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W:thin the 
military 
·ector the 

notion of :•graceful 
degradation" is uni
versally accepted. 
Military systems (e.g., 
weapons, force mixes, 
communication links, 
air defense systems James P. Ignizio, 

Ph.D. 
and even a "system" 

of strategies and tactics) should, it is 
agreed, gracefully degrade (e.g., under 
hostile conditions, or random failures, or 
variations in mission, or changes/modifica
tions in personnel and equipment) -
rather than collapse like a house of cards. 

Unfortunately, there is no agreement as 
to how one defines graceful degradation, 
or how it is measured. Furthermore, and 
perhaps most unsettling, the attributes of 
optimality and graceful degradation may 
- if the hypothesis of this article holds -
actually be in opposition. To illustrate this 
phenomenon, consider the simple "block 
world" problem depicted in Figure 1. 

The stack of blocks on the left side of 
Figure 1 is unequivocally optimal in the 
sense of being the taller of the two stacks. 
However, while the stack on the right side 
of the figure is shorter, less impressive in 
appearance, and "sub-optimal;" it is also 
clearly far more stable. Given the choice 
between attempting to stand on either of 
the two stacks, most people would select 
the suboptimal stack. Clearly, something 
more than the height of the stack is impor
tant - something difficult to put into 
words or formulas. 

In this article I explore the very real 
possibility that "optimal" solutions may be 
invariably unstable - wherein stability is 
defined as: "the measure of both the speed 
and ease by which a given solution 'de
evolves' (degrades) to some minimally 
acceptable level." In the case of the "block 
world" illustration given earlier, it should 
be apparent that the "optimal" stack is like
ly to collapse easier and faster than the 
shorter stack. 

the stability of any given solution is pre
sented. Its performance on a number of real 
world problems is described. I then con
trast the inherent stability of solutions as 
produced by traditional optimization with 
those developed by evolutionary means 
(e.g ., genetic algorithms, evolutionary 
computation). 

While the results of my investigation 
have thus far upheld my hypothesis (i.e., 
that unstable solutions de·evolve faster and 
easier than stable ones), it should be made 
clear that these results have been limited to 
the (intensive) investigation of but nine 
problems (albeit real problems and real 
data). Since there would appear to be no 
way to investigate the phenomenon of sta
bility other than empirically, it is hoped 
that this article motivates others to evaluate 
the process on their own set of (real world) 
problems. 

Conventional wisdom holds that one 
should always strive for solutions that are 
optimal, or at least "near optimal." The 
idea of intentionally developing non-opti
mal solutions is, in itself, an anathema to 
the operations research profession - and 
particularly to the academic community. 
However, as a practicing OR analyst for 
more than 30 years, I have noted that a sur
prising number of "optimal solutions" to 

real world problems have led to unexpect
ed and troubling consequences. Specifical
ly, while such solutions may be optimal on 
paper, they prove to be problematic when 
actually implemented. 

Just two of the many indications of 
instability of optimal solutions I have per
sonally encountered are listed below: 

SAM-D: SAM-D was the original des
ignation for what is now known as the 
Patriot air defense system. In the late nine
teen-sixties I was tasked with the develop
ment of a scheme for the deployment of 
the elements of such a system. In other 
words, to produce a method to locate the 
sites for the missile launchers and radars so 
as to minimize "leakage" (i.e., protect a 
region of airspace from attack by enemy 
aircraft). It was discovered that a branch
and-bound approach, which guaranteed 
optimal or near optimal solutions, also 
resulted in deployments that were extreme
ly unstable. For example, if some combina~ 
tion of system elements (e.g., positions, 
weather, target signature) were changed
even slightly, air defense performance 
would often suffer a dramatic reduction. 
Yet, when deployed by means of a heuris
tic method, the results were quite stable -
at the cost of but a very slight reduction in 
the "optimality" of the solution. 

In addition, what would appear (based 
on results thus far) to be a practical and 
effective approach for the assessment of Figure 1: "Optimal" and ''Suboptimal" Stacks 
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Torpedo Acoustic Arrays: Acoustic 
arrays for torpedoes (or electromagnetic 
arrays for radars) consist of a number of 
transducers, acting as an ensemble. These 
transducers are to be located in such a 
manner, and delivered power of such 
amplitude and phase, as to produce a beam 
pattern of a specified shape. In essence, the 
array design problem is one of combinator
ial optimization, and may be formulated 
and solved by conventional methods for an 
optimal solution. However, once these 
"optimal" acoustic arrays are constructed 
and tested (typically in a water chamber, 
under a variety of conditions), the actual 
performance may be, in a word, awful. Just 
a few seemingly insignificant changes in a 
combination of parameters (e.g., a slight 
decrease in temperature coupled with a 
small increase in pressure) can, and often 
does, result in sudden and dramatic degra
dation of the beam pattern. As such, a 
design that is optimal on paper may well be 
impractical for application. 

