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Summary;     A minimization  problem is 
solved and used to treat  a class  of 
maximization  problems.     Possible 
applications of the results are 
discussed. 

SOME RESULTS  IN  NON-LINEAR  PROGRAMMING 

R.  M.   Thrall 

Introduction. 

Suppose that the components of a vector x = (xi,...,x ) 

are subjected to certain linear inequalities, which restrict 
i—t 

x to a region i .  The linear programming problem is that of 

determining the maximum or minimum of a linear function of 

x.  If the function to be maximized (or minimized) is non — 

linear, we have a problem in non—linear programming.  In the 

present memorandum we consider several non—linear program- 

ming problems where the non—linear functions treated fall in 

the class: linear function plus sum of fractions with linear 

denominators.  In section 1, a minimization problem is solved. 

In section 2, a related maximization problem is introduced. 

In section 3, a special case (previously solved by a different 

method by Rufus Isaacs) is fully solved.  An iteration problem 

is treated and illustrated in sections 4 and 6.  Possible 

applications are considered in section 5. 

Isaacs, R., "A Wagering Problem and a Maximizing 
Technique," 1952. 
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§ 1•  A Minimization Problem. 

We wish to minimize the vector function 

n s.p. 
(1) f(x,s,P) - y~   -j-i 5 s"Xi 

where x > 0,   s > 0,   p > 0,   Po = Pi   +   *'# +  Pn  
=  1,  and n 

(2) x0  - X]   +   • ••   + x n 

is  given.     The vector x therefore varies  over a   compact  set  i 

The  substitution x.   -  s.y.   reduces this to the problem: 

minimize 

(3)        • g(y,p) 
H_      Pi 

i*1 

subject to the  side  conditions y > 0 and 

(4) Y2    siyi = x°> 
t 

which define the domain I  of y. 

The existence of a minimum (as well as of a maximum) 

is clear since x varies o'ver a compact set and since f is 

continuous.  The extreme values will be assumed either at 

some vertex or in the interior of some boundary face.  . 

Let E be a non-void subset of I =  jl,...,n] .  Then the 

vectors x in I  for which 
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(5) x. > 0,  i €E; x. = 0,  i ^E 

constitute a subset lL which is the interior of / if 

E = I, which is a vertex if E has one element, and which is 

otherwise the interior of some face of I  .  Clearly 

Since the  / ~ partition I  any minimizing vector x will lie 

in exactly one subregion / E. 

Suppose that i 61 ^ and that I E is not a vertex, 

say E -     )i T,...,i \  . Then x.  - x0 — x. — ... — x.   and 
r r—1 

-8 .p.     si pi 

and 

—p .   s. p. 
(8) J»  *r \ 0     ^ 

■j  (Vx )2-        ' 
r  r 

are necessary conditions for a minimum at x. 

From (7) we get 

Sipi      siP 

(s.+x.)2   (s.+x.)2 

11       J  «J 

Ä-~        (i,j€E) 
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or 

(9) 
siPi 

(s±+x±)2 " *?" 
(i6E) 

hence 

(10) 

and also 

(11) 

(i £E) 

(i^E), 

AE -   (xo * Z_ st) /  ^_   • sipi 

Furthermore,   we  obtain 

(12) f(x,s,p)   -   1  - n_.  +   X* /(x0+ er )   - f(E) 

where 

(13) T, 's.p.,   ^ Si>   nE Pi 

Our problem is now  reduced to   choosing  E so as to 

minimize f(E)• 

Let  Pi/si  » fj (i ■   1,...,n) 

and arrange the  components  so that 
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From  (8)   and  (9)  we  see that 

(15) Pj>1/V j€E 

Then from  (14)   we   conclude  that  E must  be  one  of the  sets 

(16) E.   -  It,...,n \        (t=1,...,n) 

To simplify notation, whenever E. is used as a subscript we 

now replace it by t.  In particular, the conditions (15) can 

now be written as 

(17) p%>Mxli^., 

or, equivalently, 

08) \A7^  < K * ^Jt-i 

In summary, (18) is a necessary condition that the 

minimizing vector x shall lie in P. .  We shall show that for 

each xo there is exactly one t for which (18) is satisfied, 

and hence that there is a unique minimum. 
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Set 

(19) ^=VT7p]r. - a-.   (J»i,...,n) 

Theh 

since the first term is positive and the last two cancel.     Thus 

we have 

(20) yi £ Y2 > .•• ^ yn^"0^* 

From  (1 )  we have 

(21) Aj  Ä    Aj(xo)   =   (x0+ CTji/'Cj, 

and an easy computation shows that 

(22) W   =    Vl(yj')   "^Pj       (j-1,.,.,ir-1) 

>n^n}   = ^^7^ 

V. 

