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ABSTRACT 

Title of Dissertation: The Role of Dopaminergic Neurons in 
the Regulation of Pituitary Beta-endorphin Secretion 

John M. Farah, Jr., Doctor of Philosophy, 1985 

Dissertation directed by: Gregory P. Mueller, Ph.D. 
Associate Professor 

Department of Physiology 

At the time this study was initiated, virtually nothing was 

known about neural mechanisms controlling pituitary secretion of the 

opiate peptide, beta-endorphin. The purpose of the present investiga-

tion was to determine the extent to which brain dopamine neurons 

regulate beta-endorphin secretion from the anterior and intermediate 

lobes of the pituitary gland. 

Adult male rats or primary pituitary cell cultures were treated 

with dopamine rgic agonist s, antagonists, combinations of the two or 

appropriate vehicles. Total immunoreactive beta-endorphin and the 

major molecular forms of circulating immunoreactive beta-endorphin 

(beta-lipotropin- and beta-endorphin-sized immunoreactivity) were 

evaluated by radioimmunoassay in conjunction with gel filtration 

chromatography. 

The results demonstrate that dopamine differentially controls 

beta-endorphin secretion from both the anterior and intermediate 

lobes by its effects on dopamine-! and dopamine-2 receptor subtypes. 

Mixed dopaminergic agonists and selective doparnine-2, but not dopa-

mine-1, agonists increased plasma levels of total immunoreactive 

beta-endorphin in a time- and dose-related fashion. These apparent 

dopamine-2-mediated increases were due to elevated beta-lipotropin-
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sized immunoreactivity, rna terial secreted exclusively by the ante-

rior lobe. Conversely, beta-endorphin-sized immunoreactivity, which 

primarily reflects intermediate lobe secretion, was moderately re­

duced. The dopamine agonist-evoked release was prevented either by 

dopamine-2 receptor blockade or by glucocorticoid pretreatment which 

inhibits anterior but not intermediate lobe secretion of immunoreac-

tive beta-endorphin. Since dopamine agonists had no direct effect 

on secretion of immunoreactive beta-endorphin from anterior lobe 

cultures, a dopamine-2 receptor mechanism within the brain probably 

enhances the release of hypothalamic corticotropin releasing factor. 

Unlike dopamine agonists, dopamine-2-specific antagonists increased 

only blood-borne beta-endorphin-sized immunoreactivity, whereas, 

mixed dopaminergic antagonists additionally increased beta-lipotropin­

sized immunoreactivity and the latter effect was attenuated by pre­

treatment with glucocorticoid or a dopamine-1 agonist. Therefore, in 

contrast to inhibition of intermediate lobe secretion by a dopamine-2 

receptor mechanism, anterior lobe release of immunoreactive beta­

endorphin appears to be under the reciprocal control of dopamine 

receptor subtypes. Rased on the present findings, a model is proposed 

for dopaminergic control of pituitary beta-endorphin secretion. Brain 

dopamine neurons mediate inhibition and stimulation of hypothalamic 

corticotropin releasing factor through actions on dopamine-! and 

dopamine-2 receptors, respectively. In contrast, intermediate lobe 

secretion is inhibited by actions of dopamine on dopamine-2 receptors. 
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Chapter 1 

INTRODUCTION 

The field of neuroendocrinology has enjoyed an expansion of 

research efforts since the late 1970's, owing partially to 

the discovery of the pituitary peptide, beta-endorphin 

(B-endorphin). B-endorphin was first isolated as a peptide 

with remarkable opiate potency and was soon shown to be 

most highly concentrated in the adenohypophysis and 

present, but in lesser amounts, in a variety of other 

tissues. At the time, the analgesic actions of alkaloid 

opiates like morphine were thought to represent actions 

that could normally be mediated by the endogenous pituitary 

pool of B-endorphin. This notion has been tempered to 

reflect more recent discoveries that pituitary B-endorphin 

is synthesized in many forms, some of them having little 

activity as opiate compounds. Furthermore, B-endorphin 

represents just one among three families of endogenous 

opiate peptides including the enkephalins and dynorphins. 

Although all of these morphomimetic (opioid) peptides 

appear to be involved in 

throughout the body, interest 

endogenous opiate functions 

in the study of B-endorphin 

continues to increase as endocrine and neural functions of 

1 



opioids appear to be uniquely served by B-endorphin. 

Enthusiasm for studies of B-endorphin increased when 

it was learned that B-endorphin is synthesized from a large 

protein precursor molecule together with two well-known 

pituitary hormones, adrenocorticotropin and 

alpha-melanocyte-stimulating hormone. This important 

revelation and subsequent investigation of the genetic 

origin and differential processing of the B-endorphin 

precursor between the anterior and intermediate lobes of 

the adenohypophysis continues to provide principles 

applicable to the study of polypeptide biosynthesis in 

general. B-endorphin's possible biologic actions and 

biosynthesis engendered numerous investigations into the 

mechanisms that govern the two pituitary stores of 

B-endorphin ·peptides. Among the many brain 

neurotransmitter systems that might regulate pituitary 

B-endorphin, dopamine neurons appeared well-suited to 

control both anterior and intermediate lobe secretion. 

This chapter first outlines what is currently known about 

B-endorphin's synthesis, tissue distribution and biologic 

actions, particularly as a pituitary hormone. Then, the 

neuroendocrine mechanisms involved with anterior and 

intermediate lobe release of B-endorphin are reviewed to 

establish a background for investigating dopaminergic 

influences on pituitary B-endorphin secretion. 

1.0.0.1 Historical Overview 

2 



B-endorphin's history can be dated from the early 

1970's when curiosity about the pharmacologic actions of 

morphine led to the description of opiate receptors. Using 

a radioisotopically-labeled opiate antagonist, 

[3H]-naloxone, Pert and colleagues (Pert et al, 1973; Pert 

and Snyder, 1973) were able to demonstrate specific binding 

sites for opiates in the central nervous system (CNS) and 

in other nervous tissues in the body (Pert et al, 1973; 

Pert and Snyder, 1973). They and others reasoned that these 

receptors probably existed for specific interactions with 

endogenous ligands. In 1975, Hughes and Kosterlitz and 

colleagues were the first to report the isolation and 

identification of two pentapeptides from porcine CNS which 

resembled potent alkaloid opiates both in radioreceptor 

assays and in opiate bioassays (Hughes et 

pentapeptides they found were 

al, 1975). 

methionine-

The 

and 

leucine-enkephalin which are distinguished from one another 

only by their carboxy-terminal amino acid. Hughes and 

others recognized that methionine-enkephalin corresponded 

to amino acid residues 61 through 65 of beta-lipotropic 

hormone (B-lipotropin or B-LPH), a 91 residue peptide 

isolated a decade earlier from sheep pituitary by C H Li 

(Li, 1964). Thereafter, enzymatically-generated segments of 

B-LPH were found to exhibit varying degrees of opiate 

activity (Lazarus et al, 1976; Ling and Guillemin, 1976) 

but the most potent opioid constituted the last thirty-one 

amino acids in the B-LPH sequence (B-LPH 61-65) which 
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became known as B-endorphin (Bradbury et al, 1976a; 

Chretien et al, 1976; Cox et al, 1976; Goldstein, 1976; Li 

and Chung, 1976; Lob et al, 1976). Once B-endorphin bad 

been identified as a potent analgesic, intense 

investigations were initiated to examine the synthesis, 

distribution and the regulation of this endogenous opioid. 

1.1 BIOSYNTHESIS OF BETA-ENDORPHIN AND RELATED PEPTIDES 

B-endorpbin has been found to be biosynthetically-related 

to other peptide hormones in the pituitary gland through a 

common pro-hormone (Eipper and Mains, 1980; Krieger et al, 

1980; Rosa et al, 1980). The same precursor molecule is 

synthesized in both 

intermediate lobe 

anterlor lobe (AL) corticotrophs and 

(IL) melanotrophs for subsequent 

processing into adrenocorticotropic hormone (ACTH) and 

alpha-melanocyte-stimulating hormone (alpha-MSH), 

respectively, together with several molecular forms of 

B-endorphin (Mains and Eipper, 1979). Since endorphins, 

melanotropins and corticotropins are all derived from the 

same precursor, this pro-hormone has 

et 

been 

al, 

named 

pro-opiomelanocortin (POMC) (Chretien 

Although both lobes of 

B-endorphin, corticotrophs 

the 

of 

adenohypobysis 

the AL secrete 

1979). 

produce 

only the 

potent opioid, B-endorphin 1-31. Melanotrophs, on the other 

hand, secrete mostly modified forms of B-endorphin 1-31 
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that have limited or no opioid activity (Deakin et al·, 

1980). Hence, dramatically different hormone products are 

secreted by AL corticotrophs and IL melanotrophs despite 

the fact that both cell types derive their constituent 

secretory products from the same pro-hormone, POMC. The 

distinct biological signals which emanate from 

corticotrophs and melanotrophs reveal the need for 

understanding differential processing and regulation of 

POMC in these two cell types. Since the present study 

examines pituitary release of B-endorphin, comparison of 

POMC processing between the AL and IL allows differences 

between blood-borne products to serve as markers for each 

of the two lobes. 

Appreciation of differential POMC processing by the 

AL and IL bas extended importance since several other 

tissues of the body also produce B-endorphin-related 

peptides. Depending on the sensitivity of the target 

tissue, alternative forms of B-endorphin peptides could 

determine whether the peptide serves hormonal, neuronal, 

paracrine or autocrine functions. 

1.1.0.1 History of the B-endorphin Pro-hormone 

The discovery of POMC actually preceded the 

discovery of B-endorphin and evolved from questions about 

the nature of larger molecular forms of ACTH (Eipper and 

Mains, 1980; Krieger et al, 1980). Biologically active ACTH 
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was known to be secreted as a polypeptide comprising 39 

amino acids with an apparent molecular weight of about 4500 

daltons. Nevertheless, immunoreactive ACTH had been found 

in forms as large as 31,000 daltons in the circulation as 

well as in the pituitary gland (Yalow and Berson, 1973; 

Yalow, 1974). 

biosynthesis of 

Fortunately 

ACTH, these 

for those 

'big' forms 

studying 

of ACTH 

the 

are 

secreted in abundance by cloned mouse pituitary tumor cells 

(Orth et al, 1973; Canfield et al, 1970). Eipper and Mains 

used this pituitary cell line. AtT-20/D-16v, to demonstrate 

that the larger molecular weight forms of immunoreactive 

ACTH are actually the ACTH precursor and several 

biosynthetic intermediates 

1975; Mains and Eipper, 

for ACTH (Eipper and Mains, 

1976). The precursor found in 

pituitary tumor cells and, subsequently in the AL and in 

IL, is a glycoprotein with an apparent molecular weight of 

31,000 daltons as determined by polyacrylamide gel 

electrophoresis (Mains and Eipper, 1976; Eipper et al, 

1976). For this reason, the pro-hormone was previously 

referred to as 31 K from its molecular weight (Eipper et 

al, 1976). Carbohydrate moieties were found joined to one 

or two locations along the amino acid sequence of 31 K, one 

being in the ACTH 1-39 sequence, 

ACTH and glycosylated ACTH 

The conversion of 31 K to 

appeared to proceed via 

enzymatic cleavage of the precursor in steps similar to 

tryptic processing that had earlier been described for 

pro-insulin and pro-parathyroid hormone (Chan and Steiner, 
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1977; Babener and Potts, 1978a; 1978b; Eipper and Mains, 

1980). 

By the time that Eipper and Mains firmly established 

that ACTB is derived from 31 K, several lines of evidence 

suggested that this pro-hormone might also serve as tbe 

precursor for several 

example, the polypeptide, 

by the AL (Li, 1964) 

anatomically associated 

other pituitary hormones. For 

B-LPH, was known to be secreted 

and bad been functionally and 

with ACTH as follows. Abe and 

colleagues reported that in human plasma, levels of 

beta-MSH, a peptide corresponding to amino acids 41-58 of 

B-LPH, covaried with ACTH (Abe et al, 1969). Although 

beta-MSH has since been found to be an extraction artifact 

generated from B-LPH (Scott and Lowry, 1975), this molecule 

nonetheless served as an anatomical marker for B-LPH. 

Immunohistochemistry revealed that ACTH and B-LPH are 

co-localized in AL corticotrophs as well as in IL 

melanotrophs (Moon et al, 1973; Phifer et al, 1974). In 

addition to the association of B-LPH and ACTH, Scott and 

colleagues (1974) provided evidence to support a 

biochemical relationship between ACTH and the IL peptide, 

alpha-MSB. They found that the amino acid sequence of 

alpha-MSH and of corticotropin-like intermediate lobe 

peptide (CLIP) correspond exactly to the ACTH sequences, 

ACTH 1-13 and ACTH 18-39, respectively (Scott et al, 1974). 

They concluded that ACTH itself serves as a biosynthetic 

intermediate to production of alpha-MSH and CLIP in the IL, 
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whereas, ACTH itself remains the ultimate product in AL 

corticotrophe. Interestingly, the newly described opioids, 

methionine-enkephalin and B-endorphin, were observed to be 

contained within the sequence of B-LPH (Hughes et al, 1975; 

Li and Chung, 1976) and could be extracted from the 

pituitaries of several mammalian species (Bradbury et al, 

1976b; Chretien et al, 1976; Li and Chung, 1976; Li et al, 

1976). This suggested that B-LPB might be the precursor to 

B-endorphin and methionine-enkephalin (Bradbury et al, 

1976b; Lazarus et al, 1976). Considering the evidence for 

the co-existence of B-LPH with ACTH in the AL and with MSH 

in IL, the probability of a biosynthetic relationship 

between the opioid peptides, B-LPH and pro-ACTH became well 

worth pursuing. The possibility that methionine-enkephalin 

and B-endorphin might be derived from corticotropic 

precursors was enhanced by the report that a subclone of 

the AtT20/D-16v corticotrophic tumor secretes a variety of 

opiate peptides in addition to ACTB (Giagnoni et al, 1977). 

Appraised of these findings, several groups of 

investigators independently examined the biosynthetic 

processes which lead to pituitary production of 

B-endorphin, B-LPH and related peptides. 

1.1.0.2 Pro-opiomelanocortin (POMC), the B-endorphin 

Precursor 

The discovery that B-endorphin is synthesized along 

with ACTH from a common pro-hormone was first demonstrated 



using AtT-20/ D-16v cells. Using anti-B-endorphin and 

anti-ACTH antisera, immunoreactive B-endorphin and ACTH 

were isolated from other polypeptide products of the AtT-20 

cells and characterized according to molecular size and 

amino acid composition. Using this protocol, Mains, Eipper 

and Ling (1977) found that either ACTH or B-endorphin 

antisera immunoprecipitate the same 31 K glycoprotein from 

extracts of the mouse pituitary tumor. Similar results 

were obtained upon examination of the peptides producted in 

cell-free translation of messenger ribonucleic acid (mRNA) 

extracted from AtT-20 or bovine IL cells (Roberts and 

Herbert, 1977a; Nakanishi et al, 1977). In 

became clear that ACTH plus unprocessed 

addition, it 

biosynthetic 

intermediates equal the sum of B-endorphin and B-LPH 

(Eipper et al, 1976; Mains and Eipper, 1978; Roberts et al, 

1978). Therefore, each mole of 31 K produced by 

corticotropbic cells yields one mole of ACTH-related 

peptides and one mole of B-endorphin-related peptides. 

Together, however, these two groups of hormones account for 

only about half of the molecular weight and amino acid 

content (approximately 260 residues) of the pro-ACTH 

precursor (Roberts and Herbert, 1977). The remaining 

fragment of the precursor could not be precipitated with 

anti-ACTH, B-endorphin or B-LPH antisera and became known 

as either the cryptic fragment of pro-ACTH or as 16 K (its 

molecular weight) (Roberts and Herbert, 1977a; Eipper and 

Mains, 1978; Keutmann et al, 1979). 

9 



The precursor-product relationship between pro-ACTH 

and B-endorphin-related peptides was determined through 

examination of the kinetics of their synthesis and later 

confirmed by sequencing the gene for POMC. The kinetics for 

biosysnthesis of B-endorphin and ACTH were determined by 

monitoring the fate of radioisotopically-labeled amino acid 

markers. Mains and Eipper (1978) briefly exposed AtT-20 

cells to [3H]-labeled amino acids which were rapidly 

incorporated into the sequence of 31 K. This 'pulse' of 

radiolabel was followed by 'chase' periods of increasing 

duration in which unlabeled substrates were provided to the 

cells. Over time, the labeled intermediates and, finally, 

ACTH, B-LPH and B-endorphin were observed to gradually 

replace the labeled 31 K molecule (Mains et al, 1977). A 

similar succession of labeled products from the precursor 

was observed by others who translated mRNA and polysomes 

extracted from AtT-20 cells and bovine IL, respectively 

(Nakanishi et al, 1977; Roberts and Herbert, 1977a). 

Together, these findings proved that pro-ACTH serves as the 

biosynthetic precursor for MSB, B-LPH and 

B-endorphin-related peptides as well as ACTH. Furthermore, 

the temporal relationship between production of B-LPH and 

B-endorphin indicated that B-LPH is the immediate precursor 

to B-endorphin in the AL and IL just as ACTH gives rise to 

MSH in the IL. The multiple hormone potential of 31 K was 

reconfirmed in intact AL and IL (Crine et al, 1977; Eipper 

and Mains, 1978; Roberts et al, 1978; Seidah et al, 1978), 
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indicating that the precursor-product · relationship between 

POMC and B-endorphin was not an anomaly of the tumor cells 

or of cell-free translation of POMC mRNA. 

Interestingly, little methionine-enkephalin was 

found among the peptides isolated from 

B-endorphin-secreting cells (Mains and Eipper, 1978), 

despite the fact that methionine-enkephalin constitutes the 

amino (N)-terminal pentapeptide of B-endorphin (B-LPH 

61-65). This indicated that although methionine-enkephalin 

is an integral part of B-endorphin's structure conferring 

B-endorphin with its opioid properties, the pentapeptide 

might not be biosynthetically derived from either 

B-endorphin or B-LPH. Thus, the mere presence of a 

peptide's sequence within the structure of a larger protein 

could not guarantee a precursor-product relationship 

between the two, a principle first derived from studies of 

B-endorphin's biosynthesis. 

1.1.0.3 Structure and Processing of Pro-opiomelanocortin 

The arrangement of peptides within 

deduced by Roberts and Herbert (1977b). 

runoff procedure which allows cell-free 

POMC was first 

Using a polysome 

translation of 

protein to proceed in vitro, these investigators found that 

incorporation of labeled amino acids was greatest into 

B-endorphin 

ACTH-related 

and B-LPH-sized 

peptides and least 

peptides, less 

into the 16 K 

into 

cryptic 
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fragment in extracts from AtT-20 cells. From these data, 

Roberts and Herbert surmised that B-endorphin and B-LPH are 

the last sequences translated from mRNA for the pro-hormone 

and, therefore, should occupy the carboxy (C)-terminus of 

pro-ACTH/endorphin preceded by ACTH. A more precise 

description of the st~ucture and processing of POMC was 

formulated by Mains and Eipper (1979). Their model 

represented a condensation of results from studies of 

pro-ACTH/endorphin in AtT-20 and normal rodent AL cells 

(Mains and Eipper, 1976; Eipper et al, 1976; Roberts and 

Herbert, 1977a; 1977b; Nakanishi et al, 1977; Mains et al, 

1977; Roberts et al, 1978; Eipper and Mains, 1978). Soon 

after translation of the protein precursor, carbohydrate 

moieties are attached to asparagine residues in the 16 K 

region and, sometimes, in the N-terminal region of the ACTH 

1-39 sequence (Eipper et al, 1976). Thereafter, the 

glycoprotein is cleaved by proteolytic enzymes at sites 

which seemed likely to be demarcated by pairs of basic 

amino acids (Bradbury et al, 1976b; Lazarus et al, 1976) in 

a fashion similar to that described for pro-insulin and 

pro-parathyroid hormone (Habener and Potts, 1978a; 1978b; 

Docherty and Steiner, 1982). As shown in Figure 1, the 

first of these cleavages separates B-LPH from the remainder 

of POMC followed by a cleavage which frees ACTH or 

glycosylated ACTH from the 16 K fragment (Mains and Eipper, 

1979). Thus, the initial enzymatic cleavage steps were 

found to yield three major segments of the precursor, i.e., 

12 
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Figure 1. Schematic illustration of pro-opiomelanocortin 

together with the enzymatic steps that result in distinct 

B-endorphin peptides in the anterior and intermediate 

lobes of the pituitary. The enzymatic events which yield 

gamma-MSH, alpha-MSH and acetylated and C-terminally short-

ened forms of B-endorphin occur only in the intermediate 

lobe (illustration courtesy of Dr. Thomas L. O'Donohue). 
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16 K from theN-terminus, ACTH from the mid-portion and 

B-LPH from the C-terminus (Figure 1). In normal and tumor 

cells of the AL, additional proteolysis generates 

B-endorphin-related peptides and additional, biologically 

uncharacterized peptides from 16 K (Eipper and Mains, 

1979). Additional post-translational processing was soon to 

be described in melanotrophs of the IL. 

1.1.0.4 Differential Processing of .Pro-opiomelanocortin in 

the Intermediate Lobe 

The initial steps for processing POMC in the IL were 

found to be almost identical to those in AL (Nakanishi et 

al, 1977; Eipper and Mains, 1978; Roberts et al, 1978; 

Mains and Eipper, 1979), however, subsequent proteolysis 

was found to be considerably more extensive in the IL 

(Roberts et al, 1978; Mains and Eipper, 1979; Gianoulakis 

et al, 1979). As a result, the amount of B-LPH in the IL is 

minimal in comparison to that found in the AL (Liotta et 

al, 1978). The relative lack of B-LPH in the IL might have 

been expected considering an earlier proposal by Chretien 

and Li (1967) that B-LPH might be an IL biosynthetic 

intermediate for beta-MSH (B-LPH 41-58). As determined more 

recently, however, B-LPH in the IL is preferentially 

cleaved to B-endorphin-sized peptides and its N-terminal 

fragment, gamma-LPH (B-LPR 1-58), which contains the B-MSR 

sequence (Chretien et al, 1976; Crine et al, 1978; Roberts 

et al, 1978; Eipper and Mains, 1978). In the IL, ACTH (like 
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B-LPR), appears to be a minor product which primarily 

serves as a biosynthetic intermediate for production of 

alpha-MSH (N-acetyl-ACTH 1-13 amide) and corticotropin-like 

intermediate lobe peptide (CLIP) (ACTH 18-39) (Mains and 

Eipper, 1979; Gianoulakis et a1, 1979). In summary, the IL 

cleaves POMC to B-endorphin-sized peptides, gamma-LPH, CLIP 

and alpha-MSR, whereas, AL derivatives of the pro-hormone 

are B-LPH and ACTH and some B-endorphin. 

1.1.0.5 Genetic Code for Pro-opiomelanocortin 

Eipper and Mains (1980) proposed a model for 

biosynthesis of peptides from POMC which is similar to that 

shown in Figure 1. The details which confirmed and extended 

their model were established by molecular genetic 

techniques whereby the entire amino acid sequence of POMC 

was revealed. Nakanishi and colleagues took advantage of 

the IL's prolific synthesis of POMC-derived products to 

develop and clone complimentary deoxyribonucleic acid 

(eDNA) for the pro-hormone gene from bovine IL (Nakanishi 

et al, 1979). Sequencing and interpreting this eDNA 

revealed three important facts about the precursor. First, 

the amino acid sequences for known POMC-related peptides 

are encoded into translatable mRNA in the order presented 

in Figure 1. Second, each of the known peptide products of 

POMC is flanked by pairs of basic amino acids, i.e., two 

arginines, two lysines or combinations of the two, with no 

additional peptide leaders or fragments on each known 
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peptide. Third, a previously unidentified copy of an MSH 

fragment was found within the 16K cryptic region of POMC. 

Dibasic amino acid residues in polypeptide sequences 

had previously been shown to be important in processing 

other proteins (Docherty and Steiner, 1982). Basic amino 

acids had been suspected to be recognition sites for 

post-translational cleavage of POMC but aren't included in 

the sequence of mature peptide products (Bradbury et al, 

l976b; Eipper and Mains, 1979; Eipper and Mains, 1980). The 

most enlightening information provided by Nakanishi's gene 

code analysis was the amino acid sequence of the previously 

cryptic 16 K fragment at POMC's N-terminus (Nakanishi et 

al, 1979). Although Eipper and Mains (1979) bad suggested 

that further processing of 16 K was possible, the eDNA 

method for sequencing POMC showed that additional peptide 

products could be derived from the cryptic segment of POMC 

(Nakanishi et al, 1979). Nakanishi and colleagues were able 

to identify these new peptides because their sequences were 

demarcated by pairs of basic amino acid residues. Striking 

sequence homology of one sequence with the ACTH 4-10 region 

of alpha- and beta-MSH led Nakanishi to name one peptide 

gamma-MSH (Nakanishi et al, 1979). Gamma-MSH has since been 

extracted from the pituitary of several species as a 

twenty-seven amino acid peptide which may be glycosylated 

like ACTH 1-39 (Benjannet et al, 1980; Shibasaki et al, 

1980; Browne et al, 1981) and further C-terminally 

shortened to gamma 2- and gamma-3 forms. The gamma-MSH's 
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were found to be much less active at melanocyte dispersion 

than alpha-MSR (Ling et al, 1979), nonetheless, synthetic 

gamma-MSB, like the other melanotropins, has been shown to 

potentiate the steroidogenic actions of ACTB on mammalian 

adrenal cortex (Pederson and Brownie, 1980) and may have 

special natriuretic and cardiovascular roles (see 

Lymangrover et al, 1985). Thus, three species of 

melanotropic peptides, alpha-, beta- and gamma-MSB, are 

encoded in the POMC gene and they constitute sequences in 

all three major segments of the pro-hormone (see Figure 1). 

It is thought that since all three melanotropic peptides 

are encoded by uninterrupted expression regions of genomic 

DNA, called exons, POMC may have evolved through genetic 

recombinations of an ancient nucleotide sequence. 

Supporting this hypothesis is the homology found in 

nucleotide sequences for B-endorphin, ACTB and MSH between 

rodents, cattle and man (Drouin and Goodman, 1980; 

Nakanishi et al, 1981; Whitfeld et al, 1982). Species 

differences in polypeptide chain length and amino acid 

composition of 16 K and of the N-terminal region B-LPB 

suggest that these sequences of POMC are more recently 

evolved than biologically important regions of the 

multi-hormone precursor (Drouin and Goodman, 1980; 

Nakanishi et al, 1981; Whitfeld et al, 1982; Civelli et al, 

1983; Notake et al, 1983). 

1.1.0.6 Additional Enzymatic Modifications of 
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Pro-opiomelanocortin 

Mechanisms must exist by which POMC is metabolized 

to distinctly different products within corticotrophs and 

melanotrophs (Rosa et al, 1980; Eipper and Mains, 1980). 

Glycolysis, probably the first post-translational 

modification of POMC, occurs in both the AL and IL and may 

stabilize the precursor during its packaging into secretory 

granules (Lob and Gainer, 1979). Cleavage of POMC to its 

constituent peptide products occurs in the granules 

(Glembotski, 1981). It is presently not known how more 

extensive proteolysis of B-endorphin and ACTH is directed 

in the IL than in the AL. Perhaps there are additional 

proteolytic enzymes in mel~notrophs or else the enzymes 

common to both melanotropbs and corticotrophs exhibit 

different substrate specificity. Minor modifications of 

POMC such as phosphorylation or sulfation (Bennett et al, 

1981; Hoshina et al, 1982) could alter the prohormone just 

enough to provide subtle differences 

identical amino acid sequenc~. 

in an otherwise 

When Smyth and colleagues isolated multiple forms of 

B-endorphin from pig pituitary and brain (Smyth et al, 

1978; Smyth et a1, 1979; Zakarian and Smyth, 1979), the 

regional differences in POHC processing betwE:'en 

corticotrophs and melanotrophs became all the more 

evident. In the IL but not in the AL, B-endorphio 1-31 was 

found to undergo additional C-terminal proteolysis directed 
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by lysine residues at positions 

Eipper, 1981). As compared 

C-terminally shortened forms of 

opioid potency which is from 10-

that of B-endorphin (1-31) (Geisow 

1978; Akil et a1, 1981). 

28 and 29 (Mains and 

to B-endorphin 1-31, 

B-endorpbin exhibit an 

to 500-times less than 

et al, 1977; Li et al, 

The IL modification of B-endorphin which has more 

profound effects on opioid potency is acetylation of the 

peptide's amino(N)-terminus. Although N-acetylation 

confers MSH with its biological potency (Waller and Dixon, 

1960; Guttmann and Biossonas, 1961), N-acetyl forms of 

B-endorphin are totally devoid of opioid activity (Smyth et 

al, 1978; Deakin et al, 1980; Akil et al, 1981). The 

acetylase appears to have nearly as high an affinity for 

unacetylated forms of B-endorphin as for unacetylated and 

monoacetyl MSH (Rudman et al, 1979; Chappell et al, 1982; 

Glembotski, 1982c). 

Since N-acetylation of B-endorphin precedes at a 

higher rate than C-terminal proteolysis, most B-endorphin 

in the IL is converted to N-acetyl B-endorphin prior to 

modification of the C-terminus (Eipper and Mains, 1981; 

G1embotski, 1982b). The forms of B-endorphin which are 

produced in the IL as a consequence of these modifications 

are N-acetyl B-endorphin 1-31, B-endorphin 1-27, N-acetyl 

B-endorphin 1-27 and some N-acetyl B-endorphin 1-26 in 

addition to unacetylated E-endorphin 1-31 (Smyth and 
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Zakarian, 1980; Mains and Eipper, 1981; Eipper and Mains, 

1981; Liotta et al, 1981). Less than 10% of the total 

B-endorphin products of the IL is accounted for by the 

potent opioid) B-endorphin 1-31. The most abundant of the 

modified forms appears to be N-acetyl 

B-endorphin(l-27)(Smyth and Zakarian) 1980; !viains and 

Eipper, 1981; Eipper and Mains, 1981; Liotta et al, 1981). 

Hence, B-endorphin-related products of the IL differ 

markedly from those of the AL where only B-endorphin and 

its immediate precursor, B-LPH, are produced (Liotta et al, 

1978). Interestingly, the N-acetylation and C-terminal 

proteolysis, so consistently observed in mammalian IL, are 

modifications selectively exploited in lower vertebrates. 

For example, in the reptile, Anolis, B-endorphin in the IL 

is subjected only to C-terminal proteolysis (Dores and 

Suprenant, 1983; Dores, 1983). In contrast, B-endorphin 

produced by the IL in teleost fishes is principally 

N-acetylated without C-terminal shortening (Kawauchi and 

Muramoto, 1979). These unique molecular features of 

B-endorphin and related peptides are being used in order to 

ascertain the physiology and regulation of these peptides 

throughout the animal kingdom (Krieger, 1983). It will be 

important in the future to determine if differential 

regulation of ALand IL secretions, i.e., releasing factor 

stimulation versus inhibition, also controls the 

differences in biosynthetic products between the two lobes. 
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1.1.0.7 Chemistry of B-endorphin: Structure and Function 

The opiate activity of B-endorphin, like that of 

dynorphin peptides, depends, in part, upon by the 

N-terminal enkephalin sequence which both peptides 

possess. Accordingly, modification of the N-terminus by 

the morphomimetic potency of acetylation destroys 

B-endorphin (Li et al, 1978; Deakin et al, 1980; Akil et 

al, 1981). The C-terminal region of B-endorphin is also 

important for opiate activity of the molecule, defining 

B-endorphin's potency and, perhaps, its specific affinity 

for the mu and epsilon subtypes of opiate receptor (see 

Cox, 1982; Snyder, 1984). Like N-acetylation, C-terminal 

shortening dramatically diminishes the potency of 

B-endorphin in both opiate receptor binding and biologic 

assays (Li et al, 1978; Deakin et al, 1980; Akil et al, 

1981). These modifications are also likely to influence 

non-opioid actions of B-endorphin peptides that have been 

proposed for the immune system (Hazum et al, 1979; 

Schweigerer et al, 1982; Gilman et al, 1982; McCain et al, 

1982; Simpkins et al, 1985). 

There are features of B-endorphin's biological 

activity which may be accounted for, in part, by tertiary 

structure. The arrangement of hydrophobic and hydrophilic 

amino acid residues in the C-terminal region of B-endorphin 

has been postulated to provide B-endorphin with the ability 

to form an alpha or pi helix at lipid-water interfaces like 
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that presumed to occur at the cell membrane (Kaizer and 

Kezdy, 1984). This plasticity of B-endorphin may allow the 

peptide to form long-lasting associations with appropriate 

target cell receptors (Akil et al, 1980; Snyder, 1984). The 

stability of B-endorphin in blood is another 

physiologically important characteristic of this opioid 

which could be attributed to B-endorphin's tertiary 

structure. B-endorphin has an estimated circulating 

half-life of from 5-50 min (Pezalla et al, 1978; Foley et 

al, 1979; Roughten et al, 1980; Aronin et al, 1981). By 

contrast, the enkephalins are inactived by blood-borne 

peptidases at such a high rate that even in extra-corporeal 

serum, their estimated half-life is no greater than twelve 

minutes (Burbach et al, 1979). B-endorphin's resistance to 

N-terminal tyrosine cleavage which inactivates the 

enkepbalins (Hambrook et al, 1976) may be due to folding of 

the B-endorphin molecule. Nicholas and colleagues (1981) 

found that, in aqueous solution, amino acid residues in the 

C-terminus of B-endorphin 

associate with residues in the 

appear to 

N-terminus. 

non-covalently 

It is likely 

that such potential tertiary conformation shields the 

N-terminus of the peptide from enzymatic attack and thereby 

prolongs the effective half-life of B-endorphin in blood. 

B-endorphin's structure bas, in addition, also 

availed investigators the antigenic and chemical features 

necessary to distinguish B-endorphin from other 

functionally and biosynthetically-related peptides. 
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Antisera directed towards the C-terminal region of 

B-endorphin are unable to detect the enkephalins or 

dynorphins yet recognize all B-endorphin peptides and 

precursors containing the same antigenic sequences of amino 

acids. The substantial molecular weight differences 

between the B-endorphin-sized peptides and their 

precursors, B-LPH and POMC, permit separation of these 

forms by gel filtration chromatography, whereas, similarly 

sized B-endorphin peptides (e.g., B-endorphin 1-31 vs 

N-Acetyl-B-endorphin 1-31) themselves are best separated on 

the basis of charge or hydrophobicity using ion exchange 

chromatography or high performance liquid chromatography, 

respectively. 

N-acetylated 

With cation exhange techniques, for example, 

and C-terminally shortened forms of 

B-endorphin are distinguishable 

B-endorphin (1-31) .(Zakarian and 

from the opioid form, 

Smyth, 1979). Using these 

methods, it is possible to characterize and quantify 

specific forms of B-endorphin peptides and, thereby, attain 

a better understanding of factors which govern synthesis, 

regulation 

peptides. 

and biological activity of B-endorphin 

l ,2 DISTRIBUTION OF BETA-ENDORPHIN AND RELATED PEPTIDES 

B-endorphin was first found in the pituitaries of camels 

(Li and Chung, 1976). Within months, B-endorpbin had been 
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isolated from pituitary glands of several animals including 

pigs (Bradbury et al, 1976b). sheep (Chretien et al, 1976), 

and man (Li et al, 1976; Chretien et al, 1976) and has 

since been found in rodents, cows, horses and other mammals 

(Rubinstein et al, 1977; Liotta et al, 1978; Li et al, 

1981). Subsequent studies have shown that B-endorphin or 

related peptides are produced in a · variety of mammalian 

tissues including the brain, placenta and gonads (Rossier 

et al, 1977a; 1977b; Matsukura et al, 1978; Nakai et a1, 

1978; Odagiri et al, 1979; Liotta and Krieger, 1980; Sharp 

et al, 1980; Lim et al, 1983; Margioris et al, 1983; Pintar 

et al, 1984) as well as in associated fluids: 

cerebrospinal, amnionic, follicular and seminal, 

respectively (Jeffcoate et al, 

Sharp and Pekary, 1981; Lim et 

1978; Gautray et al, 1977; 

al, 1983). Others have 

characterized the presence of B-endorphin peptides in the 

pancreas and in the gastrointestinal mucosa (Bruni et al, 

1979; Watkins et al, 1980; Feurle et al 1 1980; Orwoll and 

Kendall, 1980) where paracrine or autocrine functions have 

been postulated for B-endorphin (Feldman et al 1 1983; 

Krieger, 1983). There is limited evidence to suggest that 

B-endorphin may also be used as a transmitter by motor 

neurons in neonatal rats (Haynes et al, 1982). Among all 

mammalian tissues, however, the pituitary synthesizes and 

secretes more B-endorphin and related peptides than any 

other tissue in the body (Voulteenaho et al, 1980). The AL 

and the IL each contribute substantially to basal le~els of 
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circulating B-endorphin-related peptides (Hollt et al, 

1978a; Akil et al, 1979; Wardlaw and Frantz, 1979; Mueller, 

1980; Przewlocki et al, 1982), however, the AL secretions 

~re generally more sensitive to a variety of stimuli. 

