
TRW:
DESCRIPTION OF THE DEFT SYSTEM AS USED FOR MUC-5

BACKGROUND

WILLIAM W. NOAH, Ph.D.
ROLLIN V. WEEKS

TRW SYSTEMS DEVELOPMENT DIVISION
ONE SPACE PARK

REDONDO BEACH, CA 90278
R2/2186

For the past three years, TRW has been c..ieveloping a ·text analysis tool called DI:IT-
Data Extraction from Text. Based on the h.tst Data Hnder (l:Dl:), DITT processes large
volumes of text at very high speeds, identifying patterns which sc..Tve as indicators
for the presence of relevant objects, relationships, or concepts in the data. These
indicators are processed by a series of system-supplied utilities or custom-written
functions which refine the data and re-formulate it into frames which can be
presented to a user for review, editing, and submission to a downstream application
or database.

Superficially, DEFT resembles a Natural Language Understanding (NUJ) system;
however, there are key differences. DEr:l' entertains very limited goals in the
processing of natural language input. Although DEFT processes unconstrained
input, it is looking for textual entities which arc tightly constrained and presented to
the system as a list of expressions or in a powerful pattern specification language. It
exploits expectations about how a small set of entities will be expressed to reduce the
amount of computation required to locate those-- and only those-- entities. The
broader question of the "meaning" of the text in the document is bypassed in favor of
rapid, robust processing that can be readily moved from domain to domain. As long
as the input for a particular domain is sufficiently predictable, data extraction with a
satisfactory level of recall and precision for many applications can be achieved. We
are currently installing three DEIT systems for a United States government agency;
initial reviews have been highly favorable.

Our involvement in tvllJC-5 derives from a request by the government to turn DEIT to
a COTS product, with the intent of having a fully-supported \·ersion of the system by
the end of the year. An analysis of the broader commercial and government market
for text extraction suggested that the scope of problems that DlTT should be able to
address needed to be expanded; however, it was established that replication of the on
going research and development work in the NUJ community was an inappropriate
role for our development group. Rather, we wanted DEfT to be able to integrate with
systems already developed or in development for functionality which falls outside
the narrow boundaries of DEFT's pattern-based capabilities. At the same time, DEFT's
ability to express patterns needed to be extended from it's current, highly effective
means for defining "atomic" patterns to the definition of patterns in relationship to
each other, permitting simple syntactic information to be added to DEFT's lexical
knowledge. Thus, DEFI' would have the potential to find entities not expressly defined

237

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 1993 2. REPORT TYPE

3. DATES COVERED
 00-00-1993 to 00-00-1993

4. TITLE AND SUBTITLE
TRW: Description of the DEFT System as Used for MUC-5

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
TRW ,Systems Development Division,One Space Park,Redondo
Beach,CA,90278

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the Fifth Message Understanding Conference (MUC-5), 25-27 Aug 1993, Baltimore, MD.
Sponsored by the Defense Advanced Research Projects Agency.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

in a lexicon, improve its ability to correctly determine the relation between entltles,
and decrease the overgeneration that tends to be associated with approaches that rely
exclusively on pattern matching.

1\ mechanism was selected for enhancing pattern specification which was felt to be
compatible \Vith the notion of integrating DEfT with third-party systems. As will be
described in some detail, DEIT is intrinsically an engineering shell which is intended
to facilitate such integration while making its rapid pattern-matching services
available to the other system components. Unfortunately, the software
implementing this concept was not available at the time of the final MUC-5
evaluation, the results of which therefore serve only to confirm our expectations
that the recognition of "simple" (i.e. isolated) patterns is woefully insufficient for
complex data extraction problems.

While we regret that the capabilities of the extended version of DEFT could not be
demonstrated for MlJC-5, we feel that the outcomes justify our belief that real-world
message understanding problems necessitate an engineering solution that can pit a
choice of technologies against the specific problem at hand-- different technologies
being optimum for different tasks. We believe that DEFf's success in handling simple
data extraction problems can be extended, and that DEFr is well-suited to a role as an
integrator of text analysis capabilities. It is toward this end that we arc focusing our
on-going productization errons.

