
*

RESOLUTION GRAPHS

by

Robert A. Yates
Bertram Raphael

Stanford Research Institute
Menlo Park, California

* Timothy P. Hart
Air Force Cambridge Research Laboratories

L. G. Hanscom Field
Bedford, Massachusetts

Artificial Intelligence Group

Technical Note 24

SRI Project 8259

Presently at Evans, Griffiths and Hart, Inc.
Lexington, Massachusetts

March 1970

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 1970 2. REPORT TYPE

3. DATES COVERED
 00-00-1970 to 00-00-1970

4. TITLE AND SUBTITLE
Resolution Graphs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper introduces a new notation, called "resolution graphs, 11 for deductions by resolution in
first-order predicate calculus. A resolution graph consists of groups of nodes that represent initial clauses
of a deduction and links that represent unifying substitutions. Each such graph uniquely represents a
resultant clause that can be deduced by certain alternative but equivalent sequences of resolution and
factoring operations. Resolution graphs are used to illustrate the significance of merges and tautologies in
proofs by resolution. Finally, they provide a basis for proving the completeness of a proof strategy that
combines the set of support, resolution with merging, linear format, and Loveland’s subsumption
conditions.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

61

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

RESOLUTION GRAPHS

Abstract

by

Robert A. Yates
Bertram Raphael
Timothy P. Hart

This paper introduces a new notation, called "resolution graphs, 11

for deductions by resolution in first-order predicate calculus. A

resolution graph consists of groups of nodes that represent initial

clauses of a deduction and links that represent unifying substitutions.

Each such graph uniquely represents a resultant clause that can be

deduced by certain alternative but equivalent sequences of resolution

and factoring operations.

Resolution graphs are used to illustrate the significance of merges

and tautologies in proofs by resolution. Finally, they provide a basis

for proving the completeness of a proof strategy that combines the set

of support, resolution with merging, linear format, and Loveland's sub-

sumption conditions.

11

I INTRODUCTION

Automatic theorem proving in the first-order predicate calculus

has become an active and fruitful field for research, particularly since

* Robinson's landmark paper (1965) introduced the resolution rule of

inference. Computer programs that perform logical deduction by using

some variation of resolution have been applied to a variety of problem

domains, including lattice theory (Guard, et al,, 1969), question.::answering

systems (Green and Raphael, 1968), . and problem-solving tasks (Green, 1969),

The major reason these programs have had only limited effectiveness

is that they require excessive amounts of computer time and space. This

is largely due to the weakness of existing strategies for deciding how

to apply the resolution rule. Robinson presented one logically complete

(but grossly inefficient) strategy for using resolution to prove theorems.

Since then numerous papers have appeared describing more restrictive

strategies that are also complete. The nature of some of these strategies

is syntactic, i.e., they depend upon the identity or number of elementary

symbols (IVos et al., 1964; Was et al., 1965; Andrews, 1968; Loveland, 1970).

Other strategies are of a semantic nature, i.e. they depend upon assign-

ments of models or truth values (Slagle, 1967; Luckham, 1968).

In this paper we prove the completeness of an extremely restrictive

syntactic strategy. Raphael (1969) presented part of this strategy in

* References appear at the end of this paper.

1

an informal note a year ago. (This paper supercedes that note.) Since

. t)len';;i:t'l;s~c<jrtipl:etetWs's chashbE)e:n:c fudepeiidei1t1yJ>estl}(bi:t!3he!i by A.neter !..o'fi·. a:pp

Bledsoe (1970).

The completeness of this strategy was discovered by us while working

with a new graphical notation for resolution deductions. This notation,

whose justification is based upon the mathematical concept of a partition,

leads us to a clearer understanding and simplified proofs for several

existing theorems in resolution theory. Therefore a major purpose of

this paper is to present the idea of a resolution ~and show its

usefulness.

II TERMINOLOGY

We shall assume familiarity with standard terminology and notation

of first-order predicate calculus and proof by resolution. In summary,

all logical statements are assumed to he in quantifier-free conjunctive

normal form; existential quantifiers are eliminated by the introduction

of Skoiem functions, and universal quantification is assumed over varia

bles. The initial information is represented by a finite set of clauses,

each of which is a set of literals. (This finite set is called the

"clause form" of the predicate-calculus statement obtained by forming

the disjunction of the literals in each clause, and then the conjunction

of the resulting formulas). Each literal is either an atomic formula

or the negation of an atomic formula. An atomic formula consists of a

predicate symbol and an appropriate number of terms for its arguments.

2

Each term is either a constant, a variable, or the composition of a

function applied to an appropriate number of terms as arguments.

Resolution may be taken to be an operation mapping two parent clauses

B and C into a "resolvent" clause D, By Robinson's definition, the clause

D is a resolvent of B and C (which have been "standardized" to have no

variable names in common) iff (if and only if) there are nonempty subsets

b <;::; B and c <;::; C such that the atomic formulas in b U c are unifiable with

a most general unifier cr, b cr " {L
1

}, c cr (L
2

}. where L
1

and L 2 are com

plementary literals, and D " (B cr - {L
1

}) U (C cr - (L2}). We call elements

b U c the literals resolved upon. (The concepts of unifier and most gen

eral unifier will be discussed in detail in the next section of the paper.)

Andrews (1968) broadens this definition of resolvent by not requiring

a to be most general, This is equivalent to considering every substitution

instance of the above D also to be a resolvent of B and c.

A common restriction of resolution is simple resolution, in which

band c must be singletons. It can be shown that an inference system

based upon simple resolution alone is not complete.

If some clause D has a subset d and a is a most-general unifier of

the literals in d, da = ILl, then we call the clause Da a factor of D,

and D a parent of its factor. Since a clause implies all of its instances,

clearly a clause implies all of its factors. One can show that simple

resolution and factoring can form a complete inference system. [Although

factoring played a major role in an early unpublished version of Robinson (1965)

3

and was implemented in the first resolution program (Wos et al. (1964,

1965)), it has been little discussed in the literature. A variation

called distinguished literal factoring is discussed by Kowalski and Hayes

(1969) J. In fact, resolution in Robinson's sense may be viewed as a

simple resolution that has been preceded, if necessary, by appropriate

factoring operations on the parents. In this paper we shall generally

view a resolution inference step as consisting of the two phases: factoring

followed by simple resolution.

A deduction of clause C from an initial set of clauses S is a finite

sequence of clauses B
1

, B
2

, ... , B such that:
n

(l) is either inS or it is a resolvent of B.

(2)

and Bk, l ~ j, k < i. and

B = C.
n

J

A refutation of a set S of clauses is a deduction from S of the empty

clause, which is denoted by D · The usual way to attempt to verify that

a theorem T is deducible from a set of axiomatic clauses G is to attempt

- -to construct a refutation of the set (:i U ;r, where';\" is the clause form

of the negation of the theorem T.

If D is either a resolvent or a factor, each literal L e Dis equal

to L'o for at least one literal L 1 in a parent clause (and the appropriate

substitution o), Every such L' is called a parent of literal L. Thus

in any deduction of a clause D from a set 8 of initial clauses, we may

trace the ancestry of the literals in D back to literals in the members

of S.

Andrews (1968) defines a merge to be any deduced clause containing

a literal that has parent literals in both parent clauses. We find it

4

convenient to extend this concept by defining a !!-merge ("descent merge")

to be any clause containing any literal L that has ancestors in two or more

distinct occurrences of members of s, and we call such an La !!-merge literal,

Every d-merge is thus either a merge or the descendant of a merge, Since the

formation of a merge always causes two or more literals in different initial

clauses to become associated (by virtue of becoming ancestors of the same

literal), we shall sometimes use the term "merge" merely to refer to this

association, which is exhibited as an explicit link in the "resolution graphs"

to be defined below, Note that L may have two or more ancestors and yet not

be a d-merge literal (when all its ancestors occur in the same occurrence of

a member of 8) •

Subsumption is an important phenomenon in most resolution proof

strategies, For any two clauses C and D, Cis said to subsumeD if

an instance of Cis contained in D, i.e., there exists a substitution cr

such that Ccr c D. If D is subsumed by C, it is implied by C and generally

may be replaced by C in the construction of a deduction. Note that a

tautology (a clause containing a pair of complementary literals) cannot

subsume any nontautological clause, since substitution cannot destroy

the tautologousness.

