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Abstract

The infrared (IR) spectra of sixteen 4,4-methylenebis(phenyl isocyanate) (MDI) based and four
1,6-diisocyanatohexane (HDI) based poly(ether)urethane (AB), block copolymers are

presented. Differences in the IR spectra of these polymers are related to differences in the diols
and polyether glycols and the ratios of reactants used to synthesize them. IR spectroscopy can
distinguish between the MDI and HDI poly(ether)urethanes and identify the diols and polyether
glycols used to prepare the polymers. The intensity of the amide I bands (non-hydrogen bonded
and hydrogen) are found to depend on the hard segment weight fraction of the polymers and are
indicative of the degree of hydrogen bonding in the polymers. The relative intensity of the C-O
stretches in the hard and soft segments of the polymers were found to increase with hard segment
weight fraction.

Résumé

On présente les spectres infrarouges {IR) de copolyméres séquences de poly(éther)uréthanes
(AB),, soit seize a base de 4,4’-méthylénebis(phénylisocyanate) (MDI) et quatre & base de 1,6-
diisocyanatohexane (HDI). On a établi des corrélations entre les différences observées dans les
spectres IR de ces polyméres et les différences dans les diols et les polyétherglycols et les
proportions de réactifs utilisés pour les synthétiser. La spectroscopie IR permet de distinguer les
poly(éther)uréthanes a base de MD! de ceux & base de HDI et d’identifier les diols et les
polyétherglycols utilisés pour les synthétiser. On a constaté que I'intensité des bandes amide |
(avec et sans liaison hydrogéne) dépend de la fraction massique de segments rigides des
polyméres et donne une indication du degré de liaison hydrogene dans ces polymeres. On a
aussi constaté que l'intensité relative des vibrations C-O dans les segments rigides et souples
des polymeres augmentait avec la fraction massique de segments rigides.
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Executive summary

Introduction

The development and application of semi-empirical modeling techniques to predict the
properties of polymeric materials is an active area of research. Confidence in the predictions
of these models requires that they be verified with results from actual compounds. For group
contribution and additive techniques, the synthesis and characterization of a series of
compounds with well defined chemistry is necessary to evaluate the contribution of structural
units to the observed properties. In this paper, the infrared (IR) spectra of sixteen 4,4’-
methylenebis(pheny! isocyanate) (MDI) based and four 1,6-diisocyanatohexane (HDI) based
poly(ether)urethane (AB), block copolymers are presented. These polyurethanes were
synthesized as part of a study of the applicability of Group Contribution Theory and Group
Interaction Modeling to the prediction of dynamic mechanical properties of
poly(ether)urethanes. Differences in the IR spectra of these polymers are related to
differences in the diols and polyether glycols and the ratios of reactants used to synthesize
them. Differences in the IR spectra of the poly(ether)urethanes can also give insight into
differences in the microstructure of the compounds which have an affect on the dynamic
mechanical properties of the polymers.

Principal Results

The results indicate that IR spectroscopy can distinguish between the MDI and HDI
poly(ether)urethanes and identify the diols and polyether glycols used to prepare the
polymers. The intensity of the amide I bands (non-hydrogen bonded and hydrogen bonded)
were found to depend on the hard segment weight fraction of the polymers and are indicative
of the degree of hydrogen bonding in the polymers. The relative intensity of the C-O
stretches in the hard and soft segments of the polymers were found to increase with hard
segment weight fraction. The nature of the diol, the molecular weight of the polyether glycol,
the degree of hydrogen bonding and weight percent hard segment have a significant effect on
the microstructure and therefore the properties of poly(ether)urethane block copolymers.

Significance of Results
IR spectroscopy is one of several characterizations techniques that will be used to probe the
structure of this series of poly(ether)urethanes. As the properties of these materials are very

dependent on their structure, this information will be useful in the study of the application of
modeling techniques to the prediction of poly(ether)urethanes properties.

Hiltz, J. A. and Szabo, J. P. 2001.FT-IR Study of Poly(ether)urethanes. DREA TM 2001-
073. Defence Research Establishment Atlantic.
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Sommaire

