergence
of the ramp walls diminished this effect. This was anticipated
since, as mentioned previously, with a diverging ramp mmch of
the boundary—-layer air is diverted around the entrance, thus
decreasing the beneficial effect of reducing the width~to-depth
ratio found with a nondiverging ramp.

The width~to-depth retio necessary for maximum pressure
recovery also increased as the divergence increased. This may
be better visualized by the following table:

Maximm Pressure w/d for V,/Vo for
Recovery (after  Maximum Maximum
Diffusion) Recovery Recovery
Farallel valls 0.80 1 0.70
Straight diver—
geace No, 2 845 2 .55
Straight diver—
gence No. 3 .860 3 43

Curved diver—
gence .865 3 .40
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8ince good pressure recoveries are obtained for diverging

ramps over & wide range of inlet velocity ratios, this type of
inlet should not be limited to systems which have small internal
diffusion, dbut mey include those which diffuse the air to a low
velocity.. It should be emphasized again that these pressure—
recovery values are not the maximum obtainable dut repreesent
only those available with the existing boundary-layer thickness.

0.~ The results of varying ramp angle, given on figure
12, shov that in all cases an increase in ramp angle vas accom-
panied by a decrease in pressure recovery. As the divergence of
the ramp plan form increased, this effect of the ramp angle
became more pronounced.

An 1llustration of this, shoving the pressure~recovery
decrement between ramp angles of 5° and 11.5° for w/d = k4, is
given as follows:

.

V1/V, 0.h 0.8 1.2
Nondiverging 0.05% 0.03 0.045
Divergence No. 2 +Oh .13 <15
Curved divergence .12 .18 .19

The general trend of a decrease in pressure recovery resulting
from an increase in remp angle is also similar for v/d ratios
of 2 and 6, the decrease being slightly less for v/d = 2 and
greater for w/d = 6, ,

For entrances vith nondiverging ramp walls this decrease
in pressure recovery results from a thickening of the boundary
layer due to a more adverse pressure gredient along the ranmp.
For the divergent ramp the problem is more complex for, instead
of being relatively two-dimensiocnal as it is for the nondiverg-—
ing (parallel) walls, it assumes a three-dimensional aspect.

In this case it is believed that much of the loss accompanying
an inocrease in ramp angle is attributadble to the resultant
gecmetrical change in the ramp plan form. For a given divergent
ramp, increasing the ramp angle increasees the angle between the
diverging walls. (See f£ig. 4.) This produces direotly two
adverse effects. First, increasing the angle between the ramp

. 4
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valls increases the tendency toward separation. Second, in-
creasing this angle increases the obliguity between the ramp
wvalls and the free—stream flow. This makes it more difficult
for the air flowing along the outside edge to follow the
divergent contour of the side walls. Consequently, air spills
over the edge of the ramp walls, admitting much of the

boundary layer and causing a croes flow betwoen this air and the
air flowing down the ramp. A combination of these two adverse
conditions causes large pressure losses to occur in the corners
of the submerged ertrance when the ramp angle is increased.

This i1s shown in figure 13, which gives the distribution of
pressure loss across the submerged entrance for several config—
urations. From figure 12 it appears that for the larger ramp
angles (above 10°) the optimum remp plan form should have scme—
vhat less divergence than that employed for the lower ramp angles.

From the results of the investigation of ramp angle. a better

. comparison of the merits of various width-—to—depth ratios can be

obtained. In most cases the use of a given ramp angle is dic-
tated by the length available ahead of the duct entrance. For a
constant-area duct entrance and a constant ramp angle, the
required ramp length is much larger for the deep and narrow
entrances. Thus for a 7° remp angle, the ramp length for a

v/d ratio of 1 is 2.45 times the immp length of a v/d ratio of
6 entrance. Since ramp length usually constitutes a design
limitation, a mors usable comparison of the entrances of various
width~to=1epth ratios can be cbtained by comparing the pressure
recoveries at a constant ramp length. To obtain this comparison,
pressure—recovery data after diffusion were plotted against a
ramp--length texm. This term was mads nondimensional by squaring
the ramp length and dividing by the duct entrance area. The

2
' v function of (XBER lenath)
cross plots of pressure recovery as a function entrence area

are given in figure 14, A comparison of these curves indicates
that for many design conditions width—to-depth ratios of 4 to 6
will give the highest pressure recovery.

