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Abstract—In this paper, we describe a NetFlow visualization 
tool, NVisionIP, which provides network administrators 
increased situational awareness of the state of networked 
devices within an IP address space. It does this by providing 
three increasingly detailed views of the state of devices in an 
entire IP address space to subnets to individual machines.  
Operators may use NVisionIP to transparently view NetFlow 
traffic without filtering or may selectively filter and 
interactively query NVisionIP for unique views given 
experience or relevant clues. 
 
Index Terms— NetFlows, Visualization, Network Security 

I. INTRODUCTION 

What is the state of devices on your large and complex 
network?  This is a question management commonly poses 
to network administrators and up to now the answer has 
been problematic. IDS sensors give binary alarms for 
signature-matches or anomalous traffic, if no alarms then 
there is no state information about the devices on the 
network. Scans test for software vulnerabilities but this is 
more about predicting posture to future attacks than 
knowledge of current state. Network device monitoring 
devices like MRTG1 and the Flowscan2 may display traffic 
levels by service as well as aggregate traffic load levels – 
while this is certainly useful for managing traffic 
congestion and detecting high volume events, there are no 
details about device state and small events are obscured. 

While NetFlows provide an excellent source of 
information concerning the behavior of the network, the 
sheer magnitude of NetFlow logs often makes it difficult to 
gain an understanding of that behavior. In this paper we 
present a tool, NVisionIP [1,3-5,9-11], that uses NetFlows 
to visually represent activity on an entire IP address space. 
NVisionIP presents information at three different levels 
allowing operators to select which level to use. 

II. SYSTEM ARCHITECTURE 
The NVisionIP system architecture is comprised of three 
modules: Data Retrieval Module, Computation Module and 
Visualization Module. As shown in Figure 1, the three 
modules interact using a Mediator object [2]. By using a 
Mediator object, we avoid direct referencing of a module by 
other modules, thus providing the flexibility of modifying 
                                                 

1 Multi Router Traffic Grapher <http://mrtg.hdl.com/mrtg.html> 
2 <http://net.doit.wisc.edu/~plonka/FlowScan/> 

the modules independently. The Data Retrieval Module 
reads in the NetFlow files, preprocesses them, and places 
them in a table structure for the Computation module to 
use. For every IP address in the input table, the 
Computation Module calculates various statistics as shown 
in Figure 2. These statistics are then passed to the 
Visualization Module that presents information to a user.  

 
        Figure 1.  NVisionIP System Architecture 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Statistics Derived from NetFlows 

III. HOW TO USE NVISIONIP 
NVisionIP can be downloaded here: 
<http://security.ncsa.uiuc.edu/distribution/NVisionIPDownLoad.html> 

NVisionIP builds on the concept of “overview, browse, 
drill-down to details-on-demand” championed by 
Shneiderman [6] and Tufte [8] to support three different 
views: (1) a Galaxy View (GV) - a high-level view of an 
entire network, (2) a Small Multiple View (SMV) - a subnet 
view of traffic from multiple machines within the network, 
and (3) a Machine View (MV) information about flows 
into/out of a single machine.  Overview plus detail breaks 
up content into comprehensible pieces while also allowing 
for simultaneous comparisons of different views which may 
reveal interrelationships [7].  

NVisionIP: An Animated State Analysis Tool 
for Visualizing NetFlows 
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Figure 3. NVisionIP Galaxy View (GV) 
 

Figure 3 shows the GV, a 2D graph of a Class B network 
where the hosts are on the X-axis and subnets are on the Y-
axisthis orientation can be changed by the Swap Axis 
Button (Figure 3:Label E). A single point on the graph 
represents an IP address on the network being monitored. 
For example, point (50, 70) on the graph represents the IP 
address 141.142.50.70. An IP address displays information 
about any of the statistics from Figure 2 using a color code. 
The mapping from number to color is provided by the 
customizable binning legend (Figure 3:Label F). The 
default statistic configured in the Galaxy view is the 
number of unique ports used by the host. The Set Galaxy 
View Button (Figure 3: Label I) can change this view.  

To process input data, the user selects NetFlow files to be 
visualized using the menu file pull down.  NVisionIP 
divides input files into intervals of equal numbers of flows 
(user selects number of intervals). The last number on the 

slider bar reflects the total number of NetFlows loaded.  
When the user moves the bar across the data intervals, 

NVisionIP provides the option of either viewing the results 
as a summation (cumulative view) or piece-wise (animated 
view). For example, if the user chooses a cumulative view 
and moves the slider (Figure 3:Label H) from interval 0 to 
4, then the results that are displayed for all the IPs are the 
summation of the values (Ports, Protocols, Count, etc) of 
NetFlows from interval 0 to 4. If the user had selected the 
animation view and moved the slider from interval 0 to 4, 
the GV would show a 4 frame animationeach frame 
representing activity during one time interval. The 
animation shows how IP device state changes over time, 
providing a temporal feel for device state on the network.  

To learn more about the GV filtering option see [3,5]. GV 
magnification and storage options are described within the 
application itself.  



 
 
 

 

 
                                                               Figure 4.  NVisionIP Small Multiple View (SMV) 
 

The SMV provides information about adjacent devices in 
an IP address space.  The primary purpose of the SMV is 
facilitating quick browsing of subnets within an address 
space for information about the ports and protocols used by 
each IP device. The user can scan and compare activity 
across the subset of machines selected using a mouse to 
highlight the region of interest. Each square in the SMV 
grid (Figure 4:Label I) represents a device with an IP 
address. Each square is divided into two histograms: (1) the 
top histogram represents traffic from well-known ports, and 
(2) the bottom histogram represents traffic on active ports 
above port 1024 ordered from most to least active. At a 
glance, a user sees and compares port activity of different 
devices. If a machine uses an unusual port, this will be 
immediately visible. Similar to GV, the user can define the 
colors associated with the particular ports/protocols. Also, 
the user can define what ports/protocols are considered “of 
special interest” using the interface in (Figure 4:Label E). 

The MV is the most detailed view simultaneously 
displaying all statistics from a single machine. Figure 6 
shows the eleven tabs that a user may select to view 

different information from a particular machine. The eleven 
tabs seen in the MV hold information on the statistics from 
Figure 2 plus the raw NetFlows source data used to 
generate the information for the machine being examined 
(Figure 5). Each tab consists of 6 sets of histograms as 
shown in Figure 6: lower left is source activity leaving the 
IP device, lower right is destination activity entering the IP 
device, and the upper half is an aggregate of traffic activity 
both entering and leaving each IP device.  

 
  Figure 5. NetFlows Raw Data Tab Within MV 



 

                                                  
             Figure 6: NVisionIP Machine View (MV) 

IV. NETWORK MANAGEMENT  
NVisionIP allows a network administrator to transparently 
monitor flows to/from each device on a network in order to 
learn the behavior of the network being managed.  This is a 
different approach than alarming a network with sensors  
searching for signatures or thresholds for specified events. 
However, given clues an operator can also interactively 
configure GV filters to target suspicious activity for further 
inspection. Examples of activity NVisionIP has been used 
to detect includes: 
 

• activity on unallocated parts of an address space indicating 
malicious scans or backscatter from attacks elsewhere 

• DoS attacks into/out of a network 
• devices infected with worms scanning to propagate 

showing a large number of connections attempts 
• services conforming to official organizational policies 
• unusual activity on ports not seen before   
• large byte transfers to/from unexpected devices (malware)  
 

The reader is referred to [1,3,5,10] to gain deeper insight 
into how NVisionIP has been found to help security 
engineers discover network security attacks.  

V. SUMMARY 
NVisionIP is designed to help network administrators 
visually monitor the status of networked devices on IP 
address spaces. By presenting information visually on one 

screen with drill-down levels of detail - Galaxy View, 
Small Multiple View, and Machine View – a user may 
determine relationships between events at different levels 
transparently or with the help of filtering.  The NVisionIP 
animation feature within the GV helps users understand 
how network devices change state over time.  The end 
result is a situational awareness of the current state of 
networked devices on large and complex IP address spaces 
as well as a history of how devices came to their current 
state.  The ability to view and interact with device state 
information on an entire logical IP address spaces is a new 
capability - to the knowledge of the authors NVisionIP is 
the only tool that currently provides this capability.     
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Abstract

In this paper we use traffic analysis to investigate a
stealthy form of data exfiltration. We present an ap-
proach to detect covert channels based on a Process
Query System (PQS), a new type of information retrieval
technology in which queries are expressed as process de-
scriptions.

1 Introduction

1.1 Covert Channels

A covert channel between two machines consists of
sending and receiving data bypassing the usual intrusion
detection techniques. In storage covert channels, data
are written to a storage location by one process and then
read by another process. The focus of this research is
timing covert channels, in which the attacker modulates
the time between the packets that are sent. Informa-
tion is encoded in the inter-packet delays. Suppose an
intruder gained access to machineX in our local net-
work and uses this machine to exfiltrate information to
machineA. At the receiver side, machineX receives
packets with given delays. As the packets flow through
the network they traverse a certain number of forwarding
devices such as routers, switches, firewalls or repeaters.
This equipment has an influence on the delays between
packets so that the inter-packet delay at destination might
not be exactly the same as at the source. In other words
the section of network between sender and receiver acts
as a noisy channel. Figure 1 gives a graphical description
of the situation.

Suppose an apparatus on our network registers all the
inter-packet delays of outgoing communications. Given
the chain of delays that are seen, we want to state with a
certain probability if a covert channel is being used. The
goal is to analyze the inter-packet delays and see if they

Our LAN
X

AINTERNET�t1;�t2;�t3; ::: ��t1; ��t2; ��t3; :::

Figure 1: An intruder was able to control machine X
which is inside our local network and use it to exfiltrate
data coded in inter-packet delays. Machine A is the re-
ceiver.

are too particular to be generated by a normal network
communication.

The first formal definition of a covert channel was
given in [7] as those used for information transmission
which are neither designed nor intended to transfer infor-
mation at all. Later covert channels were defined as those
that use entities not normally viewed as data objects but
can be manipulated maliciously to transfer information
from one subject to another [5, 6]. Since covert com-
munication is very difficult to detect, most researchers
resort to investigating methods that simply minimize the
amount of information that can be transmitted using a
covert timing channel [4, 8].

1.2 Process Query Systems

Process Query Systems are a new paradigm in which user
queries are expressed as process descriptions. This al-
lows a PQS to solve large and complex information re-
trieval problems in dynamic, continually changing en-
vironments where sensor input is often unreliable. The
system can take input from arbitrary sensors and then
forms hypotheses regarding the observed environment,
based on the process queries given by the user. Figure 2
shows a simple example of such a model. ModelM1
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Figure2: A Simple Process Model,M1
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Figure3: Another Process Model,M2

represents a state machineS1 = (Q1,Σ1, δ1), where
the set of statesQ1 = {A,B, C}, the set of observable
eventsΣ1 = {a, b, c}, and the set of possible associa-
tionsδ1 : Q1 × Σ1 consists of

δ1 = {{A, a}, {B, a}, {B, b}, {C, c}}

A possible event sequence recognized by this model
would be: e1 = a, e2 = a, e3 = b, e4 = c, e5 = b
which we will write ase1:5 = aabcb for convenience.
Possible state sequences that match this sequence of ob-
served events could beAABCB, or ABBCB, both of
which are equally likely givenM1. A rule-based model
would need a lot of rules to identify this process, based
on all the possible event sequences. Below is a set of all
the rules necessary for detecting single transitions:

AA → {aa}
AB → {aa}, {ab}
BB → {aa}, {ab}, {ba}, {bb}
BA → {aa}, {ba}
BC → {ac}, {bc}
CC → {cc}
CB → {ca}, {cb}
CA → {ca}

Let us introduce a second modelM2 in Figure 3. Now
consider the following sequence of events:

e1:24 = abaacabbacabacccabacabbc

where each observation may have been produced by in-
stances of modelM1, modelM2, or be totally unrelated.
A Process Query System uses multiple hypothesis, mul-
tiple model techniques to disambiguate observed events

and associate them with a “best fit” description of which
processes are occurring and in what state they are. In
comparison, a rule-based system would get impossibly
complex for the above situation.

A PQS is a very general and flexible core that can be
applied to many different fields. The only things that
change between different applications of a PQS are the
format of the incoming observation stream(s) and the
submitted model(s). Internally a PQS has four major
components that are linked in the following order:

1. Incoming observations.
2. Multiple hypothesis generation.
3. Hypothesis evaluation by the models.
4. Selection, pruning, and publication.

ENGINE
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Stream of Observable events
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.
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.
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Figure4: A set of models is given as input to the engine.
Given a stream of observations and using tracking algo-
rithms the engine returns the likelihood of each model.

The big benefits of a PQS are its superior scalabil-
ity and applicability. The application programmer sim-
ply connects the input event streams and then focuses
on writing process models. Models can be constructed
as state machines, formal language descriptions, Hidden
Markov Models, kinematic descriptions, or a set of rules.
The PQS is now ready to track processes occurring in a
dynamic environment and continuously presentthe best
possible explanation of the observed eventsto the user.

See Figure 4 for a graphical representation of the sys-
tem. A detailed overview and application of a Process
Query System can be found in [2, 1, 3].

2 Detection

2.1 Covert Channel Models

We focus our attention on binary codes. Our models are
based on the assumption that in the case of a covert chan-
nel, the inter-packet delays will center around two dis-
tinct values (ie. two distinct delays), see Figure 5 (a).
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Figure 5: The figures show the number of packets re-
ceived with a given delay. Horizontal axis shows the
inter-arrival time in seconds, vertical axis shows the
number of packet arrived. The parameters are the fol-
lowing. In case (a) the two spikes show that a covert
channel communication is in place. Case (b) represents
normal communication.

For a covert channel the sample meanµ (average) of
the inter-packet delays will be somewhere between the
two spikes. The packet-count in the histogram at that
point will therefore be very low. However, looking at a
normal traffic pattern the mean of the inter-packet delays
will be in the center of the large spike. The packet-count
at the mean will thus be very high, if not the highest. If
we divide the packet-count at the mean by the maximum
packet-count from the histogram, we get a measure of
how likely it is that the communication is a covert chan-
nel. In particular the smaller is the ratioCµ

Cmax
thehigher

is the probability of having a covert channel communica-
tion. We can therefore assume the following probability:

PCovChan = 1− Cµ

Cmax

whereC(µ) is the packet-count at the mean andCmax

is the maximum packet-count of the histogram. Experi-
ments with three different types of data were conducted,
and Figure 6 shows the ratioCµ

Cmax
for these experiments.

The data considered are of the following types.
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Figure6: The ratio between the packet count at the sam-
ple mean and the maximum packet count for normal traf-
fic, fully random delays, and for a binary covert chan-
nel. Horizontal axis shows the length of the estimated
sequence in bits, vertical axis showsCµ

Cmax
.

Normal Data. Packets with a average delay of 0.2
seconds were transmitted. The inter-arrival times vary,
but the maximum number of packets has a delay of 0.2
seconds. The sample meanµ is therefore represented by
a delay very close to 0.2 and the number of packets with
exactly that delay (Cµ) is very high. The ratio between
this number and the maximum number of a packet for
a certain delay (Cmax) quickly grows to 1.0, and stays
there as more packets are transmitted.

Random Data. Packets are sent with a fully random
delay. Although this is not realistic for traffic encoun-
tered on the network, it does present a good idea of the
worst case scenario. Initially, when only a few bits have
been sent, the delays scatter across the range and it is un-
likely that the sample mean will have a high count. That
explains why until approximately the first 10 bytes the ra-
tio Cµ

Cmax
remainszero. Later on, as more packets arrive

the histogram starts to flatten so the ratio starts to rise. As
the number of transmitted packets increases even further
the ratio keeps growing, until it eventually hits 1.0 as the
packet count goes to infinity.

Covert Channel Communication. Two delays are
used, thus the interarrival times concentrate around those
two values. The sample meanµ lies approximately in
the middle between the two spikes. The countCµ is low
and therefore the ratioCµ

Cmax
is approximately zero. As

more and more bits are transmitted over the covert chan-
nel the spikes increase in size, however that ratio always
remains very close to zero.

Our algorithm detects the sequence that most likely
represents the covert communication channel analyzing
the value Cµ

Cmax
. The lower that value the higher is the

probability of having a malicious communication hidden
in inter-packet delays.

3



Figure6 compares the three cases.

2.2 Implementation of a PQS

Our current implementation of a Process Query System
is called TRAFEN (TRacking And Fusion ENgine). We
implemented software applications to use as sensors that
send data to the engine. TRAFEN then, given such ob-
servations, returns the most likely hypotheses.

In order to input observations in the system we built
sensors. This software monitors the packet flows and re-
turns quantities that are crucial to our models. It aggre-
gates packets that have the same source IP, destination IP,
source Port, destination Port and computes the quantity

Cµ

Cmax
. An observation looks like the following:

Src ip, Src port,
Dst ip, Dst port,
Protocol, Cµ

Cmax
.

TheTRAFEN engine evaluates each incoming obser-
vation and checks their correlation. Correlated events are
assigned to the same track. Sets of tracks constitute a
hypothesis. At the moment our process descriptions are
mainly based on first principles. An example of a model
used in our experiments is the following.

Singleton: Get observation

Cµ

cmax
≥ 0.9 ⇒ Score = 0.001

Cµ

cmax
< 0.9 ⇒ Score = 0

Track: Get observation OBS. If OBS is consistent (same
characteristics with the track)

f = 1− 1

lenght track + 1

Track Score = f ·
(
1− Cµ Track

Cmax Track

)

If OBS is NOT consistent with the trackTrack Score = 0.
The first case considers only tracks with one observa-

tion. The score is dependent only on the ratio. In the
second case tracks with more than one observation are
considered. In this case we assume that the longer the
track is, the higher the score will be.

3 Results

A covert channel communication was simulated and
many models were built and inserted into TRAFEN. We
found that some models performed better than others.
All of them were able to detect covert channel commu-
nication but some of them returned also false positive.
We built a front-end displaying the most likely hypothe-
sis, the different tracks together with their score, see Fig-
ure 7.

Figure7: www.pqsnet.net/display.

4 Conclusion and Future Work

Process query system is a crucial tool in the analysis and
detection of network threats. We applied it to solve the
problem of detecting covert channel and we found very
promising results. We plan to investigate different types
of exfiltration of information and develop detection tech-
niques.
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SURFnet5 network

• Operational
– Since September 2001

• Cisco 12416 routers
• Backbone: 10Gbps
• Connections: 1Gbps
• Dual stack (6PE)
• Incident detection

– SURFnet & TNO: 2002
• Decommissioning

– End of December 2005
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Incident response tools

• SURFstat
– mrtg/rrdtool

• Research
– syslog
– Netflow

• promising at the required speeds (>10 Gbps)
• sampled (ip flow-sampling-mode packet-interval 100)

– Full data analysis requires high-end equipment
• Prototype

– cflowd (caida)
• no longer supported

– gnuplot, mysql, php
– Not open-source
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Prototype
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Alarm



High-quality Internet for higher education and research

Analyse
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Hardware

• Dell PowerEdge 1650
– 04-2002, RedHat 7
– 1x 1.4GHz, 1GB, 3x 36GB

• Dell PowerEdge 2650
– 12-2003, FreeBSD 4.11
– 2x 3GHz, 4GB, 5x 146GB

• Dell PowerEdge 2850
– 10-2004, FreeBSD 5.4
– 2x 3.4GHz, 6GB, 6x 146GB

• Dell PowerEdge 2850
– 06-2005, FreeBSD 6.0
– 2x 3.6GHz, 4GB, 6x 300GB

• SunFire V240
– 12-2004, Solaris 10
– 2x 1.5GHz, 4GB, 4x 146GB

http://www.switch.ch/tf-tant/floma/sw/samplicator/
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Some specs of the new NERD

• nerdd, analysis
– boost libraries, MySQL database, php, plplot

• Netflow versions
– V5 (tested)
– V9 (IPFIX)

• Platforms tested
– FreeBSD
– Linux

• Apache Open Source Licence v2.0
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Software Architecture

• Collector
– Simple UDP receiver

• Pre-processor
– Source specific functions

• Data kept in memory
– Real-time analysis

• Data stored on disk
– Post analysis

data source
- router

data

data
- netflow

collector

Collector
-simple receive

Pre-processData

source or data specific

Pre process
- filter
- sanity check
- buffering

Data

C
ro

n

St
at

s

C
on

fig
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Real-time and post analysis

• Real time analysis
– Rules can be used for ‘real-time’ analysis

• A rule is a combination of filters, clusters and a threshold for some 
metric (e.g. number of flows)

– Example of a rule
• Filter “port=445”, cluster “dst IP”, threshold=1000 flows/min

– Results in an alarm if a host receives more then 1000 flows/min 
on TCP port 445

– Output formatting: alarm in database
– Every x minutes the rules (1…n) are executed

• Post analysis
– Executed at user request
– Rules without threshold
– Output formatting: flow-tools like text file, graphical output
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Functionality – Filters & Clusters

• Sample of Netflow data

• Example: filter “src port=2000”

• Example: filter, cluster “dst port” & count flows

src          prt      dst prt
10.0.0.1  2000  10.0.0.2  23
10.0.0.3  1000  10.0.0.2  22
10.0.0.6  2000  10.0.0.2  22
10.0.0.1  1000  10.0.0.3  23
10.0.0.1  1000  10.0.0.3  23

src          prt      dst prt
10.0.0.1  2000  10.0.0.2  23
10.0.0.6  2000  10.0.0.2  22

prt # of flows
22 1
23 1
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Real-time analysis - configuration
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Alarms
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Analysis – IPv4
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Analysis – IPv6



High-quality Internet for higher education and research

SURFnet6



High-quality Internet for higher education and research

Current Research and Development

• Geant2 JRA2
– NERD is one of the monitoring toolsets

• LOBSTER project
– Integration

• Student
– Analysis and visualisation of worm behaviour

• Ph.D. from Vrije Universiteit (VU)
– Interaction of Netflow and Full Packet inspection

• From application to framework
– Other data sources, combining different data
– Other data output
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Questions

• More information and download of NERD
– www.nerdd.org
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Abstract 
 

This year, the IP Flow Information Export (IPFIX) protocol will become standard for exporting flow information 
from routers and probes. Standardized methods for packet selection and the export of per packet information will follow 
soon from the IETF group on packet sampling (PSAMP). The future availability of network information in a 
standardized form enables a wide range of critical applications for Internet operation including, accounting, QoS 
auditing and detection of network attacks. In this paper we present the IPFIX protocol, and discuss its applicability 
with a special focus on network security. We propose a coupling of IPIFX with AAA functions to improve the detection 
and defense against network security incidents and for Inter-domain information exchange based on IPIFX utilizing 
secure transmission channels provided by the AAA architecture.  

 

1. Introduction 
 
The IP Flow Information eXport (IPFIX) protocol defines a format and protocol for the export of flow 

information from routers or measurement probes. In the past a lot of proprietary solutions were developed for 
flow information export (e.g. Cisco NetFlow, InMon sFlow, NeTraMet, etc). Now after several years of 
lively discussions the IETF is about to submit a standard for flow information export, the IPFIX protocol. 

Capturing flow information plays an important role for network security, both for detection of security 
violation, and for subsequent defence. Attack and intrusion detection is one of the five target applications 
that require flow measurements on which the requirements definition has been based: usage-based 
accounting, traffic analysis, traffic engineering, QoS monitoring and intrusion detection (Cf. [RFC 3917]).  

In this paper we summarize the IPFIX protocol, describe our implementation of it and discuss its 
applicability for a number of different applications. Particularly, we analyze the IPFIX applicability to 
security related applications such as anomaly and intrusion detection and discuss the coupling of IPFIX with 
AAA in the context of inter-domain information exchange. 