SYSTEM DESCRIPTION

It is convenient to envision DEFT as a pipeline, as shown in Figure 1. At the head is a
standardized document interface to message handling systems. At the tail is a process
which generates frames and distributes these to the appropriate destinations on the
basis of content. In between is a series of text analysis "filters" which apply DEFT
le:xicons (pattern searches) against the text (using the HW) and call specific
extraction functions to process the textual fragments located by the lexicons. All
processes are controlled by means of e:xternal configuration files and a "workbench"
which contains tools for interacting with DEFf and the data DHT extracts. We will
describe each or these major components in turn.

nw Document Interface: Message Queuing. It is assumed that DEFT will be embedded
in an e:xisting automated message handling (AtviH) system. DEFT's interface with
these systems is called l\lessage Q_ueuing (MQ). Tc:xt is typically disseminated to MQ
(e.g. by a messaging system like TRW's ELCSS or KOALA that receives government
cables, wire service input, etc.) on the basis of subject matter, source, structure, or
other characteristic with salience for how the message's language will be analyzed.
MQ can also accommodate documents loaded from other sources, such as native wire
services, an e:xisting full-text database, CD-R0£\1, OCR, and so on. 'l'ext is assumed to be
in ASCII or extended ASCII; in the ncar-future, DLFf will build on work currently
undenvay to allow the H)l; to accommodate Unicode for foreign character sets, such
as Japanese. Structural features, such as document boundaries, sentence boundaries,
paragraphs, tabularization, encoded tags (such as SGML), embedded non-textual
media, etc. can be defined for a particular document rlass using DEFT specification
files.

tvlQ utilizes a configuration file to assign a processing thread tailored to the problem
domain to each category of document classified by the dissemination system or by
whate,·er means (including manual) is used to route documents to DEFr. Documents

238

arc associated with a processing thread by placing them in a particular t-.lQ. "in
basket" (a standard Unix directory). Each in-basket is polled periodically, using a set
of criteria (time and number of messages since the last processing thread was
initiated) defined in the configuration file.

Figure 1: DEFr l;unctional Architecture

b.:tracling Data: Text Analysis Fillers. When MQ_ assigns a document to a processing
thread, it is subjected to a sequence of procedures which operate on the text to locate
patterns of interest and use these patterns as a guide to extract the data required for a
particular problem domain. This sequence of processes determines what is extracted
and how it is extracted. The sequence is defined as an ordered list of "extraction
phases" in a configuration file. This list can be changed at any time to substitute or
add new e:\.traction phases to refine a text processing thread. New threads can be
modeled on existing ones, facilitating transitions to new problem areas.

Each extraction phase is an executable program. The behavior of a phase is
dependent on the order in which it is called (i.e. its relationship to the phases that
have been executed before it) and on parameters which arc supplied in the
configuration file. In this way, a generalized extraction phase ran be configured for
a specific analytic objective. DEIT has a library of extraction phases that perform the
most elementary analytic processes; new phases arc be written on a problem-specific
basis. DEFT provides an application programming interface (API) in the form of a
library of utilities which allows a custom extraction phase to interact with the data
structure which is common to all extraction phases, and which is used to
communicate between phases. This structure is the DEFT "Tag Hie."

The Tag File is a cumulative record of the processing performed by each extraction
phase. Each phase receives the Tag File from the preceding phase, and passes it to

239

the next. A "tag" represents a textual pattern identified by DEFT in the text or data
created by an extraction function.

f\luch of the power of DEFf' comes from the ability to apply a mixture of extraction
phases that is optimally suited for a given class of document and extraction problem.
t:or example, one extraction phase might reason about the relative time of
occurrence of events located in the text, basing its analysis on the occurrence of
various forms of date/time indicators as well as the presence of such modifiers as
"last week," or "three years ago." Another phase might construct corporate names
on the basis of the occurrence of a known name or the presence of a designator (e.g.
"Inc." or "S.A."). Yet another phase might act upon these names to reason about their
potential relationship in a joint venture.

Locating Data: DBT l.exicons. The patterns that DBT uses to locate data of interest in
the text arc contained in DEFT's lexicons. Lexicons serve various purposes: to
identify potential frames, to determine the "scope" of a frame in the text (i.e. the
boundaries to be used to find data to fill the frame slots), to find the contents for a slot
in a frame, to determine structural elements (e.g. sentences, paragraphs, header
information), and to set the attributes of a text object (e.g. classification level).

