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RESOLUTION GRAPHS 

Abstract 

by 

Robert A. Yates 
Bertram Raphael 
Timothy P. Hart 

This paper introduces a new notation, called "resolution graphs, 11 

for deductions by resolution in first-order predicate calculus. A 

resolution graph consists of groups of nodes that represent initial 

clauses of a deduction and links that represent unifying substitutions. 

Each such graph uniquely represents a resultant clause that can be 

deduced by certain alternative but equivalent sequences of resolution 

and factoring operations. 

Resolution graphs are used to illustrate the significance of merges 

and tautologies in proofs by resolution. Finally, they provide a basis 

for proving the completeness of a proof strategy that combines the set 

of support, resolution with merging, linear format, and Loveland's sub-

sumption conditions. 
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I INTRODUCTION 

Automatic theorem proving in the first-order predicate calculus 

has become an active and fruitful field for research, particularly since 

* Robinson's landmark paper (1965) introduced the resolution rule of 

inference. Computer programs that perform logical deduction by using 

some variation of resolution have been applied to a variety of problem 

domains, including lattice theory (Guard, et al,, 1969), question.::answering 

systems (Green and Raphael, 1968), . and problem-solving tasks (Green, 1969), 

The major reason these programs have had only limited effectiveness 

is that they require excessive amounts of computer time and space. This 

is largely due to the weakness of existing strategies for deciding how 

to apply the resolution rule. Robinson presented one logically complete 

(but grossly inefficient) strategy for using resolution to prove theorems. 

Since then numerous papers have appeared describing more restrictive 

strategies that are also complete. The nature of some of these strategies 

is syntactic, i.e., they depend upon the identity or number of elementary 

symbols (IVos et al., 1964; Was et al., 1965; Andrews, 1968; Loveland, 1970). 

Other strategies are of a semantic nature, i.e. they depend upon assign-

ments of models or truth values (Slagle, 1967; Luckham, 1968). 

In this paper we prove the completeness of an extremely restrictive 

syntactic strategy. Raphael (1969) presented part of this strategy in 

* References appear at the end of this paper. 
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an informal note a year ago. (This paper supercedes that note.) Since 

. t)len';;i:t'l;s~c<jrtipl:etetWs's chashbE)e:n:c fudepeiidei1t1yJ>estl}(bi:t!3he!i by A.neter !..o'fi·. a:pp 

Bledsoe (1970). 

The completeness of this strategy was discovered by us while working 

with a new graphical notation for resolution deductions. This notation, 

whose justification is based upon the mathematical concept of a partition, 

leads us to a clearer understanding and simplified proofs for several 

existing theorems in resolution theory. Therefore a major purpose of 

this paper is to present the idea of a resolution ~and show its 

usefulness. 

II TERMINOLOGY 

We shall assume familiarity with standard terminology and notation 

of first-order predicate calculus and proof by resolution. In summary, 

all logical statements are assumed to he in quantifier-free conjunctive­

normal form; existential quantifiers are eliminated by the introduction 

of Skoiem functions, and universal quantification is assumed over varia­

bles. The initial information is represented by a finite set of clauses, 

each of which is a set of literals. (This finite set is called the 

"clause form" of the predicate-calculus statement obtained by forming 

the disjunction of the literals in each clause, and then the conjunction 

of the resulting formulas). Each literal is either an atomic formula 

or the negation of an atomic formula. An atomic formula consists of a 

predicate symbol and an appropriate number of terms for its arguments. 
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Each term is either a constant, a variable, or the composition of a 

function applied to an appropriate number of terms as arguments. 

Resolution may be taken to be an operation mapping two parent clauses 

B and C into a "resolvent" clause D, By Robinson's definition, the clause 

D is a resolvent of B and C (which have been "standardized" to have no 

variable names in common) iff (if and only if) there are nonempty subsets 

b <;::; B and c <;::; C such that the atomic formulas in b U c are unifiable with 

a most general unifier cr, b cr " {L
1

}, c cr (L
2

}. where L
1 

and L 2 are com­

plementary literals, and D " (B cr - {L
1 

}) U (C cr - (L2}). We call elements 

b U c the literals resolved upon. (The concepts of unifier and most gen­

eral unifier will be discussed in detail in the next section of the paper.) 

Andrews (1968) broadens this definition of resolvent by not requiring 

a to be most general, This is equivalent to considering every substitution 

instance of the above D also to be a resolvent of B and c. 

A common restriction of resolution is simple resolution, in which 

band c must be singletons. It can be shown that an inference system 

based upon simple resolution alone is not complete. 

If some clause D has a subset d and a is a most-general unifier of 

the literals in d, da = ILl, then we call the clause Da a factor of D, 

and D a parent of its factor. Since a clause implies all of its instances, 

clearly a clause implies all of its factors. One can show that simple 

resolution and factoring can form a complete inference system. [Although 

factoring played a major role in an early unpublished version of Robinson (1965) 
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and was implemented in the first resolution program (Wos et al. (1964, 

1965)), it has been little discussed in the literature. A variation 

called distinguished literal factoring is discussed by Kowalski and Hayes 

(1969) J. In fact, resolution in Robinson's sense may be viewed as a 

simple resolution that has been preceded, if necessary, by appropriate 

factoring operations on the parents. In this paper we shall generally 

view a resolution inference step as consisting of the two phases: factoring 

followed by simple resolution. 

A deduction of clause C from an initial set of clauses S is a finite 

sequence of clauses B
1

, B
2

, ... , B such that: 
n 

(l) is either inS or it is a resolvent of B. 

(2) 

and Bk, l ~ j, k < i. and 

B = C. 
n 

J 

A refutation of a set S of clauses is a deduction from S of the empty 

clause, which is denoted by D · The usual way to attempt to verify that 

a theorem T is deducible from a set of axiomatic clauses G is to attempt 

- -to construct a refutation of the set (:i U ;r, where';\" is the clause form 

of the negation of the theorem T. 

If D is either a resolvent or a factor, each literal L e Dis equal 

to L'o for at least one literal L 1 in a parent clause (and the appropriate 

substitution o), Every such L' is called a parent of literal L. Thus 

in any deduction of a clause D from a set 8 of initial clauses, we may 

trace the ancestry of the literals in D back to literals in the members 

of S. 

Andrews (1968) defines a merge to be any deduced clause containing 

a literal that has parent literals in both parent clauses. We find it 
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convenient to extend this concept by defining a !!-merge ("descent merge") 

to be any clause containing any literal L that has ancestors in two or more 

distinct occurrences of members of s, and we call such an La !!-merge literal, 

Every d-merge is thus either a merge or the descendant of a merge, Since the 

formation of a merge always causes two or more literals in different initial 

clauses to become associated (by virtue of becoming ancestors of the same 

literal), we shall sometimes use the term "merge" merely to refer to this 

association, which is exhibited as an explicit link in the "resolution graphs" 

to be defined below, Note that L may have two or more ancestors and yet not 

be a d-merge literal (when all its ancestors occur in the same occurrence of 

a member of 8) • 

Subsumption is an important phenomenon in most resolution proof 

strategies, For any two clauses C and D, Cis said to subsumeD if 

an instance of Cis contained in D, i.e., there exists a substitution cr 

such that Ccr c D. If D is subsumed by C, it is implied by C and generally 

may be replaced by C in the construction of a deduction. Note that a 

tautology (a clause containing a pair of complementary literals) cannot 

subsume any nontautological clause, since substitution cannot destroy 

the tautologousness. 

