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Analysis of the Intrinsic Mode Functions 1

by

Robert C. Sharpley and Vesselin Vatchev

Abstract

The Empirical Mode Decomposition is a process for signals which produces Intrinsic
Mode Functions from which instantaneous frequencies may be extracted by simple
application of the Hilbert transform. The beauty of this method to generate redundant
representations is in its simplicity and its effectiveness.

Our study has two objectives: first, to provide an alternate characterization of the
Intrinsic Mode components into which the signal is decomposed and second, to better
understand the resulting polar representations, specifically the ones which are produced
by the Hilbert transform of these intrinsic modes.

1 Introduction

The Empirical Mode Decomposition (EMD) is an iterative process which decomposes real
signals f(t) into simpler signals (modes)

f(t) =

M∑
j=1

ψj(t). (1.1)

Each “monocomponent” signal ψj (see [C95]) should be representable in the form

ψ(t) = r(t) sin θ(t) (1.2)

where the amplitude and phase are both physically and mathematically meaningful. Once
a suitable polar parameterization is determined, it is possible to analyze the function f by
processing these individual components. Important information for analysis, such as the
instantaneous frequency and instantaneous bandwidth of the components, are derived from
the particular representation used in (1.2). The most common procedure to determine a
polar representation is the Hilbert transform and this procedure will be an important part
of our discussion.

1This work was supported in part by ONR Grants N00014-00-1-0470, N00014-03-1-0051, and NSF Grant
DMS-0079549.

Mathematics Subject Classification 2000. Primary 94A12, 92C55, 41A58; Secondary 34B24, 44A15.
Keywords and Phrases. Intrinsic mode function, empirical mode decomposition, signal processing, instan-
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In this paper we study the monocomponent signals ψ, called Intrinsic Mode Functions or
IMF’s, which are produced by the Empirical Mode Decomposition, and their possible repre-
sentations (1.2) as real parts of analytic signals. Our study of IMF’s utilizes mathematical
analysis to characterize requirements in terms of solutions to self-adjoint second order or-
dinary differential equations. In principle, this seems quite natural since signal analysis is
often used to study complex vibrational problems and the processes which generate and
superimpose the signal components. Once this characterization is established, we then focus
on the polar representations of IMF’s which are typically built using the Hilbert transform,
or more commonly referred to as the analytic method of signal processing.

The difficulty in constructing representations (1.1) is that the expansion must be selected
as a linear superposition from a redundant class of signals. Indeed, there are infinitely many
nontrivial ways to construct representations of the type (1.1) even in the case that the
initial signal f is itself a single “monocomponent”. Hence ambiguity of representation, i.e.
redundancy, enters on at least two levels: the first in determining a suitable decomposition
as a superposition of signals, and the second, after settling on a fixed decomposition, in
appropriately determining the amplitude and phase of each component.

At the second stage, it is common practice to represent the component signal in complex
form

Ψ(t) = r(t) exp iθ(t) (1.3)

and, after a phase shift by π/2, to consider ψ(t) as the real part of the complex signal Ψ, as
in (1.2). Obviously, the choice of amplitude-phase representation (r, θ) in (1.3) is essentially
equivalent to the choice of an imaginary part φ:

r(t) =
√

ψ2 + φ2 θ(t) = arctan
φ

ψ
, (1.4)

once some care is taken to handle the branch cut. An analyzing procedure should produce
for each signal ψ, a properly chosen companion φ for the imaginary part, which is unambigu-
ously defined and properly encodes information about the component signal, in this case the
IMF. From the class of all redundant representations of a signal, once a fixed, acceptable rep-
resentation, with amplitude r(t) and phase θ(t), is determined, the instantaneous frequency
of ψ(t) with respect to this representation is the derivative of the phase, i.e. θ′(t). In this

case, a reasonable definition for the instantaneous bandwidth is r′(t)
r(t)

(see [C95] for additional

motivation). The collection of instantaneous phases present at a given instant (i.e. t = t0)
for a signal f(t) is heavily dependent upon both the decomposition (1.1) and the selection
of representations (1.2) for each monocomponent. The full EMD procedure is obviously a
highly nonlinear process, which effectively builds and analyzes inherent components which
are adapted to the scale and location of the signal’s features.

Historically, there have been two methods used to define the imaginary part of suitable
signals, the analytic and quadrature methods. The analytic signal method results in a
complex signal that has its spectrum identical (modulo a constant factor of 2) to that of
the real signal for positive frequencies and zero for the negative frequencies. This can be
achieved in a unique manner by setting the imaginary part to be the Hilbert transform
of the real signal f(t). The Empirical Mode Decomposition (EMD) of Huang et al [H99]
is a highly successful method used to generate a decomposition of the form (1.1) where
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the individual components contain significant information. These components were named
Intrinsic Mode Functions (IMF’s) in [H99] since the analytical signal method applied to each
such component normally provides desirable information inherent in that mode. Analytic
signals and the Hilbert transform are powerful tools and are well understood in Fourier
analysis and signal processing, but in certain common circumstances the analytic signal
method leads to undesirable and “paradoxical” results in applications which are detailed
in [C95]. Results of this paper provide further light on the consequences of using analytic
signals, as currently applied, for estimating phase and amplitude of a signal. More results
along these lines appear in [V].

Section 2 contains a brief description of the EMD method and motivates the concept of
Intrinsic Mode Functions (IMFs) which are the main focus of this paper. Preliminary results
on self-adjoint equations are reviewed for background for the results that follow in Section 3.
Section 3 contains one of the main results of the paper, namely, the characterization of
IMFs as solutions to certain self-adjoint ordinary differential equations. The proof involves
a construction of envelopes which do not rely on the Hilbert transform. These envelopes
are used directly to compute the coefficients of the differential equations. The differential
equations are natural models for linear vibrational problems and should provide further
insight into both the EMD procedure and its IMF components. Indeed, signals can be
decomposed using the EMD procedure and the resulting IMF’s used to identify systems of
differential equations naturally associated with the components (see [V] for details).

The purpose of Section 4 of the paper is to further explore the effectiveness of the Hilbert
analysis which are applied to IMF’s and to better understand some of the anomalies that
are observed in practice. Examples are constructed, both analytically and numerically, in
order to illustrate that the assumption that an IMF should be the real part of an analytic
signal leads to undesirable results. Well-behaved functions are presented, for which the
instantaneous frequency computed using the Hilbert transform changes sign, i.e. the phase
is non-monotone and physically unrealistic. In order to clarify the notions and procedures,
we briefly describe both analytical and computational notions of the Hilbert transform.

Finally we take this opportunity to thank Professor Ronald DeVore (South Carolina) and
Professor John Pierce (USNA) for drawing our attention to the Empirical Mode Decompo-
sition and providing the primary references [H98, H99] from which to proceed.

2 The Empirical Mode Decomposition Method

The use of the Hilbert Transform for decomposing a function into meaningful amplitude
and phase requires some additional conditions on the function. Unfortunately, no clear
description of definition of a signal has been given to judge precisely whether or not a function
is a “monocomponent”. To compensate for this lack of precision, the concept of “narrow
band” has been adopted as restriction on the data in order that the instantaneous frequency
be well defined and make physical sense. The instantaneous frequency can be considered
as an average of all the frequencies that exist at a given moment, while the instantaneous
bandwidth can be considered as the deviation from that average. The most common example
is considered to be a signal with constant amplitude, that is r(t) in (1.4) is a constant. Since
the phase is modulated, these are usually referred to as frequency modulated, or FM signals.
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If no additional conditions are imposed on a given signal, the previously defined notions
could still produce “paradoxes”. To minimize these physically incompatible artifacts, Huang,
et al [H99] have developed a method, which they termed the “Hilbert view”, in order to study
nonstationary and nonlinear data in nonlinear mechanics. The main tools which are used
are the Empirical Mode Decomposition Method (EMD) to decompose signals into Intrinsic
Mode Functions (IMF’s), which are then processed by the Hilbert Transform to produce
corresponding analytic signals for each of the inherent modes .

In general, EMD may be applied either to sampled data or to functions of real variable
f(t), by first identifying the appropriate time scales that will reveal the physical character-
istics of the studied system, decompose the function into modes ψ intrinsic to the function
at the determined scales, and then apply the Hilbert transform to each of the intrinsic
components.

In the words of Huang and collaborators, the EMD method was motivated “from the
simple assumption that any data consists of different simple intrinsic mode oscillations”.
Three methods of estimating the time scales of f at which these oscillations occur have been
proposed:

• the time between successive zero-crossings ;
• the time between successive extrema;
• the time between successive curvature extrema.

The use of a particular method depends on the application. Following the development in
[H99], we define a particular class of signals with special properties that make them well
suited for analysis.

Definition 2.1 A function ψ(t) is defined to be an Intrinsic Mode Function, or more
briefly an IMF, of a real variable t, if it satisfies two characteristic properties:

(a.) ψ has exactly one zero between any two consecutive local extrema.
(b.) ψ has zero “local mean”.

A function which is required to only satisfy condition (a) will be called a weak-IMF.

In general, the term local mean in condition (b) may be purposefully ambiguous, but in
the EMD procedure it is typically the pointwise average of the“upper envelope” (determined
by the local maxima) and the“lower envelope” (determined by the local minima) of ψ.

