
TM No. 941020

REFERENCE COPY

NAVAL UNDERSEA WARFARE CENTER
DETACHMENT NEW LONDON

NEW LONDON, CONNECTICUT 06320-5594

I II IU I ~1111111 II
Technical Memorandum

94! S212l 012J! N

INTERFACE BETWEEN
TWO PARALLEL COMPUTERS

Date: 28 February 1994 Prepared by:~~~:__-..l,-----4-
W. Robert Bernecky

System Development Division

Submarine Sonar Department

Approved for public release; distribution unlimited.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
28 FEB 1994

2. REPORT TYPE
Technical Memorandum

3. DATES COVERED
 28-02-1994 to 28-02-1994

4. TITLE AND SUBTITLE
Interface between Two Parallel Computers

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
W. Bernecky

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Undersea Warfare Center Detachment New London,New
London,CT,06320

8. PERFORMING ORGANIZATION
REPORT NUMBER
TM 941020

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research, Computer Technology Block

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
NUWC2015

14. ABSTRACT
This document describes the high-speed interface developed by NUWC to support data transport between
heterogeneous, massively parallel computers. The interface provides a sustained data transfer rate of up to
3.5 Mbytes/second between an Intel iWarp and a Thinking Machines CM200a. The design is adaptable to
other VMEbus-compatible interface boards.

15. SUBJECT TERMS
iWarp; Thinking Machine CM20a; VMEbus

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

23

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

TM No. 941020

ABSTRACT

This document describes the high-speed interface developed by NUWC to support data
transport between heterogeneous, massively parallel computers. The interface provides a
sustained data transfer rate of up to 3.5 Mbytes/second between an Intel iW arp and a
Thinking Machines CM200a. The design is adaptable to other VMEbus-compatible
interface boards.

ADMINISTRATIVE INFORMATION

The research described in this memorandum was performed under the Advanced Sonar
Processing Architectures (ASPA) program, Principal Investigator Dr. J. Munoz. The
sponsoring activity is the Office of Naval Research (ONR), Computer Technology Block,
Program Manager Elizabeth W ald.

The author of this memorandum is located at the Naval Undersea Warfare Center,
Detachment, New London CT 06320-5594. The technical reviewer for this document was
Dr. Jose Munoz.

1

TM No. 941020

TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. HARDWARE OF THE PARALLEL INTERFACE ... 3

2.1 Intel Standard Interface Board (iSIB) ... 3
2.2 Thinking Machines CM/VME I/0 Board (CM/VMEIO) 5

3. SOFTWARE OF THE PARALLEL INTERFACE .. 6

3.1 iSIB Software ... 7
3.2 Software on the CM VMEIO host/ iWarp host. 7
3.3 Software on the CM host ... 8

4. PARALLEL INTERFACE PERFORMANCE .. 8

5. REFERENCES .. ! 0

6. APPENDIX A ... l1

ii

TM No. 941020

1. INTRODUCTION

This document describes the high-speed interface developed by NUWC to support data
transport to, from and between massively parallel computers. This parallel interface (PIF)
is currently being used to transfer data from an iWarp parallel computer [1] to a Thinking
Machines Connection Machine CM200a (CM) [2] at a rate of up to 3.5 Mbytes/second. It
has also been used to transfer data between the CM200a and a SUN 4 Workstation. This
same interface design will be used to connect sonar sensor data to the iW arp system in
planned sea-test trials of the Advanced Sonar Processing Architecture (ASP A) program.

The user (programmer) view of the PIF is presented in Figure 1. A user program running
on the iWarp can read and/or write to special memory buffers. Conversely, a CM program
may also read and/or write to these same buffers. Software routines are available that
enable the user to easily implement double-buffered I/0 schemes.

buffer 0
~write

Connection Machine iWarp
user program user program

~ buffer 1

Figure 1 - Programmer1s view of the parallel interface PI F.

The PIF is actually a set of software routines and a collection of existing hardware
components that collectively provide to the user the data transfer paradigm illustrated in
Figure 1.

For context, Figure 2 presents the major hardware elements of the composite system of two
parallel computers and the associated interface components. Briefly, the two parallel
computer systems are the iW arp, and the Connection Machine.

The iWarp is a Multiple-Instruction, Multiple-Data (MIMD) computer comprised of up to
256 cells interconnected in a mesh configuration with a proprietary 40 Mbyte/second per
unidirectional bus (8 buses per cell) network. The iWarp system is interfaced to the outside
world via an Intel SUN Interface Board (iSIB) that sits on the VME backplane [3] of a
SUN 4 Workstation acting as the iWarp Host.