Now A*(xo) is a linear function of x0 with positiv« 

slope; therefore it follows from (22) that  Xj(x0) > N/
1
/PJ 

if and only if x0 > y,, and Xj(x0) ^ \A7f^~j" if a^d 

only if x0 < y... Now from (20) it follows that for each x0 

there is exactly one t - t(x0) for which (16) holds, namely 

that t for which 
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(23) yt < x0 <: yt_r 

We summarize these results  in the following theorem: 

Theorem  1 .     The func_tion f {x, s, p)   of  (1 )   is minimized by the 

vector x given by 

(24) j   x.  =    >lt \/s~pT ~ s .       (j-t,...,n) 

where  t  = t(xo)   is defined  by   (23),  and the minimum value  is 

(25) f(x,s,p)   - g(x0)   -  1   - Tit + t* /(x0+ CTt). 

Theorem 2.     g(xo)   is a differentiable   function  of XQ  in the 

interval 0 < x<j < GO. 

Proof:       Both continuity and differentiability are 

trivial  except at  the points  yj,...,y   .     Consider 

x0 - yt(t < n).    We have 

(26) lim      g(xo)   - 1  " Ttt +   t\ I  (yt+ *"<.)   -  1  - nt +   Zt JK 
x0-*y£ 

and 

(27) lim       g(x0)   -   1   - tr     ,   +   Tt+i/(V °W   =  1   " nt+1+  Vl  SfZ' 
x0->y£ 
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The difference is 

nt "Vi ~y?t (xt "V^ = pt -&t7*t * ^¥t = °' 

hence g(xo)   is   continuous  at y\. 

Next 

(2ß) lim +  g'(x0)   = ~ ^/(yt+ 0-t)
2 = -   p 

x0-»yt / 

and  for t < n 

(29) lim      g'(x0)   -   x*+1 /(yt+ crt+1)
2 - -   pt; 

x0 -$> y£ 

hence the derivative  exists at  y.   for t < n and the right 

hand  derivative exists at  0(~y   i* J n 

§ 2.  A Maximization Problem, 

With notation as above, let H(t) be a function of the 

positive reals into the positive reals, and then consider 

the problem of finding the vector x which maximizes the 

function 

(30) F(x)   -  F(x,s,p)   =  H(xo+s0). V"~ r-jr1 ~ x0. 

j»1     1     J 

n 
Since  \    p .=  1 ,   this   can be written  as 

(31) F(xi   = H(x0+s0)   |Vf(x,s,p)] - x0.. 
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For the case of fixed XQ the maximizing vector x will be the 

one which minimizes f(x,s,p); the solution to this problem 

is given in Theorem 1 . 

Next for the case of arbitrary x0 we argue as follows: 

if x is the maximizing vector then the components x. 

(j = 1,...,n) can be determined from XQ according to (24).  To 

determine XQ  let 

(32) G(x0) - H(x0+s0)D - g(x0)] ~ x0 

where g(xo)     (see   (25))   is  the  minimum value  of f(x)   for all 

x with X    x.   = x0.     Then the maximum of F(x)  as a   function  of 

the vector x will be the same as the maximum of G(XQ) 

considered as  a  function  of xo,   and XQ will  be the value  of 

Xo which maximizes G(xo)» 

If H(t)   is differentiable for all t > 0,   then by- 

Theorem 2,   G(xo)   will  be differentiable  for XQ  > 0.     Hence 

the maximum for G(xo)   either does not   exist  at  all,   or exists 

for xo  = 0,   or  exists at  a point for which G'(xo)   = 0.     For 

x0 > Yi   we have g(x0)   =   "~t<   /  (x0+ °1)   and  hence 

lim    g(x0)   - 0.     Let   H =    lim    H(xo+s0)/x0.     If H > 1, 
X0->03 X0->03 / 

G(xo) will have no maximum.  On the other hand, if H < 1, for 

all xo sufficiently large G(XQ) is negative and hence there is 

a maximum.  If H - 1 there may or may not be a maximum. 
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We have 

(33) G'(x0)   =  H'(xo+s0){1-g(x0))  - g'(x0)H(xo+s0)-1, 

hence 

(34) lim G'Uo)   -  H'(so)'0 -  (-P )H(s0)  - 1 
x0->0 ,n 

frora which we  conclude that the maximum does not   occur at 

x0  =  0 if 

(35) Pn
H(So)  < V 

Now G(0) = 0, hence H < 1 and (35) are sufficient conditions 

for existence of a positive maximum. 

a,3*  The Special Case H(t) = Qt, 0 < Q <: 1. 

