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ABSTRACT 

Chaos theory has been applied to numerous areas in the 

physical and social sciences.  Research into areas such as 

strategic decision making and arms control indicate that chaos 

theory may apply to conflict and warfare.  Other research 

projects have examined arms control war games for chaotic 

behavior and used chaos theory to describe Clauswitzian 

friction in warfare.  However, none of this research has 

examined data associated with past wars to see if chaos is 

actually present.  The objective of this research was to apply 

several techniques to warfare that have been used to determine 

the presence of chaos in other fields and to explore the 

implications of the presence of chaos to warfare. 

The data used for this research included aircraft loss data 

for the entire Vietnam War, Allied casualty data for their 

advance through western Europe during World War II, and 

historical US defense spending.  These data were selected 

because they represent several levels of war and include 

interaction with an enemy.  In addition, they reflect an output 

of the process of war.  Because of their importance, they are 

reliable and documented parameters.  The specific tests used in 

this work were the autocorrelation function, the power 

spectrum, the fractal dimension, and the Poincare map. 

The results of this work indicated that chaos is, in fact, 

present in warfare.  The implications of this result include 
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determinism in warfare, the applicability of computer 

simulation, dynamism of warfare, nonlinearity in warfare, the 

applicability of fractal geometries, and the possibility of 

multiple attractors.  These implications are explored for their 

meaning in the context of warfare. 
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CHAOS IN WAR: IS IT PRESENT AND WHAT DOES IT MEAN? 

I.  INTRODUCTION 

For the last thirty years, the study of chaos has intrigued 

investigators, prompting visionaries to see a great future for 

the study and application of chaos theory.  Within the past 

year, investigators demonstrated that chaos theory yielded 

tangible results in an engineering situation where conventional 

control techniques were lacking.1 

Because of the high stakes in war, every advantage is 

sought and no stone left unturned in the quest for quick 

victory at minimal cost.  Although chaos theory is still young, 

investigators are already attempting to apply it to the study 

and conduct of war.  Some studies focused on the grand 

strategic level of decision making, while others pursued 

philosophical application to war in general. 

Last year, a group at the Air Command and Staff College 

produced a primer on chaos theory.2 They surveyed the 

literature for ideas on applying chaos theory to the 

operational level of war, the theater campaign.  This year, we 

are building on that study.  In particular, we attempted to 

prove that chaos exists in the operational level of war by 

applying mathematical tests to historical data. 

This paper provides an overview of chaos theory, followed 

by a discussion of the mathematical underpinnings of the tests 

we used.  Then we discuss the types of historical data that 



were available and the ones we selected for our investigation. 

We also discuss chaos theory in the context of theater level 

wargames.  Next, we present the results of the tests, and 

follow this with the theoretical implications of the presence 

of chaos in war.  In the appendix, we present the software used 

for computation of the autocorrelation function and the fractal 

dimension. 

A.  REVIEW OF CHAOS 

The main purpose of this section is to provide the reader 

with a basic understanding of what chaos is.  Defining chaos is 

complicated by the fact that the common definition of chaos as 

"a state of utter confusion or disorder"3 is different from the 

technical use of the word.  On the other hand, scientific 

definitions of chaos use specialized jargon.  For example, 

chaos has been defined as "the complicated, aperiodic, 

attracting orbits of certain (usually low dimensional) 

dynamical systems."4 To clarify this jargonistic definition, we 

must briefly discuss chaos theory and its applications.  This 

will include an overview of how systems change with time, some 

of the major concepts and terminology of chaos theory, an 

example of a chaotic system, and a summary of where chaos 

theory has been applied. 

1.  AN OVERVIEW OF HOW SYSTEMS CHANGE WITH TIME 

If a system changes with time it is, by definition, dynamic 

rather than static.  Dynamic systems differ from one another in 



how they change with time.  In random systems, future behavior 

is independent of the initial state of the system and can be 

characterized only in terms of probabilities.  Unless dice are 

loaded, the next roll of the dice is totally independent of the 

previous roll.  On the other hand, periodic systems return 

regularly to the same conditions --as exemplified by the 

pendulum clock.  Such systems are totally predictable, because 

once one period is known, all others must be identical. 

Chaotic systems are neither random nor periodic.  They are not 

random because the future of a chaotic system is dependent upon 

initial conditions.  They are not periodic because their 

behavior never repeats. 

Chaotic systems never repeat exactly because their future 

behavior is extremely sensitive to initial conditions.  Thus, 

infinitesimal differences in initial conditions eventually 

cause large changes in system behavior.  An often used example 

of this sensitivity is weather.  Weather is so sensitive to 

initial conditions that it is thought that the flap of a 

butterfly's wings in America could eventually cause a typhoon 

in China.5  It is inconceivable that conditions on the Earth 

could ever duplicate an earlier time to the point where even 

all butterflies' flights are duplicated.  Therefore, the 

Earth's weather will never be periodic. 

In addition to making chaotic systems aperiodic, extreme 

sensitivity to initial conditions means that it is not possible 

to determine the present conditions exactly enough to fully 

predict what that future will be.  Short term predictions are 



still possible because small influences will not have had time 

to grow to large ones.  What is short term, however, is 

relative and is a function of how sensitive the system is to 

small changes at that point in time. 

The lack of predictability in chaotic systems is important 

because our society's technology depends heavily on 

predictability.  We need to know, among other things, that 

buildings will not fall, that electrical components will be 

safe, and that aircraft won't fall out of the sky.  The list of 

our concerns is endless.  The lack of predictability would 

still be of only academic interest if few systems were chaotic. 

As will become apparent with the examples throughout this 

section, however, chaotic behavior is quite common. 

The next section will define several concepts and terms 

that are used in chaos theory.  Before doing that, two points 

should be clarified.  First, the preceding paragraphs discussed 

chaotic systems, periodic systems, and random systems as though 

they were always totally separate.  This is not strictly true. 

A single system can, for example, be chaotic for certain 

conditions and periodic for others.  Such a system is described 

later in section I.A.3.  When the term "chaotic system" is used 

in this paper, we mean a system that is in a chaotic regime. 

The second point that needs clarification is what we mean 

by determinism.  Determinism in this paper means that the 

future of a system is determined by the current state of the 

system.  It does not mean that chaotic systems are totally 

predictable.  As will be explained in the next section, one of 



the fascinating and unique features of chaotic systems is that 

they are deterministic without being totally predictable.  This 

point is worth emphasizing because we will show later in this 

paper that warfare is chaotic.  We will also discuss how this 

insight can help us understand warfare and improve our ability 

to wage war.  We do not, however, claim that we can reduce war 

to a mechanistic set of equations. 

2.  CONCEPTS AND TERMINOLOGY IN CHAOS THEORY 

In this section, several key concepts in chaos theory will 

be reviewed.  These include nonlinearity, phase space, 

attractors, strange attractors, and fractals. 

Nonlinearity: If a system is linear, it means that the 

output of the system is linearly related to the input.  In 

other words, if the input is doubled then the output will be 

doubled.  If the input is tripled then the output will be 

tripled and so on.  Nonlinear systems do not behave like this 

and are often very sensitive to input.  A folklore example of a 

nonlinear system is the straw that broke the camel's back. 

Each additional weight added to the camel's back makes very 

little difference until its maximum capacity is reached.  At 

that point, even the smallest addition of weight has a 

dramatic, and nonlinear, effect on the camel.  The reason that 

chaotic systems are so sensitive to initial conditions is that 

the laws that govern chaotic systems are described by nonlinear 

equations. 



Phase space: The construction of a phase space plot is 

often used to better understand chaotic behavior.  A phase 

space plot is just a plot of the parameters that describe 

system behavior.  It is useful because it provides a pictorial 

perspective for examining the system. 

An example of a phase space plot for a simple pendulum is 

shown in Figure 1. 

Position 

Velocity 

Figure 1. 
Illustration of phase space for a pendulum 

At A the pendulum is the maximum positive distance from the 

bob's neutral point but its velocity is zero.  This is shown as 

point A on the phase space diagram.  Likewise, at B the 

distance of the bob from its neutral position is zero but its 

velocity is at a maximum (in a negative sense).  The other 

points of the phase space plot just show the relation between 

the velocity and position for other pendulum positions.  In 

this case, where there is no friction, the motion of the 



pendulum is constrained to remain on the elliptical path shown 

in the phase space plot.  The technical term for this ellipse 

is the attractor for the system.  One can see that this 

attractor is periodic because, the path of the system exactly 

repeats itself in each orbit around the origin. 

In contrast, Figure 2 shows an attractor for a chaotic 

system. 

Figure 2.  The Lorenz attractor6 

The complexity of this attractor has led to its being dubbed a 

strange attractor.  Although there are still constraints as to 

how the system behaves, there are a lot more possible states 

for the system.  It is important to note that the phase space 



paths of a chaotic system will never coincide.  If this were to 

happen, then the system would become periodic.  The longer a 

chaotic system is observed the more paths are taken and the 

messier the phase space plot of the attractor appears. 

Superficially, the attractor may appear to be completely 

disorganized.  Closer examination of the phase space, however, 

reveals that the attractor is extremely organized but in an 

unconventional manner.  This will be discussed later in the 

section on fractals. 

A second important feature illustrated in Figure 2 is that 

the phase space has two interconnected lobes.  Each lobe 

represents significantly different behaviors of the same 

system.  The interconnections indicate that the system can go 

from one behavior to another.  When an attractor consists of 

multiple lobes, it is called a multiple attractor. 

The Earth's climate may be a good example of this sort of 

behavior.  Our current climate appears to be relatively stable 

and might be depicted as lying within one of the lobes.  This 

allows some variation in the climate but constrains its general 

behavior to some norm.  On the other hand, we know that the 

Earth's climate was significantly different during the ice ages 

than it is today.  The Earth's climate during an ice age would 

lie in another lobe of the attractor.  The sensitivity of 

chaotic systems is further illustrated by the fact that a 

catastrophic change in system behavior (moving from one lobe to 

another) could be caused by a small change in initial 

conditions. 



Fractals: We generally define things dimensionally in terms 

of integers.  Lines are one dimensional, planes are two 

dimensional, and solids are three dimensional.  At first sight 

it appears to be nonsense to talk about things with a 

fractional dimension of, for example, 1.5.  Such an object 

would be more than a line but somehow less than a plane. 

Nevertheless, such things are not only thought to exist, but 

such geometries are central to chaos theory.  One example of 

such a geometry is the Koch snowflake. 

The Koch snowflake starts as an equilateral triangle.  A 

one-third scale equilateral triangle is added to each side.  A 

one-third scale triangle (of the new, smaller triangle) is then 

added to each side of the resulting figure.  This process is 

continued ad infinitum as illustrated in Figure 3. 

Figure 3.  The Koch snowflake' 
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The perimeter of this shape has several unique features. 

First, although it is a single, continuous loop that does not 

intersect itself and circumscribes a finite area, its length is 

infinite.  Second, Mandelbrot calculated that the dimension of 

the perimeter of the Koch snowflake is 1.26.8  This means that 

the perimeter is between a line and a plane.  Third, the shape 

of the perimeter of a Koch snowflake is self-scaling.  That is, 

the perimeter would look the same whether you looked at it with 

the naked eye or with a powerful microscope.  These geometries 

are pertinent to chaos because strange attractors are fractal. 

Strange attractors, like the Koch snowflake, are infinite 

curves that never intersect within a finite area or volume. 

This observation implies that chaotic systems are insensitive 

to scale. 

3.  POPULATION LEVELS AS AN EXAMPLE OF A CHAOTIC SYSTEM 

A Malthusian model for population growth says that next 

year's population (at t=n+\)   will be related to this year's 

population (at t=n)   by a linear factor.  As an equation, this 

would look something like 

0<xn<\ 

where r   represents the birth rate and xn   the normalized 

population.  This is an unrealistic expectation as population 

will eventually cease to rise as rapidly -- either when 

predator populations also rise or when food becomes scarce. 

Robert May examined a more realistic model for population 
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level, but one that contained far more complexity than he had 

anticipated.9 

The equation that he worked with was 

xHH=rx„(l-xn) = rxll-rXJ, (2) 

where the additional term, rx], represents the death rate due to 

predators.  This is a nonlinear difference equation which he 

used to calculate successive values of xn , starting from some 

arbitrary value.  He found that the behavior of the equation 

depended heavily on the value of r .  He found that when r  was 

small the population quickly reached an equilibrium level. 