1

TM No. 941020

The CM is a Single-Instruction, Multiple-Data (SIMD) computer consisting of 8192 single­
bit processors, 256 floating point chips, and an aggregate of 1000 Mbytes of memory.
Unlike the iWarp host, the front-end (CM host) SUN 4 Workstation plays an integral role
in controlling the execution of CM programs. Similar to the iW arp, the CM has an
interface board (CM!VMEIO board) that, as does the iSIB, sits on the VME backplane of a
SUN 4 Workstation (CMIVMEIO host). The CMIVMEIO host is distinct from the CM
host. The system software that controls the CMIVMEIO board was developed by NUWC
and is documented in [4].

As shown in Figure 2, the CMIVMEIO host and the iW arp host are the same SUN 4
Workstation.

iWarp array

iWarp pathway

Sun
4/360

iWarp Host &
CMNMEIO Host

(1) (2) (3)

CMIObus

(1) SUN cpu (2) iSIB (3) CMNMEIO
8 Mbytes

CM200a

ethernet

Figure 2- Hardware configuration of PIF.

p-bus

Sun
4/670M P

CM Host

(1)

Figure 3 provides more detail on the hardware configuration most pertinent to the PIF
proper. This hardware includes two VMEbus interface boards, the iSIB and the
CMIVMEIO, provided respectively, by Intel and Thinking Machines. Both of these boards
serve the same purpose, which is to interface the parallel computer to the de facto data
transfer standard VMEbus[3]. The details involved in implementing the Parallel InterFace
using the two VMEbus interface boards are presented in the remainder of this document.

2

TM No. 941020

Slave Interface 1......1 CMVMEIO ~ iSIS

T
A

o iWarp
rray

......

cell

...... --,.. 8Mb memory """' ,...
64 kbytes
du 1-porte tL... ...

~·
mory

... ,..

iWarp VMEbus cell
I&
!\;' VMEbus

...

Master Interface
SUN cpu

Master Interface

Figure 3 - Hardware details of iWarpNMEIO Host.

The next two sections describe in more detail the hardware and software of the PIF. A
final section presents some performance numbers.

2. HARDWARE OF THE PARALLEL INTERFACE

The Parallel InterFace (PIF) between the iW arp and the CM200a consists of the following
items:

A. SUN 4 Workstation (iWarpNMEIO host) with VMEbus backplane.

B . An Intel iSIB board that sits on the VMEbus of item A.

C CMNMEIO board that also sits on the VMEbus of item A.

D. SUN 4 Workstation acting as the CM host.

E. Ethernet (or FDDI) local area net connecting items A and D.

2.1 Intel Standard Interface Board (iSIB)

A full description of the iSIB is given in [5]. The iSIB provides a communication path
between an iW arp processor array and a SUN VMEbus. The iSIB is a single board (9U
form factor, 15.75" by 14.4", 5 Volt, 16 Ampere) and contains an iWarp cell, a VMEbus
slave interface and a VMEbus master interface.

The VMEbus slave interface is a 64 Kbyte dual-ported memory with a peak transfer rate of
80 Mbytes/second. Because the iW arp host software uses this interface to support data
transfers between the SUN 4 Workstation host (iWarp host) and the iWarp array, this
interface is unsuitable for I/0 to the CM.

3

ToCM

TM No. 941020

The master interface, Figure 3, gives the iWarp cell access to the VMEbus, and has a peak
transfer rate of 18 Mbytes/second. It provides access to the VMEbus through two
windows located in the local memory space of the iWarp cell: a main window (32 Mbytes)
and a small window (16 Mbytes). Page registers are used to map these windows onto the
VMEbus address space. I will note here that the PIF uses only the small window of the
master inteiface. Use of the main window resulted in inconsistent performance (dropped
data bits) indicative of a hardware design flaw.

I* VMEbus word access using small window *I

#include <asmlisib.h>
I* defines isib constants, including:

Extended Non-Privileged:Data Access *I
#define AM_UEDATA (AM_EXTENDED I AM_USER I AM_DATA) I* Ox09 *I
#define SWR *(int *)Ox00c00008 I* Small Window Register *I
#define SSR *(int *)Ox00c00010 I* Small Size Register *I
#define SIB_SWINDOW Ox01000000 I* Small Window into VMEbus *I
#define SSR_WORD (0) I* 32-bit access *I
1*-- -

#define CM_addr (0x8000 I AM_UEDATA) I* Page and addr modifier *I

int i, *ptr= (int *) SIB_SWINDOW;

SWR= CM_addr;
SSR= SSR_WORD;

I* point to VME IIO shared memory */
I* word access only *I

*I

for(i=O;i<lO;i++) *ptr++ = i; I* Example of writing to VME memory *I

Figure 4- accessing iSIB small window Master Interface.

The small window is located in the iSffi's local memory space at byte address
OxOlOO,OOOO to OxOlFF,FFFF. The window is 4 Mwords long, and can access the
VMEbus using data sizes of 8, 16, and 32 bits. Two registers must be initialized to use
this window:

(1) Small Window Register (SWR);

(2) Small Size Register (SSR);

(See Figures 4 and 5.)

