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ABSTRACT 
 
 

A process called subspace detection in subspace interference (SDSI) was developed.  The 
goal of this work was to produce an algorithm that could provide a fast estimate of the noise or 
interference subspace in beamformed data.  The SDSI process involved separating a signal into 
two perpendicular subspaces, one containing noise or interference and one containing the signal 
alone.  Detection would then be done in the subspace containing the signal only, improving 
detection and helping defeat countermeasures.  To make the algorithm adaptive, the functions 
used to form the subspaces were taken from the time-frequency analysis waveforms used in the 
wavelet and local cosine transforms to produce good subspaces that would represent the noise 
well but not the signal that it is desired to detect.  Projecting data into a space that is 
perpendicular to the noise subspace removes any of that noise in the data.  The projection is 
performed on the matched filter for the desired signal to be detected.  This should produce a 
modified matched filter that does not react to noise present in the data but still detects the signal.  
However, the output of the modified matched filter was generally not much better than that of 
the original matched filter.  Noise couldn’t be significantly separated without degrading the 
signal.  Future work should focus on finding a better choice of bases that separate the noise and 
the signal better than the local cosine. 
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1. INTRODUCTION 
 

The goal of this work was to produce an algorithm that could provide a fast estimate 
of the noise or interference subspace in beamformed data.  This knowledge could then be 
used to remove the noise or interference, thus improving detection and helping defeat 
countermeasures.  To make the algorithm adaptive, the functions used to form the 
subspaces were taken from the time-frequency (TF) analysis waveforms used in the 
wavelet and local cosine transforms.  These waveforms can adapt to the characteristics of 
the data being analyzed.  A good subspace would represent the noise well but not the 
signal that it is desired to detect.  Projecting data into a space that is perpendicular to the 
noise subspace removes any of that noise in the data.  The projection was performed on 
the matched filter for the desired signal to be detected.  This should have produced a 
modified matched filter that does not react to noise present in the data but still detects the 
signal.  Although the results were not very encouraging, there is much more work yet to 
be done. 
 
 

2. BACKGROUND 
 

The process developed here is called subspace detection in subspace interference 
(SDSI).  It involves separating a signal into two perpendicular subspaces, one containing 
noise or interference and one containing the signal alone.  Detection is then done in the 
subspace containing the signal only.  We start with a subspace model that has the 
following two hypotheses: 
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0H  is the hypothesis that there is no signal in subspace F  and 1H  is the hypothesis that 
there is a signal present in the subspace defined by the vector c .  The interference 
subspace Q  attempts to model the reverberation and other sources of interference.  The 
vector n  represents Gaussian-distributed random noise and is present in both cases.  
From the Generalized Likelihood Ratio Test (GLRT) [1], one commonly used detection 
statistic for this case is given by  
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In these equations, Q  is the interference subspace matrix.  Each column is a basis 
function for the interference subspace.  The goal is to find the best set of bases for the 
columns of Q .  The matrix ⊥

QP  is the projection matrix onto the space that is 
perpendicular to the subspace Q .   The matrix G  is the subspace obtained from the 
projection of the signal subspace F  onto the space perpendicular to the interference 
subspace.  In this case, F  consists of the same bases vectors used for the interference 
subspace Q , so the projection is equivalent to a simple removal of bases.  The matrix 

GP , defined in equation (5), is the projection matrix onto this space.  If the signals and 
bases functions are real, the Hermitian transpose H  can be replaced with the real 
transpose T .  The detection statistic ( )yt   without the projection matrix GP  would be a 
simple energy detector yy H .  With the projection matrix, the statistic becomes a 
modified energy detector where the energy is outside of the interference subspace. 

 
By using the projection matrix on the original matched filter s , which is the same as 

the transmitted waveform, a new modified matched filter ms  is created that attempts to 
avoid the effects of noise or interference in the received data.  If s  is the original 
matched filter, detection is normally accomplished by convolving the received signal 
with the matched filter, ys ⊗ , and looking for peaks in the result.  It was hoped that, by 
using the modified matched filter ysm

 ⊗ , there would be fewer false detections due to 
noise or interference. 