This represents a static ecological balance between birth and 

death rates, and is illustrated for r   in region A in Figure 4. 

Chaotic region 

Figure 4. 
Variation of population level.10 

X-axis is in increasing values of r . 
Y-axis is in increasing population levels 
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When the value of r  was increased, he found that the population 

became periodic and varied between two numbers in alternate 

years.  This modeled an interaction between the predator 

population and the species population where many predators one 

year would reduce the population of the species.  But, when the 

species died off, the predators died off as well due to lack of 

food.  Next year, with fewer predators, the species' population 

would rise again.  Referring to Figure 4, this would be the 

case for r   in region B.  As r   increased, he found that the 

number of years for a cycle (and the number of values that the 

population could have) doubled, and doubled again.  This is 

illustrated by the doubling of the lines for r   in region C in 

Figure 4.  When r  was increased beyond a critical value, the 

variation in population ceased to be periodic at all. 

Instead, population varied wildly and apparently randomly 

from year to year.  This is shown by the dark areas in Figure 

4.  Although the behavior now appeared to be random, Figure 4 

shows that there is a structure to the behavior.  Out of the 

apparently random behavior, periodic regions appear again 

suddenly.  These are the white regions in Figure 4.  As r 

increased, these would once again become the apparently random 

dark areas.  In addition to complex internal structure, the 

behavior is bounded.  Interestingly, as Figure 5 shows, when 

portions of the apparently random regions are magnified, they 

display a structure similar, but not identical, to the overall 
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structure.  The fractal nature of this plot confirms that the 

apparently random behavior is not random at all but chaotic. 

Figure 5. 
Representative magnified view of 

region C from Figure 411 

4.  APPLICATIONS OF CHAOS THEORY 

Chaos theory has been applied in many areas.  Some of 

these, such as weather and population levels, have already been 

mentioned.  In introducing additional examples, it is not the 

intent of this section to exhaustively review the research. 

Instead, we hope to indicate the types of research that have 

been done and to provide the reader with some idea as to how 

chaos is relevant. 
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In science and engineering, chaos theory has been applied 

to better understand several different phenomena.  In the area 

of fluid flow, for example, chaos is thought to explain 

phenomena ranging from turbulence, to the length of time 

between drops falling from a leaking faucet, to the Red Spot on 

Jupiter, to the curls generated by a burning cigarette.12 A 

better understanding of turbulence would be particularly 

important as turbulent flows can be highly destructive.  Chaos 

theory has also been successfully applied to problems in 

structural dynamics such as flutter in helicopter rotor blades 

and structural buckling.13 A particularly promising line of 

research has suggested that the nonlinearity of chaotic systems 

can be used to improve the efficiency with which chaotic 

systems are controlled.14  It also appears that natural shapes, 

such as coastlines and the shapes of plants, are often fractal. 

Such geometries are closely tied to chaos theory.15  Finally, 

chaos theory has been used to describe the motion of various 

mechanical systems such as driven pendulums. 

The main reason why chaos theory has many applications in 

science and engineering is that the linear models that have 

been developed to describe fluid and structural motions are 

generally constrained to small amplitude motion.  If the motion 

amplitudes or the velocities increase, then higher order terms 

become more important and the approximating equations needed to 

describe the motion become nonlinear.  This transformation from 

a well-behaved linear system to a difficult nonlinear system is 

very common. 
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Chaos theory has also been applied to the social sciences. 

In particular, there has been considerable interest in whether 

social phenomena, previously thought to be random, have an 

underlying chaotic order.  Several mathematical tests for 

chaotic behavior have been applied to historical data from both 

the stock market and cotton prices.  Although there is some 

controversy, stock market levels and cotton prices have been 

found to display fractional dimensions (a strong indicator of 

the presence of chaos).  In addition, cotton prices have shown 

a tendency to scale regardless of the length of the time 

examined.  Such findings indicate that these economic phenomena 

have a deterministic basis as opposed to being random. 

Naturally, this has gotten some business attention and at least 

two firms are now using chaos theory to guide their financial 

advice.16-17 

Preliminary results also indicate that strategic decision 

making may be chaotic.  In one study, participant responses in 

a game called "the prisoner's dilemma" were recorded.  In this 

game, two players are "arrested" and are presented with a 

choice.  If one prisoner confesses and the other does not, the 

confessing prisoner will go free.  If both prisoners confess, 

they will both be punished.  If they both are silent, then they 

may both be punished.  When this game is repeated again and 

again, the pattern of the participants' responses has been 

found to be chaotic.18 

Strategic decision making in response to another's actions 

is, of course an integral part of war.  So, the possibility 
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that strategic decision making exhibits chaotic behavior 

strongly suggests that warfare may also be chaotic.  In support 

of this position, Beyerchen has convincingly argued that war is 

nonlinear.19 He pointed out that Clausewitzian friction, where 

small events can have large consequences, is inherently 

nonlinear.  In addition, the very nature of the interaction 

between opponents who are not necessarily playing by the same 

rules is nonlinear. So far, however, the only quantitative 

evidence for the presence of chaos in warfare has been limited 

to studies of computer simulations.  Both computer wargames20 

and arms race simulations21 have been found to exhibit 

nonperiodic and nonmonotonic behavior. 

B.  GOALS OF RESEARCH 

As just discussed, there are grounds for thinking that 

warfare might be chaotic.  What has not been done is to apply 

quantitative tests for chaotic behavior to data generated by 

warfare.  This procedure is a direct analogy to examining the 

history of stock market prices to see if there is chaos in the 

stock market.  Such warfare research has the following 

benefits.  First, it treats warfare as an entire system as 

opposed to a piece of it like strategic decision making. 

Second, it is based upon real-life data, unlike the models in 

wargames.  We can therefore be assured that the behavior 

observed is not just an artifact of our particular model. 

Third, it is quantitative in nature, and therefore less subject 
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to interpretation.  Our first research goal, then, was to apply 

several of the available quantitative tests to determine if 

time series data related to war is chaotic.  If successful, 

this would be the first firm evidence that warfare is actually 

chaotic. 

Our second research goal was to explore the implications of 

chaos theory for warfare.  Other researchers have looked for 

chaotic characteristics in warfare to show that warfare is 

chaotic.  If we have first quantitatively proven that warfare 

is chaotic, we can reverse the logic and say that warfare and 

wargames must display the characteristics of a chaotic system. 

Our second research goal, then, is to translate the 

characteristics of a chaotic system into the context of 

warfare.  In this way we will explore how chaos theory can be 

used to better understand warfare in general and the 

operational level of warfare in particular. 
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II.  TESTS FOR IDENTIFICATION OF CHAOTIC BEHAVIOR IN 
EXPERIMENTAL AND HISTORICAL DATA 

A.  INTRODUCTION 

In this chapter, we examine several methods and algorithms 

for determining the presence of chaos in data associated with 

warfare.  The experimental data (output data from wargames) and 

the available historical data are in the form of time series 

for different variables.  Since the relationship is usually- 

unknown, we concentrate our attention on methods for 

identification of chaotic behavior in a time series 

£(/0),^,),...,£(f„) (3) 

where for experimental or historical data the time intervals A/, 

are usually equal 

Atl=At2=...= AtN_l = r (5) 

In the next section, we will present four possible criteria 

for distinguishing chaotic behavior.  In all four criteria, 

chaos is indicated by a qualitative change.  After that, we 

will introduce quantitative measures to characterize 

deterministic chaos.  Finally, we will discuss some problems in 

identification of chaotic behavior in short and noisy time 

series, error estimation, and data requirements for specific 

algorithms. 
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B.  QUALITATIVE CRITERIA FOR CHAOTIC BEHAVIOR 

1.  TIME DEPENDENCE 

Chaos can be qualitatively determined by examining the 

general appearance of the time series data.  An example of a 

time series generated by the Henon map 

yM=bxt 

is presented in Figure 6. 

22 

(6) 

Figure 6. 
Time series generated by the Henon 
map.2"  Both x   (dotted line) and 

v (solid line) are plotted. 

This is a known chaotic trajectory. It has a ragged 

appearance, which persists for as long as time iterations are 

carried out. Although its recurrent nature is evident by the 

fact that certain patterns in the waveform repeat themselves at 

irregular intervals, there is never exact repetition, and the 

motion is truly nonperiodic. Furthermore, the variables stay 

in a limited region of values.  Finally, when two identical 
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chaotic systems are started in nearly identical conditions, the 

two motions diverge from each other at an exponential rate. In 

Figure 7 we present the divergence from two adjacent starts for 

the logistics equation 24 

Figure 7. 
Divergence from nearly identical initial 
conditions for the logistics equation25 

Of course, if the starting conditions were exactly the same, 

then the deterministic nature of the equation guarantees that 

the trajectories are identical.  But since some uncertainty in 

the starting condition is inevitable with real systems, the 

divergence of nominally identical motions cannot be avoided in 

the chaotic regime. 

2.  AUTOCORRELATION FUNCTION 

Though the two adjacent starts appear to remain close to 

each other for a time, after some period they rapidly become 

uncorrelated.  On the average, their separation increases by a 

fixed multiple for any given interval of elapsed time.  Because 

of the exponential divergence, it is impossible to impose long 
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term correlation of the two trajectories by reducing the 

initial perturbation, since each order of magnitude improvement 

in initial agreement is eradicated in a fixed increment of 

time.26 A measure of the correlation between the trajectories 

is the autocorrelation function C(y)   of a time series, which for 

continuous signals is defined by 

r->«> 1  0 

where 

c(0-4(0-limicW^ (8) 
r->co i  0 

and for discrete systems (in the analysis of time series; 

1 N 
c(r) = limT7 !>('>(',+ r) 

K0 = £(0-lim^2>,) 
(9) 

where y  is multiple to r.27 

A rapid decay, mostly with an exponential tail, of the 

autocorrelation function is a criterion for presence of chaos.28 

3.  POWER SPECTRUM 

Another qualitative criterion for chaos is the frequency 

distribution of the time series.  The power spectrum P(co)   is 

proportional to the Fourier transformation of the 

autocorrelation function and is defined by the equation 

P(co) = \c(co)\2 =\im&ty(y)dy 
7->oo 0 

(10) 
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for continuous systems.  The presence of broadband noise in the 

power spectrum is typical for chaotic regimes.29 

4.  POINCARE MAPS 

Often systems need three or more variables to describe 

system behavior.  In these cases, three or more dimensions are 

required to plot the system's trajectory in phase space.  In 

periodic systems, constructing and understanding three- 

dimensional plots is straightforward. 

/ / 

"*""**• 
X 

if •» 

^ ft* 

——_  

Figure 8.  Poincare map 30 
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In chaotic systems, however, the strange attractor is often a 

tangled mess of never quite touching trajectories, as 

illustrated in Figure 8. 

It is possible to simplify the portrayal of the attractor 

by taking a two-dimensional slice though it (shown in the lower 

half of Figure 8).  This also makes the structure of the 

attractor more obvious.  This two-dimensional section is called 

a Poincare map.  Poincare maps can be used to determine if a 

system is chaotic by visually depicting the nature of the 

attractor.  If a system is chaotic, it will have a strange 

attractor and the Poincare map will show fractal 

characteristics.  That is, the Poincare map will be self- 

similar regardless of scale.31 

In this research, we were dealing with time series data 

where the value of one parameter (such as casualties) was 

tracked versus time.  To construct a higher order phase space 

from this data, we use Takens• method of "embedding time."3' 

This method involves displacing the time value so that the 

value of a parameter now is compared to the value of that 

parameter at a previous time.  Consider the following example. 

Series 1: 1 3 -1 0 2 1 5  . . 

Series 2: - 1 3 -1 0 2 1.5 • • 

Series 3: - - 1 3 -1 0 2 1.5 . 

Figure 9. 
Phase-space trajectories of chaotic systems 
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In this example Series 1 represents our original time series of 

data.  Series 2 is the same set of data displaced by one 

sample, and Series 3 is the same set displaced by two samples. 

The amount of the displacement is called the embedding time. 