4

byte address OxOOC0,0008

byte address OxOOCO,OOlO

TM No. 941020

Small Window Register (SWR) byte address OxOOC00008

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I I I
Address Modifier

Page Address

Address Modifier • Ox09 is extended 32-bit addressing, user data access

Page Address • the VMEbus is divided up into 256 pages, each 4M words long.
Contains the top 8 address bits. Not used if the address modifer
is set for standard or short address size.

Small Size Register (SSR) byte address OxOOC0001 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EnableRMW
main window

Enable RMW
small window

2 lower address bits

size bits

enable block xfers

size bits • 00 word access; 01 byte access; 1 0 double byte; 11 double word
address bits • used in 8-bit or 16 bit access.

Figure 5- iSIB small window Master lntertace Registers.

2.2 Thinking Machines CM/VME 1/0 Board (CM/VMEIO)

The CMIVMEIO is a single 9U board that connects the VMEbus to the CM's 64-bit
multidrop CMI/0 bus. The CMIVMEIO appears to any VMEbus master as 8 Mbytes of
byte accessible memory (aligned or unaligned) addressed in extended 32-bit address space
and 18 I/0 registers addressed in short 16-bit address space. The starting location of the
extended address space is set in a nine bit switch located on the board, and, in the current
configuration, has a value of Ox8000,0000. Four address modifier codes are standard for
extended addressing, including "Extended non-privileged data access" Ox09, the modifier
used by the PIF.

Additional hardware details concerning the CMIVMEIO interface board are given in [6].
However, the user's view of the interface is defined by a NUWC-developed CMIVMEIO
driver, which is additional system software incorporated into the CM's CMFS file
server[4,9].

5

TM No. 941020

3. SOFTWARE OF THE PARALLEL INTERFACE

The PIF may be regarded as the set of software routines available to the user to facilitate the
transfer of data between the iWarp and the CM. In general terms, this software includes
initialization procedures, a synchronization service to support double-buffering, and a
simplified (for the user) read/write memory abstraction.

Figure 6 indicates the user code required to transfer data between the iSIB and the CM.
This (user) program runs on the iSIB's iWarp cell. Line 1 initializes the system by
mapping the small window of the master interface to the memory on the CMIVMEIO
board. Any reads or writes to the small window will now result in reads or writes (over
the VMEbus) of the CMIVMEIO memory. The initialization also creates two buffers,
blocks of memory on the CMJVMEIO board, referred to as buffer 0 and buffer 1. The user
gains access to these shared buffers by invoking iW _grab_buffas indicated in Line 5. This
procedure returns a pointer to buffer 0 or 1. Synchronization occurs implicitly, in that this
procedure call does not return until the buffer is available. Initially, both buffers are free
(to the iSIB). Writing data to the memory location indicated by this pointer results in data
being transferred to the CMJVMEIO board. This occurs in Line 6. Similarly, any reads
will result in data being transferred from the CMIVMEIO board to the iSIB. Finally, Line 7
releases the buffer and additionally, returns the buffer ID of the other buffer (e.g. buffer 1,
if id= 0). The process of releasing the buffer again requires synchronization: the CM can
not read a buffer until it has been released (indicating it has been filled) by the iW arp.

1 iW_ini t_db (2Mbytes) ;
2 id = 0; /* start with buffer 0 */
3 Do forever
4 {
5 = (int *) iW_grab_buff(id);
6 for (i=O; i<N; i++) *ptr++ i; /* write out */
7 iW_release_buff(); /*flips buffer id */
8 }

Figure 6- PIF user code executing on the iSIB.

The synchronization of the read/write access of the two buffers is accomplished by defining
the notion of ownership. A user program may only read or write to a buffer that it owns.
Ownership can only be changed by the current owner (either the iW arp or the CM), and is
accomplished by releasing the buffer. Thus, to implement a double buffering scheme
where both programs may simultaneously read and/or write to (separate) buffers, each
must repetitively execute 11 grab buffer, perform I/0, release buffer". As noted above, the
iSIB initially owns the two buffers.

There are three separate software components in the PIF, corresponding to the three
hardware platforms involved in the interface. These are: (1) the iSIB; (2) the CMJVMEIO
SUN host; and (3) the CM SUN host. The C programs implementing the PIF are given in
Appendix A.