 
The entire procedure for detecting the target is summarized in figure 1.  Starting at 

the box at the top left labeled “Beamformed Data,” 16,384 samples of the real 
beamformed data are shown.  A set of data was needed that was the same length as the 
matched filter, so an averaging technique was performed.  Averaging was accomplished 
by taking a windowed portion of the raw data that was 2048 points long, the same length 
as the matched filter.  Starting at the beginning, the window was stepped through the raw 
data, in steps of 2048 points so that the windows didn’t overlap, and the windowed sets of 
data were summed together.  After this was done, the results were divided by the number  
of windows wN  to produce the averaged data shown in the block.  This procedure is  
given by equation (6): 

 ∑
=

=
wN

i
i

w

y
N

y
1

1   (6) 

These averaged data are the y  vector shown in the equations.  To find the projection 
matrix GP , we need the interference matrix Q .  To find this matrix, we first selected a 
set of bases from which to choose the columns of Q .  In this study, the time-frequency 
(TF) transform used was the local cosine transform [2][3].  The columns of Q  consist of 
a collection of local cosine basis functions.  The goal was to select functions that 
represent the interference or noise well, but do not represent the desired signal well.  To 
do this, both the averaged “noisy” data and the matched filter, which is the desired signal, 
were transformed using the complete local cosine transform.  This produced a full set of 
coefficients in the local cosine domain for both signal and noise.  Each coefficient 
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represents the component of the noise or signal that can be represented by its 
corresponding basis function.  It was assumed that the averaged data consisted mostly of 
noise and interference.  The signal would be present in the averaged data, but hopefully 
only to a small extent.  The averaged data were considered to be only noise and 
interference.  Where the coefficients for the noise are large, the corresponding bases 
represent the noise well.  Where the signal coefficients are large, those bases represent 
the signal well.  To determine which bases to use, the following difference was formed: 

 sn ccc 
−= , (7)  

where nc  are the noise coefficients and sc  are the signal coefficients.  Where the c  are 
largest, the corresponding bases are selected to form the columns of Q .  The subspace 
dimension is determined by the number of bases since the local cosine bases are 
orthogonal to each other. 
 

Once Q  has been found, the projection matrix GP  can be determined.  The matched 
filter was operated on by the projection matrix to produce a modified matched filter.  This 
new SDSI-modified matched filter was similar to the original matched filter but was 
perpendicular to the noise.  The detection process consisted of convolving the matched 
filter with the beamformed data and thresholding the output.  Large values in the output 
of the matched filter are called detections and should, but don’t always, indicate the 
presence of the signal.  To test the ability of the modified matched filter to remove noise 
and interference, it was convolved with the original beamformed data to give the SDSI 
output.  This output was compared with the convolution of the original matched filter 
with the same data.  The hope was that by making the matched filter less sensitive to the 
noise in the beamformed data, there would be fewer false detections. 
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3. TEST SETUP 
 
To test the capabilities of the modified matched filter, real data collected from the 

Gould Island experiments run on 19 - 28 May 1997 were used.  In these experiments, a 
Torpedo Mk 48 ADCAP nose section was mounted on the East Elevator on Gould Island 
and lowered to a depth of 30 feet.  This test was a one-way transmission where the target 
returns were generated via a synthesized waveform generator and transmitted from a 
BQR-7 transducer located in 60 feet of water and down range approximately 100 yards.  
In this way, the ADCAP was a receiver only and the signals transmitted were 
contaminated by noise in only one direction.  A countermeasure device was suspended 
from a range craft and positioned approximately 180 yards down range.  This device 
provided two different types of interference, structured interference and broadband noise.  
The data received at the ADCAP were beamformed to form nine different beams at 
various angles.  Figure 2 shows the test setup with the angles of the target generator, the 
interference, and the beams.  As figure 2 shows, the strength of the interference in the 
beamformed data depended on the beam number.  Beams 2 and 3 showed the strongest 
interference and beams 5 and 6 had the strongest target. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The waveform transmitted was a linear stepped FM called Coh-2.  It was sampled to 
give the 2048 data points, along with its time-frequency image, shown in figure 3.  
Initially, because of the need to form matrices such as GP , which would be a 2048 by 
2048 matrix, the data were basebanded and subsampled to produce a 256-point complex 
waveform.  The real part of the basebanded waveform is shown in figure 4.  In later tests, 
the transform was done directly, allowing the original waveforms to be used.  The results 
given in this memorandum are all from the latter results using the full original 2048-point 
waveform. 
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4. RESULTS 
 

The results when applying the techniques described in section 2 on the data were not 
as good as desired.  The output of the modified matched filter was, in general, not much 
better than the output of the original matched filter.  This section presents some of the 
results using various combinations of data and parameters. 

 
There were several parameters (shown in table 1) that could be adjusted to affect the 

form of the modified matched filter. 
 