= A comparison of the pressure recoveries for
the straight and curved reamp floors is given in figure 15.
The straight floor is seen to be superior for the configurations
tested, but the difference in pressure recovery is small,
usually less than 2 percent for the more optimum configurations.
The present expsrimental results indicate this parameter to be
of secondary importance in obtaining high—pressure recovery.
Therefore, small changes in the contour of the floor that may
be required to obtain a smooth junction betwéen the ramp floor
and fuselage skin should not noticeably affect the pressure
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recovery of the installation.

Effect of boundary—laver thickness.— A compariscn of the natural
and thickened boundary layere 1s given in figure 16, Figure 17
shows that, as expected, increasing the boundary-layer thickness
decreased the rem recovery. This decrease wvas practically the
same for all configurations tested and was approximately equal
to 0.12 ram recovery ratio. These tests clearly indicate that
diverging the ramp walls keeps only a portion of the boundary—
layer air from entering the duct, and consequently stresses the
importance of locating the entrance in a region of thin boundary
layer for maximum recovery.

An attempt vas made to correlate the chango in rem recovery
vith the change in boundary layer. Various boundary-layer para—
moters vere considered (boundary layer, displacement, and
momentum thicknesses, etc.) and the factor h wvas selected as
being most pertinent in estimating the pressure recovery for
this type of submerged inlet. The term h 1is defined as a
helght vhich contains an amount of free—etrean ram presaure
equivalent to the total pressure lost within the boundary layer,
and may be evaluated from the following equation:

Ho = Do &

.¥here

8 total boundary-layer thickness

As a first approximation, the change in ram due to thicken—

ing the boundary layer or changing the duct depth and holding
v/d constant, may be estimated from the following equation:

o (5 )- (=2 ) -2 ) - (3), -(3)

vhere the subscripts a and b refer to different config-
urations. Obviously, this is not a rigorous relation, dut it
should give an indication of the change in ram which would dbe
expected if the boundary-layer conditions of a given entrance
were altered, or the size of the inlet changed (all dimen-—
sions remaining gecmetrically similar). The values of h for
the natural boundary layer and the thickened boundary layer

comrﬂrgwﬂf
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are 0.227 and 0.530 inch, respectively. A camparison of the
ostimated change in pressure recovery calculated by this
equation with the measured change for the two boundary-layer
conditions of these tests is given in the following table. Thie
table is for rampe with curved divergence and a 7° ramp angle.

Calculated Values . Measured Values
H - H =
of A ( =——E2 Po
(=% o o( =32

v ¥ . Y.

v: d 2.0 l‘oo & = 6.0 * = 200 g = ‘ho § - 6.0
0.h 0.071 0.101 0.123 0.09% 0.120 0.112
0.8 0T .101 .123 <105 .110 .113
1.2 0T +101 .123 .095 .095 .10%

The use of the h factor resulted in a mmch closer approxi-
mation than any of the other boundary-layer parameters considered.

-Entrance Prossure Recovery.— Of primary interest in the design
of a ducting system is the entrance pressure recovery, from which the
losses chargeable to the diffuser are excluded. The method of com—
putation used in determining this entrance pressure recovery is given
in Appendix A.

: The effects of mg plan form,ranp angle and width—-to-depth ratio,
i are shown in figures 18(a), (b), and (c). Comparison of these

v curves of entrance pressure recovery with corresponding curves for
recovery after diffusion (figs. 10, 11, 12) show that the results
follovw the same trends. In general, the previous analysis accounting
for the differences between various configuwrations is applicabdle.

The slight discrepancies found in the analysis between data for
entrance pressure recovery and pressure recovery after diffusion
(figs. 11 and 12) can probably dbe attributed to changes in diffuser
efficiency with changing entrance conditions. The losses at the
entrance together with the losses after diffusion enable an eval-
uation to be made of the change in diffuser efficiency fo: any con—
figuration. (See reference 2.) Using these losmes, diffuser
efficiencies for two entrance configurations have been calculated

CONPISEPAY—
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and are compared in figure 19 with those obtained from bench tests.
The difference betveen the two sets of curvee represents the effect
of the inlet on the diffuser efficiencies.

Presuure Distribution and Critical Mach Number

In thies part of the investigation estimations of the critical—
speed characteristics of the submerged duct entrances were made from
an analysis of the pressure distridutions over the lip and ramp.