6

TM No. 941020

3.1 iSIB Software

The iSIB software of the PIF consists of three routines:

iW _init_db(bytes)
Sets up two buffers, each of size bytes. The maximum size is 4 Mbytes per
buffer. The small window of the iSIB's master interface is mapped to
VMEbus 32-bit extended address Ox80000000, corresponding to the current
location of the CM/VMEIO memory. This value must be modified to
accommodate any different memory placement. The small window is
initialized to support 32-bit word access only. However, this may be
modified to either 8-bit or 16-bit access[5]. Finally, ownership of the two
buffers is assigned to the iW arp.

int * iW _grab_buff(buff); Returns a pointer to the requested buffer.
Parameter buff is either 0 or 1. If the requested buffer is owned by the
iW arp, a pointer to it is returned to the user. Otherwise, this routine uses
the iMSG facility [7] to wait for a message from the iW arp's SUN host
indicating that the buffer has been released by the Connection Machine. The
iWarp's SUN host, in turn, waits (via an ethernet socket connection) for a
message from the CM's SUN host indicating that the buffer has been freed.

int iW _release_buff(bu.ff); Returns the ID of the other buffer.
This routine releases ownership of the indicated buffer buff, allowing the
CM to access it. This is accomplished by using the iMSG facility to send a
message from the iSIB to the iWarp SUN host. The iWarp SUN host
forwards this message via an ethernet socket connection to the CM SUN
host.

3.2 Software on the CM VMEIO host/ iWarp host

The CMIVMEIO host is also the iWarp host, and is a SUN 4 Workstation. The purpose of
this software is to act as a go-between, passing messages from the iSIB (via the iMSG
protocol) to the CM's SUN 4 Workstation host (via ethernet). There is only one user
routine that must be invoked:

host_init_db(bytes); Never returns.
This routine never returns to the user, and should be invoked as a
background task under Unix. The parameter bytes is the size of each
buffer, and must match the value used in iW _init_db (see Section 3.1),
and CM_init_db (see Section 3.3). This code creates and binds a socket
connection between the CM host and the VMEIO host (iWarp host). It also
opens a shared memory connection between the iWarp host and the iSIB
using an imsg_open call on the file "/dev/iwusrO". It uses this shared
memory (corresponding to the slave interface of the iSIB) to communicate
with the iSIB. Two processes are forked off by this call. One process
captures all messages sent to it from the CM host and forwards them to the
iSIB. The other fields all messages from the iSIB and passes them on to the
CM host.

7

TM No. 941020

3.3 Software on the CM host

The CM host software is essentially the mirror image of the iSffi software. However,
since the user must invoke the system-defined CMIVMEIO routines[4], and perform data
transformation tasks (to unscramble data in a serial format into data in a parallel format),
two additional routines are included. The PIF routines are:

CM_init_db(server,bytes)
The parameter server is the network name of the VMEIO host. bytes is the
size of each buffer. This initialization code: (1) opens an ethernet socket
connection between the CM host and the VMEIO host; (2) issues
CMFS_open calls to devices "sun4:/dev/vmemem0" and
"sun4:/dev/vmememl" for buffers 0 and 1, respectively; (3) assigns
ownership of the two buffers to the iWarp.

CM_grab _buff(buff)
Waits until the CM host is the owner of buffer buff. This is accomplished
by waiting for a message from the socket connection to the VMEIO host.

CM_release_buff(buff)
Releases buffer buff by assigning ownership to the iW arp and sending a
message via the socket connection to the VMEIO host.

int CM_write_iW(buff, data, len) Returns ID of the other buffer.
This routine grabs buffer buff. It uses CMFS calls [9] to transpose the
parallel data (of size len bits per datum) and to then write this (serial
formatted) data to the buffer. Finally, it releases the buffer and rewinds the
vmemem device associated with the buffer.

int CM_read_iW(buff, data, len) Returns ID of the other buffer.
Grabs buffer buff, reads the buffer, transposes the data into parallel format
(parallel variable data, of len bits per datum), and finally releases the buffer.

CM_close_ VME()
Closes the files associated with the buffers.

4. PARALLEL INTERFACE PERFORMANCE

The parallel interface performance has been evaluated in two different contexts. The first
method was to measure the transfer rate achieved by the iSffi when writing to its small
window, where the window has been mapped to the CMNMEIO memory. The second
method was to measure the end-to-end time transfer time of data from the iWarp array into
the Connection Machine. This latter measure includes the time to convert the serial data to a
parallel format suitable to the CM.

The iSIB test code used to measure the throughput of the small window (master interface)
was written in C. Two different programs were tested. One wrote a constant zero value to
the VMEIO memory; the second wrote a monotonically increasing integer value. Both

8

TM No. 941020

programs were compiled and executed with the optimize option disabled, and then enabled.
Figure 7 indicates the transfer rate achieved for these various combinations.

Time (seconds) Rate (Mbytes/sec)
Unoptimized
0 -> VME 18.5 1. 81

Optimized
0 -> VME 6.4 5.22

Unoptimized
l -> VME 19.0 1.77

Optimized
l -> VME 7.4 4.50

All cases are for a total of 33.5 Mbytes written
to the small window of the iSIB master interface
mapped to the 8 Mbvte CM/VMEIO memory board.

Figure 7- PIF transfer rates in Mbytes/second.