Consequently, circulating levels of B-endorphin-related 

peptides usually coincide with release evoked from AL 

corticotropbs. This is particularly true in man where the 

IL is poorly developed (Visser and Swaab, 1979). 

1.2.1 Localization of B-endorphin 

1.2.1.1 Pituitary B-endorphin 

Just as Moon and coworkers had observed for the 

pituitary distribution of B-LPH (Moon et al, 1973), several 

groups found that B-endorphin can be immunohistochemically 

localized to corticotropic cells of the rat and human AL 

and in every cell of the rat IL (Bloom et al, 1977; Facer 

et al, 1977; Mendelsohn et al, 1979). As the biosynthetic 

relationship of B-endorphin to otber · POMC derivatives was 

unfolding, the presence of B-endorphin within secretory 

granules of corticotrophs and melanotrophs was inferred and 

later demonstrated using immunoelectron microscopy 

(Pelletier et al, 1977; Weber et al, 1978; Martinet al; 

1979). Within these granules, the pro-hormone is processed 

to the peptides characteristic of either the AL or the IL 

(Glembotski, 1981; 1982a; 1982b). Humans and the great apes 

transiently develop an IL during fetal life (Silman et al, 
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1976; Visser and Swaab, 1979) which largely involutes after 

birth (Visser and Swaab, 1979). Recent evidence suggests 

that the enzymatic capabilities of the homonid IL resemble 

those of melanotrophs of other mammals only insofar as 

proteolysis is concerned; the enzyme which catalyzes 

N-acetylation seems to be lacking 1n the human fetal IL 

(Tilders et al, 1981; Ackland et al, 1983). The rat is one 

of the many mammalian species in which the IL is developed 

and appears to be fun c t ion a 1 1 n the · ad u 1 t an i 01 a 1 • T b e 

concentration of B-endorphin and related POMC products in 

the rat IL 

al, 1977b; 

exceeds that in the AL by ten-fold (Rossier et 

Liotta et al, 1978; Mueller, 1980). This 

relationship holds up at the transcriptional level where 

Herbert and co-workers have found that there is twenty 

times more POMC messenger RNA in the IL than in the AL 

(Civelli et al, 1983). 

1.2.1.2 Ontogeny of Pituitary Corticotrophs and 

Melanotrophs 

As the distribution of POMC-secreting cell types is 

considered, the importance of pituitary sources of 

B-endorphin and related peptides is highlighted by the 

precocious embryological development of corticotrophs and 

melanotrophs relative to other pituitary cell types. 

Chatelain and colleagues found that in rat fetuses, 

B-endorphin and other POMC derivatives are being 

synthesized by well-differentiated cells of the anterior 
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and intermediate lobes several days prior to the appearance 

of the first detectable growth hormone- or 

prolactin-secreting cells (Chatelain et al, 1979). Although 

immunoreactive B-endorphin and related peptides don't 

appear in the AL until day 15 or 16 of rat fetal life, the 

cells appear to be committed by day 12 (Begeot et a 1, 

1982)' Similarly, corticotrophs are the first of the 

adenohypophyseal cells to become functional in humans (see 

Daughaday, 1981). Once the hypophyseal germ cells for 

corticotrophs and melanotrophs appear, they are able to 

differentiate independently from hypothalamic influences, 

i.e., even in human and rat anenchephalic fetuses (Begeot 

et al, 1978; Chatelain et al, 1979). Both lobes of the 

adenohypophysis are embryologically derived from the same 

enlage of ectodermal tissue, Rathke's pouch (Wingstrand, 

1966a; 1966b), Recent discoveries that many of the same 

biogenic amines and peptides are ubiquitously present in 

neural and endocrine tissues emphasizes an embryologic 

kinship between secretory cells throughout the body (Pearse 

and Takor, 1976; Pearse and Polak, 1978). Thus Pearse and 

colleagues have proposed that cells of the adenohypophysis 

belong to a diffuse neuroendocrine system. Widespread 

distribution of B-endorphin and other POMC peptides in 

secretory and neural cells support their hypothesis. 

1.2.1.3 Brain B-endorphin 

The discovery of B-endorphin and related peptides in 

28 



tissues other than the pituitary, particularly in neurons 

of the brain, closely followed the isolation and 

description of B-endorphin in the pituitary. Because of 

the initial astonishment at B-endorphin's analgetic potency 

and its presumed biosynthetic relationship to the 

enkephalins (initially isolated from brain), the central 

nervous system (CNS) was the first and most thoroughly 

examined extra-pituitary region of the body for 

localization of B-endorphin and related peptides. It was 

soon evident that B-endorphin could be found in CNS neurons 

but its distribution was clearly distinct from that of the 

enkephalins. Numerous groups of enkephalinergic cell 

bodies with intranuclear or short internuclear projections 

have been demonstrated throughout the rat CNS (Elde et al, 

1976; Simantov et al, 1977; Bloom et al, 1978). In 

contrast, B-endorphin was found in a well-defined band of 

perikarya along the basolateral border of the arcuate and 

adjacent periventricular hypothalamus (Watson et al, 1978; 

Sofroniew, 1979). Fibers from these neurons innervate other 

nuclei within the hypothalamus and terminate also in the 

median eminence. Endorphinergic neurons arch dor s ally out 

of the hypothalamus to innervate the septum. the amygdala, 

portions of the thalamus and cortex. the central grey of 

the brainstem and the locus coeruleus (Rossier et al, 

1977b; Bloch et al, 1978; Bloom et al. 1978; Watson et al, 

1978). The rather restricted nuclear origin and CNS-wide 

distribution of brain B-endorphin contrasts markedly with 
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the extensive nuclear distribution of local enkephalinergic 

neurons (Elde et al, 1976; Bloom et al, 1978). This 

distinction is similarly evident from differential regional 

concentrations of the two opioids (Hughes et al, 1977; 

Rossier et al, 1977b; Gramsch et al, 1979). The difference 

in CNS distribution of B-endorphin and the enkephalins was 

part of the evidence which made it increasingly obvious 

that these two endogenous opioids are biosynthetically 

unrelated. Current literature supports an equally diverse 

distribution of the dynorphin opioids in tbe CNS which more 

closely resembles the distribution of the enkephalin 

neurons than of CNS B-endorphin neurons (Khachaturian et 

al, 1982). 

Several lines of evidence indicate that CNS 

B-endorphin is distinct from pituitary B-endorphin in 

synthesis as well as in secretion and function. Krieger 

and coworkers (1979) found that lesioning the arcuate 

nucleus [which comprises no more than 5% of the total 

hypothalamus (Palkovits, 1977) with monosodium glutamate 

significantly reduces CNS levels of B-endorphin and ACTE 

without changing pituitary content of either peptide 

(Krieger et al, 1979). Conversely, hypophysectomy fails to 

substantially alter brain content of B-endorphin-related 

peptides (Rossier et al, 1977b; O'Donohue et al, 1979). 

Furthermore, pulse-chase studies have shown that 

B-endorphin and related peptides are synthesized ~ ~ in 

hypothalami from adult and neonate animals (Liotta at el. 
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1979; 1980). B-endorphin-related peptides have been found 

within hypothalamic granules (Barnea et al, 1981) from 

which calcium-dependent release has been demonstrated 

(Fukata et al,l980; Vermes et al, 1981). An important 

physiological distinction of CNS from pituitary B-endorphin 

is that forms which are produced in the brain, though 

similar to forms synthesized by melanotrophs, are 

nonetheless unique to the CNS (Gramsch et al, 1.980; Weber 

et al, 1981; Evans et al 1982; Zakarian and Smyth, 1982). 

Additional evidence which distinguishes brain from 

pituitary B-endorphin is that fetal development of 

B-endorphin neurons precedes that of pituitary B-endorphin 

(Schwartzenberg and Nakane, 1982). The first sign of 

B-endorphin immunoreactivity in the cerebral anlage emerges 

on the twelfth day of rat fetal life in neurons of the 

developing hypothalaous, whereas, AL 

don't appear until fetal day 16 with 

precursors appearing twenty-four hours 

corticotropic cells 

the IL melanotroph 

later (Chatelain et 

al, 1979; Schwartzenberg and Nakane, 1982). Although recent 

experiments have shown that brain B-endorphin may be 

functionally influenced by pituitary-related endocrine 

functions (Gambert et al, 1980; Barden et al, 1981; Wardla~ 

et al, 1982a; 1982b; Wardlaw and Frantz, 1983) it i s 

nonetheless clear that B-endorphin producing cells of the 

CNS and pituitary function independently. 

1.2.1 .4 Phylogenetic Distribution of B-endorphin 
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As anti-B-endorphin antisera 

exploration for B-endorphin broadened 

than mammals, Immunohistochemical 

became available, 

to organisms other 

techniques have 

demonstrated iB-endorphin in organisms as diverse as the 

protozoan, Tetrahymena pyriformis (LeRoitb et al, 1982), 

earthworms (Alumets et al, 1979), bony fishes (Kawauchi et 

al, 1979; Van Eys and Van den Oetelaar, 1981), amphibians 

(Lob, 1979), reptiles (Dores, 1982) and birds (Naude et a1, 

1981), Similar to observations in the mammalian kingdom, 

B-endorphin was found in secretory or neural tissues. In 

Drosophila, for instance, complimentary DNA probes for the 

POMC gene have been recently used to locate B-endorphin­

and ACTH-producing cells in the fly's reproductive organs 

as well as in nervous tissues (see Krieger, 1983), findings 

which parallel 

gonads and CNS, 

the presence of B-endorphin 

1.3 PHYSIOLOGY OF BETA-ENDORPHIN SECRETION 

in mammalian 

There are numerous putative roles for B-endorphin ln 

mammals, As indicated above, the broadest description of 

B-endorphin peptides is that they are intercellular 

messengers. Pituitary B-endorphin peptides most likely 

exert hormonal actions in the periphery. I.ike other 

p i t u i tar y h or n1 0 n e s , n-end or ph in pep t i d e s are s y n t he s i zed 1 n 

endocrine cells where they are processed and stored ln 
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secretory granules. Upon depolarization, B-endorphin 

peptides are released via calcium-dependent mechanisms from 

both the AL and IL (Simantov, 1978; Przewlocki et al, 

1978a; Vermes et al, 1980a). The most convincing evidence 

that the pituitary is the primary source of circulating 

B-endorphin peptides is that both basal and stimulated 

levels in blood are generally found to be undetectable 

after hypophysectomy (Guillemin et al, 1977; Akil et al, 

1979; Mueller, 1980). It should be noted, however, that 

blood-borne B-endorphin may arise from lymphocytes under 

experimental conditions of viral infection (Smith and 

Blalock, 1981). Both the ALand IL appear to be involved in 

basal and stimulated release of B-endorphin peptides. This 

is evident, for instance, by reductions in blood levels of 

B-endorphin-related peptides after either selective 

anterior- or intermediate-lobectomy (Przewlocki et al, 

1982). A final consideration regarding B-endorphin's 

hormone status is that the peptide has been shown to be 

relatively stable in 

comparable to that 

blood. Its circulating half life is 

of other pituitary hormones (see 

Cherr.istry of B-endorphin, p 19). 

Demonstrating tbat pituitary B-endorpbin peptides 

are hormone-like in their origin, secretion and presence in 

the circulation bas been an easier task than determinin g 

their biologic actions. An extensive body of literature on 

biological actions of opiate alkaloids together with a n 

especially versatile antagonist of opiate receptors, 
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naloxone, has facilitated the search for physiological 

actions of the opioid forms 

B-endorphin 1-31. These may 

of B-endorphin, particularly 

include, but are not limited 

to, functions in analgesia, neuroendocrine regulation, 

immune function, 

respiration and 

thermoregulation, cardiovascular control, 

gastrointestinal motility and secretion. 

It should be emphasized that none of these actions can 

specifically 

families of 

be ascribed to B-endorphin since two other 

and endogenous opioids, the enkephalins 

dynorphins, are also lkely to serve at least some of the 

biological functions listed above. An additional factor 

which has complicated efforts to define B-endorphin's 

hormonal actions relates to the multiple forms of 

B-endorphin secreted by the pituitary gland, forms for 

w h i c h ph y s i o 1 o g i c fun c t i on s are on 1 y now be i n·g e 1 u c i d a t e d • 

Consideration of the endocrine functions of 

pituitary B-endorphins is also confounded by limited 

information regarding access of these peptides to an 

important target organ, the brain. There, numerous actions 

mediated by opiate receptors are described and additional 

non-opioid effects are possible. Whether or not pituitary 

B-endorphin is able to reach CNS structures remains an 

unsettled issue which is addressed below. 

1.3.0.1 Physiological Release and Possible Functions of 

Pituitary B-endorphin Peptides 
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One approach leading to a better understanding of 

the physiologic functions of pituitary B-endorphin stems 

from appreciation of conditions under which AL and IL forms 

of the peptide are normally secreted. Studies of this sort 

have 

tool 

relied almost exclusively on radioimmunoassay as the 

for measuring changes in pituitary 

release. As reviewed previously, precursors, 

B-endorphin 

as well as 

modified forms of B-endorphin 1-31, are detected equally 

well by most antisera used for radioimmunoassays. Without 

additional chromatographic procedures that separate AL and 

IL forms of B-endorphin from one another and from 

B-endorphin's immediate precursor, B-LPH, there can be no 

certainty as to the true chemical identity of the 

immunoreactive B-endorphin 1n blood. For this reason, 

uncharacterized, radioimmunoassayable forms of B-endorphin 

are collectively referred to as immunoreactive 

(iB-endorphin). 

B-endorphin 

1.3.1 Stress-Induced Release of Pituitary B-endorphin 

If a single 

characteristically 

B-endorphin, that 

defined stress as 

condition is to be named which 

evokes 

condition 

pituitary secretion of 

is stress. Selye (1936) 

any internal or external situation 

capable of activating the pituitary-adrenocortical axis. 

Pituitary release of iB-endorphin now shares the 

distinction, along with ACTH, of being a definitive 

pituitary response to stress. A wide variety of stressors 
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stimulate pituitary release of iB-endorpin: trauma 

(Guillemin et al, 1977), hypovolemia (Knepel et al, 1982a), 

septic shock (Bone et al, 1981; Carr et al, 1982), surgery 

(Dubois et al, 1981; Mueller, 1981), fetal distress 

(Gautray et al, 1977), parturition and birth (Csontos et 

a 1, 1979 Fletcher et al, 1980), strenuous physical 

exertion (Colt et al, 1981; Carr et al, 1981) and noxious 

experimental stimuli like inescapable electrical footshock 

(Rossier et al, 1977a; Hollt et al, 1978a; Akil et al, 

1979; Millan et al, 1981), cold water swimming (Wardlaw and 

Frantz, 1980; Lim and Funder, 1 9 83) • immobilization 

(Mueller, 1980) and ether (Mueller, 1981). 

Unusual stressful stimuli such as flashing light or 

loud noise may preferentially enhance IL secretion (Smelik, 

1960; Moriarty et a1, 1975; Moriarty and Moriarty, 1975; 

Miahle and Briaud, 1977). In most forms of stress, however, 

AL release dominates the increase in plasma levels of 

iB-endorphin. Several observations support this v~ew. 

Concomitant (apparently equimolar) amounts of iB-endorphin 

and ACTH are secreted in response to stress in rats 

(Guillemin et al, 1977, Rossier et al, 1977a). When the 

forms of stress-induced plasma levels of iB-endorphin have 

been characterized by chromatography, stress stimuli ' were 

found to elevate not only B-endorphin-sized 

immunoreactivity but also B-LPH, a marker for AL secretion 

of iB-endorphin (Millan et al, 1981; Carr et al, 1981; Carr 

et al, 1982; Lim and Funder, 1983). Furthermore, 
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glucocorticoid treatment, which specifically reduces AL 

release of ACTH, has been repeatedly shown to depress 

stress-induced release of iB-endorphin (Guillemin et al, 

1977; Rossier et al, 1977a; Akil et al, 1979; Mueller, 

1980; Lim and Funder, 1983). 

AL concentrations of iB-endorphin tend to remain 

stable during short-term secretory changes, however, some 

investigators have reported that acute stimulation of IL 

release temporarily depletes glandular content of MSH and 

B-endorphin peptides (Kastin et al, 1969; Moriarty and 

Moriarty, 1975; Moriarty et al, 1975; Millan et al, 1981; 

Lim and Funder, 1983). Shortly after inescapable footshock, 

for example, IL content of total iB-endorphin declines by 

approximately 25% (Millan et al, 1981; Lim et al, 1982a). 

Within an hour or two, however, peptide levels in the IL 

are replenished indicating that synthesis of POMC peptides 

in melanotrophs is stimulated by stress to keep pace with 

glandular secretion (Rossier et al, 

1981; Lim and Funder, 1983). 

1977a; Millan et al, 

Considering the numerous forms of B-endorphin 

peptides secreted by the AL and IL, the responsiveness of 

the two lobes to stress indicates that B-endorphin peptides 

may be involved 

biological needs. 

release underscores 

in a wide spectrum of crisis-related 

The sensitivity of AL and IL B-endorphin 

the need to discern bow secretion from 

corticotrophs and melanotrophs are regulated by the central 
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nervous system. 

1.3.1.1 Pituitary B-endorphin and Stress-Induced Analgesia 

Pituitary B-endorphin has been considered an 

essential element in certain mechanisms of analgesia. Like 

morphine, B-endorphin 1-31 has analgesic actions which are 

readily reversed by the opiate antagonist, naloxone (see 

Cox, 1982). Direct admininstration of B-endorphin 1-31 into 

the cerebrospinal fluid produces profound and long-lasting 

analgesia in animals and man (Feldberg and Smyth, 1976; Lob 

et al, 1976; Oyama et al, 1980). Furthermore, like 

morphine, B-endorphin is physically addicting (Wei and Lob, 

1976). Since the pituitary is the body's largest resevoir 

of B-endorphin 1-31, pituitary B-endorphin was assumed to 

be an mediator of autoanalgesic mechanisms. Much of the 

evidence supporting this hypothesis has been 

circumstantial, correlating stress-induced increases in 

circulating iB-endorphin with nociception. 

Stress, the principle physiologic stimulus for 

release of pituitary B-endorphin, is often associated with 

a state of analgesia (Basbaum and Fields, 1978). This 

stress-induced analgesia is evoked by many of the forms of 

stress that elevate circulating iB-endorphin, e • g • ' 

footshock, cold water swimming, immobilization and 

centrifugal acceleration (Akil et al, 1978; Bodnar et al, 

1978; Hayes et al, 1978; see Millan, 1981). In addition, 
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the amount of iB-endorphin which is released in response to 

stress appears dependent upon the intensity of the 

stressful experience (Mueller, 1981), a relationship which 

parallels the correlation between stress intensity and the 

degree of analgesia induced by stress (Hayes et al, 1978). 

As an example, during the stress of parturition, pituitary 

release of B-endorphin is elevated and thought to diminish 

the pain of delivery (Csontos et al, 1979; Fletcher et al, 

1980; Akil et al, 1978). This hypothesis is consistent with 

the finding that during the course of gestation, pain 

thresholds increase, especially just prior to delivery 

(Ginzler, 1980). 

Additional evidence for involvement of pituitary 

B-endorphin in stress-induced analgesia comes from studies 

of hypophysectomized animals or animals whose AL secretion 

of POMC peptides is experimentally increased or decreased 

before testing levels of nociception. Ablation of the 

pituitary 
I 

bas been shown to attenuate or abolish 

stress-induced analgesia (Amir and Amit, 1979; Bodnar et 

al, 1979; Lewis et al, 1981; Millan et al, 1980). Evidence 

which further implicates AL B-endorpbin in stress-induced 

analgesia is that long-term enhancement of B-endorphin 

secretion by adrenalectomy potentiates footsbock-induced 

analgesia (Mareck et al, 1982; Mareck et al, 1983). 

Conversely, selective inhibition of corticotroph secretions 

with glucocorticoids attenuates stress-induced analgesia 

(Bodnar et al, 1979; Cheng et al, 1979; Lewis et al, 1980; 
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Marek et al, 1982; Marek et al, 1983; Gaiardi et al, 1983). 

Nevertheless, the role of pituitary B-endorphin in 

analgesia is controversial. In contrast to the evidence 

cited above, Millan and coworkers found that 

glucocorticoids had no effect on foot shock-induced 

analgesia suggesting that AL B-endorphin plays no essential 

part in mechanisms of stress-induced analgesia (Millan et 

al, 1980; Millan et al, 1981). In accord with Millan's 

conclusions, Lim and colleagues found that although 

footshock-induced analgesia is accompanied by increased 

secretion of iB-endorphin and partial depletion of both AL 

and IL content, there is no positive correlation between 

these hormonal changes and the time-course of 

stress-induced analgesia (Lim et al, 1982b). 

The principle contention against pituitary 

B-endorphin's involvement in analgesic mechanisms is the 

issue of the hormone's access to the brain. CNS structures 

which are believed to mediate analgesia, like the 

periaqueductal grey area, may be insulated from circulating 

peptides by the blood-brain barrier (Rapoport, 1976). 

Although a growing body of evidence indicates that 

B-endorphin could mediate analgesia through peripheral 

antinociceptive mechanisms (Bentley et al, 1981; Rios and 

Jacob, 1983; Brodin et al, 1983; Randich and Maixner, 

1984), the ability of circulating B-endorphin peptides to 

influence perception of pain as well as numerous other 
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physiologic functions may depend on the entry of 

blood-borne B-endorphin into brain target sites. 

1.3.1.2 Access of Pituitary B-endorphin to the CNS 

For the brain to be considered a target organ for 

pituitary B-endorphins, the peptides must be able to 

penetrate the blood-brain barrier. B-endorphin and a 

radiolabeled analog of B-endorphin were found to enter the 

cerebrospinal fluid (CSF) within minutes after systemic 

infusion (Pezalla et al, 1978; Rapoport et al, 1980). 

Similarly, B-endorphin in human CSF rapidly equilibrates to 

a maximum of 20% of plasma levels after intravenous 

infusion of the opioid (Gerner et al, 1982). Other 

investigators, however, have contested the possibility that 

B-endorphin rapidly enters the CNS even after enhanced 

pituitary release of the magnitude achieved during stress 

(see Heisenberg and Simmons, 1983). Houghten and coworkers 

reported that although radiolabeled B-endorphin accumulates 

in CSF after peripheral 

was undetectable in the 

administration, the intact peptide 

brain parenchyma (Houghten et al, 

1980). In contrast, Herin and colleagues found radiolabeled 

B-endorphin in the hypothalamus as well as in the CSF after 

systemic administration of the peptide (Herin et al, 1980). 

The abilty of blood-borne B-endorphin to rapidly accumulate 

in the ventricles and B-endorphin's stability in the CSF 

(Pezalla et al, 1978) are important considerations in 

support of pituitary B-endorphin's influence on analgetic 
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mechanisms. 

analgesia, 

The CNS structure best known for mediation of 

the periaqueductal 

cerebral aqueduct. Therefore, 

grey 

the 

area, 

CSF 

abutts 

bathes 

the 

the 

periaqueductal grey matter with opioid concentrations of 

B-endorphin which reflect ongoing pituitary release 

conditions. 

Although the ability of B-endorpbin to penetrate the 

blood-brain barrier may be lirrited, certain structures of 

the brain do not possess this exclusionary interface with 

the circulation. Circumventricular areas of the CNS, like 

the media-basal hypothalamus and the region around the 

fourth ventricle, permit free exchange of neuronal and 

sytemic substances. In addition to access through the 

circumventricular areas, there is another route through 

which pituitary B-endorphin peptides could gain access to 

the brain to influence CNS-mediated functions. 

Direct routing of pituitary peptides to the brain is 

possible by retrograde transport which involves flow 

through unique vascular connections that have been 

demonstrated from the posterior and superior aspects of the 

pituitary to the medio-basal hypothalamus (Bergland and 

Page, 1978; Mezey and Palkovits, 1982). The concept of 

retrograde transport originated from the observation that 

pituitary hormones are more highly concentrated in effluent 

portal blood fro~ the hypothalamus than in the peripher~l 

circulation (Oliver et al, 1977). More recently, it bas 
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been shown that the very high levels of iB-endorphin in 

portal blood are dramatically reduced after hypophysectomy 

(Lissitsky et al 1 1980) indicating that most iB-endorpbin 

in the portal 

pituitary. 

circulation normally originates ~n the 

Stimuli which are known to provoke AL secretion of 

ACTH have also been shown to rapidly elevate 

intraventricular concentrations of ACTH (Bergland et al. 

1980), but these data do not address the possibility that 

CSF peptides may not represent what bas access to neural 

structures. Other studies on the types of B-endorpbin in 

brain suggests that the N-acetylated forms of B-endorphin 

which are found in the CNS (Zakarian and Smyth. 1982) may 

actually originate in the IL (Weber et al, 1981; Evans et 

al. 1982), a finding which also supports retrograde flow of 

pituitary B-endorphin. Additional research is needed to 

settle the issue about circulating B-endorphin's access to 

the brain before pituitary B-endorphin can be an accepted 

participant in CNS-mediated analgetic mechanisms such as 

those brought on by stress. 

1.3.1,3 Effects on Pituitary Secretions 

Recent evidence suggests that the release of several 

pituitary hormones that occurs in response to stress may, 

in fact, be mediated by B-endorphin. The most convincing 

evidence for neuroendocrine actions of B-endorphin is in 
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control of stress-induced prolactin release. 

prolactin secretion is as reliable a hormonal 

Increased 

index of 

stress as release of ACTH and adrenal glucocorticoids and 

catecholamines (Nicholl et al, 1960), Interestingly, 

stress-induced secretion of prolactin is blocked by 

naloxone pretreatment (van Vugt et al, 1978), a finding 

which 1s consistent with the ability of opiates to 

stimulate prolactin release (Bruni et al, 1977). Although 

B-endorpbin has been shown to increase circulating 

prolactin in vivo (Rivier et al, 1977; Foley et al, 1979), 

neither this nor other opioids directly stimulate prolactin 

secretion in vitro (Grandison and Guidotti, 1977). 

Consequently, 

stress-induced 

the involvement of opioid 

release of prolactin 1s 

mediated by actions within the CNS. 

pep tides 

likely to 

One of the earliest reports indicating 

in 

be 

that 

corticotroph secretions might modulate prolactin secretion 

was that of Harms and coworkers (1975) who found that the 

synthetic glucocorticoid, dexamethasone, inhibit• secretion 

of prolactin due to ether stress. They also noted that 

adrenalectomy potentiates stress-induced prolactin 

secretion (Harms et al, 1975). More recent findings by 

Rossier and colleagues (1980) specifically linked AL 

B-endorphin secretion with stress-induced prolactin 

secretion and indicated that Harms results reflect direct 

opioid effects on prolactin release. Stronger support for 

physiological involvement of B-endorphin in the regulation 
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of prolactin was 

anti-B-endorphin 

obtained from the observation that 

and anti-sera decreased basal 

stress-induced release of prolactin in rats (Ragavan and 

Frantz, 1981). Since B-endorphin is unable to directly 

influence AL release of prolactin, it is generally accepted 

that B-endorphin inhibits the secretion of dopamine at the 

median eminence (MacLeod, 1976). In fact, this hypothesis 

offers one 

B-endorphin 

mechanism, 

neurons in 

of 

to 

the best-supported 

date. Through 

roles for pituitary 

a naloxone-reversible 

B-endorphin decreases the activity 

the basal hypothalamus (Deyo et al• 

of dopamine 

1979; Van 

Loon et al, 1980). As a consequence dopamine release from 

the tuberoinfundibular nerve terminals is reduced (Wilkes 

and Yen, 1980) lowering the concentration of dopamine in 

portal blood (Gudelsky and Porter. 1979) thereby removing 

tonic inhibitory control of prolactin secretion. 

Therefore, stress-stimulated B-endorpbin release appears to 

dis inhibit prolactin secretion through its actions on 

hypothalamic dopaminergic mechanisms. Consistent with this 

hypothesis is the observation that lesioning brain 

dopaminergic neurons prevents B-endorphin from increasing 

circulating levels of prolactin (Okajima et al, 1980). It 

is likely that B-endorphin influences the secretion of 

other AL hormones through analogous mechanisms, whereas, 

B-endorphin appears to affect vasopressin secretion through 

direct actions on the neural lobe of the pituitary. 

Vasopressin release is characteristically unchanged 
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or lowered by stress. By contrast, animals or human 

subjects pretreated with naloxone respond to stress with 

dramatically elevated circulating levels of vasopressin 

(Lightman and Forsling, 198G; Knepel et al, 1982b) 

suggesting that vasopressin release is normally suppressed 

through an opiate receptor mechanism. Opiates have been 

shown to inhibit vasopressin release in vitro (Iversen et 

al, 1980;Lightman et al, 1982) and in 

Greidanus et al, 1979). Although the 

vivo (van Wimersrna 

neurohypophysis is 

innervated by both enkephalin and dynorphin neurons, the 

following considerations indicate that pituitary 

B-endorphin is the endogenous opioid involved in inhibitory 

control of vasopressin release. As 1n the case of 

naloxone, dexamethasone-pretreatment allows stress to evoke 

the release of vasopressin (Knepel et al, 1982b). A common 

element linking these two findings is the ability of 

dexamethasone and naloxone to block the secretion and 

actions, respectively, of B-endorphin from the AL. 

Furthermore, dexamethasone has no effect on either 

methionine-enkepbalin or dynorphin content in the neural 

lobe (Hollt et al, 1981). In addition, animals bearing 

lesions of brain endorphinergic neurons, like normal 

animals, fail to release vasopressin in response to stress 

(Knepel et al, 1982c), indicating that pituitary rather 

than brain B-endorphin is important in suppressing 

vasopressin release during exposure to stress. 

Similar to its putative inhibitory control of 
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vasopressin release, pituitary B-endorphin may inhibit 

other pituitary hormones during stress. Consistent with 

the known inhibitory effects of opiates on pituitary and 

gonadal reproductive hormones (Cicero et al, 1976; Bruni et 

al, 1977), naloxone has been shown to elevate luteinizing 

hormone (LH) secretion in man (Quigley and Yen, 1980). As 

in the case of prolactin, opioids do not directly influence 

gonadotropin secretion indicating that B-endorphin acts 

through the CNS to inhibit gonadotropin releasing hormone 

(GnRH) (Cicero et al, 1979), Considering opioid inhibition 

of LH secretion, the enhanced release of pituitary 

iB-endorphin during strenuous physical exertion, and 

circulating B-endorphin's easy access to GnRR terminals in 

the median eminence, Carr and colleagues proposed that 

pituitary B-endorphin may underly the amenorrhea which is 

often experienced by highly conditioned female athletes 

(Carr et al, 1981). 

The other glycoprotein hormone that could be 

physiologically influenced by pituitary B-endorphin is 

thyroid stimulating hormone (TSH), The stress-induced fall 

in TSR has been shown to be inhibited by naloxone (Judd and 

Hedge, 1982) indicating that 

probably involved in control 

axis. Since intrahypothalamic 

endogenous opioids are 

of the pituitary-thyroid 

injections of morphine or 

B-endorphin have been shown to depress TSR secretion in 

rats (Judd and Hedge, 

stress-induced release of 

1982), there 

pituitary 

may be a role 

B-endorphin in 

for 

the 
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regulation of thyrotropin releasing hormone 1n 

same way as that for its postulated actions on 

and vasopressin secretion during stress. 

much the 

prolactin 

Interestingly, B-endorphin has been shown to 

activate the adrenocortical ax is together with its own 

release in vivo (Hollt et al, 1978b; Raracz et al, 1981). 

This is consistent with the report that morphine and opioid 

peptides stimulate CRF release from the hypothalamus both 

in vitro and in vivo (Buckingham, 1982). B-endorphin may 

also influence IL secretions. A limited number of reports 

provide mostly conflicting views of B-endorphin's acute 

effects on MSH release (van Wimersma Greidanus et al, 1979; 

Celis, 1980). One line of evidence, 

supports an inhibitory role of opioids 

however, clearly 

in IL physiology 

since chronic morphine treatment inhibits synthesis ancl 

secretion of IL POMC products (Przer.~locki et a 1 , 1979a; 

Rollt et al, 198la; Gianoulakis et al, 198la; Gianoulakis, 

198lb). Whether this results from opioid-mediated control 

of IL stimulatory factors 

melanotrophs by POMC opioids 

present. 

or from 

1.s matter 

autoinhibition of 

of speculation at 

In summary, pituitary B-endorphin secretion has the 

potential for influencing the global hypophyseal response 

to stress. 

conditions 

These effects, 

throughout the 

in turn, could modify hormonal 

body. The for 

B-endorphin's effects in stress are most 

evidence 

convincing for 
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prolactin release and concomitant stimulation 

suppression 

investigations 

of 

of vasopressin secretion. Further 

opioid are likely to reveal whether 

influences on pituitary responses to stress are modulated 

by AL and/or IL B-endorphin. 

1.3.1.4 Effects on Adrenal Function 

Trophic and stimulatory actions of ACTH on steroid 

synthesis in the adrenal cortex are well-established (see 

Daughaday, 1981). Although other POMC peptides from both 

the AL and IL may participate in regulating glucocorticoid 

and mineralocorticoid production (see Farah et al, in 

press), the effects of B-endorphin on adrenocortical 

physiology are quite unclear. Low to moderate (10 

picomolar to 10 micromolar) concentrations of B-endorphin 

corticosterone were shown 1n one study to inhibit 

production in the zona fasciculata and block 

ACTH-stimulated steroidogenesis in both the fasciculata and 

the glomerulosa, whereas, extremely high doses of 

B-endorphin stimulated steroidogenesis in the adrenal 

cortex (Shanker and Sharma, 1979; Szalay and Stark, 1981). 

Others have found, however, no ability of B-endorphin to 

stimulate either corticosterone or aldosterone production, 

except when working solutions of peptides were found to be 

contaminated with ACTH (Matsuoka et al, 1981; Vinson et al, 

1981a). By contrast, nanomolar doses 

immediate precursor, B-LPH, have been 

of B-endorphin's 

shown to stirrulate 
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mineralocorticoid production by the adrenal cortex in vitro 

(Matsuoka et al, 1980; Matsuoka et al, 1981). New interest 

for this putative role of B-LPR emerged with a recent case 

report in which infusion of the peptide to simulate blood 

concentrations that occur during stress was found to 

elevate circulating aldosterone 1n man (Wiesen et al, 

1983). Therefore, in vitro and in vivo evidence supports a 

stimulatory role of B-LPH in mineralocorticoid secretion. 

The B-MSR sequence 

the steroidogenic 

contained within B-LPH may account for 

activity of B-LPH. A growing body of 

evidence points to MSH as an additional POMC hormone that 

stimulates aldosterone secretion, especially in conditions 

of sodium restriction (Vinson et al, 1980; 198la; 198lb; 

Szalay and Stark, 1982). Recent evidence that indirectly 

supports this possibility is the responsiveness of the IL 

to chronic mineralocorticoid treatment reported by Lim and 

colleagues 

B-endorphin 

(Lim et 

itself 

al, 

has 

maintenance or secretory 

1982a). 

no clear 

activity 

In 

role 

summary, though 

in either the 

of the adrenal cortex, 

its immediate precursor, B-LPH, as well as MSH and ACTH 

collectively appear to contribute to the normal functioning 

of the adrenal gland. 