2. IP Flow Information Export  

2.1 IPFIX Summary 
 
Based on the requirements defined in [RFC3917] different existing protocols (NetFlow v9, Diameter, 

CRANE, IPDR) where evaluated as candidates to provide the basis for a future IPFIX protocol [RFC3955]. 
The result of the evaluation was that NetFlow v9 provides the best basis for it.  

IPFIX is a general data transport protocol that is easily extensible to suit the needs of different 
applications. The protocol is flexible in both flow key and flow export. The Flow Key defines the properties 
used to select flows and can be defined depending on the application needs. Flow information is exported 
using flow data records and the information contained in those records can be defined using template 
records. A template ID uniquely identifies each template record and provides the binding between template 
and data records. 

As requested by the IESG, IPFIX transport has to fulfil certain reliability and security requirements. 
Therefore PR-SCTP has been chosen as mandatory basic transport protocol for IPFIX for all compliant 
implementations. TCP and UDP can be used as optional protocols. Preference to PR-SCTP was given 



because it is congestion-aware and reduces bandwidth in case of congestion but still has a much simpler state 
machine than TCP. This saves resources on lightweight probes and router line cards. 

 

2.2 FOKUS IPFIX Implementation  
 

Fraunhofer FOKUS has developed and uses an Internet measurement application for distributed IP traffic 
and quality of service measurements. The software is called OpenIMP and consists of a central measurement 
controller and multiple distributed probes. The probes are remote controlled and send their measurement data 
to dedicated collectors. The measurement result transfer was implemented via files that were generated on 
the probes and were sent to the collector via ftp or scp. With the definition of IPFIX there appeared a smart 
and powerful alternative to the file transfer. So we decided to integrate IPFIX into the measurement 
application. The implementation was started before the definition of the IPFIX protocol has been finished. 
This offered us the possibility to send comments to the working group and to influence the further definition 
of the IPFIX protocol.  

The IPFIX protocol was implemented within a separate C-library. This has the advantage that the 
implementation can be used outside OpenIMP. Using C makes it easy to integrate the code into e.g. C++ or 
JAVA applications and has the advantage of leading to small binaries. The library supports the IPFIX 
exporting and collecting processes via providing functions to export and to collect data using IPFIX data 
types and protocol.   

The IPFIX protocol is not complex, which keeps the implementation simple. IPFIX messages can be 
transferred using SCTP, TCP or UDP as bearer protocol. An IPFIX implementation has to support SCTP-PR 
whereas support for TCP and UDP is optional. Unfortunately currently there is no major operating system 
with full support for SCTP-PR (at least the authors are not aware of one). So at present an application has to 
use TCP to enable the export over ipv6 networks. To test the SCTP code we used Debian Linux with kernel 
2.6 that has support for SCTP-PR over ipv4.  

The main task of the IPFIX exporter is to take the measurement data from one or more metering processes 
and to send the IPFIX messages to the data collectors. The exporter has to take care that the templates are 
sent prior to the related data records. For SCTP and TCP the templates have to be resent on a connection 
reestablishment. For UDP templates have to be resent after a configured timeout. This makes the 
implementation a bit more complex and requires the exporting process to store all active template 
definitions.  

The IPFIX collector has to maintain a list of sources and per source a list of templates to decode incoming 
data templates. Because of the template feature of IPFIX the collector does not need any knowledge of the 
transferred data. All information needed to decode all kind of data is transferred via template records. 

2.3 Applicability Scenarios: Accounting and QoS Monitoring 
 

Usage-based accounting is one of the major applications for which the IPFIX protocol has been 
developed. IPFIX data records provide fine-grained measurement results for highly flexible and detailed 
resource usage accounting (i.e. the number of transferred packets and bytes per flow). Internet Service 
Providers (ISPs) can use this information to migrate from single fee, flat-rate billing to more flexible 
charging mechanisms based on time of day, bandwidth usage, application usage, quality of service, etc.  

In order to realize usage-based accounting with IPFIX the flow definition has to be chosen in accordance 
with the tariff model. If for example the tariff is based on individual end-to-end flows, accounting can be 
realized with a flow definition determined by source address, destination address, protocol, and port 
numbers. Another example is a class-dependent tariff (e.g. in a DiffServ network); in this case, flows can be 
distinguished just by the DiffServ codepoint (DSCP) and source IP address. 

QoS monitoring is the passive observation of transmission quality for single flows or traffic aggregates in 
the network and is one of the target applications of IPFIX. One example of its usefulness is the validation of 
QoS guarantees in service level agreements (SLAs). IPFIX data records enable ISPs to perform a detailed, 
time-based, and application-based usage analysis of a network. 

 



3. IPFIX Applicability and Future Suggestions for Detection of and Defense 
against Network Attacks 

 
The applications described in this section are related to the detection and report of intrusions and anomalous 
traffic. While describing the applicability of the protocol, we discuss how IPFIX could further support 
detection of, and reaction to, network attacks.  

3.1 Packet Selection and Packet Information Export 
 

For some scenarios, the detection of malicious traffic may require further insight into packet content. The 
PSAMP working group works on the standardization of packet selection methods [ZsMD05] and the export 
of per packet information [Duff05], [PoMB05]. Recently, the IETF PSAMP [PSAMP] group has decided to 
also use the IPFIX protocol for the export of per packet information. That means, in future we will get also 
per packet information from routers in a standardized way. 

3.2 Detection of network incidents and malicious traffic 
 

IPFIX provides useful input data for basic attack detection functions such as reporting unusually high 
loads, number of flows, number of packets of a specific type, etc. It can provide details on source and 
destination addresses, along with the start time of flows, TCP flags, application ports and flow volume. This 
data can be used to analyze network security incidents and identify attacks like DoS attacks, worm 
propagation or port scanning. Further data analysis and post-processing functions may be needed to generate 
the metric of interest for specific attack types.  

Already basic IPFIX information allows detecting common attack schemes: A distributed DoS attack 
generates a large number of flows, often with a high data volume. The number of newly detected source 
addresses is commonly used [TaHo04] as a metric for detecting distributed activities. It correlates strongly 
with the flow count metric of IPFIX. Also, sudden increases in the occurrence of unusual IP or TCP flags 
(e.g. “Don’t Fragment”) can be an indicator for malicious traffic [TaAl02, SiPa04]. Based on the IPFIX 
information, derived metrics can highlight changes and anomalies. The most successful methods for anomaly 
detection to date are non-parametric change point detection algorithms, such as the cumulative sum 
(CUSUM) algorithm [WaZS02]. The integration of previous measurement results helps to assess traffic 
changes over time for detection of traffic anomalies. A combination with results from other observation 
points allows assessing the propagation of the attack and can help locate the source of an attack. 

Detecting security incidents in real-time would require the pre-processing of data already at the 
measurement device and immediate data export in case a possible incident has been identified. This means 
that IPFIX reports must be generated upon incident detection events and not only upon flow end or fixed 
time intervals. IPFIX works in push mode. That means data records are automatically exported without 
waiting for a request. Placing the responsibility for initiating a data export at the exporting process is quite 
useful for detection of security incidents. The exporting process can immediately trigger the export of 
information if suspicious events are observed (e.g. sudden increase of the number of flows). 

Security incidents could become a threat to IPFIX processes themselves. If an attack generates a large 
amount of flows (e.g. by sending packets with spoofed addresses or simulating flow termination), exporting 
and collecting process may get overloaded by the immense amount of data records that are exported. A 
flexible deployment of packet or flow sampling methods can prevent the exhaustion of resources. 

3.3 Sharing Information with Neighbor Domains 
 

For inter-domain measurements it is required to exchange result data, and eventually to allow remote 
configuration, across multiple administrative domains. Result data can be both measurements of QoS metrics 
on an end-to-end path, or monitoring information for troubleshooting, or information regarding attacks 
(either notifications of anomalous traffic or specific measurements to get further insight in case suspicious 
behavior was observed). Although ISPs can control and monitor their own network, they have minimal or no 
information at all about the characteristics and performance of other networks, nor the means of requesting 
and acquiring it. IPFIX provides the standard format and protocol for this information exchange. 



3.4 Sharing Information with AAA Functions 
 

One approach to do this is to use existing AAA components which provide a secure data transfer between 
domains by using the DIAMETER protocol and also provide functions for authentication and authorization 
which are useful to control access to data [RFC3334]. Furthermore, AAA servers usually keep accounting 
and auditing requirements, which can be used to directly derive measurement demands. For anomaly and 
intrusion detection the strong relation to AAA components can provide further benefits. Potential attackers 
can be identified and stopped from injecting traffic into the network. This is especially powerful, if AAA 
components from different administrative domains work together. 

The combination of IPFIX and AAA functions can be beneficial also for attack detection. Such an 
interoperation enables further means of attack detection, advanced defense strategies and secure inter-domain 
cooperation. A AAA system has secure channels to neighbor AAA servers and can inform neighbors 
about incidents or suspicious observations. Through this system an ISP could also react to an attack by 
for example requesting the denial of access for potential attackers. A further benefit would be if AAA 
functions could invoke further measurements. 

4. Conclusions 
 
IPFIX is the upcoming standard for IP flow information export. The protocol is well suited to support 

applications such as QoS measurement, accounting, and anomaly and intrusion detection. In particular, for 
security applications, IPFIX can be used to exchange information with neighbors not only about incidents or 
anomalous traffic or to receive information previously requested to track attackers or classify the attacks. 
The joint use of IPFIX and AAA functions can add further benefits and be useful to track and stop attackers.  

Some implementations of the protocol already exist, one of them coming from the authors of this paper, 
and interoperability events have been planned in the next months. 
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Motivations
• Network Intrusions

• Intrusion Detection Systems
– Misuse detection: find signatures of intrusions
– Anomaly detection: model normal behaviors

• Visualize network traffic
– So that intrusions are apparent to human

Network

Intrusions

port scan

DoS attack

Worm
infection
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Overview
• Visualizing network traffic as a graph

– Hosts → nodes in graph
– Traffic → flow in graph
– other conceptual models are possible (i.e. NVisionIP)

• Visualizing by animation
– Show network dynamics by animation
– Visualize traffic within a user adjustable time window

• High scalability
– Run continuously for long periods
– Uses constant storage to process large data sets or

high speed streaming data.
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VisFlowConnect System Design

Netflow 
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Traffic Statistics
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Reading Netflow Logs
• An agent reads records from file or in real time

– Send a record to VisFlowConnect when requested
• Reorder Netflow records with record buffer

– Records are not strictly sorted by time stamps
– Use a record buffer
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Time Window
• User is usually interested in most recent traffic

(e.g., in last minute or last hour)
• VisFlowConnect only visualizes traffic in a user

adjustable time window

– Update traffic statistics when
• A record comes into time window
• A record goes out of time window



National Center for Supercomputing Applications

Storing Traffic Statistics

• Store traffic statistics
involving each domain by
a sorted tree
– Only necessary information

for visualization is stored
– Statistics for every domain

or host can be updated
efficiently

Host statistics

Sorted tree
of domains
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VisFlowConnect External View
clock
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VisFlowConnect Domain View
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VisFlowConnect Internal View

inside
senders

inside
receivers

clock
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time axis
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Creating Animation
• Visualizing traffic statistics with time

– Update visualization after each time unit
• How to arrange domains/hosts?

– Only hundreds of domains/hosts can be put on one axis
– Domains/hosts may be added or removed with time
– The position of each domain/host must be fairly stable

• Solution: sort
domains/hosts by IP
– Each domain/IP may

move up or down
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Filtering Capability
• Filter out regular traffic

– E.g., DNS traffic, common HTTP traffic
• Work like a spam-mail filter

– User specifies a list of filters:
+: (SrcIP=141.142.0.0−141.142.255.255), (SrcPort=1−1000)

//keep all records from domain 141.142.x.x, from port 1 – 1000
−: (SrcPort=80)
−: (DstPort=80)

//discard records of http traffic
– Each record is passed through each filter
– Last match is used to decide whether keep this

record or not
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Scalability Experiments

Runtime and
memory w.r.t.

number of records

Runtime and
memory w.r.t. size

of time window



National Center for Supercomputing Applications

Example 1: MS Blaster Virus

• MS Blaster virus
causes machines to
send out packets of
size 92 to many
machines
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Example 2: 1-to-1 Communication of Clusters

• We found there are two sets of hosts of continuous IPs
have 1-to-1 communications with each other. Finally
we found they are two clusters.
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Example 3: Web Crawlers
• We found 9 hosts in a domain connecting to many http

servers in our network
– Their IPs are from Google.com: Web crawling
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More Information
• VisFlowConnect is being ported to other

specialized security domains
– Storage security (two publications pending)
– Cluster security

• Distribution Website
– http://security.ncsa.uiuc.edu/distribution/VisFlowCo

nnectDownLoad.html
VisFlowConnect are downloadable there

• Publications of SIFT Group
– http://www.ncassr.org/projects/sift/papers/
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      Xiaoxin Yin
<xyin1@uiuc.edu>

NCSA SIFT Group
University of Illinois
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MOTIVATION

Interest in network and computer security
Started investigating DATA EXFILTRATION

COVERT CHANNELS are the most subtle way of moving data.
They easily bypass current security tools.

Until now there has not been enough interest.  So detection is
still at the first stage.

NEW YORK -- The names, banks and account numbers of up to 40
million credit card holders may have been accessed by an
unauthorized user, MasterCard International Inc. said.

CNN.COM
Sunday, June 19, 2005 Posted: 0238 GMT (1038 HKT)
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OUTLINE

•   Covert Channels
•   Process Query Systems
•   Detection of covert channels using a PQS

“A communication channel is covert if it is neither designed nor
intended to transfer information at all.” (Lampson 1973)

“Covert channels are those that use entities  not normally viewed as
data objects to transfer information from one subject to another.”
(kemmerer 1983)
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EXAMPLE: TIMING 
COVERT 
CHANNEL

secTt =! 0
1
0
0
0
1

INTERNET

tt !=! 2

Sender

Remote
Receiver

Noisy Channel

Since brass, nor stone, 
nor earth, nor boundless sea,

But sad mortality 
o'er-sways their power,

How with this rage 
shall beauty hold a plea,

0
1
0
0
0
1

Since brass, nor stone, 
nor earth, nor boundless sea,

But sad mortality 
o'er-sways their power,

How with this rage 
shall beauty hold a plea,

1. Information Theory
2. Statistical analysis

Two approaches

tt !=! 2

secTt =!

secTt =!

secTt =!
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We built a package that registers the time delays between consecutive
packets for every network traffic flow.

source ip:     129.170.248.33
dest ip:     208.253.154.210
source port:  44806
dest port:     23164

Protocol:
TotalSize:
#Delays[20]:      3  0  0  16  882  2  0  17  698  2  0  0  1  0  1  0  0  0  0  0
Average delay:
Cmax;
Cmean:

Traffic is separated in connection types

Sensor

3 delays between 0sec and 1/40sec

882 delays between 4/40sec and 5/40sec

Key

Attributes

Given an interval of time we build the following node:
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Assumptions of the experiments:
• No malicious noise.
• Binary source.

Delay - secs

Nu
m

be
r o

f D
el

ay
s source ip:  129.170.248.33

dest ip:    208.253.154.210
source port:    56441
dest port:  23036

Delay - secs

Nu
m

be
r o

f D
el

ay
s

Covert Channels

source ip:  129.170.248.33
dest ip:    208.253.154.210
source port:    56441
dest port:  23041
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OUTLINE

•   Covert Channels
•   Process Query Systems
•   Detection of covert channels using a PQS
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Process Query Systems for Homeland Security

• How it works:

• User provides a process description as query

• PQS monitors a stream of sensor data

• PQS matches sensor data with registered queries

• A match indicates that the process model may explain that
sensor data, hence that process may be the cause of
those sensor readings.
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• Tactical C4ISR - Is there a large ground vehicle convoy moving towards our
position?

• Cyber-security - Is there an unusual pattern of network and system calls on
a server?

• Autonomic computing - Is my software operating normally?

• Plume detection – where is the source of a hazardous chemical plume?

• FishNet – how do fish move?
• Insider Threat Detection  - Is there a pattern of unusual document accesses

within the enterprise document control system?

• Homeland Security - Is there a pattern of unusual transactions?

• Business Process Engineering - Is the workflow system working normally?

• Stock Market

• …

Applications

All are “adversarial” processes, not cooperative so the observations are not
necessarily labeled for easy identification and association with a process!
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Example

Multiple Processes

λ
1 

= router failure

λ
2 

= worm
λ

3 
= scan

Events

…….

Time

An Operational Network

consists of

that produce

Unlabelled Sensor Reports

…….

Time

that
are

seen
as

Track 1

Track 2

Track 3
Hypothesis 1

Track 1

Track 2

Track 3

Hypothesis 2

that PQS resolves into

that detect
complex attacks
and  anticipate
the next steps

129.170.46.3 is at high risk
129.170.46.33 is a stepping stone
......

that
are

used
to

defend
the

network

1

2

3

4

5

6
Indictors and Warnings

Real World PQS

Hypotheses

Track
Scores

Sample
Console
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Stream of Observable Events
SE

T 
O

F 
M

O
D

EL
S

M
O

D
EL

 L
IK

EL
IH

O
O

D
S

TRACKING
ALGORITHMS

PQS
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TRACKING
ALGORITHMS

PQS

Kinematic of a car

Kinematic of a bycicle

Kinematic of an airplane

Position over time

Likelihood of a car = 0.2

Likelihood of an aiplane = 0.01 

Likelihood of a bycicle = 0.5 

Multiple Hypothesis Tracking
Viterbi Algorithm
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OUTLINE

•   Covert Channels
•   Process Query Systems
•   Detection of covert channels using a PQS
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Observations
source ip:     129.170.248.33
dest ip:     208.253.154.210
source port:  44806
dest port:     23164

source ip:     129.170.248.33
dest ip:     208.253.154.210
source port:  44806
dest port:     23164

maxC

C
mean

maxC

C
mean

Time T

Time T+1
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Covert 
channel

Covert Channels models

Delay - secs

Nu
m

be
r o

f D
el

ay
s

1)(
max

<<
C

C µ
Covert Channel

=maxC

 = max number of packets with the same delay ( = 280)

=)C(ì number of packets with interpacket delay   ( = 0 )

    =µ  sample mean of interpacket transmission times ( = 0.7)

maxC

1)(
max

!
C

C µ Not Covert Channel
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RESULTS

maxC

C
mean

Bytes
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Exfiltration modes:

• SSH
• HTTP
• FTP
• Email
• Covert Channel
• Phishing
• Spyware
• Pharming
• Writing to media

• paper
• drives

• etc

Increased outbound data

Normal activity

Scanning
Infection
Data Access

Low Likelihood of
Malicious Exfiltration

High Likelihood of 
Malicious Exfiltration

Also monitor inter-
packet delays for 
covert channels

DATA EXFILTRATION
Flow Sensor Ouputs
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Flow  Sensor

Samba

Snort
Tripwire

Snort
IP Tables

Exfiltration

Data Access

Scanning

Infection

PQS

PQS

PQS

PQS

PQS

TIER 1

TIER 1 
Models

TIER 1 
Observations

TIER 1 
Hyphotesis

TIER 2

TIER 2 
Models

TIER 2 
Observations

TIER 2 
Hyphotesis

Preprocessing
Node

Preprocessing
Node

Preprocessing
Node

Preprocessing
Node

Events

Events

Events

Events

Models

RESULTS

Hierarchical PQS Architecture
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annarita.giani@dartmouth.edu

vincent.berk@dartmouth.edu

george.cybenko@dartmouth.edu

Thanks.

www.pqsnet.net
www.ists.dartmouth.edu

For more information :
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Correlations between quiescent
ports in network flows
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What is a quiescent port?
A TCP or UDP port not in regular use

 No assigned service

 Obsolete service

 Ephemeral port with no active service
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Port summary data
•Flows too detailed for some analysis
•Full flow data huge, slow interactive analysis
•Which flows are of interest?
•Therefore: Hourly summaries populate a database

 # Flows
 # Packets
 # Bytes
 Per port (TCP/UDP)
 Per ICMP Type and Code
 Per IP Protocol
 “Incoming” and “Outgoing”
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Anomaly detection
There are many kinds of “anomaly detection”
Here we mean: statistical anomaly detection
Problem: Network data does not behave

 Self-similarity
 “Infinite” variance
 Not normal distributions

Problem: Data is noisy
 Vertical scanning
 Return traffic from web requests, outgoing email
 Other behavior masked
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Correlation
•Our realization:
•Vertical scanning leads to correlations between
server ports
•Web & email return traffic leads to correlations
between ephemeral ports
•Other kinds of activity may concentrate on only
one port

 Horizontal scanning
 Backdoor activity
 Worms
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Robust correlation
Any anomaly detection method has a problem:

 What if the activity of interest occurs during the
learning period?

 The model of “normal” is skewed

Solution: exclude the outliers
“Robust correlation”

 Exclude 5% most extreme outliers (Rousseew and
Van Zomeren 1990)

 Calculate correlations based on remainder
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Robust correlation matrix
Take time series for ports (e.g. 0-1023)
Calculate every robust correlation C(i,j)
C(i,j) is symmetric, and diagonal == 1

  C(i,i) == 1

  C(i,j) == C(j,i)
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Robust correlation distribution
TCP ports 0-1023
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Ephemeral port correlations
(cont’d)
Robust correlation distribution (TCP/50000-51024)
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Ephemeral port correlations
50 high numbered ports
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Correlation clusters
Many correlated ports (indicated by ::)
If A::B and B::C, then A::C
Can we identify clusters A::B::C::D::…
Yes!

 For 0-1023, cluster of 133 ports
– Could be higher with better data (need to include

filtered traffic)

 For 1024+, nearly all ports are correlated
– Large number of independent web browsers lead to

well-behaved seasonality
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Server ports
Ports 0-1023
Generally servers
Many unassigned/unused ports
Lots of filtering
Some obsolete services, possible source of
threats



© 2005 by Carnegie Mellon University            13

Ephemeral ports
Ports 1024-65535
A few servers

 Databases (Oracle 1521, MS SQL 1433/1434)
 Proxies (1080/8080)
 RPC services

Peer-to-peer
Backdoors (31337, etc)
Ephemeral ports for client services

 Request/response results in two flows
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The Method
Identify correlation cluster
Monitor all clustered ports, detect deviations

 Find median flow count for cluster, subtract from each port

 Significant number of flows above median → alert

Investigate deviations further
 Increased flows + increased hosts, intermittent → widespread

horizontal scanning

 Increased flows + increased hosts, persistent → possible worm

 Increased flows, no increased hosts → localized activity,
possibly still a threat
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Case Study: 42/TCP
•Microsoft Windows Internet Name Service
(WINS)
•Phasing out (replaced by Active Directory, DNS)
•Still present in Win2k3 Server
•Vulnerability announced Nov 25, 2004
•Scanning publicly announced Dec 12
•Could we have detected scanning earlier?
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42/TCP: Deviations from
correlation
Before vulnerability announcement
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42/TCP: Deviations before
vulnerability announcement
•Some deviations observed
•Always involved a small number of hosts (1 or 2)
•< 10,000 additional flows/hour
•No global activity indicated
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42/TCP: Deviations from
correlation
After vulnerability announcement, # flows/hr
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42/TCP: Deviations from
correlation
After vulnerability announcement, # hosts/hr
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42/TCP: Deviations from
correlation
After the announcement on 11/25

 Large increase in flows 12/1 2am (>100,000
additional flows/hr)

 Surge in #hosts/hr by 12/1 midnight

 Could have announced:
– Scanning of port 42/TCP observed
– Announce by morning of 12/2
– Ahead of other announcement by 10 days



© 2005 by Carnegie Mellon University            21

Port 2100/TCP
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Interactive analysis
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Future Directions
Median in sliding window of ports?