The second method of evaluation measured the throughput of an end-to-end transfer of data
from the iW arp to the CM. This performance metric includes all overhead costs, such as
ethemet delays and serial-to-parallel data reformatting, and thus provides a true measure of
achievable, and sustainable data transfer rates. The end-to-end test demonstrated a
sustainable 3.5 Mbyte/second transfer rate between the iWarp and the Connection Machine.

It is appropriate to note that the efficiency of the PIF may be improved by passing the
synchronization/control data directly over the VMEbus, obviating the (relatively) high­
overhead associated with the ethemet connection. This consideration will be an important
design goal when upgrading the PIF to support I/0 transfers between the iSIB and a RIB, a
VMEbus interface board (similar, in spirit, to the CM/VMEIO) that makes hydrophone data
from a sensor array accessible to the VMEbus.

9

TM No. 941020

5. REFERENCES

1. Fumanz, L., Kung H.T., et al, iWarp MacroArchitecture Specification, iWarp
Tech Pub, INTEL Corp., Hillsboro OR, 1991.

2. Paris Reference Manual, Thinking Machines Corp., Cambridge MA, 1991.

3. Peterson, W., The VMEbus Handbook, VMEbus Int'l Trade Assoc, Scottsdale
AZ, 1989.

4. Munoz, J. L., Bemecky W. R., Invention Disclosure for Mapped Memory
Inteiface for Communication between Multiple Computers, NVWC Detachment
New London CT, 1993.

5. Manseau, D. A., iWarp Sun Inteiface Hardware External Product Specification,
INTEL Corp., Hillsboro OR, 1989.

6. Quinn, R., User's Guide to the VMEI/0, Thinking Machines Corp., Cambridge
MA, 1990.

7. IMSG manual pages, iWarp Release 3.0, INTEL Corp., Hillsboro OR, 1992.

8. Network Programming Guide, #800-3850-10, Sun Microsystems Inc., Mountain
View CA, 1990.

9. Connection Machine I/0 System Pro~rammin~ Guide. Ver 6.1, Thinking Machines
Corp., Cambridge MA, 1991.

10

TM No. 941020

6. APPENDIX A

1 1

Feb 24 11:57 1994 CM iW db.c APPENDIX A TM No. 941020 Page 1

I*
Advanced Sonar Processing Architectures
Parallel Interface Module
CM iW db.c

Author: W. R. Bernecky
NUWC
New London, CT

Sep '93

Double buffer support routines. These are specialized to handle the
case of the CM writing to/from 2 buffers on the iW board, and the

*I

iW host computer reading/writing from those same 2 buffers.

compile CM code: use CM's compiler on sun5
cc -DCM -0 -c CM iW db.c
(include -lcmfs during link phase)

compile vme host:
cc -DVME -0 -c CM iW db.c -I/iwarp/host/include -L/iwarp/host/lib -limsg

compile iWarp SIB code:
iwcc -0 -c -o CM iW db CM_iW_db.c -lrts -limsg

Usage note: under C* the routines which expect CM field id t vars
must be passed the address of the C* variable. - - -

#define SIB 4
#define HOST 5
#define iW owns (Ox3)
#define CM owns (Ox7)
#include <stdio.h> /* everybody */
#ifdef IWCC
#include-<pathlib/pl.h> /* only SIB */
#include <asm/isib.h>
#else
#include <sys/types.h> /* only Sun *I
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <fcntl.h>
#include <signal.h>
#endif
#ifdef CM /* CM */
#include <cm/paris.h>
#include <em/em stat.h>
#include <cm/cm-file.h>
#include <cm/vmemem.h>
#include <em/em ioctl.h>
#else /* vme host or SIB */
#include <iwsys/iwsys.h>
#include <imsg/imsg.h>
#endif

static struct double_buffer_type
{

Feb 24 11:57 1994 CM iW db.c APPENDIX A TM No. 941020 Page 2

int *vme mem addr;
int socket; -
int fd;
int owner;
Data[2];

I* ptr into iW memory *I
I* ethernet connection to other machine *I
I* iW device file descriptor *I
I* owner of shared mem buffer: CM or iW *I

typedef struct
{

int buff;
int value;
message;

I* Buffer 0 or 1 *I
I* message value; either CM owns or iW owns *I

#ifdef CM I* CM code *I
void CM grab buff();
void eM-release buff();
I* - -

*I

Connection Machine Code:
CM init db("sun4",1Mb)
CM-read-iW(bufferiD, parallel var, length of var)
CM-write iW(bufferiD, parallel var, length of var)
CM- lose=VME ()

I* Initializes double buffer scheme:

*I

opens socket connection between CM host and VME host
opens 2 shared memory segments in VME IIO memory
sets ownership of both buffers to iWARP

int CM init db(server,bytes)
char-*server;
int bytes; I* size of each buffer *I

int code,j,sock,stat;
struct sockaddr_in client;
struct hostent *hp;