Lexicons are of two types: list and pattern. The Jist lexicon associates a set of
synonyms (or spelling variants) with a given object. It is useful when the complete
set of strings associated with an object can be specified. The pattern lexicon is used
when the textual variations associated with an object cannot be specified. For
example, all possible monetary \'alues cannot be conveniently enumerated, but a
single pattern describing monetary values in terms of digits, punctuation, and
denomination strings can be constructed.

Associated with lexicon entries arc attributes, representing the semantics of the
problem domain. An attribute is a characteristic of the object represented in the
text by its synonym list or pattern. It might be the normalized form of a name or
other data about an object which is u~eful to map into a frame, such as the country
associated with a corporate name. In a list lexicon, these attributes are known
e:xpliritly when an entry is created; they arc not inferred from the text. ln a pattern
lexicon, however, the attributes cannot be known in ad\·ance because it is not known
what exact value will hit against the pattern. l;or this reason, attributes must be
extracted for a pattern lexicon. Attribute extraction is handled by a C or C++ program
referred to as an "extraction function." For example, given the location of a
corporate designator, a function might reconstruct the corporate name.

The success of a data extraction system that relics on pattern matching and string
finding depends on how exhaustively it can search for the variations expected in
input language. tWIT has proved successful in its current applications in part
because its lexicons can be extremely large, thanks to the capabilities (in terms of
both functionality and performance) of the FDL

S'carching Tc'l:l for l.esicon l;'ntrics: J11e JDL DEFT uses the 'T'RW-developed rast Data
Hndcr to rapidly locate instances of a potentially enormous set of patterns in the
input text. The power of the rDr originates in two \\'ays: the hardware architecture
and the expressiveness of its Pattern Specification Language (PSI.).

The current generation H)l·-3, now a COTS product manufactured by Paraccl, Inc.,
uses a massively parallel architecture to stream te\:t past a search pattern at disk.
speeds (currently 3.5-million characters/second using a standard SCSI disk).

240

Searches arc compiled into micro code for a proprietary chip set which can
accommodate up to 3,()00 simultaneous character searches or Boolean operations.
Lexicons are broken into "pipelines" which fully fill the chip set; each pipeline is
run against all of the text in the set of documents currently being processed. f\IQ_
batches messages as they come in so as to optimize the usc of the !Dr-- larger message
sets are processed more efficiently than several smaller ones. The tradeoff between
hatching and "real-time" processing can be independently balanced in the tvlQ_
configuration file for each in-basket and processing thread.

Search patterns are specified in PSL. Because the r:DJ: uses a streaming approach,
PSL is not dependent on word boundaries. t:xtremcly complex patterns can be
expressed, which can include such features as error tolerance, sliding windows,
multiple wildcard options, nested macros, character masking, ranging, and the usual
Boolean operations. r~eaturcs that support "fuzzy matching," like error tolerance, are
extremely important for handling "noisy" input.

Output Generation: Frame 1\sscm/1/y and Rouling. When the fillers that comprise a
processing sequence have executed, the Tag rile is passed to the "t:ramc /\ssembly and
Region Routing" (FARR) module. This program, which constitutes the "tail" of the
DEFT pipeline, assembles the data elements generated during the analysis thread into
frames based on an external definition file. This rile specifies which slots arc
associated with which frames, how to transform a data value for display to the user
(e.g. normaiize "England" to "United Kingdom"), how to transform a ,-.. tluc for storage
in a downstream database (e.g. abbreviate "England" as "UK"), how to validate a data
value, whether a data type can be multiply-occurring, and so on.

One issue that arises during frame assembly is n·hen to associate a data value with an
instance of the frame class for which it is defined. In DEFT, this operation is
associated with "scoping." Scoping is the process of determining the extent in the
text of a concept associated with a pattern. ror example, if a pattern of words
indicative of a joint venture is found, the scope of the "tic-up" frame might be taken
to be the location of the pattern plus or minus two sentences. The unit of scoping (in
this case, sentence) need not be a syntactic unit-- it can be any pattern stored in a
special type of lexicon used exclusively for determining frame scope. The unit of
scoping and its extent (e.g., "plus or minus n") ran be determined independently for
each frame class.