The critical Mach numbers were estimated fvom the peak low-speed
pressure coefficients by the K{rmen-Tsien method (reference 3). Thims
method does not apply to throe—dimensiocnal flow (reference 4), Just
vhat corrections should be used for the flow around a submerged
inlet is not known, but it is believed the results given by the
method of reference 3 will be conservative.

Lip.~ The critical-speed characteristics of the lip are depend—
ent upon the inclination of the flow approaching the lip. A decrease
in the inclination of the flow is defined as an angular change of
the flow vhich causes the stagnation point to move toward the outside
surface of the lip. Thus, adecrease in the flow inclination decreases
the incremental velocity over the outside surface of the lip, and
vice versa for the inside surface.

The pressure distridution over the lip is given in figure 20.
Here 1s shown the change in the stagnation point with inlet velocity
ratio and the effect of this change on the peak negative pressure
coefficients. Increasing the inlet velocity ratio always decreases
the inclination of the flow.

The effects of ramp plan form on the critical-epeed character—
istics of the lip are given in figure 21(a). With a nondivergent
ramp there is no appreciadle changes in the flow inclination across
the entrance. For the lip section, 1 inch from the edge of the
entrance, diverging the ramp also caused practically no variation
from the data obtained with nondiverging walls, For the center-—
line section of the lip, however, diverging the ramp caused the
atagnation point to move toward the outside und oconsequently in-
creased the critical Mach number for the flow over the outside
surface (£ig. 21(a)). This comparison shows that with a divergent
ramp there is a distinct variation across the entrance of the angle
of flow approaching the lip. The flow near the edge of the entrance
hes a more positive inclination and produces the largest incremental
velocities over the outside surface.

The effect of ramp argle on the critical Mach number for the
1ip is shown in figure 21(b). As would be anticipated, inoreasing

“TTPDATA 1975 F
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the ramp angle decreased the flow inclination. The data verify that
for the ramp angles tested there is a variation of the flow inclina-
tion across the entrance vhen a diverging ramp is used.

To correct for an undesiradble angle of the flow approaching the
lip, the incidence of the lip may be varied. The effect on critical
Mach number of changing the lip incidence from -5° to +5° is shown n
figure 22 for three width-to-depth-ratio entrances with curved diver-
gence. From an analysis of these data, it appears that for many
configurations the critical~speed characteristice of the lip will be
improved by giving the 1ip a negative (down) incidence. The unde-
8irablv change in flow angle acrosa the inlet, present with a
divergent ramp, may also be compensated by giving the lip a more
negative incidence near the edge of the entrance. Whather or not
the lip incidence or camder should be varied across the entrance will
depend on the oritical speed of the airplane. It should be noted
that it is undesiredle to give the lip a more negative incidence than
is required. Although the critical-speed characteristice may be
improved at the lower inlet velocity ratios, the flow may separate
from the inside surface at higher inlet velocity ratioe, causing an
added loss in pressure recovery.

Ramp.— The pressure-~distribution data obtained along the remp
indicate that the inlet velocity ratio of the entrance does not
affect the velocity from 4O percent of the ramp length to the start

of the ramp (O-percent station, fig. 23(a)). The peak negative
presswre coefficient occurs forward of the LO-percent station fox
inlet velocity ratios below 1.0, and, consequently, the critical-
speed characteristics of the ramp appear to be independent of the
inlet velocity ratio. The pressure distribution forward of the LO-
percent station was found to be a function of the plan form of the
ramp walls and the profile of the ramp floor.

The preassure distribution along the ramp is given in figure
23(b) for three ramp plan forms. The effect of width—to-depth
ratio of the entrance and of ramp angle is given in figures 23(c)
and 23(d), respectively. The oritical Mach number for the ramp, as
estimated from the pressure distribution, will be above 0.8 if the
ramp angle does not exceed 9°,

The ramp floors for the aforementioned tests were all straight
inclined surfaces. A comparison between the preassure distributions
of the straight ramp floor and a curved remp floor is given on
figure 24, The pressure gradient over the straight ramp appears to
be more favorable for both parallel and curvod divergent remp walls.
The reduction in pressure recovery vhich accompanied th« more adverse
pregsure gradient of the curved ramp floor has been mentioned
previously. It may also bs seen that the straight remp floor gives

CoNpapmertry”
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lover peak incremental velocities over the remp than the curved ramp
floor vhen divergent walls are used. The studies of ramp floor con—
tour in the present investigation were limited in scope. A more
fundamental study of the effect of the ramp pressure gradient on
critical speed and pressure recovery should be made. The ramp floor
should mrobably be designed so that the pressure gradient will bave
the least slope at the design inlet velocity ratio.