III PARTITIONS AND UNIFICATION 

We shall now explore some of the properties of the unification 

operation, The goal of this discussion is to clarify the possible 

effects of composing or permuting substitutions, 

Unification Theorem 

Let E le
1

, e
2

, ••. , en} be any set of expressions (e.g., all 

the atomic formulas that occur in some set S of initial clauses). Let 
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e ~ (E
1

, E
2

, ••• , Em} be a class of nonempty subsets of E (e.g,, think 

of each E. as containing a different set of atomic formulas from E that 
~ 

might be made identical by an appropriate substitution), Thus E. ~ E 
~ 

and E. f !/>(the empty set) for all i. If 9 is any substitution, then 
~ 

where E 9 is the set of expressions 
i 

e 8 obtained by making the substitution defined by 9 in each e in E .. 
j j ~ 

A class e is said to be unifiable if there exists a substitution 

9 such that E.e is a singleton, i.e., contains only one element, for 
~ 

every i; and such a e is said to unify e. 

The well-known unification theorem can be stated as follows: 

Unification Theorem--Let e be a unifiable class of subsets of a set E of 

expressions. Then there exists a most general unifier cre of e with the 

property that for any unifier 8 of e, there is a substitution A such 

that 8 is the composition ue o A of substitutions ue followed by "-· Thus 

every unifier of e is an instance of the most general unifier of e. (A 

proof and discussion of the Unification Theorem appears in Robinson (1967).) 

Clearly, "the" most general unifier of a class is not unique; 

any most general unifier of e, when composed with any invertible sub-

stitution, is again a most general unifier. For example, the class 
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has both el = [g(y)/x, y/u] and e2 = [g(u)/x, u/y] as most general 

unifiers. However, e
2 

can be obtained from e
1 

by the invertible sub­

stitution [y/u, u/y], In fact, it is a corollary of the Unification 

Theorem that this is the only way most general unifiers of a set can 

be related: If oe and a~ are most general unifiers of.e they are 

instances of one another and consequently are alphabetic variants of 

each other, Since all such ae are essentially equivalent, henceforth 

we shall assume that ae is unique, 

Partitions 

Let e 

of nonempty subsets of a set E of expressions (e.g,, if E contains all 

the atomic formulas in some set S of initial clauses, let the E be sets 
i 

of potentially unifiable atomic formulas from some subset of s, and let 

the F. be the corresponding sets for a different, perhaps larger, sub­
~ 

set of S,) 

We define the following partial ordering on the classes of 

subsets of E: e s ~iff, for each i, E. c F. for some j, 
~ - J 

The class e is called a partition provided E
1

, ••• , E are mutually 
m 

disjoint sets. By the closure of e, denoted by [eJ, we mean the small-

est partition such that e $ [eJ. The class [eJ is formed from e by 

successively merging together sets E., E. of e with an element in common 
]. J 

until all the sets so obtained are mutually disjoint. 

7 



Example: If e j I I I 
= ( 1a 1, 1x, 

I I f(x), h(u), 

then [eJ ={\a\, \x, f(y), ul, ~g(x,y), b, c, f(x), h(u), 

g(f(x) ,y) };l 

Induced Partitions 

If E is a set of expressions and e a substitution, then B induces 

a partition p
9 

onE defined as follows: Two expressions ei and ej in 

E lie in the same block of P
9 

iff eie = e.e .. 
J 

For example, 

if E = !f(x), u, g(x,y), f(h(v)) 

and e = [h(v)/x, g(~(v),y)/u], then e induces the partition 

I I l l f(h(v))j, 
1
u, g(x,y) I j on E. 

If e is a unifiable class of subsets of E, and 9 unifies e, then 

the partition PB induced by 9 on the expressions occurring in e has the 

property that e ~ P
9

, because if Ei e e then all the expressions in Ei 

are unified by 9 and hence E
1 

is contained in a single block of Fe. 

Since the closure [eJ of e is the smallest partition containing e, we 

have e ~ [eJ ~ P
9

• Conversely, a class e is unifiable if e ~ P
9

(or 

[eJ ~ PJ for some substitution e. 
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Example: e I a/yl = lf(a)/x, J 

I 

e ={I x, f(y)l, !"· f(a) j, I x.l' Ia il 
( ~~ r-q 

!1 \ % ,~, 1 [t] =( (z f(;z:l, f(a)l' I x. l' 

= ! lx, f(L 

~~ T 
p f( a) I •II 

e I y' a if 

Now, if cre is a most general unifier of e, then at = a [t]. This 

is true because if two blocks of e contain an element e in common, any 

unifier e of e must unify both blocks to the same element ee. Therefore, 

the unifier of a class of sets of expressions depends only upon the 

partition [t], the closure of the class. It also follows that if e and 

~ are classes such that ~ ~ e and e is unifiable, then, since [t U ~] = 

[tJ, we have: 

~uivalent Substitutions 

The following lenuna shows an important invariance of unification 

to the order in which substitutions are performed: 

Lemma 1: If e and~ are unifiable classes with most general unifiers 

cre and a~ respectively, then e U ~is unifiable if and only if a(~cre) 

exists (i.e., ~cre is unifiable). In this case cr(tcr~) also exists, and 

(J~ 0 a and (J 0 a are both most general unifiers of e u ~. 
c.- (~cre) ;; (to~) 
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Proof: We first show that if e U J is unifiable, then o( ) exists 
Joe 

and that oeuJ = oe 0 o(:Joe). Let e be any unifier of e U ~. Since 8 

unifies e, we can write e = ae o A for some substitution A. But for 

Consequently, 

0 ) exists, and A = a o fl for some fl; so we have e = oe o o(""oe) o fl. 
<Joe <~oe) "' 

Since oe o a(Jae) does in fact unify e U ~ and since any unifier 6 of 

e u J can be factored as e = oe o o(~cre) o fl. for some ~~, then oe o cr(~cre) 

is in fact a most general unifier of e U ~. Conversely, if we assume 

that (J(Joe) does exist, then oe 0 ()(Joe) unifies e u ~' and the above 

argument shows that it is its most general unifier. The result is 

clearly symmetric in e and J. 

An immediate corollary is that if J ~ e, then 

This says that the most general unifier oe of e can be computed by first 

unifying a subclass J of e and then unifying the remainder of e with 

the unified J. By induction we have a second corollary: 

Corollary: Let e = {Ei, ... ,En} be a class of sets of expressions. 

Then cre exists if and only if cr1 , ... , an all exist, and cre 

Proof: For n = 1 there is nothing to prove. 

For n > 1 let 3 = (E1 , .•• ,En-l}. By the induction hypothesis, 

lO 

cr • 
n 



cr~ exists iff cr1 , ••• ,crn-l exist and cr~ = crn-l' So cre = crJ o 

cr(En}cr
3 

= crn and cre exists iff cr(En}cr~ exists i.e., iff cr1 , ... ,crn 

all exist. 

Since cre is independent of the sequence numbering of E
1

, ... ,En, it is 

clearly independent of the sequence of operations used to compute it. 