 Uncover attacks against ranges of ports
Unique number of sources, destinations

 ipsets?
Work on non-quiescent ports

 Some experiences with ephemeral ports (return traffic)
 Models will differ for different services

– user-driven (e.g. web)
– automated (e.g. ntp)

Flows vs. bytes vs. packets
 Peer-to-peer
 Information exfiltration

Automatic identification of backscatter (to be ignored?)
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Conclusions
Many ports highly correlated

 Vertical scanning (esp. server ports)
 Client activity responses (ephemeral ports)

Removing correlated activity exposes other activity
 DDoS backscatter
 Port-specific scanning
 Port-specific exploit attempts
 Worms

42/TCP real world example
 Clear signal
 Public announcement 10 days earlier

Automated method for focusing attention on specific ports
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CERT/NetSA
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213
USA

Web: http://www.cert.org/netsa

CERT/NetSA
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Flow-based Analysis
A flow is a one-way network traffic instance

 Source ip and port → destination IP and port

 Corresponds to 1 side of a TCP session

 Aggregates UDP pseudo-sessions

 Times out

Example implementation: Cisco NetFlow
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The Problem of Distributed Attacks

LA

ATLA

NYC Victim
network

• Continue to become more prevalent [CERT‘04]
• Financial incentives for attackers, e.g., extortion
• Increasing in sophistication: worm-compromised 

hosts and bot-nets are massively distributed
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Detection at the Edge

LA

HSTN
ATLA

NYC

• Detection easy
– Anomaly stands out visibly

• Mitigation hard
– Exhausted bandwidth
– Need upstream provider’s

cooperation
– Spoofed sources

Victim
network
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Detection at the Core

LA

HSTN
ATLA

NYC

• Mitigation Possible
– Identify ingress, deploy filters

• Detection hard
– Attack does not stand out
– Present on multiple flows
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A Need for Network-Wide Diagnosis

• Effective diagnosis of
attacks requires a whole-
network approach
• Simultaneously inspecting

traffic on all links

• Useful in other contexts
also:
• Enterprise networks

• Worm propagation, insider
misuse, operational
problems
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Talk Outline

• Methods
– Measuring Network-Wide Traffic
– Detecting Network-Wide Anomalies
– Beyond Volume Detection:  Traffic Features
– Automatic Classification of Anomalies

• Applications
– General detection:  scans, worms, flash events, …
– Detecting Distributed Attacks

• Summary
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Origin-Destination Traffic Flows

• Traffic entering the
network at the origin
and leaving the network
at the destination
(i.e., the traffic matrix)

• Use routing (IGP, BGP)
data to aggregate
NetFlow traffic into OD
flows

• Massive reduction in
data collection

to houston

to seattle

to atlanta

to LA

from nyc
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Data Collected

Collect sampled NetFlow data from all routers of:

1.    Abilene Internet 2 backbone research network
• 11 PoPs, 121 OD flows, anonymized,

1 out of 100 sampling rate, 5 minute bins
2.    Géant Europe backbone research network

• 22 PoPs,  484 OD flows, not anonymized,
1 out of 1000 sampling rate, 10 minute bins

3.    Sprint European backbone commercial network
• 13 PoPs, 169 OD flows, not anonymized,

aggregated, 1 out of 250 sampling rate, 10
minute bins
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How do we extract anomalies and normal behavior 
from noisy, high-dimensional data in a systematic manner?

But, This is Difficult!
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• Traditional traffic anomaly
diagnosis builds normality in time
– Methods exploit temporal correlation

• Whole-network view is an attempt
to examine normality in space
– Make use of spatial correlation

• Useful for anomaly diagnosis:
– Strong trends exhibited throughout

network are likely to be “normal”
– Anomalies break relationships

between traffic measures

Turning High Dimensionality
into a Strength
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The Subspace Method   [LCD:SIGCOMM ‘04]

• An approach to separate normal & anomalous network-
wide traffic

• Designate temporal patterns most common to all the OD
flows as the normal subspace

• Remaining temporal patterns form the anomalous
subspace

• Then, decompose traffic in all OD flows by projecting onto
the two subspaces to obtain:

Traffic vector of all 
OD flows at a particular 
point in time

Normal traffic
vector

Residual traffic
vector
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The Subspace Method, Geometrically

In general,
anomalous
traffic results
in a large size
of

For higher
dimensions, use
Principal
Component
Analysis
[LPC+:SIGMETRICS ‘04]

y

Normal
subspace

Anomalous
subspace



13

Example of a Volume Anomaly [LCD:IMC ’04]

Multihomed customer CALREN reroutes
around outage at LOSA
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Talk Outline

• Methods
– Measuring Network-Wide Traffic
– Detecting Network-Wide Anomalies
– Beyond Volume Detection:  Traffic Features
– Automatic Classification of Anomalies

• Applications
– General detection:  scans, worms, flash, etc.
– Detecting Distributed Attacks

• Summary
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Exploiting Traffic Features

• Key Idea:
     Anomalies can be detected and distinguished

by inspecting traffic features:
 SrcIP, SrcPort, DstIP, DstPort

• Overview of Methodolgy:
1. Inspect distributions of traffic features
2. Correlate distributions network-wide to

detect anomalies
3. Cluster on anomaly features to classify
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Traffic Feature Distributions   [LCD:SIGCOMM ‘05]

Typical Traffic Port scan

One destination
(victim) dominates

~ 450 new
destination portsDest. 

Ports

Dest. 
IPs

# 
P

ac
ke

ts
# 

P
ac

ke
ts

Summarize using
sample entropy of
histogram X:

 
where symbol i occurs ni
times; S is total # of
observations

Dispersed 
Histogram
High Entropy

Concentrated
Histogram
Low Entropy
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Feature Entropy Timeseries

H(DstPort)

# Bytes

# Packets

H(Dst IP) But stands out in 
feature entropy, 
which also reveals
its structure

Port scan dwarfed 
in volume metrics…
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How Do Detected Anomalies Differ?

292152Total
2023False Alarm
4519Unknown
70Point Multipoint
114Outage
280Network Scan
300Port Scan
36Flash Crowd
1116DOS
13784Alpha

# Additional
in Entropy

# Found in
Volume

Anomaly Label

3 weeks of Abilene anomalies classified manually
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Talk Outline

• Methods
– Measuring Network-Wide Traffic
– Detecting Network-Wide Anomalies
– Beyond Volume Detection:  Traffic Features
– Automatic Classification of Anomalies

• Applications
– General detection:  scans, worms, flash events,

…
– Detecting Distributed Attacks

• Summary
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Classifying Anomalies by Clustering

• Enables  unsupervised classification

• Each anomaly is a point in 4-D space:
[    (SrcIP),      (SrcPort),      (DstIP),      (DstPort) ]

• Questions:
– Do anomalies form clusters in this space?
– Are the clusters meaningful?

• Internally consistent, externally distinct
– What can we learn from the clusters?
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Clustering Known Anomalies  (2-D view)

Summary:  Correctly classified 292 of 296 injected anomalies

(D
s

t
I

P
)

(SrcIP)  (SrcIP)

Known Labels Cluster Results
Legend

Code Red
Scanning

Single source
DOS attack

Multi source
DOS attack
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Back to Distributed Attacks…

LA

HSTN
ATLA

NYC

Evaluation Methodology

1. Superimpose known DDOS
attack trace in OD flows

2. Split attack traffic into
varying number of OD flows

3. Test sensitivity at varying
anomaly intensities, by
thinning trace

4. Results are average over
an exhaustive sequence of
experiments
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Distributed Attacks: Detection Results

1.3% 0.13%

11 OD flows

9 OD flows
10 OD flows

The more distributed the attack, the
easier it is to detect
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Summary

• Network-Wide Detection:
– Broad range of anomalies with low false alarms
– Feature entropy significantly augment volume metrics
– Highly sensitive:  Detection rates of 90% possible,

even when anomaly is 1% of background traffic
• Anomaly Classification:

– Clusters are meaningful, and reveal new anomalies
– In papers: more discussion of clusters and Géant

• Whole-network analysis and traffic feature
distributions are promising for general anomaly
diagnosis
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Backup Slides
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Detection Rate by Injecting Real Anomalies

1.3%12% 0.63%6.3%

Multi-Source DOS
[Hussain et al, 03]

Code Red Scan
[Jung et al, 04]

Entropy + 
Volume

Entropy + 
Volume

Volume
Alone

Volume
Alone

Evaluation Methodology

• Superimpose known
anomaly traces into OD flows

• Test sensitivity at varying
anomaly intensities, by
thinning trace

• Results are average over a
sequence of experiments

Detection rate vs. Anomaly intensity
(intensity % compared to average flow bytes)



27

3-D view of Abilene anomaly clusters

(SrcIP)(SrcPort)

(D
s

t
I

P
)

• Used 2 different
clustering algorithms
– Results consistent

• Heuristics identify about
10 clusters in dataset
– details in paper



28

Anomaly Clusters in Abilene data

Insights: 3 and 4 – different types of scanning
7 – NAT box?

00–0Alpha410

–000Flash Crowd89

+000Point Multipoint88

0–0–Alpha227

+000Outage226

0+00Alpha245

+0–0Port Scan304

+–+–Port Scan353

00+0Network Scan532

––0–Alpha1911

Plurality Label# pointsID

00–0Alpha410

–000Flash Crowd89

+000Point Multipoint88

0–0–Alpha227

+000Outage226

0+00Alpha245

+0–0Port Scan304

+–+–Port Scan353

00+0Network Scan532

––0–Alpha1911

Plurality Label# pointsID

00–0Alpha410

–000Flash Crowd89

+000Point Multipoint88

0–0–Alpha227

+000Outage226

0+00Alpha245

+0–0Port Scan304

+–+–Port Scan353

00+0Network Scan532

––0–Alpha1911

Plurality Label# pointsID

00–0Alpha410

–000Flash Crowd89

+000Point Multipoint88

0–0–Alpha227

+000Outage226

0+00Alpha245

+0–0Port Scan304

+–+–Port Scan353

00+0Network Scan532

––0–Alpha1911

Plurality Label# pointsID

00–0Alpha410

–000Flash Crowd89

+000Point Multipoint88

0–0–Alpha227

+000Outage226

0+00Alpha245

+0–0Port Scan304

+–+–Port Scan353

00+0Network Scan532

––0–Alpha1911

Plurality Label# pointsID
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Why Origin-Destination Flows?

• All link traffic arises from the superposition
of OD flows

• OD flows capture distinct traffic demands;
no redundant traffic

• A useful primitive for whole-network analysis

time

tr
af

fic

link traffic
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Subspace Method: Detection

• Error Bounds on
Squared Prediction
Error:

• Assuming Normal
Errors:

• Result due to
[Jackson and Mudholkar, 1979]
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Subspace Method: Identification

• An anomaly results in a displacement of the
state vector away from

• The direction of the displacement gives
information about the nature of the anomaly

• Intuition: find the OD flow that best describes
the direction associated with a detected
anomaly

• More precisely, we select the OD flow that
accounts for maximum residual traffic
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Network-Wide Traffic Data Collected

• Collected 3 weeks of sampled NetFlow data at 5
minute bins from two backbone networks:

• Compute entropy on packet histograms for 4 traffic
features: SrcIP, SrcPort, DstIP, DstPort

121 11Abilene

48422Géant

# OD flows# PoPsNetwork Multivariate, multiway 
timeseries to analyze
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Multiway Subspace Method

residual“normal”typical

1. “Unwrap” the multiway
matrix into one matrix

2. Then, apply the subspace method on the merged matrix:
• Described in [LakhinaCrovellaDiot:SIGCOMM04]

• Can write:

• Detect anomalies by monitoring size of      over time
for unusually large values

# od -pairs
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Time, Pollution and Maps

Michael Collins, CERT/NetSA
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How’re we doing?
The basic cost: time

Time to analyze
Time to verify
Time to retrack when we make mistakes

Basic success:
In time t, x things happen
– We understand > x in time t: good!
– We understand < x in time t: bad!

We’re probably at <<x right now
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My (work) flow

Hypothesis

Look For Data

Remove Worms

Eliminate Proxies

Restore Data
I thought Was 

a Proxy

Eliminate 
Scans

Discover exciting,
but unrelated, new

way the network “works”

Possibly get to 
original problem
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Why Flow? 
Ultimate cost: time

Time = (storage) space
Basic issue - bang for the buck

Catastrophe - the internet is regularly reconfigured, 
traffic volumes suddenly shift
Pollution - approximately 70-80% of the TCP flows we 
see are not legitimate sessions

Flow is manageable where pure payload generally 
isn’t

I am looking at effectively random collections of 
packets
Flow is the highest value information from a random 
collection of packets
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Still have a basic problem

Total Volume of Flow Traffic Received, Da
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Manageable Additions
Adding additional flow information costs us

Expression = field size = performance 
Additional data on disk should allows us to 
understand more things

Certain additions are going to come whether 
we like it or not

IPv6
Sasser
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Expanding Flow Analysis
Fundamental Goal: What’s up?

Secondary Goal: Don’t break the bank
Context
Grouping
Expansion
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Context
Preserving knowledge of what’s on the network

Trickler
Mapping - DNS, BGP, ICMP, etc.

Shouldn’t have to repeatedly do ad hoc 
discovery

Maps should be smaller
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Grouping
Annotating multiple flows together as one 
event

Scan detection
BitTorrent Distribution
Websurfing

Don’t reconstruct this on a per-query basis
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Expansion
Expand to increase distinguishability

Increased time precision
Some payload information

Try not to expand in order to identify specific 
things

We will be attacked, any specific attack 
implementation is therefore of limited value
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Concrete Suggestions
Heterogenous Splits:

Full ICMP
Short events
Characteristics of payload
Protocol validation
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Conclusions
Our primary currency is time

Time to access
Time for backtracking
Time for figuring out what the heck is going on

Time is equivalent to space
Data on disk governs how long it takes to read 
information
10 billion events/day is about 2 DVDs/byte
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Behavior Based Approach to
Network Traffic Analysis

Rob Nelson
Casey O’Leary

Pacific Northwest National Laboratory
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Issues/Challenges

• Data volume (noisy/highly dimensional)
• Watch-lists
• Data interpretation – significance
• Monitoring threats
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Data Collation,
Processing, Analysis, and

Reporting Process
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Advancing the Art

• Situation awareness
– Recognize nefarious activities before reported
– Focusing analysts on particular IP’s or

organizations
• Novel analysis

– Identifying exploits before well known
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Dynamic Watch-lists

• External hosts
– Those IP addresses that pose a threat against

the enterprise networks
• Vulnerable hosts

– Those internal IP address that are targets
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Methods

• Weighted values associated with behavior
• Tracking over time
• Dynamic list placement
• Behavior profiles
• Multiple sources of input
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External Hosts
• Actions

– Reconnaissance
– Exploits

• Intent
–  Collection
–  Compromise
–  Recruitment

• Methods
–  Stealth
–  Collaboration
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Vulnerable Hosts

• Interacting with external hosts
• Sending unsolicited messages
• High level of chatter
• New services running
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Factors

• Intent
• Temporal/frequency
• Sophistication
• Cooperation
• Enclave
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Adaptability

• Dynamic weighting factors
• Methods
• Techniques
• Code
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Future Efforts

• Architecture to work on raw data
– Near real-time situation awareness
– Parallelism of queries

• Sophisticated detection methods
• Communities
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Questions

• Contacts

Rob Nelson Casey O’Leary

rob.nelson@pnl.gov casey@pnl.gov
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R: A Proposed Analysis and
Visualization Environment for
Network Security Data

Josh McNutt <jmcnutt@cert.org>
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Outline
SiLK Tools

Analyst’s Desktop

Introduction to R

R-SiLK Library (Proof-of-concept prototype)

Context Objects and Analysis Objects

Analyst Benefits

Prototype Demo

Future of Analyst’s Desktop
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SiLK Tools
System for Internet-Level Knowledge

 http://silktools.sourceforge.net/
Developed and maintained by CERT/NetSA (Network Situational

Awareness) Team

Consists of a suite of tools which collect and perform analysis
operations on NetFlow data

Optimized for very large volume networks

Command Line Interface (CLI)

Fundamental Tools
 rwfilter
 rwcount
 rwuniq
 IP sets
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Enhancing SiLK: Analyst’s Desktop

We are currently developing a new interface model for
the SiLK tools

The goal is to develop an environment supporting
sophisticated analysis of network security phenomena

 Analyst’s Desktop
Requirements

 Interactive visualization capability
 Audit trail
 Annotation
 Preserve the command line options available in SiLK
 Make simple analyses simple to perform

Platform of choice: R
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R: What is it?

R is a programming language and environment for
statistical computing and graphics used by
statisticians worldwide

The R Project for Statistical Computing
 http://www.r-project.org

R is available as Free Software under the terms of
the Free Software Foundation's GNU General
Public License in source code form

There exists a thriving community of statisticians
and statistical programmers who contribute their
code
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R! What is it good for?
R represents “best-in-practice” environment for exploratory data

analysis

Specifically designed with data analysis in mind
 A more natural analysis interface than Perl, Python or shell

scripts
Full Access to R’s built-in statistical analysis capability

R can run interactively or in batch mode

Visualization
 Integrated graphing capabilities (publication quality)
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R! What is it good for?
Object-based environment

 Everything in R is an object
– functions, matrices, vectors, arrays, lists

 Objects can be saved in user workspace (persistence) or
saved to disk and sent to another user’s workspace

 Preserve results for comparison with future analyses
 Annotations can be attached to objects

Command line control can be preserved
 Wrapper functions incorporate SiLK command line

arguments
Rapid prototyping of new analysis techniques and visualizations
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R’s Graphing Capability
Huge set of standard statistical graphs

 stemplots, boxplots, scatterplots, etc.
3D graphing capability
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R-SiLK Library
Low-level interface involves custom wrapper functions making

command line calls to SiLK

Higher-level functions call those wrappers

Many SiLK Tools have associated functions in R-SiLK library
 rwfilter(), rwcount(), rwuniq(), rwcut()

The SiLK Tool “rwcount” generates a binned time series of
records, bytes and packets

In R-SiLK library, there is a function called “rwcount()”
 rwcount(rwcount switches, context object)
 Example below assigns 60-second binned time series data

for context object called “context.tcp” to the analysis object
called “analysis.tcp”
 analysis.tcp <- rwcount(“--bin-size=60”, context.tcp)

Context objects and analysis objects?
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Context Objects and Analysis Objects

To aid in analysis tasks, we’ve created something called a
context object

Context Object
 An object in R that determines precisely what data is being

considered
– Contains a text string element indicating filter criteria (rwfilter

switches)
– Contains the name of the binary file of flow data satisfying the

filter criteria
 Simple example (Time period is only filter criteria)

• All flows between midnight and 1 a.m. on July 17th, 2005
 Advanced example (Many additional criteria)

• All inbound flows from source XXX.YYY.XXX.ZZ between
midnight and 1 a.m. on July 17th, 2005 targeting any hosts in
XXX.ZZZ.0.0/16 on destination port 42/tcp

As the analysts learn more about a particular context through
analysis, they will be able to refine the current context by
adding additional filter criteria
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Context Objects and Analysis Objects

Context objects can be summarized/described via the process
of analysis

To store the results of analysis we have analysis objects

Analysis Object
 An object in R that saves a description of a context object

– Examples:
• A top N list of destination ports for a context object
• A binned time series of the flow data for a context object

 Components
– Data (time series, sorted list of port volumes, etc.)
– Context Object (what was the source data)
– Timestamp (when was it created)
– Descriptive Results (correlation, mean, etc.)

 Annotation
– Can be attached to analysis object by analyst
– Examples:

• “UDP-based DDoS began around 8:30 a.m. on 5/6/04”
• “Scanning appears to be targeting 2 local subnets”
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Context Objects and Analysis Objects

Context
Object

Specify initial
filter criteria (time
period, port X,
TCP, etc.)

Study the
analysis object
(Visualization,
Summary Stats,
etc.)

Analysis
Object

Refine Context (specify host, subnet, port
number, etc.)

CONTEXT MENU (rw.analyze module)

BEGIN END
Annotate and
save results

Save graphs

Share results
with other
analysts

Select an analysis

ANALYSIS MENU
(rw.analyze module)

Analysis
Workflow



© 2005 Carnegie Mellon University            13

Analyst Benefits
Experienced Analyst

 Enhanced command line experience
– Immediate and integrated visualization

 Object Persistence
 Annotation
 Audit Trail
 Rapid Prototyping

Beginner Analyst
 Faster time to productive investigations
 rw switches can be made transparent to the user

– concatenated together in the background
 rw.analyze() module
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Prototype Demo

R interactive mode

Basic proof-of-concept interface: rw.analyze()

Demonstrate the Context Object – Analysis
Object workflow

Begin Demo
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Future of Analyst’s Desktop

Working on improved version of R-SiLK library
and prototype interface

Support different modes of analysis
 Research Analysis

– Flexible, powerful, customized
 Operational Analysis

– Immediate, concise, “canned”
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Future of Analyst’s Desktop
RAVE
 Retrospective Analysis and Visualization Engine

Analysis
Engine

R SQL
?

RAVE

Visualization
Engine

R VTK
OpenGL

Research
Analyst

Operational
Analyst
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Future of Analyst’s Desktop

RAVE
 Operationalize analysis techniques

– Move new research techniques efficiently into
operations

– Furnish operational services (e.g. caching)
 Decouple analysis/visualization from UI

– Different A/V tools, same UI
• SiLK, R, SQL, Python/C, etc.

– Different UIs, same engine
• "Dashboards"
• Menu of "canned" queries
• Sophisticated data exploration environment (e.g., R)
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Questions
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Service
Quality

Service
Support

Performance

Trafficability
PerformanceCharging

Performance

Dependability

Availability
Performance

Resources and
Facilities

Administration

Provisioning
Planning

Service
Integrity

Performance

Service
Retainability
Performance

Service
Accessibility
Performance

Serveability

Reliability
Performance

Maintenance
Support

Performance
Maintainability
Performance

Service
Operabliity

Performance

Service
Security

Performance

Propagation
Performance

Transmission
Performance

Integrity

User
Actions

System
Performance

Customer
Behavior

From ITU-T Recommendation E.800 Quality of Service, Network Management and Traffic Engineering

ITU 
Network 
Service 
Quality 

Taxonomy
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Approach
• Adopt PSTN TMN Usage Strategies

– Service Oriented Metering
– Integrated Measurement
– Establish Comprehensive Transactional Audit
– Near Real-Time Accessibility

• Extend PSTN Model for Internet Networking
– Internet Transactional Model
– Distributed Asymmetric Network Monitoring
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Comprehensive Data Network 
Accountability

• Ability to account for all/any network use
• At a level of abstraction that is useful

– Network Service Functional Assurance
• Was the network service available?
• Was the service request appropriate?
• Did the traffic come and go appropriately?
• Did it get the treatment it was suppose to receive?
• Did the service initiate and terminate in a normal manner?

– Network Control Assurance
• Is network control plane operational?
• Was the last network shift initiated by the control plane?
• Has the routing service converged?
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The Global Information Grid
A Diverse Environment

Deployed
CWAN

Commercial 
Fiber

DISN Ext.