The EMD procedure of [H98] decomposes a function (assumed to be known for all values
of time under consideration) into a function-tailored, fine-to-coarse multiresolution of IMF’s.
This procedure is extremely attractive, both for its effectiveness in a wide range of appli-
cations and for its simplicity of implementation. In the latter respect, one first determines
all local extrema (strict changes in monotonicity) and, for an upper envelope, fits a cubic
spline through the local maxima. Similarly, a cubic spline is fit through the local minima
for a lower envelope and the local mean is the average of these two envelopes. (It is well
understood that these are envelopes in a loose sense). If the local mean is not zero, then
the current local mean is subtracted leaving a current candidate for an IMF. This process
is continued (accumulating the local means) until the local mean vanishes or is “sufficiently
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small‘”. This process (inner iteration) results in the IMF for the current scale. The ac-
cumulated local means from this inner iteration is the version of the function scaled-up to
the next coarsest scale. The process is repeated (outer iteration) until the residual is either
“sufficiently small‘” or monotone.

In view of the possible deficiency of the upper and lower envelopes to bound the iterates
and in order to speed convergence in the inner loop, Huang et al suggest [H99] that the stop-
ping criterion on the inner loop be changed from the condition that the “resulting function
to be an IMF” to the single condition that “the number of extrema equals to zero-crossings”
along with visual assessment of the iterates. This is the motivation for our definition of
weak-IMF. Ideally in performing the EMD procedure, all stopping and convergence criteria
will be met and f(t) is then represented as

f(t) =
N∑

n=1

ψn + rN+1

where rN+1 = fN+1 is the residual, or carrier, signal.
A primary purpose of the decomposition [H99] is to distill from a signal individual modes

whose frequency (and possibly bandwidth) can extracted and studied by the methods from
the theory of analytic signals. More specifically, quoting from [H99],

“Having obtained the IMF components, one will have no difficulty in applying
the Hilbert transform to each of these components. Then the original data can
be expressed as the real part(�) in the following form:

f(t) = �
(

N∑
n=1

An(t) exp

(
i

∫
ωn(t) dt

))
.

The residue rN is left on purpose, for it is either a monotonic function or a
constant.”

The notation above uses ωn = dθn

dt
to refer to the instantaneous frequency, where the phase

of the n-th IMF is computed by θn := arctan(Hψn/ψn).

2.1 Initial Observations

The first step in a multiresolution decomposition is to choose a time scale which is inherent
in the function f(t) and has relevant physical meaning. The scales proposed in [H99] are
sets of significant points for the given function f(t). Other possibilities that could be used
are the set of inflection points (also mentioned by the authors), the set of zero crossings of
the function f(t) − cos kt, k-integer, or some other characteristic points.

The second step is to extract some special (with respect to the already chosen time scale)
functions, which in the original EMD method are called Intrinsic Mode Functions(IMF’s).
The definition of an IMF, although somewhat vague, has two parts (a) the number of the
extrema equals the number of the zeros and (b) the upper and lower envelopes should
have the same absolute value. As it is pointed out in [H99] if we drop (b) we will have a
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reasonable (from practical point of view) definition but, in the next stage, this will introduce
unrecoverable mathematical ambiguity in determining the modulus and phase.

Therefore any modification of the definition of IMF must include condition (a). The
practical implementation of the EMD uses cubic splines as upper (U(t)) and lower (L(t))
envelopes. The nodes of these two splines interlace and do not have points in common. The
absolute value of two cubic splines can be equal if and only if they are the same quadratic
polynomial on the whole data span, i.e. if the modulus of the IMF is of the form at2+bt+c. To
overcome this restriction, we can either modify the construction of the envelopes or, instead
of requiring U(t) = −L(t) for all t, we can require |U(t)+L(t)| ≤ ε, for some prescribed ε > 0.

Recall that we say a continuous function is a weak-IMF if it is only required to satisfy
condition (a) in Definition 2.1 of an IMF. One of the main purposes of this paper is to provide
a complete characterization of the weak-IMF’s in terms of solutions to self-adjoint ordinary
differential equations. In a sense this is natural, since one of the uses of the EMD procedure
is to study solutions to differential equations and vibration analysis was a major motivation
in the development of the Sturm-Liouville theory. In the next section, we list some relevant
properties of the solutions of a self-adjoint ODE’s which will be useful for our analysis.

2.2 Self-adjoint ODE and Sturm-Liouville systems.

An ODE is called self-adjoint if can be written in the form

d

dt

(
P (t)

df

dt

)
+ Q(t)f = 0, (2.1)

for t ∈ (a, b) (a and b finite or infinite), where P > 0 and Q is continuous. More generally
we can consider a Sturm-Liouville equation (λ real):

d

dt

(
p(t)

df

dt

)
+ (λρ(t) − q(t))f = 0. (2.2)

These equations arose from vibration problems associated with model mechanical systems
and the corresponding wave motion was resolved into simple harmonic waves (see [BR]).

Properties of the solutions of self-adjoint and Sturm-Liouville equations

I. Interlacing zeros and extrema If Q > 0, then any solution of (2.1) has exactly one maxi-
mum or minimum between successive zeros.

II. The Prüfer substitution A powerful method for solving the ODE (2.1) utilizes a transfor-
mation of the solution into amplitude and phase. If the substitution Pf ′ := r(t) cos θ(t) and
f(t) := r(t) sin θ(t) is made, then the equation (2.1) is equivalent to the following nonlinear
first order system of ODE’s

dθ

dt
= Q(t) sin2 θ +

1

P (t)
cos2 θ (2.3)

dr

dt
=

1

2

(
1

P (t)
− Q(t)

)
r sin 2θ. (2.4)
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Notice that if Q(t) is positive, then the first equation shows that the instantaneous frequency
of the IMF’s is always positive, and therefore the solutions have nondecreasing phase. The
second equation relates the instantaneous bandwidth r′

r
with P (t), Q(t) and θ(t). The partial

decoupling in this form of the equations is useful in studying the behavior of the phase and
amplitude.

III. The Liouville substitution An ODE of the form (2.2) can be transformed to an ODE of
the type

f ′′ + (λ − q(t))f = 0.

Moreover, if fn(t) is a sequence of normalized eigenfunctions, then

fn(t) =

√
2

b − a
cos

nπ(t − a)

b − a
+

O(1)

n
.

Additional properties of these solutions (e.g. see [BR]) suggest that the description of IMF’s
as solutions to self-adjoint ODE’s will lead to further insight.

3 IMF’s and Solutions of Self-adjoint ODE

In this section we characterize weak-IMF’s which arise in the Empirical Mode Decomposition
algorithm as solutions of self-adjoint ODE’s. The main result may be stated as follows.

Theorem 3.1 Let f be a real-valued function in C2[a, b], the set of twice continuously dif-
ferentiable functions on the interval [a, b]. If both f and its derivative f ′ have only simple
zeros, then the following three conditions are equivalent:
(i) The number of the zeros and the number of the extrema of f on [a, b] differ by at most
one;
(ii) There exist positive continuously differentiable functions P and Q such that f is a solu-
tion of the self-adjoint ODE

(P (t)f ′(t))′ + Q(t)f(t) = 0; (3.1)

(iii) There exists an associated C2[a, b] function h such that the coupled system

f(t) = − 1

Q(t)
h′(t), h(t) = P (t)f ′(t), (3.2)

holds for some positive continuously differentiable functions P and Q.

Proof: We first prove that condition (i) is equivalent to (ii). That condition (ii) implies (i)
follows immediately since Q is a positive function and Property I of the previous section
holds for solutions of self-adjoint ODE’s (see [BR]).

The proof in the opposite direction ((i) implies (ii)) requires a preliminary result (see
Lemma 3.1 that follows) on interpolating piecewise polynomials to be used for envelopes.
Let us assume then that there is exactly one zero between any two extrema of f . For
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simplicity we assume that the number of zeros and extrema of f on [a, b] are both equal to
M . Consider the collection of ordered pairs

{(tj, |f(tj)|)}M
j=1 ∪ {(zj, aj)}M

j=1, (3.3)

which will serve as our knot sequence. The points {tj , zj} satisfy the required interlacing
condition (t1 < z1 < t2 < z2 < . . .), where tj are the extremal points for f and zj are its
zeros. The data a = {aj} are any positive numbers which satisfy

max{|f(tj)|, |f(tj+1)|} + η ≤ aj (3.4)

for all j = 1, . . . , M, where η > 0 is fixed. The following lemma provides a continuous
piecewise polynomial envelope for f by Hermite interpolation.

Lemma 3.1 Let f satisfy the conditions of Theorem 3.1 and the {aj} satisfy the condi-
tion (3.4), then there is a continuous, piecewise quintic polynomial R interpolating this data
with the following properties, for all j:

(a) The extrema of R occur precisely at the points tj, zj;

(b) |f | ≤ R with equality occuring exactly at the points tj.

(c) R is strictly increasing on (tj , zj) and strictly decreasing on (zj , tj+1).

(d) R′′(tj) �= (−1)j+1f ′′(tj) .