III PARTITIONS AND UNIFICATION

We shall now explore some of the properties of the unification

operation, The goal of this discussion is to clarify the possible

effects of composing or permuting substitutions,

Unification Theorem

Let E le
1

, e
2

, ••. , en} be any set of expressions (e.g., all

the atomic formulas that occur in some set S of initial clauses). Let

5

e ~ (E
1

, E
2

, ••• , Em} be a class of nonempty subsets of E (e.g,, think

of each E. as containing a different set of atomic formulas from E that
~

might be made identical by an appropriate substitution), Thus E. ~ E
~

and E. f !/>(the empty set) for all i. If 9 is any substitution, then
~

where E 9 is the set of expressions
i

e 8 obtained by making the substitution defined by 9 in each e in E ..
j j ~

A class e is said to be unifiable if there exists a substitution

9 such that E.e is a singleton, i.e., contains only one element, for
~

every i; and such a e is said to unify e.

The well-known unification theorem can be stated as follows:

Unification Theorem--Let e be a unifiable class of subsets of a set E of

expressions. Then there exists a most general unifier cre of e with the

property that for any unifier 8 of e, there is a substitution A such

that 8 is the composition ue o A of substitutions ue followed by "-· Thus

every unifier of e is an instance of the most general unifier of e. (A

proof and discussion of the Unification Theorem appears in Robinson (1967).)

Clearly, "the" most general unifier of a class is not unique;

any most general unifier of e, when composed with any invertible sub-

stitution, is again a most general unifier. For example, the class

6

has both el = [g(y)/x, y/u] and e2 = [g(u)/x, u/y] as most general

unifiers. However, e
2

can be obtained from e
1

by the invertible sub

stitution [y/u, u/y], In fact, it is a corollary of the Unification

Theorem that this is the only way most general unifiers of a set can

be related: If oe and a~ are most general unifiers of.e they are

instances of one another and consequently are alphabetic variants of

each other, Since all such ae are essentially equivalent, henceforth

we shall assume that ae is unique,

Partitions

Let e

of nonempty subsets of a set E of expressions (e.g,, if E contains all

the atomic formulas in some set S of initial clauses, let the E be sets
i

of potentially unifiable atomic formulas from some subset of s, and let

the F. be the corresponding sets for a different, perhaps larger, sub
~

set of S,)

We define the following partial ordering on the classes of

subsets of E: e s ~iff, for each i, E. c F. for some j,
~ - J

The class e is called a partition provided E
1

, ••• , E are mutually
m

disjoint sets. By the closure of e, denoted by [eJ, we mean the small-

est partition such that e $ [eJ. The class [eJ is formed from e by

successively merging together sets E., E. of e with an element in common
]. J

until all the sets so obtained are mutually disjoint.

7

Example: If e j I I I
= (1a 1, 1x,

I I f(x), h(u),

then [eJ ={\a\, \x, f(y), ul, ~g(x,y), b, c, f(x), h(u),

g(f(x) ,y) };l

Induced Partitions

If E is a set of expressions and e a substitution, then B induces

a partition p
9

onE defined as follows: Two expressions ei and ej in

E lie in the same block of P
9

iff eie = e.e ..
J

For example,

if E = !f(x), u, g(x,y), f(h(v))

and e = [h(v)/x, g(~(v),y)/u], then e induces the partition

I I l l f(h(v))j,
1
u, g(x,y) I j on E.

If e is a unifiable class of subsets of E, and 9 unifies e, then

the partition PB induced by 9 on the expressions occurring in e has the

property that e ~ P
9

, because if Ei e e then all the expressions in Ei

are unified by 9 and hence E
1

is contained in a single block of Fe.

Since the closure [eJ of e is the smallest partition containing e, we

have e ~ [eJ ~ P
9

• Conversely, a class e is unifiable if e ~ P
9

(or

[eJ ~ PJ for some substitution e.

8

Example: e I a/yl = lf(a)/x, J

I

e ={I x, f(y)l, !"· f(a) j, I x.l' Ia il
(~~ r-q

!1 \ % ,~, 1 [t] =((z f(;z:l, f(a)l' I x. l'

= ! lx, f(L

~~ T
p f(a) I •II

e I y' a if

Now, if cre is a most general unifier of e, then at = a [t]. This

is true because if two blocks of e contain an element e in common, any

unifier e of e must unify both blocks to the same element ee. Therefore,

the unifier of a class of sets of expressions depends only upon the

partition [t], the closure of the class. It also follows that if e and

~ are classes such that ~ ~ e and e is unifiable, then, since [t U ~] =

[tJ, we have:

~uivalent Substitutions

The following lenuna shows an important invariance of unification

to the order in which substitutions are performed:

Lemma 1: If e and~ are unifiable classes with most general unifiers

cre and a~ respectively, then e U ~is unifiable if and only if a(~cre)

exists (i.e., ~cre is unifiable). In this case cr(tcr~) also exists, and

(J~ 0 a and (J 0 a are both most general unifiers of e u ~.
c.- (~cre) ;; (to~)

9

Proof: We first show that if e U J is unifiable, then o() exists
Joe

and that oeuJ = oe 0 o(:Joe). Let e be any unifier of e U ~. Since 8

unifies e, we can write e = ae o A for some substitution A. But for

Consequently,

0) exists, and A = a o fl for some fl; so we have e = oe o o(""oe) o fl.
<Joe <~oe) "'

Since oe o a(Jae) does in fact unify e U ~ and since any unifier 6 of

e u J can be factored as e = oe o o(~cre) o fl. for some ~~, then oe o cr(~cre)

is in fact a most general unifier of e U ~. Conversely, if we assume

that (J(Joe) does exist, then oe 0 ()(Joe) unifies e u ~' and the above

argument shows that it is its most general unifier. The result is

clearly symmetric in e and J.

An immediate corollary is that if J ~ e, then

This says that the most general unifier oe of e can be computed by first

unifying a subclass J of e and then unifying the remainder of e with

the unified J. By induction we have a second corollary:

Corollary: Let e = {Ei, ... ,En} be a class of sets of expressions.

Then cre exists if and only if cr1 , ... , an all exist, and cre

Proof: For n = 1 there is nothing to prove.

For n > 1 let 3 = (E1 , .•• ,En-l}. By the induction hypothesis,

lO

cr •
n

cr~ exists iff cr1 , ••• ,crn-l exist and cr~ = crn-l' So cre = crJ o

cr(En}cr
3

= crn and cre exists iff cr(En}cr~ exists i.e., iff cr1 , ... ,crn

all exist.

Since cre is independent of the sequence numbering of E
1

, ... ,En, it is

clearly independent of the sequence of operations used to compute it.

Example: Let e =){x,' f(u, g(v)), f(a,y)} {g(b), y}!

j{f(u, g(v)), f(a,y)}! so s , e

. then cr3 = [a/u, g(v)/y], ecr3 =){x, f(a,g(v))}' {g(b), g(v)}l

cr(ecr) = [f(a,g(b))/x, b/v]
3

IV RESOLUTION GRAPHS

One of the main results of this paper is the fact, to be stated

formally in Theorem 1, that certain alternative sequences of simple

resolution and factoring operations produce precisely the same resul-

tant clause. The purpose of the graphical notation developed in this

section is to represent uniquely certain equivalent sets of deductions.