Introduction

L’élaboration de techniques de modélisation semi-empiriques de matériaux polymériques et
leur application a la prévision de leurs propriétés est un domaine de recherche en pleine
activité. Il est indispensable de vérifier les prévisions de ces modéles au moyen de résultats
obtenus avec de véritables composés, pour pouvoir les utiliser en toute confiance. Pour les
techniques de contribution des groupes et les techniques additives, la synthése et la
caractérisation d’une série de composés présentant une structure chimique bien définie sont
nécessaires pour évaluer dans quelle mesure les unités structurelles contribuent aux propriétés
observées. Dans cet article, on présente les spectres infrarouges (IR) de copolyméres
séquences de poly(éther)uréthanes (AB),, soit seize a base de 4,4’-
méthylénebis(phénylisocyanate) (MDI) et quatre & base de 1,6-diisocyanatohexane (HDI).
Ces polyuréthanes ont été synthétisés dans le cadre d’une étude sur I’applicabilité de 1a théorie
de contribution des groupes et de la modélisation de I’interaction des groupes a la prévision
des propriétés mécaniques dynamiques des poly(éther)uréthanes. On a établi des corrélations
entre les différences observées dans les spectres IR de ces polyméres et les différences dans
les diols et les polyétherglycols et les proportions de réactifs utilisés pour les synthétiser. Les
différences observées dans les spectres IR de ces poly(éther)uréthanes peuvent aussi
renseigner sur les différences de microstructure de ces composés, différences qui influent sur
les propriétés mécaniques dynamiques des polymeéres.

Principaux résultats

Les résultats obtenus ont montré que la spectroscopie IR permet de distinguer les
poly(éther)uréthanes a base de MDI de ceux i base de HDI et d’identifier les diols et les
polyétherglycols entrant dans leur préparation. On a constaté que I’intensité des bandes

amide I (avec et sans liaison hydrogéne) dépend de la fraction massique de segments rigides
de ces polymeres et donne une indication du degré de liaison hydrogéne dans ces polymeéres.
On a aussi constaté que I’intensité relative des vibrations C-O dans les segments rigides et
souples de ces polyméres augmentait avec la fraction massique de segments rigides. La nature
du diol, la masse moléculaire du polyétherglycol, le degré de liaison hydrogéne et la fraction
massique de segments rigides ont un effet important sur la microstructure et, donc, sur les
propriétés des copolymeres séquences de poly(éther)uréthanes.

Importance des résultats

La spectroscopie IR est une technique de caractérisation parmi plusieurs qui sera utilisée pour
étudier la structure de cette série de poly(éther)uréthanes. Comme les propriétés de ces
matériaux dépendent étroitement de leur structure, les renseignements obtenus seront utiles
pour I’étude de I’application de techniques de modélisation permettant de prévoir les
propriétés des poly(éther)uréthanes.

Hiltz, J. A. and Szabo, J. P. 2001 FT-IR Study of Poly(ether)urethanes. DREA TM 2001-
073. Defence Research Establishment Atlantic.
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Introduction

The use of modelling techniques to predict the properties of polymeric materials prior
to synthesis is an area of great interest. Bicerno [1] notes that “the ability to predict
the key physical and chemical properties of polymers prior to synthesis is of great
value in the design of polymers”. Semi-emperical modeling techniques include
topological techniques [1], Group Interactive Modeling [2], and additive contribution
techniques [3]. More recently with the development of parallel and scalable codes it

is possible to use quantum mechanical codes to model larger systems [4].

Confidence in the predictions of these modeling techniques requires that they be
verified using data from actual compounds. For group contribution or additive
techniques, the synthesis and characterization of a series of compounds is required to
evaluate the contributions of structural groups to the observed properties. One group
of compounds that our Laboratory is interested in modeling and characterizing are the

poly(ether)urethane thermoplastic elastomers.

Thermopiastic poly(ether)urethane elastomers are (AB), segmented block
copolymers synthesized from a diisocyanate, a diol chain extender, and a polyether
glycol. The isocyanate rich or hard segments (A) of the elastomer have a higher glass
transition temperature than the polyether glycol rich or soft segments (B) of the
elastomer. The hard segments act as virtual cross-links for the soft segments of the

block copolymer and are responsible for their elastomeric properties [5].

The isocyanate and polyether rich portions of poly(ether)urethanes are incompatible
and therefore tend to phase separate. The degree of phase separation (or alternatively
phase mixing) is dependent on a number of factors including the chemical structures

of the reactants, the molecular weights of the components and their ratios [6-9], the
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synthesis method [10], and the processing history of the elastomer [11]. By varying
these factors it is possible to prepare a series of elastomers with a wide range of

thermal and mechanical properties [12].

Infrared (IR) spectroscopy has been applied to the characterization of
poly(ether)urethanes (13-16). IR characterization can provide information about the
chemical nature of poly(ether)urethanes, that is, the reactants used to prepare the
elastomer and their relative concentrations, and the level of hydrogen bonding in the
elastomer. This is important because the level of phase separation in polyurethanes,
which affects their mechanical and thermal properties, is related to the level of

hydrogen bonding.