In Series 2 the embedding time is one, and in Series 3 it is 

two.  This method has been successfully used in a wide variety 

of systems that are characterized by time series data.  This 

may appear to be an artificial way of generating additional 

data.  However, it really reflects the possibility that a 

current value of the system can depend on, and should therefore 

be related to, previous values of the system.  In fact, an 

implicit aspect of chaos theory is that the current state of 

the system depends very much on all previous system history. 

In our work, we used software from the Naval Postgraduate 

School in Monterey, California, to produce Poincare maps. We 

examined these maps for fractal characteristics. 

In summary, we presented four possible criteria for chaotic 

behavior: 

a. The time dependence of the parameter "looks chaotic" 

b. The autocorrelation function decays rapidly 

c. The power spectrum exhibits broadband noise 

d. The Poincare map shows space-filling points 

With all four criteria, chaos is indicated by a qualitative 

change, and it is not always possible to conclude that chaos is 

present.33  In the next section we introduce quantitative 

measures to characterize deterministic chaos. 
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C.  QUANTITATIVE CRITERIA FOR IDENTIFICATION OF CHAOTIC 
BEHAVIOR 

1.  LYAPUNOV EXPONENTS 

One of the quantitative tests for chaotic behavior is to 

compute the Lyapunov exponents of the system.  An n-dimensional 

system has n one-dimensional Lyapunov exponents.  These measure 

the exponential attraction or separation, over long periods of 

time, of two adjacent trajectories in phase space with 

different initial conditions.  Positive Lyapunov exponents 

indicate chaotic behavior.  For a system whose equations of 

motion are known, the definition of the largest Lyapunov 

exponent is: starting from a point x(0) within the phase space 

basin of an attractor, and initial perturbation Sx(0)   in the 

tangent space of x(0), find x(t)   from the equations of motion and 

5x(t)   from the linearized equations of motion.  The largest 

Lyapunov exponent is then defined by 

^limHfliS 
if the limit exists. 

(0)| 

(ID 

Wolf et al34 have described an algorithm to extract the 

largest one or two Lyapunov exponents from time series data. 

Another method, proposed by Eckmann and Ruelle,35 in principle 

permits the estimation of all positive Lyapunov exponents. 

According to Vestano and Kostelich,36 however, only the Wolf 

algorithm is suitable for the analysis of experimental data. 

In describing Wolf's algorithm we will follow Mayer-Kress.3 
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The first step towards computing Lyapunov exponents is to 

construct the attractor from the experimental data.  With the 

now classical time-embedding technique from the time series 

Eqn. 3 we construct a set of points of the form 

xl = m),t(ti + T),...,Z(ti + {m-l}T)} 

(12) 

One assumes that the behavior of the experiment, or the 

historical data, can be described by a finite dimensional 

attractor whose dynamical properties can be recovered by this 

method of time delay reconstruction if the embedding dimension 

m   is large enough. 

For a stable linear system all Lyapunov exponents are 

negative.  If the largest Lyapunov exponent, A,, is greater than 

zero, then the attractor is chaotic, and very small changes in 

initial conditions grow exponentially, at least for a short 

time. 

Figure 10 is a schematic illustration of the Wolf procedure 

to calculate Al . 

Figure 10. 
Schematic representation of the Wolf 

algorithm to compute XX
2B 
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Begin with the first data point y(tQ)   and its nearest neighbor 

zo(*o)' which are a distance L0  apart. The two points are 

incremented by time steps At  until the distance L0  between them 

exceeds some value e.     The first incremental data point >>(?,) is 

retained, and a new neighbor z,(^) is sought such that the 

Euclidean distance 

(13) 

is again less than s,   and such that z,(7,) lies as nearly as 

possible in the same direction from >>(*,) as z0{tx) . 

The procedure continues until the fiducial trajectory y  has 

been followed to the end of the time series.39  The largest 

Lyapunov exponent of the attractor is estimated as 

(14) 

where M  is the number of replacements and N   is the total 

number of time steps that the fiducial trajectory y  has been 

followed.  Further discussion of the procedure for choosing the 

replacement point and the implementation of the algorithm can 

be found in Mayer-Kress. 40 

In this way a reasonably accurate estimate of the largest 

Lyapunov exponent may confirm the presence of chaos and 

quantify it.  But an attractor, defined by a finite data set, 

requires at least two nearby phase space trajectories.  When 

the system's equations are known, or we can perform experiments 

from close enough starting points, the orbital divergence rate 
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provides a useful characterization of the data.  This may not 

be the case, however, with historical data.  If not, it is more 

useful to use the method for defining the correlation dimension 

of the attractor. 

2.  CORRELATION DIMENSION 

Because a chaotic system derives from a system with a few 

degrees of freedom, and because its behavior remains within 

spatial boundaries, one can identify a chaotic system by its 

low fractal dimension and by its regularity in spatial bounds. 

In a chaotic system, the positions of two points along the same 

trajectory are uncorrelated by definition due to the 

sensitivity to initial conditions.  Yet since all points 

together are influenced by the boundary region of the chaotic 

system, there is a spatial correlation that can be described. 

The so called correlation coefficient is defined as 

c(r) = \im-^tH(r-h-xj\) 
jV_>oo N U-i 

(15) 

where ||.|| denotes a Euclidean distance, and the step function 

H(x)   is defined by H(x) = \  for positive x,   H(x) = 0  otherwise.41 A 

hypersphere of radius r   is centered at each point to examine the 

number of points within the sphere and its dependence on r . 

Thus C(r)   compares the distance between each i   and j  points, 

counts those falling within the hypersphere of radius r,   and 

then normalizes the total with a —=• factor. 
N2 
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For each value of the embedding dimension p,   one calculates 

C{r)   for a wide range of radius values.  Since the values of C(r) 

are proportional to rv, with v approximating the dimension of 

the attractor, one can obtain estimates of v by estimating the 

slope of the logC(r) versus log(r) function in the region of r 

where the plot shows a straight line.  One then plots the 

estimated slopes against the embedding dimension p.     In the 

case of random series, the slopes continue to increase linearly 

with p.     If the slopes become independent of p   (i.e., saturate 

rather than increase linearly), then the chaos is deterministic 

with 

limv 
(16) 

approximating the dimension of the system. 

3.  KOLMOGOROV-SINAI ENTROPY 

The Kolmogorov entropy, often called Kolmogorov-Sinai (KS) 

entropy, is the most important measure by which chaotic motion 

in phase space can be characterized.42 To calculate it, 

consider the trajectory x(t)   of a dynamical system on a strange 

attractor and suppose that the d-dimensional phase space is 

partitioned into boxes of size /d.43  The state of the system is 

now measured at intervals of time x.  Let P. . be the joint 
l<t"ln 

probability that x{t = 0) is in box i0,   that x(t = r) is in box /,..., 

and x{t = nx)   is in box in.     According to Shannon, the quantity 

K»=-lLPl.MPi...i TT to In f0 In 
lo-ln 

(17) 
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is proportional to the information needed to locate the system 

on a special trajectory i*0...i*n  with precision / (if one knows a 

priori only the probabilities P. . ) .44  Therefore, Kn+X-Kn   is the 
lo'li, 

additional information needed to predict in which cell z'*+1 the 

system will be if we know that it was previously in il...i'„-     This 

means, that Kn+l-Kn  measures our loss of information about the 

system from time n   to time n+1. 

The KS-entropy is defined as the average rate of loss of 

information: 
1 N-\ 

^limlimlimTT-Z^+i -K) 
r-»0     /->0    N-*<*>   iVTn=0 

= -limlimlimT7: £ P,: .- lo8P2 , 
IO-IN- 

(18) 

The limit / —> 0 (which has to be taken after TV—»oo) makes K 

independent of the particular partition.  For maps with 

discrete time steps r= 1, the limit r—> 0 is omitted. 

For details on the theoretical foundation of this approach 

refer to Wu.45 A technique for deriving the metric entropy of 

strange attractors from scalar time series is presented by 

Fraser.46 

4.  RELATION BETWEEN THE METHODS FOR QUANTITATIVE 
DESCRIPTION OF CHAOS 

The fractal dimension (Hausdorff dimension), information 

dimension, and correlation dimension are usually different, but 

close in value.  In fact, they are three of an infinite number 

of different (and relevant) generalized dimensions that 
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characterize an attractor.  This hierarchy of generalized 

dimensions D   can be expressed as 47 

limK-jir r-»0 
\ 

(19) 

where pf   is the probability that a trajectory point falls into 

the i-th k-dimensional box (subspace) of size r   in a k- 

dimensional phase space.  It is shown by Hentschel and 

Procaccia that D0  corresponds to the Hausdorff dimension, Di  to 

the information dimension, and D2   to the correlation 

dimension. 48 

This fact can be used to increase the reliability of our 

estimations.  For example, when the Lyapunov exponent spectrum 

can be obtained, the Lyapunov dimension DL   is given by the 

Kaplan-Yorke conjecture which is valid for typical attractors49 

5>, 
DL=l + 7=1 

^1+1 

(20) 
where 

M 

2>,.>o>J>, 
(21) 

and is usually close to the correlation dimension in value. 

Further details on the relationship between the correlation 

dimension and the KS entropy can be found in Zeng.50 
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5.  ERROR ESTIMATION AND DATA REQUIREMENTS 

The accuracy with which the characteristics of a chaotic 

system are defined depends on the amount and the accuracy of 

the input data, the reliability of the method and the 

respective algorithm.  For error estimation, intrinsic51 or 

traditional52 statistical methods are used.  Especially 

challenging is the processing of noisy data.  For estimation of 

Lyapunov exponents from noisy data the algorithms in Brown53 and 

Damming54 can be used.  The correlation dimension in such cases 

can be estimated using the algorithms developed by Green55 and 

Fraedrich.56 

In the attempt to define the characteristics of a chaotic 

system from historical data we were limited by the available 

amounts.  Richards57 suggests that a reasonable estimate of the 

correlation dimension is usually obtained at about 100 points. 

This suggestion is somewhat optimistic, because the number of 

data points required for reliable estimation of the correlation 

dimension depends on the yet unknown dimension of the chaotic 

system.  According to Ruelle,58 at least 

(22) 

are necessary to reliably estimate fractal dimension vs .  This 

is the least strict of several different criteria. 

For the estimation of the Lyapunov exponent Zeng59 discards 

the first 10,000 data points from experimentally generated time 

series to eliminate the transients, and processes the next 
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5,000 observations.  Sarigul-Klijn60 estimates the largest 

Lyapunov exponent from 6,000 data points.  Developing 

algorithms for estimation of the Lyapunov exponents from 

"short" time series, the authors usually work with about 2,00 0 

data points.61 Further details on the error estimation 

techniques and the data requirements of the quantitative tests 

for chaotic behavior can be found in Mayer-Kress.62 
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III.      WARFARE   DATA 

A. INTRODUCTION 

In this chapter, we describe data characteristics required 

for analysis of chaotic behavior. After that, we present some 

potential sources for warfare data, including historical and 

wargame data at four levels of war. Finally, we introduce the 

data actually used in our analysis of determination of chaotic 

behavior in warfare. 

B. DATA CHARACTERISTICS 

The data for analysis of chaotic behavior has to have 

certain characteristics.  First, the data should be relevant to 

the area where we are looking for chaos.  For instance, if this 

area is warfare at the strategic or operational level, losses 

of aircraft, main battle tanks, artillery pieces  or numbers of 

targets damaged or destroyed during armed conflicts could be 

considered suitable data for chaotic analysis.  On the other 

hand, if we are trying to determine the presence of chaotic 

behavior in the grand strategic decision making process, we 

probably need data from the military budget, or defense 

investments, or the like.  Second, to be suitable for 

mathematical algorithms developed for determination of chaos, 

the data has to be quantitative and in a time series without 

gaps.  Third, the data has to provide a large sample size, 

depending on the method used to determine chaos described in 

Chapter II.  It should be noted that the larger the sample size 

of the data, the higher probability that the results of 
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analysis for determining chaos reflect reality.  Because wars 

generally don't last more than a few years, daily or weekly 

data are necessary to provide sufficient sample size for the 

analysis; monthly data records provide an insufficient number 

of time increments.  Fourth, the data has to measure some 

output of warfare, as opposed to input.  For example, 

authorized strength of a combat unit would be an input; 

casualties suffered by that unit would be an output.  Fifth, 

the data has to reflect interaction with the enemy or potential 

enemy.  Sixth, data that is an aggregate measure of some 

aspects of warfare is preferred.  This is analogous to chaotic 

weather patterns (output) that are the result of innumerable 

input variables such as temperature, winds, and atmospheric 

pressure.  For example, data on aircraft losses during the 

whole period of conflict are related to many factors such as 

number of sorties, the effectiveness of an enemy air defense 

and its supply system, flying skills of pilots, aircraft 

vulnerability, and so forth.  Seventh, the data preferably 

should be reliable, that is, free of unknowns and subjective 

judgments. 