In general it may not be easy to solve the equation 

G'(xo) = 0.  However, this can be done if H(t) - Qt where 

0 < Q ^ 1.   [This special case (except for Q. = 1 ) has been 

solved by Rufus Isaacs in a recent (unnumbered) memorandum, 

"A Wagering Problem and a Maximizing Technique."] 

For Q = 1 , and x0 > Y], we have 

(36) G(x0) = (x0+s0)(1- t?/(x0+s0)) ™ x0 

s0 -
Ti s (s,+ ... + sn) ™ ( V/

P7S7+...+ v/pnsn)  , 
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which, by Schwarz inequality, is positive unless  (j = ... = O 

in which case G(xo) = 0.  Since H = (4., this guarantees the 

existence of a maximum for each ^ in the range 0 < Q < 1 . 

Condition (35) now reduces to 

(37) Q > sn/pns0. 

Hence, if (36) holds, we are guaranteed a positive maximum 

for F(x). For Q = 1, (36) always holds unless f, - ... = p   , 

We next study the equation G'(XQ) = 0.  From (33) we 

get 

(30) G?(x0)   - Q(1-g(x0)) - g'UoJQUo+SoM. 

If yt < x0 S yt_i   apply   (25)   and  this reduces to 

(39)     G»(x0)   - Q(TT -^/ (x0+ <rt))  + Q(x0+s0)—l£—2    - 1 
(x0+ <T~t) 

and this is zero if and only if 
t-1 

Uo) (ÜSlÜjZ . I21Ü  .1=T       SJ. 
'rt 1~nt+q t_1       zt 

j 
d-1 

where q = (1-Q)/Q.  Equations (40), (21), and (22) then give 

(41) pt > zt £ pt_1    (t = 2,,..,n). 

Conversely, if (41) holds, then (40J determines an x0  for 
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which G'(x0) = 0. Moreover, if (41) holds for t, then 

p.   > zt+1i and, inductively, 

(42) zh < ph-1   (h = t+1,...,n+1), 

Hence if (41) holds for any t, it can hold for no larger t, 

i.e., t is unique if it exists. Moreover, (42) for h = n + 1 

is- equivalent to (37), so that thist must give the maximum 

value to G(XQ).  Conversely, if H  < s /p s0 then (40) has no 

solution so that x - 0 is the maximizing vector. Note that 

G'(0) = QsoPn/s — 1 so that the maximum value of F(x,s,p) 

is positive or zero according as G!(0) is positive or non- 

positive. 

We observe that if XQ <? yj then G'{XQJ - H ~~  1 ; hence, 

if Q < 1 the maximum cannot occur for xo > yi •  For 0. -  1 
p 

all x0 5r yj   give the  maximum value  SQ — "^   (if   (36)).     This 

completes  the proof  of the following theorem. 

TiieprernJ. Let s, p, x be vectors with s>0, p>0, x ^> 0, 

and po = ^ p. = 1, and with components so ordered that (14) 

holds.     Let 

where 0 < y < 1. 

y 

n  P -x . 
(42)  F(x,s,p) = (xo+sQ)'Q' Y2  s,:

Jx. ~ xo> 

.1 = 1  J  J* 

12 

Then for fixed x0,s and p the vector x which maximizes F(x,s,p) 

is given by (24) where t and \.   are given by (23) and (21). 
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For fixed s and p the function F(x,s,pJ is maximized by a 

vector x" for which x0   is defined by (40) and (41 ) •  If Q < 1 

there is only one maximizing vector.  The maximum value of 

the function is positive if and only if Q > s /p,So. 

This theorem (except for the case Q = 1 ) was first 

proved by Isaacs who used somewhat different methods. 

We note without giving the proof that for fixed s,p 

the maximizing xo is a continuous function of Q and that for 

0<<i<i,0£xo<yi. 

S.4.  Iterated Maximization. 

Let F(x,s,p) be given by (30) and suppose that x   is 

the maximizing vector for F(x,s,p), let s*   = x   + s^  > (s*  =is) 

and consider the maximizing vector x   for F(x,s   ,p). We 

have 

(43)  PJ
(1)
 - ^{o)     (J-1,...,t-1); pj(1) - ^-^  (j-t,...,n) 

or 

(44) 

By hypothesis p^o)> rr; hence Q^^  = ~— \A^o > ^4> 
t t   \ j   t 

Since s.^ - s.^ for j < t we have A-^ » X^0^ for 

2 < j < t and hence (17) cannot hold in this new case for 
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j < t.     However,   by hypothesis    P*      > TT~ >  hence, 
t 

Pt(1)  -   >/~Pd / ^t < F2  •    Hence>  t(l)  = t,  and so the 

maximizing vector x*       has the same  zero components as x^° 

and is given by 

(45)    x<1)»0    (j-1,...,t-1),  X
(

.
1)

  -    X.     /    AM - s.(1)   (j-t,...,n). 