In this paper the IR spectra of a series of polyurethanes are presented and discussed
with respect to how changes in reactants and reactant concentrations are reflected in
the IR spectra. These polyurethanes were synthesized as part of a study of the
applicability of Group Contribution Theory and Group Interaction Modeling to the

prediction of the dynamic mechanical properties of poly(ether)urethanes.
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Experimental

The 20 polyurethane samples are listed in Table 1. The structures of the reactants
used to prepare the samples are shown in Figure 1. The polyurethanes were prepared
using one of two diisocyanates, 4,4-methylenebis(phenyl isocyanate) (MDI) or 1,6-
disiocyanatohexane (HDI); one of three diols, 1,4-butanediol (BDO), diethylene
glycol (DEG), or 2,2-dimethyl-1,3-propanediol (DMPD); and one of two polyols,
poly(tetramethyleneether glycol) or poly(ethylene glycol). The poly(tetramethylene
ether glycol)s had molecular weights of 650 (T650), 1000 (T1000), and 1400 (T1400).
The poly(ethylene glycol)s had molecular weights of 600 (P600) and 1000 (P1000).
Two of the samples (#1 and #13) were synthesized using only a diisocyanate and a
diol and one sample (#16) from a diisocyanate and a poly(tetramethylene ether
glycol). These samples are not block copolymers. Therefore samples #1 and #13

contain only hard segments and sample #16 only soft segments.

The polyurethanes were synthesized by BodyCote Ortech, Mississauga, Ontario [17].

All syntheses were carried out in dimethylformamide.

Infrared spectra were acquired on a Nicolet model 510P Fourier transform infrared
(FT-IR) spectrometer in the transmission mode. The samples were spotted on NaCl
plates and the solvent (dimethylformamide) evaporated prior to analysis. Typically 32
scans were acquired and the resolution was 4 cm™’. Following background
subtraction, the spectra were normalized to 1.0 absorbance unit (10% transmittance)

for the most intense band.

DREA TM 2001-073 3




Table 1. Molar ratios of reactants used to prepare polyurethane samples #1 to

#18.
BDO { T650 { T1000 | T1400| DEG P600 | P1000 |DMPD} MDI HDI
Mol }90.122| 639 978 1376 | 106.12 590 982 |104.15) 250.25 168.19
Weight
1 1 1
1R 1 1
2 1 1 2
3 1 0.5 1.5
4 1 5 6
5 1 1 2
6 1 5 6
7 1 1 2
8 1 0.5 1.5
9 1 1 2
9R 1 1 2
10 1 5 6
11 1 5 6
13 1 1
13R 1 1
14 1 5 6
16 1 1
16R 1 1
17 1 3 4
18 1 3 4
4 DREA T™™ 2001-073




Results and Discussion

The results for MDI and HDI based polyurethanes are discussed separately.

MDI Based Polyurethanes

The IR spectra of MDI based poly(ether)urethanes are characterized by amide I bands
(C=O0 stretch) at ~1730 cm™ and ~1705 cm™, an amide II band (mixed mode vibration
resulting from out-of-phase combination of OCN and NH vibrations) at ~1530 cm™,
C-O stretches at ~1220 cm™’, ~1110 cm™, and ~1070 cm™, a C=C stretch (MDI
aromatic ring) at 1598 cm™, and a N-H stretch at ~3315 cm™. The absorption
frequency of the amide I C=0 stretch is sensitive to the level of hydrogen bonding in
the polymer [15,18]. Hydrogen bonding shifts the C=0 stretch to lower frequencies.
The amide I bands at ~1730 cm™ and ~1705 cm™ are due to non-hydrogen bonded and
hydrogen bonded amide groups respectively. The C-O stretches are attributed to the
carbonyl carbon and adjacent oxygen, the polyether oxygen and adjacent carbon, and
the oxygen adjacent to the carbonyl carbon and the adjacent carbon [13,14]. The
absorption frequency of the N-H stretch is also sensitive to hydrogen bonding. A non
hydrogen bonded N-H stretch has a frequency of ~3440 cm’ [i8]. Hydrogen bonding

reduces the frequency to between 3340 cm™ and 3260 cm’.
The IR spectra of the MDI based polyurethanes are shown in Figures 2 through 17.

Model MDI Based Polyurethanes Containing Only ‘Hard’ or
‘Soft’ Segments

Samples #1, #1R, #13, and #13R were synthesized using only MDI and a diol. The IR
spectra of these samples are shown in Figures 2, 3, 12, and 13 respectively. Because
these polymers do not contain a polyether glycol, their IR spectra are representative of

the hard segment portion of a poly(ether)urethane. In contrast to these samples,

DREA TM 2001-073 5




samples #16 and #16R were synthesized from a polyether glycol and MDI. Their IR
spectra are shown in Figures 15 and 16. Because they contain no diol, their IR spectra

are representative of the soft segment portion of a poly(ether)urethane.