Example: Let e = ){x,' f(u, g(v)), f(a,y)} {g(b), y}! 

j{f(u, g(v)), f(a,y)}! so s , e 

. then cr3 = [a/u, g(v)/y], ecr3 = ){x, f(a,g(v))}' {g(b), g(v)}l 

cr(ecr) = [f(a,g(b))/x, b/v] 
3 

IV RESOLUTION GRAPHS 

One of the main results of this paper is the fact, to be stated 

formally in Theorem 1, that certain alternative sequences of simple 

resolution and factoring operations produce precisely the same resul-

tant clause. The purpose of the graphical notation developed in this 

section is to represent uniquely certain equivalent sets of deductions. 

LetS be a set of initial clauses, and let C = (L1 , L2 , ... , Ln} 

be a clause in S where L
1

, ••• , Ln are the literals of C. We represent 

C as a graph by associating a circle to each literal of C and by 

connecting ·the circles by horizont,;l bars (Figure la). Such a graph is 

called an initial graph since it represents an initial clause. The 

circles of the graph are named by their corresponding literals L1 , , •. , Ln 
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and can occur in any order; two graphs that differ only because the 

literals within a clause are differently sequenced will be considered 

equivalent. These initial graphs are the building blocks; more compli-

cated graphs are always constructed from these by operations correspond-

ing to resolution and factoring. Before stating a formal definition of 

the graph structures we call resolution graphs, we first give some in-

stances of how these graphs are formed and introduce some additional 

terminology. 

If D = (Ml, ... ' M.l,} is another initial clause which is resolved 

against c on the literals L. and M. 1 we represent the resolvent clause 
1 J 

R(C,D) as a graph by connecting the two corresponding circles (in the 

initial graphs for C and D) by a double bar (Figure lb). The literals 

of the clause R(C ,D) are the names· of the circles in the new graph which are not 

connected by double bars. These literals (marked by primes in Figure lb) 

are assumed to be those of the initial clauses instantiated by the most 

general unifier of the atomic formulas of Li and ¥j•(w]1(ch<reduced Li and Mj 

to the complementary literals L~ and Mj). These instantiated literals 

are said to be associated to their corresponding circles. However, we 

shall continue to refer to the circle by its original literal name. 

Should two or more literals collapse together, i.e., become identical, 

as the result of a resolution operation, we indicate this in the graph 

by connecting the literals (circles) together by a dotted line--thereafter 

forcing these circles to be considered as a single node (see Figure lc). 

(We define a ~ of a graph to be a dot-connected group of circles--or 

a single circle which is not dot-connected.) For example, if the most 

general unifier of Li and Mj also happens to make L
1 

and M
1 

into identical 
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literals, we represent the resolvent clause by the graph shown in Figure 

lc. However, we prefer to consider the graph operations of adding double 

bars and dotted lines as independent operations. Simple resolution applied 

to graphs is accomplished by a double bar operations followed by dotted line 

operations if the literals should collapse. In general, we allow graphs in 

which two distinct circles have the same associated literal without 

demanding that the circles be dot-connected. 

The dotted line is also used to indicate an explicit factoring 

operation. If L 1 and M' in Figure lb are distinct but unifiable, then 
1 1 

Figure lc represents the result of applying the factoring substitution 

to the resolvent clause. The associated literals L' 
1' 

replaced by their respective instances. 

'•,. I M1 would be 
t 

We say a graph node is free if it is not connected to any other 

node by a double bar, and a circle is free if the node to which it 

belongs is free, Graph operations are only performed on free nodes. 

As an example, let 

Ll L2 L3 

cl = [P(x), Q(a), R(a,x)} 

L4 L 
5 

c2 = (-Q(y), R(y,b)} 

L6 

c3 = [-P(b)} 

L7 L8 

c4 = (- R(a,z), P(f(z))} 

(See Figure 2m}. Let R
1 

be the res0lvent of c
1 

and c
2

: 

R
1 

= [P(x), R(a,x), R(a,b)} 
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Let R
2 

be the resolvent of R
1 

and c
3

: 

and let'R
3 

be the resolvent of R
2 

and c
4

: 

R
3 

: {P(f(b))} 

(Figure 2bl) 

We have labeled the graph operations a, S• y, o as seen in Figure 2b 

where y is the operation of adding the dotted line. So the sequence of 

graph operations leading to R3 is (!l ,a ,y, o), However, we could obtain 

the same result by performing the operations in any one of the following 

orders: 

For 

c2 

(1) (!l,a,y,o) 

(2) (a,s.y,o) 

(3) (13,y,a,o) 

(4) (B,y,6,a) 

example, the sequence 

then factoring L
3 

and 

(B,y,a,a) corresponds to first resolving c
1 

and 

L5 , then resolving with c
4 

and finally with c
3

• 

of the corollary to lemma l that any two sequences 

of graph operations which lead to the same final graph structure produce 

the same resulting clause. 

It is a consequence 

In Figure 2, the literals in parentheses are the associated literals; 

each associated literal is associated to a graph node and is an instance 

of one of the original literals naming a circle of the node. Since we 

shall show that these literals do not depend on the order of graph opera­

tions, we shall subsequently drop these literals from the diagrams. 
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The t~rm "merge ln. a graph". will alwa~s refer to a dotted link .. between 

literals in distinct initial clauses. The resultant clause of a graph 

containing such a merge link is itself either a merge of a d-merge, but 

we shall not always be able to tell which (and the distinction will be 

unimportant in our development), 

Graph Structure 

In the preceding discussion we described the resolution graphs 

corresponding to certain deductions. We now give a recursive defi-

nition for the class of structures called resolution graphs or simply 

graphs, in the remainder of the paper. (Note: we assume in the follow-

ing that every occurrence of an initial clause contains a unique set of 

variable symbols, so that no naming conflicts arise during the process 

of forming graphs,) 

Definition of Graph 

(I) The representation for any initial clause by a connected row 

of circles is a graph, and is called an initial graph. 

(2) If G is a graph, and two associated literals from distinct 

free nodes may be made identical by the most 

general unifier A• the result of connecting together all the 

circles in the two nodes by dotted lines is a graph. The new 

connected group is a single free node of the new graph and 

each associated literal is replaced by its A-instance. 

(3) If G and G are graphs and the associated literals of a free 
1 2 

node N
1 

of G
1 

and a free node N2 of G2 may be unified, the 

result of dot connecting the circles of N
1 

and N
2 

is a 

graph G. Again, the new dot-connected group is a single node 

15 



of G and the associated literals are replaced by their respec-

tive instances (under the unifying substitution). 

(4) If G
1 

and G
2 

are graphs, and if the associated literals L1 of 

a free node N
1 

of G
1 

and L
2 

of a free node N2 of G2 may be 

made eomplementany (i.e., identical atomic formulas and 

opposite signs) by an appropriate unifier A, then the result 

of connecting N
1 

and N
2 

by a double bar is a graph G. N1 and 

N
2 

are no longer free in G and the associated literals of the 

nodes in G are A-instances of the associated literals of G1 and G2 • 

(5) Only hhose structures which can be built up by a finite number 

of applications of rules 1, 2, 3 and 4 to some set of initial 

clauses are graphs. 