TCS

RF Nets

Tactical Internet (WIN-T)
& RF Nets (JTRS)DISN / GIG-BE

Teleport

Wireless
Comm

Serving business, warfighting, 
& intelligence with NCES --
• Collaboration, messaging, & applications
• Storage and mediation
• User assistance
• Information Assurance
• Enterprise Services Management and Operations
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GIG-EF OOO Network
ATDnet & BoSSNET

NRL

NSA

MIT/LL

IPv6/MPLS Instrumented Testbed …
IS-IS, BGP+

Dual Stack: IPv4/v6 w/ BGP4, OSPF

DREN(HPCMP) Network

MSPP

ER
ER

ER

ER

ER

ER

ER
ER

ER

SSC-SD

ER

Army

Transition IPv4/v6/MPLS
… BGP4, OSPF

DISA

ERJITC

… as required

… as required

… as required
Air ForceER

ER Navy
Marines

DRENDREN

JITC

ER

ER
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Abstract QoS Control Plane
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Project Methodology
• New Distributed Network Monitoring Strategy

– Comprehensive Network Usage Measurement (IETF IPFIX WG)
– User Data Loss Detection  (IETF RFC 2680)
– Generic One-way Delay Monitor (IETF RFC 2679)
– User Data Jitter Measurements (IETF RFC 3393)
– Comprehensive Reachability Monitor (IETF RFC 2678)
– Capacity/Utilization Monitor (IETF RFC 3148)
– High Performance (OC-192) IPv4/IPv6 Passive Approach

• Establish Comprehensive Audit (IETF RTFM, ITU TMN)

• Utilize Uniform Data Collection (IETF IPFIX, ITU TMN)
• Perform fundamentally sound statistical analysis
• To Enable Effective Network Optimization
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NTAIS FDO Optimization

Correct for deviations from the criteria.Control

Monitor network behavioral indicators to realize 
an effect.Track

Provide inform
ation and feedback internal 

and external to the project on the 
optim

ization outcom
es as events.

Establish optimization criteria (both present and 
future) and implement actions, if needed.  
This could involve reallocation of 
network resources, physical 
modifications, etc.

Plan

Collect and transform data into optimization 
metrics.  Establish baselines, occurrence 
probabilities, and prioritize efforts.

Analyze

C
ollect and Process N

etw
ork 

B
ehavioral D

ata

Discover and Identify comprehensive network 
behavior.Identify

DescriptionFunction
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Gargoyle Probe
• Comprehensive Passive Real-Time Flow Monitor

– User Plane and Control Plane Transaction Monitoring
– Reporting on System/Network QoS status with every use

• Capacity, Reachability, Responsiveness, Loss, Jitter
• ICMP, ECN, Source Quench, DS Byte, TTL

• Multiple Flow Strategies
– Layer 2, MPLS, VLAN, IPv4, IPv6, Layer 4 (TCP, IGMP, RTP)

• Small Footprint
– 200K binary

• Performance
– OC-192, 10GB Ethernet, OC-48, OC-12, 100/10 MB Ethernet, SLIP
– POS, ATM, Ethernet, FDDI, SLIP, PPP
– > 1.2 Mpkts/sec Dual 2GHz G5 MacOS X.
– > 800Kpkts/sec Dual  2GHz Xeon Linux RH Enterprise

• Supporting Multiple OS’s
– Linux, Unix, Solaris, IRIX, MacOS X, Windows XP
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NTAS Architecture
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NTAS Distributed Architecture
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Unicast/Multicast QoS Monitor Strategies
Mixed Black-box  White-box Approach



10 October 2005

So, …, what is a flow?
• Classic 5-Tuple IP flow
• Encrypted VPN IP-Sec Tunnel
• MPLS based Label Switched Path (LSP)
• ATM Virtual Circuit
• PPP Association
• Routing Protocol Peer Adjacency
• Multicast Group Join Request/Reply
• Abstract Object <-> Abstract Object
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And what metrics?
• Rate, Load, Bytes, Pkts, Goodput, Max Capacity
• Unidirectional?  Bidirectional? 

– Connectivity, Reachability
– RTT, One-way Delay

• Loss, Packet Size, Jitter, Retransmission Rate
• Protocol specific values (flags, sequence #)
• DS Code points
• TTL, Flow IDs
• Routing Flap Metrics
• Hello Arrival Rates
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How Should They Be Transported

• Push/Pull?
• Reliable/Unreliable
• Unicast/Multicast
• Stream/Block/Datagram?
• Encrypted? Authenticated?
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Argus
• Argus started 1990 – Georgia Tech
• Redesigned CERT/SEI/CMU – 1993
• Version 1.0 Open Source – 1995

– Over 1M downloads
• ~100,000 estimated sites worldwide
• Unknown sites in production

• Supports 13 Type P and P1/P2 Flows
– http://qosient.com/argus/flow.htm

• 117 Element Attribute Definitions
– http://qosient.com/argus/Xml/ArgusRecord_xsd/Argus

Record.htm
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Argus Transport

• Pure Pull Strategy
– Simplifies Probe Design

• Reliable Stream Transport (TCP)
– Can support UDP/Multicast Datagram

• Supports TLS “On the Wire” Strong 
Authentication/Confidentiality
– Probe Specifies Security Policy
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Maybe Incompatible with IPFIX

• Template strategy can’t work with all the 
combinations of flow types supported.

• Distribution strategies make it even harder.
• Lack of identifiers to support flow objects
• Missing metric types.
• Vendor specific support is minimal
• Resulting in no motiviation to adopt.



IP Flow Information eXport
(IPFIX)

elisa.boschi@hitachi-eu.com
{boschi, zseby, mark, hirsch}@fokus.fraunhofer.de



Outline

• IPFIX 
• Terminology

• Applicability

• Initial Goals

• Current Status
– Rough consensus (Internet-Drafts and RFCs)
– Running code (Implementations)

• Conclusions



IP Flow Information eXport

• General data transport protocol
• Flexible flow key (selection)

• Flexible flow export - TEMPLATE BASED
– New fields can be added to flow records without 

changing the structure of the record format
– The collecor can always interpret flow records
– external data format description compact encoding

• Efficient data representation
– Extensible (future attributes to be added)
– Flexible (customisable)
– Independent (of the Transport protocol)



Terminology

• A TEMPLATE is an ordered sequence of 
<type,length> pairs 
– specify the structure and semantics of a 

particular set of information (Information 
Elements)

• DATA RECORDS contain values of 
parameters specified in a template record 

• OPTION RECORDS define the 
– structure and interpretation of a data record 
– how to scope the applicability



The protocol

• Unidirectional (push mode)
• The exporter sends data (and option) 

templates
– Information Elements descriptions

• Information Elements are sent in network 
byte order



Applicability

• Target applications requiring flow-based IP traffic 
measurements (RFC 3917)
– Usage-based accounting
– Traffic profiling
– Attack/intrusion detection
– QoS monitoring
– Traffic engineering

• Other applications (AS):
– Network planning
– Peering agreements



Attack / intrusion detection

• IPFIX provides input to attack / intrusion detection 
functions:
– Unusually high loads
– Number of flows 
– Number of packets of a specific type
– Flow volume 
– Source and destination address
– Start time of flows
– TCP flags
– Application ports



Initial Goals 1/4

• Define the notion of a "standard IP flow"

A Flow is a set of IP packets passing an Observation Point 
in the network during a certain time interval. All packets 
belonging to a particular flow have a set of common 
properties defined as the result of applying a function to the 
values of: 
– One or more packet header field (e.g. dest. IP address), transport 

header field (e.g. dest. port number), or application header field 
(e.g. RTP header fields RTP-HDRF) 

– One or more characteristics of the packet itself (e.g. # of MPLS
labels) 

– One or more fields derived from packet treatment (e.g. next hop IP 
address) 



Initial Goals 2/4

• Devise data encodings that support analysis of IPv4 
and IPv6 unicast and multicast flows…
– IPFIX Information Model

• formal description of IPFIX information elements (fields), their
name, type and additional semantic information 

• Consider the notion of IP flow information export 
based upon packet sampling
– The flow definition includes packets selected by a 

sampling mechanism
– Through option templates, the configuration sampling 

parameters can be reported



Initial Goals 3/4

• Identify and address any security concerns 
affecting flow data. 
– Disclosure of flow info data
– Confidentiality  IPSec and TLS
– Forgery of flow records
– Authentication and integrity   IPSec and TLS

• Specify the transport mapping for carrying IP flow 
information SCTP / SCTP-PR
– Reliable (or partially reliable)
– Congestion aware
– Simpler state machine than TCP



Initial Goals 4/4

• Ensure that the flow export system is reliable 
(minimize the likelihood of flow data being lost and 
to accurately report such loss if it occurs).

– SCTP, TCP
– UDP 

• Templates are resent at a regular time interval 

– Sequence numbers



Current status

• Internet-Drafts (~ sent to the IESG):
– Architecture for IP Flow Information Export
– Information Model for IP Flow Information Export
– IPFIX Protocol Specification
– IPFIX Applicability

• Request For Comments:
– Requirements for IP Flow Information Export (RFC 3917)
– Evaluation of Candidate Protocols for IP Flow Information 

Export (IPFIX) (RFC 3955)



Other related drafts

• Export of per packet information with IPFIX
– E.Boschi, L.Mark draft-boschi-export-perpktinfo-00.txt

• IPFIX aggregation
– F.Dressler, C.Sommer, G.Munz draft-dressler-ipfix-aggregation-01.txt 

• Simple IPFIX Files for Persistent Storage
– B.Trammell draft-trammell-ipfix-file-00.txt 

• IPFIX templates for common ISP usage
– E.Stephan, E. Moureau draft-stephan-isp-templates-00.txt

• IPFIX Protocol Specifications for Billing
– B.Claise, P.Aitken, R.Stewart draft-bclaise-ipfix-reliability-00.txt

• IPFIX Implementation Guidelines



„Running code“

• At least 6 different IPFIX implementations 
– Ours is open source: http://www.6qm.org/downloads.php

• Implementers mailing list

• Interoperability events 
– July 2005, Paris (http://www.ist-mome.org)
– Further tests planned

• Implementation guidelines in preparation



Conclusions

• IPFIX is the upcoming standard for (IP) flow 
information export

• Allows common analysis tools
• Data exchange

...  questions?



IPFIX message format

• IPFIX message
– message header
– 1 or more {template, option template, data} sets

• A TEMPLATE is an ordered sequence of <type, length> 
pairs used to completely specify the structure and 
semantics of a particular set of information 
– (unique by means of a template ID)
– DATA RECORDS contain values of parameters specified in a 

template record 
– Field values are encoded according to their data type specified in 

IPFIX-INFO
– OPTION RECORDS define the structure and interpretation of a 

data record including how to scope the applicability



INFORMATION ELEMENTS

• INFORMATION ELEMENTS are descriptions of attributes 
which may appear in an IPFIX record
– IANA assigned
– Defined in the Information Model 
– Enterprise specific  (proprietary I.E.)

• Variable Length I.E.
– The length is carried in the information element content itself

• The type associated with an IE 
– indicates constraints on what it may contains 
– determines the valid encoding mechanisms for use in IPFIX

• I.E.s must be sent in network byte order (big endian)



INFORMATION ELEMENTS

• The elements are grouped into 9 groups according to their 
semantics and their applicability: 

can serve as Flow Keys 
(used for mapping packets to Flows)

1. Identifiers 
2. Metering and Exporting Process 

Properties 
3. IP Header Fields
4. Transport Header Fields 
5. Sub-IP Header Fields 
6. Derived Packet Properties 
7. Min/Max Flow Properties 
8. Flow Time Stamps 
9. Per-Flow Counters 
10. Miscellaneous Flow Properties 



Requirements for the data model

• IPFIX is intended to be deployed in high speed routers and 
to be used for exporting at high flow rates

• Efficiency of data representation
• How data is represented = data model

• EXTENSIBLE
– For future attributes to be added

• FLEXIBLE
– Concerning the attributes (customisable)

• INDEPENDENT 
– Of the transport protocol



Data Mining NetFlow
So What’s Next?

Mark E Kane
FloCon 2005
20 September 05



Objectives

Data Mining, very briefly
Frequency Patterns
Discoveries
Realizations
Changes Made



Data Mining

Data Mining – automated extraction 
of previously unknown data that is 
interesting and potentially useful.



Cost of Participating in Data Mining

Red Haring101010YESNO

Time Lost to 
Investigate and Clean 

Up After Crime
∞∞∞NOYES

-000NONO

Crime Prevented / 
Prosecuted101010YESYES

Result

Example 
SysAdmin

Hours

Example 
Investigator 

Hours

Example 
Analyst 
Hours

Result of 
Data 

MiningReality



Complexity of Mining NetFlow

Shear Volume
Complex Protocol Analysis
Ambiguous Interpretations
Very Smart Adversaries



Common Investigator Issues

Undermanned and overworked
Varied knowledge base
Does not own networks
No direct reporting structure



Data Mining Techniques

Primary Techniques
Rule and Tree Induction
Characterization
Classification
Regression
Association
Clustering

Other Techniques
Dependency Modeling
Change Detection
Trend Analysis
Deviation Detection
Link Analysis
Pattern Analysis
Spatiotemporal Data Mining
Mining Path Traversal Patterns
Mining Sequential/Frequent 
Patterns

Uncertain Reasoning 
Techniques
Fuzzy Logic
Neural Networks
Bayesian Networks
Genetic Algorithms
Rough Set Theory



Frequency Patterns

Mining Frequent Patterns in Data Streams 
in Multiple Time Granularities
(Giennella, Han, Pei, Yan, and Yu) 

Support Decision Making
Past Less Significant than Present
Record Reduction
Time Tilted Windows



Interpreting Time-Tilted Windows

DAY
Window
Transition N Y N Y N Y N Y
Size 1 1 2 2 4 4 8 8

Monday 9
Tuesday 15 9
Wednesday 6 12
Thursday 6 6 12
Friday 12 6 12
Saturday 16 12 6 12
Sunday 6 14 9
Monday 12 6 14 9
Tuesday 15 9 14 9

0 1 2 3
Day 1: 9 events

Day 2: 15 events (two 
buckets)

Day 3: 6 events (two 
buckets)

Day 4: 6 events (two 
buckets)

Day 5: 16 events (three 
buckets)

Day 6: 12 events (four 
buckets)
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Data Mining Discoveries

Failed email servers
Previously, unknown trusted 
relationships
Encryption without authentication
Possible, but unproven intrusions



Data Mining Results

Frustrated Investigators
Frustrated Analysts
One Very Frustrated Developer



Changes to Employ Data Mining

Establish common basis of understanding
Establish criteria for reporting

Geo-Resolution
Timeliness
Volume

Establish reporting procedures



Questions
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1. INTRODUCTION
Distributed denial of service attacks have become both preva-

lent and sophisticated. Botnet-driven attacks can be launched from
thousands of worm-infected and compromised machines with rela-
tive ease and impunity today. The damage caused by such attacks
is considerable: the 2004 CSI/FBI computer crime and security
survey found that DDOS attacks are the second largest contributor
to all financial losses due to cybercrime [3]. Further, distributed
attacks are expected to increase both in sophistication and dam-
age [1]. Containing distributed attacks is therefore a crucial prob-
lem, one that has not been adequately addressed.

One reason why distributed attacks are difficult to contain is be-
cause defenses against these attacks are typically deployed at edge
networks, near the victim. Deploying defenses at the edge makes
detecting attacks easier, since one simply needs to monitor incom-
ing traffic volume for an unusually large burst. However, contain-
ing and mitigating such attacks from the edge is ineffective for two
reasons. First, filtering the malicious attack traffic requires identify-
ing the (potentially thousands of) attackers, which is complicated,
especially if the source addresses are spoofed. Second, even if ac-
curate filtering was feasbile at the edge, it cannot prevent attack-
ers from consuming the victim’s bandwidth, and denying service
to legitimate users. Thus edge-based defenses against distributed
attacks have limited value.

On the other hand, defending against distributed attacks at the
backbone (i.e., carrier networks) overcomes the hurdles of edge-
based defenses. In principle, backbone networks can detect and
identify the origins of malicious sources involved in a distributed
attack that traverses the backbone. Thus backbone networks are
well-suited to mitigate distributed attacks, before they cause harm
to the victim at the edge. However, distributed attacks are challeng-
ing to detect in the backbone because they do not cause a visible,
easily detectable change in traffic volume on individual backbone
links. To effectively detect distributed attacks in the backbone, one
therefore needs to simultaneously analyze all traffic across the net-
work.

In this work, we present our methods to detect distributed attacks
in backbone networks using sampled flow traffic data. Distributed
attacks are traditionally viewed to be fundamentally more difficult
to detect than single-source attacks. In contrast, we demonstrate
that the more distributed an attack is,the better our methods are
at detecting it. This is because our methods analyze correlations
across all network-wide traffic simultaneously, instead of inspecting
traffic on individual links in isolation. In addition, our methods are
highly sensitive to the attack intensity; we show that attacks rates of
less than 1% of the underlying traffic can be detected successfully
by our methods.

The rest of this paper is organized as follows. In the next section

we show how network-wide traffic summaries can be assembled,
and present the data we have processed from the Abilene Internet2
backbone network. Then, in Section 3, we describe the multiway
subspace method for detecting attacks in network-wide flow data.
We evaluate our methods on actual DDOS attack traces in a series
of experiments and present results in Section 4. Finally, we con-
clude in Section 5.

2. NETWORK-WIDE FLOW DATA
Our methods analyze all traffic that traverses the network. To ob-

tain such network-wide flow traffic, we must collect the ensemble
of origin-destination flows (OD flows) from a network. The traf-
fic in an Origin-Destination flow is the set of traffic that enters the
network at specific point (the origin) and exits the network at the
destination. For this study, we assembled the set of OD flows for
the Abilene network.

Abilene is the Internet2 backbone network, connecting over 200
US universities and peering with research networks in Europe and
Asia. It consists of 11 Points of Presence (PoPs), spanning the con-
tinental US. We collected three weeks of sampled IP-level traffic
flow data from every PoP in Abilene for the duration of December
8, 2003 to December 28, 2003. Sampling is periodic, at a rate of
1 out of 100 packets, and flow statistics are reported every 5 min-
utes; this allows us to construct traffic timeseries with bins of size
5 minutes.

To aggregate the IP flow data at the OD flow level, we must
resolve the egress PoP for each flow record measured at a given
ingress PoP. This egress PoP resolution is accomplished by using
BGP and ISIS routing tables, as detailed in [2]. After this procedure
is completed, there are 121 OD flows in Abilene.

Our final post-processing step constructs timeseries at 5 minute
bins for traffic summaries of each OD flow. The traffic summary we
use is the sample entropy of the four main traffic features (source
IP, destination IP, source port and destination port). Sample entropy
captures the distribution of each traffic feature in a manner that re-
veals unusual changes in the distribution. An analysis of the merits
of distributional-based analysis of traffic features for anomaly di-
agnosis can be found in [6].

To summarize, the network-wide flow traffic we study is the mul-
tivariate timeseries of sample entropy of traffic features for the en-
semble of Abilene’s OD flows.

3. THE MULTIWAY SUBSPACE METHOD
To detect distributed attacks, it is necessary to examine network-

wide traffic - as captured by the set of OD flows - simultaneously.
The multiway subspace method accomplishes this task and is de-
scribed in [6]; we review the main ideas here.



Thinning Rate 0 10 100 1000 10000
Attack Intensity (pps) 2.75e4 2.75e3 275 27.5 25.9
Attack Intensity (%) 93% 57% 12% 1.3% 0.13%

Table 1: Intensity of injected attack, in # pkts/sec (pps) and percent of (single) OD flow traffic.
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(a) � = 0:999 detection threshold (b) � = 0:995 detection threshold

Figure 1: Detection results from injecting multi-OD flow attacks (across 2 to 11 OD flows).

The multiway subspace method separates the ensemble of OD
flow timeseries into normal and anomalous attributes. Normal traf-
fic behavior is determined directly from the data, as those temporal
patterns that are most common to the set of OD flows. This extrac-
tion of common trends is achieved by Principal Component Anal-
ysis (PCA). As shown in [7], PCA can be used to decompose the
set of OD flows into their constitutent common temporal patterns.

A key result of [7] was that a handful of dominant temporal pat-
terns are common to the hundreds of OD flows. The multiway
subspace method exploits this result by designating these domiant
trends as normal, and the remaining temporal patterns as anoma-
lous. As a result, each OD flow can be reconstructed as a sum of
normal and anomalous components. In particular, we can write,
x = x̂ + ~x, where x denotes the traffic of all the OD flows at a
specific point in time, x̂ is the reconstruction of x using only the
dominant temporal patterns, and ~x contains the residual traffic.

Once this separation is completed, detection of unusual events
requires monitoring the size (`2 norm) of ~x. The size of ~x measures
the degree to which x is anomalous. Statistical tests can then be
formulated to test for unusual large k~xk, based on a desired false
alarm rate [5].

As demonstrated in [6], the multiway subspace method can de-
tect a broad spectrum of anomalous events, at a low false alarm
rate. Further, these anomalies can span multiple traffic features,
and also occur in multiple OD flows. Our focus in this work is to
specifically evaluate the power of network-wide traffic analysis, via
the multiway subspace method, to detect distributed attacks.

4. DETECTION RESULTS
In this section we specifically study how effective our methods

are at detecting distributed attacks. We first describe our experi-
mental setup, where we inject traces of a known distributed denial
of service attack in the Abilene network-wide flow data. Next, we
present results from applying the multiway subspace method to de-
tect these injected attacks.

4.1 Injecting Distributed Attacks
To evaluate our detection method, we decided to use an actual

distributed denial of service attack packet trace and superimpose
it onto our Abilene flow data in a manner that is as realistic as
possible. This involved a number of steps which we describe below.

We use the distributed denial of service attack trace collected and
described in [4]. This 5-minute trace consists of packet headers
without any sampling. It was collected at a Los Nettos regional
ISP in 2003, and so exemplifies an attack on an edge network. We
extracted the attack traffic from this attack trace by identifying all
packets directed to the victim. We then mapped header fields in the
extracted packets to appropriate values for the Abilene network.

Then, to construct representative distributed attacks, we divided
the attack trace into k smaller traces, based on uniquely mapping
the set of source IPs in the attack trace onto k different origin PoPs
of Abilene. The splitting was performed so that each of the k

groups has roughly the same amount of traffic. Next, we injected
this k-partitioned trace into k OD flows sharing the same destina-
tion PoP (the victim of the DDOS attack). For each destination PoP,
we injected the k OD flow attack into all possible combinations of
k sources, i.e.,

�
p

k

�
combinations where p = 11 is the number of

PoPs in the Abilene network. We repeated this set of experiments
for every destination PoP in the network; thus for a given choice of
2 � k � p, we performed

�
p

k

�
�p total experiments. For each multi-

OD flow injection, we recorded if the multiway subspace method
detected the attack.

Finally, we repeated the entire set of experiments at different
thinning rates to measure the sensitivity of the detection methods to
lower intensity DDOS attacks. We thinned the original attack trace
by selecting 1 out of every N packets, then extracted the attack
and injected it into the Abilene OD flows, as described above. The
resulting attack intensity for the various thinning rates is shown
in Table 1. The table also shows the percent of all packets in the
resulting OD flow that was due to the injected anomaly.

While these multi-OD flow experiments are designed to span
a number of origin PoPs sharing a common destination PoP, our



detection methods do not assume any fixed topological arrange-
ment on the malicious OD flows. The results from these experi-
ments give us insight into the performance of the multiway sub-
space method in detecting attacks that are dwarfed in individual
OD flows, but are only visible network-wide, across multiple OD
flows.

4.2 Results
We now present results on using the multiway subspace method

to detect multi-OD flow attacks. The detection rates (averaged over
the entire set of experiments) from injecting DDOS attacks span-
ning 2 � k � 11 OD flows are shown in Figure 1. Figure 1(a) and
(b) present results when the detection threshold is �=0.999 (equiv-
alent to asking for a false alarm rate of 1-�, or 1 in 1000) and
�=0.995 (equivalent to a false alarm rate of 5 in 1000).