Assignment of the IR bands of samples #1, #1R, #13, #13R, #16 and #16R are shown
in Figure 18. The infrared spectra of samples #1 and #1R have an amide 1 band at
1701 cm™ but no amide I band at ~1730 cm™. This is consistent with the hard
segment nature of these polyurethanes and indicates that the amide groups in these
polymers are hydrogen bonded. Similarly, samples #13 and #13R exhibited a single
amide 1 band at 1708 cm™, indicating that the amide groups are hydrogen bonded in
these samples. Samples #16 and #16R have two amide 1 bands at 1732 cm™ and 1713
cm’'. The relative intensity of these bands indicates that most of the amide groups are
not hydrogen bonded. However the band at 1713 cm™ does indicate that some

hydrogen bonding is taking place.

The frequency of the N-H stretch for these samples (~3320 cm™ to 3300 cm™) is also

consistent with hydrogen bonding in these compounds.

Samples #1 and #13 have a band at ~1075 cm’™’, while sample#16 has an intense band
at 1110 cm™ with a shoulder at ~1075 cm™. These bands are attributable to C-O
stretches. The band at 1075 cm’ is due to C-O stretch in urethane portion of the
polymer and the band at 1110 cm™ is due to a C-O stretch in the polyether glycol

portion of the polymer.

Samples #1, #1R, #13, #13R, #16 and #16R have bands at ~1597 cm’! (C=C aromatic
in-plane vibration), at ~1529 cm™ (amide II band), at ~1413 cm™! (CH, scissoring), at
~1311 cm™ (C-N vibration aromatic secondary amine), at ~1223 cm™ (C-O stretch),
at ~816 cm™' (benzene ring with two adjacent hydrogens), and ~770 cm™ (CH,
rocking). Samples #16 and #16 R also had bands at ~2941 cm™, ~2856 cm’*, and
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~2795 cm’! (C-H stretches), and ~1367 cm™ (CH, deformation) that arise from the
polyether glycol portion of the polymer.

T1000/DMPD/MDI Poly(ether)urethanes

The IR spectra of the three T1000/DMPD/MDI1 poly(ether)urethanes, samples #3, #4,
and #17, are shown in Figures 4, 5 and 17 respectively. Assignment of the IR bands

for these poly(ether)urethanes are shown in Figure 19.

Differences in these three poly(ether)urethanes arise as the result of different ratios of
the reactants used to prepare them and these differences are reflected in their IR
spectra. For instance the ratio of the intensity of hydrogen bonded to non-hydrogen
bonded amide I bands increase as weight percent MDI, and therefore percent hard
segment, in the compounds increase. The increase in percent hard segment results in
increased phase separation. This in turn results in an increase in hydrogen bonding

between urethane rich hard segments.

The hard segment weight fractions for samples #3, #4, and #17 are listed in Table 2
along with the ratio of the intensities of the hydrogen bonded to non hydrogen bonded
amide I bands and the ratio of the intensities of the hard and soft segment C-O
stretches at ~1065 cm™ and ~1110 cm™. The hard segment weight fraction of the

polyurethanes was calculated according to method shown in reference 19.

The ratio of the intensities of the bands at ~1710 cm™ and ~1730 cm™! and at ~1065
cm and ~1110 cm™ increase with hard segment weight fraction. The bands at ~1710
cm’ and ~1065 cm™ arise from the hydrogen bonded amide I C=O stretch and C-O
stretch for the hard segments of these poly(ether)urethanes. Conversely, the bands
arising from the soft segment (polyether glycol rich) portion of the polymer decrease

as the hard segment weight fraction increases. For instance, the intensity of the bands
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at ~2940 cm™', ~2860 cm’’, and ~2995 cm™ (C-H stretches) decrease with increasing

hard segment weight fraction.

Table 2. Hard segment weight fraction and ratios of the intensities of IR bands

at ~1710 cm”’ and ~1730 cm” and ~1065 cm’ and 1110 cm? for
poly(ether)urethane samples #3, #4, and #17.
SAMPLE | MOLAR RATIOS HARD ABSORBANCE | ABSORBANCE
# T1000/DMPD/M Svsg:\éir:er RATIO RATIO
DI FRACTION (%) AMIDE | BANDS | C-O STRETCH
° 1710 CM'7/1730 | 1065 CM'/1110
cm! cMm?!
3 1.0/0.5/1.5 324 0.63 0.61
4 1.0/5.0/6.0 68.0 1.12 1.67
17 1.0/3.0/4.0 58.3 0.96 1.23

The three polymers have bands at ~1597 cm™ (C=C aromatic in-plane vibration),
~1535 cm™ (amide II band), ~1413 cm™ (CH; scissoring), ~1311 em™ (C-N vibration

aromatic secondary amine), ~ 1220 cm’! (C-O stretch), and ~816 cm’ (benzene ring

with two adjacent hydrogens) can be attributed to the urethane rich portion of the

polymers.