Examples: Figure 3 shows some possible and impossible graph struc-

tures ~ 

Definition: A set of literals (or circles) in a graph is said to 

be unifier-connected if the literals are connected by double bars or 

dotted lines or both; e.g., the graph in Figure 4a contains four unifier-

connected sets: 

Definition: Let eG be the class of unifier-connected sets of liter-

als in a graph G, except that all negation signs are omitted, so that e 
G 

is a class of sets of atomic formulas. The most general unifier of the 

graph, denoted by oG' is defined to be the most general unifier of eG, 
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In the graph construction, the sets in eG are successively unified; 

hence, by the corollary to lemma 1, crG always exists (assuming G exists) 

and the associated literals of the nodes of G are given by applying crG 

to the original literals of G, This argument proves that a resolution 

graph is independent of the sequence of operations by which it is con­

structed. The graph partition, denoted by PG, is the partition induced 

by crG on the set of atomic formulas occurring in G. Since crG may unify 

atomic formulas which are not in eG' we always have: 

(1) eG ,; [eG J ,; P G and 

(2) crG ~ creG ~ cr(eG] = crPG 

Repetitions 

In resolution theorem proving, one generally considers the set S 

of initial clauses to be of fixed size, even though a single member of 

S may be used several times in a proof and each such use requires a 

new alphabetic variant of the clause. In working with graphs, we find 

it more convenient to consider each occurrence of an initial clause, 

represented by a row of circles, to be distinct. Therefore, the "set 

of initial clauses" of a graph--or the 11 set of initial graphS 11 may con­

tain repetitions of members of the "set of initial clauses" in the pred­

icate calculus sense. Similarly, when discussing the "literals" of a 

graph we consider each node in the structure to be associated with a 

distinct literal (its associated literal) even though the literals rep­

resented by two or more of them may be syntactically identical. With 

these ideas in mind, we find the concepts of !-clause ("graph-clause") 

and subgraph useful • 
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Definition: A !-clause is an unordered tuple of literals. Two 

g-clauses are equal if every member of one is a member of the other, and 

occurs with the same multiplicity. 

Definition: The resultant of a graph G is the g-clause of associated 

literals of the free nodes.;of G. The resultant may be constructed by 

first forming a g-clause of initial literals, one from each free node of G, 

and then instantiating each member by aG. Each g-clause determines a 

unique set of literals (deleting multiple occurrences) and hence the 

resultant determines a unique clause called the resolvent of the graph,;' 

Definition: A graph G1 is said to be a subgraph of another graph 

G provided G is constructable from G' by applications of rules 1, 2, 3 

and 4 defining graph constructions. We also call G an extension of G'. 

We note that the relation "G
1 

is a subgraph of G
2

" is clearly 

transitive, and that every initial graph in a graph G is a subgraph of G. 

Two subgraphs G
1 

and G
2 

of a graph G are said to be disjoint if they 

have no initial graphs in common. If G
1 

and G
2 

are disjoint they can 

have at most one double bar link connecting them. (There may be one or 

more dotted links between them, however). Figure 4(b) shows the 12 

possible subgraphs of the graph in Figure 4(a), (Note that certain 

graphs may in a sense be contained within a graph and yet not be sub­

graphs of it as defined here, For example, the graph formed by dot­

connecting L2 and L
8 

of subgraphs (1) and (2) of Fig. 4b cannot be 

constructively extended to the full graph of Fig. 4a--or even to sub-

graph (6) .) 
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Another interesting property of subgraphs is that they can always 

be replaced by their resultants, Thus, if G
1 

is a subgraph of G and if 

c
1 

is the resultant of G
1

, we can construct an initial graph for c
1 

and 

replace G
1 

by this new graph in G without affecting the resultant of G. 

This is possible since each graph operation used in constructing G from 

G
1 

affects only the free nodes of G
1

, and their associated literals. 

However, each such free node and corresponding literal is represented 

uniquely in the graph of c
1

• 

Deductions 

As mentioned earlier, the introduction of a dotted line within a 

graph corresponds to a factoring operation, and the introduction of a 

double bar between two graphs corresponds to simple resolution. Because 

of the distinction between g-clauses and ordinary clauses, and because 

the double bar operation does not account for literal collapses, these 

correspondences are not complete. However, we can define simple resolu-

tion and factoring in terms of the graph operations and consequently 

obtain a precise correspondence between deductions and resolution graphs 

(or an appropriate subset thereof) • 

Definition: ... , B be a deduction of a clause C (B ~C) 
n n 

from a set S of initial clauses. We define the graph generated by the 

deduction as follows: 

(1) Each occurrence of an initial clause of S in the deduction is 

. represented by a separate. initiaL graph; 

(2) For each factoring step, we apply the factoring substitution 

to the free associated literals and dot-connect those nodes whose 

associated literals have been unified by the substitution (by step 2 in 

the definition of a graph). 
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(3) For each simple resolution, the appropriate double bar is 

added to the graph (by step 4). Again, if any associated literals from 

distinct free nodes have been unified, we dot-connect these nodes. 

Thus, each clause B
1 

in the deduction is represented by a unique graph 

G. whose resultant (or resolvent in this case) is B. (or a variant). A 

' ' 
graph that can be generated in this way by some deduction is called a 

deducible graph. 

Dominance 

Definition: A resolution graph G
1 

dominates another graph G
2 

(written G
1 
~ G

2
) provided the resolvent of G

1 
subsumes the resolvent 

Using the graph structures and associated partitions we can fre-

quently determine by inspection whether a given graph dominates another 

graph. A sufficient criteria for G1 to dominate G
2 

is that: 

(l) The literals naming free circles of G
1 

are a subset of the 

literals naming free circles of G
2

• 

(2) (alternatively cr = cr o A for some A), 
G2 Gl 

In this case c
1

A ~ c
2 

where c
1 

and c2 are the resolvents (or resultants) 

of G
1 

and G
2 

respectively. One example is that the graph of a factored 

clause is dominated by the graph of its parent. A more interesting 

example is given as follows: 

Let G1 be the graph of Figure 5a, so eG 

* Let c
1 

be a variant of c
1 

and let G 

Figure 5b. Then 

e * G 
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* Observe that although G is not deducible, its resultant is identical 

to (or a variant of) the resultant of G
1

; the variant c
1 

was added to 

* show that G
2 

(Figure 5c) dominates the graph G , because 

eG2 ={ILl' L3:' IL2, ~2!' !Ll, L4l' 1L5, Lsl!and therefore eG2 

Consequently, the resultant of G
2 

subsumes the resultant of G
1

• 

example, suppose the initial literals in Figure 5 are: 

Ll = ~ P(u) 

L2 = Q(z) 

L3 = P(a) 

L P(x) 
4 

L5 R(x) 

L6 = ~ R(y) 

L7 = S(y) 

A ' 
L = ~ P(u) 

1 
' ' 
L

2 
= Q( z) , 

:;;; e * G ' 

For 

* Then tbe reader can verify that the resultant of a
1 

or G is the clause 

I I 
IQ(z), S(a)!, while the resultant of a

2 
is the stronger clause 

I I IQ(z), S(x)l, This illustrates the principle (to be proven in Lemma 2) 

that in general, if one resolves first and then factors, rather than 

vice versa, one obtains a "stronger 11 clause, i.e. a clause that subsumes 

the clause obtainable by first factoring and then resolving. 
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We are interested in the dominance relation for the following reason: 

In sect ion V we shall deal with the construction, subject to certain con-

straints, of a proof represented by a certain graph G. Analogously with 

the above example, it turns out to be easier to construct a different 

but dominating graph G1 ~ G. This is generally satisfactory since if 

eG' ~ eG then for any clause that can be deduced (by simple resolution 

or factoring) from the resultant of G, there exists a clause at least as 

strong that can be deduced from the resultant of G1--as we shall show below. 