Both figures show that we can effectively detect attacks spanning
a large number of OD flows. In fact, the detection rates are gener-
ally higher for larger k, i.e., for attacks that span a larger number of
OD flows. For example, in Figure 1(a) we detect 100% of DDOS
attacks that are split evenly across all the 11 possible origins PoPs
in the Abilene network, even at a thinning rate of 1000. From Ta-
ble 1, the average intensity of the DDOS attack trace in each of the
11 OD flows at a thinning rate of 1000 is 27:5

11
= 2:5 packets/sec.

In Figure 1(b), we relaxed the detection threshold to � = 0:995.
In this setting, we detect about 82% of all DDOS attack traffic span-
ning 10 OD flows, at thinning rates of even 10000, which corre-
sponds to an attack with intensity of 0.259 packets/sec in each of
the 10 participating OD flows individually. Such low-rate attacks
are a tiny component of any single OD flow, and so are only de-
tectable when analyzing multiple OD flows simultaneously.

Thus, the results here underscore the power of network-wide
analysis via the multiway subspace method.

5. CONCLUSIONS
Distributed attacks are an important problem facing networks to-

day. We argue that distributed attacks are best mitigated at the
backbone. Detecting distributed attacks at the backbone requires
departing from traditional single-link traffic analysis and adopting
a network-wide view to traffic monitoring. In this work, we applied
the multiway subspace method on network-wide flow data to de-
tect distributed attacks in the Abilene backbone network. Through
a series of controlled experiments, we demonstrated that the multi-
way subspace method is well suited to detect massively distributed
attacks, even those with low attack intensity.
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 Motivations

• NetFlows in multiple, incompatible formats
– Network security monitoring tools usually support

one or two NetFlows format
– Need conversion of NetFlows between different

formats

• Sensitive network information hinders log
sharing
– Log sharing necessary for research and study
– Need anonymization of sensitive data fields
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• CANINE: Converter and ANonymizer for Investigating
Netflow Events

• Handles several NetFlow formats
– Cisco V5 & V7, ArgusNCSA, CiscoNCSA, NFDump

• Anonymizes 5 types of data fields
– IP, Timestamp, Port, Protocol and Byte Count

• Multiple anonymization levels
– Various anonymization methods for some data field

Our Solution: CANINE Tool
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      System Architecture of CANINE
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Main GUI of CANINE
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Conversion & Anonymization Engine

• Conversion Engine
– Parse the input NetFlow record into component data

fields before anonymization
– Reassemble the anonymized data component to

desired NetFlow format

• Anonymization Engine
– Contain a collection of anonymization algorithms
– Anonymize data fields with designated methods
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IP Address Anonymization
• Truncation

– Zeroing out any number of LSBs

• Random Permutation
– Generate a random IP number seeded by user input

• Prefix-preserving Pseudonymization
– Match on n-bit prefix, based on Crypto-PAn

12.131.201.2912.72.8.5141.142.0.0141.142.132.37

12.131.102.197231.45.36.167141.142.0.0141.142.96.18

12.131.102.67124.12.132.37141.142.0.0141.142.96.167

Prefix-preservingRandom
Permutation

Truncation
 (16-bit)

IP Address
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Timestamp Anonymization
• Time Unit Annihilation

– Zeroing-out indicated subset of time units on end time
– Start time is adjusted to keep the duration unchanged

• Random Time Shift
– Pick a range for generating random shift
– Shift all timestamps by the same amount

• Enumeration
– Local sorting performs based on end time
– Set the slide window size
– Records sorted and equidistantly spaced
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Port Number, Protocol,  Byte Count
Anonymization

• Port Number Anonymization
– Bilateral classification

• Replace with 0 or 65535 (the port smaller or larger than 1024)
– Black marker

•  Replace with 0

• Protocol Anonymization
– Black Maker

• Replace with 255 (IANA reserved but unused number)

• Byte Count Anonymization
– Black Marker

• Replace with 0 (Impossible value in practice)
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Task Summary Dialog

Source type: 
Source file: 
Destionation type: 
Destination file: 
Task date: 
IP Anonymize: 
Time Anonymize: 
Port Anonymize: 
Protocol Anonymize: 
Byte Anonymize: 
Num of records: 
Time consumption: 

Cisco5 
C:'lncsa\CANINEtest'fawflowV5.30M (30.0 Mbs) 
CiscoNCSA 
C:'lncsa\CANINEtest\TestCisco1 (27.0 Mbs) 
20 May 05 13:58:21 
Bit truncation of 16 rightmost bits 
Time unit truncation: Year, Month, Day, 
Bilateral classification 
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613800 
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Summary and Future Work
• CANINE addressed two problems

– Convert and anonymize NetFlow logs
– Unique due to multiple anonymization levels

• Modifications on CANINE
– Config file alternative to GUI
– Streaming mode processing

• Research on multiple levels of anonymization scheme
– Utility of the anonymized log
– Security of the anonymization schemes
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Download CANINE at
   http://security.ncsa.uiuc.edu/distribution/

    CanineDownLoad.html

                           Thank you!

           Questions?
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Port Number Anonymization

•Bilateral classification
–Decide the port is ephemeral or not

•Black marker
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Abstract
We created a tool to address two problems with using Net-
Flows logs for security analysis: (1) NetFlows come in mul-
tiple, incompatible formats, and (2) the sensitivity of Net-
Flow logs can hinder the sharing of these logs. We call the
NetFlow converter and anonymizer that we created to ad-
dress these problems CANINE: Converter and ANonymizer
for Investigating Netflow Events). This paper demonstrates
the use of CANINE in detail.

1 Introduction
A network flow is defined as a sequence of IP packets that
are transferred between two endpoints within a certain time
interval, and the most commonly used NetFlows formats
are Cisco [1] and Argus [3]. With the increased use of
NetFlows for network security monitoring [5], more and
more tools based on NetFlows are being built and deployed.
However, the different NetFlow sources, as well as col-
lectors deployed, generate different incompatible versions
of NetFlows. The different NetFlow formats impede the
progress of network security monitoring since most tools
that are based on NetFlows support only one format, but
organizations often have hardware generating multiple for-
mats. We were motivated to develop the CANINE to aug-
ment our existing flow tools [6, 7] by enabling them use
NetFlows from the multiple sources here at the NCSA.

In addition to issues with format conversion, people of-
ten have concerns about information disclosure when shar-
ing NetFlow logs—a source of sensitive network informa-
tion. Consequently, we integrated anonymization capabili-
ties with the converter. CANINE supports the anonymiza-
tion of 8 fields common to all NetFlow formats: source
IP address, destination IP address, starting timestamp,
ending timestamp, source port, destination port, protocol
and cumulative byte count. This combined converter and
anonymizer has been vital to the development of visualiza-
tion tools at the NCSA[6, 7] as it allows students to work

with sensitive log data. We expect this work to likewise
promote better insight into the use of NetFlows for security
and network performance monitoring at other institutions.

The rest of the paper is organized as follows. Section 2
illustrates the system architecture of the CANINE. In sec-
tion 3, we describe the the supported NetFlow conversion
and anonymization methods. We conclude in Section 4.

2 System Architecture
The system architecture of CANINE is shown in Figure 1.
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Figure 1: System Architecture of CANINE

CANINE consists of the two main modules: (1) the CA-
NINE GUI and (2) the conversion/anonymization engines.
The CANINE GUI accepts user input for NetFlow con-
version and anonymization options, sends the request to
the processing engine and summarizes the results of the
performed actions in a pop-up window. First, the conver-
sion engine reads the NetFlow data record from the source
file and parses it into its component fields. Next it sends
the unanonymized data to the anonymization engine. The
anonymization engine houses a collection of anonymiza-
tion algorithms, and it anonymizes the data according to the
user’s chosen options before it sends the data back to the



conversion engine. The conversion engine reassembles the
anonymized data according to the conversion options and
writes the records to the destination file. Statistics are col-
lected and sent back to the GUI which displays them in a
new window.

3 Demonstration of CANINE

The root window of CANINE is shown in Figure 2.
In the source [destination] information fields, the user
can designate the source [destination] NetFlow format
and file. Below these fields, the user can choose the
fields to anonymize and the specific anonymization al-
gorithms to use—many fields have multiple anonymiza-
tion options. Below that, the task control area is
used to start [stop] anonymization and display the cur-
rent progress. CANINE can be freely downloaded at:
http://security.ncsa.uiuc.edu/distribution/CANINEDownLoad.html

Figure 2: Main GUI of CANINE

3.1 NetFlow Conversion

CANINE’s conversion engine currently supports conver-
sion between Cisco V5, Cisco V7, Argus and NCSA unified
formats. We briefly describe those formats below.

A. Cisco NetFlows
A Cisco NetFlow [2] record is a unidirectional flow identi-
fied by the following unique keys: source IP address, desti-
nation IP address, source port, destination port and protocol
type. There are multiple versions of Cisco NetFlows (e.g.,
V1, V5, V7, V8 and V9). In all versions, the datagram
consists of a header and one or more flow records. Most
importantly, the header contains the version number and the
number of records that follow in the datagram. For more de-
tails about the formats of each version, readers are referred
to [1]. Currently, CANINE supports the most commonly
used Cisco versions: V5 and V7. It will also support a mix-
ture of V5 and V7 datagrams from an input file, though the
output will all be in one format.

B. Argus NetFlows
Argus [3] views each network flow as a bidirectional se-
quence of packets that typically contains two sub-flows, one
for each direction. Each flow record contains the attributes
of source IP, source port, destination IP, destination port,
protocol type, etc. There are two types of Argus records: the
Management Audit Record and the Flow Activity Record,
where the former provides information about Argus itself,
and the latter provides information about specific network
flows that Argus has tracked. For more details about the
format, readers are referred to [4]. Note that unlike Cisco
formats, Argus flows are ASCII text, rather than binary.

C. NCSA Unified Format
Since different versions of Cisco NetFlow Export datagrams
are generated by the diverse routing equipment at the NCSA
and because Cisco datagrams are of variable length, we
have created the fixed length NCSA Unified format for use
by our visualization tools ([6, 7]). This is important for ef-
ficiently supporting random access to records. The NCSA
unified format contains the principle information about a
network flow, as illustrated in Table 1 and serves as an in-
ternal format into which multiple versions of NetFlows can
be transformed.

Table 1: NCSA unified record format
Data Field Length(B)
version of Cisco NetFlow 1
padding (set to 0) 1
router’s IP address 4
source IP address 4
destination IP address 4
source port number 2
destination port number 2
number of bytes 4
number of packets 4
protocol 1
TCP flags 1
start time (seconds since epoch) 4
milliseconds offset of start time 2
end time (seconds since epoch) 4
milliseconds offset of end time 2
padding (set to 0) 4

3.2 NetFlow Anonymization
CANINE’s anonymization engine supports the anonymiza-
tion of 8 data fields—only 5 unique types. Below we de-
scribe the anonymization options and their use within the
latest version of CANINE.

3.2.1 IP Anonymization

We support three options to anonymize IP addresses. Note
that either both the source and destination IP addresses
are anonymized or both are unanonymized. You cannot

2



anonymize one without the other. The IP anonymization
options GUI is shown in Figure 3.

Figure 3: IP Anonymization Options

A. Truncation
For IP address truncation, the user chooses the number of
least significant bits to truncate. For example, truncating
8 bits would simply replace an IP address with the corre-
sponding class C network address. Truncating all 32 bits
would replace every IP with the constant 0.0.0.0.

B. Random Permutation
We also support anonymization by creating a random per-
mutation seeded by user input. We implement this algo-
rithm through use of two hash tables for efficient lookup.
Note that the use of tables means that the permutation will
be different for two different logs anonymized at different
times.

C. Prefix-preserving Pseudonymization
Prefix-preserving pseudonymization is a special class of
permutations that have a unique structure preserving prop-
erty. The property is that two anonymized IP addresses
match on a prefix of n bits if and only if the unanonymized
addresses match on n bits. We implemented the Crypto-
PAn algorithm [8] for this type of anonymization, adding a
key generator that takes a passphrase as input.

3.2.2 Timestamp Anonymization

Timestamps can be broken down into the units of Year,
Month, Day, Hour, Minute and Second. We currently sup-
port three options to anonymize timestamps. The timestamp
anonymization GUI is shown in Figure 4.

A. Time Unit Annihilation
We support the annihilation of any subset of the previously
mentioned units. The user selects the time units to zero-
out. For example, if someone wishes to obfuscate the date,
they can remove the year, month and day information from
the ending times. If they want to completely eliminate time

Figure 4: Timestamp Anonymization Options

information, they can select all of the time units for anni-
hilation. Start times are adjusted so that the duration of the
flow is kept the same.

B. Random Time Shift
In some cases it may be important to know how far apart two
events are without knowing exactly when they occurred.
For this reason, a log or set of logs can be anonymized at
once such that all timestamps are shifted by the same ran-
dom number. The user needs to designate the lower and up-
per shift limit, from which the random number of seconds
is generated. If one uses this type of anonymization on two
different log files at different times, then this random num-
ber will be different between the data sets. We warn users
to be aware of the troubles with data mining (by indexing
the timestamp) between sets anonymized at different times
in this manner.

C. Enumeration
With this method, all time information is essentially re-
moved except the order in which the events occurred. A ran-
dom end time for first record is chosen, and all other records
are equidistantly spaced from each other—temporally that
is—while retaining the original order with respect to end-
ing times. Start times are adjusted so that the duration of
the flow is kept the same. Sorting cannot work perfectly on
streamed data, and it would be extremely slow on large log
files. So we make use of the fact that records come roughly
sorted by ending times and sort locally. This has worked
with great accuracy and efficiency.

3.2.3 Port Anonymization

We support two anonymization options for port numbers.
The port number anonymization GUI is shown in Figure 5.

A. Bilateral Classification
Usually, the port number is useless unless one knows the
exact value to correlate with a service. However, there is
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Figure 5: Port Anonymization Options

one important piece of information that does not require one
to know the actual port number: whether or not the port is
ephemeral. In this way, we can classify ports as being below
1024 or greater than 1023. To keep the format the same for
log analysis tools, port 0 replaces all ports less than 1024,
while port 65535 replaces the rest of the port values.

B. Black Marker Anonymization
From an information theoretic point of view, this method is
no different than printing out a log and blacking-out every
port number. In a digital form, we just replace all ports with
a 16 bit representation for 0.

3.2.4 Protocol Anonymization

Protocol information can be eliminated with CANINE. We
do this by replacing the protocol number with the unused,
but IANA reserved, number of 255. This is the maximal
number for that 8 bit field.

3.2.5 Byte Count Anonymization

For user privacy, one may desire to eliminate byte counts.
Thus we support black marker anonymization of this field.
All byte counts are replaced with the constant of 0, an im-
possible byte count in reality because headers do account
for some of those bytes.

3.3 Task Result Dialog
After the CANINE task finishes, a brief task summary will
be shown to the user in a pop-up window ( Figure 6).

Figure 6: Task Summary Dialog of CANINE

The task summary includes the following information:
source and destination formats/filenames, date of process-

ing, anonymization methods used, number of records pro-
cessed and the total processing time. The user can save and
print the task summary for future reference.

4 Summary
In this paper, we put forth two important problems facing
the developers of NetFlow based tools: (1) NetFlows come
in different and incompatible formats, and (2) the sensitive
nature of NetFlow logs make it difficult for developers to
find good data sources. Our tool, CANINE, addresses both
of these issues by giving users the ability to both convert
and anonymize NetFlow logs.

While users have many options to anonymize NetFlows
with CANINE, it can still be difficult to choose the cor-
rect options for a particular organization’s needs. Thus,
future work should focus on creating multiple, useful lev-
els of anonymization that trade-off between the utility of
the anonymized log and the security of the anonymization
scheme. This work should also strive to help organizations
map levels of trust shared with would-be receivers to these
different levels of anonymization.
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Abstract

TCP/IP ports which are not in regular use (quiescent
ports) can show surges in activity for several reasons.
Two examples include the discovery of a vulnerability
in an unused (but still present) network service or a new
backdoor which runs on an unassigned or obsolete port.
Identifying this anomalous activity can be a challenge,
however, due to the ever-present background of vertical
scanning, which can show substantial peak activity. It is,
however, possible to separate port-specific activity from
this background by recognizing that the activity due to
vertical scanning results in strong correlations between
port-specific flow counts. We introduce a method for de-
tecting onset of anomalous port-specific activity by rec-
ognizing deviation from correlated activity.

1 Introduction

The CERT Network Situational Awareness Group is us-
ing SiLKtools 1 to analyze Cisco NetFlow data collected
for a very large network. Details on the functionality of
SiLKtools can be found in other publications from our
center. [1]

The analysis techniques in this paper can be used on
any flow-based data source. In our case, the analysis
is performed on hourly summaries on the inbound num-
ber of flows, packets and bytes on each port, where “in-
bound” simply refers to traffic coming into the monitored
network from the rest of the Internet.

Analysis of network flows for anomalous traffic can be
challenging due to fluctuations in traffic that are resistant
to variance-based statistical analysis. [2] We have dis-
covered that, for a restricted set of network phenomena,
correlations between flow counts on different ports can
be a useful way of filtering out “background” activity.
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Figure 1: Histogram of robust pairwise correlation val-
ues (not including self-correlations or duplicates, since
the correlation matrix is symmetric) for hourly flow
counts on server ports 0-1024. Note that a significant
proportion of the ports are well-correlated.

2 Correlations

Our data shows extremely high correlation (frequently
> 0.99) between flow counts on many ports which do
not have active services running on them (see Fig. 1).
Because of the lack of “normal” traffic on these ports,
any activity which is present is very likely to be due to
vertical port scanning. As long as the port scanning pro-
ceeds quickly enough, then a vertical scan deposits the
same number of flow records for each port within the
time period over which flow counts are summed. Thus,
the number of flows to each port will be highly corre-
lated with the number of flows to other quiescent ports.
This characteristic is indeed observed on the very large
network that we are monitoring.

Given that a set of ports are normally correlated, then
by calculating the median of the number of flows on each



port in an hour, and then subtracting that median value
from the number of flows observed on each port in that
hour, we can remove the correlated background activity
from analysis. This background-subtracted time series
can then be analyzed for port-specific behavior through
normal peak-finding algorithms.

A useful (though untested) method for detecting the
remaining peaks might include using a “trimmed mean”
(mean calculated from the data points remaining after re-
moving outlier data points) and “trimmed standard de-
viation.” The “trimmed” mean and standard deviation
would be used similarly to the ordinary mean and stan-
dard deviation to identify outliers (flow counts which lie
above the mean by some multiple of the standard devia-
tion).

The use of the median instead of the mean, and the
use of “trimmed” means and standard deviations in our
method is for the same reason we used a “robust” cor-
relation method as described below–to prevent outliers
(which would be the things we are trying to detect) from
attenuating the sensitivity of the detection algorithm in-
appropriately.

2.1 Correlation clusters

If traffic on port A is correlated with port B, and port B
is correlated with port C, then port A is also correlated
with port C. Thus, ports A, B and C will form a cluster
of correlated ports. We processed our correlation matri-
ces to discover such clusters of ports which are all mutu-
ally correlated. These clusters are surprisingly large, and
could be even larger in situations (unlike our own) where
traffic is not filtered (a darknet, for example).

To prevent isolated anomalies during the learning pe-
riod from interfering with identifying the true clusters,
we used a “robust correlation.” The robust correlation
measure is calculated using the minimum volume ellipse
approach. This method was discussed in [3] in the con-
text of calculating robust statistical distances. Since cor-
relation is a measure which is highly sensitive to even
one or two outliers, we wish to exclude extreme obser-
vations. Therefore, the data used for the correlation cal-
culation consist of all points enclosed by the 95 percent
minimum volume ellipse. This is the smallest possible
ellipse which covers 95 percent of our data.

For incoming traffic on TCP ports 0-1023, using the
“robust” correlation measure, and requiring a correlation
≥ 0.96 for one port to be considered correlated with an-
other port, we found a single cluster of 133 ports, and a
second cluster of 3 ports. More careful analysis may re-
veal the clusters of mutually correlated ports to be larger,
if some ports had sustained anomalous activity, but are
otherwise well-correlated.

3 Server ports

The ports numbered 0-1023 are by convention reserved
for use by server programs owned by the “superuser” or
system user. For this reason, the traffic patterns on these
ports are quite different than for the higher-numbered
“ephemeral” ports. The traffic on our network is con-
sistent with this generalization.

Since a number of ports in the server port range are
in active use by common services (most notably “web”
traffic on ports 80/tcp and 443/tcp, and “email” on port
25/tcp), and others are usually filtered on real-world net-
works, not all ports would be expected to correlate well.
However, unused ports, whether unassigned or obsolete,
would be expected to have very little active traffic; we
call such ports “quiescent,” i.e. mostly quiet.

Correlations on quiescent server ports arise from the
presence of vertical scanning activity (where a source
host is scanning through all port numbers, or at least the
server port numbers, on a target host). Deviations from
correlated activity would be expected in the case of hor-
izontal scanning (scanning for a particular port across
hosts). An onset of horizontal scanning on a particu-
lar port might be expected if a new vulnerability is an-
nounced in an obsolete, but still present, service.

Onset of sustained activity which deviates from prior
correlation could indicate the presence of a worm (self-
propagating exploit program) on that port.

4 Ephemeral ports

The ports numbered 1024 and above are used by user
space programs, primarily as temporary ports for out-
going connections by client programs such as web
browsers. While this convention has been blurred some-
what by peer-to-peer programs and other unprivileged
servers, the model still holds for most ports.

In our data set, nearly all the ephemeral ports show
strong correlations, with daily and weekly seasonal pat-
terns (see Figs. 2 and 3). This is consistent with the
rhythms of user-driven traffic, meaning that the data
comes from user space client programs connecting out
to servers. Because such a connection creates two flow
records (one for the outbound connection, but another for
the return traffic within the same TCP session), we see
return traffic flows in our “incoming” data set. An analy-
sis of ephemeral port traffic verifies this hypothesis, with
most of the data (where the definition of “most” depends
on the day and time of day) consists of traffic from source
ports 80/tcp, 443/tcp and 25/tcp, in that order.

Future improvements to our flow record collection
software will allow easy differentiation of true incoming
flows vs. return traffic from outbound connections. For
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Figure 2: Example of incoming flow counts for 50
ephemeral ports for a one week time period in 2005.
Note the daily and weekly seasonality consistent with
user-generated activity.

the purposes of the analysis method described in this pa-
per, however, the distinction is unimportant, as the return
traffic patterns are highly correlated, as are any vertical
scans taking place (though analysis has revealed that ver-
tical scans of ephemeral ports are rare in our data). Devi-
ation from correlated activity will have already removed
the background of return traffic flows and vertical scan-
ning, at least approximately. Any remaining significant
peak activity will be due to special attention to a particu-
lar port or set of ports, just as with server ports.

Possible explanations for the onset of persistent de-
viant activity on an ephemeral port include: widespread
scanning for a particular backdoor, port activity due to
a new peer-to-peer protocol, the onset of activity for a
worm that uses a particular ephemeral port to spread
or perform other tasks, or scanning or exploit of a vul-
nerability in a mostly quiet server running on a high-
numbered port.

5 Port 42/TCP, a case study

Port 42/TCP hosts the Microsoft Windows Internet Nam-
ing Service (WINS) service on Microsoft Windows
hosts, an obsolete directory service which neverthe-
less was present in some versions of Windows as re-
cent as Windows Server 2003, for backwards compat-
ibility. On November 25, 2004, a remote exploit vul-
nerability in the WINS service was first announced by
CORE Security Technologies (www.coresecurity.com)
to their CORE Impact customers, in their exploits up-
date for that day. The next morning, a more public an-
nouncement was made by Dave Aitel of Immunity, Inc.
(www.immunitysec.com) on his “Daily Dave” email list.
This vulnerability was later assigned CVE number CAN-
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Figure 3: Histogram of correlation values for pair-
wise correlations between 1024 ephemeral ports (specifi-
cally, 50000-51024), excluding self-correlations and du-
plicates (since the correlation matrix is symmetric). Note
the high concentration of highly correlated pairs.