T1400/DMPD/MDI Poly(ether)urethanes

The IR spectra of the two T1400/DMPD/MDI poly(ether)urethanes, samples #5 and

#6, are shown in Figures 6 and 7. Assignment of their IR bands is shown in Figure

19. The hard segment weight fraction, ratio of intensities of the amide I bands, and

ratio of the intensity of the C-O stretches at 1065 cm™and 1110 cm™ are given in

Table 3. As was observed for the poly(ether)urethanes containing polyether glycol

T1000, the ratio of intensities of the hydrogen bonded and non hydrogen bonded

DREA T™ 2001-073
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amide I bands and the C-O stretches at ~1065 cm™ and ~1110 cm™ increase with hard
segment weight fraction.
Table 3. Hard segment weight fraction and ratios of the intensities of IR bands

at 1710 cm™ and 1730 cm™ and 1065 cm™ and 1110 cm’ for poly(ether)urethane
samples #5 and #6.

SAMPLE | MOLAR RATIOS HARD ABSORBANCE | ABSORBANCE
# T1400/DMPD/MDI sﬁg’gﬁ;‘? RATIO RATIO

AMIDE | BANDS | C-O STRETCH
FRACTION 1065 CM/1110

(%) 1710 CM™ /1730 oM

cM"
5 1.0/1.0/2.0 31.8 0.57 0.58
6 1.0/5.0/6.0 60.0 0.96 1.30

Effect of Polyether Glycol Molecular Weight on the IR Spectra
of Polyether glycol/DMPD/MDI (1/5/6) Poly(ether)urethanes

The molar ratios of the reactants used to prepare samples #14, #4, and #6 were the
same. These polymers differ only in the molecular weight of the polyether glycol
used in their preparation; T650 has a molecular weight of 650 (sample #14), T1000 a
molecular weight of 1000 (sample #4), and T1400 a molecular weight of 1400
(sample #6). A change in molecular weight of the polyether glycol affects the hard
segment weight fraction of the polymer. The hard segment weight fraction of samples
#14, #4, and #6 along with the ratios of the intensities of amide I bands and the C-O

stretches at ~1065 cm™ and ~1110 cm™! are shown in Table 4.

The ratio of the intensities of the hydrogen bonded to non hydrogen bonded amide I
bands decrease as the hard segment weight fraction of the elastomers decrease.
Similarly the ratio of the intensities of the C-O stretches at 1065 cm™ and ~1110 cm™

decrease as the hard segment weight fraction of the elastomers decrease.
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The intensity of the C-H stretching bands (2940 cm™, 2860 cm™, 2795 cm™!, and 1370
cm’') increase with an increase in the molecular weight of the polyether glycol and

reflect the increase in the number of -CHj;- units in the polymer.

Table 4. Hard segment weight fraction and ratios of the intensities of IR bands
at 1710 cm™ and 1730 cm™ and 1065 cm™ and 1110 cm™ for poly(ether)urethane

samples #14, #4, and #6.

SAMPLE | MOLECULAR HARD ABSORBANCE | ABSORBANCE
# WEIGHT SEGMENT RATIO RATIO
POLYETHER | WEIGHT
GLYCOL | FRACTION (%) | AMIDE I BANDS ﬁ)&%mﬂﬁ%
1710 CM™' /1730 oM
cM
14 650 76.9 1.22 2.28
4 1000 68.0 1.12 1.67
6 1450 60.0 0.96 1.30

Correlation of Amide | Band Intensities with Hard Segment
Weight Fraction of PTMO/DMPD/MDI Poly(ether)urethanes

Seymour et. al. [15] observed that the ratio of the intensities of the hydrogen bonded

and non hydrogen bonded amide 1 could be used to determine the level of hydrogen

bonding in a series of poly(ether) urethanes. Changes in the ratio were related to

changes in the urethane rich hard segment concentration and the degree of phase

separation in the polymers. A plot of the ratio of the hydrogen bonded and non-

hydrogen bonded amide I band intensities for the PTMO/DMPD/MDI

poly(ether)urethanes (samples #3, #4, #5, #6, #14, and #17) against hard segment

weight fraction of the polymers is shown in Figure 20. An excellent correlation is

observed. The intensity of the hydrogen bonded amide I band (relative to the non-

hydrogen bonded amide I) increases with an increase in the hard segment weight

fraction.