Drag

Drag of the submerged entrances was determined by surveying the
portion of the air stream containing the wake due to the inlet, and
is equal to the difference in momentum of the air stream, with and
vithout the duct installed. The method of calculating the dreg is
given in Appendix B. The drag coefficients bdased on duct-entrance
arve are presented in figure 25 for the various configurations, while

iigure 26 shows the distribution of the momentum loss aft of the
entrance. )

In all casees, the drag decreases as the inlet welocity ratio is
increased. Figure 25(a) shows that the drag increases as the diver—
gence 1s increased. This was expected, since a rondiverging reamp
permits a larger portion of the boundary-layer air to flow into the
inlet. In general, it appears that configurations which result in
higher ram recovery have larger attendant drags. The negative values
of dreg result from the fact that the loss in momentum downstream of
the entrance wvas less than the loss due to the boundary layer that
proviously existed. This can be seen on figure 26.

For the curved divergent ramp, the drag for most usable config-
urations should be quite low for the high-epeed and climb flight range.
Assuming a ving-area-to—duct—entrance—earea ratio of 150, a typical
Cp due to & submerged duct in the high-speed attitude would be
approximately from 0.0003 to 0.0006. It should be remembered that
the effect of the duct vake along the fuselage aft of the entrance
is not included.

Deflectors

Doflectors, or ridges along the divergent contour of the
entrance, have been shown to increase the ram recovery when used
with certain inlet configurations and conditions. This series of
tests was performed to f£ind the effect of deflector sire, amd to
evaluate the use of deflectors for various inlet configurations.
The criteria used for evaluation were the same as those for the

principal investigation.
cogl(m.
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It vas found that increasing the deflector length from 2% to
50 percent of the ramp length caused the most pronounced increase
in pressure recovery (fig. 27(a)), except for the 0.25-inch-high
deflectors. JFurther increases to 100 percent of the ramp length
caused increases in the rem recovery ocnly at inlet velocity ratios
below about 0.8. Figure 27(d) also gives the pressure recoveries for
deflector heighta of 0.25, 0.50, 0.75, and 1.00 inch vhen tested at
various lengths. :

For the deflector heights tested it may bDe said, in generel, that
increasing the height increased the pressure recovery, particularly
at inlet velocity ratios above 0.5. However, changing the height
from 0.75 to 1.00 inch improved the recovery cnly at inlet velocity
ratios above 1.0. As & result of these tests on deflector size, a
sories of deflectors vas selected for further inwestigation.
Doflector beights ranging from 0.29 to 0.75 inch extending 50 and
100 percent of the ramp length were chosen because it was thought
that this renge vas most mmacticabdle.

The changs in rem recovery produced dby deflectors for three
wvidth~to~depth ratios can be obtained from figure 28. The data -
show that using deflactors with the more shallow entrances (w/d
ratios of 4.0 and 6.0) adds a larger increment to the pressure
recovery. Tais can be better visualized dy the following tabls
vhich lists the increase in Iressure recovery after diffusion
resulting from the use of deflectors. The data are for a 7° curved
divergent rsmp and the deflectors are 0.75 irch high and 100 percent
of the ramp length.

Vy v

- -~ = . . 6.

V. 3~ 2.0 k.0 0

0.5 0.019 0.0k6 0.076
.7 .084 .103 +120

1.0 .m 0123 .1ﬁ

Figure 28 also shows that changing the deflector length from 50— to
~100-percant ramp length causes little effect oa the rum recovery of
the entrance with v/d = 2,

Figure 29(a) shows the difference in ram recovery for various
raxp plan forms vith and without deflectors. It is apparemt that

CONTZYIRErT.
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deflectors are not equally beneficial for all remps. The increment
of ram recovery due to deflectors increased with increasing divergence.
With nondivergent ( p.mllel)‘ valls the improvement was negligible.

The results of tests to find the effect of deflectors on ramp
angle are shown in figure 29(b). When these data are compared with
those for similar configurations without deflectors (fig. 12) it can
be seen that deflectors are beneficial, from the standpoint of ram
recovery, for all installations. A more comprehensive comparison of
the three w/d ratios tested can be obtained from the cross plota of
these data, given in figure 30. Here 1s shown the pressure recovery
as a function of the ramp~length term previously derived.