2004-1080, and is discussed in CERT Vulnerability Note
VU#145134.

In Fig. 4 we compare the data for incoming flow
counts, destination port 42/TCP, to the median of incom-
ing flow counts to several other ports. Fig. 5 shows the
difference between the 42/TCP data and the median data.
These two plots cover approximately a two month time
period in 2004 preceding the announcement of the WINS
vulnerability. The median value from a correlation clus-
ter is used (rather than the mean) because a large devia-
tion in one of the time series could significantly affect the
mean, but not the median. The difference between a flow
count and the median flow count for the cluster, there-
fore, would be a better indicator of the deviation from
the expected value.

There are two significant periods of deviation in
42/TCP in the two month period before the announce-
ment of the WINS vulnerability, which are explained be-
low. The important thing to note is that the deviant peaks
in the two week time period around October 15th, and the
peak at October 28th, are well within the normal vari-
ability of the data. The correlation technique separates
the background (due to vertical scanning) from the sig-
nal we are looking for (due to special attention to port
42, or port 42 and some list of other ports).

In early October, two IP’s scanned a set of 18 mostly
non-contiguous ports (e.g. 22, 25, 53, 1080) on the mon-
itored network, including port 42. Because of the larger
number of ports targeted, these scans probably do not
indicate foreknowledge of the WINS vulnerability to be
announced the next month. Instead, the set of ports could
have been used to determine active hosts, and a sim-
ple OS identification (port 42 indicating Microsoft Win-
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Figure 4: Incoming flow counts to destination port
42/TCP from our data and median incoming flow counts
to several other destination ports. The dashed line show-
ing the median flow counts is mostly obscured by the
solid line because of the high correlation. An exception
is the uncorrelated 42/TCP peaks in the two week pe-
riod centered on October 15th (which are pictured more
clearly in Fig. 5). Note that the uncorrelated peaks are
within the normal variation of the activity.
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Figure 5: The difference between the two time series
in Fig. 4. The two-week period of deviation, and the
smaller isolated peak, are explained in the text.
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Figure 6: Incoming flow counts to port 42/TCP after the
announcement of the WINS vulnerability, compared to
median incoming flow counts to several other ports.
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Figure 7: Difference between flow counts to port 42/TCP
and the median flow count to other correlated ports, after
the WINS vulnerability announcement.

dows, for example).
The smaller peak in late October appears on closer

analysis to be benign activity, possibly due to some
legacy systems attempting to use the WINS service.

While these these port 42-specific activities do not
represent important security events, the fact that they
were found easily using this method indicates that port-
specific activity of a more malicious nature, which would
otherwise be obscured by the background noise of verti-
cal scanning in the server port range, could be discovered
easily using the methods described in this paper.

The data after the WINS vulnerability announcement
shows a significant peak in the number of incoming flows
starting on December 1st at 2:00am GMT, but the num-
ber of hosts involved was still small. By midnight GMT
of that same day, however, the number of hosts had
surged considerably, and it would have been clear that
there was new, widespread interest in port 42/TCP.
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Figure 8: Number of unique hosts per hour attempting
connections to 42/TCP from the Internet. By 12:00am
GMT December 2nd the number of hosts was clearly
much higher than had previously been seen.

The first public announcement we were able to find of
widespread scanning on port 42/TCP was on December
13, in an email message by James Lay to the Full Dis-
closure email list—11+ days after significant scanning
was clearly visible in our data using our correlation tech-
nique. If we had been using our correlation technique
operationally at that time, an earlier announcement of
widespread scanning would have been possible.

6 Port 2100/TCP

Port 2100/TCP lies in the “ephemeral” port range, but is
actually also used for the Oracle FTP service. An exploit
was released on March 18, 2005 for a vulnerability an-
nounced in August of 2003.2 Fig. 9 clearly shows that
scanning of port 2100/TCP commenced at that time.

7 Conclusions

Our analysis of port 42/TCP traffic shows a clear onset of
scanning activity specific to port 42 after the announce-
ment of the remote exploit vulnerability in the WINS ser-
vice announced in late November of 2004. The scanning
activity was clearly detectable well before any public an-
nouncement of such scanning.

The usefulness of subtracting the correlated back-
ground from per-port traffic summaries to detect port-
specific behavior lies in the simplicity of the method,
and in its ability to ignore vertical scanning as well as
the background of web/email activity.
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Figure 9: Flows per hour incoming to port 2100/TCP
in March–April 2005 (red, or upper, line) as compared
to nine ports which were correlated to 2100/TCP at the
beginning of that time period.
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Abstract

The R statistical language provides an analysis environ-
ment which is flexible, extensible and analytically pow-
erful. This paper details its potential as an analysis and
visualization interface to SiLK flow analysis tools as part
of a network situational awareness capability.

1 Introduction

The efficacy of network security analysis is highly de-
pendent upon the data interface and analysis environment
made available to the analyst. The command line seldom
offers adequate visual displays of data, while many GUI
designs necessarily limit the query specificity afforded
at the command line. This paper proposes the use of R,
a statistical analysis and visualization environment, for
interfacing with flow data. R is a complete program-
ming language and, consequently, is highly extensible.
Its built-in analysis and visualization capabilities provide
the analyst with a powerful means for investigating and
modeling network behavior.

2 R! What is it good for?

R is a language and environment for statistical comput-
ing and graphics used by statisticians worldwide. It is
syntactically very similar to the S language which was
developed at Bell Laboratories (now Lucent Technolo-
gies). Unlike S, R is available as free software under the
terms of the Free Software Foundation’s GNU General
Public License in source code form. Additional details
are provided by the R Project for Statistical Computing
(http://www.r-project.org/). The website also provides
links to documentation and program files for download-
ing. Supported platforms include Windows, Linux and
MacOS X.

R is an object-based environment which can run inter-
actively or in batch mode. It has the ability to generate

publication-quality graphical displays on-screen or for
hardcopy. Users can write scripts and functions which
leverage the programming language’s many features, in-
cluding loops, conditionals, user-defined recursive func-
tions and input/output facilities. For computationally-
intensive tasks, C and Fortran code can be linked.

There are a handful of packages supplied with the
R distribution covering virtually all standard statistical
analyses. Many more packages are available through the
Comprehensive R Archive Network (CRAN), a family
of Internet sites covering a very wide range of modern
statistical methods.

3 SiLK Tools

The suite of command line tools known as the Sys-
tem for Internet-Level Knowledge (SiLK) are used for
the collection and examination of Cisco NetFlow ver-
sion 5 data. The CERT Network Situational Awareness
(NetSA) Team wrote SiLK 1 for the purpose of analyzing
flow data collected on large volume networks. Flow data
provides summaries of host communications providing a
comprehensive view of network traffic.

The SiLK analysis tools provide Unix-like commands
with functionality that includes selecting (a.k.a. filter-
ing), displaying (ASCII output), sorting and summariz-
ing packed binary flow data. Multiple commands can
also be piped together for complex filtering. In this pa-
per, we utilize the tools rwfilter (to select the data) and
rwcount to generate binned time series of flow records,
bytes and packets and feed the results into R for analysis.
Further details on the functionality of SiLK can be found
in [1].

4 Motivation: Command Line versus GUI

Many experienced users enjoy the query specificity af-
forded by the command line. But, in order to visualize



R Objects
Object Description
vector ordered collection of numbers
scalar single-element vector
array multi-dimensional vector
matrix two-dimensional array
factor vector of categorical 2 data
data frame matrix-like structures in which the

columns can be of different types (e.g.,
numerical and categorical variables)

list general form of vector in which the
various elements need not be of the
same type, and are often themselves
vectors or lists. Lists provide a
convenient way to return the results
of a statistical computation.

function an object in R which manipulates
other objects

Table 1: Data object types in R

their data, they must make do with a third-party graphing
program. They often do not favor a graphical user inter-
face because their options for both queries and visualiza-
tion tend to become more limited. What we hope to pro-
vide with the R interface is a preservation of command
line control with the added features of integrated visu-
alization and analysis. Essentially, we would describe
it as an enhanced command line experience, but it also
provides the analyst with all of the benefits of the R lan-
guage’s object-based workspace model.

5 R Data Manipulation

5.1 R Data Objects

Every entity in the R environment is an object. Numeric
vectors, ordered collections of numbers, are the simplest
and most common type of object, but there are many oth-
ers. See Table 1 for a description of the object types.

In this paper, our example uses a data frame to store
our data. The data frame object is a very flexible matrix-
like entity which, unlike a matrix, allows the columns to
be of different types.

5.2 SiLK Data Access

It should be noted that while we use R to interface with
SiLK, virtually any command-line tool could be used
with R. Also, R has multiple SQL database interface li-
braries. Many methods exist for interfacing with data

stores. We detail below the R-SiLK interface being used
at this time.

Within R, wrapper functions tied to specific tools in
the SiLK suite read in the user-specified SiLK command
line as a text-string parameter. The wrapper function
makes a system call to the computer running the flow
tools. Then, using a standard R data input function, the
wrapper function reads in the ASCII output of the com-
mand line call. The results of the wrapper function call
are assigned to a list object in R. Each element of that
list represents a different analysis result, e.g. a matrix
of the data, summary statistics, etc. Subsequent analysis
and visualization operations can then be applied to that
output object or any of its elements.

5.3 R Workspace

All objects are located in the user’s workspace which can
be saved at the conclusion of the R session and restored
at the start of the next session. The command history()
produces a list of all commands submitted to R by the
user.

5.4 Analysis Capability

From simple summary statistics to advanced simulations,
the R platform provides functions, extension packages
(available through CRAN) and visualization capabilities
appropriate to a wide range of flow analysis tasks. The
object-based nature of the R environment makes it a use-
ful platform for the network security analyst. Objects
from different analyses can be preserved in the user’s
workspace for comparison purposes. Also, rapid proto-
typing of new analysis tools is possible due to the wealth
of built-in capabilities and the ease with which new func-
tions can be written.

The CERT/NetSA Team has used R for a variety of
analysis tasks, from logistic regression to robust correla-
tion analysis. We have used its SQL interface functional-
ity to access hourly roll-ups of flow data summarized by
port and protocol from a special database created specifi-
cally for port analysis. This has made it possible to study
temporal correlations in port activity and identify ports
which are exhibiting substantial volumetric changes.

5.5 Graphing Capability

One of the most important features of R is its ability to
create publication quality graphical displays. R has a
huge set of standard statistical graphs, stemplots, box-
plots, scatterplots, etc. Extension packages are available
for more advanced 3D plotting and highly-specialized
display types. The advantage for the analyst running R
in interactive mode is the ability to make slight changes
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Figure 1: Graphical output of rwcount.analyze()

to the SiLK query and quickly visualize those changes in
a newly drawn graph. Given the flexibility of its graphi-
cal facilities, R is also an ideal environment for advanced
analysts to perform visualization prototyping.

6 R-SiLK wrapper function prototype: rw-
count.analyze()

Our first proof-of-concept SiLK interface function is the
wrapper rwcount.analyze() which calls the SiLK tool rw-
count. Details of this wrapper function are provided in
Table 2. The function has two input parameters, com-
mand and plot. The parameter command is a text string
which is assigned a SiLK command line call to rw-
count, which returns binned time series of records, bytes,
and flows. The other input parameter, plot, determines
whether a graphical display will be generated at runtime.
The default is plot=TRUE. The visualization provided
in our prototype includes three plots: a time series plot,
side-by-side boxplots, and a 3D scatterplot of the data.
Figure 1 provides an example of the graphical output
generated by rwcount.analyze().

When rwcount.analyze() is called, its output is as-
signed to a list object in R. The list it generates contains
five elements: data, command, stats, cor, and type. These
elements are defined in Table 2.

A sample R session using rwcount.analyze() to exam-
ine FTP traffic is provided below. The parameter com-
mand is assigned a SiLK command line. In our example,
we specify TCP traffic (−−proto=6) directed at destina-
tion port 21 (−−dport=21) for the hour between noon
and 1 p.m. on May 18, 2005. Those specifications are
provided to rwfilter via switches, and the selected flows
(in binary, packed format) are piped into rwcount where
we have specified a bin size of thirty seconds (−−bin-
size=30). The output of rwcount consists of the time
series of bytes, records and packets which are read into a
data frame object in R. This data frame is also an element
in the output list object returned by rwcount.analyze().

In this example, the output list returned by the function
is assigned to obj. The list of object elements are printed
with the function names() and correspond to the items
in Table 2. As an example of automated analysis that
can be returned in a results object, the correlation ma-
trix of the series is found in obj$cor. This output shows
that bytes, records and packets are highly correlated with
each other (ρ > .99). Since obj$data is a data frame of
the three time series, we can print the records field by
typing obj$data$Records. This is one of the time series
plotted in Figure 1.

> obj <- rwcount.analyze(command=
"rwrun rwfilter
--start-date=2005/05/18:12:00:00
--proto=6
--dport=21
--print-file
--pass=stdout |
rwcount
--bin-size=30",
plot=TRUE)

> names(obj)
[1] "data" "command" "stats" "cor"
[5] "type"

> obj$cor
Records Bytes Packets

Records 1.0000 0.9944 0.9951
Bytes 0.9944 1.0000 0.9964
Packets 0.9951 0.9964 1.0000

> obj$data$Records
Records

05/18/2005 12:00:00 76218
05/18/2005 12:05:00 73374
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rwcount.analyze() details

Input Parameters
Parameter Description
command SiLK command line text string
plot Logic element determines whether

R will perform runtime plotting

Output List Elements
List Element Description
data Data frame containing rwcount

time series for Bytes, Records and
Packets

command Same as input parameter description
stats Summary statistics for Bytes, Records

and Packets
cor Correlation matrix for Bytes, Records

and Packets
type Text string to indicate which wrapper

function generated this object

Table 2: rwcount.analyze() function description

05/18/2005 12:10:00 55743
...

7 Analyst Benefits

One of the advantages of R is its potential for rapid anal-
ysis prototyping. A user can very quickly write functions
that generate a slew of experimental analysis results de-
scribing a host, a subnet, or traffic volumes. Each result
can be included in the function’s output list and evalu-
ated. Analysis results which prove useful can be quickly
integrated and become standard output elements.

In analytical work, the ability to label preliminary re-
sults objects provides the investigator with a facility for
generating an audit trail. In R, this labeling is performed
by the addition of object elements which describe the ob-
ject to either the analyst or other functions which will
operate on the object. By default, rwcount.analyze() re-
turns the elements type and command. The element type
can be used to describe the object to other functions.
For example, a generic graphing function (perhaps called
rw.visualize()) would read in an object and determine
how it should be displayed based upon its type. The ele-
ment command describes to the user how the object was
created by storing the SiLK command. Additional ele-
ments can also be added to existing objects. For instance,
a user may wish to attach a comment (e.g. ”Surge in host
count lasted for 6 hours”) to an object by adding a text
string element.

Since objects are preserved when the users save their
workspace in R, comparison with objects from future
analyses is very simple. Also, the user can graph objects
from a previous analysis side-by-side with new results.

We believe the experienced analyst will leverage the
enhanced command line experience, fast visualization
and rapid analysis prototyping. For analyses requiring
longer data pulls, R can also serve as an integrated script-
ing and analysis environment.

We envision a hierarchy of analysis functions. At the
lowest level would be functions like rwcount.analyze()
which use a SiLK command line call as a parameter. A
function at the next level of the hierarchy would allow a
user to specify criteria of interest via function parameters
(e.g. dport=80, proto=6). This function would both gen-
erate the necessary SiLK command line and submit it to
rwcount.analyze() for processing. Using these functions,
novice analysts unacquainted with the SiLK command
line would be able to perform real analysis tasks imme-
diately. These functions could also be used for learning
purposes since the SiLK command line needed for the
query is provided in the output object.

8 Future Work

Our wrapper function rwcount.analyze() is merely a
proof-of-concept prototype of an interface between R
and SiLK. Next steps include the development of addi-
tional wrapper functions, making further improvements
to rwcount.analyze(), and developing a generic visualiza-
tion scheme that reads the type field in an output object
to determine the appropriate display.

9 Conclusion

This paper has introduced the reader to R, demonstrat-
ing an overlap between its capabilities and the needs of
network security analysts. R provides a truly integrated
environment for data analysis and visualization. Further,
the ability to interface with SiLK flow analysis tools and
other data storage formats makes it an ideal environment
for enhancing and extending a network situational aware-
ness capability.
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Motivation
• Motivated by the concerns of Security

Engineers at NCSA
• How do you provide situational awareness of

the network – awareness of the state of the
devices on the network

• Focus on situational awareness then intrusion
detection

• Wanted a tool where the user can see the
state information of the devices on the network
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Situational Awareness Using Visualization
• Use visualization to show information about

the network
• Visualization is used because it is:

– Easy to detect patterns in the traffic
– Conveys a large amount of information concisely
– Can be quickly created by machines

• Use the security engineers background
knowledge and analysis capabilities along with
the capability of machines to quickly process
and display data.
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Key Features of Network Visualizations for
Security

• Interactivity: User must be able to interact
with the visualization

• Drill-Down capability: User must be able to
gain more information if needed

• Conciseness: Must show the state of the
entire network in a concise manner
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Interactivity
• Allow security engineer to decide what to see

– Data views (Cumulative, Animation (interval lapse)
and Difference)

– Features to view (traffic in/out, number of ports
used, etc)

– Filtering
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Drill-down capability
• Allow security engineer to see the network at

different levels of resolutions
• Entire network – Galaxy View
• A subset of hosts  – Small Multiple View
• A single machine (IP) – Machine View
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Conciseness
• Allow a security engineer to view a large

amount of information concisely
– Show entire network with minimum of scrolling

…..thus allow security engineer to gain situational
awareness of the network
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For a single IP
• FlowCount - Number of times IP address was part of

flow (Flow Count)
• SrcFlowCount, DstFlowCount – Number of time IP

address was source and destination of a flow
• PortCount – Number of unique ports used
• SrcPortCount, DstPortCount – Number of unique

ports used as source and destination ports
• ProtocolCount – Number of unique protocols used

• ByteCount – Number of bytes transferred.A
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Getting NVisionIP

• Distribution Website:
http://security.ncsa.uiuc.edu/distribution/NVisionIPDownLoad.html

• SIFT Group Website:
http://www.ncassr.org/projects/sift/
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Conclusion

• Combine Security Engineers’ skills with the
visualization capabilities of machines.

• Visualizations with three key properties to
provide Situational Awareness:
– Interactivity
– Drill-Down Capability
– Conciseness
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The problem
Cooperative flow data analysis efforts are
often hampered by incompatible native data
formats among analysis tool suites.

Mandating a common format is impractical:
 Expensive to integrate into each suite.
 Least common denominator approach fails for

suites which share uncommon information
elements or data representations.



© 2005 Carnegie Mellon University            3

A solution
Translate flows and summaries at data
sharing interface.
 Use native formats internally.
 “Single box” translation at the sharing

interface avoids least common denominator
issues.

 Modifying each flow at the sharing interface
generally has to happen anyway, for
sanitization and obfuscation purposes.
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Flows as Events
“Event”: an assertion made by some event source
that something happened at some point in time,
possibly continuing for some duration.

Event is “base class” from which all other classes of
event data inherit.

Both raw flow records and many types of time-series
analytical products can be represented as events.

Treating flows as events allows correlation with other
(non-flow) data sources, as well.
 SIM/SEM
 NIDS/IPS
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Event Data Model
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Uniflows and Biflows
Raw Netflow data is unidirectional – one flow
for each direction of a session (“uniflow”).
 necessary for asymmetric routing
 can be burdensome for analysis

Bidirectional flow data (“biflow”).
 sensing technologies which operate at L2 can

generate biflows (e.g. Argus)
 matching uniflows into biflows possible,

computationally expensive
 semantics of “source” and “destination” can

become confusing



© 2005 Carnegie Mellon University            7

Associations
“Association”: assertion made by some source that a
set of “key” fields is known to map to a set of “value”
fields, and that this mapping is known to be valid for a
given time range.

Non-event data, useful for characterizing or
aggregating events:
 Network
 Organization
 Country Code

Associations can be used for aggregation during
translation, or may be translated themselves.
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Proposed Translator Design
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Incremental Development Plan
Current: NAF, libfixbuf
 modified event data model
 emphasis on accepting multiple raw flow file

formats
 uses IPFIX as interchange format

Future: “Bender”
 full event data model
 full I/O abstraction layer
 “Single box” interchange
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NAF
“NetSA Aggregated Flow”: reads from a variety of
flow formats into a single biflow summary format
based on IPFIX.

Allows aggregation of flows grouped by arbitrary
fields in raw flow data.

Addresses issue of receiving raw flow data from
multiple sources, but not of sharing summary data.

More compact than centralized storage and analysis
of raw flows.

NAF native format can be manipulated by IPFIX-
compliant implementations.



© 2005 Carnegie Mellon University            11

NAF Data Model
NAF uses a modified event data model.
 Event time replaced with aggregate time bin.

NAF aggregate flows can be represented by
the full event data model.
 time bin  start time
 bin length (+ time bin)  end time
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NAF Tools
nafalize
 aggregate raw flow data into NAF format.

nafscii
 print NAF formatted data as ASCII text.

nafilter
 select and/or sanitize NAF formatted data.
 not available in initial release.

Initial NAF tools public open source release in
one-month timeframe.
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IPFIX
IPFIX is an IETF protocol defining a template-
driven, self-describing binary data format, and
an extensible data model.
 Useful as a basis for defining new flow formats

in an interoperable way.
 Information model can be extended to support

other event types, flow summaries.
 Some gaps in built-in information model:

– No support for bidirectional flows (biflows).
– Single-record arrays are cumbersome (e.g. MPLS

label stacks).
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libfixbuf
IPFIX data format handling library.
 Handles templates, message and set headers.
 Transcodes data given two templates.
 Supports draft-trammell-ipfix-file-00 extensions for

persistent storage of IPFIX formatted data.
 No protocol semantics, but could be used as basis for

IPFIX exporting and collecting processes.

Used by NAF to implement its native format.

Available today:
 http://aircert.sourceforge.net/fixbuf
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Questions?
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Abstract

A significant technical barrier to the growth of the
security-oriented network flow data analysis community
is the mutual unintelligibility of raw flow and interme-
diate analysis data used by the proliferation of flow data
analysis tools. This paper presents a proposed solution
to this problem, a common event data model and a trans-
lator built around it to adapt each tool’s native format to
this common model.

1 Introduction

While non-technical barriers do exist to collaborative
network flow data analysis across administrative do-
mains, and these barriers are in many cases formidable,
organizations finding both the desire and the political
will to share data in the pursuit of a greater awareness
of activities on the Internet at large are soon presented
with another problem; their tools will not talk to each
other.

The Internet Engineering Task Force is presently ad-
dressing the raw flow data standardization problem with
IPFIX (Internet Protocol Flow Information Export) [1],
a flow data format and collection architecture based upon
Cisco’s NetFlow version 9. This standardization effort is
a start. However, it it not a complete solution to the inter-
operability problem. IPFIX is a wire protocol designed
to efficiently generate and move flow data from an ob-
servation point (such as a router) to a collector, and as
such does not address issues of short- or long-term data
storage, the expression of query results containing flows
or flow data summaries, or the handling of ancillary data
used in flow data analysis that is not necessarily flow-
oriented itself.

In addition, mandating that each existing flow collec-
tion and analysis toolchain use IPFIX natively is not re-
ally a satisfactory answer. While these toolchains will
have to support the import of IPFIX flow data as the IP-

FIX standard is deployed in new observation points, each
of these formats has evolved for a reason. If this were
not the case, little specialization would have occurred be-
yond raw Netflow itself.