Proof: Indeed, let the collection {aj} satisfy (3.4), where η > 0 is fixed. Interpolate
the data specified by (3.3) by a piecewise quintic polynomial R, requiring in addition that
R′(tj) = R′(zj) = 0. On each subinterval determined by the points {tj , zj}, this imposes four
conditions on the six coefficients of the local quintic, leaving 2 degrees of freedom for each of
the polynomial ’pieces’. Representing such a polynomial in its Taylor expansion about the
left hand endpoint of its interval, it is easy to verify that we can force that condition (c) hold
at each of the knots, and that we can require R′′(tj) > 0. In particular, R has its minima
at the maxima of |f | (i.e. the tj) and its maxima at the zeros of f (the zj). Therefore,
R′′(tj) > 0 ≥ (−1)j+1f ′′(tj), which verifies condition (d) . �

Remark 3.1 In general, any piece-wise function R constructed from functions ϕj(t) that
satisfy the conditions

ϕ(y1) = v1, ϕ(y2) = v2

ϕ′(y1) = ϕ′(y2) = 0, |ϕ′(t)| > 0 for t ∈ (y1, y2)

will suffice in our construction. In particular, the Meyer’s scaling function can be used to
produce an envelope R which satisfies properties (a) and (b) of Lemma 3.1 and can be used
as a basis for a quadrature calculation of instantaneous phase (see [V]). This idea is implicit
in the development that follows.
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Having constructed an envelope R for f , we define the phase-related function S by

S(t) :=
f(t)

R(t)
. (3.5)

By Lemma 3.1, clearly |S(t)| ≤ 1 for t ∈ [a, b] and |S(t)| = 1 if and only if t = tj for
some j = 1, 2, . . . , M . Since f has exactly one zero between each pair of consecutive interior
extrema, then f , and hence S, has alternating signs at the tj . Without loss of generality, we
may assume θ(t1) = π

2
, i.e. t1 is an interior local maximum, otherwise we could consider the

function −f instead of f . Endpoint extrema are easily handled separately. As we observed
during the proof of Lemma 3.1, the function R was constructed to be strictly increasing
on (tj , zj) and strictly decreasing on (zj, tj+1). On intervals (tj, tj+1), when j is odd, the
function f decreases, is positive on (tj , zj), and negative on (zj, tj+1). These properties
imply that S decreases on (tj , tj+1), is positive on (tj, zj), and negative on (zj, tj+1). Similar
reasoning shows that for j even, S increases on (tj , tj+1), is negative on (tj , zj), and positive
on (zj , tj+1).

Therefore we can represent S as

S(t) =: sin θ(t) (3.6)

for an implicit function θ(t) which satisfies θ(tj) = 2j−1
2

π and θ(zj) = jπ. From these facts,
one easily checks that θ is a strictly increasing function. In fact, θ(t) will be continuously
differentiable with strictly positive derivative on [a, b]. To see this, first recall that the
function R has a continuous first derivative on [a, b], so S is also differentiable and satisfies

S ′(t) =
f ′R − fR′

R2
. (3.7)

Therefore S ′ is continuous and by an application of the implicit function theorem applied on
each of the intervals (tj, tj+1), θ(t) will be continuously differentiable with positive derivative
on each of these intervals. We will apply L’Hospital’s rule in order to verify the corresponding
statement at the extrema tj . Differentiate formally the relation (3.6) and square the result
to obtain on each interval (tj , tj+1) the identity

θ′(t)2 =

(
S ′(t)

cos(θ(t)

)2

=
S ′(t)2

1 − S2(t)
.

So, if T (t) denotes the right-hand side of the above relation, that is

T (t) :=
S ′(t)2

1 − S2(t)
, (3.8)

then T (t) is clearly continuous except at the tj where it is undefined. We show, however,
that T has removable singularities at these points. Both the numerator and denominator
are C2 functions and vanish at tj , so an application of L’Hospital’s rule shows

lim
t→tj

T (t) = lim
t→tj

2S ′(t)S ′′(t)
−2S ′(t)S(t)

= −S ′′(tj)
S(tj)

.
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On the other hand, from (3.7), S ′′(tj) =
(−1)j+1f ′′(tj)−R′′(tj)

f(tj)
, and so property (d) of the previous

lemma guarantees that this last expression is strictly positive. Hence, θ′ is a continuous,
strictly positive function on the interval [a, b].

If we use relations (3.5) and (3.6) to write f as f = R sin θ, then a natural companion is
the function h defined by

h(t) := −R(t) cos θ(t). (3.9)

It follows from properties of R and θ that h is strictly decreasing on (zj , zj+1) when j is odd,
is strictly increasing on this interval when j is even, and has its simple zeros at the points
tj . Differentiation of (3.9), provides the identity

h′(t) = −R′(t) cos θ(t) + R(t)θ′(t) sin θ(t). (3.10)

which will be used to complete the proof that condition (ii) of Theorem 3.1 is satisfied.
Indeed, define the functions P, Q appearing in equation (3.1) by

P (t) := − h(t)

f ′(t)
, Q(t) :=

h′(t)
f(t)

. (3.11)

From the properties of h and f , we see that these are well defined, strictly positive, and with
continuous first derivatives on [a, b], except possibly at the set of points {tj} and {zj}. That
these properties persist at these points as well, we can again apply L’Hospital’s rule and use
the identity (3.10) together with the fact that θ′ is positive.

Obviously, the equations (3.11) are equivalent to

P (t)f ′(t) = −h(t), Q(t)f(t) = h′(t) (3.12)

which in turn are equivalent to equations (3.2). This establishes condition (ii) of Theorem 3.1
and also shows that this condition is equivalent to condition (iii). �

Remark 3.2 Observe that the function h in condition (iii) of Theorem 3.1 satisfies a related
self-adjoint ODE,

(i) (P̃ (t)h′(t))′ + Q̃(t)h(t) = 0, where P̃ := 1/Q and Q̃ := 1/P and P, Q are the coeffi-
cients of Theorem 3.1 .

Moreover, the coefficients P, Q satisfy the following conditions:

(ii) P, Q may be represented directly in terms of the amplitude R(t) and phase θ(t) by

1

P
= θ′ +

R′

R
tan θ, Q = θ′ − R′

R
cot θ. (3.13)

(iii) P, Q satisfy the inequality
1

P
≤ Q,

with equality iff R′(t) = 0 on [a, b], or, equivalently, if f is an FM signal.

The only statements in this Remark that requires justification are equations (3.13). These
follow directly by using the Prüfer substitution in equations (3.13): using (2.3) for θ′ and (2.4)

10



for R′/R.

Theorem 3.1 provides the desired characterization of weak-IMF’s, which we summarize
in the following corollary.

Corollary 3.1 A twice differentiable function ψ on [a, b] is a weak-IMF if and only if it
is a solution of the self-adjoint ODE of the type

(Pψ′)′ + Qψ = 0,

for positive coefficients P (t), Q(t).

If we adopt the definition of an IMF given in Definitiion 2.1, then we have a character-
ization embodied in the following statements summarizing the results and observations of
this section.

Theorem 3.2 A function ψ is an IMF if and only if it is a weak-IMF whose spline envelopes
satisfy the condition that the absolute value of the lower spline envelope is equal to the upper
envelope and this common envelope is a quadratic polynomial. Furthermore, the common
spline evelope is constant (i.e., ψ is an FM signal) if and only if Q(t) = 1/P (t) for the
associated self-adjoint differential equation (3.1).

The results of this section indicate that we can find a meaningful mathematical and
physical description of any weak-IMF in terms of solutions of self-adjoint problems. On
the other hand, considering these as the real parts of analytic signals, we show in the next
section that there exist functions ψ that are IMF’s satisfying both conditions (a) and (b) of
Definition 2.1, but the phase produced by using the Hilbert transform is not monotonic, i.e.
the instantaneous phase changes sign.

4 Example IMFs and the Hilbert Transform

In this section we analyze several examples that indicate the limitations of the analytic
method (i.e. Hilbert transform) to produce physically realistic instantaneous frequencies in
the context of IMF analysis. The examples presented show that even for some of the most
reasonable definitions for IMFs the Hilbert Transform method will result in instantaneous
frequencies which change signs on intervals of positive measure. By a reasonable IMF we
mean that they satisfy all existing definitions, including the IMF of Huang et al, narrowband
mono-components, and visual tests. Although our examples are presented in order to identify
possible pitfalls in automatic use of the Hilbert transform, in the final analysis, practitioners
in signal processing will make the decision on when the use of analyticity is appropriate, and
to what extent non-monotone phase is necessary. We mention that the examples, in some
sense, also provide a better understanding of many of the paradoxes concerning instantaneous
phase and bandwidth which are detailed in Cohen [C95].

11



4.1 Hilbert Transforms

In order to clarify the discussion, we begin with a brief description of Hilbert transforms
and analyticity. In using the terminology “Hilbert Transform method”, we mean one of the
following

• the conjugate operator (or periodic Hilbert transform):
i.e., the transform which is defined for functions ψ on the circle as the imaginary parts
of analytic functions whose real part coincides with ψ, see [K, Z] for details. This
may be identified with modifying the phase of each Fourier frequency component by a
quarter cycle delay, i.e. the sgn Fourier coefficient multiplier.