Pressure recovery at the duct entrance is given in figure 3l
for sevural deflector—-entrance configurations. The trends shown by
these data are in good agreement with the analysis already discussed.

Deflectors apparently increase the pressure recovery by assist—
ing the air flowing outside the ramp to follow the diverging contour
of the side walls. This prevents much of the cross flow of air over
the top edge of the ramp walls and also helps to divert more of the
houndary layer around the entrance. With regard to the selection of
a deflector to give best recovery, it should be noted that results o
other investigations (reference 2) clearly indicated that the require—
ments for deflectors are dependent upon the location of the entrance.
It wvas found that when the entrance wvas placed in a region of thin
boundary layer, increasing the deflector length from S0— to 100—~
porcent remp length caused a definite decrease of pressure recovery.
It is probable that deflectors which extend the full length of the
remp should be used only Por thick dboundary-layer conditions.

Although the use of deflectors results in higher pressure
recovery, it was found that their effect was somevhat deteriorating
to dreg characteristics of the entrance. Figure 32 gives the drag
for several inlet configurations with deflectors. Comparing these
data with drag for similar configurations without deflectors (fig.
25) shows that deflectors increased the drag for all configurations
tested vhen the air enters the inlet at a velocity ratio above 0.6.
This comparison also indicates the deflectors caused the largest
dreg for shallov entrances (v/d = 4.0 and 6.0) and steep ramp angles
vhere the gain in pressure recovery vas the greatest. As would de
expected, figure 32(c) also shows that increasing the deflector size,
both length and height, increased the drag.

The pressure distridution over the ramp when deflectors are used
is given in figure 33. Comparison of there data with figure 23
indicates that deflectors cause some addition to the incremental
velocities over the ramp. The critical-epeed characteristics of the
1ip for the curved diverging remp, with and without deflectors,

e, » K
CONFIBENTIAL
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are given in figure 34. This comparison showe that deflectors
increase the critical Mach number for the flow over tkre outside
surface at the center section of the entrance while decreasing the
MCR for this flow near the edge of the entrance. A larger flow—

angle variation acroes the entrance is therefore indicated when
deflectors ere used.

POSSIBLE AFFLICATIORS FOR NACA SUBMERGED INLETS

It shculd not be maintained that the submerged entrance is
applicable as an inlet for all ducting installations, but it does
have certain characteristics in addition to those presented which
make it particularly suited for specific ducting applicaticns. The
use of NACA submerged inlets could, in some cases, result in greater
aerodynamical cleanness dby effecting more favorable fuselage contour
lines and perhaps reducing the fuselage frontal area. The structural
camplexity of the ducting system should de diminished and larger
space provided for internal components. This type of duct should
also reduce considerably the ingsstion of foreign material by in—
oertia separation.

A possible jet~engine installation utilizing NACA submerged
ducts is shown .n figure 35. In this illustration the submerged--
duct design 1s centered around a single Jjet engine located in the
fuselage aft of the pilot's enclosure. Flacement of the twin entries
ahead of the wing minimized the influence of the wings presaure field
and situated the eniry in a region of thin boundary layer (reference
2). A v/d ratio of ahout L4 seemed advisable from internal space
limitations, and a remp using curved divergence together with a ramp
angle between 5° or 7° was selected. This installation should give
optimum pressure recovery, low over-all dreg and an efficient
internal-flow system, since the neceseity for sharp bends and rapid
expansions have been eliminated. Reference 2 discusses a duct~flow
instability that could occur with this type of installation.

For airplanes employing two Jet engines the necessity of using
wing nacelles could often be eliminated by housing the engines eide
by side in the fuselage. The NACA submerged inlet appears to be
very adaptable to such an installation. The use of single ducte
leading to each Jet engine would be similar in design and location
to that shown in the previous illustration. With a single duct
leading to cne Jjet engine, the flow instability previously mentioned
could not occur. The short internal ducting of such an installation
should result in minimum lceses, especlally for engines with axial-
type compressors.

Certain types of missilee, vhich are powered by Jet engines in

CONPTISINGTR,
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the fuselage and have no provision for landing gear, are ideally
adaptable for an NACA submerged—duct system. The eingle inlet could
te placed on the underside of the fuselage and the installation would
have the design end aerodynamic advantage mentioned previ-usly.

Other applicaticns could include scme ducting systems involving
cooling and carburetor air. If this type of entrance could be sub—
stituted for the protruding scoop-type of inlet, the aerodynamic
neatness of the alircraft would de greatly enhanced.