1.3.1 .5 Effects on Gonadal Function 

As mentioned 1n relation to stress-induced release 

of B-endorphin, reproductive hormones are likely to be 

influenced by pituitary B-endorphin. The most profound 
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effects of endogenous opioids on reproductive hormones are 

evident in immature female rats. During a rather short 

period of prepubertal development, blockade of opioid 

receptors with naloxone increases luteinizing hormone (LH) 

secretion ten-fold (Blanket al, 1979), This rise in serum 

LH can be induced by treatment with anti-B-endorphin 

antisera (Schulz et a 1 , 1981), This suggests that 

endogenous B-endorphin may normally exert an 

influence over the 

inhibitory 

developing 

.hypothalamic-pituitary-ovarian axis (Schulz et al, 1981). 

It is not presently clear whether neuronal or pituitary 

B-endorphin normally inhibits LH secretion in vivo, 

Because the sensitivity of LH secretion to naloxone is 

blocked by estradiol (Blank et al, 1979), a treatment which 

acutely mobilizes IL secretion of iB-endorphin, supports a 

role for the pituitary opioid in endogenous opioid 

inhibition of LH. 

1.3.1.6 Effects on Pancreatic · Function 

Hypoglycemia induced by insulin has been shown to 

increase circulating levels of iB-endorphin in humans and 

experimental animals (Krieger et al, 1977; Rollt et al, 

1978), This response is of interest for the 

effects of B-endorphin on pancreatic function. 

B-endorphin (Bruni et al, 1979; Watkins et al, 

possible 

Pancreatic 

1980) is 

likely to behave as a paracrine substance modulating the 

secretion of other islet cell hormones (Krieger, 1983), 
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There 18 some evidence to suggest, however, that 

circulating B-endorphin may also influence pancreatic 

physiology. Infusions of B-endorphin into human subjects 

produces hyperglycemia preceded by elevated 

and, to a lesser extent, insulin (Reid 

serum glucagon 

and Yen, 1981; 

Feldman et al, 1983). Some believe that these effects are 

mediated by opioid inhibition of somatostatin secretion in 

the pancreas (Ipp et al, 1978). By contrast, others have 

shown that the ability of B-endorphin to inhibit 

glucose-stimulated insulin secretion is a non-opiate action 

of the peptide which nonetheless requires both intact N-

and C-termini of B-END 1-31 for full activity (Rudman et 

al, 1984). In another animal model, Feldman and colleagues 

(1983) had evidence to suggest that B-endorphin could 

synergistically produce hyperglycemia with glucocorticoids 

and adrenaline (Feldman et al, 1983). Others believe, 

however, that the B-endorphin-induced hyperglycemia may be 

mediated by the opioid's ability to enhance general 

sympathetic tone (Van Loon and Appel, 1981). 

1.3.1 .7 Effects on Fat Mobilization and Renal Function 

Another putative role of B-endorphin released by 

stress which may, more appropriately, be considered a 

physiologic function of its immediate precursor, B-LPH, is 

in the mobilization of body fat stores. B-lipotropin was 

so named because of its lipolytic action on rabbit 

adipocytes (Lohmar and Li, 1968). B-endorphin was also 
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found to stimulate glycerol production by adipocytes in 

vitro and this activity was mediated independent of 

B-endorphin's interaction with opiate receptors (Schwandt 

et al, 1979; Jean-Baptiste and Rizack, 1980). Of the two 

peptides, B-LPH exhibits the most potent lipolytic activity 

in vitro indicating that sequences which enhance lipolysis 

are contained in B-endorphin's structure (Schwandt et al, 

1981; Richter et al, 1984). 

Other potential functions of circulating B-endorphin 

which have been noted but for which there is limited 

research are its actions on the kidney, an organ which is 

kno*n to be responsive to MSH s~quences from POMC in its 

handling of sodium excretion (Orias and McCann, 1 9 7 6; 

Lymangrover et a 1, 1985). Soon after its discovery, 

B-endorphin like morphine, was shown to stimulate renal 

ornithine decarboxylase activity ~n rats, effects that were 

blocked by naloxone pretreatment (Haddox and Russell, 

1979). Since ornithine decarboxylase is involved in 

polyamine synthesis necessary for normal growth and repair 

processes of cells, the authors postulated that circulating 

B-endorphin levels, especially those elevated by stress, 

could be functionally important to maintenance of renal 

function (Haddox and Russell, 1979). 

1.3.1.8 Effects on Gut Motility and Neuromuscular Functions 

The inhibition of gut motility by opiates is so 
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well-characterized that the guinea pig ileum is used in a 

for opioids. These actions are not classic 

mediated 

bioassay 

directly on gut smooth muscle, but on the 

myenteric plexi that modulate contractility of intestinal 

enkephalinergic smooth muscle. Although parasympathetic 

neurons are plentiful throughout the gut (Hughes et a 1, 

1977), circulating B-endorphin 

gastrointestinal motility through 

plexi (Williams and North, 1979). 

may also 

its actions on 

influence 

myenteric 

As noted previously, 

developing ventral horn 

iB-endorphin has been found in 

motoneurons of immature rats 

(Haynes et al, 

peptide might 

1982). Here, the function of the opioid 

be to enhance 

since B-endorphin was found 

responses of skeletal muscles 

neuromuscular transmission 

to 

to 

potentiate contractile 

acetylcholine (Haynes, 

1980). This effect is probably due to inhibition of the 

motor endplate form of acetylcholinesterase by B-endorphin 

(Haynes and Smith, 1982). Although naloxone weakly reverses 

B-endorphin's ability to inhibit acetylcholinesterase, the 

most important internal sequence for B-endorphin's effect 

appears to be the midportion of the peptide. Whereas 

methionine enkephalin failed to inhibit the enzyme, 

nanomolar doses of both B-LPE and C-terminally shortened IL 

forms of B-endorphin retain inhibitory potency (Haynes and 

Smith, 1982). It is an intriguing possibility that IL f o rms 

of B-endorphin as well as the AL products, B-LPf. and 

B-endorphin 1-31, may be involved 1n neuromuscular function 
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through actions at the motor endplate. 

1.3.1.9 Effects on Immunity 

Stress is known to influence the body's ability to 

resist infection and tumor growth (Solomon and Amkraut, 

1981). Previously, endocrine effects of stress on immunity 

corticosteroids but, focused on the role of adrenal 

recently, pituitary B-endorphin peptides have become 

candidates as regulators of immune function. One reason 

for the association of B-endorphin peptides and immunity 

was the recent discovery that interferon-alpha contains an 

opioid sequence which, like B-endorphin, has been found to 

enhance the cytotoxicity of lymphocytes (Blalock and Smith, 

1981; Smith and Blalock, 1981; Mathews et al, 1983). 

Depending on the test of immune function, dose and type of 

opioid treatment administered, a wide range of effects have 

been described. 

The types of stress which evoke naloxone-reversible 

analgesia have been shown to depress both the cytotoxicity 

and the proliferation of T-lymphocytes in vivo 

(Laudenslager et al, 1983; Shavit et al, 1984). Opiate 

antagonists have been shown to retard or enhance tumor 

growth in rodents depending on the dose and duration of 

opiate receptor blockade (Zagon and McLaughlin, 1983). This 

biQodil type of reaction to opiate manipulations is also 

characteristic of the ll!jffiUDe system's responses to 
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glucocorticoids (see Healy et al, 1983) and appears 

repeatedly in B-endorphin's effects on tests of cellular 

immunity. For example, micromolar doses of B-endorphin 

inhibit T-cell dependent antibody production (Johnson et 

al, 1982). By contrast, lower doses of B-endorphin enhance 

the cytotoxic activity of T-lymphocytes in vitro (Mathews 

et al, 1983), Whereas B-endorphin enhances neutrophil 

chemotaxis, its N-acetylated forms inhibit motility of the 

white cells towards chemoattractants (Van Epps et al, 1983; 

Simpkins et al, 1984; Simpkins et al, 1985). These 

seemingly conflicting findings might be explained by 

diversity of opioid receptor mechanisms and by non-opioid 

actions of B-endorphin. For example, met-enkephalin (a 

delta agonist) and morphine (a mu agonist) have opposite 

effects in vitro on rosette formation by T-cells (Wybran et 

al, 1979). Another explanation for disparate immune actions 

of B-endorpbin is that, in addition to opiate binding 

(Lopkor et al, 1980; McDonough et al, 1980), non-opiate 

binding of B-endorphin has been demonstrated on white blood 

cells (Hazum et al, 1979), It is, perhaps, through 

non-opioid receptors that B-endorphin influences lymphocyte 

proliferation (Gilman et al, 1982; McCain et al, 1982). 

Likewise, in complexes of serum complement and LD 

neutrophil chemotaxis, non-opioid forms of B-endorphin have 

been found 

actions fr OD1 

either to be equipotent or exert 

B-endorphin 1-31 (Schweigerer et 

opposite 

al, 1982; 

Simpkins et al, 1985). Although studies of B-endorpbin's 
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effects on cellular and humoral immunity are preliminary, 

the evidence outlined above indicates that both opioid and 

non-opioid 

importantly 

forms of pituitary B-endorphin may be 

involved in mammalian immune competence, 

particularly under conditions of stress. 

l .3.1.10 Effects on Thermoregulation 

One physiological response to stress which is 

naloxone-reversible is increased core body temperature 

(Blasig et a1. 1978), Administration of subanalgesic doses 

of morphine or B-endorphin into the cerebroventricles 

induces hyperthermia, whereas, analgesic doses produce 

hypothermia (Huidibro-Toro and Way. 1979; Bloom and Tseng, 

1981; Millan. 1981), Treatment 

naloxone induces hyperthermia, 

of heat-exposed rats with 

an effect which is blocked 

by prior hypophysectomy (Holaday et al, 1978a; Holaday et 

1978b). These results indicate that pituitary 

B-endorphin may participate in thermoregulatory adjustments 

to stress and high ambient temperatures. Recently, 

however, Millan and colleagues reported 

probably 

that although 

stress-induced hyperthermia 

B-endorphin, 

probably due 

t h.e 

to 

increased thermogenesis in 

CNS rather than pituitary 

(Millan et al, 1981). 

1.3.2 Circadian and Age-Related Variation 10 

Pituitary B-endorphin 

mediated by 

rats is 

B-endorphin 
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Plasma and pituitary levels of iB-endorphin have 

been shown to covary with ACTH and MSH under a variety of 

conditions other than stress. Basal synthesis and 

secretion of pituitary POMC peptides appear sensitive to 

endocrine status, photoperiod, consumptive behaviors and 

age, These conditional changes in the physiology of 

pituitary B-endorphin may suggest functions which involve 

actions of circulating B-endorphin peptides. 

1.3,2,1 Circadian Changes in Pituitary B-endorphin 

Secretion 

As in the case of ACTH, diurnal variations of plasma 

and AL concentrations of iB-endorphin have been observed 

that are quite similar to the corresponding fluctuations in 

circulating corticosterone (Guillemin et al, 1959; Gibson 

et al, 1983; Lim and Funder, 1983). At the beginning of the 

activity cycle (corresponding to the onset of darkness for 

rats), the iB-endorphin content in both the AL and IL 

reaches or begins to approach its daily maximum (Gibson et 

al, 1983; Lim and Funder, 1983; Millington et al, personal 

communication). Circulating levels of in-endorphin follo~ 

a similar course. After the peak of the activity cycle, 

blood and pituitary concentrations of iB-endorphin decline 

towards a daily nadir at a time which is reported to occur 

between 0400 and 1000 in the rat. Interestingly, Gibson 

and coworkers (1983) found greater diurnal changes occuring 



1n IL content of iB-endorphin than in the AL. This is 

curious because the amplitude of circadian changes in 

pituitary and blood-borne MSR is not noted to be as 

dramatic as that for ACTH and adrenal glucocorticoids. In 

addition, basal MSH secretion had not previously been shown 

to be as closely entrained with the day-night cycle as wh a t 

Gibson and colleagues reported for IL iB-endorphin 

(Tilders, 1973; Usategui et al, 1976; Gibson et al, 1983). 

Whatever the differences, various studies concur on the 

observation that spontaneous changes do occur in pituitary 

content of most POMC derivatives and these changes appear 

to be circadian in nature. Preliminary evidence indicates 

that changes in pituitary content are reliable measures of 

secretion and POMC synthesis in the IL (Millington et al, 

personal communication). 

1.3.2.2 Correlation of Pituitary B-endorphin and Feeding 

Diurnal variations in pituitary and plasma content 

of B-endorphin peptides may signify their importance to 

other physiological events that are synchronized to the 

activity cycle in animals. Endogenous opioid peptides have 

been associated with waxing and waning sensitivities to 

pain (McGivern et al, 1979) and diurnal variations in food 

intake (Lowy et al, 1980), Sensitivity of rats to noxious 

stimuli is highest during the awake cycle and lowest durin£ 

the sleep cycle (Frederickson et al, 1977) rougtly 

corresponding to the peak and trough, respectively, of 
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pituitary B-endorphin levels and secretion. This cycle of 

nociceptive threshold may actually be entrained to feeding 

activity rather than to the photoperiod or activity cycle 

Rats that are permitted unrestricted access to 

food . are nocturnal feeders whose enhanced nightime 

sensitivity to painful stimuli seems to be associated with 

their nightime consumptive behavior. Evidence for this was 

obtained by restricting access to food. By the end of the 

period of food restriction, irrespective of the time of 

day, rats are significantly less responsive to noxious 

stimuli. Furthermore, this state of relative analgesia can 

be reversed with feeding or naloxone (McGivern and 

Berntson, 1980). Others have recently found that during 

spontaneous or provoked feeding, plasma levels of 

iB-endorphin are elevated (Davis et al, 1983). Unlike lean 

littermates, genetically obese rats (fa/fa) and mice 

(ob/ob) lack periodicity in their food intake and have been 

shown to have elevated pituitary, but not plasma, 

concentrations of iB-endorphin (Garthwaite et al, 1980; 

Gibson et al, 1981). Since food consumption can be provoked 

with opioid administration (Grandison and 

or inhibited by opiate antagonists (Brands 

Lowy et al, 1980), it is possible 

B-endorphin is causally-related to food 

Guidotti, 

et al, 

1977) 

1 9 7 9; 

that pituitary 

consumption and 

circadian variations in nociception threshold. 

1.3.2.3 Age-Related Changes in Pituitary B-endorphin 
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Secretion 

Aging has 

secretion and, 

iB-endorphin. 

iB-endorphin and 

also been associated with changes 

1n 

In 

IL 

the case of the IL, 

general, circulating 

concentrations of 

content 

levels 

elevated in older animals 

al, 1983; Missale et al, 

(Forman et a 1 • 

1983). Although 

the peptides 

1981; Forman 

AL content 

in 

of 

of 

are 

et 

of 

iB-endorphin is no different in young and old rats, changes 

in the secretory activity of the AL could have 

to increased plasma levels of iB-endorphin in 

animals, especially considering that the AL 

contributed 

the aged 

normally 

contributes the larger amount of iB-endorphin under basal 

conditions (Przewlocki et al, 1982). In contrast to the 

changes seen with aging 1n pituitary and plasma 

it-endorphin, brain levels of the peptide tend to decline 

with age (Gambert, 1981; Missale et al, 1983). Whether 

these changes reflect decreased utilization of IL stores 

and increased utilization of brain B-endorphin is not 

clear. However, SlnCe plasma levels of iB-endorphin 

increase with age in rats, the secretory capacity of the 

combined AL and IL do not appear impaired by 

(Forman et al, 1981; Forman et al, 1983). 

senescence 

It is evident that there may be both peripheral and 

CNS roles for B-endorphin and related peptides. Som e of 

these functions would best be mediated by hor monal 

B-endorphin, for instance actions of the peptide on the 
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immune system. Other actions are best served by 

endorphinergic neuronal systems in the brain. In some 

cases) such as in neuroendocrine control of prolactin or in 

mechanisms of analgesia, B-endorphin peptides from neuronal 

and pituitary sources are likely to act cooperatively. 

1.4 REGULATION OF PITUITARY BETA-ENDORPHIN SECRETIO~ 

1.4.0.1 General Principles of Pituitary Regulation 

Pituitary release of B-endorphin is subject to both 

central nervous system (CNS) and systemic hormonal control 

mechanisms. The most important source of regulation is the 

CNS which controls the synthesis and secretion of anterior 

(AL) and intermediate lobe (IL) B-endorphin through 

hypothalamic hormones and neurotransmitters (Szentagothai 

et al, 1972). As illustrated in Figure 2, these substances 

reach the AL and IL via neurovascular and neuronal routes, 

respectively. The special anatomical and functional 

relationships between the basal hypothalamus and the two 

lobes of the adenohypophysis are responsible for 

differential CNS control of B-endorphin synthesis and 

secretion by corticotrophs and melanotrophs. 

The research described here addresses the role of 

dopamine neurons in regulating pituitary B-endorphin 

secretion. Background directly related to this research 1s 
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found in section 1.5. The following discussion is a more 

general consideration of the physiological factors known to 

control AL and IL B-endorphin secretion. 

1.4.1 Regulation of the Anterior Pituitary 

1.4.1.1 Brain Control of Anterior Lobe B-endorphin 

Secretion 

The anatomical relations between the hypothalamus 

and AL provide for the management of a diverse grouping of 

hypophyseal cell types of which corticotrophs constitute 

only 3-10% (Baker et al, 1970; Moriarty, 1973). Although 

the AL lacks direct innervation (except vasomotor) 

(Rasmussen, 1938), the gland is invested with sinusoidal 

capillaries which are the secondary 

hypothalamic-hypophyseal portal vasculature 

King, 1936). Through this portal circulation, 

hormones and nutrients reach the gland 

plexus of a 

(Wislocki and 

hypothalamic 

and the AL's 

secretions are, in turn, transported to the systemic 

circulation by way of the cavernous sinuses that drain the 

entire pituitary (Harris, 1955). As shown in schematic in 

Figure 2, the primary plexus of the portal vasculature is 

an extensive systerr. of fenestrated capillaries that mingle 

with nerve terDiinals at the base of the third ventricle in 

an area called the median eminence. By volume, these 

capillaries have been estimated to occupy about 30% of the 

median eminence (Rinne, 1966; Knigge and Scott, 1970), 
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Although recent studies support the possibility of 

retrograde blood flow in the hypophyseal-portal circulation 

(Oliver et al, 1977; Bergland and Page, 1978; Bergland et 

al, 1980; Flerko, 1980; Mezey and Palkovits, 1982), the 

ability of the median eminence to act as the final common 

pathway for regulation of the AL relies on largely 

unidirectional blood flow from the hypophyseal arteries 

through the primary portal plexus prior to entering the AL 

(Harris, 1955). This portal system delivers a variety of 

hypothalamic hormones directly to the AL but corticotrophs 

are responsive to only a limited number of these CNS 

factors. Therefore, the portal circulation provides the 

vascular link for neurohumoral control of AL B-endorphin 

secretion by the hypothalamus and, hence, by the entire 

CNS. 

The importance of the hypothalamic-hypophyseal 

portal connection in the regulation of AL B-endorphin and 

related POMC hormones is most clearly demonstrated when the 

vascular connection between the gland and the basal 

hypothalamus is disrupted. Under these conditions, 

corticotrophs (and most other cell types of the gland) fail 

to thrive and there is an attendent loss of corticotropin 

activity (Harris and Jacobsohn, 1952) and immunoreactive 

B-endorphin (Panerai et al, 1980). These findings emphasize 

the trophic and stimulatory influence which hypothalamic 

factors exert over corticotrophs. 
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Figure 2. Schematic illustration of sagittal section through 

the rat pituitary and medic-basal hypothalamus. Hypothalamic 

hormones released at the median eminence (ME) are carried 

in the hypophyseal-portal vessels to the anterior lobe (AL) 

where corticotroph secretions are humorally regulated. In 

contrastJ melanotrophs of the intermediate lobe (IL) are in­

nervated by dopamine neurons from the arcuate hypothalamus. 

POMC-derived peptides secreted by the AL and IL enter the 

general circulation through the cavernous sinuses which 

drain the pituitary. 
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1.4.1.2 Corticotropin Releasing Factor is the Principle 

Regulator of Anterior Lobe B-endorpbin Secretion 

Hypothalamic hormones which regulate corticotrophs 

are produced by neurons that terminate in the external 

layer of the median eminence near the fenestrated 

capillaries of the primary portal plexus (Hokfelt et al. 

1978), The most important hypothalamic hormone controlling 

AL release of B-endorphin and related POMC derivatives is 

corticotropin releasing factor (CRF)(Buckingham. 1980). CRF 

was recently isolated by Vale and colleagues from brain 

extracts in which other hypothalamic hormones had 

previously been identified (Vale et al, 1981). CRF is 

uniquely larger than other known hypothalamic hormones. 

comprised of forty-one amino acids rather than the 

customary few to ten which are the size range of other 

peptidergic releasing factors. Hypothalamic CRF originates 

predominantly in parvocellular neurons of the 

paraventricular nucleus (Olschowka et al, 1982a; 19R2b; 

Swanson et al 1 1983). Although CRF neuronal systems are 

distributed else\>1here in the rat brain, the highest 

concentrations of bioactive and immunoreactive CRF is 

present in the median eminence (Lang et al. 1976; Fishman 

and Moldow. 1982; Palkovits et al. 1983). Interestingly 1 

CRF neurons are not detectable during embryogenesis of the 

rat hypothalamus until sever~l days after ACTF and 

B-endorphin-producing corticotrophs are first evident in 
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the fetal pituitary (Bugnon et al, 1982; Schwartzenberg and 

Nakane, 1982). Nonetheless, evidence that CRF is the 

principle hypothalamic hormone regulating corticotrophs is 

overwhelming. 

Like other hypothalamic hormones, CRF is found in 

neurosecretory terminals of the median eminence (Pelletier 

et al, 1982) and measurable in portal blood at 

concentrations that are known to stimulate secretion of 

B-endorphin and related peptides from the AL (Gibbs and 

Vale, 1982). 

internalize 

Corticotrophs have been found to 

[125 I]-CRF within minutes after its 

bind and 

systerr.ic 

administration (Leroux and Pelletier, 1984). Picomolar 

concentrations of synthetic CRF directly stimulate AL 

secretion of B-endorp h in and ACTH with maximal stimulati o n 

(6- to 10-fold over basal release) occurring at 

concentrations no greater than 5 nanomoles per liter (Vale 

et al, 1981; Vale et al, 1983). Similarly, CRF is a potent 

secretogogue of AL B-endorphin and ACTH secretion in vivo 

(Rivier et a1, 1982). The maximal stimulatory activity of 

synthetic CRF equals the activity previously achieved using 

purified hypothalamic or median eminence preparations (Vale 

et al, 1978; Vale et al, 1979; Gillies and Lowry, 1978). 

Not only does CRF have an acute stimulatory influence on 

corticotrophs, but prolonged CRF treatment in vitro or in 

vivo increases transcription of the POMC gene, POMC 

messeng e r RNA levels and the total 

B-endorphin-related peptides (Vale et 

releasable content of 

al, 1983; Bruhn et 
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al, 1984). 

With the ability to quantify CRF by 

radioimmunoassay, experimental in vivo manipulations such 

as adrenalectomy and hemorrhage have been found to alter 

median eminence and - portal blood content of CRF 1n 

directions expected for the major hypothalamic regulator of 

corticotroph secretions (Suda et a 1, 1983; Plotsky and 

colleagues Vale, 1984). Furthermore, Conte-Devolx and 

(1983) found that administration of anti-CRF antisera to 

intact and adrenalectomized rats significantly lo~ered 

immunoreactive levels of both ACTH and B-endorphin in 

plasma. Another piece of evidence supporting the role of 

CRF as the principle physiologic regulator of AL 

B-endorphin secretion in vivo ~as provided by lesioning the 

paraventricular nucleus of the hypothalmus. This treatment 

resulted in lo~er blood levels and higher AL concentrations 

of immunoreactive B-endorphin indicating that release had 

been curtailed as a consequence of damage to the CRF 

perikarya (Millan et al, 1984). 

Corticotrophs are not so ley responsive to 

hypothalamic CRF. It has long been appreciated that 

corticotroph function is an ·integrated response to a 

variety of substances (see Buckingham, 1980). Many of the 

factors other than CRF which directly affect B-endorphin 

secretion from corticotrophs are listed in Figure 3. These 

include other hypothalamic hormones as well as circulating 
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Figure 3. Schematic illustration of pituitary including 

list of substances that are presently thought to directly 

influence secretion of POMC-derived peptides from the 

anterior (AL) and intermediate lobes (IL) of the pituitary. 

Stimulatory effects are marked by (+), inhibitory effects, 

by(-) and putative direct effects, by (?). Abbreviations 

and appropriate references are included in the list below. 

All =angiotensin II (Gaillard et al, 1981; Anhut et al, 

AVP 
B 
CRF 

1982) 
= arginine vasopressin (Vale et al, 1983) 
= corticosterone, glucocorticoids (Vale et al, 1979) 
= corticotropin releasing factor (Vale et al, 1983) 

DA = dopamine (Bower et al, 1974; Vale et al, 1979) 
DOC = deoxycorticosterone, mineralocorticoids (see Lim 

et al, 1982a) 
E2 estrogens (see Lim & Funder, 1984) 
EPI ~ epinephrine (Vale et al, 1979; Cote et al, 1982) 
GABA ~ gamma-amino butyric acid (Taraskevich & Douglas, 

5-HT 
NE 
PGE 
SP 
SRIF 

1982) 
= serotonin (Randle et al, 1983) 
= norepinephrine (Vale et al, 1979; Cote et al, 1982) 
= prostaglandin E2 alpha (Vale et al, 1979) 
= substance P (Matsumura et al, 1982) 
= somatostatin (Heisler et al, 1982; Correa & 

Saavedra, 1983) 
TSN thymosin [fraction 51 (Healy et al, 1983) 
VIP = vasoactive intestinal polypeptide (Reisine et al, 

1982; Westunclorf et al, 1983) 



Al Regulators: 

CRF 
Glucocorticoids 
Epinephrine 
Norepinephrine 
Vasopressin 
Angiotensin 11 
Vasoactive Intestinal Polypeptide 
Somatostatin 
Prostaglandin E2 
~ubstance P 
Thymosin 

( +) 
(-) 
( +) 
( +) 
( +) 
( +) 
( +) 
(-) 
(-) 
( + /-) 
( + )' 

ll Regulators: 

Dopamine 
Epinephrine 
Norepinephrine 
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Serotonin 
Gamma Amino Butyric Acid 
Somatostatin 
Estrogen 
Mineralocorticoids 
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catecholamines and adrenal glucocorticoids. Also presented 

· are the agents to be discussed later which directly 

influence IL B-endorphin secretion. Non-CRF secretagogues 

exhibit a fraction of the effects of CRF in vitro (Vale et 

al, 1979; Gillies et al, 1982; Vale et al, 1983). 

Nonetheless, their ability to stimulate B-endorphin release 

after in vivo treatment, in some instances, exceeds their 

direct effects on corticotrophs (Knepel and Meyer, 1980; 

Anhut et al, 1981; 1982; Berkenbosch et al, 1981a; 1981b; 

Beuers et al, 1982). For example, treatment of conscious 

rats with vasopressin stimulates ACTH secretion far greater 

than effects of the peptide on corticotrophs in vitro. 

Therefore, vasopressin must act in vivo either by enhancing 

CRF release or by potentiating CRF's actions on the AL. 

Support 

studies. 

for these possibilities is available from several 

Vasopressin-induced ACTH release 1s blocked by 

pretreatment of rats with anti-CRF antiserum indicating 

that vasopressin acts by enhancing release of hypothalamic 

CRF (Rivier and Vale, 1983). Additionally, several 

laboratories have shown that vasopressin greatly 

potentiates CRF's direct actions on AL release of 

B-endorphin or ACTH ..!..!!. vitro (Yates et al, 1 971; Portanova 

and Sayers, 1973; Gillies et a 1 , 1982; Vale et a 1, 1983). 

Similar synergistic actions of angiotensin II or 

alpha-adrenoceptor agonists with CRF in vitro have also 

been reported (Vale et al. 1983). Whether alone or 1n 

combination with other regulatory agents, CRF is the most 
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physiologically important regulator of AL B-endorphin 

secretion. Thus, the regulation of hypothalamic CRF 

neurons serves as the final common pathway for CNS control 

of AL corticotrophs. 

1.4.1.3 Hypothalamic Regulation of Corticotropin Releasing 

Factor 

In addition to interaction of hypothalamic hormones 

directly at the level of the AL, several CNS 

neurotransmitters are known to participate in the 

regulation of corticotroph secretions through influences on 

CRF release (Buckingham, 1980). Acetylcholine is a 

well-documented stimulator of CRF release from hypothalamic 

preparations in vitro (Jones et al, 1976; Buckingham and 

Hodges, 1977; Jones and Hillhouse, 1977). This is 

consistent with diminished stress-induced secretion of 

corticosterone observed after cholinergic blockade in 

animals (Hedge and Smelik, 1968) and with enhanced 

adrenocortical, ACTH and B-endorphin release following 

cholinergic stimulation in rats and man, respectively (Abe 

and Hiroshige, 1974; Risch et al, 1980; 198la, 198lb). 

Similar actions of serotonin and angiotensin II on CRF have 

been reported (Jones et al, 

1977) and the actions of 

1976; Buckingham and Hodges, 

serotonin will be described 

further below. Other CNS transmitters are known for their 

inhibitory effects on CRF release in vitro and attenuation 

of adrenocortical activation in animals due to stress. 
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These include norepinephrine and gama-aminobutyric acid 

(GABA) (Jones and Hillhouse, 1977; Buckingham, 1980). The 

actions of norepinephrine, however, are a matter of 

controversy as discussed below, In summary, the ability of 

neurotransmitters to modulate CRF synthesis and release may 

account for the ability of many substances that lack direct 

actions on pituitary B-endorphin release to influence 

circulating B-endorphin and adrenocortical function in 

vivo, For good reason, the growing consensus is that CRF 

as the primary mediator of CNS influence over corticotroph 

function (Buckingham, 1980), 

1.4.1.4 Extra-Hypothalamic Regulation of Corticotropin 

Releasing Factor 

There are several areas of the brain other than the 

hypothalamus which are thought to indirectly participate in 

controlling CRF and, hence, AL secretion of B-endorphin. 

Information about the relationship of non-hypothalamic 

brain structures to control of AL B-endorphin secretion has 

been gleaned fro m studies on CNS control of glucocorticoids 

and ACTH. Some of these extra-hypothalamic structures 

include the hippocampus (Knigge and Hayes, 1963; Mandell et 

al, 1963), the amygdala (Mandell et al, 1963; Allen and 

Allen, 1974) and the brainstem (Taylor, 1969). The 

neurotransmitters involved in extra-hypothalamic control of 

corticotrophs are not well-established, There is some 

evidence to suggest that the amininergic neurotransmitters, 
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serotonin and norepinephrine participate in the regulation 

of CRF by extra-hypothalamic brain structures. Serotonin 

neurons which originate in the dorsal raphe nuclei and 

terminate in the hypothalamus have been implicated in both 

stimulatory and inhibitory actions on corticotroph 

secretions (Vernikos-Danellis et al, 1977). Recent 

pharmacologic evidence suggests that serotonin's principle 

effect is to enhance CRF release under basal and stress 
j 

conditions (Fuller, 1981; Sapun et al, 1981; Bruni et al, 

1982; Sapun-Malcolm et al, 1983), A stimulatory role of 

serotonergic neurons in corticotroph function is supported 

by the observation that serotonin increases the synthesis 

and release of CRF from basal hypothalamus in vitro (Jones 

et a 1, 1976; Buckingham and Hodges, 1977). Furthermore, 

serotonin is one of the few transmitters in the 

hypothalamus known to be responsive to the glucocorticoids 

products of the corticotroph target organ, the adrenal 

cortex (Vermis et al, 1976), 

Evidence for noradrenergic participation in control 

of corticotroph function is abundant but conflicting, 

perhaps due to the differences in direct versus indirect 

actions of norepinephrine on corticotrophs, The earlier 

view (established by in vivo pharmacologic manipulations of 

endogenous adrenergic activity) was that brain 

noradrenergic neurons inhibit the secretion of ACTH (and 

consequently B-endorphin)(Ganong, 1972; Van Loon, 1 9 7 3; 

Eisenburg, 1975). This conclusion was supported by the 
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ability of norepinephrine to inhibit spontaneous and evoked 

CRF release from isolated hypothalamic preparations in 

vitro through an alpha- adrenoceptor mechanism (Jones et 

al, 1976; Buckingham and Hodges, 1977), In recent support 

for noradrenergic inhibition of CRF, Millan and colleagues 

have shown that lesioning brainstern 

which innervate the hypothalamus 

noradrenergic neurons 

increases basal and 

stress-induced release of AL B-endorphin in rats (Millan et 

al, 1982a; 1982c). By contrast, several recent studies show 

that alpha- and beta-adrenergic mechanisms are involved in 

stimulatory control of AL B-endorphin release. In these 

studies specific adrenergic receptor agonists and 

vivo antagonists 

(Pettibone 

'"'ere adntinistered in vitro and in 

and Mueller, 198la; 1981b; 1982a; 1982b; 

Berkenbosch et al, 198la; 198lb; Knepel et al, 1981). The 

results of these studies show that direct stimulation of AL 

(as well as IL) release occurs through beta-adrenoceptor 

mechanisms and that an alpha-adrenoceptor-stimulated 

release ~s also possible via CNS mechanisms, Furthermore, 

Smythe and colleagues recently reported a strong positive 

correlation between the activity of noradrenergic neurons 

in rat hypothalamus and the secretion of ACTH over a wide 

range of endocrine conditions (Smythe et al, 1983), Their 

findings reaffirmed results by others who had observed that 

adrenalectomy increased hypothalamic noradrenergic activity 

in association with increased ACTH release (Hedge et al, 

1976) • 
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1.4.1.5 Dopaminergic Participation in Brain Control of 

Corticotropin Releasing Factor 

Brain dopamine neurons may be uniquely suited to 

influence AL B-endorphin secretion. As outlined in later 

sections, a small group of hypothala @ic dopamine neurons 

are known to 

presumably 

control 

exert 

secretion 

comparable 

of MSR from the IL and 

control of B-endorphin 

secretion from melanotrophs. Although dopamine has no 

direct influence on AL corticotrophs (see Figure 3), 

considerations reviewed in section 1.5 indicate that brain 

dopamine neurons might govern AL as well as IL secretion of 

B-endorphin through actions on CRF. 

1.4.1.6 Hormonal Control of Anterior Lobe B-Endorphin 

Secretion 

Of the circulating hormonal factors that 

modulate AL secretion of iB-endorphin. the most 

routinely 

important 

regulators are adrenal glucocorticoids. Corticosterone is 

the principle glucocorticoid in the rat and has long been 

suspected of inhibiting the secretion of ACTH (Sayers and 

Sayers. 1947). Yates first demonstrated that corticosterone 

mediates negative feedback control of adrenocortical 

secretion at some level higher than the adrenal cortex 

itself and suggested that the pituitary might be its targ e t 

(Yates et a 1. 1961). Corticosterone and other 
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glucocorticoids have recently been shown to suppress AL 

release of B-endorphin a well as ACTR in vitro (Vale et al, 

1978; Vale et al, 1979; Simantov, 1979; Vale> et al, 1983). 

Treatments which acutely or chronically reduce 

circulating levels of glucocorticoids enhance the 

synthesis, storage and secretion of AL POMC peptides. 

Metyrapone, which acutely inhibits adrenocortical synthesis 

of glucocorticoids (Chart et al, 1958), has been shown to 

elevate blood-borne iB-endorphin commensurate with the 

documented increase of circulating ACTH (Hollt et al, 

1978a; Wardlaw and Frantz, 1979; Pettibone and Mueller, 

1984). Chronic loss of glucocorticoid negative feedback 

following adrenalectomy also increases circulating levels 

of both iB-endorphin and ACTH, stimulating the synthesis 

and increasing AL content of POMC peptides (Gui11emin et 

al, 1977; Rossier et al, 1979; Rosa et al, 1980; Hollt et 

al, 198lb; DeSouza . and Van Loon, 

1983). 