• the continuous Hilbert Transform:
i.e., the transform for functions ψ defined on the real line which is defined as the
restriction to � of the imaginary part of analytic functions in the upper half plane
whose real part on � is ψ. This is well defined and understood, for example, on
Lebesgue, Sobolev, Hardy, and Besov spaces (1 ≤ p < ∞ and in certain cases when
p = ∞). This transform may be realized both as a principal value singular integral
operator and as a (continuous) Fourier multiplier. For details see [BS, Z].

• the discrete Hilbert transform:
i.e., a transform on discrete groups which is applied to signals through a multiplier
operator of its discrete Fourier transform. The operator is computed by multiplying
the FFT coefficients of a signal by sgn and then inverting. The multiplier may possibly
invoke side conditions such as those as implemented in the built-in version of ‘hilbert’
in Matlab [M]. We also note that the m-file ‘hilbert.m’ computes the discrete analytic
signal itself and not just the imaginary part.

In each of these cases it is clear that the imaginary part (in the case of continuous functions)
is uniquely defined up to an arbitrary numerical constant C. In Fourier and harmonic
analysis the choice is usually made based on consideration of the multiplier operator as a
bounded isometry on L2. In some of our examples, we will consider functions on � and
sample them in order to apply the Discrete Hilbert Transform. For periodic functions and
appropriate classes of functions defined on �, careful selection of the sampling resolution
(e.g. Shannon Sampling Theorem [P] in the case of analyzing functions of exponential
type) will guarantee that sampling the continuous Hilbert transform of the functions will be
equivalent (at least to machine precision) to application of the discrete Hilbert transform to
the sampled function. In other words, these numerical operations, when carefully applied,
will “numerically comute”. It will be clear if there is a distinction between these transforms
and, from the context, which one is intended.

One possible remedy in order to try to avoid nonphysical artifacts of the “analytic”
method of computing the instantaneous frequency is to require additional constraints in the
definition of an IMF. One such condition which immediately comes to mind would be to
also require an IMF to have at most one inflection point between its extrema. We show in
Example 4.2, however, that even stronger conditions are still not sufficient to prevent sign
changes of the instantaneous frequency when Hilbert transforms are used to construct the
phase and amplitude for a signal, that is, if one considers an IMF as the real part of an
analytic signal. In Propositions 4.1-4.3 we consider the analytical properties of these exam-
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ples and show that they are members of large classes of signals that behave similarly when
processed by the Hilbert transform, or by the computational Hilbert transform, not matter
how finely resolved. Finally, we conclude this section by describing a general procedure that
adds a “smooth perturbation” to well behaved signals and leads to undesirable behavior in
estimating the instantaneous phase. This indicates the need for the possible consideration
of careful denoising of acquired signals before processing IMF’s by the Hilbert method.

Before proceeding it is useful to briefly discuss computational aspects of the Hilbert
transform and therefore of the corresponding analytic signal. There are several versions
of the discrete Hilbert transform, all using the Discrete Fourier Transform (DFT). In the
study of monocomponent signals which are Fourier-based and use least squares norms, the
choice of the free parameter C is normally chosen so that ‖ψ‖�2 = ‖Hψ‖�2, which mimics the
corresponding property for transforms on the line and circle. As implemented by Matlab,
however, it seems that for many signal processing operations it is preferable to choose the free
imaginary constant so that the constant (DC) term of the signal is split between the constant
and middle (Nyquist) terms of the DFT of the Hilbert transform. This appears natural
since the Nyquist coefficient is aliased to the constant term, see Marple [M] for details. An
additional side benefit of this choice of C is that it ensures that the discrete Hilbert transform
will be orthogonal to the original signal, which emulates the corresponding property for the
Hilbert transform for the line and circle. We note that the discretization process does not
permit one to maintain all properties of continuous versions of the transform and some choice
on which properties are most important must be made based on the application area.

One serious numerical artifact of the computational Hilbert transform, which typically
arises when it is applied to non-continuous periodic functions, is a Gibbs effect. Some care
must be taken to insure continuity of the (implicitly assumed) periodic signal, otherwise
severe oscillations will occur which often mask the true behavior of the instantaneous fre-
quency. In the examples considered in this section the functions are continuous, although
in some cases (see Example 4.2) the higher derivatives are not. In this case, however, the
oscillations due to this lack of smoothness are minor, of lower order and do not measurably
affect the computations. Typically, we apply the computational Hilbert transform after the
supports of our functions are rescaled and translated to the interval [−π, π).

Since it may rightly be argued that other choices of the free parameter C in the discrete
Hilbert transform may possibly alleviate the problem of nonmonotone phase, we focus for
the most part on examples for which any choice of the imaginary constant in the analytic
signal (and consequently in the definition of the discrete Hilbert transform) will result in
undesirable behavior of the instantaneous frequencies obtained by the Hilbert method. An-
other concern in computational phase estimation is how one numerically ‘unwraps’ Cartesian
expressions to extract phases for polar representations. We offer a technique to avoid am-
biguous unwrapping of inverse trigonometric functions by instead computing the ‘analytic’
instantaneous frequency through the formula

θ′C(t) :=
ψ(t)Hψ′(t) − (Hψ(t) + C)ψ′(t)

(Hψ(t) + C)2 + ψ(t)2
(4.1)

where θC is the phase corresponding to a given choice of the constant C. We use this identity
throughout to compute instantaneous frequencies for explicitly defined functions ψ which are
either periodic or defined on the line. Discrete versions using first order differences are also
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suitable for computing instantaneous phase for discretely sampled signals. The identity (4.1)
follows by implicitly differentiating the expression tan θC = (Hψ + C)/ψ and using the fact
that the Hilbert transform is translation-invariant.

We end this subsection with an general observation concerning the application of the
Hilbert transform to IMF’s, which follows from Theorem 3.1.

Corollary 4.1 Suppose that ψ is a periodic, weak-IMF and Ψ is the corresponding analytic
function with imaginary part the conjugate operator Hψ. If (r, θ) are the corresponding an-
alytic amplitude and phase for the pair (ψ, Hψ), then the coefficients (P, Q) of an associated
differential equation (2.1) determined by a Prüfer relationship (3.13) must satisfy

Q =
Hψ′

ψ
, P = −Hψ

ψ′ , (4.2)

whenever these two expressions make sense. In particular, a necessary and sufficient condi-
tion that the coefficients (P, Q) of the ODE be positive (i.e. a physcially reasonable vibrational
system), is that Hψ should be positive exactly where ψ increases, and ψ should be positive
exactly where Hψ is increasing.

Proof: This follows immediately from Theorem 3.1 and the Prüfer representation of the
coefficients which is given in equation (3.13). �

4.2 Example IMFs

The first examples of IMF’s we wish to consider are a family of 2π-periodic functions which
have the property that the conjugate operator and the discrete Hilbert transform (applied
to a sufficiently refined sampling) differ only by the addition of an imaginary constant.

Example 4.1 Let ε be a real parameter. We consider the family of continuous 2π periodic
functions

ψε(t) := eε cos(t) sin(ε sin(t)). (4.3)

Observe that the Hilbert transform of ψε is Hψε(t) = −eε cos(t) cos(ε sin(t)) + C, where the
constant C is a free parameter that one may choose. In fact, the analytic signal Ψ with real
part ψε is unique up to a constant and may be written as

Ψε(t) = −ieε eit

+ iC.

For particular values of ε the function can be used as a model of signals with interesting
behavior. For example, ψε for ε ≤ 2.9716 is an FM function and on any finite interval the
number of the zeros differs from the number of extrema by a count of at most one.

As one particular example of the Hilbert method for computing instantaneous phase for
IMF’s, we fix in (4.3) the special choice of ε0 = 2.97 and set

ψ(t) := ψε0(t). (4.4)
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Figure 1: ψε, an IMF with poor Hilbert transform.

The graph of ψ(t) is shown in Fig 3.1. In Proposition 4.1 below, we show that ψ(t) is an
IMF according to the definition in [H98], but for any choice of the constant C in the Hilbert
transform, the instantaneous frequency obtained from the corresponding analytic signal Ψε0

changes sign.
We first verify the corresponding fact in the case of discrete signals. We sample ψ(t)

uniformly with increment ∆ = π/128 (vector length = 1024) on the interval [−4π, 4π − ∆].
The graph of the Hilbert transform and corresponding instantaneous frequency of ψ obtained
by using Matlab’s built-in “hilbert.m” function are shown in Figure 2, parts (a) and (b),
respectively. We mention that for this data the choice of constant chosen by Matlab to
meet its criteria is C = 1. Although other choices for C may decrease the intervals of
non-monotonicity of the phase, the artifact will persist for all choices.

The next proposition shows that the computational observation using the discrete Hilbert
transform is a consequence of the continuous transform and cannot be corrected by other
choices of the imaginary constant or by a finer sampling rate.

Proposition 4.1 The function ψ defined by (4.3) is an IMF in the sense of [H98], but its
instantaneous frequency computed by the Hilbert transform (with any choice of imaginary
constant C) changes its sign on any interval of length at least π.