C.  POTENTIAL DATA SOURCES 

1.  HISTORICAL DATA 

Historical records can provide a rich source of data for 

chaos research.  Statistics from the grand strategic, 

strategic, operational, and tactical levels of war all lend 



36 

themselves to analysis for chaotic behavior.  The US Air Force 

Historical Research Agency (HRA), and the Air University 

Library, located at Maxwell Air Force Base, Alabama, have a 

vast collection of  documents regarding USAF combat 

experiences.  No doubt the history offices and libraries of 

other services also have very rich and available sources of 

data which could be used for determination of chaotic behavior 

in warfare. 

(A)  GRAND STRATEGIC LEVEL OF WAR 

At the grand strategic level of warfare, potential 

historical data sets could include defense investment data from 

1948 through 1993," and US government budgetary data from 1940 

through 1992.64  These data aggregate such factors as technology 

push, material obsolescence, the overall condition of the 

economy at key stages in the business cycle, and long term 

changes in the structure of the economy.  At the same time, 

defense investment reflects decision making at the grand 

strategic level under bureaucratic and political conditions. 

Taking all these factors into consideration, it is apparent 

that chaotic behavior associated with the grand strategic level 

of war could be in these data.  Arms sales could be another 

potential source of data for chaotic behavior analysis at the 

grand strategic level.  In fact, data related to arms sales 

aggregate the influence of many input factors like the 

political relations between the exporter and the importer of 

weapons; the political, economic and military balance in the 
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particular region; the competition for regional dominance; the 

political and economic relations among exporters of weapons 

themselves, and so forth.  It should be noted that these data 

meet all the above mentioned requirements and can be easily- 

used for mathematical analysis for chaotic behavior. 

(B) STRATEGIC LEVEL OF WAR 

At the strategic level, daily or weekly US fixed-wing 

aircraft losses during the entire Korean or Vietnam wars can be 

considered potential data for analysis to determine the 

presence of chaos in warfare.  These data absorb a lot of 

factors which not only had great impact on outcomes of the 

wars, but are inextricably linked with each other.  Similarly, 

the data of daily or weekly casualties during the entire Korean 

or Vietnam wars undoubtedly hold the same promise for the 

chaotic behavior analysis.  In a similar vein, the number of 

damaged or destroyed targets during the same wars can exhibit 

chaos.  We consider that these data reflect the strategic level 

because they aggregate information about different services 

during different operations at different places for the whole 

period of military conflicts.  These data are available in 

varying degrees of completeness in the US Air Force Historical 

Research Agency. 

(C) OPERATIONAL LEVEL OF WAR 

The data of US casualties during the advance through 

western Europe in World War II (WWII) can be used for chaotic 
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behavior determination analysis at the operational level. 

Another source of data suitable for this analysis is the 

information about serviceable aircraft of the German Air Force 

(Luftwaffe) during the Allied air campaign in the European 

theater of operation.65 

(D)  TACTICAL LEVEL OF WAR 

At the tactical level, potential sources of data for chaos 

analysis include supply and maintenance records of specific 

units during periods of combat, casualties suffered by combat 

units during a particular battle, or message transmission and 

reception rates between a unit and higher headquarters while 

engaged with the enemy.  Unit histories contain much of this 

kind of data, and are available at the US Air Force Historical 

Research Agency. 

2.  WARGAMES 

(A)  PURPOSE 

Since chaos was first identified by Lorenz in a computer 

simulation and not by observation of a natural phenomenon, it 

would not be surprising to find chaotic behavior in other 

computer simulations.  It is quite easy to write a short 

program which produces chaotic output, and it can be done even 

on a spreadsheet.  Furthermore, simple tactical models can 

exhibit near-chaotic behavior.66  Our goal was to determine 

whether or not chaos is present in a wargame which simulates 

the operational level of war.  In such wargames the smallest 
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units modeled are fairly large and many phenomena are crudely 

modeled or determined by random draw.  These models involve a 

lot of decision making by the players.  By applying 

mathematical tests to output from the wargame, we hoped to 

identify the presence of chaos.  We could then correlate the 

presence (or absence) of chaos in war with the presence (or 

absence) of chaos in a wargame. 

(B) SELECTION OP ACES 

We selected the Air Force Command Exercise System (ACES) 

series of wargames (ACES/PHOENIX, ACES/DRAGON, and 

ACES/PEGASUS) for several reasons.  First, ACES is a theater 

level wargame and our research is focused on the operational 

(theater) level of war.  Second, ACES is used at the Air War 

College, Air Command and Staff College, and other comparable 

Department of Defense organizations for training field grade 

officers in campaigning and campaign planning.  Third, ACES is 

maintained by Air University's Center for Aerospace Doctrine 

Research and Education (CADRE) which is located at Maxwell Air 

Force Base, Alabama, providing convenient access for our 

research. 

(C) DESCRIPTION OF ACES 

ACES is a theater level air campaign simulation which 

models ground forces at the division level and air forces at 

the aircraft level.  The wargame simulates the air war from the 

perspective of the Joint Force Air Component Commander's 
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(JFACC's) staff, exercising the participants in the generation 

and execution of an Air Tasking Order (ATO).  Participants play 

against other participants, and the computer adjudicates the 

results of their campaign plans.  The participants identify 

force apportionment, logistical movements, and mission taskings 

(combat air patrol {CAP} and targets).67  The wargame simulates 

the execution of the missions subject to logistics constraints, 

enemy air defenses, enemy CAP, aircraft capabilities (range, 

speed, and payload), munitions effectiveness, and airfield 

survival. 

(D)  DATA AVAILABLE FROM ACES 

ACES usually runs for a five-day campaign in cycles which 

coincide with the ATO cycle.  The participants produce an ATO 

for the next day of the war.  ACES executes the ATO and returns 

the results.  Hence the model produces results only once per 

simulated day. 

The following items of interest can be extracted from the 

ACES engine: 

a. Take-off time (20-minute time increment) 

b. Loss of aircraft from enemy action 

c. Aborted missions due to logistics (including 

maintenance) 

d. Enemy losses due to air-to-air or air-to-ground combat 
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(E)  PROBLEMS USING ACES 

We were unable to collect useful data from the ACES 

wargame.  Since ACES models activity at a small scale, much 

information is lumped together.  For example, the wargame 

increments time in 2 0-minute blocks, and aircraft are launched 

together.  This produces aircraft activity at only five or six 

times during the day.  During a five-day campaign, the wargame 

generates at most 30 data points, far too small to test for 

chaos. 

We investigated modifying the game to write out information 

at more frequent intervals, but the fundamental engine driving 

the game does not appear to model at a detailed enough level to 

produce the volume of data we required. Furthermore, the five- 

day length of the campaign would not produce a long enough time 

series of data, even had the data been available. 

We considered other wargames in an attempt to surmount the 

problem, but they all had the same fundamental problem.  A 

substantial effort by the Wargaming Center to modify the 

software might produce useful results for future research. 

D.  DATA USED FOR CHAOTIC BEHAVIOR ANALYSIS 

1.  US FIXED-WING AIRCRAFT LOSSES DURING THE VIETNAM 
WAR, 1962-1973 

Some of the data used for the analysis were in fact found 

at the US Air Force Historical Research Agency.  However, 

locating a suitable data set proved challenging.  Numerous 

computer searches following a variety of logical query schemes 
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conducted over a matter of days proved futile.  A more fruitful 

approach was interviewing staff historians, which resulted in 

identification of a document entitled U.S. Navy, Marine Corps, 

and Air Force Fixed-Wing Aircraft Losses and Damage in 

Southeast Asia (1962-1973),68  The document, which the Center 

for Naval Analysis had prepared under the sponsorship of the 

Office of the Chief of Naval Operations in August 1976, 

contained the basic facts concerning the losses of and damages 

to all USN, USMC, and USAF aircraft in Southeast Asia for the 

entire duration of the conflict.  Microfiche records found with 

the document contained data files detailing each individual 

aircraft loss suffered by the respective services in a variety 

of categories as follows: fixed-wing, in-flight combat losses; 

fixed-wing in-flight operational losses; fixed-wing ground 

losses due to enemy action; and fixed-wing on-ground 

operational losses.  Although data were available in other loss 

categories, we limited our data collection and analysis to 

those listed. 

According to the document's foreword, the data was compiled 

from all available sources.  Primary sources were those that 

originated as close at hand to the pilot debrief as possible. 

Secondary sources were usually transcriptions of summaries of 

primary data, or summaries of data obtained from the squadron 

or group.  Secondary sources included Naval Material Command 

reports, miscellaneous logs and records, the results of special 

data collections, and sources outside the operational reporting 

system. 
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The definition of combat loss was fairly clear: one due to 

hostile action, the avoidance of hostile action, or a loss 

immediately related to the performance of the aircraft's 

mission function.  Examples of combat losses were an aircraft 

being hit by a surface-to-air missile, one lost due to ground 

impact while attempting to avoid a missile, or fuel exhaustion 

due to an air-to-air engagement. 

On the other hand, a definition for operational loss was 

not explicitly provided.  The characterization of a given loss 

as an operational or combat loss, the authors admit, was 

difficult because operational losses that occur in flight on a 

combat mission are difficult to define and categorize.  The 

problem was seen as two-fold: determining what defines an 

operational loss, and gathering enough information about the 

loss to apply the definition.  Apparently, if a loss could not 

be attributed to a cause qualifying as a combat loss, the 

authors categorized the loss as operational. 

Each combat and operational loss was assigned an incident 

number, each number appearing in chronological order for each 

file, including the date and time the incident occurred, and 

branch of service.  The level of detail contained in the 

microfiche records was far beyond what we needed for our study, 

but may be useful for other investigators in a future study. 

For the purpose of our study, we were interested in a 

quantitative time series of events.  We therefore constructed a 

simple time series by counting the number of losses per day by 

loss category and branch of service.  Each entry corresponded 
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to a single day (e.g. 4 Jan 68), loss category (e.g. fixed-wing 

in-flight combat loss), and branch of service (USN, USMC, or 

USAF).   For each entry, we entered the count of losses for 

that day, loss category, and branch of service.  Then, for the 

particular purpose of performing mathematical analysis for the 

detection of chaotic behavior, this daily data was transformed 

into weekly and monthly data of total aircraft losses. 

From our point of view, these data meet all the 

requirements listed in section III.B.  First, it is relevant to 

the strategic level of war because, as was mentioned above, 

these data aggregated information about different services 

during different operations at different places for the whole 

period of the Vietnam War.  Second, the data are presented in 

time series without any gaps in its sequence.  Third, the data 

provide a relatively large sample size, more than 3,000 

entries.  Fourth, the data measure some output of warfare 

during the Vietnam war.  Fifth, the data reflect interaction 

with the enemy.  Sixth, the data are an aggregate measure of 

some aspects of the Vietnam war such as number of sorties, the 

effectiveness of an enemy air defense and its supply system, 

flying skills of pilots, aircraft vulnerability and so forth. 

Seventh, in terms of data reliability, the document's authors 

detail the painstaking efforts they undertook to compile a 

complete and accurate record of aircraft losses.  Although they 

admit that not all the data were known for all incidents, 

different sources reported some conflicting data, and no single 

source reported all the operational loss incidents, our study 
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used only a simple count of losses, and ignored the more 

questionable details surrounding each loss.  We therefore 

considered these data to be reliable and applicable to the 

analysis of chaotic behavior in warfare. 