LetS be a set of initial clauses, and let C = (L1 , L2 , ... , Ln}

be a clause in S where L
1

, ••• , Ln are the literals of C. We represent

C as a graph by associating a circle to each literal of C and by

connecting ·the circles by horizont,;l bars (Figure la). Such a graph is

called an initial graph since it represents an initial clause. The

circles of the graph are named by their corresponding literals L1 , , •. , Ln

11

and can occur in any order; two graphs that differ only because the

literals within a clause are differently sequenced will be considered

equivalent. These initial graphs are the building blocks; more compli-

cated graphs are always constructed from these by operations correspond-

ing to resolution and factoring. Before stating a formal definition of

the graph structures we call resolution graphs, we first give some in-

stances of how these graphs are formed and introduce some additional

terminology.

If D = (Ml, ... ' M.l,} is another initial clause which is resolved

against c on the literals L. and M. 1 we represent the resolvent clause
1 J

R(C,D) as a graph by connecting the two corresponding circles (in the

initial graphs for C and D) by a double bar (Figure lb). The literals

of the clause R(C ,D) are the names· of the circles in the new graph which are not

connected by double bars. These literals (marked by primes in Figure lb)

are assumed to be those of the initial clauses instantiated by the most

general unifier of the atomic formulas of Li and ¥j•(w]1(ch<reduced Li and Mj

to the complementary literals L~ and Mj). These instantiated literals

are said to be associated to their corresponding circles. However, we

shall continue to refer to the circle by its original literal name.

Should two or more literals collapse together, i.e., become identical,

as the result of a resolution operation, we indicate this in the graph

by connecting the literals (circles) together by a dotted line--thereafter

forcing these circles to be considered as a single node (see Figure lc).

(We define a ~ of a graph to be a dot-connected group of circles--or

a single circle which is not dot-connected.) For example, if the most

general unifier of Li and Mj also happens to make L
1

and M
1

into identical

12

literals, we represent the resolvent clause by the graph shown in Figure

lc. However, we prefer to consider the graph operations of adding double

bars and dotted lines as independent operations. Simple resolution applied

to graphs is accomplished by a double bar operations followed by dotted line

operations if the literals should collapse. In general, we allow graphs in

which two distinct circles have the same associated literal without

demanding that the circles be dot-connected.

The dotted line is also used to indicate an explicit factoring

operation. If L 1 and M' in Figure lb are distinct but unifiable, then
1 1

Figure lc represents the result of applying the factoring substitution

to the resolvent clause. The associated literals L'
1'

replaced by their respective instances.

'•,. I M1 would be
t

We say a graph node is free if it is not connected to any other

node by a double bar, and a circle is free if the node to which it

belongs is free, Graph operations are only performed on free nodes.

As an example, let

Ll L2 L3

cl = [P(x), Q(a), R(a,x)}

L4 L
5

c2 = (-Q(y), R(y,b)}

L6

c3 = [-P(b)}

L7 L8

c4 = (- R(a,z), P(f(z))}

(See Figure 2m}. Let R
1

be the res0lvent of c
1

and c
2

:

R
1

= [P(x), R(a,x), R(a,b)}

13

Let R
2

be the resolvent of R
1

and c
3

:

and let'R
3

be the resolvent of R
2

and c
4

:

R
3

: {P(f(b))}

(Figure 2bl)

We have labeled the graph operations a, S• y, o as seen in Figure 2b

where y is the operation of adding the dotted line. So the sequence of

graph operations leading to R3 is (!l ,a ,y, o), However, we could obtain

the same result by performing the operations in any one of the following

orders:

For

c2

(1) (!l,a,y,o)

(2) (a,s.y,o)

(3) (13,y,a,o)

(4) (B,y,6,a)

example, the sequence

then factoring L
3

and

(B,y,a,a) corresponds to first resolving c
1

and

L5 , then resolving with c
4

and finally with c
3

•

of the corollary to lemma l that any two sequences

of graph operations which lead to the same final graph structure produce

the same resulting clause.

It is a consequence

In Figure 2, the literals in parentheses are the associated literals;

each associated literal is associated to a graph node and is an instance

of one of the original literals naming a circle of the node. Since we

shall show that these literals do not depend on the order of graph opera

tions, we shall subsequently drop these literals from the diagrams.

14

The t~rm "merge ln. a graph". will alwa~s refer to a dotted link .. between

literals in distinct initial clauses. The resultant clause of a graph

containing such a merge link is itself either a merge of a d-merge, but

we shall not always be able to tell which (and the distinction will be

unimportant in our development),

Graph Structure

In the preceding discussion we described the resolution graphs

corresponding to certain deductions. We now give a recursive defi-

nition for the class of structures called resolution graphs or simply

graphs, in the remainder of the paper. (Note: we assume in the follow-

ing that every occurrence of an initial clause contains a unique set of

variable symbols, so that no naming conflicts arise during the process

of forming graphs,)

Definition of Graph

(I) The representation for any initial clause by a connected row

of circles is a graph, and is called an initial graph.

(2) If G is a graph, and two associated literals from distinct

free nodes may be made identical by the most

general unifier A• the result of connecting together all the

circles in the two nodes by dotted lines is a graph. The new

connected group is a single free node of the new graph and

each associated literal is replaced by its A-instance.

(3) If G and G are graphs and the associated literals of a free
1 2

node N
1

of G
1

and a free node N2 of G2 may be unified, the

result of dot connecting the circles of N
1

and N
2

is a

graph G. Again, the new dot-connected group is a single node

15

of G and the associated literals are replaced by their respec-

tive instances (under the unifying substitution).

(4) If G
1

and G
2

are graphs, and if the associated literals L1 of

a free node N
1

of G
1

and L
2

of a free node N2 of G2 may be

made eomplementany (i.e., identical atomic formulas and

opposite signs) by an appropriate unifier A, then the result

of connecting N
1

and N
2

by a double bar is a graph G. N1 and

N
2

are no longer free in G and the associated literals of the

nodes in G are A-instances of the associated literals of G1 and G2 •

(5) Only hhose structures which can be built up by a finite number

of applications of rules 1, 2, 3 and 4 to some set of initial

clauses are graphs.

Examples: Figure 3 shows some possible and impossible graph struc-

tures ~

Definition: A set of literals (or circles) in a graph is said to

be unifier-connected if the literals are connected by double bars or

dotted lines or both; e.g., the graph in Figure 4a contains four unifier-

connected sets:

Definition: Let eG be the class of unifier-connected sets of liter-

als in a graph G, except that all negation signs are omitted, so that e
G

is a class of sets of atomic formulas. The most general unifier of the

graph, denoted by oG' is defined to be the most general unifier of eG,

16

In the graph construction, the sets in eG are successively unified;

hence, by the corollary to lemma 1, crG always exists (assuming G exists)

and the associated literals of the nodes of G are given by applying crG

to the original literals of G, This argument proves that a resolution

graph is independent of the sequence of operations by which it is con

structed. The graph partition, denoted by PG, is the partition induced

by crG on the set of atomic formulas occurring in G. Since crG may unify

atomic formulas which are not in eG' we always have:

(1) eG ,; [eG J ,; P G and

(2) crG ~ creG ~ cr(eG] = crPG

Repetitions

In resolution theorem proving, one generally considers the set S

of initial clauses to be of fixed size, even though a single member of

S may be used several times in a proof and each such use requires a

new alphabetic variant of the clause. In working with graphs, we find

it more convenient to consider each occurrence of an initial clause,

represented by a row of circles, to be distinct. Therefore, the "set

of initial clauses" of a graph--or the 11 set of initial graphS 11 may con

tain repetitions of members of the "set of initial clauses" in the pred

icate calculus sense. Similarly, when discussing the "literals" of a

graph we consider each node in the structure to be associated with a

distinct literal (its associated literal) even though the literals rep

resented by two or more of them may be syntactically identical. With

these ideas in mind, we find the concepts of !-clause ("graph-clause")

and subgraph useful •

17

Definition: A !-clause is an unordered tuple of literals. Two

g-clauses are equal if every member of one is a member of the other, and

occurs with the same multiplicity.