When a pattern that gives rise to a slot value of a type defined for a gi\ en frame class
is found in the text, the slot is automatically mapped by r/\RR to any frame whose
scope encompasses the location of the pattern. Thus, if the name of a corporation
were to occur within the two sentence range of the tic-up frame in our example, it
would appear in that frame. Of course, this may not be accurate-- DEf-T has a
tendency to overgenerate slots through bogus associations that arise because of this
weak scoping mechanism.

Another issue that is encountered is overlapping frames. The "best available"
resolution can be specified in the frame definition rile. One alternative is simply to
accept both frames, since they may be describing separate concepts. If the frames
are of different classes, F/\RR supports the attribution of a priority to each class, and
only the frame with the highest priority need be retained. lf the frames are of the
same class, FARR supports a "non-multiply occurring" attribute, which optionally
suppresses all but one of the frames. Unfortunately, the action taken is generalized
to all situations-- the specifics of a given case cannot be taken into account. Thus,
DEFT tends to either overgenerate or lose frames.

241

When a message's frames have been generated and ambiguities resolved (to the
extent that DUT can resolve them), the frames (and the message) are routed to a
destination directory on the basis of their content. Routing instructions are defined
in a rule base using a normalized conjunctive form of field-value pairs. It should be
kept in mind that although DEFf's primary mission is extraction, not dissemination,
the routing capability (since it is based on knowledge representation) provides a
sensitive mechanism for determining the destination of a message and the structured
representation or its contents.

Com rolling Lhe .">)·stem: Df:Ff Fools and S)Jccificalion f\lanagemenl. In order to make
DEFT portable to different computing environments and problem domains, the
definition of user-modifiable system characteristics has been exported to a set of
external specification files. These files govern the interface with the surrounding
message handling system, the output data model, H)F configuration, and other
"housekeeping" functions. Specification files are maintained using any convenient
text editor.

The most important system specifications from the standpoint of the end-user are
the lexicons and the frame routing rules. To facilitate lexicon development and
maintenance, a lexicon editor is bundled with DlTT that provides a graphic user
interface (under X/tvlotif) for interactively defining lexicons and entering/editing
lexicon entries. Lexicons can also be created/updated from databases or external
machine-readable files (e.g. gaz<.:tt<.:<.:rs, corporate name lists) using a batch load
protocol.

Like the lexicon editor, the routing rule manager provides a GUI for maintaining
routing rules. It uses a spreadsheet metaphor to minimize the user's exposure to the
potentially complex Boolean logic that the rules can im·olve. J'vlenus of valid values
and conditions tests are automatically prm ided.

Another important DUT tool is frame review. DEFl' was developed under the
assumption that a user would always he in the loop; it was not intended to run
autonomously. This package therefore supports simultaneous display of messages
and the frames derived from them, providing highlights that show where slot values
were extracted. f\lenus of valid values drawn from the lexicons assist the user in
filling slots that were omitted by DITT. I;eatures for selccti\·ely deleting superfluous
slots and frames arc particularly important, sinre DEFT (like other pattern-based
approaches to text analysis) tends to overgcnerate data. A mechanism is also
provided to facilitate manually linking frames of different classes into higher-level
logical aggregations, since DHT was not originally designed with an automated
linking capability. Clearly, these two design assumptions-- human interaction and
manual frame linking-- had an impart on \\·orking \dth the MUC-5 data.

DEFT as an Engineering Shell

This description of the l)[:FJ' system has emphasized that analysis threads are
composed of independent components which communicate through a common data
structure using a library of utilities that constitute <lll /\Pl. It is our contention that

242

DEFI''s strengths are:

• A powerful pattern searching capability, which we are extending.

• The ability to integrate COTS, COTS, and custom-written programs
within the DEFI' architecture.

We believe that there will probably not he a single text analysis or Nl.lJ system that
meets the requirements of all conceivable applications. There will always he a
tradeoff between such factors as speed, depth of analysis, breadth of coverage,
portability, robustness, and analysis methodology that will favor one technology
over another for a particular problem. The real question is not "What is the best
system?", but "What is the best system at this moment?"

Our current development work on DEFT is chiefly targeted at its usefulness as an
integration tool. DEFT provides a high-speed pattern searching capability which can
successfully extract data from structured or tightly constrained textual inputs, while
providing pre-processing services (e.g. tagging words with part of speech or
semantic attributes) for third-party software which performs more extensive natural
language processing for unconstrained textual inputs. This approach should he
especially efficient for applications in which messages are mixed (formatted and
unformatted), text analysis tasks arc ,·aried in complexity, and throughput is a major
consideration.