CORCLUSIUNS
From investigations that have deen made of the configuration

changes and parameters affecting the design of NACA submerged-duct
installations it was concluded that:

1. The doundary layer ai the location of the sultmerged entrance
will influence the rem recovery. Due to the relatively thick tunnel
boundary layer intc which the entrance was placed, it is believed
that the pressure recoveries prisented in this report are lover than
could be expected for most airplane installations but that the cam—-
parison dbetween configurations is valid.

2. Significant gaine in pressure recovery for a wide range of
configurations restilted from the use of the curved divergent ramp.
This is especially true in the low inlet-velocity-ratio range,

VL < 0.9, vhere high pressure recovery is wost necessary.
(o] .

3. 'The effect of width—to-depth ratio was greatest for the
nondivergent (parallel) ramp walls. The best recovery for this
configuration occurred for a w/d ratio = 1 (square) entrance. As
the rampwall divergence increases w/d ratio has less effect, ani
the square entry is inferior to most rectangular entries. With
curved divergence the ram recovery increment due to change in v/d
ratioc 1s about half that with parallel walls,

4, Remp angle or, in socme cases, ramp length, had an outstand-
ing effect om ram recovery. The detrimental effect of increasing
reanp angle became greater es the divergence was increased.

5. In general,it appears that an inlet with curved divargence,
a 5° or 7° ramp angle, and a v/d ratio of from 3and 5 offers optimm
charecteristics.

6. Good critical-speed characteristics can be obtained with
proper lip design. There is a spanvise change in angle of attack of
the lip vhen a diverging ramp 1s used, and it may be necessary to

con}ﬁnu
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twvist the lip, depending on the pressure field into which the
entrance is placed.

7. For moet design conditions the drag was found to be small.
However, in the selection of an optimum configuration, the drag and
ram recovery should be weighed. In this respect, the use of
defloctore may not always prove advantageous.

Ames Aeronautical Laboratory,

National Advisory Committee for Aeronautics,
" Moffett Field, Calif,

AFPPENDIX A
METHOD OF OBTAINING DUCT LOSSES AT THE ENTRANCE
AKD AFT OF THE DIFFUSER SECTION
If, as in the most general case, the stream filaments for a

steady flow are not assumed to have the same flow energy, then tho

total pressure for a given weight of fluid passing a given section is
(reference 5)

1 f
- H o) v dA (A1)
v A local Plocal Ylocal

Usially, it is not necessary to apply this exact method, dbut it may
be requisite if the total pressure distribution at the measuring
station has local regions of high loss. Such was tho case at the
submerged-duct entrance for inlet velocity ratios between O and 0.8.
In computing the losses for this range, equation (1) wes modified to
reduce the computational work:

n=l
1

H = e hponV (A2)
Y A ; nPn'ndn

wvhere

CONFLZRTIAL
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h local total head

o) local density

a local area

' v local velocity

3 number of equal areas (equals number of tubes)

assuming

Pmean = Pn = £,=P, = otc.

Then

nsl
V1 Va v‘
h + ha - — oo (A3)
1 vm vnoo,n hn an

=
"
s

n=l

For this application subscripts 1, 2, eic., demote local areas
considered.

The difference between the losses computed in the preceding
manner and those cbtained from an intergrating mancmeter were found
to be negligible at the entrance for the remainder of the inlet—
velocity-ratio range, V,/V,'s fram 0.8 to 1.k. Such vas the case
also for the entire inlet-velocity-ratio range at the measuring
station after diffusicn.
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APFENDIX B
METHOD OF OBTAINING DRAG OF THE SUBMERGED ENTRANCES

If the momentum change betveen two stations along a stream tube
is measured, the resulting drag force may be computed:

n-f(u—u)d- (B1)
or
D-pfu(Uo-u) aA (32)

vhere ocne station is in the free sireanm.

Assuming the densities at U, and u are equal,

D u u
op =i f [ (- ) (83)
Now, assuming that free-etream static pressure exists in the wake
(p = po)
Then

Cop -E[f / 1—%(1-/1-2—2)@4: (B4)

or

"@UPDATA 1978 b ~
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Expanding the first part of this equation in a binomial expansion and
combining with the remainder gives

om o3 [ ek [ (@) v wo

It vas found that there were sufficient tubes in the measuring rake

8o that a value of % obtaines with the aid of an integrating

)

mancmeter and substituted in place of the integrals in equation (B6)
gave very satisfactory correlation with the point-by-point
integration of equation (Bh4).