Definition: The resultant of a graph G is the g-clause of associated

literals of the free nodes.;of G. The resultant may be constructed by

first forming a g-clause of initial literals, one from each free node of G,

and then instantiating each member by aG. Each g-clause determines a

unique set of literals (deleting multiple occurrences) and hence the

resultant determines a unique clause called the resolvent of the graph,;'

Definition: A graph G1 is said to be a subgraph of another graph

G provided G is constructable from G' by applications of rules 1, 2, 3

and 4 defining graph constructions. We also call G an extension of G'.

We note that the relation "G
1

is a subgraph of G
2

" is clearly

transitive, and that every initial graph in a graph G is a subgraph of G.

Two subgraphs G
1

and G
2

of a graph G are said to be disjoint if they

have no initial graphs in common. If G
1

and G
2

are disjoint they can

have at most one double bar link connecting them. (There may be one or

more dotted links between them, however). Figure 4(b) shows the 12

possible subgraphs of the graph in Figure 4(a), (Note that certain

graphs may in a sense be contained within a graph and yet not be sub

graphs of it as defined here, For example, the graph formed by dot

connecting L2 and L
8

of subgraphs (1) and (2) of Fig. 4b cannot be

constructively extended to the full graph of Fig. 4a--or even to sub-

graph (6) .)

18

Another interesting property of subgraphs is that they can always

be replaced by their resultants, Thus, if G
1

is a subgraph of G and if

c
1

is the resultant of G
1

, we can construct an initial graph for c
1

and

replace G
1

by this new graph in G without affecting the resultant of G.

This is possible since each graph operation used in constructing G from

G
1

affects only the free nodes of G
1

, and their associated literals.

However, each such free node and corresponding literal is represented

uniquely in the graph of c
1

•

Deductions

As mentioned earlier, the introduction of a dotted line within a

graph corresponds to a factoring operation, and the introduction of a

double bar between two graphs corresponds to simple resolution. Because

of the distinction between g-clauses and ordinary clauses, and because

the double bar operation does not account for literal collapses, these

correspondences are not complete. However, we can define simple resolu-

tion and factoring in terms of the graph operations and consequently

obtain a precise correspondence between deductions and resolution graphs

(or an appropriate subset thereof) •

Definition: ... , B be a deduction of a clause C (B ~C)
n n

from a set S of initial clauses. We define the graph generated by the

deduction as follows:

(1) Each occurrence of an initial clause of S in the deduction is

. represented by a separate. initiaL graph;

(2) For each factoring step, we apply the factoring substitution

to the free associated literals and dot-connect those nodes whose

associated literals have been unified by the substitution (by step 2 in

the definition of a graph).

19

(3) For each simple resolution, the appropriate double bar is

added to the graph (by step 4). Again, if any associated literals from

distinct free nodes have been unified, we dot-connect these nodes.

Thus, each clause B
1

in the deduction is represented by a unique graph

G. whose resultant (or resolvent in this case) is B. (or a variant). A

' '
graph that can be generated in this way by some deduction is called a

deducible graph.

Dominance

Definition: A resolution graph G
1

dominates another graph G
2

(written G
1
~ G

2
) provided the resolvent of G

1
subsumes the resolvent

Using the graph structures and associated partitions we can fre-

quently determine by inspection whether a given graph dominates another

graph. A sufficient criteria for G1 to dominate G
2

is that:

(l) The literals naming free circles of G
1

are a subset of the

literals naming free circles of G
2

•

(2) (alternatively cr = cr o A for some A),
G2 Gl

In this case c
1

A ~ c
2

where c
1

and c2 are the resolvents (or resultants)

of G
1

and G
2

respectively. One example is that the graph of a factored

clause is dominated by the graph of its parent. A more interesting

example is given as follows:

Let G1 be the graph of Figure 5a, so eG

* Let c
1

be a variant of c
1

and let G

Figure 5b. Then

e * G

20

l

have the structure shown in

IL ' (5

* Observe that although G is not deducible, its resultant is identical

to (or a variant of) the resultant of G
1

; the variant c
1

was added to

* show that G
2

(Figure 5c) dominates the graph G , because

eG2 ={ILl' L3:' IL2, ~2!' !Ll, L4l' 1L5, Lsl!and therefore eG2

Consequently, the resultant of G
2

subsumes the resultant of G
1

•

example, suppose the initial literals in Figure 5 are:

Ll = ~ P(u)

L2 = Q(z)

L3 = P(a)

L P(x)
4

L5 R(x)

L6 = ~ R(y)

L7 = S(y)

A '
L = ~ P(u)

1
' '
L

2
= Q(z) ,

:;;; e * G '

For

* Then tbe reader can verify that the resultant of a
1

or G is the clause

I I
IQ(z), S(a)!, while the resultant of a

2
is the stronger clause

I I IQ(z), S(x)l, This illustrates the principle (to be proven in Lemma 2)

that in general, if one resolves first and then factors, rather than

vice versa, one obtains a "stronger 11 clause, i.e. a clause that subsumes

the clause obtainable by first factoring and then resolving.

21

We are interested in the dominance relation for the following reason:

In sect ion V we shall deal with the construction, subject to certain con-

straints, of a proof represented by a certain graph G. Analogously with

the above example, it turns out to be easier to construct a different

but dominating graph G1 ~ G. This is generally satisfactory since if

eG' ~ eG then for any clause that can be deduced (by simple resolution

or factoring) from the resultant of G, there exists a clause at least as

strong that can be deduced from the resultant of G1--as we shall show below.

Definition: A graph G is said to contain a loop if two initial

graphs of G are connected by chains of unifier-connecter literals in

more than one way.

Thus, in Figure 4b, the subgraphs 6, 8, 9, 10, 11 and

12 contain loops while the remainder are loop-free. We note that the

only way loops can occur in deducible graphs is as a result of merges.

This fact will be important in our later development of a proof strategy.

The following theorem establishes the equivalences of certain

graphs, and corresponding deductions.

Theorem 1: (Resolution graph theorem). Let G be a graph represent-

ing a resultant g-clause C constructed from a set S of initial clauses

{including possible repetitions), and let eG be the class of unifier-

connected sets of literals from G.

1. oG exists, and the resultant C is obtained by applying vG to

the literals of the free nodes of G. If G is deducible, any deduction

that generates G produces the same resultant clause.

2. If G is constructed from G
1

and G
2

by a double bar operation,

I

and if G
1

dominates G
1

, then either G{ dominates G, or else G'
1

and G2

can be double bar connected producing a graph G1 dominating G.

22

3. Let G
1

be a subgraph of G havmng c
1

as its resultant, and let

D be any g-clause subsuming c
1

• Let s
1

be the initial clauses used

in a
1

. Then there is a graph G1 containing initial clauses from

(S - s1) U [D} that dominates G.

4. There is a deducible graph G1 ~ G.

Proof: (1) This statement has already been proved (Lemma 1 and

subsequent definitions).

(2) Let N
1

and N
2

be the (free) nodes of G
1

and G
2

respec-

tively that are double-bar connected in G; let L
1

and L
2

be their respective

associated literals. Since the resultant c{ of a{ subsumes the resultant

c
1

of G
1

, we have C{). C c
1

for some).. Moreover, every literal in c
1

is free in G except L1 , so the only way c{ could fail to subsume C is if

L
1

is a member of Ci).. (i.e., L
1

= L{).. for some literal L{ in c{). In

that case G{ can be double bar connected to G
2

on the nodes corresponding

to L{ and L
2

, and the graph obtained clearly dominates G. (Should G{ have

more than one free node having Li as an associated literal we must first

dot-connect those nodes in G{.>

(3) To simplify the discussion, we first replace the sub-

graph G
1

in G by an initial graph for its resultant c
1

. We let G be

the graph so obtained; clearly ~ has the same resultant c, and ILand is

constructed from initial clauses in (S - s
1

) U [c
1

}. Our proof is by

h

induction of the total number of links in G (dotted links plus double-

bar links). Since G is a graph, G is constructed in one of four ways:

h

(a) G is an initial clause which is necessarily c1 . In

this case the number of links is 0 and we take G1 ~ the

graph of D.