Inherent Limitations in DEFT's Pattern-Matching Approach

Because DEFT was not originally intended for problems of the scope of f\llJC-S, its
simplistic approach posed some major problems. Among the most fundamental were:

Syntactical Patterns. DlTT has very powerful mechanisms for specifying "atomic"
patterns-- a corporate name, a place name, a s~t of \Vords that indicate a joint
venture, etc. DEFT was not designed to have the capability of expressing
relationships among the patterns in its lexicons and providing for the assignment of
values defined with respect to these patterns to variables. These are essential
capabilities for the implementation of the most rudimentary semantic grammar. ror
example, DEFI' had no way to express: "Look for a corporate name followed hy a joint
venture formation phrase and take the following corporate name as the partner in
the joint venture."

Frame Scoping. DEFT was designed to interpret the scope of a frame as a function of
proximity to the "hit location" of the pattern that resulted in a frame's instantiation.
The boundaries arc determined hy a pre-defined number of repetitions of a pattern
contained in a scope lexicon. An upper ceiling determined by a fixed number of
characters can also be specified, in case the scoping pattern is not detected a
"reasonable" distance from the site or the hit. All occurrences of slots defined for a
frame within these boundaries arc automatically included in the rrame when it is
assembled by fARR.

For highly formatted text (e.g. messages in t\lilitary Text rormat), such a mechanism
is adequate. For free-text, it is not. In the f\llJC-:) e\ aluation, [)ITT railed to report
valid objects that it located (notably entities) because they \\'ere not "·ithin the scope
of a tic-up, as DEFf measured scope.

243

Frame Linking. The original DEFT design assumed that a human operator would
perform this task. Automated linking is obviously needed for "unattended" operation
and is clearly useful even if there is a human-in-the-loop.

Solutions

Current internal research and development work aimed at resolving each of these
problems for the eventual DEFf product adheres to the constraint that architectural
extensions must he philosophically compatible with the pattern-based approach,
while avoiding significant overlap with NLU (which we prefer to view as an
integratable component in a complex system). /\s noted earlier, key software being
developed under !R&D was not available for the t--IUC-5 final evaluation; however,
work continues and will he tested on the t'-ll!C-5 corpus in the near future to validate
the approach .

. \nJLaclical Pauerns. This is the specific area that was not developed in time for the
evaluation; unfortunately, it is also the most critical for dealing with even the simple
aspects of the t'-IUC problem. The approach we selected is intended to be compatible
with the integration of more powerful text understanding components in the future,
while extending the range of problems DlTT ran soln: by itself. It exploits DEFT's
atomic pattern-recognition capabilities while separating the definition of a semantic
grammar into an independent extraction phase. This phase could easily be replaced
(or supplemented) with an Nl.ll system which can optionally take advantage of the
DHT lexical pre-processing while performing deep syntactic and semantic analyses.
This separation is in part intended to provide an initial test of our belief that the
integration of DlTT with an Nl.ll component creates a symbiotic association with
better performance characteristics than either system by itself.

To stay within the (admittedly loosely defined) hounds of pattern matching, our
approach to exploiting syntax consists of providing m:rT with a simple mechanism
for expressing "meta-patterns"-- that is, patterns whose components may be the
atomic patterns (and, by reference, their attributes) located by the DEFT lexicons. We
decided to use a BNr specification to define a semantic grammar based on a
combination of literal strings and DlTT-identificd tokens.

The key issue was how to pass the results of DlTT pattern-matching to the parser. An
integrated Nl.ll component within the Dl:I'I' shell could interface directly with the
DEFT Tag nle through the /\PI; the component could also interface with the frames
generated by DlTT, providing a preliminary level of analysis on which to build. For
our prototype, howe\·er, we chose to mark terms in the text with SGI'viL-like tags to
indicate their properties. The grammar directly references these tags, and routines
were provided within the parser for assigning text strings to slots by extracting DEFT
lexicon attributes (e.g. normalized values or semantic characteristics) or collecting
words intervening between two tags (of the same or different class). Additional
primitives for manipulating the strings prior to slot assignment were also built into
the parser infrastructure to control frame generation and the assignment of slots
(including pointers to other frames) to frames. This significantly improves on the
primiti\·e sroping capability provided with the current version of DEFT.