Formula   (44)   shows that this iteration  can be  continued 

indefinitely.     Let 

nn p* - lim     dk\  s* = lim s{k),  x* - lim    x^, 
lA-D; \       h-»co     x h-5-oo h~*oo 

* (o) z  »  s    - sv     . 

By  (43)  and  (44)  we have 

{47)   ?j = ?j°*' sj = sjo)> zo = °   <J-i,...,t-i); 

fj  = X^2   »   sj  " Pj  *t>   zj  "  Pj 4 " sj0)        (J-t,...,n). 

Moreover,  F(x,s   ,p)  has x = 0 as  its maximizing vector and  for 

any x < z  (i.e.,  x. < z.   (j=1,... ,n))  we have 

(48) F(x,8* - x,p)  - 0  . 

We shall give an interpretation of these results in Sh* 

next section. 
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§5» Applications. 

Suppose -\'e have a situation in which n commodities are 

to be supplied by a group of manufacturers  u,...,n i . 

Suppose that the total profit to all manufacturers is a 

function only of the total cost of production t; i.e., that 

we can write 

(49) Total profit ■ H(t) - t 

where H(t) is the total sales price. 

This profit may, of course, be negative.  Suppose 

further that the proportion p. of the total sales price which 

th accrues to manufacture of the j  commodity is independent of 

th the amount of the j  product which is produced, and also that 

this amount H(t) p. is divided among producers of the j 

commodity in proportion to their allocations to production of 

this commodity.  Thus, if one manufacturer allocates the vector 

x = (xi r) to the various commodities and if the remain— 

ing manufacturers altogether allocate the vector s = (s],...,s  ) 

then the total profit (or loss) for the first manufacturer is 

n   p .x . 
(50) F(x,s,p) - H(x0+s0) Y2    ^i2 -*o> 

j-1   J  J 

n 

(here x0 
= \ x . and s0 - )  s .) 

L— J        L  J 
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We would in general expect that for large t, H(t) < t 

and even that lim H(t)/t < 1.  Thus if a manufacturer knows 
t—»00 

p and s the procedures of section 2 will tell him what 

allocation of resources (choice of vector x) will maximize 

his profit.  There are three cases which may arise: (1) he 

must allocate a fixed total amount xo; (2) he may allocate any 

amount x0 S 
xo> (3/ he may allocate any amount whatsoever. 

Case (1) is handled in general by Theorem 1.  Case (3) is 

handled by Theorem 3 for the special selection K(t) ~ fQ, 

0 < Q <! 1 .  For this selection of H(t) we can also handle 

Case (2).  If the maximizing XQ does not exceed %Q  we proceed 

as in Case (3).  If the maximizing x0 is greater than x0 we 

allocate x0 as in Case (1); this procedure is justified by 

the fact that the function O'(xo) has at most one zero and 

hence if XQ > 0 maximizes G(x0) then G(xo) Is monotone 

increasing in the range 0 < XQ < XQ. 

The special selection H(t) = Qt treated by Isaacs may 

be called "the pari-mutual case," since (42) corresponds to 

the expected profit from a wager x = (xj,...,x ) placed just 

before the window closes assuming that p. Is the bettor's 

estimate of the probability that the j 1 horse will win. 

Here 1 — Q is the proportion of each bet that is retained by 

the track. 
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ö,6.  An Example. 

Let p = (.2, .3, .2, .3), s = (5, 4, 2, 3), Q =.9, 

then P = (.0/+, .075, .1, .1), q = n a^d the maximizing t is 

2.  X2 = 4.01 and the maximizing x is (0, .38, .53, »79)• 

F(x,s,p) = .22. 

Let s' - s + x, and repeat the maximizing procedure.  Of 

course, we still have t = 2 and  A£ - A2 = 4.01. We get 

x' = (0, .22, .31, .47) and F(x', s',p) = .02.  However, the 

payoff to the first person is now reduced to F(x,s+x',p) = .00. 

Hence the entry of the second person cut the total profit and 

it would clearly be of advantage to the first person to bribe 

the second one not to invest (bet)» 

This is an interesting illustration of the point that. 

maximization by each individual does not necessarily lead to 

maximization of total profit. 
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