How, then, to improve the technical state of interop-
erability and cooperation within the network flow data
analysis community? This paper presents a proposed so-
lution to this problem. Section 2 outlines the require-
ments of such a solution, sections 3 and 4 propose a data
model meeting these requrements, and section 5 builds a
candidate design for a translator around this model.

2 Requirements Analysis

We propose the application of an event translator to this
interoperability problem. The translator’s design must
meet the following requirements in order to be useful:

• Universality: the translator must be able to han-
dle any type of event, event summary, or associated
data, and be able to translate between any two se-
mantically compatible formats.

• Filterability: Since the interoperation point be-
tween organizations often requires data obfuscation
or sanitization, the translator must support filtering
during translation.

• Ease of Translation: the translator’s design must
seek to minimize the development time required to
add a new known format to the translator.

• Performance: though it is too much to expect a
workflow with a translation step to perform as well
as one using a toolchain’s native format, the trans-
lator must process data quickly enough to ensure
that translation does not inordinately slow down the
workflow.

• Portability: the translator must be able to run on
multiple POSIX (or POSIX-like) environments to

1



reflect the variety of environments used for flow
data processing.

3 Event Data Model

The key realization leading to this proposal is that at its
core, all collections of security-relevant network data,
whether from flow collectors, network intrusion detec-
tion and prevention systems, host monitoring and in-
trusion detection systems, security information managa-
ment products, etc., are made up of events . An event is
simply an assertion that, according to some event source
(e.g., a sensor, flow collector, etc.), something happened
at some point in time, and possibly continued happening
for some given duration. Therefore, every event record
must have start and end timestamps and some identifier
for the event source; these fields make up the event core
data model.

Event records are made up of key and value fields.
A key field is a field which defines some property of
the event itself (e.g., packer header information), while
a value field simply contains information about the event
(e.g., counters). Each event is comprised of three or more
key fields (including at least start, end, and source) map-
ping to zero or more value fields.

An event source is defined as a generator of a sin-
gle type of event at a single network observation point,
where type is defined by a list of key and value fields
required of events of that type. This restriction is intro-
duced to simplify processing of multiple types of data,
e.g., flow events and NIDS alert events, collected at the
same observation point; instead of associating a type
with each event, the type is associated with the event’s
source.

3.1 Uniflows and Biflows
Raw flow data records contain an IP 5-tuple (source and
destination IP address, source and destination port, and
IP protocol), as well as packet and octet counters, and
various routing information.

Flow data formats can be broadly split into two types:
unidirectional (e.g., Cisco NetFlow V5), and bidirec-
tional (e.g, Argus 1 and other pcap-based flow collection
systems). We will call these uniflows and biflows for
the sake of brevity. The requirement to handle both uni-
flows and biflows introduces some complexity into the
semantics of source and destination.

For any uniflow, the meaning of source and destination
are relatively straightforward; the source is the source IP
address from the IP headers of the packets making up
the flow, and the destination is the destination IP address
from the headers. Biflows complicate the matter some-
what. The most straightforward way to assign source and

destination for biflows is by the packet headers of the
first packet observed, so ignoring instability at flow cap-
ture startup, the source address of a biflow corresponds
to the connection initiator. However, we have seen at
least one biflow format storing data differently than this;
Q1Labs’ QRadar 2 product presents flows by local and
remote address, assuming some network perimeter under
observation, and stores an additional “direction” arrow to
note whether the connection is believed to have been ini-
tiated from inside or outside this perimeter. Note that this
greatly confuses the definitions of “source” and “desti-
nation”; it may be better instead to refer two each ad-
dress/port two-tuple as “endpoint A” and “endpoint B”.

Free convertibility among these types requires that
these semantics be stored for each event source, and that
event sources storing biflows with an implicit perimiter
must have a way of noting that perimeter.

Another difference between uniflows and biflows is
that biflows have twice the counters than uniflows do;
one counter of each type for packets initiated at each end-
point.

3.2 Summary Counters
It is also useful to exchange summary flow data. Retro-
spective traffic volume anomaly detection, for example,
can be performed on flows aggregated by time bin and
network. The core event data model natively supports
time binning; an event with a start time at the beginning
of the bin and an end time at the end of the bin represents
a record for that bin.

For summarization purposes, the data model supports
prefix lengths for source and destination address, as well
as special “any” labels for other key fields.

TopN lists and other simple sequenced key/value
counters bounded in time are another common type of
summary data. The event data model supports these us-
ing multiple events, one for each place in the sequenced
count list. Each of these events contains the key field and
the count value, as well as a sequence number to provide
order to the collection of events.

3.3 Event Classes
The event data model as described so far would seem to
inherit from one another; that is, both flows and counts
are types of events, and both uniflows and biflows are
types of flows. Therefore, the data model can naturally
be decomposed into classes in an object oriented design.

The classes comprising the event data model are illus-
trated in figure 1. The event data model is designed to
be extensible, so new fields can be translated from one
format to another, with the caveat that each class within
the data model is immutable, and that extensions are
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Event
start time
end time
source

Flow
source ip
destination ip
source port
destination port
source prefix
destination prefix
protocol
initiator arrow

Uniflow
flow count
octet count
packet count
initial TCP flags
union TCP flags

Biflow
src flow count
dst flow count
src octet count
dst octet count
src packet count
dst packet count
src initial TCP flags
dst initial TCP flags
src union TCP flags
dst union TCP flags

Count
label
sequence
value

Source
name
location
record type
perimeter

Figure 1: Event Model conceptual UML class diagram

achieved only by adding new classes which inherit from
existing ones, not by adding fields to existing classes.
This restriction is intended to reduce issues with data
model object versioning at implementation time.

3.4 Other Event Types

Though the event core data model can handle any event
placed in time and associated with an event source, this
document is limited in scope to flow events and associ-
ated counters. Future revisions that deal in supporting
correlations among event data types such as flow sum-
maries and SIM events will extend the model accord-
ingly.

3.5 Event Source Class

Event sources are handled by reference in the event data
model. The one translation task presently supported by
the event data model that requires information about the
event source is translation between implicit-perimeter bi-
flows and biflows without an implicit perimeter. The
event source class therefore contains a perimeter field,
which specifies the “local” network as a set of CIDR
blocks or network address ranges.

4 Association Data Model

It is also useful to make assertions about the environment
under monitoring that are not events, in order to further
describe or aggregate events. An association is an asser-
tion that, within a given time range, one set of key fields
is known to map to another set of key and/or value fields.
Associations have sources as do events; however, while
association sources are only capable of generating a sin-
gle type of association record, they are not associated
with an observation point. An example of an association
is a netblock record mapping a block address and a pre-
fix with a block name, geographic location, and technical
and administrative point-of-contact handles; the source
of such an association might be a regional internet reg-
istry.

The inclusion of associations in the data model does
not specifically support the translation of raw flow data
from format to format, but it does support the translation
of data into more aggregated or annotated formats, which
may enrich the analysis products that can be derived from
them.

Each association has three timestamps. The start and
end timestamps define the time period during which the
association is presumed to be valid; this can be used for
applications such as historical DNS resolution or rout-
ing information. The third timestamp is the most recent
update timestamp, which can be used to track the last
time a given association was checked against its source
database.

Future work will flesh out association subclasses; we
hope to receive community feedback on the usefulness of
the association mechanism and the types of associations
presently used in aggregate analysis.

5 Candidate Translator Design

Given a data model through which to translate flows and
other event data, a candidate design for a translator built
around that model suggests itself. Each format will re-
quire both an input reader, to build objects in the com-
mon event data model from an input stream of a given
input data format; and an output writer, to translate these
common objects back into the desired output data format.

Each of these readers and writers could be written
from scratch, handling their own disk I/O and other low
level functions, but this is both relatively inflexible, and
implies an inordinate duplication of effort. Instead, these
readers and writers will be implemented in terms of I/O
primitives that will handle low-level I/O. The flexibil-
ity gained by this approach could be applied to translate
records from data sources other than regular files on disk,
for example, from shared memory in a blackboard archi-
tecture, or directly off the wire in the case of IPFIX data
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Figure 2: Candidate translator design data flow

collection.

In practice, there are limited number of ways which
flow data can be represented in storage and transit, e.g.
in fixed or variable length binary records, in delimited
and separated ASCII records, as XML elements, as rows
in a relational database. So the work of each format
reader/writer author can be made less arduous still by
providing an interface atop each of these fundamental
formats.

Applying these principles, we are left with a data flow
resembling Figure 2.

5.1 Event Model Implementation
We intend the data model to be implemented as a set of
ANSI C structures, using structure containment to imple-
ment class inheritance. The choice of ANSI C was made
for several reasons; most important are performance and
portability.

The event data model is also designed to be imple-
mentable as a native storage format for the translator.
Three implementations are planned: an XML Schema for
text interchange of flow data, an IPFIX-compatible set of
templated binary formats for binary interchange, and an
RDBMS schema for long term storage and analysis in a
relational database.

6 Conclusions and Future Directions

This paper has presented an event data model and a can-
didate translator design built around it, to facilitate the
sharing of flow data among network security analysis
communities. Core to the architecture of this transla-
tor is the realization that network security analysis tasks
revolve around the manipulation of two classes of data,
events and associations.

As of this writing, the ideas presented herein exist pri-
marily on the whiteboard. The design pattern presented
here has proven its usefulness in the cargogen tool re-
leased as part of AirCERT 3; however, this tool is rather
limited in its flexibility, shipping with only one input and
output translator, and supporting only event data. Associ-
ations are supported after a fashion by the AirCERT Ad-
drTree 4 RIR data source toolchain, although AddrTree
does not support associations as a general superclass.
These tools may be seen as ancestors of this present ef-
fort.

We plan to continue the design and implementation of
this system during the summer and fall of 2005, focusing
at first on flow translation, then on other types of events,
finally implementing support for a variety of association
subclasses.

References
[1] CLAISE, B. Ipfix protocol specification. Internet-Draft 15, Internet

Engineering Task Force, May 2005. http://www.ietf.org/internet-
drafts/draft-ietf-protocol-15.txt.

Notes
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3http://aircert.sourceforge.net
4http://aircert.sourceforge.net/addrtree
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Outline

1. Academic users

2. Context: The DDoSVax project

3. Data collection and processing infrastructure

4. Software / Tools

5. Technical lessons learned

6. Other lessons learned

Note: Also see my FloCon 2004 slides at
http://www.tik.ee.ethz.ch/~ddosvax/ or
Google("ddosvax")
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Academic Users

PhD Researchers

Students doing Semester-, (Diploma-) and
Master-Theses

(Almost) no forensic work

Users will write their own tools
⇒ Support is needed to make them productive fast:

Software: Libraries, example tools, templates

Initial explanations

Advice and some supervision
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The DDoSVax Project

http://www.tik.ee.ethz.ch/~ddosvax/

Collaboration between SWITCH (www.switch.ch,
AS559) and ETH Zurich (www.ethz.ch)

Aim (long-term): Near real-time analysis and
countermeasures for DDoS-Attacks and Internet
Worms

Start: Begin of 2003

Funded by SWITCH and the Swiss National Science
Foundation

Arno Wagner, ETH Zurich, FloCon 2005 – p.3



DDoSVax Data Source: SWITCH

The Swiss Academic And Research Network

.ch Registrar

Links most Swiss Universities

Connected to CERN

Carried around 5% of all Swiss Internet traffic in 2003

Around 60.000.000 flows/hour

Around 300GB traffic/hour

Arno Wagner, ETH Zurich, FloCon 2005 – p.4



The SWITCH Network
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SWITCH Peerings
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SWITCH Traffic Map
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NetFlow Data Usage at SWITCH

Accounting

Network load monitoring

SWITCH-CERT, forensics

DDoSVax (with ETH Zurich)

Transport: Over the normal network

Arno Wagner, ETH Zurich, FloCon 2005 – p.8



Collaboration Experience

DDoSVax inspired SWITCH to crate their own
short-term NetFlow archive for forensics

Quite friendly and competent exchange with the
(small, open minded) SWITCH technical and security
staff.

SWITCH may want to use our archive in the future as
well

Main issue with SWITCH: Privacy concerns

Arno Wagner, ETH Zurich, FloCon 2005 – p.9



Network Dynamics

No topological changes with regard to flow collection
so far.

Collection quality got better due to better hardware
(routers).

IP space (AS559) was a bit enlarged in the last year.
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Collection Data Flow

SWITCH

accounting

ezmp1 ezmp2

Dual−PIII

1.4GHz

HDD
55GB

aw3

Athlon XP 

2200+

HDD
600GB

jabba

Sun E3000
with

IBM 3494
tape robot

2 * 400kB/s

UDP data

2 * 400kB/s

UDP data 4 files/h
compressed

4 files/h

Infrastructure
ETHZ 

DDoSVax ProjectSWITCH

GbE FE FEGbE

GbE

Cluster

’’Scylla’’
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NetFlow Capturing

One Perl-script per stream

Data in one hour files

Critical: (Linux) socket buffers:

Default: 64kB/128kB max.

Maximal possible: 16MB

We use 2MB (app-configured)

32 bit Linux: May scale up to 5MB/s per stream
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Capturing Redundancy

Worker / Supervisor (both demons)

Super-Supervisor (cron job)
For restart on reboot or supervisor crash

Space for 10-15 hours of data on collector

No hardware redundancy

Arno Wagner, ETH Zurich, FloCon 2005 – p.13



Long-Term Storage

Unsampled flow-data since March 2003
Bzip2 compressed raw NetFlow V5 in one-hour files

We need most data-fields and precise timestamps

We don’t know what to throw away

We have the archive space

Causes us to be CPU bound (usually)
⇒ Makes software writing a lot easier!
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Computing Infrastructure

The ”Scylla” Cluster
Servers:

aw3: Athlon XP 2200+, 600GB RAID5, GbE
does flow compression and transfer

aw4: Dual Athlon MP 2800+, 3TB RAID5, GbE

aw5: Athlon XP 2800+, 400GB RAID5, GbE

Nodes:

22 * Athlon XP 2800+, 1GB RAM, 200GB HDD, GbE

Total cost (est.): 35 000 USD + 3 MM

Arno Wagner, ETH Zurich, FloCon 2005 – p.15



Software

Basic NetFlow libraries (parsing, time handling,
transparent decompression, . . .)

Small tools (conversion to text, statistics, packet flow
replay, . . .)

Iterator templates: Provide means to step through
one or more raw data files one a record-by-record
basis

Support libraries: Containers, IP table, PRNG, etc.

All in c (gcc), commandline only. Most written by me.
Partially specific to SWITCH data.

Arno Wagner, ETH Zurich, FloCon 2005 – p.16



Lessons Learned (Technical)

Software:

KISS is certainly valid.

Unix-tool philosophy works well.

Human-readable formats and Perl or Python are very
useful for prototyping and understanding.

Add information headers (commandline, etc.) to
output formats (also binary)!

Take care on monitoring the capturing system.

Keep a measurement log!

Arno Wagner, ETH Zurich, FloCon 2005 – p.17



Lessons Learned (Technical)

Hardware/OS:

Needed much more processing power and disks
storage than anticipated
⇒ Plan for infrastructure growth!

Get good quality hardware.

Arno Wagner, ETH Zurich, FloCon 2005 – p.18



Lessons Learned (Technical)

Capturing and storage: Bit-errors do happen!
We use bzip2 -1 on 1 hour files (about 3:1)

Observed: 4 bit errors in compressed data/year

1 year ∼ 5TB compressed ⇒ 1 error / 1.2 ∗ 10
12 Bytes

bzip2 -1 ⇒ loss of about 100kB per error
Unproblematic to cut defect part
Note: gzip, lzop, ... will loose all data after the error

Source of errors: RAM, busses, (CPU), (disk),
(Network)

Arno Wagner, ETH Zurich, FloCon 2005 – p.19



Lessons Learned (Technical)

Processing: Bit Errors do happen!

Scylla-Cluster used OpenMosix ⇒ Process migration
and load balancing

Observed problem: Frequent data corruption.

Source: A single weak bit in 44 RAM modules
Diag-time with memtest86: > 3 days!
Process migration made it vastly more difficult to find!

No problems with disks, CPUs, network, tapes.

Some problems with a 66MHz PCI-X bus on a server.

Arno Wagner, ETH Zurich, FloCon 2005 – p.20



Lessons Learned (Users)

Students need to understand what they are doing.

Human-readable and scriptable output helps a lot!

Clean sample code is essential.

Tell students what technical skills are expected
clearly before they commit to a thesis.

Make sure students code cleanly and that they
understand algorithmic aspects.

Arno Wagner, ETH Zurich, FloCon 2005 – p.21



Thank You!
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Abstract

During outbreaks of fast Internet worms the charac-
teristics of network flow data from backbone networks
changes. We have observed that in particular source
and destination IP and port fields undergo compress-
ibility changes, that are characteristic for the scanning
strategy of the observed worm. In this paper we present
measurements done on a medium sized Swiss Inter-
net backbone (SWITCH, AS559) during the outbreak of
the Blaster and Witty Internet worms and attempt to
give a first explanation for the observed behaviour. We
also discuss the impact of sampled versus full flow data
and different compression algorithms. This is work
in progress. In particular the details of what exactly
causes the observed effects are still preliminary and un-
der ongoing investigation.

1. Entropy and Compressibility

Generally speaking entropy is a measure of how ran-
dom a data-set is. The more random it is, the more
entropy it contains. Entropy contents of a (finite) se-
quence of values can be measured by representing the
sequence in binary form and then using data compres-
sion on that sequence. The size of the compressed
object corresponds to the entropy contents of the se-
quence. If the compression algorithm is perfect (in the
mathematical sense), the measurement is exact.

On the theoretical side it is important to understand
that not entropy is the relevant traffic characteristic,
but Kolmogorov Complexity [16] of an interval of data.
While entropy describes the average expected informa-
tion content of a symbol that is chosen in a specific ran-
domised way from a specific symbol set, Kolmogorov
Complexity describes the specific information content
of a specific object given, e.g. as a binary string of
finite length.

2. Measurements

We are collecting NetFlow v5 [10] data from the
SWITCH (Swiss Academic and Research Network [4],
AS559) network, a medium-sized Swiss backbone oper-
ator, which connects all Swiss universities and various
research labs (e.g. CERN) to the Internet. Unsampled
NetFlow data from all four SWITCH border routers is
captured and stored for research purposes in the con-
text of the DDoSVax project [11] since early 2003. The
SWITCH IP address range contains about 2.2 million
IP addresses. In 2003 SWITCH carried around 5% of
all Swiss Internet traffic [17]. In 2004, we captured
on average 60 million NetFlow records per hour, which
is the full, non-sampled number of flows seen by the
SWITCH border routers.

In Figures 1,2,3 and 4 we plot the entropy estima-
tions by compressibility over time for source and desti-
nation IP addresses and ports for the Blaster [9, 6, 15]
and Witty [18, 20] worm. Both worms are relatively
well understood and well documented. First observed
on August 11th, 2003, Blaster uses a TCP random
scanning strategy with fixed destination and variable
source port to identify potential infection targets and
is estimated to have infected 200’000. . .500’000 hosts
worldwide in the initial outbreak. The Witty worm,
first observed on March 20th, 2004, has some unex-
pected characteristics. Witty attacks a specific fire-
wall product. It uses UDP random scans with fixed
source port and variable destination port. Witty in-
fected about 15’000 hosts in less than 20 minutes.

The y-axis in the plots gives inverse compression ra-
tion, i.e. lower values indicate better compressibility.
The plotted time intervals start before the outbreaks to
illustrate normal traffic compressibility characteristics.
Samples taken from other times in 2003 and 2004 indi-
cate that the pre-outbreak measurements, were source
and destination figures are close together, are char-
acteristic for non-outbreak situations. The outbreak
times of both worms are marked with arrows.

The given measurements were done both on the full
SWITCH flow set as well as on a 1 in 20 sample. Com-
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Figure 1. Blaster - TCP address parameter compressibility (l zo1x-1 algorithm)
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Figure 2. Witty - UDP address parameter compressibility (lzo1 x-1 algorithm)

pression algorithm used is the fast lzo algorithm lzo1x-
1 (see Section 4). It can be seen that in both cases
the compressibility plots change significantly during
the outbreak. Changes are consistent with the intu-
ition that more random date is less compressible, while
more structured date can be compressed better. The
measurements on sampled data show a vertical shift,
but still exhibit the same characteristic changes.

3. Analysis

In normal traffic there is roughly one return flow to
a host for each flow it sends out as connection initia-
tor. During a worm outbreak, most scanning flows do
not have a return flow. This causes the changes in the
overall flow data to be strongly dependent to the char-
acteristics of the flows generated for scanning connec-
tion attempts. Note that the absence of an answering
flow does not mean the absence of a host at the target
address. It can also be due to firewalls, filters and not
running services.

The connection between entropy and worm prop-
agation is that worm scan-traffic is more uniform or
structured than normal traffic in some respects and a
more random in others. The change in IP address char-
acteristics seen on a flow level is intuitive: few infected
hosts try to connect to a lot of other hosts. If these

flows grow to be a significant part of the set of flows
seen in total, the source IP addresses of the scanning
hosts will be seen in many flows and since they are
relatively few hosts, the source IP address fields will
contain less entropy per address seen than normal traf-
fic. On the other hand the target IP addresses seen in
flows will be much more random than in normal traf-
fic. These are fundamental characteristics of any worm
outbreak where each infected host tries to infect many
others.

For ports, the behaviour is more variable. The typ-
ical scanning behaviour will be a random (from an OS
selected range) or fixed source port and a fixed des-
tination port. In the Blaster plots the impact of ran-
dom source port and fixed destination port can be seen
clearly. Witty is different. Because it did scan with
fixed source port and random target port (because it
attacked a firewall product that sees all network traf-
fic), the port plots show exactly the opposite compress-
ibility changes compared to Blaster.

At this time it in unclear how much weaker a topo-
logical worm (i.e. a worm that uses data from the local
host to determine scanning targets and does not do
random scanning) would influence the flow field com-
pressibility statistics.
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Figure 3. Blaster - TCP, randomly sampled at 1 in 20 flows (lzo1x -1 algorithm)
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4. Compressor Comparison

Method (Library) CPU time / hour
(60’000’000 flows/hour)

bzip2 (libbz2-1.0) 169 s
gzip (zlib1g 1.2.1.1-3) 52 s
lzo1x-1 (liblzo1 1.08-1) 7 s

Figure 6. CPU time (Linux, Athlon XP 2800+)

We compared three different lossless compression
methods, the well-known bzip2 [2] and gzip [3] com-
pressors as well as the lzo (Lempel-Ziv-Oberhumer) [1]
real-time compressor. We did not consider lossy com-
pressors. Bzip2 is slow and compresses very well, gzip
is average in all regards and lzo family is fast but does
not compress well.

Direct comparison of the three compressors on net-
work data shows that while the compression ratios are
different, the changes in compressibility are very simi-
lar. Figure 5 gives an example plot that compares the
compression statistics for destination IP addresses be-
fore and during the Witty worm outbreak. Because of
its speed advantage lzo1x-1 was selected as preferred
algorithm for our work. Note that it is extremely fast
(Table 6, non-overlapping measurement intervals of 5
minutes each, includes all overhead like NetFlow record

parsing) and uses little memory (64kB for the compres-
sor), making it far more efficient than other methods
of entropy estimation, like for example methods based
on determining the frequency of individual data values.
Since we are only concerned with relative changes, the
far from optimal compression ratio of the algorithm
does not matter.

5. Related Work

The idea to use some entropy measurements to de-
tect worms has been floating around the worm research
community for some time. Yet we are not aware of
any publication(s) describing concrete approaches, sys-
tems or measurements. The authors of this paper were
prompted to investigate this idea by an observation
on the Nachi [12, 7, 5] worm: Nachi generated about
as many additional ICMP flow records as there were
total flow records exported before the outbreak, yet
the compressed size of the storage files increased only
marginally.