While numerous other instances could 
be cited, all have a similar property. That 
is, optimal solutions, even when accompa
nied by intensive (but conventional) sensi
tivity analysis, are often found to be highly 
unstable. Yet solutions that are heuristical
ly derived, and clearly sub-optimal, can be 
as "solid as a rock." 

Based upon these experiences, coupled 
with a long-time interest in heuristic meth
ods (particularly those that mimic evolu
tion, such as genetic algorithms), I sought 
to test the following hypothesis: 

Inherently unstable solutions will de
evolve faster and easier than stable solu
tions. 

To determine the validity of this 
hypothesis, a "reverse" genetic algorithm 
was developed. That is, instead of starting 
from a poor (or randomly selected) solu
tion and seeking to evolve to more fit solu
tions, my algorithm begins with any given 
solution (e.g., the solution to be tested for 
stability) and de-evolves to less fit solu
tions. It was (as implied in the hypothesis) 
my conjecture that an unstable solution 
would de-evolve (e.g., collapse) in fewer 
generations than a stable one. 

For those unfamiliar with genetic algo
rithms, a list of resources is provided at the 
end of this article. 

In brief, a genetic algorithm proceeds 
by first coding a trial solution into a "chro
mosome" (e.g., a pattern of zeros and ones 
that serve to represent the values of the 
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decision variables). Next, a population of 
solutions (chromosomes) is generated (typ
ically randomly). From there, a parallel and 
probabilistic search procedure ensues. 
Solutions are evaluated for their "fitness." 
Those that are most fit are given a higher 
likelihood of being placed into a "mating 
pool." The mating pool is generated, sto
chastically, and solutions "exchange por
tions of their chromosomes" with their 
mates so as to produce new solutions (e.g., 
an exchange of a segment of zeros and 
ones in one chromosome, or coding, with 
those in another). Mutation (e.g., the "flip
ping" of a zero to a one, or vice-versa) then 
takes place (albeit with a very low proba
bility) and the resulting set of solutions 
represent the "next generation." The 
process repeats until a given termination 
criterion is reached 

Since my intent is to find out how easy 
and fast a given solution de-evolves (rather 
than evolves), my genetic algorithm starts 
with the solution (chromosome) to be test
ed and works backwards. The pseudo-code 
for the de-evolution algorithm is provided 
below. 

procedure De- volve: 
begin 
t=O 
select chromosome, C(t) 
penurb C(t) fto generate initial 

population, P(t)l 
fitne P(t) 
until (done) 

t = t + 1 
select P(t) from P(t-1) 
eros over P(t) 
mutate P(t) 
fitness P(t) 

end 

It is probably easiest to explain the 
process, and its interpretation, by example. 
Thus, first consider the results shown in 
Figure 2. In this figure, two solutions to the 
design of the "backbone" network for a 
telecommunications system are depicted. 
The diagnol symbol, to the far left of the 
figure, depicts the optimal solution to the 
problem (producing a normalized value of 
100 for the measure of messages per unit 
time). The box symbol on the far left repre
sents a solution derived via a genetic algo
rithm. Its value is 94 units, some 6 percent 
less than that of the optimal solution. Let 
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us assume that the minimally acceptable 
level of system performance is 60 units. 
Using the de-evolution algorithm, we then 
determine just how many generations are 
required for both solutions to degrade to 
the level of 60 message units. 

Examining Figure 2, we see that the 
"sub-optimal" solution takes roughly 
twice as long (more than 20 generations) 
to degrade to the minimally acceptable 
level than does the optimal solution 
(which de-evolves to the minimally 
acceptable level in just 10 generations). In 
other words, the sub-optimal solution is 
apparently more stable than the optimal 
solution. 

Of course, the result shown in Figure 2 
might just be a fluke. After all, we are 
dealing with a stochastic search process. 
Consequently, the de-evolution algorithm 
is repeated numerous times (using differ
ent random number seeds) and the results 
presented in a histogram like that shown 
in Figure 3. 

In Figure 3 it is apparent that the opti
mal solution (i.e., the de-evolutions shown 
to the left of the vertical dashed line) does 
in general de-evolve faster and easier than 
the suboptimal solution (those to the right 
of the dashed line, as originally derived by 
means of a genetic algorithm). Results of 
many more de-evolutions, as' well as the 
investigation of some eight other real 
world problems confirmed this observa
tion. One of these eight problems was that 
of the siting of the elements of the Patriot 
Air Defense System. 