I* open a socket connection
client.sin_family= AF_INET;
hp= gethostbyname(server);
bcopy((char *) hp->h_addr,

at= -1;
while(++j<lO && stat<O)
{

if(j==S) sleep(l);
Data[O] .socket=

I* socket data structure *I
I* host addr of SERVER *I

between cmhost and vme host *I

(char*) &client.sin_addr, hp->h_length);

socket(AF INET, SOCK STREAM,O); I* create socket *I Data[l) .socket= sock=
client.sin_port= 4312;
stat= connect(sock, (struct

I* socket *I -
sockaddr *) &client,sizeof(client));

}
if (stat<O)

{perror("iW 2b: Connect error"); exit(-1);)

CMFS close all files();

Feb 24 11:57 1994 CM iW db.c APPENDIX A TM No. 941020 Page 3

/* open 2 buffers in the VME I/O memory */
stat=Data[O] .fd= CMFS open("sun4:/dev/vmemem0",CMFS 0 RDWR,0666);

(stat<O) {CMFS_perror("Open er.r vmemem0 11
); exit(-1)7}

stat=Data[1] .fd= CMFS open("sun4:/dev/vmemem1",CMFS 0 RDWR,0666);
if(stat<O) {CMFS_perror("Open err vmemem1"}; exit(-1)7}

if ((bytes%sizeof(int)) !=0) /*integral number of words*/
bytes= ((int} (bytes/sizeof(int))+1)*sizeof(int);

code= OxCOOOOOOO I (sizeof(int)<< 16};
code I= CMVMEM roc OPEN; I* change size from 8 MB */
stat= CMFS ioctl(Data[O] .fd,code,&bytes);
if(stat<O)-CMFS perror("ioctl for openO"};
stat= CMFS ioctl(Data[1] .fd,code,&bytes);
if(stat<O)-CMFS_perror("ioctl for open1 11

);

code= OxCOOOOOOO I (sizeof (int)<<16);
code I= CMVMEM roc OFFSET; /* move start of 2nd buffer */
stat= CMFS ioctl(Data[1] .fd,code,&bytes);
if(stat<O)-CMFS perror(11 ioctl for offset1");
Data [0] . owner= Data [1] . owner= iW _owns;
return(O);

I* This routine first grabs the buffer (if not already the owner)
writes data from the CM into the buffer,
and releases the buffer.

*I
int CM write iW(buff,data field,len) /* CM writes to iW memory */

int buff;- I* ... toggles buffer id */
CM field id t data field;
int len; /* ze of data field */

int stat,isync;

CM grab buff(buff); /*make sure CM is owner*/
CMFS em-to standard byte order(data field,len};
stat~ CMFS=transpose_always(data_field,len,

CMFS IO WRITE TO SERIAL DATA,
CMFS-write to-row major);

if(stat<O) perror("CM write error"};
if((stat= CMFS write file always(Data[buff] .fd,data field,len})<O)

perror(11 CM write error"); -
CM release buff(buff); /*release buffer to iWarp */
/*-rewind write ptr - perhaps this will change? */
stat= OxCOOOOOOO I (zeof(int}<<16);
stat I= CMVMEM IOC REWIND;
isync= 0; - -
stat= CMFS ioctl(Data[buff] .fd,stat,&isync);
if(stat<O)-perror("CM rewind error");
return((buff==0)?1:0); /*flip buffers*/

/* If CM is not the owner of the buffer, this routine waits for a
message from the socket.

*I

Feb 24 11:57 1994 CM iW db.c APPENDIX A TM No. 941020 Page 4

void CM grab buff(buff)
int buff; -
message isync;

while(Data[buff] .owner! CM owns)
{

read(Data(buff] .socket,&isync,sizeof{isync}}; I* wait for iWarp *I
if ((isync .buff==O) II (isync .buff==l))

Data(isync.buff] .owner= isync.value;
else

perror("Synchronization problem: bad buff id\n");
if((isync.value!=CM owns}&&(isync.value!=iW owns)}

perror("Synchronization problem: bad value\n"};

I* Sets the ownership of the buffer to iWarp. Sends a message via
the socket connection to the iWarp to let it know it is now
the owner of the buffer.

*I
void CM release_buff{buff}

int buff;
I* makes buffer avail to iW host *I

message isync;

isync.buff= buff;
isync.value= iW owns;
if(Data[buff) .owner==CM owns) I* should always be so *I
write{Data(buff] .socket,&isync,sizeof(isync)); I* tell iWarp the news *I

Data[buff) .owner= iW_owns;

I* This routine first grabs the buffer (if not already the owner}
reads data from the VME IIO shared memory into the CM
and releases the buffer.