The approach selected thus prm ides a \ <>eahulary for expressing both the expected
contents of documents and the rules f()r instantiating and linking templates. /\t the

244

same time, its intermediate product is human-readable (and, in fact, could he used as a
general-purpose "tagger") and easily interpn:ted by other programs.

Frame .':)coping. l;undamental changes in the DITT framc-scoping mechanism arc
planned which will exploit domain knowledge as well as limited syntactic (from the
meta-patterns) and semantic (from lexicon attributes) data. l·or I'.JUC-5, the basic
DEFf mechanism was retained, with its inherent limitations.

Frame Linking. A primitive frame linking capability was added to DEFT. It was based
on frame scoping, however, and therefore suffered from the same limitations. The
DEFT frame definition file format was extended to accommodate hierarchical
relationships; any frame defined as a child of another frame had its generated frame
10 automatically included as a slot value in the parent frame if its "hit location" fell
within the scope of the parent frame. Of course, multiple and spurious associations
are easily generated in this way. In the future, frame linking will be improved by
combining syntactic and domain knowledge in a final extraction phase to resolve
inter-object relations.

RESULTS

The results of the final f\HJC e\·aluation were strongly influenced by the
unavailability of the parser, which was an essential component of the DEFI' approach
to MUC-5. The resulting scores indicate the magnitude of the problems inherent in a
simple pattern-matching strategy which is not informed with even a crude semantic
grammar. It should be noted that a decision was made to focus only on a subset of
templates and slots required for the preliminary run. These were the document
template, tie-up-relationship, and entity. The F-mcasures for the final evaluation
were:

P&R 2P&R P&2R

1.15 2.6-'l 0. 7 -'l

Not surprisingly, these were the lowest scores for any system in the evaluation. !\
detailed analysis of the run is of little utility, however there arc some points of
interest seen in the walk-through sample document.

Walkthrough Document

The identifying data (document number, source, and date) were correctly e:-..:tracted.

Some simple atomic patterns were defined in a DlTT le:-..:icon for tic-up relations.
These were to be factored into a semantic grammar; as noted, the parser was not
available at the time of the run. Therefore, the patterns were run as a simple search.
It correctly identified the presence of a joint venture in the sample document,
incorrectly instantiating two tie-up templates (one for each of two out of three
references to the venture) and entering their IDs in the content slot of the
document template. DEFT currently docs not determine that multiple references have
a common object unless the frames overlap.

A single entity was mis-identified, ".Jiji Press Ltd.," which is actually the document
source. This entity was incorrectly associated with the first tie-up. The foregoing
explanation of the DEFT scoping mechanism makes it dear \\'hy this false association

245

took place. The name of the "RRIDGIXI'ONE SPORTS CO." was correctly reconstructed
from the corporate designator ("CO.") and assigned to the first tie-up. The name of the
joint venture, "BRIDGESTONE SPORTS TAIWAN CO.," was also constructed and associated
with the second tie-up instance. No other features were correctly identified.

Among the other corporate names, the algorithm used by DEFT would not have
identified "UNION PRECISON CASTING CO.," but did identify "TAGA CO." However, this
entity was considered out of scope of the tie-up templates and was (incorrectly) not
attached to one. DEFr had no facility for recognizing "BRIDGESTONE SPORTS" nor for
tracking the reference to "TilE NEW COtviPANY."

What Worked

DEFr was erfecth·e at recogmzmg literal strings and patterns contained in its
lexicons. DEFT frequently generated correct entity names that were not in the
corporate name lexicon using a set of heuristics that reasoned backwards from a
designator. For example, "BRIDGrsroNr: SPORTS CO." was constructed. DEFT of course
had little problem with the tagged items for the document template. These are
precisely the kinds of elemental functions that DHT is expected to perform well.

DEFt' recognized the occurrence of some of the joint ventures, based on a very limited
set of patterns that were originally defined for usc in connection with a semantic
grammar. This set could have been extended to produce improved recall had we
known the parser would not be a\·ailable. These few successes indicate that even a
simple pattern-based approach can recognize concepts of this type in restricted
cases.