23

(b) G is formed from a graph G
2

by adding a detted link.

By induction, since G2 has fewer links 'than &;~'there

is a graph G' ~ G
2

containing initial clauses from (S - s
1

) U
~

(D}. Since G2 ~ G (G is a factor of G2) we have G' ~G.
A

(c) G is formed from two subgraphs G
2

and G
3

by adding a

dotted link. (Note that G
2

and G
3

each dominate G.) If G
2

is the subgraph containing c
1

(exactly one of G
2

or G
3

con

tains c 1), we take G1 to be the graph satisfying the theorem

for G2 • However, G' ~ G2 ~ G so G' satisfied the theorem for G.
A

(d) G is formed from G2 and G
3

by adding a double bar link.

Again, assume c
1

is contained in G2 , and let G~ be the graph

satisfying the theorem for G
2

. By part (2) of Theorem 1,

either G~ ~ G in which case we set G1
; G~ or else G~ and G

3

can be double bar connected to produce a graph G1 ~ G. Since

G
3

is constructed from S

we see that G1 satisfies the theorem in either case.

(4) (We again do a proof by induction on the total number of

links in G).

(a) If G is an initial clause it is deducible.

(b) If G is formed from G1 by adding a dotted link, let

G1 be the deducible graph for G
1

, But G' ~ G
1
~ G so G1

is a deducible graph for G.

(c) If G is formed from G1 and G
2

by adding a dotted link,

let G' be the deducible graph for G
1

. Again, G' ~ G
1
~ G

so G' is a deducible graph for G.

24

Observations

(d) If G is formed from G
1

and G
2

by adding a aouble bar,

then again by induction let G{ and G~ be the deducible graphs

for G
1

and G
2

respectively. Now by I>art (2) either G 1
;;, G.'il.l which

1

case .. we.set G
1 = G~, or. G~;;;, G in which case we set G'

G{ and G~ can be double bar connected to generate a graph

G1 ;;;, G
1

. In this last case, we must dot-connect any nodes

of G1 containing identical associated literals in order that

this last step constitutes a valid deduction.

1. Sometimes a deducible graph may be generated only by performing

the resolutions in one order; attempting a different order causes literals

to collapse (by the induced partition) and thus disappear from the graph.

For example, consider the deductions possible from the three clauses c
1

,

c ={~ P(x, a)' R(x} J
1

c ={PC b, z) ' Q(z, b)}
2

c3 =(P(u, a) , ~ Q(a, u}}

If we start by resolving c
1

with c
2

, we can get (by Figure 6a) (P(b,a),

R(b)}. If we instead start with c
2

and c
3

, the deducible graph has an

induced dotted link and we get simply P(b, a) (Figure 6b}, or if we wish,

R(b) (Figure 6c).

This phenomenon does not contradict the theorem, which merely

asserts that the resultant clauses are the same whenever the graphs

are the same, which they are not in Figure 6. Note that if we use the

25

pure graph operation of double-bar link, rather than resolutio~, we can

construct Figure 6a in any order. Moreover, whenever we get collapses in

deduced graphs we end up with a stronger clause, i.e. one that subsumes

the clause obtained by resolving in a sequence that avoids the collapse.

Problems such as this order-dependence of deductions would have been

avoided if we had defined a clause by a graph and an inference step by

a double-bar link; such an approach would have resulted in a somewhat

more elegant presentation. However, the idea that a clause is a set and

resolution is an inferential operation upon sets is well entrenched in

the literature (and in various computer implementations). Therefore,

this paper has taken the more complicated approach of explicitly dis

tinguishing deduced graphs and collapsed literals.

2. Any tautological subgraph may be eliminated from a non

tautological graph without weakening a deduction, i.e. there exists a

graph without the tautological subgraph whose resultant subsumes the

resultant of the original graph, (A tautological graph is one whose

resultant contains a pair of complementary literals,) Since the entire

graph is nontautological, there must exist a\rsi.l.~a''l!li:cGir'cdQll.bl .. ;AlO:.:'t'Ji9c ,f?'7' >"

linked to the tautological subgraph d on one of the troublesome literals;

but then G
1

itself dOminates the graph consisting o;f d

and G1,anct by the theorem may replace it in any larger graph, For

example, consider the propositional deduction of Figure 7, This graph

may be deduced with no problems by doing the lower resolution first. If

26

the upper resolution is done first, the tautological subgraph J with

resultant [P, ~p,s} is deduced, However, note that the clause D ~ (p,r}

subsumes the resultant of the entire graph (p,r,s}.

V STRATEGmS AND REORDERING THEOREMS

In this section we prove the completeness of a new strategy for con

structing resolution proofs~ (Remember that we use nresolution 11 to mean

optional factoring followed by simple resolution.) This s,trategy severely

limits the alternative next steps available at each stage in a proof by

superimposing several of the constraints described by other workers. Our

approach is to show, constructively, how to transform any given graph

into a dominating graph that can be generated by a proof satisfying the

constraints.

The distinction between resolution with an initial clause, and

resolution with a clause generated by previous resolution steps, is

an important aspect of the class of theorem-proving strategies with

which we are concerned~ Consider a deducible graph containing several

dotted lines. By Theorem 1, the order of operation that generated the

graph is unimportant, and therefore any dotted lines between literals

in the same initial clause can be produced by the factoring part of a

resolution operation at the time that clause is introduced into the

proof. On the other hand, a dotted line between literals in different

initial clauses (a d-merge node) cannot be generated by a deduction

until a subgraph has been constructed that contains all the parent

clauses (because step 3 in the definition of a graph can never be used

when the graph is generated by a deduction). This is the source of

most of the complication in the following presentation, and tbe xeason

why d-merges are important in proof strategies.

27

Dot Reduction

The following lemma states that any particular dot-connected group

in a graph may be split.

Lemma 2: Let G be the graph formed by a double-bar connection between a

literal L in graph G
1

and the dot-connected n<X:t! :;:

group"of circles in graph G2 • Then the graph G1
," obtained .from G by removing L

1

from £, double-bar connecting L in G to L , and double-bar connecting
1 1

the remainder of~ to the copy of Lin G
1

(a new variant copy of G
1
),

exists and dominates G (see Figure Sa, c).

Proof: If we factor any clause together with an alphabetic variant

of itself, we obtain essentially the same clause again. Therefore graph

* G , obtained by replacing subgraph G
1

in G by such a factored pair of

variants, is equivalent toG (Figure Sb). Ignoring signs as usual, the

relevant subset of e * affected by the modification that is required
G

by the lenuna is ffL
i. l 1' L2' .. ~' L ' L, L} ' {L' £'11

') J • The' corresponding
n

e · ! 1L 'lt . I
subset of G I 1.8 l (2' ... ' L

n' Ll ILl, L~ l' Since the remainders of e * G

* and eG, are identical, eG, ~ tG*, therefore G1 ~ G , and thus, G1 ~ G.

Note, Since the ancestors of a d-merge literal in initial clauses form

a dot-connected group in a graph, this lemma will be useful for eliminating

or reducing the complexity of d-merges in deducible graphs.

Fishtail Deductions

The proof method of our main theorem, Theorem 2 below, will be

induction upon the number of merges in a graph.

Our next lemma establishes a strong condition upon the structure of a

proof that generated a graph containing no merges,

28

Definition A fishtail construction of a graph G from a set S of

initial clauses (including possible repetitions) is a finite sequence

of graphs G
1

, G
2

, ••• Gm such that

(1) G
1

is the graph of a clause from S, called the starting clause

of the construction.