*I
int CM read iW(buff,data field,len} I* CM reads iW memory *I

I*

int buff,len; -
CM field id t field;

int stat,isync;

CM grab buff(buff);
stat= CMFS read file always(Data[buff) .fd,data field,len};
if(stat<O)-perror("CM read error"); -
I* data comes in slice-wise. Convert to field-wise *I
stat= CMFS_transpose_always(data_field,len,

CMFS IO READ FROM SERIAL DATA,
CMFS=read_from_row_major);

if(stat<O} perror{"CM read error"};
CMFS em to standard byte order(data field,len);
CM release-buff(buff); - -
return(buff?0:1);

Feb 24 11:57 1994 CM iW db.c APPENDIX A TM No. 941020 Page 5

a nice thing to do, else the fileserver will eventually complain
*I
void CM close VME()
{ -

CMFS close(Data[O] .fd);
CMFS-close(Data[1] .fd);
CMFS=close_all_files();

.ffendif

.ffifdef IWCC
I*

*I

This code runs on iWarp SIB
iW init db(1Mbytes)
ptr= (int *) iw grab buff(bufferiD)
for(i=O;i<N;i++) *ptr++ =data;
bufferiD= iW relea buff(bufferiD)

move data to VME memory
flips bufferiD

.ffdefine CM ADDR

.ffdefine CM ADDR SWR
#define ONE MWORD

(0x80000000) /* addr of vme memory */
(0x8000 I AM UEDATA) /* Ox8009 value for iSIBs SWR, */
(1024*1024)

I* Initialize double buffer scheme on SIB:
sets up pointers to VME I/0 memory
sets small window control registers
sets ownership of buffers to IWARP

*I

int iW init db(bytes)
int bytes;

int words,*vme_ptr;

words= bytes/sizeof(int);
if (words*sizeof(int) ! bytes) words++;
if (words>ONE MWORD) fprintf(stderr,"More than 4 Mbytes per buffer err\n");
/*map SIB small window to CM's vmeio memory */
vme ptr= (int *) (SIB SWINDOW I (SIB MASK SWINDOW & CM_ADDR));
Data[O] .vme mem addr=-vme ptr; - -
vme ptr+= words; - I* ptr to 2nd buff */
Data[1] .vme mem addr= vme ptr;
Data[O] .owner= a[l] .owner= iW_owns; /* both buffers are mine */

I* set up iSIB's small
SWR= CM ADDR SWR;
SSR= SSR_WORD;
return(O);

window control registers */
/* pt to VME I/O shared memory */
I* word access only */

I* if the iWarp does not own the buffer, this routine waits
for a message from the VME host (which acts as a go-between)
iWarp SIB <--~-> VME host <----> CM host

Feb 24 11:57 1994 CM iW db.c APPENDIX A TM No. 941020 Page 6

RETURNS POINTER TO VME I/O MEMORY
*I
int *iW grab buff(buff)

int buff;

int stat;
message isync;
imsg id mid;
imsg:=status isp;

while(Data[buff] .owner!=iW_owns)
{

stat= imsg block(IMSG PORT USR); /*wait for a message*/
if(stat<O)- - -
{ fprintf ("Grab block err\n"); exit (-1); }
mid= imsg recv(IMSG PORT USR, (char *)&isync,sizeof(isync)); /*read msg */
if(mid==IMSG BADID)- -
{ fprintf(11 Grab recv err\n"); exit(-1); }
do stat= imsg stat(mid,&isp); while ((stat>=O)&&(!isp.is_done));
if((stat<O)&&Isp.is error)
{ fprintf("Grab stat err\n"); exit(-1);
Data[isync.buff] .owner= isync.value; /* grab buffer */

return(Data[buff] .vme_mem_addr); /* pointer to buffer */

/* releases ownership of a buffer to the CM.
FLIPS BUFFER ID

*I
int iW release buff(buff)

int-buff; -

int stat;
message isync;
imsg id mid;
imsg:=status isp;

isync.buff= buff;
isync.value= CM owns;
if(Data[buff] .owner== iW_owns)
{

I* should always be so *I

mid= imsg send(HOST,IMSG PORT USR, (char *)&isync,sizeof(isync));
if(mid==IMSG BADID) - -
{ fprintf("Rel send err\n"); exit(-1); }
do stat= imsg stat(mid,&isp); while ((stat>=O)&&(!isp.is done));
if{(stat<O)&&Isp.is error) -
{ fprintf (11 Rel stat -err\n"); exit (-1); }

Data[buff] .owner= CM_owns;
return(buff?0:1);

#endif

Feb 24 11:57 1994 CM iW db.c APPENDIX A TM No. 941020 Page 7

#ifdef VME
I*
===================================.=======================-=============

This code runs on Sun VME I/O host
host init db(bytes)
NEVER RETURNS!