Definition: A graph G is said to contain a loop if two initial 

graphs of G are connected by chains of unifier-connecter literals in 

more than one way. 

Thus, in Figure 4b, the subgraphs 6, 8, 9, 10, 11 and 

12 contain loops while the remainder are loop-free. We note that the 

only way loops can occur in deducible graphs is as a result of merges. 

This fact will be important in our later development of a proof strategy. 

The following theorem establishes the equivalences of certain 

graphs, and corresponding deductions. 

Theorem 1: (Resolution graph theorem). Let G be a graph represent-

ing a resultant g-clause C constructed from a set S of initial clauses 

{including possible repetitions), and let eG be the class of unifier-

connected sets of literals from G. 

1. oG exists, and the resultant C is obtained by applying vG to 

the literals of the free nodes of G. If G is deducible, any deduction 

that generates G produces the same resultant clause. 

2. If G is constructed from G
1 

and G
2 

by a double bar operation, 

I 

and if G
1 

dominates G
1

, then either G{ dominates G, or else G' 
1 

and G2 

can be double bar connected producing a graph G1 dominating G. 
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3. Let G
1 

be a subgraph of G havmng c
1 

as its resultant, and let 

D be any g-clause subsuming c
1

• Let s
1 

be the initial clauses used 

in a
1

. Then there is a graph G1 containing initial clauses from 

(S - s1) U [D} that dominates G. 

4. There is a deducible graph G1 ~ G. 

Proof: (1) This statement has already been proved (Lemma 1 and 

subsequent definitions). 

(2) Let N
1 

and N
2 

be the (free) nodes of G
1 

and G
2 

respec-

tively that are double-bar connected in G; let L
1 

and L
2 

be their respective 

associated literals. Since the resultant c{ of a{ subsumes the resultant 

c
1 

of G
1

, we have C{ ). C c
1 

for some ).. Moreover, every literal in c
1 

is free in G except L1 , so the only way c{ could fail to subsume C is if 

L
1 

is a member of Ci ).. (i.e., L
1 

= L{ ).. for some literal L{ in c{). In 

that case G{ can be double bar connected to G
2 

on the nodes corresponding 

to L{ and L
2

, and the graph obtained clearly dominates G. (Should G{ have 

more than one free node having Li as an associated literal we must first 

dot-connect those nodes in G{.> 

(3) To simplify the discussion, we first replace the sub-

graph G
1 

in G by an initial graph for its resultant c
1

. We let G be 

the graph so obtained; clearly ~ has the same resultant c, and ILand is 

constructed from initial clauses in (S - s
1

) U [c
1

}. Our proof is by 

h 

induction of the total number of links in G (dotted links plus double-

bar links). Since G is a graph, G is constructed in one of four ways: 

h 

(a) G is an initial clause which is necessarily c1 . In 

this case the number of links is 0 and we take G1 ~ the 

graph of D. 
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(b) G is formed from a graph G
2 

by adding a detted link. 

By induction, since G2 has fewer links 'than &;~'there 

is a graph G' ~ G
2 

containing initial clauses from (S - s
1

) U 
~ 

(D}. Since G2 ~ G (G is a factor of G2) we have G' ~G. 
A 

(c) G is formed from two subgraphs G
2 

and G
3 

by adding a 

dotted link. (Note that G
2 

and G
3 

each dominate G.) If G
2 

is the subgraph containing c
1 

(exactly one of G
2 

or G
3 

con­

tains c 1 ), we take G1 to be the graph satisfying the theorem 

for G2 • However, G' ~ G2 ~ G so G' satisfied the theorem for G. 
A 

(d) G is formed from G2 and G
3 

by adding a double bar link. 

Again, assume c
1 

is contained in G2 , and let G~ be the graph 

satisfying the theorem for G
2

. By part (2) of Theorem 1, 

either G~ ~ G in which case we set G1 
; G~ or else G~ and G

3 

can be double bar connected to produce a graph G1 ~ G. Since 

G
3 

is constructed from S 

we see that G1 satisfies the theorem in either case. 

(4) (We again do a proof by induction on the total number of 

links in G). 

(a) If G is an initial clause it is deducible. 

(b) If G is formed from G1 by adding a dotted link, let 

G1 be the deducible graph for G
1

, But G' ~ G
1 
~ G so G1 

is a deducible graph for G. 

(c) If G is formed from G1 and G
2 

by adding a dotted link, 

let G' be the deducible graph for G
1

. Again, G' ~ G
1 
~ G 

so G' is a deducible graph for G. 
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Observations 

(d) If G is formed from G
1 

and G
2 

by adding a aouble bar, 

then again by induction let G{ and G~ be the deducible graphs 

for G
1 

and G
2 

respectively. Now by I>art (2) either G 1 
;;, G.'il.l which 

1 

case .. we.set G
1 = G~, or. G~;;;, G in which case we set G' 

G{ and G~ can be double bar connected to generate a graph 

G1 ;;;, G
1

. In this last case, we must dot-connect any nodes 

of G1 containing identical associated literals in order that 

this last step constitutes a valid deduction. 

1. Sometimes a deducible graph may be generated only by performing 

the resolutions in one order; attempting a different order causes literals 

to collapse (by the induced partition) and thus disappear from the graph. 

For example, consider the deductions possible from the three clauses c
1

, 

c ={~ P(x, a)' R(x} J 
1 

c ={PC b, z) ' Q( z, b)} 
2 

c3 =(P(u, a) , ~ Q( a, u}} 

If we start by resolving c
1 

with c
2

, we can get (by Figure 6a) (P(b,a), 

R(b)}. If we instead start with c
2 

and c
3

, the deducible graph has an 

induced dotted link and we get simply P(b, a) (Figure 6b}, or if we wish, 

R(b) (Figure 6c). 

This phenomenon does not contradict the theorem, which merely 

asserts that the resultant clauses are the same whenever the graphs 

are the same, which they are not in Figure 6. Note that if we use the 

25 



pure graph operation of double-bar link, rather than resolutio~, we can 

construct Figure 6a in any order. Moreover, whenever we get collapses in 

deduced graphs we end up with a stronger clause, i.e. one that subsumes 

the clause obtained by resolving in a sequence that avoids the collapse. 

Problems such as this order-dependence of deductions would have been 

avoided if we had defined a clause by a graph and an inference step by 

a double-bar link; such an approach would have resulted in a somewhat 

more elegant presentation. However, the idea that a clause is a set and 

resolution is an inferential operation upon sets is well entrenched in 

the literature (and in various computer implementations). Therefore, 

this paper has taken the more complicated approach of explicitly dis­

tinguishing deduced graphs and collapsed literals. 