Although glucocorticoids 

inhibit corticotroph synthesis 

peptides beginning at the level 

(Roberts et al, 1982; Sachter et 

1983; Lim and Funder, 

are known to directly 

and secretion of POMC 

of gene transcription 

al, 1982; Civelli et a 1, 

1983), corticosterone is likely to exert inhibitory control 

through actions on the CNS as well (Buckingham, 1979; 

McEwen, 1977). Limbic structures mention e d earlier · which 

are known to be anatomically associated with the endocrine 
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hypothalamus (Raisman and Field, 1971) have been shown to 

accumulate [3RJ-corticosterone more effectively than the AL 

itself (Stumpf, 1971; deKloet et al, 1975; Warembourg, 

1975a). There is some evidence that these same CNS 

structures may be importantly involved in feedback control 

of corticotrophs under conditions of stress (Feldman et al, 

1976; Feldman and Conforti, 1980; Feldman et al, 1982). The 

most widely accepted CNS site for feedback actions of 

glucocorticoids is the hypothalamus (Smelik, 1977). 

Although hypothalamic binding of glucocorticoids is weaker 

than that observed in other brain structures (Warembourg, 

1975a; McEwen, 1977), functional inhibition of hypothalamic 

CRF activity has been demonstrated repeatedly using either 

corticosterone or dexamethasone (Jones and Hillhouse, 1977; 

Smelik, 1977; Buckingham, 1980). Furthermore, the 

interaction of glucocorticoids with both serotonergic and 

noradrenergic neurons terminating in the hypothalamus are 

linked to feedback control of the CNS-pituitary-adrenal 

axis (Vermis et al, 1976; Stith and Person, 1982), Thus, 

the ability of glucocorticoids to regulate AL secretion of 

B-endorphin and other corticotroph products is likely 

mediated at the level of hypothala~ic CRF as well as 

directly at the pituitary. 

As indicated 1n Figure 3, numerous neuronal and 

l1ormona 1 signa 1 s are liable to be direct physiological 

regulators of AL B-endorphin secretion via their common 

route of access to corticotrophs, the portal vasculature. 

78 



·-.·:.·\. 

Evidence from early studies of adrenocortical activity as 

well as recent investigation of corticotroph secretions 

have implicated adrenal medullary catecholamines, primarily 

epinephrine, as stimulatory factors in pituitary release of 

B-endorphin-related hormones (Sayers and Sayers, 1947; 

Tilders et al, 1980; Berkenbosch et al, 198la; 198lb; 

Pettibone and Mueller, 198lb; 1982a; 1982b). Similarly, 

another systemically produced hormone, angiotensin II! has 

also been implicated in the control of B-endorphin 

secretion from the AL by evidence from in vivo and in vitro 

studies (Knepel and Meyer, 1980; Gaillard et al, 19 81; 

Beuers et al, 1982; Anhut et al, 1982; Vale et al, 1983). 

Thyroid hormone may also be important to maintenance of 

pituitary concentrations of B-endorphin (Gambert et al, 

1980) but neither the extent to which thryoid hormones 

affect normal release nor the level at which their effe c ts 

are mediated are presently known. 

1.4.2 IL Regulation 

1.4,2.1 CNS Control of IL B-endorphin Secretion 

In light of the differences that e~ist between the 

biosynthetic products of POMC in the IL and AL, it is not 

surprising that regulation of IL B-endorphin is distinct 

fron 1 that of the AL. Even though both tissues share a 

common embryonic origin (\Hngstrand, 1966a; 1966b), in most 

adult mammals the IL adheres to the neural lob e and is 
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physically separated from the AL and its vasculature by a 

cleft (Wingstrand, 1966b; Howe, 1973). Together, the IL and 

neural lobe each contribute about half of the total mass of 

the pituitary structure commonly referred to as the 

neurointermediate lobe (NIL) (Gosbee et al, 1970). In tLe 

rat, the NIL is about one-tenth the s1ze of the AL yet the 

IL's concentration of B-endorphin and related peptides 

exceeds that of the AL by ten-fold (Rossier et al, 1977b; 

Liotta et al, 1978; Mueller, 1980). Part of the reason for 

this difference in total content is that, in contrast to 

the Qixture of cell types comprising the AL, the IL is a 

homogeneous population of melanotrophs (Howe, 1973). 

In primary culture, melanotrophs exhibit a high 

level of spontaneous depolarizations which corresponds to 

their predisposition to elevated secretory activity 

(Douglas and Taraskevich, 1978). In vitro ~ melanotrophs 

secrete from 7% to 16% of their hormonal content each day 

(Mains and Eipper, 1979; Eipper and Mains, 1981). This 

propensity for high level secretory activity in vitro only 

becomes evident in vivo when the IL looses its functional 

connections with the central nervous system (CNS). This 

indicates that the CNS normally inhibits IL secretion of 

POMC peptides. Tilders and Smelik (197 8) found, for 

instance, that shortly after lesioning the basal 

hypothalamus, the MSH content of tbe IL decreases. This 

loss of hormonal content results from unreplenished release 

of POMC peptides. Similarly, ILs autotransplanted to the 
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kidney capsule become acutely depleted of MSH stores but 

gradually recover hormonal content while maintaining 

elevated secretory activity (Kastin and Ross, 1964). 

Therefore, in contrast to primary stimulatory control and 

trophism of 

corticotrophs, 

suppressed by 

anatomical and 

ACTH and B-endorphin secretion by AL 

IL secretion of POMC peptides is tonically 

the CNS. As outlined below, there are 

biochemical basis for this differential 

control of the IL. 

~ith respect to neuroendocrine regulation, the most 

prominant anatomical difference between the AL and IL is 

that the IL of rodents is "virtually avascular" yet is 

directly innervated by the hypothalamus (Wingstrand, 1966; 

Howe, 1973). The only capillary beds in the proximity of 

melanotrophs are those supplying the neurohypophysis. 

These neural lobe capillaries appear capable of sustaining 

the IL s1.nce the NIL survives vascular lesions of the AL 

(Daniel and Prichard, 1956). Although short portal vessels 

connect the neural lobe plexus with that of the AL, there 

is no direct vascular route accessing the hypothalamic 

hormones of the median eminence to the IL. Kat only does 

this limit neurohumoral control of the IL by the 

hypothalamus, but the lack of parenchymal blood flow to 

melanotrophs might seeru incompatible with an endocrine role 

for the IL. This, however, is not the case since IL 

peptides are measureablP in systemic blood and their levels 

vary in normal and experimental conditions like stress 
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(Kastin et al, 1969; Usategui et al, 1976; Van Wimersma 

Greidanus et al, 1979). Bulk exchange of nutrients and IL 

secretory products may occur by way of channels in the IL 

that resemble bile canaliculi of the liver. These channels 

are intercalated among the clusters of melanotrophs and 

lead to the capillary network at the IL's border with the 

neural lobe (Howe and Maxwell, 1968; Howe, 1973; de Bold et 

al, 1980). 

After isolation and synthesis of CRF, this 

hypothalamic factor was found to be a direct secretagogue 

for melanotrophs in vitro (Vale et al, 1983) and in vivo 

(Proulx-Ferland et al, 1982), however, the potency of CRF 

on cultured melanotrophs is far less than that of 

epinephrine (Vale et al, 1983). Since the vascular access 

for CRF to the IL is limited at best and because it is not 

clear that CRF neurons innervate the IL, it is unlikely 

that CRF normally governs IL secretion of POMC peptides in 

rats. This view is supported by the finding that passive 

immunization of rats with anti-CRF antiserum suppresses 

ACTH secretion in vivo without causing similar reductions 

1n circulating MSH (Conte-Devolx et al, 1983). Therefore, 

although the IL may be sensitive to pharmacologic 

application of CRF, this hypothalamic hormone is probably 

not normally involved 1n the regulation of melanotroph 

secretions. 

Since the anatomy of the IL doesn't readily provide 
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for neurovascular control of melanotroph function. how does 

the brain regulate secretion from the IL? As will be 

discussed in the next section. the IL is richly innervated 

by hypothalamic neurons in most mammals. are 

predominantly dopaminergic (see Howe. 1973), Dopamine 

melanotroph secretions neurons regulate 

inhibition and have been shown to be 

through tonic 

the principal 

controllers of IL function. 

Other neurotransmitters also have been detected in 

nerve terminals of the IL in addition to dopamine. They 

are listed in Figure 3 and include gamma-amino butyric acid 

(GABA) (Oertel et al. 1982; Vincent et al. 1982), serotonin 

(Westlund and Childs. 1982; Leranth et al. 1983) and 

somatostatin (Saavedra et al. 1983). Recent evidence 

suggests inhibitory roles of both GABA and somatostatin 

versus stimulatory actions of serotonin (Fisher and 

Moriarty. 1977; Taraskavich and Douglas, 1982; Correa and 

Savaadra. 1983; Randle et al. 1983), Whether any of these 

neurotransmitters is as potent 

as dopamine remains to be seen. 

evidence for potent dopaminergic 

secretion, it is unlikely 

serve as 

neurons in 

pivotal a role 

controlling the 

1978; 1979). 

that 

as 

IL 

a regulator of melanotropbs 

Judging from extensive 

inhibition of alpha-MS E 

other neural systems ~ill 

tuberohypophyseal dopamin~ 

(Tilders and Smelik. 197i; 

1.4,2.2 Hormonal Control of IL B-endorphin Secretion 
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It is presently thought that similar to 

corticotropbs, melanotrophs release B-endorphin and related 

IL peptides upon stimulation by circulating catecholamines 

(Tilders et al, 1980; Berkenbosch et al, 198lb; Pettibone 

and Mueller, 1982b; 1984). Melanotrophs are stimulated by 

adrenergic agonists and this 

beta-adrenoceptors in the IL 

Beta-adrenergic stimulation of 

effect 

(Cote 

the IL 

is 

et 

mediated by 

al, 1980) . 

increases the 

activity of adenylate 

et al, 1980) along 

B-endorphin (Cote et 

cyclase (Munemura et al, 1980; Cote 

with an associated release of MSH and 

al, 1980; Vermes et al, 1980b; 

Pettibone and Mueller, 1982a; 1982b). After dilution in 

systemic blood, hypothalamic hormones (e.g., CRF) might not 

reach the IL in high enough concentrations to influence 

melanotroph secretion. In contrast, circulating 

catecholamines appear capable of stimulating IL release of 

B-endorphin and MSR in the rat (Tilders et al, 1980; 

Berkenbosch et al, 198lb; Berkenbosch et al, 1983). 

Unlike corticotropbs, melanotrophs are not inhibited 

by physiological doses of glucocorticoid& (see Roberts et 

al, 1982). The relative lack of glucocorticoid binding in 

melanotrophs (Ka rembourg, 1975b; Rees et al, 1977) is 

consistent with the well-documented unresponsiveness of the 

I L to circulating glucocorticoids (Kastin et al, 1969; Dunn 

et al, 1972a; Usategui et al, 1976). Accordingl y , IL 

content of immunoreactive B-end~rphin is unaffected b y 
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chronic glucocorticoid treatment or adrenalectomy (Rossier 

et al, 1979; Hollt et al, 1981b; Lim et al, 1982; Lim and 

Funder, 1983). Interestingly, Lim and colleagues have found 

that iB-endorphin in the NIL is increased by 

mineralocorticoid treatment, however, this response of 

melanotrophs is not nearly as sensitive as the AL response 

to glucocorticoids (Lim et al, 1982; Lim and Funder, 1983), 

Ovarian steroids appear to influence IL but their 

net influence on POMC secretion from this lobe remains an 

unsettled issue. Consistent with reports which show that 

estrous is accompanied by decreased pituitary MSH content 

(Taleisnik and Tomatis, 1969; Norman et al, 1972), others 

have found that just prior to estrous, circulating levels 

of MSH increase (Celis, 1975; Thody et al, 1981), Synthesis 

and release of IL B-endorphin appear to be similarly 

associated with cycles in levels of ovarian steroids. 

During the afternoon of proestrous, both plasma and IL 

content of iB-endorphin increase but fall again before 

diestrous (Ishizuka et al, 1982). These reciprocal changes 

in content and release of POMC peptides are thought to 

occur in response to high levels of estrogen since acute 

estrogen treatment reportedly elevates plasma levels of MSH 

in ovariectomized rats (Celis, 1977; Thody et al, 1981). 

Curiously, there are several reports which indicate 

that chronic exposure to ovartan stE>roids inhibit the 

synthesis and secretion of POMC peptides from the IL, 



rather than stimulating IL production of B-endorphin, To 

begin with, the concentration of iB-endorphin in the IL of 

female rats is lower than that in males (Mueller, 1980). 

That estrogens are involved has been shown by the ability 

of chronic estrogen treatment to reduce IL content and 

and plasma levels of iB-endorphin in both male 

ovariectomized female rats (Mueller, 1980; Lim and Funder, 

1984). What is particularly interesting 

effects of ovarian steroids on pituitary 

about inhibitory 

B-endorphin is 

that these actions may amount to feedback loops ln the 

pituitary-gonadal axis since opiates 

circulating levels of pituitary and 

are known to reduce 

gonadal reproductive 

hormones (Cicero et al, 1976; Bruni et al, 1977). The 

differences between spontaneous changes of IL POMC peptides 

during the estrous cycle and the long term effects of 

ovarian steroids on the IL require furthet investigation. 

Experimental evidence indicates that the synthesis 

and secretion of 11 B-endorphin is sensitive to opiates 

(Przewlocki et al, 1979a; Hollt et al, 198la; Gianoulakis 

et a 1 • 198la, 198lb; Lim and Funder, 1983) perhaps 

indicating a regulatory role of an endogenous opioid systerr. 

in IL function, Opiates acutely elevate plasma levels of 

iB-endorphin (Hollt et al, 1978b; Haracz et al, 1981) but 

chronic opiate administration is associated with diminished 

synthesis of IL B-endorphin and reduced secretory 

responsiveness of the AL as well as the IL to stimulation 

(Przewlocki et al, 1979a; Hollt et al, 198lb; Gianoulakis 
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et al, 198la; 1981b). The long term effects of opiates on 

ALB-endorphin secretion are consistent with well-know-n 

ACTH and adrenocortical responses to 

An involvement of opioids in 

secretions 1s further supported 

morphine dependence. 

the regulation of IL 

by the finding that 

depletion of IL iB-endorphin due to cold water swimming can 

be prevented by naloxone pretreatment (Lim and Funder. 

1983). It is not presently known whether the inhibitory 

actions of estrogens and opiates result from direct 

indirect actions of these compounds on melanotrophs, 

1.5 THE ROLE OF DOPAMINE NEURONS IN REGULATING PITUITARY 

BETA-ENDORPHIN SECRETION 

or 

Regulation of circulating B-endorphin involves control of 

secretion from the IL and AL. two anatomically and 

physiologically distinct tissues of the adenohypophysis. 

Most is known about the physiologic role of dopamine 

neurons in regulating melanotroph secretions. 

1 .5,0,1 Dopamine Neuions Bnd Intermediate Lobe B-endorphin 

Secretion 

Unlike the AL. the IL is known to be innervated by 

hypothalamic neurons which are predominantly inhibitory to 

the secretion of melanotrophs in mammals (Howe, 1973). In 

the rat, most of these hypothalamic neurons are 
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dopaminergic (Bjorklund et al, 1973) with perikarya in the 

arcuate and adjacent periventricular hypothalamic nuclei. 

These so-called tuberohypophyseal dopamine neurons project 

to the IL by way of the neural lobe (Bjorklund et al, 1973; 

Moore and Bloom, 1 9 7 8) and the nerve terminals make 

synaptic-like contacts with melanotrophs (Baumgarten et al, 

1972). Conditions which enhance neuronal depolarization 

have been shown to increase efflux of dopamine from the NIL 

in vitro (Sharman et al, 1982). Depolarization-induced 

dopamine release probably accounts for the ability of high 

potassium to inhibit rather than stimulate the release of 

B-endorphin related peptides from freshly excised rat NIL 

(Vermes et al, 1980a; 1980b). 

Dopaminergic agonists dramatically slow the 

frequency of spontaneous action potentials recorded from 

these cells (Douglas and Taraskevich, 1978; 1982) and 

similar doses of dopamine have been shown to inhibit basal 

and stimulated release of B-endorphin and other POHC 

peptides from freshly dissociated IL (Bower et a 1, 1974; 

Munemura et al~ 1980; Cote et al, 1982) and from primary 

cultures of the IL (Vale et al, 1979). It is likely, 

therefore, that dopamine controls melanotrophs partly by 

stimulus-secretion coupling (Douglas and inhibiting 

Taraskevich, 1978; 1980). As discussed below, more recent 

evidence points to the inhibitory influence of dopamine on 

the enzyme, adenylate cyclase, 

secretion (Cote et al, 1982). 

and its relationship to IL 

a a 



The IL contains dopaminergic receptors (Cronin et 

al, 1978; Sibley and Creese, 1980) that have recently been 

classified as the dopamine-2 (D2) subtype (Stefanini et al, 

1980; Cote et al, 1982). According to Kebabian and Caine 

(1979), dopamine is able to exert actions on target tissues 

through pharmacologically and biochemically distinct 

receptors that can be broadly classified as either 

dopamine-1 (Dl) or dopamine-2 (D2) receptor subtypes, D2 

receptor subtypes display a high affinity for dopamine 

agonists and modulate the physiological activity of target 

tissues without interacting with or via inhibition of 

adenylate cyclase (Kebabian and Calne, 1979). Dopamine 

receptors on melanotrophs are now used as model D2 

receptors, but cyclic adenosine monophosphate production 

and related AL secretion of prolactin or the synaptic 

release of acetylcholine in the neostriatum have also been 

shown to be inhibited by D2 receptor activation (Kebabian 

and Caine, 1979; Wong et al, 1983). In contrast, Dl 

receptor subtypes, which have not been found in the IL, 

have a much lower affinity for dopaminergic agents and 

mediate biological responses through positive interactions 

with the enzyme, adenyl ate cyclase. For example, 

stimulation of Dl receptors in the bovine parathyroid gland 

results in increased adenylate cyclase activity with 

associated production of the cyclic adenosine monophosphate 

second messenger and elevated secretion of parathyroid 

hormone (Brown et al, 1980). Although additional types of 
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dopamine receptors have been proposed (see Costal! and 

Naylor, 1981), the present consensus is that the D1 and D2 

classifications represent the most durable model for 

representing biologically meaningful 

dopaminergic mechanisms. 

interpretations of 

Using a variety of dopaminergic agonists and 

antagonists, Kebabian and colleagues have found that the 

rat IL contains about 15 

dopaminergic binding sites 

femtomoles of high affinity 

(Frey et al, 1982). Through 

interaction with these presumed D2 sites, dopaminergic 

agonists inhibit MSH secretion and adenylate cyclase 

activity in a correlated fashion (Cote et al, 1982; Frey et 

al, 1982; Meunier and Labrie, 1982). The ability of D2 

specific antagonists to reverse dopaminergic inhibition of 

electrical activity (Douglas and Taraskevich, 1978), 

hormone secretion (Vermes et al, 1980b; Tilders et al, 

1981) and adenylate cyclase activity (Cote at al, 1982) are 

each taken as evidence to support the view that 

tuberohypophyseal inhibition of IL B-endorphin release 1s 

physiologically mediated by D2 receptors on melanotrophs 

(Cote et al, 1982). The importance of cAMP as ar. 

intracellular regulator of melanotrophs is becoming 

increasingly evident as recent evidence indicates that 

circulating catecholamines may stimulate IL secretion of 

POMC peptides through a beta-adrenoceptor mechanism whict 

acts through increased 

(Tilders et al, 1980). 

intracellular production of cAHP 
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1.5.0.2 Dopamine Neurons and ALB-Endorphin Secretion 

Althou£h dopamine has no direct effect on 

corticotrophs, considerations reviewed here indicate that 

brain dopamine neurons might indirectly govern AL as well 

as IL secretion of B-endorphin and related POMC peptides. 

1.5.0.3 Neuroendocrine Importance of Brain Dopamine Neurons 

Intra- and extrahypothalamic dopaminergic 

are known to be anatomically and functionally 

pathways 

linked to 

hormone secretion from the pituitary gland. Hypothalamic 

dopamine neurons which are most clearly associated with 

neuroendocrine control originate from cell bodies in the 

arcuate and adjacent periventricular nuclei and project to 

the neural and intermediate lobes of the pituitary and to 

the median eminence (Dahlstrom and Fuxe, 1964; Ungerstedt, 

1971; Bjorklund et a 1 • 1973; Moore and Bloom, 1978). 

Dopamine neurons originating in the rostral pole of the 

arcuate nucleus innervate the IL and a slightly more caudal 

group innervates the neural lobe (Bjorklund et al. 1973). 

These neurons are collectively refered to as 

tuberohypophyseal dopa~ine neurons. Virtually all of the 

the dopamine 1n the IL 16 accounted for by 

tuberohypophyseal innervation of the lobe (Smith and Fink, 

1972; Alper et a 1 , 1980). Consequently, dopaminer g ic 

inhibition of E-endorphin and MSH release from melanotrophs 
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~s attributed entirely to this discrete dopaminergic 

system. 

Most of the intrahypothalaroic dopamine neurons are 

the mid- to caudal arcuate nucleus and situated 

project 

from 

to the median em1nence. These are 

tuberoinf~ndibular dopamine neurons (Ungerstedt, 1971; 

Lindvall and Bjorklund, 1978; Moore and Bloom, 1978) which 

are known to be the primary inhibitory regulators of 

In prolactin secretion from the AL (MacLeod, 1976). 

addition to inhibiting prolactin release, these neurons are 

also believed to govern gonadotropin secretion by 

inhibiting secretion of gonadotropin releasing hormone 

(GnRR) at the median eminence (Lofstrom et al, 1976; 

MacLeod, 1976; Wiesel et al, 1978; Sladek et al, 1978). In 

a similar manner, the tuberoinfundibular system could 

influence AL B-endorphin secretion by acting on CRF 

terminals in the median eminence. 

Although most of the dopamine in the median eminence 

and basal hypothalamus originates tuberoinfundibular 

dopamine neurons, a significant amount cannot be accounted 

for by the arcuate neurons alone. Incertohypothalamic, 

periventricular and mesencephalic dopamine neurons have 

been described (Lindvall and Bjorklund, 1978; Moore and 

Bloom, 1978) which innervate the hypothalamus and may also 

influence CRF. 

lncertohypothalamic dopamine neurons most closely 
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resemble the intrahypothalamic dopaminergic system in that 

both originate within the diencephalon and appear to 

innervate structures within the vicinity of their nucleus 

of origin. The incertohypothalamic cell bodies are located 

in the caudal hypothalamus and zona incerta (Bjorklund et 

al, 1975). Also included 1n this system are dopamine 

neurons situated around the third ventricle in the anterior 

hypothalamus/preoptic area (Bjorklund et al, 1975; Lindvall 

and Bjorklund, 1978). Little is known about the physiology 

of incertohypothalamic dopamine neurons, however, their 

innervation of regions like the septum, medial preoptic 

area and, particularly, the paraventricular nuclei where 

CRF neurons originate suggests their involvement with 

control of AL B-endorphin secretion (Bjorklund et al, 1975; 

Palkovits et al, 1977a; Moore and Bloom, 1978), 

The periventricular system is a diffuse network of 

dopaminergic (and noradrenergic) neurons along the 

ventricular system of the diencephalon and brainstem which 

shares overlapping innervations with the 

incertohypothalamic system in the rostral hypothalamus. 

The ventral group of the periventricular system is 

predoudnantly dopaminergic 

paraventricular nucleus as well 

bed nucleus 

Bjorklund, 

associated 

of 

1978). 

with 

the stria 

Each of 

regulation 

and innervates the 

as septal nuclei and the 

terminal is (Lindvall and 

these structures has been 

of paraventricular neurons 

and/or AL corticotrophs 0 I i lloughby and Martin, 19 7 8; 
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Ellendorff and Parvisi. 1980; Millan et al, 1984). 

Another extrahypothalamic dopaminergic system which 

may participate in controlling AL B-endorphin secretion is 

located in the ventral tegmental area of the brainstem. In 

addition to major projections of these neurons to limbic 

structures like the septum 

Bjorklund. 1978; Moore and 

and the amygdala (Lindvall and 

Bloom, 1978). the mesencephalic 

dopamine system also innervates the hypothalamus. 

contributing up to 40% of the dopamine concentrated there 

(Kizer et al, 1976; Palkovits et al, 1977b). 

The non-hypothalamic dopaminergic pathways described 

above offer multiple anatomical pathways for conveying 

diverse physiological signals to the hypothalamus where CNS 

control of AL B-endorphin release is expressed through CRF 

release. There is an additional innervation of the frontal 

cortex by mesencephalic dopaDJine neurons which could also 

be involved with dopaminergic control of AL B-endorphin 

release despite its lack of direct anatomical connections 

with the hypothalamus. In summary, brain dopaminergic 

systems decribed here offer several neural substrates 

through which CRF neurons can be appraised of CNS stimuli 

that ultimately govern AL as well as IL B-endorphin 

secretion. 

1.5.0.4 Functional Associations of Dopamine Neurons with 

CRF 
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By and large, the evidence which functionally 

associates dopamine with AL POMC secretions is rather 

mixed. Some evidence supports a stimulatory role but most 

indicates that dopamine neurons should have little effect 

or else act as inhibitors of CRF release. The earliest 

indication that any of the catecholamines neurotransmitters 

might stimulate the pituitary-adrenocortical axis came from 

experiments in which amphetamine was found to diminish the 

adrenal content of ascorbic acid, an indirect measure of 

stimulated steroid synthesis and secretion (Ohler and Sevy, 

1956). Amphetamine enhances release and reduces 

inactivation of catecholamines (Glowinski and Axelrod, 

1965), therefore, its ability to increase circulating 

glucocorticoid 

corticosterone 

metabolites (Naumenko, 1967) and 

(Knych and Eisenberg, 1979) was taken as 

evidence for aminergic stimulation of the pituitary-adrenal 

axis. More recent findings that circulating ACTH and 

B-endorphin are elevated in amphetamine-treated subjects is 

more direct evidence consistent with the possibility that 

catecholamines stimulate CRF secretion (Brown et al, 1978; 

Cohen et al, 1981). Since the amphetamine-induced secretion 

of adrenal steroids is prevented by pretreatment with 

phenoxybenzamine, a well-known adrenoceptor antagonist 

(Ohler 

effects 

and 

of 

adrenergic 

Sevy, 1956; Knych and Eisenberg, 1979), 

amphetamine were interpreted as evidence 

the 

for 

stimulation of ACTR secretion. Two recent 

findings, however, suggest that dopamine is just as likely 
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as norepinephrine 

pituitary-adrenal 

or epinephrine to stimulate the 

axis. 

dopaminergic more 

neurotransmission (Holmes 

First, 

potently 

amphetamine 

than 

stimulates 

adrenergic 

and Rutledge, 1976). Second, 

phenoxybenzamine has recently been shown to be an 

irreversible antagonist of dopaminergic as well as 

adrenergic receptors (Lehmann and Langer. 1981). Therefore, 

phenoxybenzamine-inhibited activation of the 

pituitary-adrenal axis by amphetamine may also support 

dopaminergic stimulation of ACTH and B-endorphin release. 

Results from direct administration of dopamine 

favors the possibility of a stimulatory dopaminergic role 

1n ACTE and AL B-endorphin secretion. Peripheral or 

central injections of dopamine elevate blood levels of 

corticosteroids 1n rats (King, 1969; Abe and Hiroshige, 

1974). These hormonal effects of dopamine occur at doses 

lower than those shown to exert cardiovascular effects 

(King, 1969) 

to dopamine 

indicating that the effects can be attributed 

rather than to its conversion to other 

catecholamines in the sympathetic nervous system, 

Consistent with these results lS the finding that 

peripherally-administered L-dibyroxyphenylalanine (L-DOPA), 

the precursor for dopamine synthesis, increases 

levels of glucocorticoids in man (Wilcox et 

circulating 

al, 1975; 

Lightman. 1981). Similar effects of L-DOPA on iB-endorphin 

release have likewise been observed (Cohen et al, 1981). 

The additional ability of L-DOPA to potentiate 
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metyrapone-induced release of ACTH (Hsu et al, 1976) 

suggests that brain dopamine neurons might participate in 

glucocorticoid feedback control of the pituitary-adrenal 

axis. Together these results 

neurons stimulate CRF release, 

secretion of iB-endorphin. 

indicate that dopandne 

thereby increasing AL 

Consistent with a stimulatory action of dopamine on 

CRF release are data which indicate that, like B-endorpbin 

and ACTE release, the activity of certain hypothalamic and 

extra-hypothalamic dopamine neurons parallels release of 

corticotroph hormones during stress (Palkovits et al, 1975; 

Hedge et al, 1976; Roth et al, 1982; Saavedra, 1982; Bannon 

and Roth, 1983; Smythe et al, 1983) and throughout the 

circadian cycle (Simon and George, 1975; Owasoyo et al, 

1979). Additionally, stress-induced activation of 

mesocortical dopamine neurons is sensitive, like secretion 

of AL POMC peptides, to glucocorticoid inhibition (Dunn et 

al, 1981; Delanoy et al, 1982). Dopaminergic activity in 

the arcuate hypothalamus increases soon after adrenalectomy 

(Versteeg et al, 1984), at a time when ACTH and B-endorphin 

release is dramatically increased in response to loss of 

negative feedback control by circulating glucocorticoids 

(DeSouza and Van Loon, 1983). These results are consistent 

with previous findings that adrenalectomy increases 

tyrosine activity in the median eminence, a response that 

is blocked by glucocorticoid treatment (Kizer et al, 1974). 

Perhaps, as suggested by the L-DOPA-metyrapone experiments 
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(Hsu et al, 1976), tuberoinfundibular dopamine neurons are 

involved in feedback control of CRF release. The findings 

that dopamine outlined above allow for the possibility 

neurons may normally 

through CRF. 

stimulate corticotrophs, presumably 

Until the present study, a popular assumption had 

been that dopamine exerts no significant influence on 

corticotroph function (Fuxe et al, 1970; Van Loon, 1973; 

Ganong et al, 1976). Consistent with this view, Smythe and 

colleagues (1983) report that although the activity of 

hypothalamic dopamine neurons parallels ACTH secretion in 

one or two isolated circumstances, overall, there is no 

correlation 

hypothalamus 

between dopaminergic activity in the 

and 

al, 

patterns of ACTH secretion in the rat 

(Smythe et 1983). Buckingham's 1980 review of the 

literature on control of CRF similarly denied dopamine any 

influence on CRF release. These conclusions may have been 

premature, 

identified 

however, since CRF has only recently been 

and sequenced (Vale et a 1, 1981). Hence, 

accurate investigations of how specific neurochemicals like 

dopamine affect CRF secretion are only now possible. 

Contrary 

stimulatory role 

to the evidence for no effect or a 

of dopamine neurons in AL B-endorptin 

release, there are a number of studies ~hose results 

suggest that dopamine acts as an inhibitory regulator of 

CRF. Dopamine reportedly attenuates stimulated but not 
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basal CRF release from hypothalamic preparations (Edwardson 

and Bennet, 1974; Hillhouse et al, 1975). Consistent with 

these in vitro findings, destruction of catecholaminergic 

neurons with the neurotoxin, 6-hydroxydopamine (6-0RDA), 

bas been found to elevate basal secretion of adrenal 

glucocorticoids (Cuello et al, 

Although the diurnal rhythm of 

1974; Smith et al, 1982). 

circulating corticosterone 

remains intact in 6-0BDA-lesioned animals (Ulrich and 

Yuwiler, 1973; Abe and Hiroshige, 1979), the lesion-induced 

increase in plasma glucocorticoid levels bas been 

interpreted to indicate that noradrenergic neurons 

tonically inhibit basal secretion of AL corticotroph (Van 

Loon, 1973; Ganong et al, 1976). Since 6-0HDA also destroys 

dopaminergic neurons 

these findings could 

(Kostrzewa and Jacobowitz, 1974), 

also be interpreted to indicate that 

dopamine neurons tonically inhibit CRF release. 

Additional evidence for an inhibitory role of brain 

dopamine neurons in the regulation of corticotroph function 

are a few reports which contradict the evidence for 

stimulatory actions of either amphetamines or 

pituitary-adrenal activation (Marantz et 

L-DOPA on 

al, 1976). 

Furthermore, the turnover of hypothalamic dopamine has been 

shown by some to be decreased rather than increased in 

response to stress (Lidbrink et al, 1972; Fuxe et al, 

1983). 
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1.6 SPECIFIC AIMS 

At the outset of this research project. virtually nothing 

was known about the role of dopamine neurons in the 

physiologic regulation of pituitary B-endorphin secretion. 

This was due to the very newness of B-endorphin's 

discovery. Based upon the evidence that brain dopamine 

neurons importantly control the secretion of several 

anterior pituitary hormones in addition to 

alpha-melanotropin from the intermediate lobe. the overall 

goal of the research described here was to determine the 

physiologic importance of dopamine in governing B-endorphin 

secretion from these two pituitary sources. As the project 

evolved. the research was directed towards the specific 

aims of determining: 

1. The effects of general and receptor-specific 

dopamine agonists on secretion of anterior and 

intermediate lobe B-endorphin peptides in 

vivo and in vitro 

2. The effects of general and receptor-specific 

dopamine antagonists on anterior and interme­

diate lobe secretion of B-endorphin in vivo 

and in vitro 

3. The role of brain dopamine neurons in mediating 

physiologically-evoked release of anterior and 
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intermediate lobe B-endorphin peptides in 

vivo. 
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Chapter 2 

METHODS 

2.0.1 Animals 

Adult male albino rats of the Sprague-Dawley strain 

(Taconic Farms, Germantown, NY; Hilltop Laboratory Animals, 

Scottdale, PA) weighing 150-300 grams were housed four per 

cage in a controlled environment (23 C, -70% relative 

humidity) with 12 hours of light daily (0600-1800) and free 

access to food (Rat, Mouse & Hamster Formula, Charles 

River, Syracuse, NY) and tap water. In order to minimize 

effects of non-specific stress (Hodges and Mitchley, 1970) 

on pituitary release of immunoreactive B-endorphin 

(iB-endorphin), all animals were briefly handled daily for 

3 to 5 days prior to an experiment and, on the afternoon 

preceding an experiment, were transfered to the 

experimental room to acclimate to the new environment 

overnight (Fortier, 1958). Rats were numbered with 

indelible tail marks, weighed and assigned to treatment 

groups following a randomized block design that included 

6-8 animals per group. In each experiment, animals were 
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:able I. Directory of pharmacologic agents for examining 
1nvolvement of dopamine in controlling release of iB-endorphin 
and prolactin from the pituitary gland in vivo 

Compound 

SKF 38393 

Bromocriptine * 
LY141865 

Domperidone * 
Sulpiride * 

Apomorphine 

Pergolide 

Piribedil 

Haloperidol 

Pimozide 

Dexamethasone 

Metyrapone 

Nomfensine 

Description 

Q.l agonist 

tl agonists 

D2 antagonists 

QL_ ll agonists 

QL_ 121. antagonist 

Miscellaneous 

glucocorticoid 

glucocorticoid 
synthesis blocker 

catecholamine 
reuptake inhibitor 

Vehicle 

water 

0.03 M tartaric acid 

0.9% NaCl 

0.9 M acetic acid 

0.03 M tartaric acid 

0.1% metabisulfite 

0.03 M tartaric acid 

0.1% metabisulfite 

0.03 M tartaric acid 

0.03 M tartaric acid 

water 

0.9% NaCl suspension 

0.03 M tartaric acid 

* poor or delayed entry into the brain after systemic 
administration 

** 

** except for intracerebroventricular injection where 
sulpiride was dissolved in a small volume of glacial acetic 
acid then diluted to an injectable form using sodium 
bicarbonate and water 
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treated and killed between 0800 and 1300. 

2.0.2 Treatments 

2.0.2.1 Drugs 

Compounds listed in Table 1 were prepared in concentrations 

such that intraperitoneal (ip) or subcutaneous ( s c ) 

injection volumes were 0.1 or 0.2 cc per 

weight (see RESULTS for specifications). 

100 gram body 

For every drug 

treatment, the corresponding vehicle (Table 1 ) was 

administered to control animals. 

2.0.2.2 Behavioral Observations 

Classic dopaminergic drugs like haloperidal and 

apomorphine are known to have behavioral effects on rodents 

which are easily distinguished from normal activity 

patterns. Since several novel dopaminergic compounds were 

used 1n the present study, overt, stereotypic behaviors 

which were unmistakably different from normal (i.e., 

vehicle-treated control) rat activity were noted as time 

permitted. Drug-induced catalepsy was defined as a state 

in which the animal would retain an unusual posture (hind 

paw crossed over ipsilateral front paw) 

seconds. 