2.  US ARMY CASUALTIES IN WESTERN EUROPE DURING WORLD 
WAR II 

Another data set used for chaotic behavior analysis at the 

operational level of war was daily casualties of the American 

12th Army Group in western Europe in WWII from 17 October 1944 

through 30 April 1945.  The data were provided by the Logistics 

Management Institute of McLean, Virginia.69  For the purpose of 

detailed analysis, four other data sets of daily casualties 

were extracted from the initial data set: the first set 

consisted only of Killed In Action (KIA); the second set 

consisted of KIA, Wounded in Action (WIA) and Captured or 

Missed In Action (CMIA); the third set consisted of KIA as a 

percentage of the authorized strength of the 12th Army Group; 

the fourth set consisted of, daily total casualties as a 

percentage of the authorized strength of the 12th Army Group. 

From our point of view, these data also meet all the 

requirements listed in the section III.B.  First, the data are 

relevant to the operational level of war because these data 

provide information about casualties during one campaign. 

Second, the data are presented in time series without any gaps 

in its sequence.  Third, the data provide a relatively large 

sample size of nearly 200 entries.  Fourth, the data measure 
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some output of warfare during the World War II.  Fifth, the 

data reflect interaction with the enemy.  Sixth, the data are 

an aggregate measure of many aspects of the World War II. 

Seventh, the data seem reliable because they were collected by 

military historians who were seriously interested in analyzing 

operations and campaigns during the World War II. 
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IV.  IDENTIFICATION OF CHAOTIC BEHAVIOR 

In this chapter we discuss the reliability of the tests for 

identification of chaotic behavior in data, representing very- 

short time series.  After that we present results from 

application of qualitative and quantitative tests for 

identification of chaotic behavior in historical data from 

grand strategic, strategic, and operational level of warfare, 

as well as in time series, generated by a simple model of arms 

race between two countries.  The results convincingly support 

the thesis that chaos is present in warfare. 

A.  RELIABILITY OF THE TESTS FOR IDENTIFICATION OF CHAOTIC 
BEHAVIOR 

Chaos theory is relatively new and the methods it uses are 

often intuitive.  Sound proofs for method effectiveness exist 

only when some limitations apply, i.e. infinite data, absence 

of noise, etc.  Furthermore, the qualitative methods often fail 

to indisputably prove the presence of chaos.70 Even in applying 

quantitative methods, some authors use different techniques 

(e.g. see the definition of the norm in Eqn. 15 by Green) .71 

Because of these problems and to increase the reliability of 

our results, we used the following techniques: 

a.  We applied the algorithms to data sets, generated by 

equations, describing chaotic systems with known fractal 

dimension.72  These include: 

i.  The Lorenz attractor with correlation dimension 

2.05 

ii.  The Henon map with correlation dimension 1.21 



48 

iii.  The Kaplan-Yorke map with correlation dimension 

1.42 73 

b. A reliable method for defining the dimension of a 

chaotic system should give the same result if the input data is 

processed by a linear transformation, i.e. multiplication by a 

constant number, differentiation, integration, etc.  The use of 

historical data, aggregated by months instead of weeks, is 

approximately equivalent to integration; 

c. Use of different methods, measuring related 

characteristics of a chaotic system. 

Figure 11 is an example of the computational problems in 

the estimation of the fractal dimension. 

Figure 11. 
lnC(r) versus lnr for the Lorenz system; 
variable x, embedding dimension 13, 

<7=10, r = 28, b = % 

In the whole range of values of r,   the curve lnC(r) versus lnr is 

far from linear.  Sarigul-Klijn74 suggests using the region of 

values of r  between 20 and 80 percent of the maximum radius. 
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Most of the authors do not specify the term "straight line" 

(see section II.C.2).  Depending on the "linear" section 

chosen, we estimated fractal dimensions of the Lorenz attractor 

between 1.99 and 2.12.  Compared with the theoretically defined 

dimension of 2.05,75 our results can be considered relevant and 

accurate enough for the goals of the current research. 

B.  CHAOTIC BEHAVIOR ON THE GRAND STRATEGIC LEVEL 

As an example of historical data on grand strategic level 

we used the US defense spending for the last 53 years.76  Figure 

12 represents the time dependence of the defense spending as 

percentage of the Gross National Product (GNP) and as 

percentage of the federal outlays. 

100 
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40 

20 + 

GNP 

Federal 
outlays 

0 -P i— —i— —i— —i— —i— —i— —i— —i— —i— —K 

1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 

Year 

Figure 12. 
Time dependence of US defense expenditures (FY87$) 
as a percentage of both GNP and federal outlays 

The curves have ragged appearance and periodic cycles are not 

distinguishable.7  Figure 13 represents the phase space 

trajectory for the first data set. 
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Figure 13. 
Phase space trajectory for defense spending as a 

percentage of GNP.  The data for y-axis is 
constructed from the original data (x-axis) 

with a time delay of one year. 

Though this is hardly an evidence for presence of patterns and 

attractors, the trajectory is confined in a region of the phase 

space, which meets one of the qualitative criteria for chaotic 

behavior.  Figure 14 was used to estimate the fractal dimension 

of possible attractors for both cases.  For the first set of 

data (defense spending relative to GNP) we estimated a 

dimension of 1.21 (shown by the asymptotic behavior of the 

curve), and for the second (defense spending relative to 

federal outlays), 1.07.  These low dimensions and fractal 

dimensions are a clear sign of chaotic behavior. 

Another example for presence of chaos on grand strategic 

level is examined by Grassberger and Pocaccia and presented in 

Bjorkman.78 
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GNP 

Federal 
outlays 

5        7        9       11       13      15 

Embedding dimension 

17 

Figure 14. 
Fractal dimension versus embedding dimension 
for US defense spending as a percentage of 

both GNP and federal outlays 

Data generated from the arms race model 

*,+i = x, -ku(x, -xs) + k12(\-xt)yt 

yM =yt- kn (y, -y.)+K (l - yt )
xt 

(25) 

are  presented  in  Figure   15. 

6     11    16   21    26    31    36   41    46    51    56   61    66 

Years 

Figure 15.  Data generated by the arms race model79 
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The presence of chaos is supported by the qualitative criterion 

of "ragged" appearance, as well as by the estimated dimension 

of the attractor of 0.81. 

C.  CHAOTIC BEHAVIOR ON THE STRATEGIC LEVEL: US AIRCRAFT 
LOSSES IN VIETNAM 

The autocorrelation function for the aircraft losses in 

Vietnam is shown on Figure 16.80 

C(gamma) 

1    6   11  16 21 26 31 36 41 46 51 56 61 66 71 76 

Week 

Figure  16. 
Autocorrelation function of the time series 
representing US aircraft losses in Vietnam 

Because of the limited amount of data it does not have the 

textbook smooth appearance.  However, the rapid decay is a sign 

of chaos.  Figure 17 represents a case of broad band power 

spectrum for the same time series, which is typical for chaotic 

regimes.  The above two tests, together with the time 

dependence shown in Figure 18, meet the qualitative criteria 

for chaotic behavior. 
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Figure 17. 
Power spectrum for the aircraft losses in Vietnam.81 

X-axis is in cycles per year. 
Y-axis is in losses squared (losses2). 
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Aircraft 
losses 

21       41       61       81      101     121 

Weeks 

141     161     181     201 

Figure  18. 
Time dependence of the US 

aircraft losses in Vietnam82 

The presence of chaos on the strategic level is further 

confirmed by the estimation of the fractal dimension for the 

same time series.  Figure 19 shows the relationship between 

lnC(r) and lnr for the 443 points of the weekly data, the slope 

of which estimates the dimension of the attractor.8" 

Figure 19. 
lnC(r) versus lnr for weekly 
aircraft losses in Vietnam 
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Figure 20 presents the convergence of the estimated fractal 

dimension for all aircraft losses (2.9) and for the losses in 

the air (3.2). 

Fractal 
dimension 

3 

2 

All losses 

Losses in the air 

7 10 13 16 

Embedding dimension 

19 

Figure 20. 
Estimated fractal dimension for weekly- 

US aircraft losses (as a whole and in the air) 

Figure 21 shows the convergence of the estimated fractal 

dimension for weekly and monthly data.  Since the aggregation 

of the weekly data on a monthly basis is approximately 

equivalent to the linear operation of integration, the close 

estimates of the fractal dimension are another confirmation of 

chaotic behavior and reliability of the tests used. 



Fractal      2 
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Monthly losses 

7 10 13 

Embedding dimension 

16 19 

Figure 21. 
Comparison between the estimated fractal dimensions 
for weekly and monthly aircraft losses (all causes) 
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D.  CHAOTIC BEHAVIOR ON THE OPERATIONAL LEVEL: WWII 
CASUALTIES 

The two-dimensional phase space trajectory of the US Army 

casualties (normalized by assigned strength) during the advance 

through western Europe in World War II is shown in Figure 22. 

The data for the y-axis is constructed from the same data (x- 

axis) with a time delay of five days.  Figure 23 presents the 

two-dimensional Poincare map for the normalized casualties.84 

The time series is too short to allow us to discover patterns 

and attractors, but obviously the map is confined in the phase 

space, which is one of the qualitative signs for the presence 

of chaos.  Figure 24 shows the convergence of the estimated 

fractal dimension for soldiers killed in action (3.2), all 

personnel losses (2.75), and the normalized losses (1.2). 
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Figure 22. 
Normalized US Army casualties in WWII (trajectory 
in two-dimensional phase space, constructed by a 

time delay of five days) 

Somewhat unexpected is the discovery that with the increase of 

factors taken into account (in the order presented), the 

fractal dimension decreases. 
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Figure 23. 
Poincare map for the normalized WWII casualties.85 

The two-dimensional cross section is of a 
three-dimensional phase space constructed 
by a time delay of one and eight days. 
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Figure 24. 
Convergence of the estimated fractal dimensions 

for three sets of 196 data points for WWII casualties 
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V.  IMPLICATIONS OF THE PRESENCE OF CHAOS IN WARFARE 

Other chaos researchers have attempted to find chaotic 

characteristics in warfare to demonstrate that warfare is 

chaotic.  While this approach has value, it has the 

disadvantage that observation of some of the characteristics of 

chaos in warfare does not mean that warfare is chaotic.  For 

example, Beyerchen86 has effectively argued that war is 

nonlinear.  However, not all nonlinear systems are chaotic and 

therefore observation of nonlinearity in warfare does not 

actually prove that warfare is chaotic.  In contrast, having 

previously focused on a mathematical approach to show that 

chaos is present in war, we will now reverse the above logic. 

That is, we can say that  if war is chaotic, then it must have 

the characteristics of a chaotic system.  We will now attempt 

to list the characteristics of chaotic systems and define what 

they mean in the context of warfare. 

A.  CHAOTIC SYSTEMS ARE DETERMINISTIC 

All chaotic systems must be at least partly deterministic.87 

That is to say, given a knowledge of current conditions, the 

conditions in the very near future must be predictable. 

Therefore, if warfare is chaotic, then it too must be partly 

deterministic.  Unfortunately, what is meant by the very near 

future is complicated by the preciseness of our knowledge of 

the present and the possibility of chance.  Clausewitz 

recognized these phenomena as fog and friction. 
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What does it mean, however, to say that warfare is at least 

partly deterministic?  In a physical system, determinism means 

that there are equations or rules which describe the behavior 

of the system.  The equations that Lorenz used to predict the 

weather are an example of this.88  If warfare is deterministic, 

then it too must obey a set of rules.  The particular set of 

rules that are obeyed would depend upon the aspect of war being 

examined.  For example, at the tactical level of war, bombing 

effectiveness may be governed by rules such as "a B-52 dropping 

twenty 500 pound bombs from 10,000 feet has a 50% chance of 

hitting a 10-foot by 10-foot target."  At the operational level 

of war, the outcome is determined by the decisions and the 

behaviors of the participants.  Therefore, if operational 

warfare is chaotic, the decisions and behaviors of the 

individuals and groups participating in the war must follow a 

set of rules. 

In fact, it appears that the behavior of human beings, 

individually or in groups, does follow rules.  If human 

behavior did not have any rules, if it were completely random, 

we would not be able to predict behavior at all.  In reality, 

the better we know someone, the better we are able to predict 

their behavior.   This is because we understand the rules that 

govern their behavior.  In particular, the process of strategic 

decision making, which is a key element in operational warfare, 

has been shown to demonstrate chaotic behavior.89 

The presence of chaos in warfare means that there are rules 

that govern warfare and that it should sometimes be possible to 
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predict enemy response if we take the trouble to learn the 

rules that govern his behavior.  Put another way, this is Sun 

Tzu's conclusion of "know your enemy."90  The following sections 

will build on this foundation by suggesting ways that chaos 

theory can help us develop and use models of warfare. 