2. Any tautological subgraph may be eliminated from a non­

tautological graph without weakening a deduction, i.e. there exists a 

graph without the tautological subgraph whose resultant subsumes the 

resultant of the original graph, (A tautological graph is one whose 

resultant contains a pair of complementary literals,) Since the entire 

graph is nontautological, there must exist a\rsi.l.~a''l!li:cGir'cdQll.bl .. ;AlO:.:'t'Ji9c ,f?'7' >" 

linked to the tautological subgraph d on one of the troublesome literals; 

but then G
1 

itself dOminates the graph consisting o;f d 

and G1,anct by the theorem may replace it in any larger graph, For 

example, consider the propositional deduction of Figure 7, This graph 

may be deduced with no problems by doing the lower resolution first. If 
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the upper resolution is done first, the tautological subgraph J with 

resultant [P, ~p,s} is deduced, However, note that the clause D ~ (p,r} 

subsumes the resultant of the entire graph (p,r,s}. 

V STRATEGmS AND REORDERING THEOREMS 

In this section we prove the completeness of a new strategy for con­

structing resolution proofs~ (Remember that we use nresolution 11 to mean 

optional factoring followed by simple resolution.) This s,trategy severely 

limits the alternative next steps available at each stage in a proof by 

superimposing several of the constraints described by other workers. Our 

approach is to show, constructively, how to transform any given graph 

into a dominating graph that can be generated by a proof satisfying the 

constraints. 

The distinction between resolution with an initial clause, and 

resolution with a clause generated by previous resolution steps, is 

an important aspect of the class of theorem-proving strategies with 

which we are concerned~ Consider a deducible graph containing several 

dotted lines. By Theorem 1, the order of operation that generated the 

graph is unimportant, and therefore any dotted lines between literals 

in the same initial clause can be produced by the factoring part of a 

resolution operation at the time that clause is introduced into the 

proof. On the other hand, a dotted line between literals in different 

initial clauses (a d-merge node) cannot be generated by a deduction 

until a subgraph has been constructed that contains all the parent 

clauses (because step 3 in the definition of a graph can never be used 

when the graph is generated by a deduction). This is the source of 

most of the complication in the following presentation, and tbe xeason 

why d-merges are important in proof strategies. 
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Dot Reduction 

The following lemma states that any particular dot-connected group 

in a graph may be split. 

Lemma 2: Let G be the graph formed by a double-bar connection between a 

literal L in graph G
1 

and the dot-connected n<X:t! :;: 

group"of circles in graph G2 • Then the graph G1
," obtained .from G by removing L

1 

from £, double-bar connecting L in G to L , and double-bar connecting 
1 1 

the remainder of~ to the copy of Lin G
1 

(a new variant copy of G
1
), 

exists and dominates G (see Figure Sa, c). 

Proof: If we factor any clause together with an alphabetic variant 

of itself, we obtain essentially the same clause again. Therefore graph 

* G , obtained by replacing subgraph G
1 

in G by such a factored pair of 

variants, is equivalent toG (Figure Sb). Ignoring signs as usual, the 

relevant subset of e * affected by the modification that is required 
G 

by the lenuna is ffL 
i. l 1' L2' .. ~' L ' L, L} ' {L' £'11 

' ) J • The' corresponding 
n 

e · ! 1L 'lt . I 
subset of G I 1.8 l ( 2' ... ' L 

n' Ll ILl, L~ l' Since the remainders of e * G 

* and eG, are identical, eG, ~ tG*, therefore G1 ~ G , and thus, G1 ~ G. 

Note, Since the ancestors of a d-merge literal in initial clauses form 

a dot-connected group in a graph, this lemma will be useful for eliminating 

or reducing the complexity of d-merges in deducible graphs. 

Fishtail Deductions 

The proof method of our main theorem, Theorem 2 below, will be 

induction upon the number of merges in a graph. 

Our next lemma establishes a strong condition upon the structure of a 

proof that generated a graph containing no merges, 
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Definition A fishtail construction of a graph G from a set S of 

initial clauses (including possible repetitions) is a finite sequence 

of graphs G
1

, G
2

, ••• Gm such that 

(1) G
1 

is the graph of a clause from S, called the starting clause 

of the construction. 

(2) G., l < i $ m, is the graph obtained from G. 
1 

and (the graph 
l l-

of) a member C of S by first dot-connecting a group of nodes in G. 
1

, 
l-

then dot-connecting a group of nodes in C and finally double-bar connect-

ing the resulting nodes. (The dot-connecting could be a vacuous operation 

in either case.) 

( 3) G is G, 
m 

Definition: A fishtail deduction of a clause C from a set S of 

initial clauses is a finite sequence of clauses B
1

, B
2

, .•• , Bn such that 

( 1) B e S and is called the starting clause of the deduction 
1 

( 2) B,, 1 <is n. is the result of resolving B with some 
l • 1-1 

member of S. (Remember that "resolving" means simple resolution after 

optional factorings of both parents.) 

(3) B is c. 
n 

Lemma 3: 

(1) If there exists a fishtail construction of a graph G with 

clauses from S and starting clause B, whose resultant g-clause is C, 

then there exists a fishtail deduction of a clause c 1 that generates a 

graph G' ~ G with clauses from S and starting clause B. 
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(2) If G is a graph containing no merges (i.e., dotted links 

between literals in different initial clauses), then there exists a 

fishtail deduction that generates a graph G' :2 G with any clause in 

G used as starting clause. 

Proof: 

(1) Starting with B, follow the steps of the fishtail construction. 

For each addition of a dotted link make a factoring step, and for each 

double-bar to a new clause make a simple resolution. By the argument in 

the proof of theorem 1 part 2, this is always possible unless the graph 

deduced at the previous deduction step already dominates the graph con-

structed at the current construction step--in which case no correspond-

ing deduction step is necessary. This deduction sequence produces dedu-

cible graphs dominating the corresponding constructed graphs, so that at 

the final step the deduced graph G' will dominate the constructed graph G. 

(2) Since there are no merges, each resolution link connects 

exactly two initial clauses and those two clauses are not connected in 

any other way, i.e. the graph contains no loops. Therefore, by theorem 

1 part 1,, a fishtail construction of G may be generated from any starting 

clause, and by (1) there exists a corresponding fishtail deduction of 

G 1 :2 G. 

Note that the fishtail construction is a procedure for "growing" 

a graph G by starting with a single clause and "adding" additional 

initial clauses, thus forming successively larger subgraphs of G. FUr-

ther growth of a subgraph in this way is impossible only when each con-

nection from the subgraph to other parts of G is a double-bar link to a 
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merge--because each merge links at least two initial clauses, and a 

fishtail procedure requires adding initial clauses one at a time. 

Examples: There clearly exists a fishtail construction of the merge-

less graph of Figure 9a from any starting clause. In Figure 9b, any 

fishtail construction must start with either c
1 

or c
2

, since otherwise 

the dotted link cannot be introduced. Figure 9c is an example of a 

graph for which there does not exist a fishtail deduction. It represents 

a refutation, for example, of the four clauses p V q, p V ~ q, ~ p V q, 

and ~ P V ~ q. Either the left or right subgraph can be generated in 

fishtail fashion, but the growth process is then blocked by the double-

bar link to a merge. 

Main Theorem 

Theorem 2: Let G be a graph generated by any deduction D of a 

clause c from an initial set s. Then there exists a graph G1 and a 

deduction D1 generating G1 with the following properties: 

(1) G 1 <: G, 

(2) The deduction D1 contains a linear sequence of clauses B
1

, 

B
2

, ••. , Bn such that 

(a) B e s, and may be arbitrarily chosen to be any element 
1 

of S whose graph occurs in G. 