2.0.2.3 Stress 

for at least 15 
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Animals were subjected to physical immobilization as 

an experimental method of evoking stress (Dunn et al, 

1972b). Physical immobilization was administered by 

strapping rats to test tube racks with tape and placing the 

animals on their backs for 20-30 minutes. This procedure 

reproducibly provokes maximal pituitary secretion of 

iB-endorphin without physically injuring the animals 

(Mueller, 1980; Mueller, 1981). 

2.0.3 Sample Collection 

2.0.3.1 Plasma 

Rats were decapitated within 15 seconds after 

removal from their cages and trunk blood was collected into 

plastic tubes containing 70 mg of ethylenediamine 

tetra-acetic acid (EDTA, Sigma Chemical Company, St. Louis, 

MO) as anticoagulant and 25 micrograms (meg) of bacitracin 

(Sigma) as peptidase inhibitor dissolved in 0.5-0.6 ml of 

0.05 M sodium phosphate buffer (pH 7.4). Blood tubes were 

immediately chilled in an 1ce bath. Plasma was separated 

by centrifugation (7000 rpm for 20 min), decanted into 12 x 

75 mm polysterene tubes, covered with Parafilm and stored 

at -70 C (Harris LoTemp Products, North Billerica, MA). 

2.0.3.2 Pituitary 

Within 2 min after decapitation, the brain was 
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removed from the skull and, with the aid of a dissecting 

microscope and fine forceps, the neurointermediate lobe 

(NIL = neural plus intermediate lobes) was freed from the 

anterior lobe (AL) in situ. Pituitary samples were placed 

into labeled polypropylene microcentrifuge tubes containing 

1.0 ml of ice-cold 1 M acetic acid, homogenized by 

sonication (Heat 

frozen at -70 C. 

Systems-Ultrasonics, 

2.0.4 Pituitary Cell Cultures 

Plainview, NY) and 

Primary cultures of AL and IL cells were established 

by modification of a method described by Vale and 

colleagues (1978). Pituitaries were harvested from 40-50 

male Sprague-Dawley rats weighing 100-150 g • After 

dissection of the pituitary as described above, the AL and 

NIL samples were separately pooled into ice-chilled 

solutions of Dulbecco's Modified Eagles Medium containing 

4500 g/1 glucose (DMEM) and 2% horse serum (Grand Island 

Biological Company [GIBCO], Grand Island, NY). Pituitary 

samples were minced with a razor blade and enzymatically 

dispersed as follows: pituitary fragments were incubated 

for 45 min at 37 C in calcium- and magnesium-free Hanks 

Balanced Salt Solution (HBSS) (GIBCO) containing 0.35% 

collagenase (CLS IV, 150-170 U/mg, Worthington Enzymes, 

Cooper-Biomedical, Malvern, PA) and 0.1% hyaluronidase 

(Type III, Sigma) plus 3% bovine serum albumin (BSA, 

Sigma); a second incubation in HBSS containing 0.25% 
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pancreatin (Grade III, Sigma) and 3% BSA (15-30 min at 37 

C) completed the enzymatic 

70,000 AL cells and 30,000 

dissociation. Approximately 

NIL cells (estimated with a 

hemocytometer and trypan blue) were plated into 10 x 16 mm 

and 15 x 35 mm culture dishes, respectively. Cells were 

grown at 37 C (Hotpack, Philadelphia, PA) in humidified, 

filtered room air containing 5% carbon dioxide in sterile 

DMEM culture medium containing 10% horse serum, 2.5% fetal 

calf serum (GIBCO), 0.1% glutamine and 1% non-essential 

amino acids (GIBCO). Using this protocol, ALand IL cells 

(approximately 80 and 40 plates, respectively) were 

established on a substrate of fibroblasts within 5-7 days 

(Pettibone and Mueller, 198lb; Pettibone and Mueller, 

1982). Cell viability was determined initially by trypan 

blue exclusion (Pettibone and Mueller, 198lb) and the 

condition of the cultures was routinely examined using a 

phase-contrast microscope (Leitz Wetzler, Germany). Release 

experiments were conducted after repeatedly (x4) rinsing 

the cultures with 2 ml of DMEM containing 2% horse serum. 

Thereafter, cells were incubated for 2 h with 2.0 ml (AL) 

or 1.5 ml (IL) of release medium (DMEM containing 2% horse 

serum, 0.6 mg/ml ascorbic acid (Sigma) and 30 mcg/ml 

bacitracin). Release media were removed without cells and 

stored at -70 C. 

2.0.5 Biochemical Techniques 
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2.0.5.1 Gel Filtration Chromatography 

The major plasma and cell culture components of 

iB-endorphin (B-endorphin- and B-lipotropin-sized peptides) 

were separated by gel filtration chromatography according 

to molecular weight. Plasma or release media from single 

treatment groups were pooled (5-8 ml), a small aliquot of 

the pool was saved for estimating recovery and the pool was 

layered on a column (2.5 x 80 em) of dextran gel resin 

(Sephadex G-50 fine, Pharmacia Fine Chemicals, Piscataway, 

NJ). Columns were equilibrated at 4 C and eluted at a flow 

rate of - 4.0 ml/min with a mobile phase of 0.1 M acetic 

acid (pH -3) containing 0.05% BSA, 0.02% sodium azide and 5 

mg% bacitracin. Fractions (7.0-7.5 ml) were collected with 

a Microfractionator (Gilson Medical Electronics, Middleton, 

WI) into 13 x 100 mm borosilicate glass tubes. Three to 6 

ml aliquots of fractions were lyophilized (Unitrap, Vitris, 

Gardiner, NY) and reconstituted 1n a 0.05 M sodium 

phosphate buffer (pH 7.4) for determination of iB-endorphin 

by radioimmunoassay as described below. Columns were 

equilibrated using blue dextran (Sigma) as the void volume 

marker (Vo) and sodium [125]-iodide (Amersham Corporation, 

Arlington Heights, IL) as the salt volume marker (Vs). 

Characteristic elution volumes (Ve) for B-endorphin- and 

B-lipotropin-sized peptides were determined using camel 

B-endorphin 1-31 (Peninsula Laboratories, San Carlos, CA) 

and purified human B-lipotropin (A • Parlow, NIADDK, 

Baltimore, MD), respectively. As shown in Figure 4, 
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Figure 4. Gel filtration chromatography of immunoreactive 

beta-endorphin (iB-END) released in vitro by primary 

cultures of anterior (AL) and intermediate lobe (IL) cells. 

Control release medium from 7 day cultures of AL or IL cells 

were eluted on a column of Sephadex G-50 fine and fractions 

were assayed for iB-END. Recovery of total immunoreactivity 

was 69% for the AL and 72% for the IL samples. Arrows 

indicate the elution positions of calibration standards 

(Vo =blue dextran, B-LPH =purified human B-lipotropin and 

B-END= camel B-endorphin 1-31). 
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chromatography of control release medium from primary 

cultures of AL and IL clearly resolves the major molecular 

forms of iB-endorphin. The amount of iB-endorphin in each 

fraction (y-axis) is graphed with respect to a measure of 

relative mobility, Kd (x-axis), which is calculated as 

(Ve-Vo)/(Vs-Vo). As indicated by the pointers from the 

schematic rat pituitary gland, AL and IL cultures release 

markedly different molecular forms of iB-endorphin. Three 

major forms of iB-endorphin are secreted by the AL which 

elute, respectively, near Vo, slightly later than the human 

B-lipotropin standard and at the position of the camel 

B-endorphin 1-31 standard. In contrast, nearly all the 

iB-endorphin released by the IL corresponds to 

B-endorphin-sized material (lower chromatogram, Figure 4). 

The IL peptides elute as two poorly resolved peaks with the 

second peak corresponding to C-terminally shortened forms 

of B-endorphin, i.e., free and N-acetylated B-endorphin 

1-27 and 1-26 (not shown). The chromatographic differences 

between B-lipotropin- and B-endorphin-sized 

immunoreactivity shown here were exploited throughout the 

in vivo studies to distinguish AL from IL release since 

only the AL secretes appreciable amounts of B-lipotropin. 

In a representative group of chromatographic runs, recovery 

of iB-endorphin was 82 +/- 8% (mean +/- SE, n=10). 

Importantly, the proportion of molecular forms of 

iB-endorphin detected in plasma from similar treatment 

groups were unaffected by variations in recovery from run 
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to run. Accordingly, all subsequent chromatographic 

profiles are corrected to 100% recovery. 

2.0.5.2 Radioimmunoassays 

Radioimmunoassays for B-endorphin pep tides and 

alpha-melanotropin (MSH) were established using rabbit 

antisera (C-55 and H-50, respectively) that were developed 

against camel B-endorphin 1-31 or alpha-MSH (Peninsula 

Labs) conjugated to bovine thyroglobulin (Mueller, 1980; 

Mueller, 1981; Pettibone and Mueller, 1984; see Appendix 

for details). Anti-prolactin antiserum and other reagents 

for the prolactin radioimmunoassay were provided through 

the National Hormone Distribution Program of the National 

Institute on Arthritis, Digestive Disorders and Kidney. All 

radioimmunoassays were performed at 4 C in 10 or 12 x 75 mm 

borosilicate glass tubes in 

buffer (pH 7.4) containing 

and 5 mg% bacitracin. For 

0.05 M sodium phosphate assay 

0.05% BSA, 0.02% sodium azide 

details of the assays see 

Appendix. Briefly, iodinated tracers were prepared by the 

Greenwood et al (1963). Two chemical oxidation method of 

meg of peptide and 1 mCi of sodium 125-iodide 

free, Amersham Corporation, 

reacted for 30 seconds 

Arlington 

with 10 meg 

Heights, 

of the 

(carrier 

IL) were 

oxidant, 

chloramine-T (Sigma), in a phosphate buffered reaction 

volume of 0.06 ml. The reaction was quenched by addition 

of - 15 meg of the reducing agent, sodium metabisulfite 

(Sigma). Radioisotopically-labeled B-endorphin or MSH were 
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purified by reverse-phase chromatography using commercially 

available CIS cartridges (Bennett et al, 1977). The 

iodination mixture was transferred to a Sep-Pak cartridge 

(Waters Associates, Milford, MA) in an aqueous solution of 

0.05% triflouroacetic acid (TFA) and the purified tracer 

was eluted with step gradients of acetonitrile containing 

0.05% TFA and stored at 4 C. 125 !-labeled prolactin was 

purified by gel filtration chromatography on a column of 

Sephadex G-50 medium (Pharmacia) using the sodium phosphate 

assay buffer for elution of the hormone. 

All radioimmunoassays were incubated for a minimum 

of 60 hours at 4 c. The B-endorphin and MSH assays were 

terminated by charcoal separation of free from bound 

peptides, whereas, second antibody precipitation of bound 

hormones was used to complete the prolactin 

radioimmunoassay (see Appendix). 

At a final dilution of 1/100,000, the 

anti-B-endorphin antiserum, C-55, bound 30-35% of 125 

!-camel B-endorphin 1-31 in the absence of unlabeled 

peptide (see Appendix). Addition of 10 picograms (-2.9 

femtomoles) of unlabeled B-endorphin standard displaced 10 % 

of specifically bound 125 I-B-endorphin; 50 % displacement 

occurred 1n the presence of approximately 85 pg (-20 

femtomoles) of standard. This radioimmunoassay detected 

equimolar amounts of camel, rat or human B-endorphin 1-31, 

c- and N-terminally modified forms characteristic of the IL 
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as well as purified rat or human B-lipotropin. C-55 did 

not, however, cross-react with methionine-enkephalin 

(B-endorphin 1-5) or alpha-endorphin (B-endorphin 1-16) 

[indicating that the antigenic determinants for C-55 are 

located between amino acids 17-27 in the B-endorphin 

sequence] nor with many other hypothalamic and pituitary 

peptides such as adrenocorticotropin, melanotropin, 

somatostatin, luteinizing hormone and prolactin (Mueller, 

1980; Mueller, 1981). Increasing doses of unextracted 

plasma, culture media, pituitary extracts or Sephadex G-50 

column eluates displaced 125 I-B-endorphin 1n parallel with 

unlabeled standards. 

At a final dilution of 1/200,000, the anti-MSH 

antiserum, H-50, specifically bound 30% of 125 !-labeled 

MSH. Thirty (30) picograms (-18 femtomoles) of unlabeled 

alpha-MSH standard produced 10% displacement. This assay 

detected equimolar amounts of des Ac-MSH, mono Ac-MSH and 

di Ac-MSH (ACTH 1-13 amide, N-Ac ACTH 1-13 amide and N, 

0-diAc ACTH 1-13 amide, respectively) but did not measure 

deamidated MSH or larger forms of ACTH (Pettibone and 

Mueller, 1984). The C-terminal amide moeity and amino acid 

sequence of MSH appear critical for detection by H-50. 

The prolactin antiserum was diluted according to 

specifications in the NIADDK rat prolactin radioimmunoassay 

kit to achieve 30% specific maximum binding. 

the minimal detectable amount of prolactin was 

Generally, 

60 pg per 
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tube. In the course of these studies, the National Hormone 

Distribution Program under the NIADDK changed the reference 

standard for rat prolactin from RP-1 to RP-2. This resulted 

in a downward shift in basal plasma levels of plasma 

prolactin (see Results, Table 3 vs Table 2), however, the 

magnitude of experimentally-induced changes was not 

noticeably affected. 

2.0.5.3 Protein Determination 

Protein was measured by a Coomassie brilliant blue 

dye binding assay (Bradford, 1976) using commercially 

supplied reagents and standards 

Richmond, CA). 

2.0.6 Statistical Analysis 

Statistical differences 

(Bio-Rad Laboratories, 

between treatments were 

determined by one- or two-way analysis of variance followed 

by Duncan's new multiple range test of group means (Winer, 

1971). Statistical differences were accepted when the 

probability of error was less than 5% (P< 0.05). 
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Chapter 3 

RESULTS 

The studies described below were designed to examine 

the possible mechanisms by which dopamine may regulate the 

release of pituitary immunoreactive beta-endorphin 

(iB-endorphin) in rats. Results of these investigations 

are presented 1n three sections organized according to: 1) 

the effects of dopaminergic agonists, 2) effects of 

dopa~~~ergic antagonists and 3) the actions of dopaminergic 

agonists and antagonists on physiologically stimulated 

release of iB-endorphin. Since it is well-established that 

the secretion 

dopaminergic 

of prolactin is 

inhibition, changes 

regulated principally by 

in plasma levels of 

prolactin were monitored to demonstrate the efficacy of 

dopaminergic drug treatments. 

In overv1ew, the results demonstrate that dopamine 

independently inhibits anterior lobe (AL) and intermediate 

lobe (IL) release of iB-endorphin through doparnine-1 ( D 1 ) 

and dopamine-2 (D2) receptor mechanisms, respectively. The 

most profound action of dopaminergic agonists, however, was 

stimulation of AL secretion of iB-endorphin through a D2 

receptor mechanism. Together, these observations suggest 
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that dopamine neurons may be involved in regulating 

circulating levels of iB-endorphin through dopaminergic 

me chanisms which can influence both AL and 

iB-endorphin. 

IL release of 

3.0.1 Dopaminergic Agonist Effects on Circulating 

iB-endorphin 

The three parts of this section describe experiments 

which characterize the effects of dopaminergic agonists on 

plasma levels of iB-endorphin in rats. In the first 

section, time- and dose-related effects of dopaminergic 

agonists on circulating levels of total iB-endorphin and on 

the underlying molecular forms of iB-endorphin were 

examined. F. at s received injections of classical 

dopaminergic agonists which are thought to be active at 

both Dl and D2 dopamine rec~ptor subtypes (apomorphine and 

piribedil) or which preferentially stimulate either Dl 

receptors (SKF 38393) or D2 receptors (LY141865 end 

bromocriptine). The next section describes the effects of 

dopamine agonists on iB-endorphin released specifically 

from the AL. The actions of apomorphine and LY141865 on 

iB-endorphin release in vivo were challenged with exogenous 

glucocorticoid pretreatment (dexamethasone), a mean s by 

w~i c h AL 

inhibited. 

(but not IL) 

Furthermore, the 

secretion 

possible 

of iB-endorphin lS 

direct actions of 

dopamine on spontaneous and evoked release of iB-endorphin 

from the AL was examined in vitro by exposin g pri mar y 
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cultures of the rat AL to dopamine or the D2 agonists, 

LY141865 and bromocriptine. Experiments in the last 

section further define, pharmacologically, dopaminergic 

mechanisms regulating pituitary release of iB-endorpbin in 

vivo. The actions of apomorphine and LY141865 were 

challenged by pretreating rats with antagonists of dopamine 

receptors which block both Dl and D2 receptor subtypes 

(haloperidol) or which preferentially inhibit only D2 

receptors (sulpiride). 

3.0.1.1 Time- and Dose-related Effects of Dopaminergic 

Agonists 

Figures 5 and 6 illustrate the effects of two 

classical dopaminergic agonists, apomorphine and piribedil 

(mixed Dl, D2 agonists), on circulating levels of total 

iB-endorphin and on the underlying molecular forns of that 

immunoreactivity. As compared to control values of 0.18 

+/- 0.02 ng/ml (mean+/- SE), circulating levels of total 

iB-endorphin were elevated 2.5-fold by 7 min after a single 

injection of apomorphine (3 mg/kg, sc) and remained 

significantly elevated (P<O.OS) up to 30 min after 

apomorphine administration; thereafter, plasma iB-endorphin 

tended towards control values (Figure 5, left). As shown 

in the right hand panels of Figure 5 ' gel filtration 

chromatography of plasma clearly resolved two forms of 

circulating iB-endorphin that resembled B-lipotropin 

(B-LPB) and B-endorphin standards in molecular s1ze. The 
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Figure 5. Effects of apomorphine on circulating levels of 

immunoreactive beta-endorphin (iB-END) in rats. Composite 

illustration showing the time-course effects (left) and 

the gel chromatographic profiles (right) of apomorphine 

versus control treatments • . Rats received sc injections of 

vehicle or apomorphine (3 mg/kg) at each of the times 

indicated below the abscissa (left) prior to decapitation. 

Points and vertical lines represent the group means +/- SE, 

N=6, in the time course. Pools of treatment group plasma 

(-7 ml) were filtered on a column of Sephadex G-50 resin 

and the resulting profiles were graphed (corrected to 100 % 

recovery) with respect to the mobility coefficient, Kd. 

Pos itions of calibration peaks, i.e., blue dextran (Vo), 

human beta-lipotropin (B-LPH) and camel beta-endorphin 

(B-END) are shown (arrows) above the control profile. 

* Significantly different (P<0.05) from zero time 
controls 
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higher molecular weight peak of immunoreactivity 

co-chromatographed with rat B-LPH and eluted just beyond 

purified human B-LPH which is significantly larger than 

rodent beta-lipotropin (Eipper & Mains, 1979). The second 

peak of plasma immunoreactivity coeluted with synthetic 

camel B-endorphin. Under basal conditions, 

B-endorphin-sized material was the principle molecular form 

representing 80% of total iB-endorphin (Figure 5, top 

right). 

In contrast, the increase in total circulating 

iB-endorphin 7 min after apomorphine treatment was 

dominated by immunoreactivity resembling B-LPH in size 

(bottom right, Figure 5). The B-LPH peak comprised 72% of 

total iB-endorphin in plasma of apomorphine-treated rats 

and this represented an 8-fold increase in B-LPH relative 

to the amount in control rat plasma. Accompanying this 

rise in plasma B-LPH was a concomitant reduction in 

B-endorphin-sized immunoreactivity. 

decreased by 34% relative to the 

The B-endorphin peak 

corresponding peak 1n 

to apomorphine, control plasma. Similar 

mg/kg, sc) also induced a brief increase 

piribedil (10 

(7-30 min) in 

circulating levels of total iB-endorphin that maximally 

exceeded control values (0.23 +/- 0.04 ng/ml) by 280 % at 7 

min after treatment (Figure 6, left). Further, the gel 

filtration elution profiles of plasma from control and 

piribedil-treated rats (right-hand panels, Figure 6) were 
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Figure 6. Effects of piribedil on circulating levels of 

immunoreactive beta-endorphin (iB-END). Composite illus-

tration showing the time course effects (left) and gel 

chromatographic profiles (right) of piribedil versus control 

treatments. Rats received a sc injection of vehicle (10 

min) or of piribedil (10 mg/kg) at each of the times 

indicated (left) prior to decapitation. Symbols and verti-

cal lines represent the group mean +/-SF, N=S-7, in the 

time course. Pools of rat plasma (7 ml) were filtered on 

a column of Sephadex G-50, and the elution profile was 

graphed (corrected to 100% recovery) with respect to the 

mobility coefficient, Kd. Positions of calibration peaks, 

i.e., blue dextran (Vo), human beta-lipotropin (B-LPH) 

and camel B-endorphin (B-END), are shown (arrows) above 

the control profile (right). 

* Significantly different (P<O.OS) from the zero 
time controls 
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virtually the same as those observed in the apomorphine 

experiment. The B-LPH peak constituted only 27% of total 

iB-endorphin in the plasma of control animals yet 

represented greater than 70% in the plasma of 

piribedil-treated rats. These changes in plasma 

iB-endorphin of rats treated with piribedil reflected a 

7-fold elevation of iB-endorphin resembling B-LPH together 

with a simultaneous 18% loss of the immunoreactivity in the 

B-endorphin peak. 

appreciable amounts 

~ince only AL corticotrophs produce 

of B-LPR (Eipper and Mains, 1980), the 

dominance of B-LPH-sized iB-endorphin in profiles of plasma 

from apomorphine- and piribedil-treated animal suggests 

that these dopamine receptor agonists preferentially 

stimulate anterior lobe release of iB-endorphin in rats. 

Although B-endorphin-sized peptides are secreted by both 

the AL and IL, the observation that material · resembling 

B-endorphin was selectively decreased by the agonists 

suggests that apomorphine and piribedil inhibit IL release 

of iB-endorphin in vivo. This interpretation received 

additional support from the observation that an apomorphine 

treatment (1 mg/kg, 1p, 60 min) which failed to increase 

total levels of circulating iB-endorphin nonetheless 

shifted the major constituent of total 

from the B-endorphin-sized form to the 

B-LPH in molecular size (not shown). 

immunoreactivity 

form resemblin8 

As expected, both apomorphine and piribedil 

significantly reduced circulating prolactin by IS min after 
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Table 2. Time-course effects of apomorphine and piribedil on plasma levels of prolactin 

Minutes after treatment 

Treatment 0 7 lS 30 60 120 

Apomorphine s.s ± 1.6 5.2 ± 0.8 3.4 ± J.3* 2.2 ± Q.J* 1.9 ± 0.1* 4.0 ± 1.0 

Piribedil 13.0 ± 2.8 8.8 ± 3.9 2.1 ± o.z* 2.2 ± o.3* 1.9 ± 0.1* 1.1 ± o.2 

Rats recei.~red sc injections of vehicle, apomorphine (3 m3/kg) or piribedil (10 rng/kg) 

as described in the legends of Figures 5 and 6, respectively. Values are group 

means ± SE of plasma prolactin levels (ng/m1); N=S-7. 

* Significantly different (P(O.OS) from corresponding zero time controls 
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injection 

piribedil 

(Table 2). The duration of inhibition by 

persisted throughout the 2 h time-course, 

whereas, apomorphine's suppression of prolactin was evident 

only up to 60 min after injection. In addition to the 

endocrine effects described above, rats treated with 

apomorphine or piribedil exhibited stereotypic behavior 

which was markedly different fro~ vehicle-treated animals. 

The stereotypy consisted of ptosis, repetitive gnawing and 

sniffing and, in the case of apomorphine, pawing as if to 

dig through the cage floor. Although these behavioral 

responses were not quantified, the apparent time-course of 

the stereotypic displays paralleled the endocrine responses 

to the mixed Dl, D2 agonists (onset usually occuring within 

5 min of administration and lasting for about one hour). 

In order to determine if endogenous activity of 

dopamine neurons is involved 1n basal release of 

iB-endorphin from the pituitary in vivo, rats were treated 

with the indirect dopaminergic agonist, nom fens ine. 

Nomfensine enhances dopaminergic transmission in the brain 

by its ability to preferentially 

dopamine at the dopaminergic nerve 

inhibit 

terminal 

reuptake 

(Hunt et 

of 

a 1 , 

1974). Accordingly, nomfensine prevents inactivation of 

dopamine at the synapse and, thereby, 

duration of dopamine receptor activation. 

however, require the integrity of active 

Rat~ were treated with a dose of pathways. 

mg/kg, sc) which has been found elsewhere 

increases thE' 

Its effects, 

dopaminergic 

nomfensine (3 

to increase 
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Table 3 . Time course effects of nomfensine on circulating imQunoreactive 

S-endorphin and prolactin in ra t s 

Plasma Hor:nones (ng/ml) 
Treatment N iS-endorphin prolactin 

Controls 5 0 . ')7 ± 0.01 2 . 7 ± 0 . 7 

Nomfensine , 15 min fj 0. 13 ± 0.02 1. 4 ± 0.2 a 

30 min 6 0. 10 ± 0.02 1.2 ± 0.1 a 

60 mi n 6 o. 08 ± 0 . 02 1. 3 ± 0.2 a 

120 •nin 6 0.10 ± 0 . 03 1.0 :!: 0.1 a 

Rats received sc injections of vehicle or nomfensine (3 mg / kg) at 

each of t he times i ndica t ed prior to sacrifice . Values are the group 

wean ± SE; nu::aber of samples is indicated under N. 

a SiJnificantly different (P(0.05) from vehlcl~- t reated controls 
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levels of dopamine in the AL (Apud et al, 1980). Here, 

nomfensine-treated rats exhibited some of the stereotypy of 

the classical dopaminergic agonists, namely sniffing, but, 

relative to control animals, the striking behavioral 

feature of nomfensine-treated rats was repetitive, rearing 

and swaying. This behavior appeared most intense by 30 min 

after injection of nomfensine but was occasionally evidevt 

up to 2 h after the treatment. As shown in Table 3, 

nomfensine also lowered plasma prolactin during this time 

period and prolactin remained significantly depressed as 

compared to vehicle-treated controls up to 2 h after 

nomfensine administration. In this experiment, basal 

levels of prolactin are lower than in other experiments of 

this study. This may be due to the use of a different 

reference standard for prolactin (RP-2) than that most 

frequently used in other experiments (RP-1, see Methods). 

At no time after nomfensine were circulating levels of 

total iB-endorphin significantly different from control 

values. Gel chromatography (not shown) revealed that 

nomfensine treatment, like substimulatory apormorphine 

adroinistration, increased the B-LPH form of iB-endorphin 

and slightly decreased B-endorphin-sized immunoreactivity. 

Despite these alterations in circulating molecular forms of 

iB-endorphin, no net change in plasma levels of total 

iB-endorphin were detectable, 

Dose-related stimulation of pituitary iB-endor phin j 

release by apomorphine is shown in Table 4. Even at a dosE l 
.11 
II 

~ 
I 
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Table 4. Dose-response effects of apo.-norphine on circulating levels of 

iuununoreactive e-endorphin and prolactin in rat.;; 

Dose of Apomorphine Plasma Hormones (ng/ml) 
(::ng/kg) N if3-endorphin prolactin 

Vehicle 7 o.zo ± 0.03 l3 .o ± 2.8 

0.3 6 0.56 ± 0.10 a 14.4 ± 3.1 •i 
I 
I 

1.0 6 0.74 ± 0.12 a 8.0 ± 1.5 

3.0 6 o. 79 ± 0.03 a 8.1 ± 1.2 

10.0 6 0.95 ± o. 08 a 11.4 ± 3.1 

Rats received sc injections of vehicle or apomorphine (doses 

indicated) 10 min prior to decapitation. Values are the group mean 

± SE; number of samples is indicated under N. 

a Significantly different (P<O.OS) from vehicle-treated controls 



(0.3 mg/kg) which was ten times less than that used in the 

time-course experiment, apomorphine significantly increased 

circuJatjng iE-endorphin 2.8-fold as compared to control 

values by 10 min after administration. Higher doses of 

apomorphine evoked progressiv~ly h 5g ter levels of plasma 

iB-endorphin with the highest dose, 10 mg/kg, increasing 

total circulating iB-endorphin -4.8-fold relative to 

control valuel'l. Together, these findings suggest that 

pituitary release of iB-endorphin ~ vivo may be 

physiologically stimulated by dopamine receptor mechanism. 

To bettpr define thP receptor which mediates the 

effects of dopaminergic drugs on pituitary secretion of 

iB-endorphin, the effects of more selectively active 

cJc,patToinergic agonists were also 

receptor agonist, SKF 38393 

examined in rats. The Dl 

(Setler et al, 1978), had 

little effect on either basal levels of total circulating 

iB-endorphin (Table 5) or on the chromatographic profile of 

iB-endorphin in plasma (not shown). Even though higher 

doses of SKF 38393 (3 and 10 mg/kg, ip, 30 ~in) ~5d 

significantly increase circulating iB-e~dorphin, 

response was modest c-so%) and not dose-dependent. Unlike 

the mixed Dl, D2 receptor agonists, apomorphine and 

piribedil, SKF 38393 failed to evoke stereotypic displays 

in treated rat!'l. These animals, in fact, were behaviorally 

indistinguishable from control rats. In another 

experiment, (results not shown) SKF 38393 (0.3, 1.0 er~ 3.0 

mg/kg, 60 ~in) bad no effects on basal levels of prolactin 
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Table 5. Effects of SKF 38393 on circulating immunoreactive $-endorphin 

in rats 

Ninutes after treatment 

Treatment 15 30 60 

Vehicle o.~3 ± 0.02 

0.3 mg/kg SKF 0.24 ± 0.03 

1.0 mg/!-tg SKF ().28 ± o.oz 

3.0 mg/kg SKF 0.29 ± 0.03 0.36 ± o.03 a 0.31 ± 

10.0 m~/kg SKF {).34 ± 0.03 a 

Rats received ip iujections of venicle or SKF 38393A (SKF) in the 

doses indicated 15, 30 or 60 min prior to decapitation. Values are 

group means ± SZ of plasma ip-endorphin (ng/ml); N=6-7. 

o.o4 

a Significantly different (P(O.OS) from vehicle-treated controls 
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(6.5 +/- 1.4 ng/ml) nor on enhanced release of prolactin 

(84.3 +/- 12.8) evoked by the dopaminergic antagonist, 

haloperidol. As will be shown below, this finding further 

distinguished SKF 38393 from other dopaminergic agonists. 

Since the endocrine and behavioral effects of SKF 38393 

were clearly different from the effects of the other 

dopaminergic agonists, it is unlikely that the actions of 

apomorphine or piribedil are mediated by a Dl receptor 

subtype. Consistent with this view, evidence presented 

below indicates that classical dopamine receptor agonists 

evoked pituitary release iB-endorphin through their actions 

on the D2 type of dopamine receptor. 

The D2 receptor agonist, LY141865 (Tsurata et al, 

1981), like the classical dopamine agonists, increased 

circulating iB-endorphin and decreased prolactin in time­

and dose-related fashion. Rats treated with LY141865 also 

displayed some degree of the classical agonists stereotypy 

but were, for the most part, sedated by this treatment. As 

shown in Figure 7, LY141865 (1 mg/kg, ip) evoked a rapid 

increase in circulating iB-endorphin by 7 to 15 min after 

administration. Simultaneously, plasma levels of prolactin 

were reduced 60% from control values of 12.3 +/- 4.0 ng/ml 

within 15 min after the LY141865 injection and remained 

depressed throughout the 2 h time-coursse. Dose-response 

effects of LY141865 (0.01-1.0 mg/kg ip, 15 min) on 

iB-endorphin and prolactin are illustrated in the upper and 

132 
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Figure 7. Time course effects of LY141865 on circulating 

levels of immunoreactive beta-endorphin (iB-END) and pro-

lactin (PRL). Rats received an ip injection of vehicle or 

LY141865 (1 mg/kg) at each of the times indicated prior to 

decapitation. Symbols and verti~al lines represent the 

group mean +/- SE; N•6. 

*Significantly different (P<O.OS) from the zero 
time controls 
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Figure 8. Dose-response effects of LY141865 on circulating 

levels of immunoreactive beta-endorphin (iB-END) and prolac-

tin (PRL). Rats received an ip injection of vehicle (zero 

dose) or LY141865 (doses indicated) 15 min prior to decapi-

tation. Bars and vertical lines represent the group mean 

+/- SE; N=6. 

*Significantly different (P<O.OS) versus zero dose 
controls 
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lower panels of Figure 8. The dose of LY141865 which 

maximally suppressed basal prolactin levels (0.1 mg/kg) was 

in the same order of magnitude as the minimally effective 

dose (0.3 mg/kg) required to significantly increase 

circulating iB-endorphin. The highest dose of LY141865 (1 

mg/kg) increased levels of total plasma iB-endorphin 

7.5-fold as compared to control values (0.38 +I- 0.12 

ng/ml), an increase which significantly exceeded the 

response to 0.3 mg/kg by 57% (top panel, Figure 8) • As 

previously shown in the chromatographic profiles of plasma 

iB~endorphin from apomorphine- or piribedil-treated rats, 

the major molecular form of iB-endorphin appearing in 

plasma in response to LY141865 resembled B-LPH and 

accounted for 73% of total circulating immunoreactivity; 

B-endorphin-sized peptides represented just 22% and the 

remaining 5% eluted in the void volume (bottom panel, 

Figure 9) • By 60 min after LY141865 treatment, 

B-endorphin-sized immunoreactivity nearly disappeared from 

chromatographic profiles of plasma (not shown) making the 

relative contribution of the B-LPH form even greater over 

time. Thus, the neuroendocrine effects of the D2 agonist, 

LY141865, were strikingly similar to those of the classical 

agonists, apormorphine and piribedil, whereas, the Dl 

agonist, SKF 38393, had little influence on pituitary 

iB-endorphin or prolactin release. Based on the dramatic 

rise in blood-borne B-LPH-sized immunoreactivity following 

apomorphine, piribedil and LY141865, it appears that 
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Figure 9. A comparison of immunoreactive beta-endorphin 

(B-endorphin) in gel chromatographic profiles of plasma 

from control and LY141865-treated rats. Pools of rat 

plasma (6-7 ml) were filtered on a column of Sephadex 

G-50, and the elution profile of immunoreactive B-en-

dorphin was graphed (corrected to 100% recovery) with 

respect to a mobility coefficient, Kd. Positons of 

calibration peaks, i.e., blue dextran (Vo), human beta-

lipotropin (hB-LPH), and camel B-endorphin (cB-END), 

are shown (arrows) above the control profile. 
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D2 receptors may normally stimulate hormone release by AL 

corticotrophs, presumably through actions in the central 

nervous system which result in the release of hypothalamic 

corticotropin releasing factor. 

Bromocriptine, another D2 agonist (Markstein et al, 

1978) which has proven clinically useful because of its 

long duration of action, was observed to lower not only 

circulating prolactin but also iB-endorphin. Over time, 

rats treated with bromocriptine became sedated relative to 

their control cagemates and some exhibited bouts of 

sniffing and gnawing. None, however, displayed vigorous 

and sustained episodes of stereotypic behavior so 

characteristic of apomorphine and piribedil treatment. 

Like other agonists of D2 receptors, a single injection of 

bromocriptine (5 mg/kg, ip) reduced plasma levels of 

prolactin to the limit of detectability within 15 min, and 

prolactin remained depressed throughout a 2 h treatment 

period (Figure 10). The observation that prolactin was 

maximally inhibited by 15 min after administration of 

bromocriptine indicates that the drug readily interacts 

with the pituitary dopamine receptors which directly 

mediate dopaminergic control of prolactin secretion. 

Despite this characteristic action of bromocriptine on 

pituitary prolactin release, unlike the other D2 agonist, 

bromocriptine did not increase plasma iB-endorphin. 

Instead, bromocriptine significantly reduced total levels 

of iB-endorphin approximately 50% as compared to control 
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Figure 10. Time-course effects of bromocriptine on 

circulating levels of prolactin. Rats received ip in-

jections of vehicle (15 min) or bromocriptine mesylate 

(5 mg/kg) at the times indicated. Symbols and vertical 

lines represent the group mean +/- SE; N~6-7. 