B.  COMPUTER SIMULATION CAN GREATLY ENHANCE OUR 
UNDERSTANDING 

Computer numerical modeling or simulation has greatly 

increased our understanding of physical chaotic systems.  The 

reason for this is that the equations that govern chaotic 

systems are nonlinear and therefore are generally not 

analytically soluble.  Computer simulation has also been 

successfully used to model the behavior of living beings such 

as the flocking of birds and the variation of population 

levels.91  The Sante Fe Institute has been able to model the 

behavior of bubbles and crashes in the stock market using their 

concept of a complex adaptive system.92  Their postulates for 

the behavior of complex, adaptive systems included the 

following.  First, there are many independent agents and it is 

their interaction that determines the nature of the system. 

Second, complex adaptive systems consist of many organizational 

levels that are constantly changing based upon experience. 

Third, each agent anticipates the future based upon their 

experience.  These postulates appear to be equally applicable 

to warfare, which suggests that complex, adaptive, computer 
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simulations might be a useful approach to modeling warfare as 

well. 

Chaos theory, however, cannot be used by itself to derive a 

theory of warfare.  As with any other theory that describes a 

phenomenon, a theory of warfare must be based upon observation, 

hypothesis and testing.  Specifically, development of a model 

of warfare will require the development of the structure of the 

model, determination of the number and type of variables, and 

determination of the form of the equations.  In addition, 

system parameters and control factors will have to be 

identified as well as sources for noise.  This will be a very 

difficult task, and it is not at all certain that different 

models might not apply, depending on the nature of the 

antagonists. 

Chaos theory can help us by suggesting ways to develop our 

model and ways to use the model once developed.  For example, 

observation of a chaotic system can be used to determine the 

dimension of the system.  The number of variables needed to 

describe the system must at least equal the dimension of the 

system.  Therefore, chaos theory can be used to define the 

minimum number of variables required in our computer model. 

Chaos theory also suggests that computer models of warfare must 

contain some nonlinear relationships between system variables 

so that the computer model is chaotic and thus reflects the 

chaotic nature of warfare.  This may actually prove to be 

advantageous as the fractal nature of chaotic systems may allow 

relatively small and simple wargames to accurately simulate 
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warfare.  Realistic wargames that could be run on a desktop 

computer would have significant educational and operational 

advantages.  Finally, the Kolmogorov entropy can be calculated 

for a chaotic system.  The Kolmogorov entropy is a measure of 

how fast information is lost in a chaotic system and thus 

indicates how far into the future predictions can reasonably be 

made. 

The ways in which computers have been used to understand 

chaotic behavior in physical systems also suggest ways to use 

the computer to model warfare.  For example, consider Lorenz' 

model of the weather.  The reader has probably noted that 

weather forecasting has not become perfect because of Lorenz1 

equations.  This criticism, however, misses one of the most 

important contributions that chaos theory has made to weather 

prediction -- chaos has given weather forecasters a means to 

determine whether their forecasts are likely to be accurate. 

Chaotic systems are highly dependent upon initial conditions 

but they are not always equally so.  If a chaotic system is in 

a portion of its phase space where the initial conditions are 

critical, then uncertainty in determining the initial 

conditions makes a large number of outcomes possible.  If a 

chaotic system is in a region of its phase space where the 

initial conditions are not critical, then only one outcome 

(prediction) is likely.  In practice, weather forecasters use 

this behavior by inputting small changes in initial conditions 

into their model.  If the small changes produce small 

variations in the prediction then they have shown that the 
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system is in a portion of phase space where the initial 

conditions are not critical and their prediction is likely to 

be true.  If the minor changes in initial conditions produce 

large deviations in future behavior, they know that their 

prediction is likely to be in error. 

The same approach could be taken to understand when 

predictions in warfare are likely to be accurate.  This in 

itself would be a valuable contribution of computer simulation 

to understanding warfare.  But there are two additional reasons 

why this approach may be even more applicable to warfare than 

it is to weather.  First, unlike weather forecasters, we have 

some ability to change the initial conditions.  Specifically, 

if we find ourselves in a region of great uncertainty, we could 

explore what aspects of the conditions would have to be changed 

to move the system to a position where it was relatively 

independent of the initial conditions and where the predicted 

outcome was desirable.  The quantity and type of forces are an 

example of initial conditions that we might be able to change. 

Second, we could use our model to determine which initial 

conditions and which variables had the most profound effect on 

our predictions.  This would aid in identifying centers of 

gravity (COGs) and identify information that we needed to know 

precisely.  That is, it would tell us where to concentrate our 

attack and what intelligence information was most critical. 

The behavior of many chaotic systems, such as a dripping 

tap, is apparently random in the short term. But, if enough 

data are collected, patterns emerge in the phase space of the 
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system that reveal excluded states.  In other words, there are 

things that will not happen.  Social systems, such as the stock 

market or an enemy, do not generate data as quickly and so it 

may take many years to discern patterns.  In fact, one 

researcher has claimed that in order to use chaos to fully 

discern the patterns in the stock market, almost 7,000 years of 

data would have to be available.93  The situation is further 

complicated in warfare where there are often reasons why data 

is obscured to begin with.  Computer models could be used to 

simulate many years of data -- enough so that patterns became 

evident.  Caution would be required in using these results as 

they would be an extrapolation with all the dangers inherent in 

extrapolation.  The value of this technique would lie in 

suggesting possibilities of enemy behavior and weaknesses that 

could then be tested. 

C.  CHAOTIC SYSTEMS ARE DYNAMIC 

All chaotic systems are dynamic.  So, if war is chaotic, 

then it too must be dynamic (this also agrees with experience). 

If a system is dynamic then the important parameters that 

describe the state of the system are constantly changing.  In 

the physical example of a pendulum, potential energy, a maximum 

when the pendulum is at its height, is converted into kinetic 

energy which reaches a maximum at the bottom of the swing.  As 

the pendulum rises, the kinetic energy is once again converted 

into potential energy.  Understanding these sources of power is 

crucial in attempting to understand a dynamic system.  Indeed, 
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Pentland94 has argued that these sources of power and the 

processes for their transformation will often be COGs for 

operational systems. 

For societies, Pentland describes the sources of power as 

being the armed forces, the government bureaucracy, industry 

and natural resources, society and culture, and the value 

system.  He relates these sources of power to the forces (or 

the instruments of power) that they produce -- military, 

political and diplomatic, economic, social-cultural, and 

ideological.  For societies, one example of the flow of power 

from one measure of the system to another is the conversion of 

economic power into military power.  Pentland also points out 

that these sources of power, in combination with their linkage 

to instruments of power, and feedback control loops, can be the 

COGs for the system. 

We have just discussed how the values that describe a 

dynamic system are constantly changing.  Nonlinearity of the 

system complicates analysis still further because the future 

behavior of a nonlinear, chaotic system is highly dependent 

upon the conditions now.  Chaos theory, in fact, says that it 

is impossible to use present conditions to predict very far 

into the future for a chaotic system.  Even in a dynamic 

system, however, there are things that don't change.  In a 

pendulum, the mass and the length of the pendulum are constant. 

Also, even though kinetic and potential energies are constantly 

changing, the sum of kinetic and potential energies remains 

constant.  The sum of energies has proven such an immensely 
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useful technique for analyzing dynamic, mechanical systems that 

it has been given a separate name -- the Hamiltonian.  Analyses 

of dynamic systems rely on identifying aspects of the system 

that are constant and identifying processes for change -- such 

as potential energy into kinetic energy for a pendulum. 

If warfare is dynamic, then similar approaches should be 

applicable.  This suggests that emphasis should be placed not 

on the current values of the system (e.g. the number of tanks 

at a particular location) but on the processes (such as how the 

logistics operation moves tanks) and on the things that are 

relatively constant (such as industrial capacity).  Both are 

important to understanding the capability of a system. 

Understanding the processes, however, would be especially 

important to identifying the vulnerabilities of a system. 

D.  CHAOTIC SYSTEMS ARE NONLINEAR 

All chaotic systems are nonlinear.  Among other things, 

nonlinearity means that a small effort can have a 

disproportionate effect.  Some methods for the control of 

physical chaotic systems have explicitly taken advantage of 

this with the result that they have dramatically reduced the 

amount of effort required to control the system.95  If warfare 

is chaotic, then chaos theory suggests COGs may be found where 

there is a nonlinear process in the enemy's system.  In fact, 

nonlinearity is implicit in the concept of a COG.  The 

following paragraphs will discuss six of the many sources for 

nonlinearity in warfare. 
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Feedback loops are one process that can introduce nonlinear 

effects in many systems.  A feedback loop that is important to 

the air campaign is the feedback that attrition rates give to 

an air commander.  If the attrition rates are too high, then 

the commander is forced to change his tactics.  For example, 

the loss rates of 16% that were experienced by the US in the 

daylight bombing raids over Schweinfurt were enough to stop the 

bombing raids for four months until a long range fighter was 

developed.  Warden96 used this and other historical examples to 

argue that the maximum acceptable rate was about 10%.  He 

continued, however, by pointing out that the effect of one 

mission with a 10% attrition rate and nine missions with 

negligible casualties was much greater than a steady 1% 

attrition rate over ten missions.  In a linear system there 

would be no difference between the two -- the additive effects 

would be the same.  The fact- that there is a difference shows 

that the feedback is nonlinear.  When Warden suggested that 

massing for a few devastating blows is more effective than many 

minor blows, he effectively analyzed the feedback loop and 

exploited the nonlinearity in the system. 

A second source for nonlinearity in warfare is the 

psychology associated with interpreting enemy actions.  It is 

this nonlinearity that caused Clausewitz to state that, "Thus, 

then, in strategy everything is very simple, but not on that 

account very easy."97 He later amplified by saying that while 

such maneuvers as a flanking movement are simple in concept 

they are difficult to actually accomplish because there is 
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always the danger of what the enemy might be doing.  In this 

environment, small actions on the part of your enemy often 

assume larger significance in a commander's mind than they 

deserve.  According to Liddell Hart,98 this happened in World 

War I before the first Battle of the Marne.  The Germans, aware 

of a possible seam in their dispositions, had been ordered to 

retreat if the British Army advanced over a particular river. 

As it happened, a British division sent out a reconnaissance 

patrol.  This was misinterpreted by the Germans as a general 

advance and so they retreated when the way lay open for 

victory. 

A third source for nonlinearity is that each side is 

constantly reacting to the other.  This is such a necessary 

condition for warfare that if one side loses the ability to 

react they are strategically paralyzed and will quickly lose 

the war.  The interaction between the opposing sides can 

quickly become a highly nonlinear positive feedback loop.  One 

example of such a nonlinearity is the way in which one side in 

a conflict adapts to technological or tactical innovation on 

the other side.  According to Luttwak," minor innovations are 

often ignored by an enemy.  Major innovations, however, require 

immediate attention and may paradoxically be less damaging 

because they lose their effectiveness in a short period. 

A fourth source for nonlinearity in warfare is that there 

are a number of processes within warfare that appear to be 

inherently nonlinear.  The role of mass is an important example 

for warfare.  Warden showed that for air power, losses vary 
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disproportionately with the ratio of the forces involved.100 

For example, in 1944, 287 American aircraft attacked a target 

where they were opposed by 207 German fighters.  The Americans 

lost 34 aircraft.  A month later, when 1,641 American aircraft 

were opposed by 250 German fighters, America lost 21 aircraft 

which is a lower percentage and a lower absolute number. 

A fifth source of nonlinearity in warfare is Clausewitzian 

friction.  This kind of nonlinearity in warfare has been ably 

argued by Beyerchen.101 Basically, there will be events in war, 

perhaps as a result of chance, that have an effect all out of 

proportion to their apparent importance.  This notion is 

captured in the following nursery rhyme. 