In [19] the authors describe behaviour-based cluster-
ing, an approach that groups alerts from intrusion de-
tection systems by looking at similarities in the ob-
served packet header fields. The clusters are then
prioritised for operator review. Principal Component
Analysis is used in [14] to separate normal and attack
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Figure 5. Witty - compressor comparison

traffic on a network-wide scale in a post-mortem fash-
ion. Detection of exponential behaviour in a worm out-
break is studied in [8]. In [13] the authors study how
worms propagate through the Internet.

6. Conclusion

We have presented measurements that indicate com-
pressibility analysis of network flow data address fields
can be used for the detection of fast worms. The ap-
proach is generic and does not need worm-specific pa-
rameterisation in order to be effective. It can generate
first insights and is suitable for initial alarming, but
has limited analytic capability. We are currently inves-
tigating how the entropy-based approach can help to
generate a more detailed analysis of a massive network
event.
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Abstract

One major new and often not welcome source of In-

ternet traffic is P2P filesharing traffic. Banning P2P

usage is not always possible or enforcible, especially in

a university environment. A more restrained approach

allows P2P usage, but limits the available bandwidth.

This approach fails when users start to use non-default

ports for the client software. The PeerTracker algo-

rithm, presented in this paper, allows detection of run-

ning P2P clients from NetFlow data in near real-time.

The algorithm is especially suitable to identify clients

that generate large amounts of traffic. A prototype sys-

tem based on the PeerTracker algorithm is currently

used by the network operations staff at the Swiss Fed-

eral Institute of Technology Zurich. We present mea-

surements done on a medium sized Internet backbone

and discuss accuracy issues, as well as possibilities and

results from validation of the detection algorithm by di-

rect polling in real-time.

1. Introduction

P2P filesharing generates large amounts of traffic.
It seems even to be one of the driving factors for
home-users to get broadband Internet connections. It
also has become a significant factor in the total In-
ternet bandwidth usage by universities and other or-
ganisations. While in some environments a complete
ban on P2P filesharing can be a solution, this gets
more and more difficult as legitimate uses grow. The
Swiss Federal Institute of Technology at Zurich (ETH
Zurich) has adopted an approach of allowing P2P file-
sharing, but with limited bandwidth. The default
ports of the most popular P2P filesharing applications
are shaped to a combined maximum Bandwidth of

10Mbit/s. There is a relatively small number of ”heavy
hitters” that consume a large share of the overall P2P
bandwidth and avoid the use of default ports and hence
the bandwidth limitations. In fast network connec-
tions, such as the gigabit ETH Internet connectivity, it
is difficult to identify and monitor P2P users for their
bandwidth consumption. If heavy hitters can be iden-
tified, they can be warned to reduce their bandwidth
usage or, if that does prove ineffective, special filters
or administrative action can be used against them. In
this way P2P traffic can be reduced without having to
impose drastic restrictions on a larger user population.

To this end, we have developed the PeerTracker al-
gorithm that identifies P2P users based on Cisco Net-
Flow [4]. It determines hosts participating in the most
common P2P networks and detects which port setting
they use. This information can then be used to de-
termine P2P bandwidth usage by the identified hosts.
We present the PeerTracker algorithm as well as results
from measurements done in the SWITCH [3] network,
a medium sized Internet backbone in Switzerland. We
discuss detection accuracy issues and give the results of
work done on validation of the PeerTracker algorithm
by real-time polling of identified P2P hosts. Note that
the PeerTracker cannot identify which files are actually
shared, since it only sees flow data. The PeerTracker
can track currently track clients for the eDonkey, Over-
net, Kademlia (eMule), Gnutella, FastTrack, and Bit-
Torrent P2P networks.

A prototypical implementation of the PeerTracker
algorithm, fitted with a web-interface, is currently in
use at the central network services of ETH Zurich in
a monitoring-only set-up for hosts in the ETH Zurich
network. A software release under the GPL is planned.



2. DDoSVax project

The DDoSVax[5] project maintains a large archive
NetFlow[4] data which is provided by the four border
gateway routers of the medium-sized backbone AS559
network operated by SWITCH[3]. This network con-
nects all Swiss universities, universities of applied sci-
ences and some research institutes. The SWITCH
IP address range contains about 2.2 million addresses,
which approximately corresponds to a /11 network. In
2003, SWITCH carried around 5% of all Swiss Inter-
net traffic [9]. In 2004, on average 60 million NetFlow
records per hour were captured, which is the full, non-
sampled number of flows seen by the SWITCH border
routers. The data repository contains the SWITCH
traffic data starting from the beginning of 2003 to the
present.

3. PeerTracker: Algorithm

P2P traffic can be TCP or UDP. We use the term
”default port of a P2P system”to also include the choice
of TCP or UDP.

Figure 1 shows the PeerTracker state diagram for
each individual host seen in the network. When a net-
work connection is detected each endpoint host be-
comes a candidate peer. A candidate peer that has
additional P2P traffic becomes an active peer and is
reported as active. Otherwise is becomes a non-peer

after it has had no P2P traffic for a probation period
(900 seconds) and is deleted. Each active peer is moni-
tored for further P2P activity. After a maximum time
without P2P traffic (600 seconds) it becomes a dead

peer. Each dead peer is still monitored for P2P activ-
ity but not reported as active anymore. When a dead

peer has P2P activity, it becomes active again. After
a second time interval, the maximum afterlife (1 hour)
without P2P activity a dead peer is considered gone and
is deleted from the internal state of the PeerTracker.

The decision whether a specific network flow is a
P2P flow is made based on port information. If a P2P
client uses a non-default listening port (e.g. in order
to circumvent traffic shaping) the peer still will com-
municate with other peers on using the default port(s)
from time to time. The last 100 local and remote ports
(TCP and UDP) are stored for every observed host,
together with the amount of traffic on the individual
ports. Traffic with one or both ports not in the range
1024-30000 (TCP and UDP) is ignored, since we found
that most P2P traffic uses these ports. With reason-
able threshold values on traffic amount (different for
host within the SWITCH network and hosts outside)
the most used local and remote ports allow the determi-

nation which P2P network a specific host participates
in. This is done at the end of every measurement inter-
val (900 seconds). Although some hosts can be part of
several P2P networks only the one they exchange the
most date with is identified.

We determine a lower and an upper bound for the
total amount of P2P traffic. The lower bound is all
P2P traffic were at least one side uses a default port.
The upper bound also counts all traffic were source and
destination ports are above 1023 and one side was iden-
tified as P2P host. The effective P2P traffic is expected
to be between these two bounds, and likely closer to the
upper bound, because in particular P2P heavy-hitters
rarely run other applications that cause large amounts
of traffic with port numbers above 1023 on both sides.
Typical non-P2P applications with port numbers on
both sides larger than 1023 are audio and video stream-
ing and online gaming, all of which do not run well on
hosts that also run a P2P client.

Figure 1. PeerTracker hosts state diagram

4. PeerTracker: Measurements

Due to traffic encryption and traffic hiding tech-
niques used by some current P2P systems, the accurate
identification of P2P traffic is difficult, even if packet
inspection methods are used. Nevertheless, our Net-
Flow based approach can provide good estimations for
the effective P2P traffic, even for networks with gigabit
links that could hardly be analysed with packet inspec-
tion methods.

Identification of peers and their traffic is especially
difficult if they have a low activity. This is an issue
for all two-tier systems in which ordinary peers mainly
communicate with a super peer and have few file trans-
fers. Peers from one-tier systems like Overnet can be
identified better because they communicate with many
other peers even if no file transfers are in progress.

P2P traffic in the SWITCH network is quite sub-
stantial. The lower bound for P2P traffic (stateless
P2P default port identification) significantly lower than
the upper bound for all observed P2P systems (Table
2), which means that quite some P2P traffic cannot



P2P System Default port usage

BitTorrent 70.0 %
FastTrack 8.3 %
Gnutella 58.6 %
eDonkey 55.6 %
Overnet 93.9 %
Kademlia 66.6 %

Table 1. P2P ports, SWITCH network, August
2004

be accurately estimated using only a stateless P2P de-
fault port method. The upper bound P2P traffic was
about 24% (holiday, August 2004), 27% (non-holiday)
respectively, of the total traffic that passed through the
SWITCH border routers.

BitTorrent P2P users cause about as much traffic as
eDonkey, Overnet and Kademlia users together, as can
be seen in Figure 2. All peers of the SWITCH network
generate 1.6 times more traffic to non-SWITCH hosts
than incoming traffic, thus making the SWITCH net-
work a content provider. This is probably due to the
fast Internet connection most SWITCH users have and
the traffic shaping mechanisms that some universities
in the SWITCH network use. Users within the univer-
sity network hope to evade the traffic limiting by using
non-default listening ports.

5. Result Validation

The PeerTracker tries to identify P2P hosts and the
used P2P network only on network flows seen, but
makes no attempt to check its results in any other way.
It is completely invisible on the network. There are two
possible failure modes: False positives are hosts that
the PeerTracker reports as having a P2P client running,
while in fact they do not. False negatives are hosts that
run a P2P client but are not identified by the Peer-
Tracker. It is difficult to identify false negatives. From
manual examination of the flow-level data and compar-
ison with the PeerTracker output we found that while
there are unidentified P2P clients, these hosts have only
very limited P2P activity and do not contribute signifi-
cantly to the overall traffic. This is consistent with the
intuition that the PeerTracker algorithm can identify
hosts with a lot of P2P much more easily than those
with little traffic.

In order to identify false negatives, we have imple-
mented an experimental extension to the PeerTracker
that tries to determine whether hosts identified by
the PeerTracker are actually running the indicated
P2P client by actively polling them over the network.

P2P System TCP P2P-client

eDonkey, Overnet, Kademlia 50% 41%
Gnutella 53% 30%
FastTrack 51% 41%
Total 51% 38%

Table 4. Positive polling answers

Polling for all networks was done with TCP only. Table
3 gives a short overview of the polling methods used.

The results of a representative measurement from
February 2005 can be found in Table 4. It can be seen
that roughly half of the identified hosts are not reach-
able via TCP at all, likely due to Network Address
Translation (NAT) and firewalls that prevent connec-
tions initiated by outside hosts. Assuming that reach-
able and unreachable hosts have similar characteristics
with regard to their P2P traffic, the the difference be-
tween TCP-reachable hosts and positive polling results
presents an upper limit for the number of false posi-
tives. The reasons for unsuccessful P2P client polling
identified in a manual analysis are that the PeerTracker
sometimes reports the wrong P2P network for a host,
that especially Gnutella hosts answer in a variety of
ways, some not expected by the polling code, and mis-
detection by the PeerTracker algorithm.

6. Related Work

While there are numerous measurements studies
that use packet inspection [13, 7, 12, 8] for traffic iden-
tification, recently some have been published that use
flow-level heuristics. In [14] signalling and download
traffic was measured in a large ISP network using state-
less default port number detection. Considered P2P
networks were FastTrack, Gnutella and Direct Con-
nect. An interesting approach is presented in [10]. The
idea is to relate flows to each other according to source
and destination port numbers using a flow relation map
heuristic with priorities and SYN/ACKs to identify lis-
tening port. In [15] packet headers (first 64 bytes) from
a campus network and the network of a research insti-
tute with about 2200 students and researchers were
used as basis of P2P measurements. Flow measure-
ments in the backbone of a large ISP were done in
[6] for May 2002 and January 2003. The researchers
determined the server port using the IANA [2] port
numbers and the more detailed Graffiti [1] port table,
giving precedence to well-known ports. Unclassified
traffic was grouped in a ”TCP-big” class that includes
flows with more than 100 KB data transmitted in less
than 30 minutes.



P2P System P2P lower bound P2P upper bound

BitTorrent 55.4 Mbit/s ( 12.2 % ) 90.1 Mbit/s ( 19.9 % )
FastTrack 1.8 Mbit/s ( 0.4 % ) 12.3 Mbit/s ( 2.7 % )
Gnutella 5.1 Mbit/s ( 1.1 % ) 10.7 Mbit/s ( 2.4 % )

eDonkey, Overnet, Kademlia 47.7 Mbit/s ( 10.5 % ) 82.1 Mbit/s ( 18.1 % )

Total P2P 110.0 Mbit/s ( 24.4 % ) 195.2 Mbit/s ( 43.1 % )

Table 2. P2P traffic bounds and percentage of total SWITCH traffi c (August 2004)

P2P System Polling method

FastTrack Request: GET /.files HTTP/1.0

Response: HTTP 1.0 403 Forbidden <number 1> <number 2>
or HTTP/1.0 404 Not Found/nX-Kazaa-<username>

Gnutella Request: GNUTELLA CONNECT/<version>

Response: Gnutella <status>
eDonkey, Overnet, Kademlia Request: Binary: 0xE3 <length> 0x01 0x10 <MD4 hash> <ID> <port>

Response: Binary: 0xE3 . . .

eMule Same as eDonkey, but replace initial byte with 0xC5.
BitTorrent Unsolved. Seems to need knowledge of a shared file on the target peer.

Table 3. Polling methods for different P2P clients (TCP, to co nfigured port)

7. Conclusions

We presented an efficient P2P client detection,
classification and population tracking algorithm that
uses flow-level traffic information exported by Internet
routers. It is well suited to find and track heavy-hitters
of the eDonkey, Overnet, Kademlia (eMule), Gnutella,
FastTrack, and BitTorrent P2P networks. We also val-
idated detected peers by an application-level polling.
Our results confirmed a good lower accuracy bound
that is well suited for P2P heavy hitter detection. How-
ever, it is not optimally suited to detect low traffic P2P
nodes. A validation of BitTorrent clients was not pos-
sible due to the specifics of this network. In addition
we stated measurement results obtained with the Peer-
Tracker and observations made during the validation
efforts.
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Abstract

We present VisFlowConnect-IP, a network flow visual-
ization tool that allows operators to detect and investigate
anomalous internal and external network traffic. We model
the network on a parallel axes graph with hosts as nodes
and traffic flows as lines connecting these nodes. We present
an overview of this tool’s purpose, as well as a detailed de-
scription of its functions.

1 Introduction
Networks are becoming increasingly complex, and the

number of different applications running over them is grow-
ing proportionally. No longer can a system/network admin-
istrator realisitically be aware of every application on every
machine under her control. At the same time, the number
of network attacks against machines has increased exponen-
tially. These attacks are often concealed among this vast
amount of legitimate, and seemingly random, traffic. It is
often difficult just to log this traffic, yet alone analyze and
detect attacks in real-time with traditional text-based tools.

However, humans excel at processing visual data and
identifying abnormal patterns. Visualization tools can trans-
late the myriads of network logs into animations that cap-
ture the patterns of network traffic in a succinct way, thus
enabling users to quickly identify abnormal patterns that
warrant closer examination. Such tools enable network ad-
ministrators to sift through gigabytes of daily network traf-
fic more effectively than scouring text-based logs.

VisFlowConnect-IP is one such network visualization
tool. It visualizes network traffic as a parallel axes graph
with hosts as nodes and traffic flows as lines connecting
these nodes. These graphs can then be animated over time
to reveal trends. VisFlowConnect-IP has the following dis-
tinguishing features: (1) it uses animations to visualize net-
work traffic, so that network dynamics can be presented to
users in a comprehensible and efficient manner, (2) it pro-

∗This research was supported in part by a grant from the Office of Naval
Research (ONR) under the auspices of the National Center for Advanced
Secure Systems Research (NCASSR) <http://www.ncassr.org>

vides both an overview of traffic as well as drill-down views
that allow users to dig out detailed information, and (3) it
provides filtering capabilities that enables users to remove
mundane traffic details from the visualization.

2 System Architecture
The general system architecture of VisFlowConnect-IP

is shown in Figure 1. VisFlowConnect-IP has three main
components: (1) an agent that extracts NetFlow records, (2)
a NetFlow analyzer that processes the raw data and stores
important statistics, and (3) a visualizer that converts the
statistics into animations. In this section, we describe the
design and implementation of each of the 3 components.
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Figure 1. System Overview

2.1 NetFlow Source Data
VisFlowConnect-IP can use the following NetFlow for-

mats: Cisco 5/7 and Arugs1. VisFlowConnect-IP works in a
batch mode, reading NetFlow records from a log. An agent
is used to extract the NetFlow records and feed them into
VisFlowConnect-IP. Each record contains the following in-
formation: (1) sourcce/destination IP addresses and ports,
(2) number of bytes and packets, (3) start and end times-
tamps, and (4) protocol type.

2.2 Input Filtering Capability
NetFlow logs contain many different types of traffic with

distinct properties. While certain traffic patterns are usu-
ally a red flag, depending upon the context, they may be
quite normal and benign. For example, it is very com-
mon that a DNS server has connections with every other

1http://www.qosient.com/argus/
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host on a network, but on a workstation this may indicate
a worm infection. In order to remove noise such as this,
VisFlowConnect-IP provides advanced filtering profiles that
users can store and load.

Let F1, . . . , Fk be a set of user created filters. Table 1
shows filter variables and their value ranges. Each filter
has a list of constraints on the variables and a leading la-
bel (“+” or “–”) that indicates whether to “include” or “ex-
clude” matches. A constraint on a variable takes the form
of “x = vmin − vmax”, where “x” is a variable and “vmin”
and “vmax” are the lower and upper bounds of “x”, and “=”
is the only operator defined. Records are passed sequen-
tially through each filter and the last match will determine
whether or not to include the record. A record that matches
no filter rules is dropped. For example, the following set of
filters will include all traffic from domain 141.142.x.x with
a source port between 1 and 1000, except tcp traffic involv-
ing port 80.
+: (SrcIP=141.142.0.0-141.142.255.255), (SrcPort=1-1000)
-: (SrcPort=80, Protocol=tcp)
-: (DstPort=80, Protocol=tcp)

Variables Value Ranges
SrcIP, DstIP 0.0.0.0 ⇔ 255.255.255.255

SrcPort, DstPort 0 ⇔ 65535
Protocol tcp, udp, icmp

PacketSize 0 ⇔ ∞

Table 1. Input Filter Language

3 How to Use VisFlowConnect-IP
In this section, we describe the visualize interface

of VisFlowConnect-IP—which can be downloaded at
<http://security.ncsa.uiuc.edu/distribution/VisFlowConnectDownLoad.html>

In the Parallel Axes View, three vertical axes are used
to indicate traffic between external domains and internal
hosts on the center axis (Figure 3). Points on the left [right]
axis represent external domains that are sourcing [receiv-
ing] flows to [from] the internal network. Unlike the mid-
dle axis where points represent individual hosts, here points
represents sets of hosts. The darkness of a line between two
points is proportional to the logarithm of traffic volume be-
tween the hosts. All points are sorted according to their IP
addresses, so that each point will remain at a relatively sta-
ble position for a user to track during animation. Figure 2
illustrates the VisFlowConnect-IP GUI with important fea-
tures labeled.

1. Menu Bar: It contains the menu items for operations
that are less frequently used, including (1) ‘Open’:
open a NetFlow file, (2)‘Load Filters’: load a file for
input filters, (3) ‘Settings’: bring up the settings dia-
log box, (4) ‘Show Domain’: show the domain view
of the selected domain (described below), (5) ‘Host
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Figure 2. Parallel Axes View

Statistics’: show the traffic statistics of the selected
host/domain, and (6) ‘Save Screen’: save a snapshot
of the current view.

2. Highlighted Ports: The user may specify up to three
ports to highlight in special colors: red, green, or blue
(see Figure 3). The user may also click on the check
box to show traffic only on the highlighted port.

3. External/Internal Switch: The internal view (See fig-
ure 4) shows traffic between hosts on the internal net-
work. The points on the left [right] axis represent the
source [destination] of traffic flows. The user may
switch between external and internal views by click-
ing on the button “Show Inside/Outside”.

4. Domain View: As shown in Figure 5,
VisFlowConnect-IP has a drill-down Domain View
that allows a user to visualize traffic between hosts
in a specific external network domain to/from hosts
in the internal network. The Domain View shows all
traffic between individual hosts in the corresponding
external network domain and the internal network.

5. Control Buttons: A user can control the animation
with three buttons: (| <) rewind back to start, (>) play
forward a defined time unit (default is 10 minutes), and
(> |) play forward to the end of the data set.

6. Time Window: Because a user will typically be more
interested in recent traffic, only flows within a speci-
fied time window are shown as opposed to a cumula-
tive view. A sliding rectangle along a horizontal time
axis is shown at the bottom of the GUI to indicate the
time window in view.

7. Settings Dialog: Figure 6 shows the settings dialog,
which allows the user to change the input file format
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(Cisco or Argus) and to select protocols of interest
(e.g., tcp, udp or icmp). Here, the user may also ad-
just the traffic threshold, so that only domains whose
aggreagate traffic volume is lower than this threshold
are ignored. It also allows the user to change the time
window, to restrict investigation to flows whose sizes
are within a user-defined range, and to ignore flows
over certain ports. This is also where the user sets the
“Local IP Range” in order to distinguish internal hosts
from external hosts.

Figure 3. External View

Figure 4. Internal View

4 Related Work
In [5] the authors present a tool named NVT (Network

Vulnerability Tool) that visually depicts a network topology

Figure 5. Domain View

Figure 6. Setting Dialog

and generates a vulnerability database. In [6], the authors
present a visualization of network routing information that
can be used to detect inter-domain routing attacks and rout-
ing misconfigurations. In [7], they go further and propose
different ways of visualizing routing data in order to detect
intrusions. An approach for comprehensively visualizing
computer network security is presented in [4], where Er-
bacher et al. visualize the overall behavioral characteristics
of users for intrusion detection. [1] focuses on visualizing
log data from a web server in order to identify find patterns
of malicious activity caused by worms.

Linkages among different hosts and events in a computer
network contain important information for traffic analysis
and intrusion detection. Approaches for link analysis are
proposed in [2, 3, 8]. [2] and [8] focus on visualizing link-
ages in a network, and [3] focuses on detecting attacks
based on fingerprints. Link analysis can illustrate inter-
actions between different hosts either inside or outside a
network system, thus providing abundant information for
detecting intrusions. In previous papers we have intro-
duced the design and implementation of VisFlowConnect-
IP [9, 10, 11, 12], an animated tool for visualizing network
flows. This paper describes how to use that tool in detail.
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5 Example Anomaly Detection
Here, we show an example of how we can detect the

blaster virus with VisFlowConnect-IP. The blaster virus
spreads quickly and has a common worm characteristic in
which infected computers send out packets to an abnor-
mally large number of hosts within a short time period. In
Figure 7, one can see that there is one domain which con-
nects to almost every host in the local network. This in-
dicates that some hosts in that domain might be infected
by a worm. This is verified when we see the uniform pay-
load size and port usage on all of these flows that match the
Blaster signature. At this point we can filter on those char-
acteristics, and by digging deeper with the domain view, we
can begin to identify specific hosts that have been infected.

Figure 7. External view of blaster attacks

6 Conclusions
We have presented VisFlowConnect-IP, an approach to

visualizing patterns on a network with NetFlow log data. Its
purpose is to enhance an administrator’s situational aware-
ness by providing an easy-to-use, intuitive view of NetFlow
data using link analysis. The central aspect of this interface
is the parallel axes view, used to represent the origin and
destination of network traffic. A high-level overview of the
data is provided first, and the user is provided the capability
of drilling down into the data to find additional details. Fil-
tering mechanisms are provided in order to assist the user in
extracting interesting or important traffic patterns. The Vis-
FlowConnect visualization framework described in this pa-
per is extensible beyond IP networks, and we are currently
modifying it to monitor security in storage systems and high
performance cluster computing environments as well.
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