*I

int host init db(bytes)
int bytes; - I* size of each buffer */

}

int code,i,sock,stat,size,fd;
int procO,proc1,proc2;
int *memptr;
struct sockaddr_in client;

/* pts to SIB/VME dual-ported mem */
/* socket data structure */

I* open socket connection between VME I/O host and CM host */
client.sin family= AF INET;
client.sin-addr.s addr= INADDR ANY;
sock= socket(AF INET,SOCK STREAM,O); /*create a socket*/
if(sock<O) {printf("Socket error\n"); exit(-1) ;}
client.sin port= 4312; /* socket *I
bind(sock,(struct sockaddr *) &client,sizeof(client));
listen(sock,1); /*use the socket*/
Data[O] .socket= Data[1] .socket=

accept (sock, (struct sockaddr *) 0, (int *) 0) ;

I* open shared mem connection between VME I/O host and SIB */
stat= imsg open(11 /dev/iwusr0 11 ,&fd,&memptr,&size,HOST); /*open shared mem on iWi
if(stat<O)-perror("Can not open iWarp mem");
/* dual-port mem: 0 buffer id from iWarp: 0 or 1; -1 -> exit

1 value (iW owns or CM owns)
2 buffer id-into iWarp-
3 value (iW_owns or CM_owns)

*I
Data[O] .vme mem addr= (int *) memptr;
Data(1] .vme=mem-addr= (int *) (memptr+2);

I* read out area */
/* send in */

/* start processes to act as communication agents between
SIB and CM host */

if (procO= fork()) iW_to_CM(); /*never return*/
else

CM_to_iW();

I* Field any messages from iWarp's SIB and pass to CM.
*I
int iW_to_CM()
{

int stat,*data;
message isync;
imsg id mid;
imsg=status isp;

data= Data[O] .vme mem_addr;
for(;;)

I* pointer to shared mem */

Feb 24 11:57 1994 CM iW db.c APPENDIX A TM No. 941020 Page 8

stat= imsg block(IMSG PORT USR};
if (stat<O) { perror(11Error iW .to CM: imsg block\n"}; kill(O,SIGKILL};}
mid= imsg recv(IMSG PORT USR, (char*} data, sizeof(isync));
if(mid==IMSG BADID} {perror("iW to CM bad message id\n"}; kill(O,SIGKILL);}
do stat= imsg stat(mid,&isp}; while ((stat>=O)&&(!isp.i done));
if (((*data!=~)&&(*data!=1}} I I ((stat<O)&&isp.is error})
{ -

if (*data== -1}
printf(11 Exiting ... \n"};

else
perror(11 iW to CM: bad data\n"};

kill(O,SIGKILL)7

isync.buff= *data; I* buffer id *I
isync.value= *(data+1};
stat= write(Data[*data) .socket,&isync,sizeof(isyrrc}); I* pass on to CM *I
if (stat<O) { perror (11 Error iW to CM: socket\n 11

); kill (0, SIGKILL);}
I* forever *I

int CM_to_iw ()
{

int stat,*data,i;
message isync;
imsg id mid;
imsg=status isp;

for (; ;)
{

data= Data[1] .vme mem addr; I* pointer to send into iwarp mem *I
stat= read(Data[O].socket,&isync,sizeof(isync)); I* wait for CM *I
data= isync.buff; I buff id *I
(data+1)= isync.value; I data value *I
mid= imsg send(SIB, IMSG PORT USR, data, zeof(message)); I* to iWarp *I
if{(mid==IMSG BADID) I I (isync.value== -1))
{ -

}

if (isync.value==-1) printf("exiting due to CM ... \n");
else

perror("iW to CM: bad data\n");
kill(O,SIGKILL)7

do stat= imsg stat(mid,&isp); while ((stat>=O)&&(!isp.is done));
if(stat&&!isp~i) -
{ perror("CM->iW stat error\n 11

); kill(O,SIGKILL); }
} /* for ever *I
I* CM iW '*I

.Jfendif

DISTRIBUTION LIST

Internal Distribution

Code
0261 (NL Library (2))
0262 (NPT Library (2))
2094 (J. DePrimo)
21 (W. Coggins)
2121 (W. Fischer, M. Schindler)
2122 (J. O'Sullivan)
2123 (G. Bowman, R. Choma, S. Dzerovych, J. Ianniello, J. Law

M. Maguire, N. Owsley, T. Tetlow)
2133 (H. Schloemer)
2141 (P. Davis)
2142 (D. Abraham)
2143 (J. Marsh)
215 (H. Watt)
2151 (T. Choinski, D. DaRos, D. Organ)
2152 (T. Anderson, I. Ferber, R. Latourette)
2153 (W. Bernecky (5), A. Edmonds, S. Harrison, R. Howbrigg,

J. Ionata, B. Iwatake, L. Karasevich, M. Krzych, J. Munoz)
2154 (G. O'Brien)
2191 (R. Murdock)

External Distribution

. K. Bromley
NRAD
San Diego, CA

T.DeYoung
ARPA
3701 N. Fairfax Dr.
Arlington, VA

B. Wald
ONR
800 N. Quincy· St.
Arlington, VA

B. W asilauski
NRAD
San Diego, CA

Total: 47