(b) For 1 < i ~ n, B. is a resolvent, one of whose parents 
:t 

(the "immediate" parent) is B • (The other parent of 
i-1 

B
1 

is called the "far" parent.) 
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(3) Either the far parent of B., 1 < i,; n, is in S (the fishtail 
1 

property), or the far parent satisfies all the following conditions: 

(a) 

(b) 

(c) 

rt is B. for some j, 1 < j < i. 
J 

It is a d-merge, and the merge literal is the literal 

resolved upon. 

An instance pf the resolvent B is identical to an 
i 

instance of the clause obtained by deleting the literal 

resolved upon from the immediate parent B
1

_
1

. 

Proof: The strategy for the proof will be roughly this: We shall 

select successively larger subgraphs Gi of G. For each G., we shall show 
l 

how to construct a deduction D~ generating a graph G' 2 G. such that D' 
1 i ]. i 

has properties (2) and (3) (assuming G is replaced by Gi in the statement 

of the theorem). Moreover, D~ 
1 

will be derived from D~ simply by extend-
1+ 1 

ing the deduction, i.e. by using the resultant c: of G: as a starting clause 
1 1 

and "adding" (successively resolving with) initial clauses from Gi+l that 

did not occur in G .• Eventually, for some j, G. will be the complete 
1 J 

graph G, at which timeD~ will bethe required D1 • 
J 

The proof is by induction on the number of merges in G. By Lemma 3 

the theorem is true for any graph with no merges (because the fishtail 

property is satisfied). Now assume it is true for any graph with fewer 

than n merges, and assume G has n merges. Choose any starting clause 

B
1 

in G. Let G
1 

be the largest subgraph of G for which there exists a 

fishtail construction with starting clause B
1

• c
1 

is the resultant of 
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G, we are through, because by Lemma 3 there is an appropriate 

fishtail deduction. Otherwise, choose some free literal L (from a free 

node) in G
1 

that is double-bar linked to the dot-connected node £ = 

* {L1, ••• ,Ln}' n ~ 2, of literals in G
1

, a subgraph of G disjoint from 

G
1

• Each L
1 

corresponds to a node from a different initial clause, (L 

must exist because the fishtail construction of G
1 

cannot he continued.) 

* Let G
5 

be the subgraph of G consisting of G
1 

and G
1 

(Figure lOa). We 

shall show how to construct a deduction D~ generating a graph G~ such 

that D~ and G~ satisfy the theorem (if G
5 

is the entire initial graph G). 

Reduce the merge Z as described in Lemma 2, to produce G
5 
~ G

5 

(Figure lOb), The required deduction D~ generates a graph dominating 

G
5 

and begins as follows: Construct the fishtail deduction starting 

from B
1 

of a graph dominating G
1

• Resolve the resultant c{ with the 

* initial clause in G
1 

containing L
1 

(a fishtail step), forming G
2

, whose 

resultant clause is c
2

• Now consider G
3

, the subgraph of G
5 

shown in 

* * Figure lOc, It consists of G
2 

and a subgraph of G
1 

(namely, G
1 

without 

the merge£ or the initial clause containing L
1
). Since the former sub-

graph G
2 

is deducible (by the deduction of c
2 

already described), we may 

think of it as if it were simply a single initial clause c
2

• 

Since G
3 

now contains c
2 

and a subgraph of G from which a merge £ 

has been deleted, G
3 

certainly has less than n merges. Therefore, by 

the inductive hypothesis there exists a deduction D~ with starting clause 

c
2

, generating a graph G~ ~ G
3

, that satisfies all the conditions (2) 

and (3) of the theorem. 
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We now ask, does G~ dominate G
5

? If so, the deduction thus far-­

the deduction of c
2 

followed by D~--is the required D~. Unfortunately, 

G~ does not necessarily dominate G
5

• 

the literals associated with nodes of 

eG I , e G , eo ' as required; and 
3 3 5 

G~ are a subset of those of G
5

, 

except that G~ may contain free literals of !. -Since G
5 

has no free 

literals of !, the resultant of G~ does not necessarily subsume the 

resultant of G
5

• We first factor together these troublesome literals, 

forming a single node. The rest of the proof is concerned with "getting 

rid ofn this node., 

One way to complete the deduction is to resolve C~, the resultant 

of G' with a variant of the clause C that appears earlier in the deduc-3' 1 

tion, using the literals of ! in c
3 

against the variant L of L in c
1 

(Figure lOb). However, this step would not generally satisfy condition 

(3b) of the theorem, Therefore we must be somewhat less direct. 

Consider G
5

• We may replace its subgraph G
3 

by the single "initial" 

clause C~. (Note that the remainder of G
5 

consists simply of 6
1
.) Let 

a
4 

be the largest subgraph remaining in G
5 

for which there exists a fish­

tail construction with C~ as starting clause, Let D~ be the fishtail 

deduction of a graph dominating G
4

{Lemma 3) (Figure lOd), 

Finally, consider the case in which D1 could not generate all of 
4 

the suhgraph 6
1

• The fishtail process cannot continue only if the 

resultant of the deduction thus far must be resolved with a merged set 

of literals in the remaining part of the graph. Recall that D~ actually 

includes deductions that start from B
1 

and generate graphs dominating G
1

, 

then a
2

, a
3

, and finally G
4

• Let us number the steps of D~. Let C~ be 

the name of the final clause deduced by D
4

, and assume C~ is deduced at 

34 



step k- 1. At step k, we would like to resolve C~ against the resultant 

of a subgraph of G
1 

containing a particular merge (merge min Figure lOb)--

a nonfishtail step. However, since G
1 

was generated by a fishtail deduc­

tion, that merge must have been formed in an immediate parent during that 

deduction; and that deduction D{ is the first part of D~. Therefore a 

suitable clause for completing the deduction already exists as one of the 

Bj,l < j < k (property (3a)). (In Figure lOe, we have drawn a copy ck· 

of this clause Ck to show the final resolution.) Note that the resolu­

tion must be performed upon a merge literal, thereby satisfying property 

(3b) • 

Let a be the substitution required for this resolution at step k, 
r 

and a be a substituion that merges corresponding lite1·als that are left 
m 

in the two copies Ck and Ck appearing in the final resolvent Bk C~. 

Then om applied to ~ would make it identical to the clause obtained by 

applying crr o crm to the immediate parent ~-l = c~ after deleting the 

literal resolved upon, satisfying property (3c). 

Finally, suppose G
5 

is not the complete starting graph, and instead 

G contains additional subgraphs, Because of the definition of G
1

, these 

additional subgraphs must contain merge literals double-bar linked to G
5

• 

We may replace G
5 

in G by the resultant C~ of G~, and continue the con­

struction of the required deduction by "adding" to D~, i.e. by treating 

c~ as the starting clause. 

Tautologies 

For purposes of efficiency in a proof strategy based on Theorem 2, 

it would be desirable to add the following condition: 

(2d) No a
1 

is a tautology. 
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Unfortunately, this is not true under the premises that G is generated 

by any deduction from any initial set s, and B
1 

may be chosen arbitrarily, 

For example, if the middle clause (p V q) is selected as B
1 

in the pro-

positional graph of Figure 11, then a tautological intermediate clause 

must be generated before obtaining the resultant ( ~ p V ~ q V r V s). 