* Significantly different (P<O.OS) from zero time 
controls 
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Figure 11. Time-course effects of bromocriptine on 

circulating beta-endorphin-like immunoreactivity (B-END-LI). 

Rats received ip injections of vehicle (15 min) or bromocrip-

tine mesylate (5 mg/kg) at the times indicated before sacri-

fice. Symbols and vertical lines represent the group means 

+/- SE; N=6-7. 

* Significantly different (P<0.05) from zero time 
controls and the 15 min bromocriptine treatment group 
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values (0.43 +/- 0.05 ng/ml) by 1 and 2 h post-injection 

(Figure 11). The reduction of plasma iB-endorphin in the 

bromocriptine time-course was primarily associated with a 

loss of immunoreactivity resembling B-endorphin B-LPH-sized 

immunoreactivity was unaffected or increased by 

bromocriptine treatment (not shown). Accordingly. there 

was a shift in the dominant form of plasma iB-endorphin to 

B-LPH with a net decline in total levels of iB-endorphin in 

blood. The decline in circulating levels of total 

iB-endorphin, and, particularly, the form resembling 

B-endorphin in molecular size, indicates that the primary 

action of bromocriptine on circulating iB-endorphin 

resulted from inhibition of IL secretion. 

3.0.1.2 Effects of Dopaminergic Agonists on AL iB-endorphin 

in vivo and in vitro 

Enhanced release of B-LPR, the form of iB-endorphin 

produced exclusively by the AL, and diminished release of 

B-endorphin-sized material in response to dopaminergic 

agonists suggests that dopamine neurons may normally evoke 

release of iB-endorphin from corticotrophs of the AL in 

addition to their presumed ability to suppress IL release 

of iB-endorphin in vivo. To demonstrate further that the 

AL is indeed the most likely source of blood-borne 

iB-endorphin released in response to dopaminergic 

stimulation, apomorphine- and LY141865-induced release of 

iB-endorphin was challenged by glucocorticoid 
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Figure 12. Effects of dexamethasone pretreatment on 

stress-induced release of pituitary iB-endorphin (iB-END). 

Rats received ip injections of vehicle or dexamethasone 

(DEX) 4 h prior to sacrifice; stress consisted of physical 

immobilization for 20 min prior to decapitation. Bars 

and vertical lines represent the group mean +/- SE; N•6-7. 

*significantly different (P<O.OS) from CONTROL 
+Significantly different (P<0.05) from STRESS and 
STRESS + 5 meg/kg DEX 
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pre-treatment. Glucocorticoids preferentially inhibit 

iB-endorphin secretion by AL corticotrophs over IL 

melanotrophs in (see Roberts et al, 1982). 

Accordingly, administration of the synthetic 

glucocorticoid. dexamethasone, may be used to block the AL 

response without influencing IL secretion of iB-endorphin. 

The dose of dexamethasone used was determined from the dose 

which was found to significantly attenuate stress-induced 

release of iB-endorphin. Stress is a potent physiologic 

releaser of AL iB-endorphin and ACTH. As shown in Figure 

12, 50 but not 5 meg/kg dexamethasone administered 4 h 

before sacrifice markedly reduced levels of iB-endorphin in 

rats subjected to the stress of physical immobilization. 

As shown in Table 6. pretreating rats with the 50 meg/kg 

dose of dexamethasone reduced basal levels of plasma 

iB-endorphin by 35% and completely prevented release of 

iB-endorphin (450% of control) evoked by either apomorphine 

or LY141865. In light of the inhibition by dopamine of IL 

release of iB-endorphin in vitro (Przewlocki et al, 1978; 

Vale et a 1, 1979). and the diminution of the 

B-endorphin-sized form in plasma of agonist-treated rats, 

these data together point strongly to the AL as the 

pituitary source which is specifically stimulated by 

dopamine receptor agonists. 

In order to determine if dopaminergic agonists 

directly stimulate AL corticotrophs to secrete 

iB-endorphin, primary cultures of rat AL cells were exposed 
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Table 6. Effects of dexamethasone pretreatment on the elevation of 

circulating imuunoreactive t3-endorpnin by dopa;nin~rgic agonists 

Pretreatment 
Treatment Vehicle Dexanethasone 

Vehicle 0.17 ± 0 . 02 o.u ± o.o1 a 

Apomorphine 0.78 ± 0.01 a 0.16 ± 0.03 b 

LY141865 o . 77 ± 0 . 06 a 0.18 ± 0.02 b 

Rats received an ip injection of vehicle or dexamethasone 

(50 ~g/kg) 4 h prior to sacrifice; a second injection of vehicle, 

apomorphine (3 mg/kg sc, 10 min) or LY141865 (1 mg/kg ip, 15 min) 

was administered just prior to decapitation. Values are the 

group mean ± SE of plasma fa-endorphin; N=6-7. 

a Significantly different (P(0.05) from vehicle-treated 
controls 

b Significantly different (P(O.OS) from corresponding 
treatment without dexamethasone 
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to various concentrations of dopamine. bromocriptine or 

LY141865. The results of three such in vitro experiments 

are shown in Tables 7, 8 and 9. Spontaneous release of 

iB-endorphin from control cells varied among cultures from 

approximately 1 to 4 ng per plate per 2 h incubation. 

Within each in vitro experiment, however, iB-endorphin 

release by control cells was uniform, and release evoked by 

CRF or by the adrenergic agonist, epinephrine. was similar 

in magnitude to release provoked by these agents in other 

experiments. As shown in Table 7, neither dopamine nor 

bromocriptine at doses of 0.1 nM, 10 nM or 1 mcM altered 

spontaneous release of iB-endorphin by cultured AL 

corticotrophs. In this experiment, epinephrine (0.3 mcM) 

was used to evoke iB-endorphin release to levels which were 

double the control values. The stimulatory effect of 

epinephrine was significantly attenuated by 1 mcM 

bromocriptine which has been shown elsewhere to be an 

adrenergic antagonist at higher doses (U'Prichard et al, 

1977; Brown et al, 1980; Galzin et al, 1982). In the next 

experiment (Table 8), cultured AL cells were exposed to a 

narrower dose range of bromocriptine (10 nM to 1 mcM) and 

the hypothalamic secretagogue, corticotropin releasing 

factor (CRF), in addition to epinephrine. Without 

significantly influencing spontaneous release of 

iB-endorphin, bromocriptine dose-relatedly reversed the 

180% increase in iB-endorphin release due to epinephrine 

yet had no effect on the 3.5-fold increase evoked by 0.3 nM 

; ' 
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Table 7. Effects of dopamine and bromocriptine on spontaneous and 

epinephrine-evoked release of ir,Jmunoreacti ve B- endorphin from cultured 

anterior lobe pituitary cells 

Spontaneous Epinephrine 
Treatment (3 X 10-7 H) 

Control 1. 43 ± 0. 06 (15) 2.85 ± 0 . 10 a (10) 

Dopamine , 10-10 M ---------- 3.16 ± 0 . 12 a ( 5) 

Dopamine , 10- 8 H 1. 75 ± o. 21 ( 5) 3. 16 ± 1) . 05 a ( 5) 

Do pamine, 10- 6 M 1. 56 ± o. 15 (5) 2. 81 ± 0.12 a (5) 

Bromocriptine , 10-10 H 1.43 ± 0 .14 ( 4) 2. 94 ± 0 . 10 a ( 5 ) 

Bro1:1ocriptine, 10- 8 M 1. 79 ± 0.06 (5) 2. 72 ± 0.14 a ( 5) 

Bro::1ocriptine, 1n-6 }1 1. 64 ± 0.25 ( 5) 1. 76 ± 0 . 14 b ( 5) 

Cells were incubate~ for 2 h with media containing vehicle, 

dopamine or bromoc r iptine t reatments with or without epinephrine. 

Values are the group ueans ± S:C (ng/r>late ) of ip-endorpl!in and tile 

numbers in parentheses refer to nunber of plates per group. 

a Significantly different ( P<0 . 05) from control or corresponJ­
ing dopamine or bromocriptine treatment 

b Significantly different (P(0.05) from epinephrine t r eat1:1ent 
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Table 8. Effects of bromocriptine on spontaneous and evoked release of immunoreactive 

a-endorphin from pritnary cultures of rat anterior lobe pituitary 

Spontaneous Erinephrine CRF 
Tre<1tment (3 x 1o- 7 r-1) (3 x ]f)-10 H) 

Control 3.36 ± o.15 (15) 6.24 ± 0.24 a (10) 11.60 ± 0 . 56 a (5) 

Bromocriptine, 10-8 N 3.12 ± 0.44 ( 5) 4.35 ± 0 . 18 ab (5) --------

Gromocriptine, to-7 H 3.14 ± 0 . 60 ( 5) 3 . 65 ± 0.11 b ( 5) 10 . 68 ± 0.53 a (5) 

Bromocriptine, 10-6 H 2.80 ± 0 . 20 (5) 2.85 ± 0 - 22 b ( 5) 12.22 ± 0.81 a (S) 

Cells were incubated for 2 h witl1 media containing vehicle or brornocriptine treat-

ment with or without epinephrine or corticotropin releasing factor (CRF). Values are 

the group means ± SE (ng/plate) of i!3-endorphin and the numbers in parentheses refer 

to number of plates per group. 

a Si~nificantly different (P(0.05) from control or corresponding hrornocriptine 
treat~ent 

b Significantly different (P<0.05) from epinephrine treatment 
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Table 9. Eff_ects of LY141865 on release of immunoreactive 13-endorphin 

and prolactin from cultured anterior lobe pituitary cells 

Treatment N it3-endorphin Prolactin 
(ng/plate) (ng/plate) 

,, 
II 

Control media 11 0.95 ± 0.09 152.4 ± 3.5 II 
'I 

LY141865 10-8 N 5 0.95 ± 0.09 44.1 ± 1.6 ab !I 
1o-7 H 5 0.79 ± 0.06 33.3 ± 2.0 a 

10-6 H 5 0.64 ± 0.05 a 31.4 ± 1.3a 

CRF to-to H 5 6.42 ± 0.24 a 200 ± 16 a 

Cells were incubated for 2 h with control media or media containing 

LY141865 at the doses indicated; values are the group mean ± SE of the 

number of samples indicated under N. 

a Significantly different (P(0.05) from control media release 

b Significantly different (P(O.OS) from other LY141865 treatments 



CRF. Table 9 shows that LY141865 was also unable to 

directly stimulate AL release of iB-endorphin. The highest 

dose tested (1 mcM) actually inhibited basal secretion by 

33%. As anticipated, LY141865 reduced spontaneous release 

of prolactin in a dose-related fashion (Table 9). Together, 

the in vitro experiments showed first, that dopaminergic 

agonists do not directly stimulate AL release of 

iB-endorphin and, second, that at higher concentrations, 

these agents may actually interfere with 

adrenergically-evoked release. Therefore the stimulatory 

actions of dopaminergic agonists on AL release of 

iB-endorphin in vivo are most likely indirect and probably 

mediated by dopaminergic mechanisms which regulate CRF or 

some other hypothalamic secretagogue for AL corticotrophs. 

3.0.1.3 Effects of Dopaminergic Antagonists on 

Agonist-Induced Release of iB-endorphin 

In the following studies, a pharmalogical approach 

was used to elucidate the dopaminergic mechanisms which 

influence pituitary release of iB-endorpbin. Prior to 

administration of apomorphine or LY141865, rats were 

pretreated with either a mixed Dl, D2 antagonist, 

haloperidol, or with a selective D2 antagonist, sulpiride. 

Consistent with a dopaminergic mechanism, the stimulatory 

effects of both apomorphine (0.3, 1.0 and 3.0 mg/kg) and 

LY141865 (1 mg/kg) on pituitary iB-endorphin release were 

prevented by pretreatment with haloperidol, the Dl, D2 
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Figure 13. Effects of haloperidol on apomorphine-induced 

release of immunoreactive B-endorphin (iB-END). Rats 

received an ip injection of vehicle or haloperidol (0.1 mg/kg) 

at 2 h and a sc injection of vehicle or apomorphine (doses 

indicated) 10 min prior to decapitation. Symbols and 

vertical lines represent the group mean +/- SE; N=6. All 

apomorphine groups were significantly different (P<0.05) 

from zero dose controls. 

* Significantly different (P<O.OS) from 
corresponding apomorphine treatment group 
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blocker. Pretreatment of rats with 0.1 mg/kg haloperidol 

(2 h) had no effect on basal levels of iB-endorphin in 

plasma yet reduced by 50% the stimulated release of 

iB-endorphin 10 min after administration of 0.3 and 1.0 

mg/kg of apomorphine (Figure 13). Haloperidol also delayed 

the onset of stereotypic behavior induced by all doses of 

apomorphine. Conversely, the increase in plasma prolactin 

(14.1 +/- 3.4 versus 2.7 +/- 0.4 ng/ml) induced by 

haloperidol was reversed by all three doses of apomorphine 

(not shown). Pretreating rats with doses of haloperidol 

higher than the 0. 1 mg/kg dose (used to attenuate 

apomorphine-induced release of iB-endorphin) completely 

blocked the release of iB-endorphin elicited by LY141865. 

As shown in the upper panel of Figure 14, a rise in 

circulating iB-endorphin greater than 7-fold due to 

LY141865 (1 mg/kg, 15 min) was reduced 40% by 0.1 mg/kg 

haloperidol and prevented by the 0.3 mg/kg dose. This 

latter pretreatment significantly increased plasma 

prolactin levels over those in rats treated with LY141865 

alone (Figure 14, bottom graph). Higher doses of 

haloperidol (1.0 and 3.0 mg/kg) produced respectively 

greater increases in prolactin (5- and 11-fold versus 3.4 

+/- 0.2 ng/ml in rats treated with LY141865 alone) and also 

induced ptosis, sedation, hypertonicity of limb muscles and 

catalepsy. In animals treated with 3 mg/kg of haloperidol 

alone, plasma prolactin rose to 51 +/- 4 ng/ml, a level 

which exceeded by 42% the levels in haloperidol-treated 
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Figure 14. Independent and interactive effects of haloper-

idol and LY141865 on circulating levels of immunoreactive 

B-endorphin (iB-END) and prolactin (PRL). Rats received an 

ip injection of vehicle or haloperidol (doses indicated, 

mg/kg) at 2 h and a second ip injection of vehicle or LY-

141865 (1 mg/kg) 15 min prior to decapitation. Bars and 

vertical lines represent the group means +/- SE; N=5. 

*Significantly different (P<O.OS) from vehicle­
treated controls 
+Significantly different (P<0.05) from LY141865 
alone 
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rats that also received LY141865. This suggests that 

although LY141865 was able to compete with haloperidol at 

dopamine receptors which inhibit prolactin secretion, the 

D2 agonist could not overcome blockade of those receptors 

which mediate AL release of iB-endorphin. 

LY141865 is considered unique among dopaminergic 

agonists due to its selectivity for the D2 receptor in 

vitro (Tsuruta et a 1 , 1981). Since plasma prolactin was 

potently inhibited by LY141865 and the receptors which 

mediate this inhibition have been characterized as the D2 

subtype, (Kebabian and Caine, 1979), LY141865 may also 

stimulate AL release of iB-endorphin through a D2 

receptor-mediated mechanism. In order to test this 

possibility in vivo, the actions of LY141865 were 

challenged by pretreating rats with the D2 antagonist, 

sulpiride (Trabucchi et al, 1976). Since sulpiride's 

effects in the central nervous system reportedly develop 

slowly after systemic administration (Costal! et al, 1978; 

Hofmann et al, 1979; Nishi be et a 1 , 1982), rats were 

pretreated with a relatively high dose of sulpiride (10 

mg/kg, ip) administered either 3 h or 30 min prior to 

sampling. As shown in Table 1 0 , plasma levels of 

iB-endorphin were increased about 2-fold after sulpiride (3 

h or 30 min). Nevertheless, the sulpiride pretreatments 

failed to attenuate a 7-fold rise in circulating 

iB-endorpbin due to LY141865. In fact, the combination 

treatment of LY141865 plus sulpiride (30 min) resulted in 

160 

' I 



161 

Table 10. Effects of systemically adrnini s tered sulpiride and LY141365 

alone and in combination on circulating immunoreactive a-endorphin and 

prolactin 

Plasma Hormones (ng/ml) 
Treatment iS-endorphin prolactin 

Vehicle + Vehicle 0 . 22 ± 0 . 04 7.8 ± 1.9 

30 min Sul?iride o.s3 ± 0.10 a 62.1 ± 8.6 a 

3 h Sulpiride 0 . 45 ± 0.06 a 34.8 ± 3 . 9 a 

Vehicle + LY141865 1. 61 ± 0 . 13 a 5 . 9 ± 0.7 

30 min Sulp + LY141B65 2.42 ± o. 50 ab 50.7 ± 6.5 ab 

3 h Sulp + LY141865 2.00 ± 0.18 ab 20.6 ± 2.7 

Rats received ip injections of vehicle or sulpiride (10 mg/kg) 3 h 

or 30 min before sacrifice; 15 min before decapitation, animals received 

a third injection of either vehicle or LY141865 (1 rng/kg). Values are 

the group mean ± SE; N=6-7. 

a Significantly different (P<O.OS) frum veh i cle-treated control s 

b Significantly different (P(0.05) from LY141865 treatment alone 



levels of plasma iB-endorphin that exceeded by 50% those 

measured in plasma of rats treated with LY141865 alone. 

In contrast to the failure of systemically 

administered sulpiride to antagonize LY141865-induced 

release of AL iB-endorphin, centrally administered 

sulpiride curtailed the increase of plasma iB-endorphin 

following LY141865. Conscious rats received 

intracerebroventricular (icv) injections of vehicle or 

sulpiride (100 meg/rat, 4 h) through previously-implanted 

guide cannulas. Subsequently, these animals received 

either LY141865 or vehicle treatment. Similar to the 

effects of high-dose haloperidol, sulpiride alone induced a 

cataleptic behavioral state and halved the increase in 

plasma iB-endorphin due to LY141865 (Figure 15, upper 

panel). As shown in the bottom panel of Figure 15, the two 

compounds cancelled each other's effects on plasma 

prolactin, These results demonstrate that the endocrine 

actions of LY141865 can be antagonized by selective 

blockade of D2 receptors in vivo and again suggest that 

dopaminergically-stimulated secretion of AL iB-eodorphin is 

most likely dediated through central nervous system 

pathways located within the blood-brain barrier. 

Presumably, 

barrier is 

exclusion of sulpiride by the blood-brain 

the reason that peripherally administered 

sulpiride was not effective in counteracting the releasing 

effects of LY141865 on pituitary iB-endorphin. 
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Figure 15. Effects centrally administered sulpiride on 

LY141865-induced release of immunoreactive B-endorphin 

(iB-END) and prolactin. Rats received an icv injection 

of vehicle (VEH, 15 mel/rat) or sulpiride (SULP, 100 

meg/rat) at 4 h and an ip injection of vehicle or LY141865 

(1 mg/kg) 15 min prior to decapitation. Bars and vertical 

lines represent the group mean +/- SE; N=9. 

*Significantly different (P<O.OS) versus VER + 
VEH controls 
+Significantly different (P<O.OS) versus VEH + 
LY141865 
=Significantly different (P<O.OS) from SULP + VEH 
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The data presented above revealed several 

characteristics about the actions of dopamine on pituitary 

secretion of iB-endorphin. First, the ability of agonists 

like apomorphine and LY141865 to evoke AL release of 

iB-endorphin in vivo is very likely mediated through a 

physiological dopaminergic mechanism since the stimulatory 

actions of agonists were dose-dependent and as sensitive to 

blockade by the mixed Dl, D2 antagonist, haloperidol, as is 

disinhibition of prolactin release. Secondly, the type of 

dopaminergic receptor which mediates enhanced AL secretion 

in vivo may well be D2 since the D2 agonist, LY141865, 

evoked release of iB-endorphin through a mechanism that was 

attenuated by the D2 antagonist. sulpiride, albeit, only 

after icv administration. This introduces the third 

feature of agonist-induced release. Apparently, the D2 

receptors which mediate increased AL secretion are located 

in a part of the central nervous system which is protected 

by the blood-brain barrier. The initial suggestion of this 

came from the bromocriptine results where it was observed 

that, unlike LY141865, bromocriptine had no apparent effect 

on AL release of iB-endorphin. Like sulpiride, however. 

bromocriptine exhibits delayed onset of central nervous 

system actions. therefore its failure to stimulate AL 

release of iB-endorphin in vivo may reflect limited 

activation of the appropriate brain receptors. Hence AL 

secretion of iB-endorphin may not necessarily be expected, 
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3.0.2 Effects of Dopaminergic Antagonists 

As shown in the last studies of the preceding 

section, antagonists of dopamine receptors potently elevate 

plasma levels of prolactin. It is widely held that this 

response is due to disinhibition of AL lactotrophs whose 

secretion of prolactin is tonically inhibited by the high 

concentrations of dopamine in hypophyseal-portal blood 

(J.facLeod, 1976; Meltzer et al, 1978; Gibbs and Neill, 

1978). D2 receptors like those which regulate prolactin 

secretion have been found in the IL (see Cote et al, 1982). 

There, dopamine receptor stimulation blocks spontaneous and 

evoked release of alpha-melanotropin and iB-endorphin in 

vitro (Boner et al, 1974; Przewlocki et al, 1978; Vale et i! 
I' 

al, 1979; Cote et al, 1982). Since the IL is innervated by 

tonically active dopamine neurons from the basal 

hypothalamus in vivo (Bjorklund et al, 1973; Demarest & 
I, 

Moore, 1979), treatment of rats with blockers of, in 

particular, D2 receptors should increase circulating levels 

of iB-endorphin through disinhibition of IL secretion. 

Treatment with sulpiride, but not haloperidol, was seen in 

section 1.3 to modestly elevate plasma levels of total 

iB-endorphin. In order to better define the role of 

dopamine in regulating IL release of iB-endorphin in vivo, 

the effects of both D2 and of mixed Dl, D2 antagonists on 

circulating iB-endorphin were examined more carefully. 

Results of these studies are described in the parts 1, 2 



Figure 16. Time-related effects of domperidone on 

circulating levels of immunoreactive B-endorphin (iB-END), 

alpha-melanotropin (ia-MSH) and prolactin (PRL) in Long-

Evans rats. Rats received sc injections of vehicle or 

domperidone (1.0 mg/kg) 1, 2, 4, 8 or 16 hours prior to ,. 
i 

decapitation. Symbols and vertical lines represent the I, 

group means +/- SE (N=8) with solid symbols indicating 

group values significantly different (P<O.OS) from 

zero time controls. 
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and 3 of this section. Time- and dose-related effects of 

the D2 antagonists, domperidone and sulpiride, as well as 

of the mixed Dl, D2 antagonists, haloperidol and pimozide, 

on circulating levels of total iB-endorphin and the major 

molecular forms of plasma iB-endorphin are described in 

section 2.1. Section 2.2 reports the results of experiments 

designed to examine, specifically, haloperidol's influence 

on AL release of in-endorphin in vivo and in vitro. 

Section 2.3 describes studies in which the releasing 

effects of haloperidol on pituitary iB-endorphin release in 

vivo were challenged either with the Dl agonist, SKF 38393 

or with the D2 agonist, bromocriptine. 

3.0.2.1 Effects of Dopaminergic Antagonists on 

Circulating iB-endorphin 

The D2 dopamine receptor antagonists, domperidone 

and sulpiride, significantly increased iB-endorphin in 

rats. As shown in Figure 1 6 J 2 h after administration of 

the long-acting D2 antagonist, domperidone (2.5 mg/kg, sc), 

circulating iB-endorphin was significantly increased 

(P<O.OS) as compared to control values (0,25 +/- 0,03 

ng/ml) and tended to be elevated throughout the 16 h time 

course of the experiment. The maximal rise in plasma 

iB-endorphin (-220%) was similar in magnitude to the rise 

in circulating immunoreactive alpha-melanotropin 

(iMSH)whicb was significantly increased 1, 2 and 4 h after 

the domperidone treatment. Compared to the effects of 
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domperidone on plasma prolactin, however, circulating 

iB-endorphin and iMSR were only moderately effected by D2 

receptor blockade in vivo. Domperidone potently increased 

plasma prolactin 15-fold versus control values (8.4 +/- 0.8 

ng/ml) 60 min after treatment and prolactin levels remained 

significantly elevated up to 8 h after domperidone. 

Neither domperidone nor systemically administered sulpiride 

produced noticeable behaviorable changes in rats relative 

to their vehicle-treated cage-mates. Sulpiride like 

domperidone, elevated circulating iB-endorphin and 

prolactin except that sulpiride's effects occured rapidly 

after its administration. The left-hand panel of Figure 17 

shows that 15, 30 and 60 min after an ip injection of 

sulpiride (2.5 mg/kg), circulating levels of total 

iB-endorphin were significantly elevated to a maximum of 

207% of control values at 30 min. Similar to domperidone, 

sulpiride maximally increased plasma prolactin to a greater 

degree (7-fold versus the control levels of 32.3 +/- 6.3 

ng/ml) at an earlier time after treatment (15 min) than the 

rise in iB-endorphin. As shown in the elution profiles in 

the right band panels of Figure 17, the dominant molecular 

form of iB-endorphin in plasma of both control and the 30 

min sulpiride treatment group resembled B-endorphin in 

molecular size. B-endorphin-sized material contributed 

essentially all (80%) of the 107% increase in plasma levels 

of total iB-endorphin after sulpiride. In contrast, 

iB-endorphin resembling B-LPH in size represented just 27% 



Figure 17. Effects of sulpiride on circulating immunoreactive 

B-endorphin (iB-END). Composite illustration showing the 

time-course effects (left) and the gel chromatographic profiles 

(right) of sulpiride versus control treatments. Rats received 

ip injections of vehicle (2 cc/kg, 30 min) or sulpiride (2.5 

mg/kg) 15, 30 or 60 min prior to decapitation. Points and 

vertical lines represent the group mean+/- SE; N=5-7, in the 

time-course. Pools of treatment group plasma (7.5 ml) were 

filtered on a column of Sephadex G-50 resin and the elution 

profiles were graphed with respect to the relative mobility 

coefficient, Kd. Positions of calibration peaks, i.e., blue 

dextran (Vo), human B-lipotropin (B-LPR) and camel B-endorphin 

(B-END), are shown (arrows) above the control profile (right) • . 

*Significantly different (P<0.05) from zero time 
controls 
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Table 11. Dose-response effects of sulpiride on circulating levels of 

immunoreactive e- endorphin 

Dose of sulpiride (mg/kg) Plasma i6-endorphin (ng/wl) 

0 0 . L13 ± 0 .04 

o.s o. 92 ± 0 . 12 a 

2 . 5 0.80 ± 0 . 13 a 

7.5 o. 71 ± 0 . 07 

25 . 0 1.02 ± 0.14 a 

Rats received an ip injection of vehicle (zero dose) or sulpiride 

(doses indicated) 30 min prior to decapitation. Values are t he group 

mean ± SE; N=6-7. 

a Significantly different (P(O.OS) from zero dose controls 
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of control levels and increased less than 30% after 

sulpiride treatment. These findings suggest that sulpiride 

may evoke IL release of iB-endorphin excluding a 

substantial increase in AL secretion. When the effects of 

various doses of sulpiride were examined (Table 11) it 

became apparent that a ceiling exists on the ability of 

sulpiride to induced IL release of iB-endorphin. After 

treating rats with doses of 0.5 to 25 mg/kg sulpiride, 

plasma levels of iB-endorphin were found to be increased as 

much by the lowest as they were by the highest doses, and 

the elevation was maximally 240% of control values (Table 

11). Nonetheless, this modest increase approximated the 

rise evoked by domperidone. Considering this and the 

parallel elevation of ialpha-melanotropin and iB-endorphin 

after domperidone treatment, the evidence implicates a D2 

receptor mechanism through which IL secretion of 

iB-endorphin is tonically inhibited. 

Antagonists of both D2 and D2 receptors, haloperidol 

and pimozide, were also examined for their influence on 

plasma levels of iB-endorphin. The results demonstrate 

that the releasing effects of the mixed antagonists differ 

from the effects of D2 antagonists. Figures 18 and 19 show 

the time-course effects of haloperidol and pimozide on 

circulating levels of iB-endorphin and prolactin. A single 

injection of haloperidol (1 mg/kg, ip) significantly 
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Figure 18. Time course effects of haloperidol on plasma 

levels of iB-endorphin (iB-END) and prolactin (PRL). 

Samples were collected withen 2 h after ip injection of 

vehicle (zero time) or 1, 2 or 3 h after 1 mg/kg haloper­

idol (ip). Bars and vertical lines represent the group 

mean +/- SE; N=7-8. Significant differences (P<O.OS) 

were determined between control levels of iB-endorphin 

and the 1 and 2 h haloperidol treatments, and between 

control prolactin levels and levels induced at all times 

after haloperidol treatment. 
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Figure 19. Time course effects of pimozide on circulating 

levels of beta-endorphin-like immunoreactivity (B-END-LI) 

(dashed line) and prolactin (PRL) (solid line). Samples 

were collected either 30 min after ip injection of vehicle 

(zero time) or 30, 120 or 360 min after pimozide (0.25 mg/kg, 

ip). 

N=S-6. 

Points and vertical lines represent group means SE; 

The 2 h pimozide treatment significantly (P<O.OS) 

increased levels of B-endorphin-like immunoreactivity 

and prolactin versus zero time controls. 
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Table 12. Dose-response effects of haloperidol and pimozide on 

plas~~ levels of iwnunoreactive B-endorphin and prolactin 

Treatment 

Vehicle 

Haloperidol, 0.1 mg/kg 

Haloperidol, 1.0 mg/kg 

Vehicle 

Pimozide, 0.25 mg/kg 

Pioozide, 2.50 mg/kg 

Plasma Hormones 
iS-endorphin 

Experiment I 

0.38 ± OJ>2 

0.56 ± 0.08 

0.61 ± 0.06 a 

Experiment II 

o. 34 ± 0.02 

0.53 ± 0.10 

0.74 ± 0.12 a 

(ng/ml) 
prolactin 

13 ± 4 

59 ± 5 a 

79 ±10 a 

23 ± 5 

55 ± 5 a 

55 ± 5 a 

Rats received ip injections of vehicle, haloperidol (2 h) or 

pimozide (3 h) before sacrifice. Values are the group mean ± SE; 

N=6-8. 

a Significantly different (P<0.05) from appropriate vehicle­
treated controls 
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increased plasma iB-endorphin 2-fold over control values by 

one and two hours post-treatment; after three hours, 

circulating iB-endorphin was no longer different from the 

control mean of 0.24 +/- 0.03 ng/ml (Figure 18). In these 

same animals, prolactin was maximally increased almost 

13-fold at 1 h as compared to control levels (114 +/- 15 

versus 9 +/- 1 ng/ml) and remained significantly elevated 

up to 3 h after injection of haloperidol. Similar to 

haloperidol, pimozide increased iB-endorphin and prolactin 

in a time-related manner (Figure 19). Plasma levels of 

iB-endorphin and prolactin were significantly greather than 

control values 2 h after ip administration of pimozide 

(0.25 mg/kg). As observed 1n haloperidol-treated rats, the 

prolactin increase due to pimozide was greater than the 

rise in levels of iB-endorphin (9-fold as compared to 

2-fold at 2 h) • Both haloperidol and pimozide 

dose-relatedly increased iB-endorphin as shown in Table 12. 

Compared to the appropriate control values, 1.0 mg/kg of 

haloperidol ( 2 h) and 2.5 mg/kg of pimozide (3 h) 

significantly incrased plasma levels of iB-endorphin 60 % 

and 120%, respectively. Prolactin was increased to an even 

greater extent than the iB-endorphin by haloperidol; dose s 

of 0.1 and 1.0 mg/kg increased prolactin 350 % and 510 % 

greater than controls, whereas, the 0.25 and 2.5 mg/kg 

doses of pimozide both increased prolactin by 140 %. Figure 

20 allows comparison of the gel chromatographic elution 

profiles from control and haloperidol-treated rats. 
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seen in previous elution profiles, B-endorphin-sized 

peptides were the major component in control rat plasma. 

Although the B-endorphin-sized form of iB-endorphin 

constituted the larger peak 

haloperidol-treated animals (2.5 

J.n the plasma 

mg/kg, ip, 

profiles of 

45 min), the 

B-LPH form of 

substantially. 

immunoreactivity was 

B-LPH constituted 

also increased 

37% of total 

immunoreactivity in control rats (0.28 +/- 0.04 ng/ml) and 

43% of the total (0.85 +/- 0.10 ng/ml) in 

haloperidol-treated rats. This represents a 3.5-fold 

increase of B-LPH, whereas, B-endorphin-sized 

increased less than 3-fold (275%) and indicates 

pep tides 

that AL 

release of iB-endorphin was increased at least as much as 

IL release after haloperidol. The data in Table 13 outline 

time-related effects of the 2.5 mg/kg dose of haloperidol 

on plasma levels of total iB-endorphin, on the ratio of 

B-LPH- to B-endorphin-sized material and on content of 

total iB-endorphin in the AL and neurointermediate lobe 

(NIL). Plasma iB-endorphin was maximally elevated 3.5-fold 

relative to control levels at 30 min yet no change in 

either AL or NIL content of iB-endorphin was observed at 

this time or up to 3 h after haloperidol treatment. 

Chromatography of treatment group 

ratio of immunoreactivity in 

plasma revealed that the 

the B-LPH versus the 

B-endorphin peaks decreased during the first hour after 

haloperidol and recovered to the control ratio by 3 h after 

treatment. These data indicate that during the peak 
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Figure 20. Effects of haloperidol on circulating 

levels of immunoreactive B-endorphin (iB-END). 

Composite illustration showing the time-course effects 

(left) and gel chromatographic profiles (right) of 

haloperidol versus control treatments. The time-course 

effects of 2.5 mg/kg haloperidol shown here are 

enumerated in Table 13. Symbols and vertical lines 

represent the group mean +/- SE; N=7-8. Pools of 

plasma (7-8 ml) from vehicle- (control) or haloperidol-

treated (60 min) rats were filtered on a column of 

Sephadex G-50 and the elution profile was graphed 

with respect to the mobility coefficient, Kd. Posi-

tions of calibration peaks, i.e., blue dextran (Vo), 

human beta-lipotropin (B-LPH) and camel beta-endorphin 

(B-END), are shown (arrows) above the control profile. 

*Significantly different (P<O.OS) from zero 
time controls 



* 
* CONTROL 

::::- Vo ,8-LPH /3-END E + + + --en 
c -Q 
z 
w 
<!l. ·-
< 
:E HALOPERIDOL (I) 

< 
....I 
a.. 

0 30 60 180 0 .25 
TIME (MIN) Ko 

=-

-c 
0.2 -~ -u 

m 
0.1 .:: --- C) 

c: -c 
z 
w 

I 

CQ 
1.0 ·-

0.5 

--
.5 

~ i 

-1 

~ . ' 

1-' 
(X) 

w 



Table 13. Time-course effects of haloperidol on plasma levels and 

pituitary content of immunoreactive a-endorphin in rats 

Treatment 

Vehicle, 30 win 

Haloperidol, 30 oin 

Haloperidol, 60 min 

Haloperidol, 180 min 

Plasma 
(ng/ol) 

0.22 ± 0.04 

0.78 ± 0.15 a 

0.71 ± O.ll a 

o.47 ± o.oJ 

6-LPH ---B-END 

.3d 

.43 

.61 

.22 

Pituitary 
( \.lg/mg protein) 

AL NIL 

1.5 ± 0.2 24.2 ± 3.6 

1.5 ± 0.2 23.6 ± 1. 5 

1.3 ± 0.1 21.5 ± 4.8 

1.2 ± Q.1 26.3 ± 2.2 

Rats received an ip injection of vehicle or haloperidol (2.5 mg/kg) 

at the times indicated prior to decapitation. Values are the group 

mean ± SE of plasma iS-endorphin (N=7-8) except for the ratios of 8-lipo-

tropin to 8-endorphin (8-LPH/S-END). 

a Significantly different (P<0.05) from vehicle-treated controls 
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response of total circulating iB-endorphin to haloperidol, 

the B-LPH form of iB-endorphin was increased more than 

B-endorphin-sized form. This, together with the 

chromatographic results shown 10 Figure 20, further 

suggests that the mixed antagonist increased both AL and IL 

release of iB-endorphin. Similar changes in plasma levels 

of total iB-endorphin (1.12 +/- 0.19 versus 0.43 +/- 0.06 

ng/ml) and in the underlying molecular forms (not shown) 

were observed after pimozide treatment (2.5 mg/kg, 2 h). 