What Failed

The lexicons and extraction phases that were rapidly developed for f\HJC-5 contained
some bugs that were not observed during training; some corporate names were
missed, for example, that should have been constructed. The chief failings were
inadequate lexicons for identifying joint ventures and inadequate scoping. These
two problems combined to suppress the instantiation of the many valid entities that
DEFT' found, but could not associate "·ith a tie-up relation and therefore did not
report. In general, the system was configured to reduce the anticipated
overgeneration, with the expectation that tie-ups and entity relations would be
identified and scoped by tht.: semantic grammar; in the absence (>f the parser,
undergcner<.~.tion became se,·ere.

System Training and Resources Expended

The effort expended on MUC-5 testing and documentation was approximately two
person-weeks. System development actidt.ies undertaken independently of MUC-5
were exploited for the f\llJC-5 evaluation run. These included:

• Analysis: I person-month
• Lexicon DeYelopment and Data Definitions: 1.25 person-months
• Extraction Phases and hmctions: 3 person-months

The total le\el of elTon for all acthities impacting t'-lllC-S \\'as therefore roughly 5.5
person-months.

246

As we have noted, key system components were ultimately una,·ailable for the tviUC-5
evaluation. Although we won't know "how we would have done" until the
components are completed and our internal tests against the r-.nrc data arc repeated, it
is our expectation that significant imprm·ement will be obtained with a little
additional effort-- although performance is neither expected nor required to
approach that of true Nl.lf systems, gh·en our view of Dl:IT as an integration
environment.

Most of the effort in creating a new DlTT application usually centers on lexicon
development. For MUC-5, most lexicons were batch loaded from the data supplied via
the Consortium for Lexical Research. A few lexicons for joint venture identification
and scoping were developed manually. These were quite simple and their actual
creation required minimal time.

Much of the time on tviUC-5 was occupied with writing C-code for extraction routines,
particularly for corporate names. The need to write so much rode for a new
application is a current weakness in DEIT which will be remedied to a degree when
the parser becomes available.

Of course, a key activity was the analysis of the test corpus and de,·clopment of a
semantic grammar appropriate to the E.JV problem. The results of this analysis were
manifested in the tie-up rclation lexicon and the BNI; grammar for the parser. Only
the former was ready in time for the evaluation. Analysis was a cyclical, iterative
process; refinement continued during system training.

DEFT system training consisted of a series of runs against samples of the training
corpus, utilizing the frame review tool to examine the results. Lexicons were
manually refined as a result of missed objects and false hits. Early runs resulted in
changes to the batch loading sequence for some uf the lexicons (e.g. the corporate
designators}. l;eedback into the grammar would also han~ been derived from this
process, had the parser been available and time permilled. /\s it was, time was
insufficient even for lexicon refinement; for example, a few key errors in the
corporate designator lexicon resulting from a bug in the program that prepared the
file provided through the Consortium for batch uploading were noted only after the
final evaluation run was analyzed. This was partially responsible for some of the
undergeneration.

What We Learned

lt came as no surprise that simple patterns arc inadequate to extract the complex
ideas expressed in the E.JV documents. We ,·icw the results as validating the concept
that DEFT', operating as a standalone system, is best qualified to perform on problems
involving \veil-defined, constrained sets of text objects to be extracted, even with the
addition of a "meta-pattern" or grammatical capability. DEFt' should excel on such
problems when throughput is a major consideration.

The selection (and on-going implementation} of a mechanism for expressing meta
patterns that is compatible with all of the goals discussed earlier is a major outcome
of our .1\'lUC work, even though it was not available in time. We believe that this
approach will significantly empower DElT and broaden the range of applications for
which it is a suitable tool, while increasing the rlexibility with which it can he
integrated with other text analysis tunis. This will prove highly ,·aluable to our

247

current government customers, as well as future DEFT users in the government or
commercial sector.

DEfT's potential as an integration environment was underscored by the fact that we
successfully ran documents through:

• A complex set of extraction phases

• With extremely large lexicons

that are beyond the scope of anything that has been tried in existing DEFT
applications. The robustness of the architecture and efficiency of the pattern
searches were our major consolation in the MUC-5 evaluation. We therefore look .for
opportunities to combine DEFI''s system engineering and search capabilities with the
sophisticated analytical power of NUl-based solutions when real-world problems are
encountered which are out of scope of DEIT's simple extraction mechanisms.

248