Proof. We first show that ψ is a weak-IMF. Clearly ψ is 2π-periodic and an odd function
and so we only need to consider it on the interval [0, π). The first derivative of ψ is

ψ′(t) = ε0e
ε0 cos(t) cos(t + ε0 sin(t)) (4.5)

and is zero iff ν(t) := t + ε0 sin(t) = 2k+1
2

π for some integer k. Since ν ′(t) = 1 + ε0 cos(t)
has exactly one zero z0 in [0, π) (cos is monotone in [0, π)), the function ν(t) is increasing
on [0, z0), decreasing on (z0, π), with end values ν(0) = 0 and ν(π) = π. To show that ψ has

15



−15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

−15 −10 −5 0 5 10 15
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

a. b.

Figure 2: the Hilbert method for ψε: a. Imaginary part of discrete analytic sig-
nal; b. Instantaneous frequency.

only one extremum on [0, π), it suffices to show that

ν(z0) <
3

2
π (4.6)

since then the only extremum of ψ on [0, π) will be the point eM where ν(eM) = π
2
. At the

point z0 we have cos(z0) = −1/ε0, which implies both π/2 < z0 < π and

sin(z0) =
√

1 − (1/ε0)2.

Hence from the definition of ν it follows that

ν(z0) = z0 +
√

ε2
0 − 1.

This implies that the condition (4.6) is equivalent to z0 < 3
2
π−

√
ε2
0 − 1. But cos is negative

and decreasing on [π/2, π], so we see that the desired relationship (4.6) just means that
cos(z0) > cos(3

2
π−√ε2

0 − 1) should hold. The numerical value of the expression on the right
is smaller than −0.3382, while cos(z0) = −1/ε0 > −0.3368, hence the condition (4.6) holds
and ψ has exactly one local extremum in [0, π). Finally, since ε0 < π, the only zeros of ψ are
clearly at the endpoints 0 and π, which verifies that ψ is an weak-IMF.

To see that ψ is in fact an IMF, we need to verify the condition on the upper and lower
envelopes. Recall that it is 2π periodic and odd, therefore it has exactly one minimum in the
interval [−π, 0]. The cubic spline fit of the maxima (upper envelope) will be the constant
function identically equal to 1. Similarly the cubic spline interpolant of the minima (lower
envelope) will have constant value −1. This persists even for sufficiently large intervals if
one wishes to take finitely supported functions. Hence the function ψ satisfies the envelope
condition for an IMF from [H98]. We note that the general proof to show that for each 0 <
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ε < ε̃, ψε is an IMF follows in a similar manner, where ε̃ is the solution to the transcendental
equation 1/ε̃ = sin(

√
ε̃2 − 1) which arises in the limiting cases above. We observe that

ε̃ ≈ 2.9716.
Next we prove that for any selection of constant C, the corresponding instantaneous

frequency θ′C for ψ which is derived from an analytic method through (4.1) will have nontrivial
sign changes. The denominator in formula (4.1) is always positive so it will suffice to prove
that the numerator of θ′C changes sign for any choice of C. Using (4.3), (4.5) and the formula

Hψ′(t) = ε0 eε0 cos(t) sin(t + ε0 sin(t))

we can simplify the numerator of θ′C to the expression

ε0 eε0 cos(t)
(
eε0 cos(t) cos(t) − C cos(t + ε0 sin(t))

)
,

and so the sign of the term inside the parentheses

Nt(C) := eε0 cos(t) cos(t) − C cos(t + ε0 sin(t))

determines the sign of θ′C(t) at each point t ∈ [0, π). First observe that Nt(C) is a linear
function of C for fixed t. For each value of C there is a point in [0, π) at which θ′C is negative,
in fact N1.9(C) < −0.04 for C < 40 while N0.1(C) < −8 for C > 30. Similarly for any value
of C there is a point at which θ′C is positive since N0.1(C) > 4 for C < 13 and N1(C) > 2
for C > 0. By continuity we see that for each value of the constant C the instantaneous
frequency θ′C obtained via the Hilbert transform is positive and negative on sets of positive
measure. �

Finally, we mention that the L2 bandwidth of the analytic signal Ψ corresponding to a
signal ψ also depends on the choice of the imaginary constant C. If Ψ is written in polar
coordinates as Ψ(t) = r(t)eiθ(t), the average frequency 〈ω〉 and the bandwidth ν2 have been
defined in [C95] as the quantities

〈ω〉 =

∫
ω
|S(ω)|2
‖S‖2

2

dω =

∫
θ′(t)

r2(t)

‖r‖2
2

dt, (4.7)

ν2 :=
1

〈ω〉2
∫

(ω − 〈ω〉)2 |S(ω)|2
‖S‖2

2

dω (4.8)

=
1

〈ω〉2
∫ ((

r′(t)
r(t)

)2

+ (θ′(t) − 〈ω〉)2

)
r2(t)

‖r‖2
2

dt

=
1

〈ω〉2
∫ ((

r′(t)
r(t)

)2

+ (θ′(t))2

)
r(t)2

‖r‖2
2

dt − 1,

where S(ω) is the spectrum (Fourier transform) of ψ(t). The second equation in the dis-
played sequence (4.8) follows immediately from Plancherel’s theorem along with standard
properties of the Fourier transform. If one chooses the constant C in the Hilbert transform
so that ‖ψ‖2 = ‖Hψ‖2, then the computed bandwidth is ν2 = 0.1933 with mean frequency
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< ω >= 2.7301. The discrete Hilbert transform computed by matlab for the sampled ψ has
the same L2 bandwidth and mean frequency.

Summarizing, we observe that the example ψ given in (4.4) is a function which is

(i) an IMF in the sense of [H98];
(ii) a monocomponent in the sense of [C95], i.e. its L2 bandwidth is small;
(iii) “visually nice”,

but the analytic method fails to produce a monotone phase function.

Remark 4.1 The example considered in Proposition 4.1 also shows that adding the require-
ment that the Hilbert transform (with a choice of the additive constant C = 3) of an IMF
must also be a weak-IMF, will not be sufficient to guarantee monotone phase.

A possible natural refinement of the definition of an IMF that would exclude these func-
tions from the class of IMFs would be to require in addition that the first derivative of an
IMF also be an IMF, or at least that the number of the inflection points equals the number
of extrema to within a count of one (i.e. a weak-IMF). The next example of a damped
sinusoidal signal (i.e. an amplitude modulated signal) shows that restrictions along these
lines will not be able to avoid the same problem with instantaneous frequencies. We note
that this particular signal ψ is considered in [H98], but for the range of t from 1-512 sec.
Since the function is not continuous periodic over this range, the expected Gibb’s effect at
the points t = 1 and 512 appears in that example, but is absent here.

Example 4.2 Let ψ(t) = exp(−0.01t) cos 2
32

πt, 8 ≤ t ≤ 520, then ψ is a continuous func-
tion (of period 32) with a discontiniuty in the first derivative at t = 8. The signal ψ and all
its derivatives are weak-IMFs. Both the conjugate operator and the computational Hilbert
transform (applied to the sampled function with ∆t = 1) result in a sign changing instanta-
neous frequency for any choice of the constant C. In Figure 3, we have provided a plot of
ψ and the optimal instantaneous frequency (over all possible C) which is computed by the
Hilbert transform method. The values of both the continuous and computational results are
to within machine precision at the plotted vertices.

In order to verify the properties of this example, we proceed as earlier in Example 4.1
by first verifying the corresponding fact in the case of discrete signals. We sample ψ(t)
uniformly with increment ∆ = 0.1 (vector length = 5121) on the interval [8, 520]. The graph
of the Hilbert transform and corresponding instantaneous frequency of ψ obtained by using
Matlab’s built-in “hilbert” function are shown in Fig 3.3, parts (a) and (b), respectively.
The next proposition shows that although other choices of the constant C may decrease the
interval where the instantaneous frequency is negative there is no value for C for which it is
nonnegative on [8, 520]. Analogous to Example 4.1, it can be shown that the instantaneous
frequency changes its sign for any choice of the constant C.

Proposition 4.2 The function ψ in Example 4.2 and all its derivatives are weak-IMFs
on the interval [8, 512] whose instantaneous frequencies computed by the Hilbert transform
method change sign for any choice of C.
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Figure 3: Graphs for Example 4.2: (a) the IMF; (b) its instantaneous frequency.

Proof. To simplify the notation, we denote by ψ̃ the function in Example 4.2 and use ψ
to denote ψ̃ under the required linear change of variable from [8, 520] to [−π, π] in order to
apply the continuous Hilbert transforms to the periodic function. In this case, ψ will be of
the form

ψ̃(τ) = c exp(ατ) sin(kτ)

where k = 16. Next note that the derivatives of ψ are all of a similar form: ψ(n)(t) =
c1e

αt cos(kt + c2). In particular, each derivative is just a constant multiple of ψ with a
constant shift of phase and hence are weak-IMF’s for any n = 0, 1, . . . ,∞. From formula (4.1)

applied at the zeros of ψ we have θ′C(zj) = − ψ′(zj)

Hψ(zj)+C
, where the Hilbert transform is defined

through the conjugate operator (see [Z, K]) represented as a principal value, singular integral
operator

Hψ(zj) =
1

π
p.v.