Whereas higher doses of sulpiride continued to evoke no 

more than a doubling of total iB-endorphin, higher doses of 

the mixed Dl, D2 antagonists induced greater relative 

elevations in plasma levels of iB-endorphin through 

additional release of the B-LPH form of circulating 

iB-endorphin. This AL releasing effect of the mixed Dl, D2 

antagonists differs from the limited ability of the D2 

antagonists, sulpiride and domperidone, to elevate total 

levels of iB-endorphin since effects of the D2 blockers 

appeared, from chromatography and by concomitant release of 

immunoreactive alpha-melanotropin, to be restricted to the 

IL. As determined in section 1.3, systemically administered 

sulpiride is unable to reach the brain dopamine receptors 

which mediate the iB-endorphin releasing effects of 

LY141865. Likewise, domperidone has been found to have very 

limited access to the brain (Laduron and Leysen, 1979; 

Farah et al, 1983). This information and the fact that the 

IL is on the systemic side of the blood-brain barrier 
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supports the view that sulpiride and domperidone increase 

circulating iB-endorphin by selectively disinhibiting IL 

secretion. 

In summary, circulating levels of total iB-endorphin 

were increased by two peripherally-active D2 antagonists, 

domperidone and sulpiride, as well as by two centrally 

active antagonists of both Dl and D2 receptors, haloperidol 

and pimozide. Due to the elevation of only 

B-endorphin-sized peptides in plasma of rats treated with 

D2 antagonists, these drugs probably enhanced only IL 

release of iB-endorphin. The mixed antagonists, however, 

increased both B-LPH- and the B-endorphin-like 

immunoreactivity suggesting that both AL and IL release of 

iB-endorphin were elevated, respectively. This was 

reflected in the ability of the mixed antagonists to 

increase total iB-endorphin in blood to a greater extent 

than that of the selective D2 antagonists. Before 

examining the mechanisms by which these differential 

responses occured, studies were conducted in vivo to insure 

that the mixed antagonists indeed increase AL release of 

iB-endorphin and in vitro to determine if their stimulatory 

effects were due to direct actions on AL corticotrophs. 

3.0.2.2 Dopaminergic Antagonist Effects on AL iB-endorphin 

in Vivo and in Vitro --- -

The ability of mixed Dl, D2 blockers to elevate 
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circulating levels of total iB-endorphin was challenged by 

glucocorticoid pretreatment, a method described earlier for 

inhibiting AL but not IL secretion of iB-endorphin. As 

shown in Figure 21, 50 but not 5 meg/kg dexamethasone 

pretreatment (4 h) lowered basal levels of total 

iB-endorphin (0.22 +/- 0.02 versus 0.39 +/- 0.03 ng/ml in 

controls) and, compared to a 3-fold increase due to 

haloperidol alone, dexamethasone reduced iB-endorphin 

release by 44%. Nonetheless ·, compared to dexamethasone 

treatment alone, haloperidol still induced nearly a 3-fold 

rise in total circulating levels of iB-endorphin. This 50 

meg/kg dose of dexamethasone was the same pretreatment that 

completely prevented agonist-induced release and reduced 

the rise due to immobilization by 60% (Table 6 and Figure 

12, respectively). The results of combined dexamethasone 

and haloperidol treatments show that a substantial portion 

of haloperidol-induced release is 

glucocorticoid-suppressible but a similar amount is 

insensitive to exogenous glucocorticoids. These results 

support the chromatographic evidence (elevated iB-endorphin 

resembling B-LPH) that mixed Dl, D2 antagonists enhance AL 

release of iB-endorphin in the rat. 

In order to examine the remote possibility that 

haloperidol might directly stimulate corticotroph secretion 

of iB-endorphin, cultured AL cells were exposed to 0.1 mcM 

and 1.0 mcM concentrations of haloperidol. As shown in 

Table 14, neither dose of the antagonist altered 
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Figure 21. Effects of dexamethasone pretreatment on 

haloperidol-induced elevation of circulating immuno-

reactive B-endorphin (iB-END). Rats received an ip 

injection of vehicle or dexamethasone 4 h prior to 

sacrifice; a second vehicle injection or haloperidol 

(2.5 mg/kg) was administered 60 min before decapita-

tion. Bars and vertical lines represent the group 

means +/- SE; N=S. 

* Significantly different (P<O.OS) from vehicle­
treated controls 
+ Significantly different (P<O.OS) from halo­
peridol treatment alone or with 5 meg/kg dexa­
methasone 
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Table 14. Effects of haloperidol on spontaneous and epinephrine-evoked 

release of iB-endorphin from primary cultures of rat anterior pituitary 

Treatment iB-endorphin 
(ng/plate) 

N 

Control medium 2.49 ± 0.16 15 

Haloperidol (10 -7 H) 2.44 ± 0.13 5 

Haloperidol (10 -6 g) 2.61 ± 0.21 5 

Epinephrine 7.16 ± 0.46 a 5 

Epinephrine + HaloperiJol ( 10 -7 .1) 6.90 ± 0.19 a 5 

Epinephrine + Italoperidol ( 10 -6 ~) 3.33 ± 0-33 b 5 

Culture AL cells were incubated for 2 h with control medium alone 

or raedium containing 3 x 10 -7 H epinephrine with and without the 

indicated doses of haloperidol. Values are the group means ± SE of the 

number of plates indicated under the column labeled N. 

a Significantly different (P(O.OS) from control and haloperidol 

b Significantly different (P(0.05) frora control, haloperidol, 
e~inephrine and epinephrine plus 10 -? M haloperidol 
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spontaneous release of iB-endorphin. Nevertheless, the mcM 

dose of haloperidol blocked secretion evoked by epiniphrine 

(0.3 mcM) demonstrating the adrenergic inhibitory 

properties of higher doses of this dopaminergic antagonist 

(Anden et al, 1970). Clearly, however, haloperidol 

exhibited no ability to directly stimulate AL corticotroph 

secretion of iB-endorphin. 

3.0.2.3 Dopaminergic Agonist Effects on 

Antagonist-Induced Release of iB-Endorphin 

Elevated AL release of iB-endorphin in vivo in 

response to mixed Dl, D2 antagonists but not to the D2 

antagonists could be due to one of the followint: the 

ability of the mixed antagonists to block Dl as well as D2 

receptors, the ability of the mixed antagonists to reach 

brain D2 receptors which are inaccessible to domperidone or 

sulpiride, or a combination of the two, namely, blockade of 

Dl receptors in the brain which are physically and 

functionally inaccessible to the 

to pharmacologically examine 

D2 antagonists. In order 

these possibilities, 

particularly that different dopaminergic receptors mediate 

haloperidol~s ability to increase secretion both by the AL 

and the IL, haloperidol-induced release of iB-endorphin was 

challenged by pretreatment with either a Dl or a D2 

receptor agonist. Since the classic agonists and LY141865 

themselves so effectively stimulate pituitary releas e of 

iS-endorphin, the longer-acting D2 agonist, bromocriptine, 
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Figure 22. Effects of bromocriptine on haloperidol-induced 

elevation of circulating iB-endorphin (iB-END). Rats were 

pretreated with ip injections of vehicle (VEH) or 5 mg/kg 

bromocriptine mesylate (BROM) 60 min prior to a second 

injection of vehicle or haloperidol (HAL, 2.5 mg/kg); 

samples were collected 60 min after the second injection. 

Bars and vertical lines represent the group mean +/- SE; N=8. 

*Significantly different (P<O.OS) from VEH-treated 
controls 
+Siginficantly different (P<O.OS) from HAL treatment 
without BROM 
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Table 15. Effects of bromocriptine pretreatment on the haloperidol-induced 

rise of plasma ia-en~orphin, a-melanotropin and prolactin 

Plasma Hormones (ng/ml) 
Treatment ia-endorphin ia-melanotropin prolactin 

Vehicle + Vehicle 0.29 ± (). 07 0.13 ± 0.01 5.4 ± 0.49 

Vehicle + HAL o. 77 ± 0.09 a 0.26 ± 0.03 a 57.2 ± 9.49 a 

0.1 mg/kg BROl1 + HAL o. 58 ± 0.06 a 0.12 ± 0.01 2.3 ± 0.27 

0.5 mg/kg BRmi + HAL 0.45 ± 0.09 0.13 ± 0.02 2.0 ± o.o7 

1.0 !llg/kg BROM + HAL 1).34 ± 0.05 O.ll ± 0.01 2.5 ± 0.14 

Rats were pretreated with vehicle or bromocriptine ( BROM, dost:s 

indicated, ip) 90 min before a second vehicle injection or haloperidol 

treatment (HAL, 2.5 mg/kg, ip); samples were collected 30 min after the 

second injection. Values are the group mean ± SE; N=7 - 8 

a Significantly different (P(O.OS) from appropriate control values 



and the D1 specific agonist, SKF38393, were used to compete 

with haloperidol's actions in vivo. Figure 22 and Table 15 

display the results of experiments in which bromocriptine 

significantly reduce the levels of iB-endorphin found in 

plasma of haloperidol treated rats. Haloperidol alone 

increases iB-endorphin 4-fold in the experiment shown in 

Figure 22 and this rise was reduced 60% by bromocriptine 

pretreatment (5 mg/kg, ip, 2 h). Doses of bromocriptine 

lower than 5 mg/kg also significantly reduced the elevation 

of circulating iB-endorphin due to haloperidol in a 

dose-related fashion. As shown in Table 15, 0.5 and 1.0 

mg/kg bromocriptine inhibited haloperidol-induced release 

of iB-endorphin (260% versus controls) by 42% and 56%, 

respectively. Although the 0.1 mg/kg dose of bromocriptine 

failed to significantly alter haloperidol-induced release 

of iB-endorphin, this dose fully prevented haloperidol's 

ability to increase ialpha-melanotropin (2-fold) and 

prolactin (10-fold). Therefore, disinhibition of 

ialpha-melanotropin and prolactin secretion by haloperidol 

was blocked more readily by bromocriptine than was enhanced 

release of iB-endorphin. Gel chromatography of plasma from 

selected treatment groups described in Figure 21 and Table 

15 are shown in Figure 23. In the control plasma profile 

(top left panel) the B-LPH and B-endorphin peaks 

represented 34% and 58%, respectively, of total 

iB-endorphin. As shown on the top right panel of Figure 

23, the distribution of immunoreactive forms remained 
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Figure 23. Gel chromatographic profiles of immunoreactive 

B-endorphin in rat plasma. Profiles depict Sephadex G-50 

elution patterns of plasma immunoreactivity from treatment 

groups described elsewhere in RESULTS. Profiles of immuno­

reactivity are graphed with respect to the mobility coef­

ficient, Kd. Positions of calibration peaks, i.e., blue 

dextran (Vo), human beta-lipotropin (hB-LPH) and camel 

beta-endorphin (cB-END), are shown (arrows) above the 

control profile. The limit of detection, LD, is marked 

by arrows on the margin of the y-axes. 
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approximately the same after haloperidol (37% B-LPH-sized, 

58% B-endorphin-sized) although total plasma levels 

increased 250%. In contrast, attenuation of haloperidol's 

effects by bromocriptine was associated with a loss of 

immunoreactivity resembling B-endorphin but persistence of 

the B-LPH form which amounted to 78% of total plasma 

iB-endorphin (bottom left, Figure 23). This distribution 

was essentially inverted in plasma of haloperidol-treated 

rats that had been pretreated with dexamethasone. 

Dexamethasone's attentuation of haloperidol-induced release 

was associated with a loss of iB-endorphin that resembles 

B-LPH yet the B-endorphin-sized peptides remained, 

accounting for 69% of total circulating iB-endorphin. 

These results further support the interpretation that 

haloperidol evokes release of iB-endorphin from the AL 

(B-LPH-sized and s~nsitive to glucocorticoid inhibition). 

The reason for bromocriptine's inability to clearly reduce 

the contribution made by B-LPH to the rise 1n total 

iB-endorphin following haloperidol is not understood. Over 

a longer period of time, both bromocriptine and haloperidol 

have equivalent access to the brain and both have 

long-lasting actions on prolactin secretion. The releasing 

effects of haloperidol on B-LPH-sized immunoreactivity ma y 

be due to blockade of Dl receptors, a dopaminergic subtype 

at which bromocriptine cannot compete. To investigate this 

possibility, haloperidol's influence on pituitary 

iB-endorphin release was challenged with the Dl 
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Figure 24. Effects of SKF 38393 on release of immunoreactive 

B-endorphin (iB-END) evoked by haloperidol and sulpiride. 

Rats received an ip injection of vehicle or SKF 38393A (SKF, 

2.5 mg/kg) 30 min prior to a second injection of vehicle 

(VEH), haloperidol (HAL, 2.5 mg/kg) or sulpiride (SULP, 2.5 

mg/kg); animals were decapitated 30 min thereafter. Bars 

and vertical lines represent the group means +/- SE; N=6-8. 

*Significantly different (P<0.05 from vehicle­
treated controls 
+Significantly different (P<0.05) from HAL alone 
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Figure 25. Comparison of gel chromatographic profiles 

of plasma from control, haloperidol and haloperidol plus 

SKF 38393 treated rats. Animals were treated as de-

scribed in Figure 24. Pools of treatment group plasma 

were filtered on a column of Sephadex G-50 and the 

elution profiles are graphed with respect to the mobili-

ty coefficient, Kd. Positions of calibration peaks, 

i.e •• blue dextran (Vo). human B-lipotropin (B-LPH) and 

camel B-endorphin (B-END), are indicated by arrows above 

the control profile (top). 
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agonist, SKF 38393. The results indicate that SKF 38393 was 

able, in part, to attenuate the increase in total 

iB-endorphin due to haloperidol and the effects appeared 

specific to the B-LPH-sized form. A 2.5 mg/kg dose of SKF 

38393 was administered 30 min prior to treatment of rats 

with vehicle, haloperidol or sulpiride. As shown in Figure 

24, both haloperidol and sulpiride significantly increased 

plasma iB-endorphin, but, as seen earlier, not to the same 

degree. Circulating iB-endorphin 

haloperidol (2.5 mg/kg, 30 min) 

after sulpiride treatment (2.5 

rose over 6-fold after 

and approximately 2-fold 

mg/kg, 30 min). SKF 38393 

significantly reduced the haloperidol-induced increase 1n 

plasma iB-endorphin by 35% but had no effect on the ability 

of sulpiride to elevate total plasma levels (Figure 24). 

These findings indicate that part of haloperidol's ability 

to increase plasma iB-endorphin may be mediated through 

blockade of an inhibitory Dl receptor, whereas, 

sulpiride-induced release of iB-endorphin is mediated 

exclusively by a D2 receptor. When gel chromatographic 

profiles of plasma from animals treated with haloperidol 

were compared with those from rats which received the SKF 

38393 pretreatment in addition to haloperidol, the form of 

iB-endorphin resembling B-LPH was found to be 

preferentially diminished by SKF 38393. Whereas the B-LPH 

peak represented 40% of total iB-endorphin in plasma of 

haloperidol-treated rats, this same molocular form of 

iB-endorphin constituted only 28% of total immunoreactivity 
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Figure 26. Effects of SKF 38393 on release of immunoreactive 

B-endorphin (iB-END) induced by LY141865. Rats received ip 

injections of vehicle (VEH) or SKF 38393 (SKF 3 mg/kg) 45 min 

prior to a second ip injection of vehicle or LY141865 (1 mg/kg). 

Samples were collected 15 min after the second injection. 

Bars and vertical lines represent the mean+/- SE; N=7. 

*Significantly different (P<O.OS) from VEH-treated 
controls 
+Significantly different (P<0.05) from LY141865 alone 
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rats pretreated with SKF 38393 (Figure 25). Thus, SKF 38393 

appears to have prevented haloperidol-induced release of AL 

iB-endorphin. 

If, as these data suggest, an inhibitory 

dopaminergic mechanism regulates AL release of iB-endorphin 

as well as of the IL, then results generated in sections 

1.1 to 1.3 suggesting that a D2 receptor mechanism 

stimulates AL release in vivo must be reconciled with the 

current interpretation. The following experiment was 

designed to examine the stimulatory effects of D2 receptor 

activation together with the inhibitory Dl effects surmised 

by the results of this section. As shown in Figure 26, 

LY141865 (1 mg/kg, 15 min) evoked a 9-fold rise in total 

plasma levels of iB-endorphin, whereas, the Dl agonist, SKF 

38393, had no effect on basal levels. 

of iB-endorphin elicited by LY141865 

Nonetheless, release 

was slightly (15%) but 

significantly 

pretreatment 

(P<0.05) attenuated 

(3 mg/kg, 30 min). 

by the SKF 38393 

These findings suggest 

that an inhibitory D1 receptor mechanism coexists with a 

stimulatory D2 receptor mechanism for controlling AL 

release of iB-endorphin. 

3.0.3 Dopaminergic Effects on Physiologically 

Stimulated Release of iB-endorphin 

The remaining experiments were designed to examine 

possible involvement of dopaminergic mechanisms 1n the 
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physiologic release of pituitary iB-endorphin. The two 

methods used to elicit physiologic release of iB-endorphin 

were: metyrapone treatment, which inhibits the adrenal 

enzyme, li-B-hydroxylase (Chart et al, 1958), and 

interrupts negative feedback control of AL secretion of 

ACTH and iB-endorphin, and physical immobilization, which 

is a potent stress for rats and evokes both AL and IL 

release of iB-endorphin. 

3.0.3.1 Dopaminergic Effects on Metyrapone-Induced 

Release of iB-endorphin 

In order to determine 

participate in maintaining 

if dopamine 

balance 

receptors 

in the 

brain-pituitary-adrenal axis, rats were pretreated with 

dopaminergic drugs prior to inhibition of glucocorticoid 

synthesis with metyrapone. Animals received a 30 min 

pretreatment with haloperidol (2.5 mg/kg) then metyrapone 

(100 mg/kg, 30 min). As the results in Figure 27 show, 

treatment of rats with the combination of haloperidol and 

metyrapone evoked an elevation in plasma levels of total 

iB-endorphin (870% as compared to control) which 

approximated the sum of their independent releasing effects 

(360% and 420% due to haloperidol and metyrapone, 

respectively). Despite this 9-fold elevation in 

circulating iB-endorphin, neither AL nor IL content of 

iB-endorphin was altered relative to control levels (1.01 

20 ~ 



Figure 27. Effects of haloperidol and metyrapone alone 

and in combination on plasma immunoreactive B-endorphin 

(iB-END). Vehicle (VEH) or 2.5 mg/kg haloperidol (HAL) 

were injected ip 30 min before a second vehicle injection 

or metyrapone treatment (METYR, 100 mg/kg); samples were 

collected 30 min after the second injection. Bars and 

vertical lines represent the group means +/- SE; N=S. 

*Significantly different (P<O.OS) from VEH­
treated controls 
+Significantly different (P<O.OS) from all 
other treatments 
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+/- 0.11 mcg/mg protein in AL and 17.8 +/- 2.4 mcg/mg 

protein in NIL). Although complimentary in their influence 

on blood-borne iB-endorphin, haloperidol and metyrapone 

didn't similarly effect plasma prolactin. Haloperidol 

induced a 12-fold increase in plasma levels of prolactin as 

compared to controls (9.2 +/- 2.0 ng/ml) but metyrapone 

alone had no effect on prolactin and did nothing to alter 

haloperidol-induced prolactin release. The results of this 

study suggest that dopamine receptor-mediated inhibition of 

pituitary iB-endorphin release may be as independent of 

as are the releasing effects of dopaminergic receptor 

~; 

\I 

glucocorticoid feedback effects on pituitary iB-endorphin 

blockade on prolactin secretion. The study which follows 
I~ 

further separates dopaminergic influence from the 

regulation of the pituitary-adrenal axis. 

Rats were pretreated with bromocriptine (1 or 5 

mg/kg, 3 h) prior to administration of metyrapone. As 

shown in Table 16, bromocriptine had no effect on basal 

levels of total iB-endorphin and failed to influence a 

5-fold increase in circulating iB-endorphin due to 

metyrapone. Together, these results strongly imply that 

dopaminergic actions on pituitary iB-endorphin secretion 

are independent of the mechanisms which regulate blood 

levels of glucocorticoids. As shown previously, however, 

the converse is not true. AL release of iB-endorphin 

following dopamine receptor stimulation (section 1.2) or 

inhibition (section 2.2) was readily suppressed by 



Tahlc 16 . Effects of bromocriptine and metyrapone alone and in combination on plasma 

levels and pituitary content of immunoreactive a-endorphin 

Plasma iS-endorphin Pituitary iS-endorphin 
(ng/ml) (IJg/mg protein) 

Treatment AI.. NIL 

VEll + VEH 0.25 ± 0.03 1.6 ± 0.1 J2 . 9 ± 3.7 

1 rng/kg BROt10 + VEH o . 36 ± o . o7 1.7 ± 0.2 33.2 ± 4 . 2 

5 mg/kg BROMO + VEH 0.26 t 0 . 06 1.7 ± 0.2 2s.2 ± J.z 

VEil + METYR 1.31 ± 0 . 32 a 1.5 ± o . z 25 . 4 ± 3.4 

l mg/kg BROHO + i·1ETYR 1.62 ± 0 . 29 a Ll1 ± 0 . 2 29.8 ± 4.2 

5 mg/kg RROMO + ~1F.:TYR 1. 32 ± 0 . 19 a 1.7 ± 0.3 36.1 ± 5.() 

Vehicle (VEH) or bromocriptine mesylate (BROHO) were administered 90 min before 

a second vehicle or 100 mg/kg metyrapone injection (HETYR); samples were taken 30 

min after the second injection. Va~1es are the group means ± SE; N=7-8. 

a Significantly different (P(O.OS) from VEH controls or corresponding BRmiO 
t reatonent group without HETYR 

. N 
..... 
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exogenous glucocorticoid treatment. The additive effects 

of haloperidol and metyrapone together with the lack of 

interaction of bromocriptine and metyrapone on plasma 

levels of total iB-endorphin suggest that dopamine receptor 

mechanisms influence pituitary release of iB-endorphin 

independently from those mechanisms which ultimately 

sustain physiological levels of circulating glucocorticoids 

in rats. 

3.0.3.2 Dopaminergic Drug Effects on Stress-Induced 

Release of iB-endorphin 

In order to determine how dopaminergic mechanisms 

might be involved with the pituitary iB-endorphin response 

to stress, rats were pretreated with either bromocriptine 

(D2 agonist), pergolide (a mixed Dl,D2 agonist), or with 

haloperidol prior to the stress of physical 

immobilization. As seen in Table 17, bromocriptine failed 

to significantly influence basal secretion of iB-endorphin 

yet attenuated immobilization-induced release (6-fold 

versus controls) by 40%). Bromocriptine's ability to 

decrease total plasma iB-endorphin in stressed rats was 

associated with a loss of iB-endorphin 

(not shown). 

resembling 

Circulating B-endorphin in molecular size 

prolactin was also elevated 

to the same degree as total 

significantly reduced basal 

in stressed rats although not 

iB-endorphin; bromocriptine 

levels of prolactin and 

prevented immobilization-induced release of prolactin 
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Table 17. Effects of bromocriptine on basal and sti:aulated plasma levels 

of iill@unoreactive ~- endorphin and prolactin in the rat 

Treatment 

Vehic l e 

Bromocriptine 

Vehicle + I~~ohilization 

Bromocriptine + I~mobili­

zation 

Plaswa Hormones 
iS-endorphin 

0. '•4 ± 0 . 08 

Q . 3~ ± o.os 

2 . 32 ± 0 . 31 b 

1.70 ± 0 . 37 be 

(ng/rul) 
prolactin 

25 ± 9 

<2 a 

63 ± 9 b 

<2 ac 

Rats r eceived ip injections of vehicle or br omocriptine (3 mg/kg) 

3 h pr ior t o sacrifice and half of each pretreatment group was subjected 

to 30 min of physical immobi lization prior to sacrifice. Values are the 

group mean ± SE; N=6-7 

a Significantly different (?(0 . 05) from vehicle-treated control s 

b Significantly different (P(0 .05) from vehicle and bromocriptine 
groups 

c Significantly different (P<0.05) frohl vehicle + immobilization 
group 
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Figure 28. Effects of pergolide on stress-induced release 

of immunoreactive B-endorphin (iB-END) in the rat. Rats 

received ip injections of vehicle or pergolide mesylate 

(2.5 mg/kg) 3 h prior to sacrifice and half of each pre­

treatment group was subjected to 30 min of physical 

immobilization prior to sacrifice. Values are the group 

mean+/- SE; N=6-7. The vehicle-pretreated stress group 

alone was significantly different (P<O.OS) from other 

group values. 
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Table 18 · Effects of haloperidol anr.J immobilization on circulatin'' 
"' 

levels of immunoreactive a-endorphin and prolactin in rats 

Pl asma Hormones (ng / ml) 
Treatment iS-endorphin prolactin 

Controls Q. 2J ± 0.02 .3 . 2 ± 0.3 

Haloperidol {) . 3') ± 0 . 03 16.5 ± 2 . 7 a 

Immobilization 1.82 ± 0 . 25 a 10 . 9 ± 1.7 a 

ltnillobi liz a tion + 2 - 44 ± 0.28 a 42 . 7 ± 5.1 ab 

Haloperidol 

Rats received an ip injection of vehicle or haloperidol ( 1 mg/k~) 

twice daily for three days . On the morning of the fourth day, 3 . 5 h 

after the seventh injection , half of the animals liere subjected to 30 

min of physica l immobilization and all animals were decapitated 4 h 

after the last injection . Values a re the group means ± SE; N=S. 

a Significantly different (P(0.05) from controls 

b Significantly different (P(0 . 05) from im~obilization without 

haloperidol 
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(Table 17). Pergolide, a dopaminergic agonist which, unlike 

bromocriptine, is an agonist of Dl as well as D2 receptors 

(Goldstein et al, 1980; Boissier et al, 1983), also blocked 

stress-induced release of iB-endorphin and prolactin, 

reducing by 72% the levels of total iB-endorphin provoked 

by immobilization (Figure 28). As revealed in 

chromatography of the preceding experiment, the predominant 

loss of iB-endorphin was the molecular form resembling 

B-endorphin in size (not shown) although some decrement in 

B-LPH was also apparent. These results suggest that 

dopamine neurons may participate in stress-induced release 

of pituitary iB-endorphin through a permissive role on the 

IL, i.e., withdrawal of tonic inhibitory tone. This 

interpretation implied that the pituitary iB-endorphin 

response to stress could be augmented by additional 

withdrawal of dopaminergic inhibitory tone. To this end, 

rats were repeatedly treated with the mixed dopaminergic 

antagonist, haloperidol (1 mg/kg every 12 h), and subjected 

to physical immobilization 3.5 h after the seventh 

haloperidol treatment. As shown in table 18, haloperidol 

did not effect basal levels of plasma iB-endorphin but 

significantly augmented stress-induced release (10-fold 

increment versus an 8-fold increment in stress without 

haloperidol). The associated changes in molecular forms of 

iB-endorphin are shown in Figure 29. Although resting 

levels of total iB-endorphin were unchanged 4 h after the 

final haloperidol treatment, B-endorphin-sized material 
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Figure 29. Gel filtration chromatography of plasma from 

rats exposed to haloperidol and immobilization. Rats 

were treated as described in Table 1~ and pools of plasma 

from each treatment group were filtered on a Sepbadex G-50 

column. Immunoreactive B-endorphin in the elution 

fractions was graphed (corrected to 100% recovery) with 

respect to the mobility coefficient, Kd. Positions of 

calibration peaks, i.e., blue dextran (Vo), human beta­

lipotropin (B-LPH) and camel B-endorphin (B-END), are 

indicated by arrows above the control profile (top left). 
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represented 95% rather than 85% of circulating 

Both the immunoreactivity after haloperidol treatment. 

B-endorphin- and the 

increased in response 

B-LPH-like forms 

to immobilization 

of iB-endorphin 

alone but the 

material resembling B-LPH was increased greater than 

30-fold, whereas, B-endorphin-sized immunoreactivity 

increased, at most, 4-fold. In stressed rats pretreated 

with haloperidol, B-endorphin-sized immunoreactivity was 

increased 200% over the amount of this molecular form in 

plasma of rats subjected to immobilization alone. These 

data reveal that stress by physical immobilization evokes a 

profound AL release of iB-endorphin as reflected in the 

elevation of B-LPH. Nevertheless, 

form of iB-endorphin, which is 

secretion, was also increased by 

the B-endorphin-sized 

associated with IL 

immobilization and 

appeared to be the only material which repeated haloperidol 

treatments significantly increased. Together, these 

findings suggest that the AL displays the greatest capacity 

to respond to stress but that, once relieved of tonic 

inhibitory tone, the IL exhibits an enhanced capacity 

respond to provocative stimuli like stress. 
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Chapter 4 

DISCUSSION 

The purpose of the present 

dopaminergic mechanisms 

secretion of pituitary 

investigation was to examine 

involved 1n controlling the 

immunoreactive B-endorphin 

(iB-endorphin). The experimental approach involved, to a 

large extent, the use of pharmacologic agents characterized 

for their receptor-specific actions on dopamine target 

tissues. Most of the 

previously been used to 

B-endorphin. The present 

drugs 

examine 

employed here had not 

the control of pituitary 

investigation was carried out 

using the laboratory rat, an acknowledged model species for 

studying neuroendocrine regulation in mammals. 

Results of the present investigation indicate that 

dopamine neurons of the central nervous system control the 

release of iB-endorphin from both the anterior lobe (AL) 

and intermediate lobe (IL) of the pituitary gland. 

Regulation of AL iB-endorphin secretion by dopamine appears 

to involve reciprocal stimulatory and inhibitory mechanims 

that are most likely mediated through specific dopamine 

receptor subtypes located within the brain which, 1n turn, 

control the release of corticotropin releasing factor (CRF) 
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Figure 30. Schematic illustration modeling the regula­

tion of prolactin secretion from the rat anterior 

pituitary gland. Hypothalamic dopamine (DA) neurons 

are shown releasing the catecholamine neurohormone 

into the hypophyseal-portal circulation where DA 

directly interacts with the D2 receptors on mammo­

trophs to tonically inhibit prolactin secretion 

from the anterior lobe (AL). Although D2 receptors 

are also characterized on the intermediate lobe, 

only the AL produces prolactin. 
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from the hypothalamus. Conversely, dopamine receptors 

located on secretory cells of the IL mediate direct 

inhibition of iB-endorphin release from this tissue. 

As indicated in Figure 30, all dopaminergic 

treatments which activated the D2 receptor consistently 

reduced circulating levels of prolactin; antagonism of the 

D2 receptor reliably increased plasma levels of prolactin 

consistent with tonic inhibitory control of mammotrophs by 

hypothalamic 

observations, 

dopamine 

together 

neurons. 

with casual 

Together, these 

observations of 

behavior, greatly aided the interpretation of dopaminergic 

treatments, particularly with novel drug types. 

4.0.1 Development of a Working Hypothesis: 

Based on earlier reports that dopamine inhibits 

alpha-melanotropin (MSH) secretion from the IL in vivo 

(Tilders and Smelik, 1977; Tilders and Smelik, 1978), it 

was anticipated that dopaminergic agonist drugs would 

similarly depress plasma levels of iB-endorphin since 

peptides and MSH are co-secreted by B-endorphin 

melanotrophs. 

administration 

apomorphine and 

IL 

fold increases 

It was observed, however, that 

of the classic dopaminergic agonists, 

piribedil, resulted in rapid two- to five­

in plasma levels of total iB-endorphin 

(Figures 5 & 6, and Table 4). Furthermore, this unexpected 

release of pituitary iB-endorphin due to dopamine receptor 
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activation was associated with inverse changes 1n the two 

major molecular constituents of blood-borne iB-endorphin, 

immunoreactivity resembling B-endorphin and B-LPH in size. 

Under basal conditions, circulating iB-endorphin normally 

consists of approximately 70% B-endorphin-sized material 

with the remainder resembling B-LPH, B-endorphin's 

immediate precursor. Following apomorphine or piribedil, 

the rise in total plasma iB-endorphin was exclusively due 

to B-LPH, whereas, the form resembling B-endorphin 1-31 in 

size was reduced by approximately 25%. These changes in the 

underlying molecular forms of total circulating 

iB-endorphin indicate that AL release, characterized by 

B-LPH, is stimulated by dopaminergic agonists, whereas, the 

decline in plasma immunoreactivity resembling B-endorphin 

1-31 in size is consistent with inhibition of IL release 

since the IL secretes only forms of iB-endorphin resembling 

B-endorphin 1-31. Based upon these initial observations, 

the hypothesis was developed that two dopaminergic control 

mechanisms exist for independently regulating AL and IL 

secretion of iB-endorphin. 

hypothesis, AL release of 

According to this working 

iB-endorphin is 

dopaminergic stimulation, whereas, IL release is 

by dopamine receptor activation. 

subject to 

inhibited 

4.0.2 Testing and Modification of Working Hypothesis 

The present finding that dopamine agonists diminish 

the form of plasma iB-endorphin secreted by the IL is 
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consistent with earlier proposals that hypothamic 

dopaminergic neurons exert an inhibitory tone over 

melanotroph secretion (Tilders and Smelik, 1977; 1978; 

Penny and Thody, 1979). By contrast, the findings reported 

here which indicate dopaminergic stimulation of AL 

iB-endorphin release were largely unanticipated. The 

prevailing opinion 1n the literature on dopamine's role in 

ACTH regulation suggests that 

exert an inhibitory influence 

(Fuxe et al, 1970; Van Loon, 

dopamine might, if anything, 

on AL iB-endorphin release 

1973; Ganong et al, 1976). 

Present findings to the contrary thus led to additional 

experiments designed to confirm that the AL 1s the source 

for elevated circulating 

administration of apomorphine or 

iB-endorphin 

piribedil. 

following 

Results of 

these studies support the hypothesis that a dopaminergic 

mechanism indeed stimulates AL release of iB-endorphin. 

Interestingly, further experiments also revealed that a 

second, independent dopaminergic mechanism exists for tonic 

inhibitory control of AL iB-endorphin release. That dual 

dopaminergic mechanisms oppositely control AL iB-endorphin 

secretion may explain the uncertainty that exists in the 

literature about the role of dopamine neurons in 

controlling ACTH secretion. 

Pretreating rats with a low dose of haloperidol, a 

broadly acting dopamine receptor antagonist, attenuated 

pituitary release of iB-endorphin due to apomorphine, 

shifting the dose-response curve of apomorphine's effects 
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to the right (Figure 13). 

release by apomorphine and 

Stimulation of iB-endorphin 

inhibition of this response by 

haloperidol is consistent with a dopaminergic receptor 

mechanism mediating stimulatory control of pituitary 

iB-endorphin. Evidence that this stimulatory dopaminergic 

regulation is exerted specifically over 

by the ability 

AL corticotroph 

release is indicated of the synthetic 

glucocorticoid, dexamthasone, to completely block 

apomorphine-induced release of iB-endorphin (Table 6). 

Together, these findings further demonstrate that, 

consistent with the working hypothesis, a dopaminergic 

mechanism exists for stimulating AL release of 

iB-endorphin. 

Snoddy (198la) 

In accord with this hypothesis, Fuller and 

observed that a number of agents that 

enhance dopaminergic neurotransmission increase serum 

corticosterone in rats. Since adrenal secretion of 

corticosterone is stimulated by ACTH (released together 

with iB-endorphin from the AL), their results also support 

dopaminergic stimulation of corticotrophs. Likewise, 

pharmacotherapy of Parkinsonism with L-DOPA and a 

peripheral decarboxylase inhibitor has been found to 

elevate adrenal glucocorticoid secretion in man (Bartholini 

and Pletscher, 1969). 

It is well-accepted that hypothalamic dopamine 

neurons tonically inhibit alpha-MSH secretion from 

melanotrophs of the IL (Tilders and Smelik, 1 9 7 7; 1978; 

Tilders et al, 1979). A large part of the evidence for this 
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inhibitory control of the IL has been the repeated 

demonstration that dopaminergic antagonists like 

haloperidol 1ncrease plasma levels of alpha-MSH in 

experimental animals (Usategui et al, 1976; Tilders and 

Smelik, 1978; Penny and Thody, 1979). In light of these 

earlier reports, the present observation that low dose 

haloperidol fails to increase basal release of iB-endorphin 

(Figure 13 & 14) was puzzling. Presuming that the 

haloperidol treatment paradigm was inappropriate for 

demonstrating disinhibition of IL iB-endorphin release, 

higher doses and shorter sampling times were examined. 