Table 1.  Parameters in Creating the Modified Matched Filter Fields 
 

Parameter Description 

Subspace Size The number of columns in the interference matrix Q . 

Type of Bases For this study either the local cosine or the local sine basis 
functions were used. 

Number of Windows This is the number of time intervals into which the signal 
being transformed is split.  It determines the resolution of the 
transform in both time and frequency. 

Length of Window 
Overlap 

In the local cosine and local sine transforms, adjacent 
windows overlap, yet the bases remain orthogonal.  This 
determines the length of the overlap.  It was not adjusted in 
this study and was kept at one-half of the window length. 
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The subspace size is probably the most critical in this study since the types of bases 
used were limited to only local cosine and local sine bases.  Using the sampled data, 
which have a length of 2048 points, there are a total of 2048 functions in the complete 
local cosine basis for the space.  It was desired to find a small subset of these basis 
functions to represent the noise/interference.  Since the matched filter is projected onto 
the space perpendicular to the subspace represented by the selected bases, the smaller the 
number of bases used, the less the signal is affected.  The number of windows used 
should, in general, be matched to the characteristics of the waveform being transformed.  
As it turned out, for the waveform with 2048 points, 64 windows were a good match, 
although this number should be further explored.  Since the length of the window overlap 
is not a critical parameter, a value of ½ was always used.  

 
Figure 5 shows the time-frequency display of one set of beamformed data.  This is 

beam 3 data with structured interference present.  The size of the windows shown (the 
horizontal length of the boxes) gives an idea of the resolution in time and frequency used.  
Since the matched filter is 2048 points long and is divided into 64 windows of 32 points 
each, the entire beamformed data, containing 16,384 points, is split into 512 windows of 
32 points each.  The transmitted signal is present starting at about location 2250.  The 
beamformed data contain a lot of noise at frequencies over a large bandwidth along with 
several tones, shown as lines in the TF display.  Figure 6 is the time-frequency display for 
beam 3 of the beamformed data that contain only broadband noise.  The transmitted 
signal is present also at approximately location 2250.  Figure 7 shows many of the 
waveforms involved in the detection algorithm.  All of these were generated while 
processing the beamformed data containing structured interference shown in figure 5.   
Figure 7a is the TF pattern of the original matched filter, and figure 7b is the TF pattern 
of the averaged data.  Each box in the TF display corresponds to one coefficient in the 
local cosine transform.  The matched filter is an FM sweep, while the averaged data 
contain mostly noise, although the signal is present in it.  By taking the difference 
between the signal shown in figure 7a and the noise shown in figure 7b, we find where 
the noise is large and the signal is not.  Figure 7c shows the projection of the averaged 
data onto the space defined by the largest 1024 components of this difference.  It can be 
seen that the locations where the signal is strong are not included in the space.  The 
matched filter, shown in figure 7a, is then projected into the space perpendicular to that 
shown in figure 7c.  The resulting modified matched filter is shown in figure 7d.  The 
original matched filter and the new modified matched filter waveforms are shown in 
figure 7e.  Finally, the outputs of the correlation of the two matched filters with the 
original beamformed data are shown in figure 7f.  Figure 7f demonstrates that the 
technique does not work as well as desired.  Even with half of the noise components 
removed from the matched filter, it still correlates with the noise in the data starting at 
around 12,000.  Also, there was no improvement in the peak correlation with the true 
target. 
 

Figure 7 involved a fairly easy example since even the original matched filter shows 
a clear peak at the expected location.  Figure 8 demonstrates the results on a more 
difficult problem.  In this case, the data are from beam 3 and contain broadband noise, as 
shown in figure 6.  It should be noted that, for both the original matched filter and the 
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modified matched filter, there is not a significant peak near location 2250.  Also, there is 
no improvement in reducing the other peaks that are caused by noise.  Varying the beams 
changes the difficulty of the problem.  Figure 9 shows the output of the original matched 
filter and the modified matched filter for all nine beams of the data with broadband noise.  
Only the beams pointed toward the transmitter and away from the interference source 
show a clear peak. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  TF Display of Beam 3 Data Containing Structured Interference 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 6.  TF Display of Beam 3 Data Containing Broadband Noise 
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Another variable that was adjusted was the size of the subspace used to represent the 
noise/interference.  The matched filter was projected away from this subspace so that a 
smaller subspace affected the matched filter less.  In this case, a total of 2048 bases could 
be used to represent the noise.  Using no bases left the matched filter unchanged, while 
using all 2048 bases zeroed out the matched filter.  Figure 10 shows the results for 
various sizes of subspace for the problem with broadband noise in beam 3.  The first row 
is the original matched filter and its output.  The other rows represent various size 
subspaces and should be compared with the first row.  It seems that the size of the 
subspace does not make much difference in increasing the size of the peak at 2250 
relative to the other false peaks. 
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Figure 10.  Matched Filter Outputs for Various Subspace Sizes 
 