Using data from the original SAM-D 
air defense study, I developed a number of 
different siting schemes (e.g., location 
coordinates for the radars and missile 
launchers) for the air defense system. One 
of the solutions was optimal, having been 
derived via a tedious and time consuming 
implicit enumeration method. Another 
solution was derived by means of a genet
ic algorithm. All other solutions (eight 
more in total) were developed by various 
perturbations of these two results. The 
problem parameters were that of the pre
cise coordinates where each element of 
the air defense systems was located, the 
estimates of terrain topology and weather 
parameters. The fitness of the solution was 
based upon the amount of airspace cov
ered by the air defense system. The results 
are shown in Table 1. 

(See STABILITY, p. 8) 
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STABILITY 
(continued from p. 7) 

Examining Table 1, we note that the 
global optimal solution is air defense sys
tem A; the one developed via implicit 
enumeration. Solution F is the solution 
developed by means of a genetic algo
rithm. Not only is solution F not optimal, 
it is actually dominated by solution C. 
That is, C is both cheaper and has a high
er measure of effectiveness than F. If we 
were to stop our analysis at this point, 
solution F wouldn't look very attractive 
at all. 

However, after applying the de-evolu
tion algorithm to all ten solutions (and 
after repeating the process numerous 
times, using different random number 
schemes), it was found that solution F 
was, far and away, the most stable solu
tion of all those tested. Solution A, the 
"optimal" scheme, fell apart with only 
slight changes in various combinations of 
model parameters. 

Thus we are left with the following 
choice. We may either pick the global 
"optimal" solution (or any solution with a 
higher effectiveness to cost ratio than 
solution F), and suffer the consequences 
of moderate to extreme instability, or 
select the rock-steady solution F - at a 
slight reduction in the efficiency to cost 
ratio. When one considers the fact that 
the minor difference in effectiveness to 
cost could well be a result of errors in 
data (and all real world problems have 
such errors), solution F starts looking 
very attractive. 

As mentioned earlier, results on nine 
different, real world problems, have all 
substantiated my original hypothesis. 
Does this mean that optimal solutions are 
always unstable? Or that solutions 
derived by genetic algorithms are always 
more stable than optimal solutions? 

The short answer is no. Just nine 
experiments obviously cannot prove or 
disprove the hypothesis. However, these 
nine, highly consistent results should 
make the OR community take pause. 
Hopefully this article will encourage oth
ers to investigate this matter also. The 
more empirical evidence in support of 
this article's hypothesis, the more wary 
any OR practitioner should be of unques
tionably accepting the doctrine of "opti
mality." 

(See STABILITY, p. 27) 
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Figure 2: The de-evolution of two different solutions to a network design problem 
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Figure 3: Histogram of De-evolutions 

Candidate System Cost Effectiven Effectiveness to cost ratio 

A 50 80 1.6 

B 48 76.32 1.59 

c 52 84.42 1.585 

D 54 84.78 1.57 

E 49 76.44 1.56 

F 53 81.62 1.54 

G 56 84 1.5 

H 57 79.8 1.4 

56 67.2 1.2 

J 59 64.9 1.1 

Table 1: Candidate Air Defense Systems 
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STABILITY 
(continued from p. 8) 

Another question that arises is: If solu
tions obtained by means of genetic algo
rithms are indeed more stable than those 
derived by conventional, optimal seeking 
methods, why is this so? It is my guess that 
the inherent stability of the solutions 
derived by algorithms that emulate evolu
tion is due to the implicit role that stability 
plays in evolution. As populations (e.g., of 
plants and animals) evolve, they invariably 
tend toward stability as well as fitness. 
Mother Nature simply does not tolerate 
highly unstable populations of any species. 
By mimicking the evolutionary process, it 
would seem that genetic algorithms also 
provide solutions that are inherently stable. 
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work. This material needs to span the theo
retical, practical, managerial and organiza
tional. We have already begun this. Our 
1MAS meeting produced proceedings that 
we are currently distributing to the attendees 
and will shortly be economically available 
for purchase by everyone. Dr. J. P. Bal
lenger, our Vice President, has begun to 
collect a volume of essays from our seniors 
on the future needs of our profession, tenta
tively entitled War After Next. Dr. Jim 
Taylor, NPS, has developed some intrigu
ing panel discussions for the Cincinnati 
meeting, and we hope to have a MAS Ple
nary there. Also, we are planning some 
educational sessions at 2MAS. 

In future columns: First MAS Survey 
and details of 2MAS. 0 
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