∫ π

−π

ψ(t) cot(
zj − t

2
) dt. (4.9)

The standard identity

sin(kt) cot(
t

2
) = (1 + cos(kt)) + 2

k−1∑
�=1

cos(�t) (4.10)

from classical Fourier analysis permits us to evaluate this expression by

Hψ(zj) =
1

π

∫ π

−π

eαtT (t) dt, (4.11)

where T is an even trigonometric polynomial of degree 16 with coefficients depending on
the zj . Hence the values of Hψ at the zeros of ψ can be evaluated exactly (with Maple for
example). For z1 := 7

8
π and z2 := 15

16
π, the corresponding values of the Hilbert transform may

be estimated by Hψ(z1) ≤ 0.051 and Hψ(z2) ≥ 0.073 which verifies that Hψ(z2) > Hψ(z1).
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On the other hand, ψ′(z1) = −keαz1 < 0 and ψ′(z2) = keαz2 > 0, therefore θ′(z1) =

− ψ′(z1)
Hψ(z1)+C

is negative for C < −Hψ(z1) ≤ −0.051 and θ′(z2) = − ψ′(z2)
Hψ(z2)+C

is negative for

C > −Hψ(z2) ≥ −0.073. From the fact that −Hψ(z2) < −Hψ(z1) we conclude that for any
C the instantaneous frequency is negative for at least one of the points z1 or z2. Finally, for
the extrema of ψ, say t = ξ we have θ′(ξ) = cHψ′(ξ)ψ(ξ), where c is a positive constant for
any choice of C and it is easy to verify that there exists a value ξ such that Hψ′(ξ)ψ(ξ) > 0.
Hence θ′(ξ) > 0 for any choice of C. �

We observe that, under the relaxed condition allowing the difference between the upper
and lower envelopes to be within a given tolerance, ψ and its derivatives up to some finite
order are (strong) IMF’s and the computational Hilbert transform method produces a nar-
row bandwidth approximately equal to 0.0625.

The next result provides general information about the behavior of the instantaneous
frequency θ′ from any polar representation of ψ(t) = r(t) sin θ(t) in terms of a relation
between the amplitude r and ψ.

Lemma 4.1 Suppose that ψ is a weak-IMF, r(t) > 0 is an amplitude such that ψ(t) =
r(t) cos θ(t). Further, suppose that at some point t = τ , |ψ(τ)| �= r(τ) and ψ(τ) �= 0. A
necessary and sufficient condition for θ′(τ) to vanish is that

ψ′(τ)

ψ(τ)
=

r′(τ)

r(τ)
, (4.12)

that is, that the logarithmic derivative of ψ
r

should vanish at t = τ .

Proof. Since r > 0 we can differentiate the relation cos θ = ψ
r

and get

−θ′ sin(θ) =
ψ′r − r′ψ

r2
=

ψ

r

(
ψ′

ψ
− r′

r

)
. (4.13)

To prove necessity, suppose that θ′(τ) = 0. Then since ψ(τ) �= 0, it follows from the identity

(4.13), that ψ′(τ)
ψ(τ)

= r′(τ)
r(τ)

.

To prove sufficiency it is enough to notice that in the event the left-hand side of (4.13)
vanishes at t = τ , but θ′(τ) �= 0, then sin θ(τ) must vanish. Hence | cos θ(τ)| = 1 or
|ψ(τ)| = r(t), which is a contradiction. Hence θ′(τ) = 0. �

Looking back, one can see that Lemma 4.1 can be used to motivate the proof of the char-
acterization theorem for weak-IMF’s (Theorem 3.1). Indeed, for the envelopes constructed
there, r′

r
and ψ′

ψ
were forced to have different signs and therefore they can not be equal at

any point that is not a zero of ψ. From Lemma 4.1, it follows that θ′ does not change sign
between any two zeros of ψ. Since θ′ is continuous and was forced to be nonzero at the zeros
of ψ, we have that θ′ cannot change sign.

Proposition 4.3 Let va(t) be an even function defined on (−π, π] such that va(0) = 0 and
eva/‖eva‖L1 → δ, where δ is the Dirac delta function. Define ψa(t) := eva(t) cos(kt). Then

20



there exists a value of a0 sufficiently large such that the analytic instantaneous frequency for
ψa for any a > a0 changes sign for any choice of the constant used in defining the Hilbert
transform Hψa.

Proof: Recall from (4.9) that a Hilbert transform of ψa at a point t ∈ (−π, π] is Hψa(t)+C,
where C is an arbitrary real constant and

Hψa(t) = p.v.
1

π

∫ π

−π

ψa(τ) cot
t − τ

2
dτ (4.14)

is the conjugate operator for periodic functions. Using two applications of the identity (4.1),
we observe that the analytic method produces an instantaneous frequency of the form

θ′C =
ψaHψ′

a − (Hψa + C)ψ′
a

(Hψa + C)2 + ψ2
a

= Rθ′0 − C Lψ′
a, (4.15)

where R and L are positive functions on (−π, π]. Let zj = 2j−1
2k

π, −k + 1 ≤ j ≤ k be the
zeros of ψa, then

sgn(ψ′
a(zj)) = (−1)j (4.16)

and by (4.15), with C = 0, it follows that

θ′0(zj) = − ψ′
a(zj)

Hψa(zj)
(4.17)

and consequently
sgn(θ′0(zj)) = (−1)j+1sgn(Hψa(zj)). (4.18)

The proof of the lemma will be completed if we can show that for sufficiently large a
there is an index J for which two consecutive values of Hψa(zj) have the same sign

sgn (Hψa(zJ)) = sgn (Hψa(zJ+1)) =: σ. (4.19)

When C = 0 this follows immediately from equation (4.18). For C �= 0, we use the analogue
of (4.18),

sgn(θ′C) = −sgn(ψ′
a) sgn(Hψa + C) (4.20)

which follows immediately from (4.15). In the case sgn(C) = σ, this last identity shows
that θ′C has different signs at the endpoints of (zJ , zJ+1), since ψ′

a does. For the final case,
sgn(C) = −σ, we observe that Hψa and ψ′

a are both odd functions since ψa is even. By
considering −zJ and −zJ+1 in place of zJ and zJ+1, we see that sgnH(ψa) = −σ = sgn(C) at
these two points and so once again from (4.20), θ′C has different signs at the endpoints. Hence
by the continuity of θ′C , there are nonempty intervals where the instantaneous frequency takes
on opposite sign.

Therefore to complete the proof, we must verify (4.19), i.e., for parameter a > 0 suffi-
ciently large, there is a pair of consecutive points zJ , zJ+1, such that H(ψa) does not change
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sign. Evaluating the conjugate operator at the zeros x = zj in (4.9), we can proceed as in
Proposition 4.2 using the periodicity of ψa and the trigonometric identity (4.10), to obtain

Hψa(zj) = c

∫ π

−π

eva(t) cos(kt) cot
zj − t

2
dt

= c

∫ π

−π

eva(t+zj) sin(kt) cot
t

2
dt

= c

∫ π

−π

eva(t+zj)Pk(t) dt,

where in the last identity Pk(t) is a trigonometric polynomial of degree k. Therefore it follows
that

lim
a→∞

Hψa(zj)

‖eva‖ = Pk(0) = − cot
zj

2
.

holds. For any zm, zm+1 ∈ (0, π) it is follows easily that there exists a > 0 such that
sgn(Hψa(zm)) = sgn(Hψa(zm+1)). Hence for a is sufficiently large, ψa is a weak-IMF. �

We note that the arguments in Proposition 4.3 can also be used to explain the behavior
of θ′ in Example 4.2.

Example 4.3 We illustrate in Figure 4 the use of Proposition 4.3 in producing additional
weak-IMF’s with non-monotone phase. For the sample function ψ, we set k = 16 and let va

be a gaussian with standard deviation s = .01 and centered at the origin. The perturbation
is applied at both t1 = 0 and t2 = π/32. The function ψ is displayed in part (a), its hilbert
transform in part (b), and its instantaneous frequency in part (c).

For this same function, in Figure 4(d) we illustrate the application of Lemma 4.1. The
instantaneous frequency changes sign when the logarithmic derivative of ψ

r
vanishes at points

other than at an acceptable zero: either a zero of (i) ψ or of (ii) its Hilbert transform, i.e.
points where |f | = r. Notice that the endpoints of the two intervals where the instantaneous
frequency becomes negative corresponds precisely to the four (non-acceptable) zeros of the
logarithmic derivative of ψ/r

Example 4.4 An informative example of function which may be considered a true IMF is
given by the function

ψ(t) = (t2 + 2) cos(π sin(8t))/16, − 4π ≤ t ≤ 4π (4.21)

which, along with its instantaneous frequency, is plotted in Figure 5. Notice that t2 + 2 may
be regarded as an envelope of ψ and that it is close but different than the upper envelope
produced by a cubic spline fit through the maxima. Recall from the observation in Section 2.1
that a necessary and sufficient for the IMF envelope condition (b) of Definiton 2.1 to be
satisfied is that those envelopes reduce to a quadratic polynomial. This example shows that
the sifting convergence criterium in the EMD process for measuring the difference of the
absolute values of the upper and lower envelopes should be chosen with care. If fact, it can be
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Figure 4: Sample IMF from Example 4.3: a. Cosine signal with strong pertur-
bation at 0 and π/16; b. the Hilbert tranform of ψ near the pertur-
bations; c. the instantaneous frequency of ψ near the perturbations;
d. the logarithmic derivative of ψ/r near the perturbations.
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Figure 5: Plot of the example IMF defined by equation (4.21): a. The IMF ψ
with a parabolic envelope, b. Instantaneous frequency.

easily verified that smoothing off the endpoint data of this example will result in a function
for which the EMD residual can be made visually negligible after a single sifting. There are
many variations of these examples to produce similar behavior.