For the want of a nail the shoe was lost. 
For the want of the shoe the horse was lost. 
For the want of a horse the message was lost. 
For the want of a message the battle was lost. 
For the want of a battle the kingdom was lost. 
And all for the want of a horseshoe nail.102 

By its very nature, this is an exceedingly difficult form of 

nonlinearity to anticipate but it can be taken advantage of 

once it happens.  The German doctrine of Auftragstaktik, which 

allowed initiative on the part of junior commanders, was 

designed to do precisely this. 

Finally, the process of decision making itself can be a 

source for nonlinearity.  Sometimes the decision is clear cut. 

Often, however, the decision can depend upon relatively minor 

circumstances at the time.  One source103 suggests that the 

steam engine lost out to the gasoline internal combustion 
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engine largely as a result of an outbreak of hoof and mouth 

disease.  This outbreak meant that many horse troughs had to be 

removed that had been used as a convenient place for steam 

engines to top up on water.  Once the decision is made, it is 

often irreversible because of the drive for standardization. 

The QWERTY keyboard, for example, arose out of a need to slow 

typists down.104  The mechanical typewriters of the time could 

not keep up.  Once it became common, people knew how to use the 

QWERTY keyboard and it has now become nearly impossible to 

change it, although it is no longer necessary to slow typists 

down.  These examples illustrate how any major decision, 

including those made in wartime, can be nonlinearly based on 

relatively minor factors. 

In summary, chaos theory suggests that the campaign planner 

should concentrate on processes in an enemy system rather than 

data on its current condition because you can't predict future 

behavior based on initial conditions.105  It also suggests that 

identification of nonlinear processes, such as feedback loops, 

is an essential ingredient in understanding warfare and being 

able to manipulate the outcome with the least effort. 

E.  FRACTAL GEOMETRIES APPLY 

Fractal geometries are a direct result of a chaotic 

system's insensitivity to scale.  Physically, this means that a 

chaotic system looks the same whether viewed from close up or 

from far away.  There are many examples of fractals in nature 

such as clouds or mountain ranges.  Two major conditions must 
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be true for systems to scale in this way.  First, the same laws 

and variables must be present in the system at both the large 

and the small scales.  In turbulent flow, for example, 

hydrodynamics are constant whether one is speaking of a river 

or an eddy.  Second, the elements of the system must exist in a 

continuum.  In the previous example of fluid flow, the flow 

would no longer look like a flow if we were on such a small 

scale that we could see the individual molecules. 

If warfare is chaotic, then aspects of it must be fractal. 

This has implications for the analysis of an enemy system. 

First, the attractor for a chaotic system is fractal and so is 

infinitely complex.  Efforts to analyze every aspect of an 

enemy's system are, therefore, bound to be in vain as there 

will always be some finer level to analyze.  Second, behaviors 

at the tactical, operational, and strategic levels are linked. 

If a technique is successful at one level then we can expect it 

to be successful at all levels.  This suggests that we should, 

when possible, try out strategies on a small scale where the 

consequences of losing are inconsequential.  It also suggests 

that analysis techniques that are useful on one level may be 

useful on others.  An example of this is the 0-O-D-A loop106 

which was originally proposed for the tactical level of one-on- 

one fighter combat.107  The 0-O-D-A loop, however, has since 

been widely applied to operational level concepts such as 

information dominance.  Third, if the small scale is similar in 

behavior to the large scale, then we can use observation of the 

small scale to predict the behavior of the large scale.  For 
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example, Admiral Yamamoto was fond of playing Shogi.  Agawa, in 

his biography of Admiral Yamamoto,108 noted that his style of 

playing this game was to risk everything on a bold, early 

stroke.  If that failed, then Admiral Yamamoto would often lose 

the game.  Agawa suggests that this philosophy was behind the 

way in which Admiral Yamamoto planned his large campaigns -- 

such as Pearl Harbor and Midway. 

A fractal nature of war also has implications for the way 

we should organize for war.  Sun Tzu implied a fractal nature 

of war when he said, "Generally, management of many is the same 

as management of few."109 This indicates that he thought that 

the principles of organizing to fight were the essentially the 

same regardless of the scale of the fight.  Some principles, 

such as span of control, appear to be similar regardless of 

organizational level.  Overall, although research on the 

implications of chaos for organizational structures has 

started, conclusions are far from certain. 

F.  MULTIPLE ATTRACTORS ARE POSSIBLE 

Multiple attractors are possible in a chaotic system. 

Gleick uses the example of a common pendulum toy to describe a 

chaotic system with multiple attractors.110  This toy consists 

of a metal bob on the end of a string that is allowed to swing 

not just back and forth but in any direction.  At the base of 

the pendulum are a number of magnets that attract the bob. 

After the bob is set in motion, it swings erratically from 

magnet to magnet, eventually being captured by one of them. 
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When the bob is first set in motion it is impossible to predict 

which of the magnets (attractors) will ultimately capture the 

bob.  However, eventually one of them does.  Starting the bob 

from an infinitesimally different position will cause it to 

come to rest at a different magnet.  Therefore, the magnets 

provide multiple stable states for the bob's final resting 

position. 

Similarly, organisms can exist in different states.  One 

species of ameba usually exists as single cells.  If they are 

starved, they respond by aggregating into a multicellular body 

called a plasmodium.m  This plasmodium is capable of moving to 

seek more favorable conditions.  After migration, the body of 

the plasmodium differentiates into a stalk and a fruiting body. 

If conditions are right, the fruiting body produces spores 

which again become single cell amebas. 

In an analogous fashion, armed forces can drastically 

change their organization and means of fighting a war.  An 

example of this can be found in the People's War of Mao Tse 

Tung.  He divided the phases of war up into different stages. 

In some stages, his army fought a guerrilla war as small units. 

Only later, when conditions were right (i.e. the opposing 

armies had been sufficiently weakened), did he combine his 

units into a conventional force.  If warfare is chaotic, then 

chaos theory warns us that enemy systems can exist in different 

states.  The implications are that we must be aware of these 

possible states and, if necessary, be capable of changing our 

own system state to counter the enemy strategy.  Chaos theory 
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also warns us that the transition from one state to another can 

be very fast. 
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VI.  CONCLUSIONS 

1. Fractal dimensions were measured for the systems 

described by World War II casualty data, Vietnam War aircraft 

loss data, and US defense spending data.  In addition, strange 

attractors were observed for the World War II and the defense 

spending data. 

2. These observations demonstrate that warfare is chaotic 

at the strategic, operational, and tactical levels. 

3. These observations also demonstrate that warfare must 

demonstrate the characteristics of a chaotic system. 

Specifically, warfare must be dynamic, nonlinear, fractal, and 

at least partly deterministic.  In addition, warfare may have 

multiple attractors. 

4. Similarly, these observations suggest that the tools of 

chaos science should be used to enhance our understanding of 

warfare.  Computer simulation is an important example of such 

tools. 

5. Aggregating data, such as normalizing casualty data by 

authorized strength, was found to reduce the fractal dimension 

of the system.  This may have implications for the future 

modeling of war. 



APPENDIX 

program EstimFractDim; 

ESTIMATION OF THE FRACTAL DIMENSION OF CHAOTIC SYSTEMS 
Software in support of the AY94 research project 

"Chaos in War: Is It Present and What Does It Mean?" 
Author of the software - Major Todor D. Tagarev - 
Bulgarian Air Force;  version as of 10 April 1994 

TurboPascal(TM) 5.5 

uses Crt, Sdeq,Math,Tgraph; 
const JM=443; 

JRmax=3 0, 
JVmax=10; 
dmin=0.1, 
Sigmamax=0.1; 
N=3; 
D-0.1; 

{ Number of data points 
{ Number of points on the curve C(r) vs r 
{ Maximum embedding dimension 
{ Lower limit of the slope of the curve 
{ Upper limit of the mean square 
{ Number of differential equations 
{ Step of integration 

type Tarray 
CorArray 
EmbArray 
Marray 
Auxarray 
Prmarray 

= array[l..jm] of real; 
= array[1..jrmax] of real; 
= array[1..jvmax] of real; 
= array[l..n] of real; 
= array[1..n,1..8] of real; 
= array[1..5] of real; 

var X,Y,Z :TArray; 
r,CorCoef,LnC,Lnr,Slope :CorArray; 
SysDim,A,sigma :EmbArray; 
yl,dery :Marray; 
prmt :Prmarray; 
aux :Auxarray; 
Xmin,Xmax,T :real; 
SumC,Sumr,SumCr,Sumr2,Sumz :real; 

{ Phase State Variables } 
{ Radius,... } 
{Approximating Straight Line } 
{ used by RK } 
{ used by RK } 
{ used by RK } 

FileName,Zapis,StringHlp 
Fileln 
Charact 

String; 
File of Char; 
Char ; 

i/jijr,jv :integer; 
k,il,i2,j1,jmm :integer; 
kl,k2,broi :integer; 
Demb :integer; 
Sum,Sum2,rO :real; 

procedure dataHenonMap; 
const a=1.4; b=0.3; 
begin 
x[l]:=0.5; y[l]:=0.5; 
for i:=l to jm-1 do 
begin 
x[i + l] :=1.0+y[i] -a*x[i] *x[i] 
y[i+l] :=b*xti] ; 

{* Embedding Dimension *} 

{*     HENON MAP       *} 
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end; 
end; 

procedure dataLogisticMap; {*  LOGISTIC MAP     *} 
var b: real; 
begin 
b:=1.0; 
x[l]:=0.7; 
for i:=l to jm-1 do 
begin 
x[i + l] :=4.0*b*x[i] *(1.0 - x[i]); 

end; 
end; 

procedure dataKaplanYorke;    {*    KAPLAN-YORKE MAP        *} 
{  After Grassberger-Procaccia'83   } 

const   alpha=0.2; 
begin 
x[l] :=0.7; 
y[l] :=pi/4.0; 
for  i:=l  to  jm-1  do 
begin 
y[i + l] :=2.0001*y[i] ; 
if y[i+l]>1.0  then y[i+l]:=y[i+l]-1.0; 

x [i + 1] :=alpha*x[i]   +  cos(4.0*pi*y[i]); 
end; 

end; 

procedure dataRandom; Uncorrelated number series 
Normal Distribution 

Procedure Gauss is in unit Math 
Author: Marin Raikov, Bulgarian 

Air Force Academy 
begin 
for i:=1 to jm do 
x[i]:=Gauss(0.0,1.0); 

end; 

procedure dataArmsRace; 

{* Grossmann, Mayer-Cress, 1989 *} 

{The results differ from those presented in "Chaos Primer"} 

var Xs,Ys,kll,kl2,k21,k22: real; 
begin 
Xs:=0.1;   YS:=0.1; 
kll:=0.4;  k22:=0.4; 
kl2:=3.0;  k21:=3.0; 
x[l]:=0.3; y[l]:=0.3;   { Initial conditions } 
for i:=l to jm-1 do 
begin 
x[i + l]:=x[i] - kll* (x[i]-Xs) + kl2*(1.0 - x[i])*y[i]; 
y[i + l] :=y[i] - k22* (y [i]-Ys) + k21*(1.0 - y[i])*x[i]; 

end; 
end; 
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{$F+} 
procedure  Fct(T:real;var yl,dery:marray); 
const   sigma=10.0;   rl=28.0;   b=2.6666667; 
begin 
dery[l]:=   -   sigma*yl[1]   +  sigma*yl[2]; 
dery [2]:=   -   yl[l]*yl[3]   +   rl*yl [1]    -   yl [2] ; 
dery[3]:=       yl [1] *yl [2]    -b*yl[3]; 

end; 
procedure Outp(T:real;var yl,dery.marray;var prmt:prmarray;k,n:integer); 
begin 

i : = i +1 ; 
x[i] 
y[i] 
z[i] 

=yl[i] 
=yl[2] 
=yi[3] 

if i=jm then prmt[5] :=1.0;; 
end; 

;$F-} 

procedure dataLorenz; 

begin 
yl[l] :=2.0; yl[2] : =2 . 0 ; yl [3] 
i:=l; 
x[l] :=yl[l] ; 
y[l] :=yl[2]; 
z[l] :=yl[3]; 
prmt[1]:=0.0; 
prmt[2]:=10000.0*jm*D; 
prmt[3]:=D; 
prmt[4]:=1.0e-4; 
prmt[5]:=0.0; 
RK(n,T,yl,dery,prmt,aux,@Fct,@Outp,k) 

end; 