(2) G., l < i $ m, is the graph obtained from G.
1

and (the graph
l l-

of) a member C of S by first dot-connecting a group of nodes in G.
1

,
l-

then dot-connecting a group of nodes in C and finally double-bar connect-

ing the resulting nodes. (The dot-connecting could be a vacuous operation

in either case.)

(3) G is G,
m

Definition: A fishtail deduction of a clause C from a set S of

initial clauses is a finite sequence of clauses B
1

, B
2

, .•• , Bn such that

(1) B e S and is called the starting clause of the deduction
1

(2) B,, 1 <is n. is the result of resolving B with some
l • 1-1

member of S. (Remember that "resolving" means simple resolution after

optional factorings of both parents.)

(3) B is c.
n

Lemma 3:

(1) If there exists a fishtail construction of a graph G with

clauses from S and starting clause B, whose resultant g-clause is C,

then there exists a fishtail deduction of a clause c 1 that generates a

graph G' ~ G with clauses from S and starting clause B.

29

(2) If G is a graph containing no merges (i.e., dotted links

between literals in different initial clauses), then there exists a

fishtail deduction that generates a graph G' :2 G with any clause in

G used as starting clause.

Proof:

(1) Starting with B, follow the steps of the fishtail construction.

For each addition of a dotted link make a factoring step, and for each

double-bar to a new clause make a simple resolution. By the argument in

the proof of theorem 1 part 2, this is always possible unless the graph

deduced at the previous deduction step already dominates the graph con-

structed at the current construction step--in which case no correspond-

ing deduction step is necessary. This deduction sequence produces dedu-

cible graphs dominating the corresponding constructed graphs, so that at

the final step the deduced graph G' will dominate the constructed graph G.

(2) Since there are no merges, each resolution link connects

exactly two initial clauses and those two clauses are not connected in

any other way, i.e. the graph contains no loops. Therefore, by theorem

1 part 1,, a fishtail construction of G may be generated from any starting

clause, and by (1) there exists a corresponding fishtail deduction of

G 1 :2 G.

Note that the fishtail construction is a procedure for "growing"

a graph G by starting with a single clause and "adding" additional

initial clauses, thus forming successively larger subgraphs of G. FUr-

ther growth of a subgraph in this way is impossible only when each con-

nection from the subgraph to other parts of G is a double-bar link to a

30

merge--because each merge links at least two initial clauses, and a

fishtail procedure requires adding initial clauses one at a time.

Examples: There clearly exists a fishtail construction of the merge-

less graph of Figure 9a from any starting clause. In Figure 9b, any

fishtail construction must start with either c
1

or c
2

, since otherwise

the dotted link cannot be introduced. Figure 9c is an example of a

graph for which there does not exist a fishtail deduction. It represents

a refutation, for example, of the four clauses p V q, p V ~ q, ~ p V q,

and ~ P V ~ q. Either the left or right subgraph can be generated in

fishtail fashion, but the growth process is then blocked by the double-

bar link to a merge.

Main Theorem

Theorem 2: Let G be a graph generated by any deduction D of a

clause c from an initial set s. Then there exists a graph G1 and a

deduction D1 generating G1 with the following properties:

(1) G 1 <: G,

(2) The deduction D1 contains a linear sequence of clauses B
1

,

B
2

, ••. , Bn such that

(a) B e s, and may be arbitrarily chosen to be any element
1

of S whose graph occurs in G.

(b) For 1 < i ~ n, B. is a resolvent, one of whose parents
:t

(the "immediate" parent) is B • (The other parent of
i-1

B
1

is called the "far" parent.)

31

(3) Either the far parent of B., 1 < i,; n, is in S (the fishtail
1

property), or the far parent satisfies all the following conditions:

(a)

(b)

(c)

rt is B. for some j, 1 < j < i.
J

It is a d-merge, and the merge literal is the literal

resolved upon.

An instance pf the resolvent B is identical to an
i

instance of the clause obtained by deleting the literal

resolved upon from the immediate parent B
1

_
1

.

Proof: The strategy for the proof will be roughly this: We shall

select successively larger subgraphs Gi of G. For each G., we shall show
l

how to construct a deduction D~ generating a graph G' 2 G. such that D'
1 i]. i

has properties (2) and (3) (assuming G is replaced by Gi in the statement

of the theorem). Moreover, D~
1

will be derived from D~ simply by extend-
1+ 1

ing the deduction, i.e. by using the resultant c: of G: as a starting clause
1 1

and "adding" (successively resolving with) initial clauses from Gi+l that

did not occur in G .• Eventually, for some j, G. will be the complete
1 J

graph G, at which timeD~ will bethe required D1 •
J

The proof is by induction on the number of merges in G. By Lemma 3

the theorem is true for any graph with no merges (because the fishtail

property is satisfied). Now assume it is true for any graph with fewer

than n merges, and assume G has n merges. Choose any starting clause

B
1

in G. Let G
1

be the largest subgraph of G for which there exists a

fishtail construction with starting clause B
1

• c
1

is the resultant of

32

G, we are through, because by Lemma 3 there is an appropriate

fishtail deduction. Otherwise, choose some free literal L (from a free

node) in G
1

that is double-bar linked to the dot-connected node £ =

* {L1, ••• ,Ln}' n ~ 2, of literals in G
1

, a subgraph of G disjoint from

G
1

• Each L
1

corresponds to a node from a different initial clause, (L

must exist because the fishtail construction of G
1

cannot he continued.)

* Let G
5

be the subgraph of G consisting of G
1

and G
1

(Figure lOa). We

shall show how to construct a deduction D~ generating a graph G~ such

that D~ and G~ satisfy the theorem (if G
5

is the entire initial graph G).

Reduce the merge Z as described in Lemma 2, to produce G
5
~ G

5

(Figure lOb), The required deduction D~ generates a graph dominating

G
5

and begins as follows: Construct the fishtail deduction starting

from B
1

of a graph dominating G
1

• Resolve the resultant c{ with the

* initial clause in G
1

containing L
1

(a fishtail step), forming G
2

, whose

resultant clause is c
2

• Now consider G
3

, the subgraph of G
5

shown in

* * Figure lOc, It consists of G
2

and a subgraph of G
1

(namely, G
1

without

the merge£ or the initial clause containing L
1
). Since the former sub-

graph G
2

is deducible (by the deduction of c
2

already described), we may

think of it as if it were simply a single initial clause c
2

•

Since G
3

now contains c
2

and a subgraph of G from which a merge £

has been deleted, G
3

certainly has less than n merges. Therefore, by

the inductive hypothesis there exists a deduction D~ with starting clause

c
2

, generating a graph G~ ~ G
3

, that satisfies all the conditions (2)

and (3) of the theorem.

33

We now ask, does G~ dominate G
5

? If so, the deduction thus far-

the deduction of c
2

followed by D~--is the required D~. Unfortunately,

G~ does not necessarily dominate G
5

•

the literals associated with nodes of

eG I , e G , eo ' as required; and
3 3 5

G~ are a subset of those of G
5

,

except that G~ may contain free literals of !. -Since G
5

has no free

literals of !, the resultant of G~ does not necessarily subsume the

resultant of G
5

• We first factor together these troublesome literals,

forming a single node. The rest of the proof is concerned with "getting

rid ofn this node.,

One way to complete the deduction is to resolve C~, the resultant

of G' with a variant of the clause C that appears earlier in the deduc-3' 1

tion, using the literals of ! in c
3

against the variant L of L in c
1

(Figure lOb). However, this step would not generally satisfy condition

(3b) of the theorem, Therefore we must be somewhat less direct.