As we mentioned in the discussion after Theorem 1, the tautological 

subgraphs may be eliminated; in this particular example, either of the 

two terminal clauses subsumes the resultant. The problem here is that 

the designated starting clause, p V q, is essentially irrelevant to the 

desired result. If we are interested in refutations, i,e, deductions whose 

resultant Cis the empty clause (graphs containing no free nodes), then 

following Anderson and Bledsoe (1970) we could require that the initial 

set S be minimally unsatisfiable. This means that S is unsatisfiable, 

but for any clause C e s, S - lc! is satisfiable. Therefore the graph 

of any refutation of S, including those whose tautological subgraphs 

have been eliminated, must contain an occurrence of every clause inS. 

Thus we ean assert the following theorem: 

Theorem 2': Let G be a resolution graph generated by a refutation 

from a minimally unsatisfiable set S, Then there exists a refutation 

generating G1 that satisfies conditions (2) and (3) of Theorem 2, and 

also satisfies the conditions that no Bi is a tautology. 

Proof First eliminate all tautological subgraphs from G, producing 

a refutation graph G, Since S is minimally unsatisfiable, any starting 
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A A 

clause chosen from S must occur in G. Use Gas the given graph in 

the proof of Theorem 2. Since that proof always replaces subgraphs by 

subsuming clauses and a tautology does not subsume any nontautological 

clause, no tautologies are introduced during the proof process. 

VI CONCLUSIONS 

Relation to Previous Work 

Theorem 2 establishes that if a resolution deduction exists at all, 

then one exists that simultaneously satisfies several conditions. 

Clearly an assertion that a deduction exists satisfying only ~ of 

these conditions would be a corollary of Theorem 2. Therefore, we have 

just proven the completeness of all the following proof strategies: 

1. Property (2a) establishes that any single initial clause 

occuring in a resolution proof is a sufficient set-of-support (Henschen, 

1968) • 

2. Properties (2) and (3a) constitute the "ancestry 

filter" described by Luckham (1969). 

3, Property (3c) is essentially the subsumption condition described 

by Loveland (1970)--and shown by Loveland to be compatible with ancestry 

filter and set-of-support. 

4, Property (3b) is essentially a statement of Andrews' (1968) merge 

condition (shown by Andrews to be compatible with set-of-support), 

Therefore the main results of this paper were to establish that all 

these strategies could be used simultaneously without losing completeness. 
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and to give some insight (by means of the resolution graph notation) 

into the significance of using each of the strategies. 

Proof Strategy 

Consider the following strategy g for proving a theorem from a set 

of axioms a by resolution: 

1. Let S be the set of clauses obtained by placing all the 

members of a, and the negation of the theorem, in quantifier-free 

conjunctive form. 

2. Choose any clause in S that is known to be needed in the proof, usu-

ally a clause from the negation of the theorem, as the first clause B
1

• 

3. For each sequence B
1

, B
2

, ... ,B., consider as successor 
1 

clauses every B that satisfies all the properties (1) and (2) of 
i+l 

Theorem 2 (and, if S is minimally unsatisfiable, the additional condition 

of Theorem 2 1
). This defines a tree of deductions. 

4. Choose any algorithm for exhaustively searching the tree, e.g., 

breadth-first, or unit preference with level bound (lros at al., 1964) • 

Apply the algorithm. 

5. A deduction of 0 (a "refutation") constitutes a proof of the 

theorem. 

If any refutation containing the clause B
1 

exists, one will be found 

by g. Moreover, the nodes in the deduction tree have fewer successors than 

those of trees corresponding to less restrictive strategies; one hopes that 

this reduction in successors may reduce the total effort needed to find a 

proof. However, refutations that satisfy all the properties (1) and (2) 
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are usually longer than refutations that do not, and the relative sizes 

of the trees to be generated remain an open question. 

The construction of a proof may be viewed as a tree-searching problem. 

Property (1), the linear format, essentially defines a class of deduction 

trees to be searched. The conditions of property (2) define the successor 

function. Theorem 2, and thus step 4 of g, have not treated the problem 

of selecting a good algorithm for attempting to find a refutation in the 

tree--and yet this algorithm may have a profound effect on the effectiveness 

of the search. Perhaps semantic heuristics, such as some kind of model 

partition strategy (Luckham, 1968) can be embodied into this algorithm 

without losing completeness, Another possibility is that suitable 

bounds can be found to enable practical use of the optimum tree-searching 

* strategy A (Hart at al., 1968). Kowalski's paper (Kowalski, 

1970) discusses this problem. 

Further improvements in theorem-proving strategies might be obtained 

by studying the topological properties of resolution graphs. For example, 

the construction in the proof of Theorem 2 involves transforming a 

portion of a graph into one that is in a sense topologically simpler. 

In the extreme case of a graph with no loops, the stronger result of 

Lemma 3 is possible. 

Theorem 2, property (2a) states that any clause that is used in a 

proof may be used as the top clause B
1

, i.e., is a sufficient set of 

support. However, the choice of this clause may have a drastic effect 

on the length of the shortest deduction satisfying the rest of the 
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properties. For example, suppose g consists of the following clauses: 

l. I Q I IP x' X\ 

~~ Qz' R ' 
s I 

a w! 2. 

3. L 
I Rx' s I 

aJ 

and the negation of the theorem of two clauses: 

Nl. 

N2. 

~~ Pa' Qal 
I~ s I 
I a I 

If Nl is chosen as B
1

, we can get the refutation of Figure 12a, whose 

graph is Figure 12b. On the other hand, if N
2 

= B
1

, the refutation of 

Figure 13a, graphed in Figure 13b, is probably the shortest one that 

satisfies the conditions of Theorem 2. In general, given the resolution 

graph of a deduction, one may be able to establish on a purely topological 

basis the lengths of equivalent deductions that use particular strategies 

or support sets. 

Another potential use for these graphs is as a basis to some new 

heuristic procedure for guiding the construction of a refutation. The 

graph of a refutation contains no free literals. The graph of an 

intermediate stage of a deduction therefore contains free literals that 

must be eliminated or "resolved away" in order to complete the proof. 

Since the graph structure contains more information than exists in its 
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resultant clause, perhaps a better strategy can be found than the usual 

unit preference or fewest component strategies. 

FinallyJ let us consider the notion of "single connectedness. 11 Wos 

et al (1967) define a resolution procedure to be singly connected provided 

no clash is generated in more than one way, where clash may be defined 

now as a clause whose resolution graph consists of n initial clauses, each 

resolved with a different literal from one initial clause of length greater 

than n. (By Theorem 1, all clashes that generated the same graph are equiv­

alent.) A somewhat stronger property would be the following: 

Definition: A resolution procedure is strongly singly connected 

iff it never produces two different deductions that generate the same 

resolution graph. 

Since generation of the same (resultant) clause by alternate, 

equivalent deductions is a major cause of wasted effort in resolution 

procedures, strong single connectedness is an extremely desirable 

property. Perhaps the concept of resolution graphs can be the basis for 

a bookkeeping procedure for achieving this property in general. (We 

are aware of existing bookkeeping procedures that only work in unit 

resolutions.) Unfortunately, in order to test whether a proposed deduction is 

following a previously attempted path in this way, we would require an 

algorithm for testing whether the current resolution graph is a subgraph 

of any of a set of other previously established graphs. We know of no 

algorithm for this at present that is sufficiently efficient to be practical. 
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