10
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P1000/DMPD/MDI Poly(ether)urethanes

The IR spectra of the P1000/DMPD/MDI poly(ether)urethane samples #9, #9R, and
#10 are shown in Figures 9 through 11 respectively. The IR band assignments for
these samples are shown in Figure 21. The bands arising from the hard segment
portion of these poly(ether)urethanes are the same as those observed for the
poly(tetramethylene ether) glycol (PTMO) based DMPD/MDI poly(ether)urethanes.
For instance, the bands at ~1728 cm™ (non hydrogen bonded amide I band), ~1599
cm’' (C=C aromatic in-plane vibration), ~1536 cm™ (amide II band), ~1413 cm™' (CH,
scissoring), ~1311 cm’! (C-N vibration aromatic secondary amine), ~ 1223 cm’ (C-O
stretch), ~1072 cm™ (C-O stretch), and ~816 cm™ (benzene ring with adjacent
hydrogens) arise from the hard segment of the polymers. Samples #9 and #9R do not
have hydrogen bonded amide I bands. Sample #10 has non-hydrogen bonded (1728
cm™) and hydrogen bonded (1709 cm™) amide I bands.

These compounds have IR bands arising from the polyethylene glycol rich portion of
the polymer at ~1105 cm’' (C-O stretch), 1349 cm™ (C-H deformation), and ~2870
cm’! (C-H stretch).

Table 5. Hard segment weight fraction and ratios of the intensities of IR bands
at 1072 cm’ and 1105 cm’ for poly(ether)urethane samples #9, #9R, and #10.

SAMPLE # MOLAR RATIOS HARD ABSORBANCE
P1000/DMPD/MDI SEGMENT RATIO
WEIGHT C-O STRETCH
FRACTION (%)
1072 CM'/1105 CM"
9 1.0/1.0/2.0 39.8 0.85
9R 1.0/1.0/2.0 39.8 0.85
10 1.0/5.0/6.0 68.0 1.59
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The ratio of the intensity of the IR bands at 1072 ¢cm™ and 1105 cm™® for
poly(ether)urethane samples #9, #9R, and #10 are listed in Table 5. As was observed
for the PTMO/DMPD/MDI poly(ether)urethanes, the ratio increases as the hard
segment weight fraction increases. Two amide I bands were observed for sample #10.

The ratio of their intensities was 0.88.

P600/DMPD/MDI Poly(ether)urethane

The IR spectrum of sample #8 is shown in Figure 8 and the assignment of the IR
bands is shown in Figure 21. The IR spectrum is similar to those for samples #9 and
#9R. This sample has bands at ~1728 cm™ (non hydrogen bonded amide I band),
~1599 cm’! (C=C aromatic in-plane vibration), ~1536 cm’! (amide II band), ~1413
cm™! (CH; scissoring), ~1311 cm™ (C-N vibration aromatic secondary amine), ~ 1223
cm’! (C-O stretch), ~1072 cm’! (C-O stretch), and ~816 cm’? (benzene ring with two
adjacent hydrogens) that arise from the hard segment of the polymer. There is no

distinct hydrogen bonded amide I band.

This compound has IR bands arising from the polyethylene glycol rich portion of the
polymer at ~1105 cm™ (C-O stretch), 1349 cm™ (C-H deformation), and ~2870 cm’!
(C-H stretch).

HDI based polyurethanes

The IR spectra of the samples HDI based polyurethanes are shown in Figures 22
through 25 respectively.

HDI Based Polyurethanes with no Poly(ether)glycol

The IR spectra of samples #2 and #7 are shown in Figures 22 and 23. These
polyurethanes were prepared using two diols, sample #2 BDO and DMPD and sample
#7 DEG and DMPD, and no polyether glycol. The IR band assignments for these
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samples are shown in Figure 26. These IR spectra are characterized by amide [
bands (~1697 cm™ for sample and ~1684 cm™ for sample #7), amide II bands (~1537
cm’'), and C-O stretches (~1253 cm™! for sample #2 and 1261 cm for sample #7).

The frequency of the amide I band (~1697 cm™ and ~1684 cm™ for samples #2 and #7
respectively) and N-H stretch (~3317 cm™ and 3324 cm! for samples #2 and #7
respectively) is consistent with a significant level of hydrogen bonding [18,20] in
these polyurethanes.

P1000/DMPD/HDI and T1000/DMPD/HDI Polyetherurethanes

The IR spectra of samples #11 (P1000/DMPD/HDI (1/5/6)) and sample #18
(T1000/DMPD/HDI (1/3/4) are shown in Figures 24 and 25 respectively. In contrast
to sample #2 and #7, the IR spectra have bands that are characteristic of the polyether
glycol used in their preparation. The intense bands at ~2933 cm™ and ~2868 cm™ in
sample #11 and at ~2936 cm™, ~2858 cm™, and ~2795 cm’™ in sample #18 arise from
C-H stretches in the soft segment (polyether glycol rich) portion of the polyurethane.
Sample #18 also has a band at 1368 cm™ due to the CH, deformation in the soft
segment of the polymer.