We conclude this section with a procedure that adds a smooth disturbance at an ap-
propriate scale to any reasonable function in such a way that the function maintains its
smoothness and analytical profile, that is, no additional extrema are introduced and the
existing extrema are only perturbed, but the resulting function has non-monotone analytic
phase. By a reasonable function ψ, we will mean an IMF in the strongest sense, which we
call a Hilbert-IMF.

Definition 4.1 A function is called a Hilbert-IMF if it satisfies the following conditions:
(i.) ψ is an IMF in the sense of the definition in [H98];
(ii.) the analytic signal of ψ (i.e. via the Hilbert transform) Ψ = reiθ, r′ and θ′ are

smooth functions and θ′ > 0;
(iii.) the weighted L2 bandwidth is small.

The idea of the perturbation procedure is based on the fact that by multiplying the
analytic function Ψ = reiθ by another analytic function, say Γ = r1e

iθ1 , the result ΨΓ =
rr1e

i(θ+θ1) is also analytic with analytic amplitude rr1 and analytic phase θ + θ1. Since θ′

and θ′1 are smooth functions, in order to force the instantaneous frequency of ΨΓ to change
sign it suffices to choose Γ such that θ′1(T ) < −θ′(T ) at some point T . One way we can
insure that the weighted L2 bandwidth of ΨΓ remains small is to localize the perturbation Γ
to a small interval I, i.e. both r1 and θ1 should decay rapidly to zero outside I. Further, to
guarantee that the real part of ΨΓ is an IMF in the sense of [H98], the added perturbation
must only result in a small deviation of the zeros and extrema of the original IMF Ψ, and
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should not introduce additional zeros nor extrema. This is achieved by incorporating an
additional tuning parameter σ into our perturbation Γσ, for small values of σ.

The technique used in the proof of the results below shows that there are many functions
that can be used as such perturbation functions. We consider one particular smooth function
that is constructed from the modified Poisson kernel

yρ(t) :=
(1 − ρ)2

1 − 2ρ cos t + ρ2
, 0 ≤ ρ < 1. (4.22)

It is well known that its conjugate function is Hyρ(t) = 1−ρ
1+ρ

2ρ sin t
1−2ρ cos t+ρ2 . Although it is an

abuse of notation, we will refer to these simply as y and Hy with the understanding that
the parameter ρ is implicitly present. We define the perturbation Γ in terms of y = yρ by

Γ = Γρ := exp(−Hy + iy). (4.23)

and observe that as the parameter ρ approaches 1 from below, the function Γρ becomes very
localized.

The perturbed IMF is set to �(ΨΓσ) = re−σHy cos(θ + σy) for some real σ. The idea in
brief is to select σ small and ρ sufficiently close to 1 so that the change in the functional values
are also small, i.e., the zeros, extrema, and the extremal values are perturbed slightly from
the original IMF. On the other hand, the corresponding instantaneous frequency becomes
θ′ + σy′ (see Lemma 4.2 below). Moreover, y′ has one local minimum that is negative with
magnitude depending on ρ. In the special case when r = eAt and θ = mt on an interval (the
length of the interval can be arbitrarily small), we prove in Corollary 4.2 that there exists
a subinterval and values of the parameters σ and ρ such that under mild conditions, the
perturbed function satisfies all the properties i-iii), but has non-monotone phase. From the
proof and by continuity it is then clear that the new instantaneous frequency can be made
negative on an interval while preserving all other properties listed in i-iii). A similar result
holding for more general functions is established in Corollary 4.3.

To show that the perturbed function is a weak-IMF we utilize the logarithmic derivative
as ρ → 1− and the following technical Lemma, where we establish that the maximum of
Hy′ and its value at the minimum of y′ behave asymptotically as a finite multiple of the
minimum value of y′.

Lemma 4.2 Let 0 ≤ ρ < 1 and y = yρ be defined as in equation (4.22), then the following
properties hold:

(a) for all σ > 0 the function Γσ defined in equation (4.23) is analytic with amplitude
e−σ Hy and phase σ y;

(b) if −µ := min y′ = y′(t0), then lim
ρ→1−

Hy′(t0)
µ

=
1√
3
.

(c) lim
ρ→1−

µ

max |Hy′| =
3
√

3

8
.

(d) The function Hy′ is even with exactly one positive zero, tz which satisfies 0 < t0 < tz

and lim
ρ→1−

y′(tz)
µ

= 0.
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Proof. Part (a) follows from the construction of the analytic function Γ and the fact that
|Γ| > 0. To establish part (b) we determine the minimizer of y′, which we denote t0, from
the equation y′′(t0) = 0, which is equivalent to the equation

2ρ cos2 t0 + (1 + ρ2) cos t0 − 4ρ = 0. (4.24)

Hence there exists a unique solution t0 which satisfies the relation cos t0 = D−(1+ρ2)
4ρ

, where

D :=
√

ρ4 + 34ρ2 + 1. Substituting this explicit formula for cos t0 into the expression for
y′(t0), the minimum value of y′ can be written as

y′(t0) = −2(1 − ρ)2

√
2(1 + ρ2)D − (2ρ4 + 20ρ2 + 2)

(3ρ2 + 3 − D)2
. (4.25)

Proceeding similarly with the expression for Hy′(t) given by

Hy′(t) = −2ρ(1 − ρ)

1 + ρ

(1 + ρ2) cos t − 2ρ

(1 − 2ρ cos t + ρ2)2
(4.26)

we find, after algebraic rationalization and simplification, that

Hy′(t0)
µ

=
2
√

2 ρ√
(1 + ρ2)D + ρ4 + 10ρ2 + 1

. (4.27)

Part (b) follows immediately by taking the limit as ρ → 1−.
Part (c) is established in a similar manner by observing from equation (4.26) that

max |Hy′| = Hy′(0) = 2ρ
1−ρ2 and so, using the identity (4.25), it follows that µ

Hy′(0) con-

verges to 3
√

3
8

as ρ → 1−.
Finally, for part (d) we determine from (4.26) that zeros of Hy′ are exactly the roots of

the equation cos t = 2ρ
1+ρ2 . Substituting this expression for cos tz into the left-handside of

the equation (4.24) for cos t0, we get a negative value −2ρ(1−ρ2)2

(1+ρ2)2
for the quadratic expression

and so cos tz < cos t0, which is equivalent to t0 < tz. Observing that sin tz = 1−ρ2

1+ρ2 , we can

use this identity to evaluate y′(tz) to obtain y′(tz)
µ

= −2ρ(1−ρ)
(1+ρ)µ

→ 0 as ρ → 1−. �

In Corollary 4.2 we prove in the special case r = eAt, A ≤ 0 and θ = mt that we can
find values of σ and ρ such that the procedure described above produces a desired function
satisfying the properties i-iii) but whose analytic instantaneous frequency changes sign. We
first prove a milder version in the following proposition, and then modify the parameter σ
to establish the stronger version.

Proposition 4.4 Let the notation be as in the previous lemma (Lemma 4.2). In particular,
let t0 be the point which provides a global minimum for y′, tz be the positive zero of Hy′

and µ := −y′(t0). Suppose further that A ≤ 0. If ψ(t) := exp(At) cos mt, then there exist a
constant ρ∗ and a point t∗ such that for ρ∗ < ρ < 1

ψ̃(t) = exp(At − m

µ
Hy(t− t∗)) cos(mt +

m

µ
y(t − t∗)), (4.28)
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is a weak-IMF, but its analytic instantaneous frequency vanishes at t0 + t∗. Moreover, the
difference between absolute values of the upper and lower cubic spline envelopes is small
except at the endpoints in the case that A is negative.

Proof. From the previous discussion and from the representation ψ̃(t) = �(Ψ(t)Γ
m
µ (t− t∗))

it is clear that the analytic phase of ψ̃ is θ̃ = mt + m
µ
y(t − t∗). The definition of µ implies

that the expression m + m
µ
y′(t − t∗) is nonnegative and vanishes only at the point t0 + t∗,

hence θ̃ is strictly increasing. Furthermore, we show that if ρ is close to 1, the rapid decay
of y(t − t∗) away from t0 + t∗ will insure that the zeros of ψ and ψ̃ are the same in number
and are separated only slightly from one another.

We may assume that the perturbation y = yρ is added between a maximum of ψ and the
zero τ0 immediately following; the other three situations can be handled in the same way
with an appropriate changes of the signs of the corresponding expressions. Denote by τ− the
nearest point less than τ0 which satisfies tanmτ− = 32

3
√

3
. Any point from the interval (τ−, τ0)

can be picked for t∗. We select t∗ := τ0+τ−
2

, δ := τ0−τ−
4

and set ∆ := (t∗ − δ, t∗ + δ). By
construction it is clear that functions y, Hy, y′, and Hy′ (translated by t∗) tend uniformly to
zero outside the interval ∆ as ρ approaches 1−. Hence ψ̃ uniformly tends to ψ outside ∆.