Consider G
5

• We may replace its subgraph G
3

by the single "initial"

clause C~. (Note that the remainder of G
5

consists simply of 6
1
.) Let

a
4

be the largest subgraph remaining in G
5

for which there exists a fish

tail construction with C~ as starting clause, Let D~ be the fishtail

deduction of a graph dominating G
4

{Lemma 3) (Figure lOd),

Finally, consider the case in which D1 could not generate all of
4

the suhgraph 6
1

• The fishtail process cannot continue only if the

resultant of the deduction thus far must be resolved with a merged set

of literals in the remaining part of the graph. Recall that D~ actually

includes deductions that start from B
1

and generate graphs dominating G
1

,

then a
2

, a
3

, and finally G
4

• Let us number the steps of D~. Let C~ be

the name of the final clause deduced by D
4

, and assume C~ is deduced at

34

step k- 1. At step k, we would like to resolve C~ against the resultant

of a subgraph of G
1

containing a particular merge (merge min Figure lOb)--

a nonfishtail step. However, since G
1

was generated by a fishtail deduc

tion, that merge must have been formed in an immediate parent during that

deduction; and that deduction D{ is the first part of D~. Therefore a

suitable clause for completing the deduction already exists as one of the

Bj,l < j < k (property (3a)). (In Figure lOe, we have drawn a copy ck·

of this clause Ck to show the final resolution.) Note that the resolu

tion must be performed upon a merge literal, thereby satisfying property

(3b) •

Let a be the substitution required for this resolution at step k,
r

and a be a substituion that merges corresponding lite1·als that are left
m

in the two copies Ck and Ck appearing in the final resolvent Bk C~.

Then om applied to ~ would make it identical to the clause obtained by

applying crr o crm to the immediate parent ~-l = c~ after deleting the

literal resolved upon, satisfying property (3c).

Finally, suppose G
5

is not the complete starting graph, and instead

G contains additional subgraphs, Because of the definition of G
1

, these

additional subgraphs must contain merge literals double-bar linked to G
5

•

We may replace G
5

in G by the resultant C~ of G~, and continue the con

struction of the required deduction by "adding" to D~, i.e. by treating

c~ as the starting clause.

Tautologies

For purposes of efficiency in a proof strategy based on Theorem 2,

it would be desirable to add the following condition:

(2d) No a
1

is a tautology.

35

Unfortunately, this is not true under the premises that G is generated

by any deduction from any initial set s, and B
1

may be chosen arbitrarily,

For example, if the middle clause (p V q) is selected as B
1

in the pro-

positional graph of Figure 11, then a tautological intermediate clause

must be generated before obtaining the resultant (~ p V ~ q V r V s).

As we mentioned in the discussion after Theorem 1, the tautological

subgraphs may be eliminated; in this particular example, either of the

two terminal clauses subsumes the resultant. The problem here is that

the designated starting clause, p V q, is essentially irrelevant to the

desired result. If we are interested in refutations, i,e, deductions whose

resultant Cis the empty clause (graphs containing no free nodes), then

following Anderson and Bledsoe (1970) we could require that the initial

set S be minimally unsatisfiable. This means that S is unsatisfiable,

but for any clause C e s, S - lc! is satisfiable. Therefore the graph

of any refutation of S, including those whose tautological subgraphs

have been eliminated, must contain an occurrence of every clause inS.

Thus we ean assert the following theorem:

Theorem 2': Let G be a resolution graph generated by a refutation

from a minimally unsatisfiable set S, Then there exists a refutation

generating G1 that satisfies conditions (2) and (3) of Theorem 2, and

also satisfies the conditions that no Bi is a tautology.

Proof First eliminate all tautological subgraphs from G, producing

a refutation graph G, Since S is minimally unsatisfiable, any starting

36

A A

clause chosen from S must occur in G. Use Gas the given graph in

the proof of Theorem 2. Since that proof always replaces subgraphs by

subsuming clauses and a tautology does not subsume any nontautological

clause, no tautologies are introduced during the proof process.

VI CONCLUSIONS

Relation to Previous Work

Theorem 2 establishes that if a resolution deduction exists at all,

then one exists that simultaneously satisfies several conditions.

Clearly an assertion that a deduction exists satisfying only ~ of

these conditions would be a corollary of Theorem 2. Therefore, we have

just proven the completeness of all the following proof strategies:

1. Property (2a) establishes that any single initial clause

occuring in a resolution proof is a sufficient set-of-support (Henschen,

1968) •

2. Properties (2) and (3a) constitute the "ancestry

filter" described by Luckham (1969).

3, Property (3c) is essentially the subsumption condition described

by Loveland (1970)--and shown by Loveland to be compatible with ancestry

filter and set-of-support.

4, Property (3b) is essentially a statement of Andrews' (1968) merge

condition (shown by Andrews to be compatible with set-of-support),

Therefore the main results of this paper were to establish that all

these strategies could be used simultaneously without losing completeness.

37

and to give some insight (by means of the resolution graph notation)

into the significance of using each of the strategies.

Proof Strategy

Consider the following strategy g for proving a theorem from a set

of axioms a by resolution:

1. Let S be the set of clauses obtained by placing all the

members of a, and the negation of the theorem, in quantifier-free

conjunctive form.

2. Choose any clause in S that is known to be needed in the proof, usu-

ally a clause from the negation of the theorem, as the first clause B
1

•

3. For each sequence B
1

, B
2

, ... ,B., consider as successor
1

clauses every B that satisfies all the properties (1) and (2) of
i+l

Theorem 2 (and, if S is minimally unsatisfiable, the additional condition

of Theorem 2 1
). This defines a tree of deductions.

4. Choose any algorithm for exhaustively searching the tree, e.g.,

breadth-first, or unit preference with level bound (lros at al., 1964) •

Apply the algorithm.

5. A deduction of 0 (a "refutation") constitutes a proof of the

theorem.

If any refutation containing the clause B
1

exists, one will be found

by g. Moreover, the nodes in the deduction tree have fewer successors than

those of trees corresponding to less restrictive strategies; one hopes that

this reduction in successors may reduce the total effort needed to find a

proof. However, refutations that satisfy all the properties (1) and (2)

38

are usually longer than refutations that do not, and the relative sizes

of the trees to be generated remain an open question.

The construction of a proof may be viewed as a tree-searching problem.

Property (1), the linear format, essentially defines a class of deduction

trees to be searched. The conditions of property (2) define the successor

function. Theorem 2, and thus step 4 of g, have not treated the problem

of selecting a good algorithm for attempting to find a refutation in the

tree--and yet this algorithm may have a profound effect on the effectiveness

of the search. Perhaps semantic heuristics, such as some kind of model

partition strategy (Luckham, 1968) can be embodied into this algorithm

without losing completeness, Another possibility is that suitable

bounds can be found to enable practical use of the optimum tree-searching

* strategy A (Hart at al., 1968). Kowalski's paper (Kowalski,

1970) discusses this problem.

Further improvements in theorem-proving strategies might be obtained

by studying the topological properties of resolution graphs. For example,

the construction in the proof of Theorem 2 involves transforming a

portion of a graph into one that is in a sense topologically simpler.

In the extreme case of a graph with no loops, the stronger result of

Lemma 3 is possible.

Theorem 2, property (2a) states that any clause that is used in a

proof may be used as the top clause B
1

, i.e., is a sufficient set of

support. However, the choice of this clause may have a drastic effect

on the length of the shortest deduction satisfying the rest of the

39

properties. For example, suppose g consists of the following clauses:

l. I Q I IP x' X\

~~ Qz' R '
s I

a w! 2.

3. L
I Rx' s I

aJ

and the negation of the theorem of two clauses:

Nl.

N2.

~~ Pa' Qal
I~ s I
I a I

If Nl is chosen as B
1

, we can get the refutation of Figure 12a, whose

graph is Figure 12b. On the other hand, if N
2

= B
1

, the refutation of

Figure 13a, graphed in Figure 13b, is probably the shortest one that

satisfies the conditions of Theorem 2. In general, given the resolution

graph of a deduction, one may be able to establish on a purely topological

basis the lengths of equivalent deductions that use particular strategies

or support sets.