 

Subspace 
Size 
   

1024  

1280  

1536  

1792  

796  

512  

256  

Matched Filter Matched Filter 
 

-0.05  

0 

0.05 

0 

5 

10 
x 10 9 

-0.05  

0 

0.05 

0 

5 

10 
x 10 9 

-0.05  

0 

0.05 

0 

5 

10 
x 10 9 

-0.05  

0 

0.05 

0 

5 

10 
x 10 9 

-0.05  

0 

0.05 

0 

5 

10 
x 10 9 

0 

5 

10 
x 10 9 

-0.05  

0 

0.05 

0 

5 

10 
x 10 9 

0 500 1000 1500 2000 
-0.05  

0 

0.05 

0 5000 10000 15000 
0 

5 

10 
x 10 9 

-0.05  

0 

0.05 

0  



   

 11 

Probably the most likely area for error in the technique described so far is in 
determining the averaged data.  Averaging the data is inherently error-prone.  There is no 
reason to believe that the statistics of the resulting averaged data represent the actual 
statistics of the beamformed data in general.  While this method looked at first-order 
statistics of the noise, i.e., averages, the following equations determine a second-order 
method of finding the best basis functions to represent the noise.  If iy  is the ith 
windowed subset of the input beamformed data, we can write the problem as the 
following minimization problem: 

 { } ∑
==

−
W

w

N

i
ii

w
N
ii

cy
Nc 1

2

1

1
&

min 
 Q

Q
. (8)  

We want the best set of basis functions from the set Q , and the best coefficients ic  for 
each of the wN  windows to represent the data.  First minimize over ic  for a given Q  and 
i  to get the optimum iĉ : 

 ( ) ii yc TT QQQ 1ˆ −
= . (9)  

 
Substituting this back into equation (8), we get 

 ∑
=

−
WN

i
ii

w

yy
N 1

21 
QP . (10)  

where 
 
 ( ) T1T

Q QQQQP −
=  (11) 

 
is the projection operator.  Taking the square, we get 
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 (12)  

Since we are minimizing over Q , there is only one term that includes Q  and it has a 
negative sign in front, so minimizing this sum is equivalent to maximizing 

 ∑
=

wN

i
ii

w

yy
N 1

1 
Q

TP , (13) 

which is the same as 

 








∑
=

wN

i
ii

w

yy
N 1

1trace T
QP  . (14) 

If yR̂  is the correlation matrix given by 

 ∑
=

=
wN

i
ii

w
y yy

N 1

1ˆ TR  , (15) 

equation (14) becomes 
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 { }








= ∑
=

y

N

i
iiy

w

qq RRP T
Q

ˆtraceˆtrace
1

 . (16) 

Here iq  are the columns of the projection matrix QP .  Because the basis functions are 
orthogonal, the iq  are also the columns of Q .  The final result is that we want to 
maximize 

 ∑
=

N

i
iyi

i

qq
q 1

ˆmax TR 
 . (17) 

Here, N  is the desired dimension of the subspace.  In the algorithm, the matrix-vector 
products shown in equation (17) are calculated for all the basis vectors and the top N  are 
selected. 
 

The results using this new selection technique are shown in figure 11.  There was not 
much difference between these results and the ones shown in figure 8.  The same data 
were used in each case, and the only difference was the method of selecting the 1024 
basis functions that make up the columns of Q . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. CONCLUSIONS 
 

The theory behind the work presented here is good, but the structure of the problem 
may be what leads to a non-optimal solution.  The noise and interference present in this 
problem were fairly wideband and exist throughout the time of interest, especially in the 
broadband noise case.  Because of this, it takes a large number of coefficients to represent 
the noise.  If enough coefficients are taken to represent the noise, then the signal is 
degraded in the process.  Also, significant noise exists in the same time/frequency bins as 
the signal, so it cannot be removed without removing the signal.  This problem might be 
lessened with a different choice of bases that separate the noise and signal better than the 
local cosine.  Future work should focus on finding a better choice of bases to separate the 
noise and the signal. 
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a. Original and New Matched Filters  b. Output of Matched Filters  

Figure 11.  Results of the Technique Using Second-Order Statistics 
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