Since ψ and ψ′ have only simple zeros, it follows that there exists ρ1 such that for any
1 > ρ > ρ1 the perturbed function ψ̃ is a weak-IMF; even more, for each zero and extrema

of ψ there corresponds exactly one zero and extrema of ψ̃. To prove this, we consider the

functions on three disjoint sets, a subinterval ∆∗ of ∆ (to be determined), the set ∆\∆∗,
and the complement of ∆.

We first consider the set of values t in the complement of ∆. Assume that there is a
sequence of ρ′s approaching 1 from below so that there is an extrema of ψ, say τe, such that
in a neighborhood of that extrema ψ̃ has at least three extrema (the extrema must be odd in

number since ψ̃ tends uniformly to ψ). By Rolle’s theorem and the uniform convergence as

ρ → 1−, it follows that ψ′ has a multiple zero at τe, which is a contradiction. Hence outside
∆, ψ̃ is an IMF.

Consider now the interval ∆. To follow the changes of the extrema of ψ̃, we consider the

logarithmic derivative of ψ̃ given by

L̃ :=
ψ̃′

ψ̃
= A +

m

µ
(−Hy′(t − t∗)) − (m +

m

µ
y′(t − t∗)) tan(mt +

m

µ
y(t − t∗)).

We show L̃ is negative on ∆. It then follows that ψ̃ has no additional extrema on this

interval, and so ψ̃ will be an IMF in the sense of the definition in [H98], but its analytic
instantaneous frequency m + m

µ
y′ has a zero.

To see that L̃ is negative on ∆, observe that for a fixed ρ (1 > ρ > ρ1) since A ≤ 0,
tan(mt + m

µ
y(t − t∗)) > 0, and (m + m

µ
y′(t − t∗)) ≥ 0 it follows that L̃ < 0 on the interval

∆∗ := (t∗ − tz, t
∗ + tz), where tz is specified in part (d) of Lemma 4.2. From the proof

of that Lemma, we see that tz approaches 0 as ρ approaches 1− and hence we can pick ρ2

(1 > ρ2 > ρ1) such that ∆∗ ⊂ ∆ for each ρ for which 1 > ρ ≥ ρ2.
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On the other hand, for any t outside ∆∗, we have that m + m
µ
y′(t) > m + m

µ
y′(tz)

and from Lemma 4.2(d) it follows that there exists 1 > ρ3 > ρ2 such that the inequality
m + m

µ
y′(t) > m

2
holds for any 1 > ρ > ρ3 and any t ∈ ∆\∆∗. Finally from Lemma 4.2,

we can pick 1 > ρ∗ > ρ3 such that the inequality max |Hy′|
µ

< 16
3
√

3
holds for any ρ > ρ∗. The

choice of the point t∗ and the fact that y is a positive function provide the inequality

tan(mt +
m

µ
y(t− t∗)) > tan(mτ−) =

32

3
√

3

for any t ∈ ∆\∆∗. Using the above estimates and the assumption A ≤ 0 we have that

L̃ < m
max |Hy′|

µ
− m

2
tan(mt +

m

µ
y(t− t∗)) < 0,

for any t ∈ ∆\∆∗ and any 1 > ρ > ρ∗, which completes the proof. �

Corollary 4.2 Let ψ be the Hilbert-IMF considered in Proposition 4.4. Then there exist
σ > m

−µ
such that the small perturbation of ψ, ψ̃ = �(ΨΓσ), satisfies parts (i) and (iii) of

the definition of a Hilbert-IMF, but has does not have monotone analytic phase.

Proof. Since ψ̃ and all other related functions considered in Proposition 4.4 depend contin-

uously on σ, and for σ = −m
µ

we have that θ̃′ vanishes only at the point t0 + t∗, it follows
that any increase of σ forces the instantaneous frequency to be negative in a neighborhood
of that point. On the other hand, by the choice of ρ∗( 1 > ρ∗ > 0) from Proposition 4.4
and the uniform convergence, it follows that there exists σ∗ > −m

µ
such that the perturbed

function ψ̃ is a weak-IMF outside ∆ and L̃σ∗ is negative on ∆; i.e. there are no additional

zeros and extrema on ∆. Hence ψ̃ is a nicely behaved function with analytic instantaneous
frequency that changes sign on an interval of positive measure. �

Remark 4.2 The condition A ≤ 0 can be relaxed to A < m√
3

which agrees with the estimate

in Lemma 4.2(b). The proof of the Proposition 4.4 with that restrictiion requires further
technical estimates as in Lemma 4.2(d) for a point tη such that 0 < t0 < tη and

lim
ρ→1−

y′(tη)
µ

= η − 1

for a fixed 0 < η < 1. Details of the estimates are similar so we do not include them here.

Example 4.5 To illustrate the above construction, we consider the function Ψ = e4it, −π <
t ≤ π, and apply the procedure twice for ρ = 0.95 and σ = 0.31, once at the point t1 = −2.1
and again at the point 0.2. The resulting signal and its analytic instantaneous frequency are
shown on Figure 6.

For any nice function (e.g. a Hilbert-IMF) ψ = r cos θ with only simple zeros, it is clear
from the identity ψ′

ψ
= r′

r
− tan θ θ′ that if there exist a zero for which r′ �= 0 then the

logarithmic derivative ψ′
ψ

and the instantaneous bandwidth r′
r

have the same sign in a one-
sided neighborhood of that zero. Then if the perturbation is added in that neighborhood,
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Figure 6: Plot of the IMF in Example (4.5): a. an IMF perturbed by a smooth
perturbation; b. Instantaneous frequency.

the proof of Proposition 4.4, without significant modifications, can be used to prove similar
results so long as r′

r
+ 9

8
√

3
maxI θ′ is negative in a neighborhood of that zero, as established

in the next Corollary. We note that by choosing ρ closer to 1, the interval I can be made
arbitrarily small.

Corollary 4.3 Let ψ = r cos θ be the restriction to the circle of any function analytic in a
disk of radius larger than one. Assume that ψ is an IMF in the sense of [H98] with amplitude
r and monotone phase θ which are defined using the Hilbert transform. Suppose further that
ψ has only simple zeros, that there exists a zero z0 of ψ for which r′

r
and ψ′

ψ
have the same

sign in a one-sided neighborhood I of z0, and that r′
r

+ 9
8
√

3
maxI θ′ < 0 on I, then there exist

parameters ρ∗ and σ∗, and a point t∗ such that the function ψ̃(t) = �(Ψ(t)Γσ∗
(t− t∗)) is an

IMF with zeros and extrema which are close perturbations of those of ψ, but with an analytic

instantaneous frequency θ̃′(t) = θ′ + σy′(t − t∗) which changes sign.

Proof. As in Proposition 4.4, it is enough to prove that θ̃′(T ) = 0 for some point T . We
may assume from the hypothesis that θ′ > 0, then the modified instantaneous frequency
θ̃(t) = θ′(t) + σy′(t− t∗) > 0 for small σ. Hence if σ is continuously increased, by continuity
we will reach a value σ1 for which θ̃′(T ) = 0 for some point T and is positive elsewhere. If ρ
is then increased close to 1, and σ1 is adjusted accordingly, we can localize the perturbation
on an arbitrarily small interval with θ̃′ vanishing at a point.

Notice that the instantaneous bandwidth does not change sign on an interval that contains
both I and z0 as an interior point. We may assume that L < 0 on I, then the logarithmic
derivative of ψ̃ is

L̃(t) =
r′(t)
r(t)

− σHy′(t − t∗) − θ̃′(t) tan θ̃(t).
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From the choice of σ it follows that maxI θ′ − σµ ≥ 0 and hence σ ≤ maxI θ′
µ

. For the new

instantaneous bandwidth as ρ → 1−, we have r′
r
−σHy′(t− t∗) ≤ r′

r
+maxI θ′ max|Hy′|

µ
→ r′

r
+

9
8
√

3
maxI θ′ < 0 on I, where the last inequality is the assumption on ψ relating instantaneous

bandwidth and frequency. Since I is a finite interval, there exists ρ∗ such that L̃ < 0 for any
ρ satisfying 1 > ρ > ρ∗. On the other hand, since θ̃′ ≥ 0 and tan θ̃ > 0 on I it follows that
L̃ < 0 on I. All other steps are the same as in the proof of Proposition 4.4. �

Remark 4.3 The condition on the logarithmic derivatives (of the function ψ and its am-
plitude r) to have the same sign in a neighborhood of a zero is equivalent to r′(z0) �= 0, or
r′(z0) = 0 but r′ψ′ψ > 0 on I. In other words if all other requirements are met, the procedure
works more generally than in the case of envelopes considered in the Theorem 3.1.

Remark 4.4 The procedure for adding perturbations to a nice function can be also used for
removing certain types of noise. If a function has a negative instantaneous frequency on
some small interval, then we can apply the procedure with a perturbation Γσ using negative σ
in order to remove negative instantaneous frequencies, but still preserve the general features
(zeros, local extrema) and smoothness class of the original function.
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