Another potential use for these graphs is as a basis to some new

heuristic procedure for guiding the construction of a refutation. The

graph of a refutation contains no free literals. The graph of an

intermediate stage of a deduction therefore contains free literals that

must be eliminated or "resolved away" in order to complete the proof.

Since the graph structure contains more information than exists in its

40

resultant clause, perhaps a better strategy can be found than the usual

unit preference or fewest component strategies.

FinallyJ let us consider the notion of "single connectedness. 11 Wos

et al (1967) define a resolution procedure to be singly connected provided

no clash is generated in more than one way, where clash may be defined

now as a clause whose resolution graph consists of n initial clauses, each

resolved with a different literal from one initial clause of length greater

than n. (By Theorem 1, all clashes that generated the same graph are equiv

alent.) A somewhat stronger property would be the following:

Definition: A resolution procedure is strongly singly connected

iff it never produces two different deductions that generate the same

resolution graph.

Since generation of the same (resultant) clause by alternate,

equivalent deductions is a major cause of wasted effort in resolution

procedures, strong single connectedness is an extremely desirable

property. Perhaps the concept of resolution graphs can be the basis for

a bookkeeping procedure for achieving this property in general. (We

are aware of existing bookkeeping procedures that only work in unit

resolutions.) Unfortunately, in order to test whether a proposed deduction is

following a previously attempted path in this way, we would require an

algorithm for testing whether the current resolution graph is a subgraph

of any of a set of other previously established graphs. We know of no

algorithm for this at present that is sufficiently efficient to be practical.

41

VII ACKNOWLEDGEMENTS

The research reported here was supported by the Advanced Research

Projects Agency and the Rome Air Development Center under Contract

F30602-69-G-0056, and is continuing under Contract NAS 12-2221 with the

National Aeronautics and Space Administration and the Advanced Research

Projects Agency, The authors wish to express their appreciation to c. c.

Green, N. J. Nilsson, and M, I. Levin for many fruitful discussions that

helped formalize the notions presented here.

42

REFERENCES

1. Anderson, R., and Bledsoe, W. W. A linear format for resolution

with merging and a new technique for establishing completeness.

J. ACM (in press).

2. Andrews, P. B. Resolution with merging. J. ACM !!?._, 3 (July 1968),

367-381.

3, Green, c. Application of theorem-proving to problem solving.

Proc. Int '1 Conf. on Artificial Intelligence (May 1969) ,

4, Green, c., and Raphael, B. The use of theorem-proving techniques

in question-answering systems. Proc. 23rd Nat. Conf. ACM (1968),

169-181,

5, Guard, J., et al. Semi-automated mathematics, J, ACM !£_, 1

(January 1969)
1

49-62,

6. Hart, P., et al. A formal basis for the heuristic determination of

minimum cost paths. IEEE Trans. on Systems Sciences and Cybernetics,

SSC-4, 2 (July 1968), 100-107.

7. Hayes, P., and Kowalski, R, Semantic trees in automatic theorem

proving. Machine Intelligence~ Edinburgh University Press,

Edinburgh (1969), 87-101,

8, Henschen, L. J. Some new results in automated theorem proving,

Report 261 1 Department of Computer Science, University of Illinois,

Urbana (May 1968),

43

9. Kowalski, R. Search strategies for theorem proving. Machine

Intelligence~ Edinburgh University Press, Edinburgh (1970).

10. Loveland, D. W. A linear format for resolution. Proc. !RIA Sym.,

Lecture Notes in Mathematics, Springer-Verlag (in press).

11. Luckham, D. Some tree-paring strategies for theorem proving.

Machine Intelligence ~ Edinburgh University Press, Edinburgh (1968),

95-112.

12. Luckham, D, Refinement theorems in resolution theory. Stanford

University Artificial Intelligence Project Memo 81 (March 1969).

13, Raphael, B. Some results about proof by resolution. SIGART

Newsletter, 14 (February 1969).

14, Robinson, J,A, A machine oriented logic based on the resolution

principle. J. ACM ~ l (January 1965) •

15. Robinson, J,A, A review of automatic theorem proving, Proc, Sym.

in Applied Math., AMS, Providence, R. I • (1967) •

16. Slagle, J, R, Automatic theorem proving with renamable and semantic

resolution. J, ACM ~ 4 (October 1967), 687-697,

17. Wos, L., et al. The concept of demodulation in theorem proving.

AFIPS Proc. FJCC 26 (1964), 616-621,

19. Wos, L., et al. Efficiency and completeness of the set of support

L . 1
0

(P(xll ·

L3 ...
_.:.__ .:......_....._;_0. .

(R(a,x)) · ·

Ls
.. b.

· (-P!bll .

Ga·

L . 2 Ls
o· ·o

. · . WQ(al).
(R(a,x)) .

L4o oL5
1-Q(a)) · {R{a,bll

R1

(a)

(,_;R (a,z}) (P(f(z)))

c4

L 1 L2 .· L:l
0 0 ·c-.

(P(b))11·· (Q(a))ll . (R{a;bll\ .·
. I

Lso L4o ~/
. H!bll l~(a)) (R(a,bll

R2
~ ' ; '

;

Ll,

0 ~
Ls L7

' " 1
I

./

L2 L3

X
La Lg

a. Possible Graphs

"\

)
I

b. Structures That Cannot hi. Graphs

~_I)X-71052~,:.175

FIGQRE a POSSH!.LE AND. IJVIl'OSSnil.e GflAPli$

Lg L1 0 L11
(41 o--o-o

L1 L2
()--,--Q

(5) ·ll
0-0-'--0
Ls L7 La

L3 L4 Ls
o-·o-o,

<sJ II .)
o-o-cY
L9 L10 L11

L3 L4 Ls
;,-1:,)--,-o-· -o

191 ~-ll-· 0
L9 L10 L11

L, L2
c, :

/_],
0

C2:
/ '\

~:
.0 0

L3 L4

C3: L7o

(a): G1

A A

A L1 L2
c,: p o._

.......

" \
c,: -o 6

L, L2

-/ " I 'o

~:
C2: 0

L3 L4

c3: L7 o

(b): G*

A A

A L1 L2
c,:

\

c,: L1 L2

C2:
L3 L4

Ls

C3: L7 Ls

(c): G2 TA-71052t-179

FIGURE 5 GRAPH DOMINAI\ICE

(a)

·c

r:=;:J2· \. . c .
-..... . . 3 .

(b) (c)

T~-7105ZHi7
' _, -_' _- '- ' ' ','' ' ''

FIGURE 6 EXAMPLE OF ORDER ;DEPENDENCE

.

p q s
.

fT

.
-q .. . -p

.. I .

. .

.

D
p r

..

TA-710522-178

FIGURE 7 GRAPH WITH A TAUTOLOGICAL SUBGRAPH

£/'
o-~--~L=++=~~,Lo2~--~~~~

\
' L3
'~--~~~~--~

(a): G

£{

.L---y~---~~1\ L2

L

\
' L3
''o-------------~

(b) G*

I

(c) G
TA-710522-180

FIGURE 8 MERGE REDUCTION

·t!-----Q

(a)

c1
\ c3 l 0

J
c2

(b)

):===i(
\.....D-'----'---'--tl

FIGURE 9 LIMITATIONS. OF FISHTAILOEDUCTIONS

FIGURE 10 CONSTRUCTION OF A DEDUCTION SATISFYING THE CONSTRAINTS
OF .THEOREM 2 Continued

(a).

~\
~I

(N1) . .

· ..•.• ft 13) ~.
U,-.'-c:----o/ ·.

(2)

'o t;l

a,

(e) G' 5
TA~71 0522-182c

FIGURE 10 .CONSTRUCTION> OF A DEDUCTION SATISFYING THE CONSTRAINTS
OF THEOREM 2 .Concluded