Lorenz Attractor 
Integration by Runge-Kutta 4 
uses procedures Fct and Outp 
Procedure RK is in unit Sdeq 
Author: Marin Raikov, Bulga- 

rian Air Force Academy 

=12.0;{ Initial conditions 

procedure dataVietMonth; 
{ US aircraft losses 

{ 
in Vietnam - Monthly data } 

begin 
FileName:='A:\VIETM.CSV; 
Assign(Fileln,FileName); 
Reset(Fileln); 
Zapis: =' ' ,- 
StringHlp:=''; 
j:=l; 
While NOT EOF(Fileln) Do 
begin 
Read(Fileln,Charact); 
if Ord(Charact)=13 then 
begin 

102 points 
{ x - all losses } 
{ y - losses on the ground } 
{ z - losses in the air } 

} 
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StringHlp:=''; 
kl:=Pos ( ', ',Zapis); 

for k:=l to kl-1 do 
StringHlp:=StringHlp+Zapis[k]; 

Val(StringHlp,z[j],k2); 
Delete(Zapis,l,kl); 
StringHlp:=''; 
kl:=Pos (', ',Zapis); 

for k:=l to kl-1 do 

StringHlp:=StringHlp+Zapis[k]; 
Val(StringHlp,y[j],k2); 
Delete(Zapis,1,kl); 
StringHlp:=''; 
kl:=Length(Zapis); 

for k:=l to kl do 
StringHlp:=StringHlp+Zapis[k]; 

Val(StringHlp,x[j],k2); 
j :=j+l; 
Zapis : = ' ' ; 

end 
else 

begin 
if Ord(Charact) <> 10 then Zapis:=Zapis+Charact,• 

end; 
end; 

Close(Fileln); 
end; 

procedure dataVietWeek; 
{ US aircraft losses in Vietnam - Weekly data } 
{ 443 points } 

{ x - all losses } 
{ y - losses on the ground } 
{ z - losses in the air   } 

Var Daysl,days2,days3: Array[1..7] of real; 
begin 
FileName:='A:\VietDay.CSV'; 
Assign(Fileln,FileName); 
Reset(Fileln); 
Zapis:=''; 
StringHlp: = ' ' ; 
for j:=1 to jm do 
begin 
x[j]:-0.0; y[j]:=0.0; z[j]:=0.0; 
end; 

j:=l; 
i:=l; 
While NOT EOF(Fileln) Do 
begin 

Read(Fileln,Charact); 
if Ord(Charact)=13 then 
begin 

StringHlp — 1 ' ; 
kl :=Pos (' , ' , Zapis) ,- 

for k:=l to kl-1 do 
StringHlp:=StringHlp+Zapis[k]; 
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Val(StringHlp,Daysl[i], k2) ; 
Delete(Zapis,l,kl); 
StringHlp:=''; 
kl:=Pos(',',Zapis); 

for k:=l  to kl-1 do 
StringHlp:=StringHlp+Zapis[k]; 

Val(StringHlp,Days2[i],k2); 
Delete(Zapis,l,kl); 
StringHlp:=''; 
kl:=Length(Zapis); 

for k:=l  to kl  do 
StringHlp:=StringHlp+Zapis[k]; 

Val(StringHlp,Days3[i],k2); 
i:=i+l; 
Zapis: = ' ' ; 
if   i=8   then 
begin 

i:=l; 
for k:=l  to 7  do 
begin 

z [j] :=z [j]   + 
y[j] s-yCj]  + 
x[j] :=x[j]    + 

end; 
j:=j+l; 

end; 

Daysl[k] 
Days2[k] 
Days3[k] 

end 
else 

begin 
if Ord(Charact) 

end; 
end; 

Close(Fileln); 
end; 

<> 10 then Zapis:=Zapis+Charact; 

procedure dataMilBudget; 
{      Budget of US government: FY 1993 } 
{ 53 points } 
{ x - defense spendings as percentages of GNP    } 
{ y - defense spendings as percentages of outlays } 

begin 
FileName:='A:\BUDGET.CSV; 
Assign(Fileln,FileName); 
Reset(Fileln); 
Zapis:=''; 
StringHlp:=''; 
j:=l; 
While NOT EOF(Fileln) Do 
begin 
Read(Fileln,Charact); 
if Ord(Charact)=13 then 
begin 

StringHlp:=''; 
kl:=Pos(',',Zapis); 

for k:=l to kl-1 do 
StringHlp:=StringHlp+Zapis[k]; 

Val(StringHlp,x[j],k2); 
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Delete(Zapis,l,kl); 
StringHlp:=''; 
kl:=Length(Zapis); 

for k:=l to kl do 
StringHlp:=StringHlp+Zapis[k]; 

Val(StringHlp,y[j],k2); 
j :=j+l; 
Zapis:=''; 

end 
else 
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begin 
if Ord(Charact) <> 10 then Zapis:=Zapis+Charact; 

end; 
end; 

Close(Fileln); 
End; 

procedure dataWWIIcasualties; 
{ 12 US Army Group 

{ 
{ xl 
{ x2 
{ x3 
{ x4 
{ X 

Advance trou Western Europe } 
196 points - dayly data } 
Killed in Action 
Wounded in Action 
Captured/Missing in Action 
Assigned Force 
all losses/Assigned Force 

var xl,x2,x3,x4: real; 
begin 
PileName:-'A:\CasWWIl.CSV'; 
Assign(Fileln,FileName); 
Reset(Fileln); 
Zapis: = ' ' ; 
StringHlp:=''; 
j:=l; 
While NOT EOF(Fileln) Do 
begin 
Read(Fileln,Charact); 
if Ord(Charact)=13 then 
begin 

StringHlp:=''; 
kl:=Pos ( ' , ',Zapis); 

for k:=l to kl-1 do 
StringHlp:=StringHlp+Zapis[k]; 

Val(StringHlp,xl,k2); 
Delete(Zapis,l,kl); 
StringHlp:='' ; 
kl:=Pos(',',Zapis); 

for k:=l to kl-1 do 
StringHlp:=StringHlp+Zapis[k]; 

Val(StringHlp,x2,k2); 
Delete(Zapis,l,kl); 
StringHlp:=''; 
kl:=Pos(',',Zapis); 

for k:=l to kl-1 do 
StringHlp:=StringHlp+Zapis[k]; 

Val(StringHlp,x3,k2); 
Delete(Zapis,l,kl); 
StringHlp:=''; 
kl:=Length(Zapis); 

for k:=l to kl do 
StringHlp:=StringHlp+Zapis[k]; 

Val(StringHlp,x4,k2); 
x[j]:=(xl + x2 + x3)/x4; 
Writeln(xl:8:l,x2:8:l,x3:8:l,x4:ll:l,x[j] :13 :8) ; 

Zapis:=''; 
end 

else 
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{* 
{ r [jr] 
{ r[jr] 
i r[jr] 
{ r[jr] 

begin 
if Ord(Charact) <> 10 then Zapis:=Zapis+Charact; 

end; 
end; 

Close(Fileln); 
End; 

procedure coremb; 
begin 
for Demb:=l to JVmax do 
begin 
for jr:=l to jrmax do 
begin 
r[jr]:=(0.2 + 0 . 6*jr/jrmax) * (Xmax-Xmin) ; 

{•Other versions for adjusting to the "linear" region * 
of the curve In C(r) vs In r * 

(0.2 + 0.6*jr/jrmax)*(Xmax-Xmin)*sqrt(Demb); 
jr*sqrt(Demb)*(Xmax-Xmin)/(jrmax+1); 
exp(1.85 + ln(sqrt(Demb)) + jr*0.25/jrmax); 
exp(-6.0 + jr*0.5/jrmax); 

Sum:=0.0; jmm:=jm-demb+l; 
for i:=l to jmm do 

for j:=l to jmm do 
begin 
Sum2:=0.0; 
for k.-=l to Demb do 

Sum2 :=Sum2+ (x[i+k-l] -x[j+k-l] ) * 
(x[i+k-l] -xtj+k-1] ) ; 

if(r[jr]-sqrt(Sum2))>0.0 then 
{if ((j>i)or(j<i)) then} Sum:=Sum+l.0; 

end; 
CorCoef[jr]:=Sum/jmm/jmm; 
writeln('    r=',r[jr] :8 :4, '  C(r) = ',Corcoef[jr] :8:4, 

1  In r=',Ln(r[jr]) :7:3, 
' In C(r) = ',Ln(Corcoef[jr]) :7: 3) ; 

end; 
for jr:=l to jrmax do 
begin 
LnC [jr] :=Ln (Corcoef [jr] ) ; 
Lnr [jr] :=Ln(r [jr] ) ; 

end; 
for jr:=l to jrmax-1 do 
Slope [jr] :=(LnC[jr+l] -LnC[jr] ) / (Lnr[jr+1] -Lnr [jr] ) ; 

Slope[jrmax] :=Slope[jrmax-1]; 

kl:=l; k2:=jrmax; jr:=0; 
repeat jr:=jr+l; 
until Slope[jr]>dmin; 
kl:=jr; jr:=jrmax; 
repeat jr:=jr-l; 
until Slope[jr]>dmin; 
k2:=jr; 

{*  Least Squares Criteria for all points between kl and k2 *} 
{* on Ln C(r)/Ln r curve *} 
{* sigmamax is the upper limit of the overall deviation    *} 
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il:=kl; i2:=k2; 
repeat 
if Slope[il]<Slope [i2] then il:=il + l else i2:=i2-l; 
SumC:=0.0; Sumr:=0.0; SumCr:=0.0; Sumr2:=0.0; Sumz:=0.0; 
broi:=i2-il+l; 
for jr:=il to i2 do 
begin 

=SumC + LnC [jr] ; 
=Sumr + Lnr [jr] ; 
=SumCr+ LnC[jr] *Lnr[jr] ; 
=Sumr2+ Lnr [jr] *Lnr [jr] ; 

SumC 
Sumr 
SumCr: 
Sumr 2 

end; 
Sysdim[demb]:=(SumCr-SumC*Sumr/broi)/ 

(Sumr2-Sumr*Sumr/broi); 
A[demb]:=(SumC-Sysdim[demb]*Sumr)/broi; 
for jr:=il to i2 do 
begin 
Sumz:=Sumz + sqr(LnC[jr]-A[demb]-Sysdim[demb]*Lnr [jr]); 

end; 
sigma[demb]:=sqrt(Sumz/broi); 

until sigma[demb]<sigmamax; 
writeln('Demb=',Demb:3,'  Sysdim=',sysdim[demb]:8:4, 

1 a=',A[demb] :8:4,' sigma=', sigma[demb] :8 :4, 
' il=',il:3,' i2=',i2:3); 

end; 
end; 

procedure XMinMax; 
{*  Minimum & Maximum X  *} 

begin 
Xmin:=x[l] ; 
Xmax:=x[l] ; 
for  i:=1  to  jm do 
begin 
if x[i]<Xmin then 
begin Xmin-.=x[i]; il:=i; end; 

if x[i]>Xmax then 
begin Xmax:=x[i]; i2:=i; end; 

end; 
writeln('Number of points ',jm:4,' Xmin=', 

Xmin:12:8,' i=,,il:4,1 Xmax=',Xmax:12:8,' i=',i2:4); 
end; 

procedure autocor; 
{* Computation of the autocorrelation function *} 
{* After Schuster'8 6 *} 

var average:real; 
begin 
sum:=0.0; 
for j:=1 to jm do 
sum:=sum+x[j]; 

average:=sum/jm; 
for i:=l to jrmax do 
begin 
sum:=0.0; 
for j:=l to jm-i do 
sum:=sum+(x[j]-average)*(x[j +i]-average); 
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A[i] :=sum/jm; 
writeln(i:4,A[i]:14:10); 

end; 
end; 
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{* Main Program *} 
begin 

dataHenonMap; 
dataLogisticMap; 
dataKaplanYorke; 
dataRandom; 
dataArmsRace; 
dataLorenz; 
datavietmonth; 
datavietweek; 
dataMilBudget; 
dataWWIIcasualties; 

XMinMax; 
autocor; } 

CorEmb; 
writeln; 
writeln('To return to Turbo Pascal press "Enter"'); 
readln; 

end. 
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