The frequencies of the amide I band (1704 cm™') and N-H stretch (3336 cm'l) of
sample #1 lare indicative of hydrogen bonding in this sample. Sample #18 has two
amide I bands (1720 cm™ and 1704 cm™). This indicates that some of the amide

groups are not hydrogen bonded.
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Conclusions

Infrared (IR) spectroscopy has been used to differentiate between sixteen 4,4’-
methylenebis(phenyl isocyanate) (MDI) based and four 1,6-diisocyanatohexane (HDI)
based poly(ether)urethanes. The IR spectra provide information on the reactants, that
is, the diisocyanate, diol and polyether glycol, and the ratio of the reactants used to

prepare the poly(ether)urethanes.

The IR spectra of PTMO/DMPG/MDI based polyurethanes are characterized by
amide I bands at ~1730 cm™ (non hydrogen bonded) and ~1705 cm™ (hydrogen
bonded), an amide II band at ~1535 cm’}, an aromatic C=C in-plane vibration at
~1597 cm™, C-O stretches at ~1225 cm™ and ~1065 cm™*, C-N vibration of a
secondary aromatic amine at ~1311 cm’, and bands at ~1410 cm™, ~816 cm™, and
~770 cm’! arising from CHj, scissoring, a benzene ring with two adjacent hydrogens
and CH; rocking respectively. The bands at ~1110 cm’! (C-O stretch), ~2941 cm™!,
~2856 cm’!, and ~2795 cm™! (C-H stretches), and ~1367 cm™ (CH, deformation) arise
from the polyether glycol (PTMO) portion of the polymer.

The ratio of the hydrogen and non hydrogen bonded amide I band intensities increases

with weight fraction of the hard segment for the MDI based polyurethanes.

The position of the CH, deformation and C-H stretch arising from the polyether
glycol portion of the PEG/DMPD/MDI polyurethanes can be used to distinguish them
from the PTMO/DMPD/MDI polyurethanes. The CH; deformation for the
PEG/DMPD/MDI polyurethanes is at ~1348 cm™ compared to 1367 cm™! for the
PTMO/DMPD/MDI polyurethanes. In addition, the PEG/DMPD/MDI polyurethanes
have only one C-H stretch at ~2840 cm™ compared to three C-H stretches for the
PTMO/DMPD/MDI polyurethanes at 2940 cm™, 2860 cm™’, and 2795 cm’.

14 DREA TM 2001-073
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For both PTMO/DMPD/MDI and PEG/DMPD/MDI poly(ether)urethanes the ratio of
the intensity of the bands at ~1065 cm™ and 1110 cm™' increases with an increase in

the hard segment weight fraction of the polymer.

HDI and MDI based poly(ether)urethanes are easily differentiated on the basis of their
IR spectra. The peaks arising from the aromatic rings in the MDI portion of the
polymer (C=C aromatic vibration at ~1597 cm’’, C-N vibration of a secondary
aromatic amine at ~1311 cm’’, and the band at 816 cm™ due to a benzene ring with
two adjacent hydrogens) are not present in the spectra of HDI based
poly(ether)urethanes. The position of C-O stretch (carbonyl carbon and adjacent
oxygen) shifts from ~1223 cm’’ for the MDI based poly(ether)urethanes greater than
1250 cm™ for the HDI based poly(urethanes).
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BDO = 1, 4- butanediol B
OH CaHyg

o
Mol. Wil 99.1:

DEG = di(ethylene glycol) HO\/\ /\/OH
O

C.H,,0
Mol. Wt 106.1

DMPD = 2,2-dimethyl-1,3-propanediol HO\></OH C:H,,0
Mol. Wt2104.15

T650, T1000, T1400 = poly(tetramethylene ether glycol) of molecular weights 650, 1000, and 1400

HO\/\/\OM OV\/\OH

n

P600, P1000 = poly(ethylene glycol) of molecular weights 600 and 1000

HO\/\(\O /\/0\/):\%

MDI = 4.4'-methylenebis(phenyl isocyanate)
CoHoN,0, °x Z°
Mol Wi: 25025 °x C
N N

°~

HDI = 1,6-diisocyanatohexane C\N /\/\/\/N %C

™
C.H,,N,O X
Mol*WE: 16519

o)