To indicate how the submerged-duct-drag determination was mado,
it might be best to consider a comparison bhetween the drag of a nose
inlet and of a submerged inlet as determined by momentum surveys.
This comparison should include the air flow through the entrance to
corresponding stations at the jet-engine compressor. What happens
after this section is a function of the joet-engine characteristics
and does not enter this discussion. To simulate the preceding
condition, consider that the air after entering the duct ies removed
at right angles to the air stream sc that there is nc mcmentum of
the exit air in the drag direction. Then

Loss in momen—

tum of the Momentum of Loss in mamentum -
Drag of inlet = entering air at * entering air + behind the duct
the duct entrance (rem dreg) (profile drag)

" Por the nose inlet
D= Y + Mont Vo + f Byrt(Vo— Vart)daget

For the subnax[od inlet

D= f Rent(Vo— Vent) dAent + f Nent Vent dAent+ f matt(Vo— Vart)dhart

vhere m 1is the mmss flowing through each unit area.

COM%IAL
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Usually, for the nose~type inlet, the momentum of the entering air
is taken into account as part of the internal drag and subtracted
out. To make a fair compariscn between the nose and submerged inletas,
for a given quantity of flow, the same ram drag should be accounted
for in each case. However,; for this condition, the ram drag of the
submerged entrance is less than that for the nose inlet since air is
inducted which has already received a loss of mcmentum, this loss
being equal to the second term of the previous equation. If 1t is
assumed that the momentum of the entering air 18 (mg,+V,) for both

installations and is subtracted from each case, the drag beccmes:
For the nose inlet

D - f Bart(Vom Vare) dAare

For the submerged inlet

D= f Bart(Vom Vart) dAars

In an actual duct application, the air flow over the body with the
duct entrance removed must be considered, so that another term is

necessary. The final form of the equation used to evaluate the drag
then becomes:

D= f ’”a.tt( Voo Vattyyot m) dAary = f ma.tt( Vo~ Vaftguet out)“a.ft

cm%nm
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TABLE I

Index of the Submerged-Duct-Entry Modifications

Ramp plan form

Parallel walls

v/d

Ramp angle

Ramp floor
shape

e e e A

Ramp Straight divergence No. L 6 °

plan form Straight divergence No. ’
Curved divergence
Straight divergence Xo. 1, 2, 3, o PRI B

v/d Straight divergence No. k; 5, 6 U Sm:ldxt o A
Curved divergence ' -

| Parallel walls 850, 7%, SRR i

Ramp angle | Straight divergence No. 2, 4, 6 g°, 1.5°,  Stratight | " Kal
Curved divergence 150.,' T

Ramp floor | Parallel valls °5°, 7°,9° . P B

shape Curved divergence ¥ ll:5° 7 Curved latural

thic o Curved divergence 2, 4, 6 7° Straight m&m ! None
Farallel walls 5%, 7°, 9° |Betant = 1/4 1n.,

d

Deflectors | Streight divergence No. 2 | 2,k, 6 Straight Eatursl {1/2 in.,3/k in.,1 in.

Curved divergence . '

1.5%, 15°

75%, 100%

Im = 25%, 50%.

a. Only with wv/d = 4 and 6.
b. Only with w/d = 2.

c. Angle defined by a straight line connecting beginning and end of ramp.
d. See table II for combinations tested.

NATIONAL ADVISORY
COk»  TTEE FOR ASROWNAUTICS
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3/4 inch 1 inch
L -
7 --
b L
r 7
4 L
7° 7°

2, b, 6 b

e | T

NATIONAL ADVISORY
COMMITTEE FOR AEROMAUTICS
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TABLE III
FIGURE GUIDE TO RESULTS
Modificatd Pressure Pressure Drag
cation recovery distridbution
Ramp plan form | Figs. 10, 18 Figs. 21, 23 Figs. 25, 26
v/d Figs. 11, 18 | Figs. 22, 23 | Figs. 25, 26
Ramp angle Figs. 12, 13, | Figs. 21, 23 | Figs. 25, 26
14, 18

Ramp floor Fig. 15 Fig. 24 None
shaye
Boundary-layer Fig. 17 None Eone
thickness
Deflectors Figs. 27, 28, | Figs. 33, 3b Fig. 32

29, 30, 31 |

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTCS
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