Figure 1. Structure of the reactants used to prepare polyurethane samples #1
to #18.
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1701 cm’! amide I

a
1311 cm 1597 cm’ C—C stretch
C-N v1brat10n 1075 em’! C-O stretch
—©~ ON C—o—CH —CH,—CH,—CH, —O
AN /)
1413 cm™! ester CH,, scissor
816 cm™ C-H deformatlon ;Isnzigecﬁl 2
1223 cm™ C-O stretch
1,4-butanediol (BDO)/4,4"-methylenebis(phenyl isocyanate) (MDI) (1/1)
1708 cm™! amide 1 b
1311 cm™! 1597 cm C=C stretch
C-N v1brat10n 1075 cm’! C-O stretch
—Q QN C-—O—CH —CH,~0—CH,—CH, —0O
\ / n
1 529 em’! 1413 cm™ ester CH, scissor

816 cm™ C-H deformatlon amide II

1223 cm™! C-O stretch
diethyleneglycol (DEG)/4,4-methylenebis(phenyl isocyanate) (MDI) (1/1)

1732cm™, 1713 em™  2941cm™, 2856 cm™! ¢

amideI 2795 cm™ C-H stretch
1311 cm™ 1597 cm C-C stretch 1110 cm™ C-O
C-N v1brat10n 1070 cem’! C-O stretch \ stri:tch
——c HN—Q @—N c——-o-é —CH,—CH,;—CH, o)—
n
-1 .
1 529 em’! 1410 cm’ ester CH; scissor
816 cm™ C-H deformanon amide II

1223 cm™? C-O stretch
polytetramethylene oxide (PTMO)/4,4"-methylenebis(phenyl 1socyanate) (MDI) (1/1)

Figure 18. Assignment of IR bands of a) samples #1 and #1R, b) samples #13
and #13R, and c) samples #16 and #16R.
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1730 cm™, 1705 cm’! a
1310 cm’™! amide I
C-N vlbrauon 1597 cm’ C=C stretch 1070 em’! C-O stretch
\ oHy
NH- C——O CHz_C—CHg_'O—
1 532 cm’? 1410 cm’! ester CH,
816 cm™ C-H deformatlon amide I scissor

1225 cm’! C-O stretch

urethane rich hard segment of PTMO/DMPD/MDI poly(ether)urethanes

b
2940 cm’}, 2855 cm’!, 2795 cm’!
C-H stretches 1369 cm’! 1110 cm™ C-O stretch
l C-H deformation

CH2""CH2—CH2_CH2—‘<O _CHZ—CH2 '—CH2 _CH2 ')'O—CHZ_CHZ_CHZ_CHQ_O

Figure 19. Assignment of IR bands of a) urethane rich hard segment and
b)polytetramethylene oxide rich soft segment of PTMO/DMPD/MD]
poly(ether)urethane samples #3, #4, #5, #6, #14, and #17.
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Figure 20. Piot of the ratio of the intensities of the hydrogen bonded and non
hydrogen bonded amide | bands at 1705 cm™ and 1730 ecm™ against weight %
hard segment in poly(ether)urethanes #3, #4, #5, #6, #14, and #17.
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/' '\ oo
—&- HN‘Q @—NH Cc—o- c:H2 C—-—CHZ—O——
AN

1413 cm! ester CH,
scissor

1223 cm’! C-O stretch

15 36 cm’!
819 cm’! C-H deformatlon amide II

urethane rich hard segment of PEG/DMPD/MDI poly(ether)urethanes

2870 cm’* C-H stretch b
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C-H deformation \ 1105 em™ C-O stretch
o
_O_CHz_CHz O—'CHQ—CHZ O_CHg‘—CHg—

n

polyethylene glycol rich soft segment of PEG/DMPD/MDI poly(ether)urethanes

Figure 21. Assignment of IR bands of a) urethane rich hard segment and b)
polyethylene glycol rich soft segment of PEG/DMPD/MDI poly(ether)urethane
samples #8, #9, #9R and #10.
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Butanediol (BDO)/dimethylpropanediol (DMPD)/hexamethylene diisocyanate (HDI)

1 1
2933cm™ , 2861cm™ 1697 cm™! amide 1 1052 cm™ C-O stretch a

CH stretch
\| 3317 om” N-H stretch \

OCH2CH;,CHZCH20CONH(CH2)6NHCOOCH2C(CH3)2C 209——

1537 cm'l 1223 cm’! C-O stretch
amide II

Diethylene glycol (DEG)/dimethylpropanediol (DMPD)/hexamethylene diisocyanate
(HDI)

b

2934 cm™ , 2860 cm |
CH stretch 1684 cm™ amide I 1052 cm™ C-O stretch

3324 cm’! N-H stretch

—-{OCH2CH20CH2CH20CONH(CHz)GNHCOOCH2C(CH3)2CH20

-1
1537 cm 1223 cm-1 C-O stretch
amide II

Figure 26. Assignment of IR bands of samples a)#2 and b) #7.
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