Consistent with previous work showing that in 

dopaminergic blockade results in enhanced alpha-MSH 

secretion, iB-endorphin levels in plasma are significantly 

elevated when higher doses of haloperidol were administered 

and shorter sampling times were used (Figure 18 and Tables 

12 & 13). Upon chromatographic analysis of plasma from 

haloperidol-treated animals, however, it became clear for 

the first time that haloperidol increases immunoreactivity 

resembling both B-endorphin and B-lipotropin in molecular 

size (Figure 20). Therefore, in addition to elevated IL 

secretion of iB-endorphin as indicated by the 

B-endorphin-sized material, haloperidol treatment also 

appears to evoke AL release of iB-endorphin as evidenced by 

increased circulating B-lipotropin. Dexamethasone's 

attenuation of haloperidol's effects through selective 

reduction of material released resembling B-lipotropin 
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(Figure 23) further supports the view that dopamine neurons 

tonically inhibit release of iB-endorphin from the AL as 

well as from the IL in vivo. 

To summarize, when administered under appropriate 

conditions 

(haloperidol) 

(apomorphine 

both 

and 

and 

a dopaminergic receptor blocker 

dopamine 

piribedil) 

receptor activating 

stimulate release 

drugs 

of 

iB-endorphin from the AL. This suggests that either the AL 

iB-endorphin responses are not specific to dopaminergic 

agents or that the AL is subject to dual control by a 

dopaminergic 

mechanism. 

stimulatory and a dopaminergic inhibitory 

Reports that higher doses of haloperidol interact 

with both adrenergic and serotonergic receptors (Anden et 

al, 1970; Peroutka and Snyder, 1980) raised the possibility 

that the effects of haloperidol on AL iB-endorphin release 

may have been due to non-dopaminergic actions· of the 

compound. This, however, does not appear to be the case. 

Evidence against adrenergic mechanisms is that pimozide, a 

dopaminergic blocker with greater selectivity than 

haloperidol for dopamine receptors (Anden et 

also increases circulating levels of total 

al, 1970), 

iB-endorphin 

(Figure 1 9) ' and, 

B-endorphin- and 

blood (not shown). 

like haloperidol, elevates both 

B-lipotropin-sized immunoreactivity 1n 

Furthermore, the iB-endorphin releasing 

effects of haloperidol were found to be additive to those 
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of the adrenergic antagonist, prazosin (Mueller, Maiewski 

and Farah, unpublished observation) indicating independent 

dopaminergic and adrenergic regulation of pituitary 

iB-endorphin. Together, these data do not support an 

adrenergic 

release. 

action for haloperidol on AL iB-endorphin 

Similarly, 

receptors do 

iB-endorphin 

not 

actions 

appear 

of 

to 

haloperidol 

be involved 

on serotonin 

in pituitary 

release evoked by haloperidol. The 

stimulatory effect of haloperidol on AL iB-endorphin 

release was unaffected by cinanserin, a serotonin receptor 

blocker which completely prevents AL iB-endorphin release 

in response to the serotonin receptor agonist, quipazine 

(Sapun-Malcolm, Farah & Mueller, in 

ability of dopaminergic blockers 

press). Thus, the 

to increase AL 

iB-endorphin release do not appear to be mediated 

indirectly 

mechanisms. 

through either serotonergic or adrenergic 

The ability of antagonists as well as agonists of 

the dopamine receptor to evoke release of AL iB-endorphin 

supports the view that an inhibitory dopaminergic mechanism 

exists in parallel with dopaminergic stimulatory control 

over corticotrophs. Accordingly, the working hypothesis 

was modified to also include a dopaminergic mechanism for 

tonic inhibition of AL iB-endorphin release. 

Dopaminergic agonists and antagonists alike 

230 



stimulate AL release of iB-endorphin despite the presence 

of endogenous 

This raised 

mechanisms opposing the 

the possibility that 

actions of each. 

such seemingly 

contradictory actions might result from activation and 

blockade of separate dopamine receptor subtypes each 

capable of independently controlling 

iB-endorphin. In 1979, Kebabian and 

AL secretion of 

Calne proposed that 

dopaminergic receptors can be divided into two categories 

that are distinguishable, in part, by their differential 

affinities for dopaminergic ligands, in much the same way 

that alpha- and beta-adrenoceptors display differential 

selectivity for adrenergic agonists. The proposed D-1 

receptor subtype has limited affinity for dopaminergic 

agents, whereas, D-2 receptors exhibit much higher affinity 

for dopaminergic compounds (Kebabian & Calne, 1979). As 

observed here, the ability of only higher doses of 

haloperidol to evoke AL release of iB-endorphin suggests 

that a D-1 receptor mechanism might normally inhibit AL 

secretion 

low doses 

of iB-endorphin. 

of haloperidol 

In contrast, the finding that 

are capable of inhibiting 

apomorphine-induced release of iB-endorphin indicates that 

dopaminergic stimulatory control of AL iB-endorphin 

secretion might be mediated by a D-2 receptor mechanism. 

Recently available dopaminergic drugs which differentiate 

between these two receptor subtypes were employed to 

examine this question of dual dopaminergic mechanisms for 

regulating AL release of iB-endorphin. The results of 
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these experiments led to the development of a model for 

dopaminergic regulation of pituitary iB-endorphin 

4.0.3 A Model for Dopaminergic Regulation of Pituitary 

B-endorphin Secretion 

4.0.3.1 Overview 

For the purpose of unifying the present discussion, 

a model is proposed for dopaminergic control of pituitary 

iB-endorphin. As diagrammed in Figure 31, brain dopamine 

neurons are involved in basal and dynamic regulation of 

iB-endorphin secretion from the pituitary gland through 

combined stimulatory and inhibitory actions over AL and by 

direct inhibition of IL secretion of iB-endorphin. Also 

shown is the "long loop" inhibitory control of AL 

corticotrophs by glucocorticoids. Secretion of adrenal 

glucocorticoids is stimulated by adrenocorticotropin (ACTH) 

which is co-released with iB-endorphin from corticotrophs. 

Findings presented here indicate that dynamic stimulatory 

control of AL secretion by dopamine is mediated through a 

D2 receptor mechanism that evokes the release of 

corticotropin releasing factor(s) (CRF) into portal blood. 

In all the present examples of D2 receptor actions, this 

receptor subtype inhibits a biological activity of the 

target cell (see Kebabian and Calne, 1979; Stoof and 

Kebabian, 1981; Wong et al, 1983). Hence, it is possible 

that D2 stimulation of AL iB-endorphin release occurs by 
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Figure 31. Schematic illustration modeling the regulation 

of beta-endorphin secretion from anterior and intermediate 

lobes of the rat pituitary. Dopamine (DA) neurons directly 

innervate the IL and tonically inhibit (-) melanotroph 

secretions of B-endorphin peptides (B-END) and alpha-mela­

notropin (~-MSH) v~a a D2 receptor mechanism. Dopamine 

neurons directly or indirectly innervate corticotropin 

releasing factor (CRF) neurons. Through inhibitory(-) 

Dl receptor mechanisms and stimulatory (+) D2 mechanisms 

that govern CRF secretion into the portal vasculature, 

these brain dopamine neurons participate in controlling AL 

release of B-END, beta-lipotropin (B-LPH) and adrenocor­

ticotrophin (ACTH). Adrenal glucocorticoids exert 

negative feedback control of the CRF-AL-adrenal axis 

with actions in the brain as well as on corticotrophs. 
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disinhibition of hypothalamic secretion of the AL 

secretagogue, CRF. By a separate mechanism, dopamine acts 

on brain Dl receptors to inhi~it AL iB-endorphin secretion 

via blockade of CRF release. This latter dopaminergic 

mechanism appears to tonically inhibit release of 

iB-endorphin from the AL. For convenience of 

representation, dopamine neurons are shown interacting 

directly with CRF neurons, however, dopaminergic influences 

over CRF may be secondary to other neural events which 

ultimately control CRF release. For example, dopamine 

neurons could exert actions on CRF through acetylcholine 

which is known to be intimately involved with control of 

hypothalamic CRF (Hillhouse et al, 1975; Jones et al, 1976; 

Jones & Hillhouse, 1977; Buckingham, 1980). 

In contrast to the more remote central nervous 

system mechanisms which control iB-endorphin release from 

the AL, dopaminergic inhibition of IL release is direct 

(Przewlocki et al, 1978b; Vale et al, 1979; Vermes et al, 

1980b) and mediated through the tuberohypophyseal dopamine 

neurons that innervate this lobe (Bjorklund et al, 1973; 

Tilders and Smelik, 1977). Results of the present study are 

entirely consistent with this aspect of the model and 

extend recent in vitro evidence which demonstrates that 

inhibitory control of the IL is mediated principally by a 

D2 receptor mechanism (see Cote et al, 1982). 

4.0.3.2 a. D2 Stimulation of AL iB-endorphin Secretion: 
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The most novel finding in the present study is that 

dopaminergic agonists stimulate pituitary release of 

iS-endorphin. As proposed in the model, this occurs 

through D2 receptor activation which, in turn, enhances 

hypothalamic release of CRF. Results indicating that 

dopamine stimulates AL iS-endorphin release are discussed 

above. Evidence extending this finding to indicate a 

specific D2 receptor mechanism for the response of 

D2 iS-endorphin is three-fold. First, the selective 

agonist, LY141865, evokes a rise in circulating 

iS-endorphin which is due primarily to the release of 

immunoreactivity corresponding to S-lipotropin in size. 

Importantly, this response is blocked by premedication with 

glucocorticoids. Second, in addition to blockade by a 

general Dl and D2 receptor antagonist (haloperidol), the 

LY141865-induced release of iB-endorphin is prevented by 

the specific D2 blocker, sulpiride. And third, in contrast 

to the actions of LY141865, the Dl agonist, SKF 38393, has 

little, if any, significant affect on pituitary release of 

iS-endorphin under basal conditions. Together, these 

observations indicate that D2 receptor activation results 

in the release of iB-endorphin from corticotrophs of the 

AL. Furthermore, this explains the ability of mixed Dl, D2 

agonists (apomorphine and piribedil) to increase plasma 

levels of iS-endorphin (S-lipotropin) while inhibiting the 

secretion of S-endorphin peptides from the IL. 
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Indirect evidence from one other laboratory supports 

D2 stimulation of AL corticotroph secretions. Fuller and 

colleagues (1983) observed that LY141865 increases serum 

corticosterone in rats and, further, that this response ~as 

prevented by pretreament ~ith haloperidol. Since adrenal 

secretion of corticosterone is normally stimulated by ACTH 

~hich 1s co-released ~ith iB-endorphin from corticotrophs, 

both of their findings are consistent ~ith D2 receptor 

stimulation of CRF and subsequent secretion of ACTH and 

iB-endorphin from the AL. 

4.0.3.3 b. Dl Inhibition of AL iB-endorphin Secretion: 

In addition to dopaminerigic stimulation of AL 

iB-endorphin secretion through a D2 receptor, evidence 

presented here and else~here indicates that dopamine also 

tonically suppresses AL release of iB-endorphin. The 

mechanism mediating AL inhibition 

receptors ~hich appear to be 

dopamine under basal conditions. 

on the foll~ing observations. 

probably 

tonically 

involves 

activated 

Dl 

by 

This conclusion is based 

General dopaminergic 

antagonists capable of blocking both Dl and D2 receptors 

(haloperidol and pimozide) increase circulating levels of 

B-lipotropin-sized immunoreactivity together ~ith 

B-endorphin-sized material (Figures 20 & 23). Since the 

appearance of B-lipotropin in blood indicates AL release of 

iB-endorphin, these findings support the view that AL 

secretion of iB-endorphin is subject to tonic inhibition 
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through dopaminergic mechanisms, This hypothesis 15 

supported by similar findings in rats (Hollt and Bergmann, 

1982) and human subjects (Genazzani et al, 1984) and by the 

observation that haloperidol evokes the concomitant release 

of both ACTH and iB-endrophin in rats (Giraud et 1 1980) a , • 

The unique finding of the present study is that the 

mechanisms by which dopamine tonically inhibits AL 

iB-endorphin secretion probably involves activation of D1 

receptor subtypes. 

Pituitary release of iB-endorphin due to haloperidol 

is attenuated by pretreatment with the Dl receptor agonist, 

SKF 38393 (Figure 24). SKF 38393 principally suppresses 

release of immunoreactivity resembling B-lipotropin in 

molecular size (Figure 25). Since this form of circulating 

iB-endorphin is the lesser component of the overall 

haloperidol-evoked release (B-lipotropin plus B-endorphin 

peptides), the reduction of total iB-endorphin release by 

SKF 38393 pretreatment is not dramatic (Figure 24). Unlike 

SKF 38393, the D2 agonist, bromocriptine, substantially 

diminishes the net increase in circulating levels of total 

B-endorphin due to haloperidol principally by inhibiting 

release of B-endorphin-sized material (Figures 22 & 23, and 

Table 1 5 ) • Together, these findings indicate that AL 

release of iB-endorphin (marked by B-lipotropin-sized 

immunoreactivity) is tonically inhibited by dopamine acting 

through a Dl receptor mechanism. 
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Further evidence indirectly supporting this 

conclusion is the lack of influence of specific D2 

antagonists on AL iB-endorphin. Although both sulpiride 

and domperidone increase plasma levels of total 

iB-endorphin, neither compound enhances the release of 

immunoreactivity resembling B-LPH Ln molecular size. 

Consequently, in vivo blockade of D2 receptors appears to 

have no effect on basal secretion of iB-endorphin from AL 

corticotrophs. 

In summary, these findings indicate that tonic 

dopaminergic inhibition of AL iB-endorphin release is 

mediated through a Dl receptor mechanism, whereas, a D2 

dopaminergic mechanism mediates stimulation of AL 

iB-endorphin secretion. Experimental approaches for 

differentiating between Dl- and D2-mediated actions on AL 

secretion of iB-endorphin have recently been aided by 

development of selective Dl antagonists like bulbocapnine 

(Shepperson et al, 1982) and SCH 23390 (Irio et al, 1983; 

Hyttel, 1983). Preliminary release studies of 

bulbocapnine's actions in vivo support the present model 

for Dl inhibition of AL iB-endorphin release (Mueller, 

personal communication). Thus, Dl-selective antagonists 

afford valuable pharmacologic methods for examining 

inhibitory dopaminergic control of AL iB-endorphin 

secretion independent of D2 mechanisms. 

4.0.3.4 c. Dopaminergic Control of AL iB-endorphin May Be 
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Mediated by CRF 

Among the agents that control corticotrophs 

directly, corticotropin releasing factor (CRF) appears most 

likely to mediate the effects of dopamine on AL 

iB-endorphin secretion. Although dopamine is present in 

high concentrations in portal blood (Gibbs and Neill, 

1978), neither dopamine nor dopaminergic agents exert any 

direct effects on basal secretion of iB-endorphin from the 

AL in vitro. This is shown in the results of Tables 7, 8 

and 9. Further, despite numerous actions of dopamine in the 

periphery (Goldberg, 1972; Thorner, 1975; Snider and 

Kuchel, 1983; Aguilera and Catt, 1984), there is no 

evidence to suggest that dopamine directly influences 

adrenocortical secretion of glucocorticoids 1n any manner 

that could account for dopaminergic actions on AL 

iB-endorphin (Ontjes, 1980). Accordingly, dopaminergic 

actions on iB-endorphin release from the AL in vivo are 

most likely mediated through the CNS and since virtually 

all evidence indicates that CRF is the final common 

mediator of CNS actions on corticotrophs, both dopaminergic 

stimulation and inhibition of AL iB-endorphin probably 

occur through mechanisms located within the brain. 

Evidence that supports control of AL iB-endorphin 

secretion by CNS dopamine neurons is discussed separately 

for stimulatory and inhibitory dopaminergic influences. 

The present finding that central but not systemic 



pretreatment with sulpiride inhibits release of 

iB-endorphin due to LY141865 (Table 10 & Figure 15) 

indicates that the D2 mechanism for stimulating 

corticotrophs resides at some site within the blood-brain 

barrier. Indirect support for this view comes from 

Fuller's investigations of 

adrenocortical secretions 

prevents the rise in serum 

dopaminergic influences on 

in vivo, Whereas haloperidol 

corticosterone evoked by the 

dopamine agonist, pergolide, pretreatment of rats with the 

peripheral dopaminergic antagonist, domperidone, failed to 

suppress pergolide-induced release of adrenal glucorticoids 

(Fuller and Snoddy, 198la). It is likely that, as observed 

in the present results with sulpiride, 

systemically-administered domperidone does not readily 

reach D2 receptors within the brain that mediate CRF 

release. 

Additional support for central versus peripheral 

dopaminergic stimulation of CRF release has emerged from 

studies conducted in man. Infusion of 

L-dibydroxyphenylalanine (L-DOPA) along with the peripheral 

decarboxylase inhibitor, carbidopa 

(alpha-methyldopa-hydrazine) (Bartholini and Pletscher, 

1969), elevates serum cortisol in man, whereas, infusions 

of dopamine or L-DOPA alone have no significant effect on 

circulating adrenal glucocorticoids (Wilcox et al, 1975). 

Since dopamine cannot cross the blood-brain barrier 

(Bertler et al, 1966) and L-DOPA treatment in the absence 
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of carbidopa more effectively enhances peripheral rather 

than central dopaminergic transmission, these observations 

indicate that dopaminergic stimulation of cortisol 

secretion 1n man occurs through CNS rather than peropheral 

mechanisms which enhance ACTH secretion. Together, the 

data 'presented here along with supporting evidence from 

other sources strongly suggests that dopaminergic 

mechanisms for stimulating AL iB-endorphin secretion are 

located in areas of the CNS protected by the blood-brain 

barrier. 

Although there is no equivalent evidence for placing 

Dl inhibitory control of AL iB-endorphin release within the 

CNS, the lack of direct dopaminergic inhibition of 

corticotrophs suggests that the most likely location for Dl 

control mechanisms is in the hypothalamus. Interestingly, 

both Dl binding sites and a Dl-stimulated phosphoprotein 

have recently been identified in the basal hypothalamus 

(Fuxe et al, 1984; Walaas and Greengard, 1984; Ouimet et 

al, 1984). Although a direct relationship between the 

neurons that contain these Dl receptor constituents and CRF 

has yet to be established, at least the biochemical 

substrates for Dl inhibitory control of AL iB-endorphin 

secretion are situated in areas of the hypothalamus closely 

associated with neurohumoral control of corticotrophs. 

In summary, both dopaminergic stimulation (D2) and 

inhibition (Dl) of AL iB-endorphin release in vivo are 
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likely to be 

CRF release. 

mediated by central mechanisms which control 

Precedent for the coexistence of both 

stimulatory and inhibitory dopaminergic control mechanisms 

exists in electrophysiological responses of hypothalamic 

neurons. Moss and colleagues 0975) found that some 

tuberoinfundibular neurons are stimulated by dopamine, 

others are inhibited by the catecholamine. whereas, 

Likewise, there is evidence of both stimulatory and of 

inhibitory actions for other catecholamines in the control 

of AL corticotrophs (Ganong et al, 

1982c; Berkenbosch et al, 1981a, 

Mueller, 1982a, 1982b). 

1976; Millan et al, 

198lb; Pettibone and 

Opposing influences of brain dopamine 

that 

on AL 

secretion of iB-endorphin suggests different 

populations of dopamine neurons participate in controlling 

CRF. Since the release of CRF represents the sum of 

integrated CNS inputs for influencing corticotroph 

function, participation of multiple dopaminergic pathways 

in CRF control implies that dopamine neurons relay more 

than a single physiological parameter important to the 

secretion of AL iB-endorphin and other POMC peptides. 

Of all the agents that directly effect corticotrophs 

(see Figure 3), CRF is the only secretagogue which 

profoundly stimulates AL iB-endorphin secretion in vitro in 

a manner comparable to the release evoked by LY141865 or 

classical dopamine agonists in vivo (Vale et al, 1979; Vale 
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et al, 1983). Although there is no evidence presently 

supporting a direct stimulatory action of dopamine on CRF 

neurons, dopamine may increase CRF release through 

acetycholine, a known CRF modulator with which dopamine has 

been shown to interact in controlling other neuroendocrine 

functions (Lichtensteiger and Keller, 1974; Lichtensteiger, 

1975). Certainty about the relationship of dopamine neurons 

and CRF is likely to be established in the near future 

since changes in portal blood content of CRF can now be 

estimated by radioimmunoassay (Gibbs and Vale, 1982). 

Levels of hypophyseal-portal CRF vary as 

response to stress and adrenalectomy (Suda 

anticipated ~n 

et al, 1983; 

Plotsky and Vale, 1984). Accordingly, the physiological 

relationship of dopaminergic neurotransmission and 

secretion of this hypothalamic hormone may now be examined 

directly. 

role 

A second hypothalamic peptide which may also play a 

in D2 stimulation of AL iB-endorphin secretion is 

arginine-vasopressin (AVP). Although not particularly 

active on its own, AVP has been shown to potentiate the 

actions of CRF in vitro (Gillies et al, 1982; Turkelson et 

al, 1982) suggesting that a physiologic function of AVP 1s 

to modulate corticotrophic responses to CRF (Anhut et al, 

1981; Rivier and Vale, 1983). Reports that the AVP content 

of the median eminence increases and decreases after 

adrenalectomy and glucocorticoid treatments, respectively, 

supports this view (Dube et al, 1973; Silverman et al, 
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1981). Additionally, Millan and colleagues have reported 

that loss of hypothalamic AVP due to lesions of the 

paraventricular nucleus correlates well with concomitant 

decline in plasma levels of iB-endorphin (Millan et al, 

1984). 

Even if AVP were to act primarily through 

potentiation of CRF stimulation as suggested by Rivier and 

Vale (1983), the role of AVP as a participant in 

corticotroph regulation is particularly interesting since 

others have shown that dopamine neurons stimulate the 

release of hypothalamic AVP (Milton and Paterson, 1973; 

Bridges et al, 1976). Together, these results raise the 

possibility that AVP may also be involved in stimulatory 

actions of dopamine on AL release of iB-endorphin. 

For some of the reasons discussed previously 

regarding CRF's pivotal role in governing corticotrophs, Dl 

inhibition of AL iB-endorphin release is also likely to be 

mediated by CRF. In this case, however, a dopaminergic 

mechanism reduces rather that augments neurosecretory 

release of CRF from the median eminence. Without 

influencing basal efflux of CRF, dopamine has been found to 

attenuate the stimulated release of CRF from hypothalarrus 

in vitro (Edwardson and Bennett, 1974; Hillhouse et al, 

1975). Thus, in vivo, dopamine neurons may act through a Dl 

receptor to limit the release of CRF into portal blood that 

is normally evoked by a spontaneously active pathway. 

245 



Given acetylcholine's well-described stimulatory control of 

CRF (Buckingham, 1980) and the ability of dopamine to 

inhibit acetylcholine-induced 

hypothalamus (Hillhouse et al, 

could modulate CRF secretion 

CRF release 

1975), the 

from the 

Dl mechanism 

through inhibition of 

cholinergic neurotransmission in the hypothalamus (see 

Lichtensteiger and Keller, 1974; Lichtensteiger, 1975). 

Based on the present study, it is difficult to 

predict the relationship between mechanisms that underly Dl 

inhibitory and D2 stimulatory control of AL iB-endorphin 

secretion. The slight but significant reduction of 

D2-stimulated iB-endorphin release by SKF 38393 (Figure 26) 

indicates that Dl inhibition of CRF may occur at a CNS site 

distal to D2 stimulatory regulation of CRF. Additional 

co-treatments with Dl- and D2-selective agents are 

necessary for better modeling of the opposing dopaminergic 

influences on CRF (hence AL B-endorphin) secretion. 

4.0.3.5 d. Direct D2 Inhibition of IL iB-endorphin 

Secretion 

All dopaminergic antagonists used 1n the present 

study elevated plasma levels of iB-endorphin. This 

occurred, 1n large part (haloperidol and pimozide) or 

exclusively (sulpiride and domperidone) due to increased 

release of immunoreactivity resembling B-endorphin 1-31 in 

molecular s1ze. These findings build upon previous reports 
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that dopaminergic blockers elevate alpha-MSH secretion in 

vivo (Usategui et al, 1976; Tilders and Smelik, 1977, 1978; 

Tilders et al, 1979; Penny and Thody, 1979). Two other 

laboratories have recently confirmed the ability of both 

haloperidol and domperidone to elevate pituitary release of 

iB-endorphin resembling B-endorphin in molecular size 

(Hollt and Bergmann, 1982; Sharp et al, 1982a). These 

observations together support the conclusion that tonically 

active dopamine neurons inhibit IL secretion of 

iB-endorphin and other POMC peptides. The particular 

neurons that mediate this inhibitory control of 

melanotrophs are the tuberohypophyseal dopaminergic system 

which directly innervate the IL (Bjorklund et al, 1973). 

Present results demonstrating that dopaminergic 

agonists acutely reduce circulating levels of 

B-endorphin-sized immunoreactivity (Figures 5, 6 and 9) 

indicate that endogenous dopaminergic inhibition of 

melanotrophs is not sustained at a maximal level under 

basal conditions. In support of this view are reports that 

chronic administration of dopaminergic agonists reduces 

basal release of iB-endorphin in vivo accompanied by 

diminished IL content of B-endorphin-related peptides 

(Locatelli et al, 1983; Millington, O'Donohue and Mueller, 

personal communication). Since tuberohypophyseal dopamine 

neurons also exhibit neurochemical changes in response to 

similar experimental treatments (Demarest and Moore, 1982), 

the entire neuroendocrine unit possesses the ability to 
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vary according to physiological needs of the system whether 

this entails up or down regulation of hormones secretioned 

from the IL. 

The common feature of dopaminergic agents that 

influence IL release of iB-endorphin in vivo is their 

ability to 

receptors. 

interact with the D2 subtype of dopamine 

This is predicted by the in vitro results from 

Kebabian and coworkers who have shown that dopaminergic 

inhibition of alpha-MSH release from acute IL explants is 

mediated by D2 receptors located directly on melanotrophs 

(Munemura et al, 1980; Cote et al, 1982). 

At the cellular level, dopaminergic agonists 

directly decrease the spontaneous electrical depolarization 

of melanotrophs (Douglas and Taraskevich, 1978) and inhibit 

adenylate cyclase activity (Meunier and Labrie, 1982; Cote 

et al, 1982). It 1S likely that these two actions of 

dopamine on melanotrophs result in acute as well as long 

term changes 1n secretory cell activity. Without 

depolarization and the accompanying calcium influx, 

exocytosis of iB-endorphin is inhibited (Douglas and 

Taraskevich, 1982). In addition to rapidly preventing 

vesicular release, dopamine probably exerts longer term 

influence on the ability of the IL to synthesize 

B-endorphin and related POMC peptides. Reduced 

intracellular production of cyclic adenosine monophosphate 

by D2 receptor activation probably interrupts a chain of 
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intracellular events which maintains normal transcription 

and translation of the POMC gene in melanotrophs. This 

notion is supported by studies which have shown that 

chronic bromocriptine not only reduces IL content of 

iB-endorphin (Locatelli et al, 1983) but also reduces the 

content of POMC mRNA and the enzyme which acetylates MSH 

and endorphin peptides 1n the IL (Chen et al, 1983; 

Millington, Chappel, O'Donohue and Mueller, personal 

communication). Thus, dopaminergic inhibition of two 

processes, 

induction 

calcium-mediated exocytosis and cAMP-mediated 

of the POMC gene and processing enzymes, 

effectively reduces both the moment-to-moment secretory 

output of the gland and the ongoing capacity of 

for melanotrophs to secrete iB-endorphin. Precedent 

multiple levels of dopaminergic neuroendocrine control 

exists in the manner 1n which dopamine inhibits prolactin 

secretion. A D2 receptor mechanism in lactotrophs not only 

inhibits release of prolactin (Kebabian and Calne, 1979) 

but also reduces cellular content of prolactin mRNA through 

inhibition of prolactin gene transcription (Maurer, 

Maurer, 1981; Maurer 1982). 

1980; 

4.0.3.6 e. Other Findings Related to Dopaminergic Control 

of 

Pituitary iB-endorphin Secretion 

Based on results of the present study, it 15 

proposed that dopamine neurons regulate pituitary secretion 
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-of iB-endorphin through three independent receptor 

mechanisms. Tonic Dl inhibition and dynamic D2 stimulation 

account for the actions of dopamine on the AL, whereas, D2 

inhibition controls IL secretion of iB-endorphin (see 

Figure 31) • Most of the findings presented here have 

contributed to the development of this model, however, a 

few of the results are not obviously consistent with the 

proposed model. The apparent inconsistencies arise from 

the hormonal effects of the dopaminergic agonist, 

inhibitor, bromocriptine, 

nomfensine. 

and the dopaminergic reuptake 

Unlike other compounds which activate D2 receptor 

mechanisms, bromocriptine does not significantly increase 

circulating levels of total iB-endorphin, apparently due to 

its inability to substantially enhance AL release of 

iB-endorphin. The dissimilarity that exists between the 

hormonal actions of bromocriptine 

D2-stimulatory agoriists may actually 

and 

shed 

of other 

light on the 

precise nature of the D2-receptor mechanism that controls 

CRF release. Bromocriptine is known to have a slow onset 

of CNS actions after systemic administration. For example, 

bromocriptine does not begin to reduce dopamine turnover in 

the CNS or evoke contralateral turning in rats with 

unilateral striatal lesions until an hour or more after 

peripheral injection of the agonist (Corrodi et al, 1973; 

Johnson et al, 1976; Markstein et al, 1978). This delay 

occurs despite the drug's rapid peripheral effects [e.g, • 
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inhibition of prolactin secretion within fifteen minutes 

(see Figure 10) J. Considering the rapid and transient 

of AL iB-endorphin release by other 
stimulation 

dopaminergic agonists, bromocriptine's inability to 

similarly evoke corticotroph secretions may be due to the 

compound's failure to swiftly activate a rate-sensitive D2 

receptor mechanism required to promote hypothalamic release 

of CRF. There is precedence for rate-sensitive dopaminergic 

mechanisms since D2-mediated effects on other CNS processes 

have been shown to exhibit properties (similar to 

D2-stimulated iB-endorphin release) of short-latency and 

rapid adaptation (Titus et al, 1983; Wong et al, 1983). 

Corrodi and colleagues, for example, attributed the low 

incidence of stereotypy in bromocriptine-treated animals to 

the drug's inability to activate rate-sensitive processes 

in the CNS (Corrodi et al, 1973). This phenomenon may be 

generalized to include the absence of effects of 

bromocriptine on CRF and AL iB-endorphin release. 

Although the indirect dopaminergic agonist, 

nomfensine, did not significantly influence plasma levels 

of total iB-endorphin, there was a tendency for basal 

levels of total iB-endorphin to increase (Table 3). Perhaps 

of more importance was the shift 1n the underlying 

molecular forms of circulating iB-endorphin. As compared 

to control profiles, B-LPH emerged as the dominant form of 

iB-endorphin in nomfensine-treated rats. This change 

resembles the effects of classical dopaminergic agonists, 
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indicating that AL secretion of B-endorphin-related 

peptides increased concomitant with decreased IL release. 

Diminished IL release of iB-endorphin is expected based on 

nomfensine's ability to enhance dopaminergic transmission 

in the neurointermediate lobe (Racke and Muscholl, 1983). 

However, results of the present study provide no basis for 

a stimulatory dopaminergic pathway that tonically enhances 

AL iB-endorphin release. Therefore, stimulation of AL 

iB-endorphin release by nomfensine 1S difficult to 

reconcile with known dopaminergic actions of the 

antidepressant and the present model. Since nomfensine has 

been shown to inhibit inactivation of norepinephrine almost 

as effectively as it blocks reuptake of dopamine (Hunt et 

al, 1974), the drug's effects on AL iB-endorphin secretion 

might represent confounding enhancement 

stimulatory pathway for CRF secretion. 

of an adrenergic 

4.0.4 Role of Dopamine Neurons in Physiologic Release of 

iB-endorphin 

Evidence for dopaminergic regulation of AL as well 

as IL release of iB-endorphin led to experiments designed 

to investigate the role of dopamine neurons in governing 

the physiological secretion of pituitary iB-endorphin. The 

two most potent releasers of AL iB-endorphin in vivo are 

conditions of stress and interruption of negative feedback 
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control by glucocorticoids. The present findings discussed 

below, indicate that dopamine neurons may regulate IL 

responses to stress yet do not participate in the 

mechanisms by which glucocorticoids mediate 

inhibition of AL iB-endorphin secretion. 

4.0.4.1 a. Effects of Dopaminergic Treatments on 

Stress-Induced 

Release of iB-endorphin 

feedback 

As shown in Figure 12, physical immobilization 

profoundly stimulates release of pituitary iB-endorphin. 

The dramatic rise of B-LPH-sized immunoreactivity and the 

ability of glucocorticoid& to prevent stress-induced 

release of total iB-endorphin indicates that AL 

corticotroph secretions comprise the major response to 

stress (Figures 12 & 29). Nonetheless, up to 40% of the 

immunoreactivity released in response to immobilization 

corresponds to B-endorphin-sized material. This being the 

only molecular weight range of melanotroph B-endorphin 

peptides suggests IL as well as AL involvement in the 

hormonal response to stress. Further support for this 

hypothesis is the ability of bromocriptine to reduce 

immobilization-induced release by about 40%. The remaining 

molecular form of iB-endorphin in bromocriptine-pretreated 

animals subjected to restraint resembles B-LPH in molecular 

size (not shown) suggesting that the AL response to stress 

is not dramatically affected by bromocriptine. 
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The long-acting dopaminergic agonist, pergolide, 

like bromocriptine, also inhibited stress-induced release 

of iB-endorphin. Unlike bromocriptine, however, pergolide 

blocked the iB-endorphin response to restraint entirely. 

This indicates that, 1n addition to IL release, pergolide 

also inhibits iB-endorphin secretion from the AL during 

physical stress. Furthermore, pergolide is known to 

stimulate both Dl and D2 receptors (Goldstein et al, 1980b; 

Boissier et al, 1983). Since both Dl inhibitory and D2 

stimulatory mechanisms appear to be involved 1n AL 

iB-endorphin release, pergolide's inhibition of 

stress-induced release requires explanation. As indicated 

previously, the Dl inhibitory mechanism seems to operate at 

a site distal to D2 stimulatory control. However, the 

potency of Dl inhibition does not appear great enough to 

account for complete blockade by pergolide of corticotroph 

secretions elicited stress. The most likely explanation 

for blockade of stress-induced AL iB-endorphin release by 

pergolide involves the principal physiologic inhibitor of 

corticotrophs, corticosterone. Others have shown that 

doses of pergolide lower than those used 1n the present 

study rapidly increase serum corticosterone to levels 

comparable to stress-evoked concentrations (Fuller and 

Snoddy, 198la). In the present study, levels of 

corticosterone were still undoubtedly high at the time that 

rats were exposed to immobilization (90 min 

post-pergolide). During this period, a second major 
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release of ACTH (and presumably AL iB-endorphin) becomes 

most susceptable to feedback inhibition by sustained high 

levels of glucocorticoids (Dallmand and Yates, 1969; 

Dallman et al, 1972). Indeed, Dallman and Jones have shown 

that non-stressful elevation of corticosterone to serum 

concentrations that approximate stress levels inhibits 

subsequent stress-evoked release of ACTH (Dallman and 

Jones, 1973). It is likely, therefore, that feedback 

inhibition of the CNS-pituitary-adrenal axis by 

glucocorticoids secondary to stimulation of ACTH release 

probably accounts for a large part of the inhibition of 

stress-induced AL iB-endorphin release in 

pergolide-pretreated animals. Consequently, pergolide's 

ability to completely block stress-induced iB-endorphin 

secretion from corticotrophs reflects the drug's transient 

activation of D2 stimulatory mechanisms that lead to 

glucocorticoid feedback control together with prolonged 

activation of inhibitory Dl regulation of the AL. To· better 

understand how Dl and D2 mechanisms might influence 

stress-induced secretions from corticotrophs, different 

experimental designs will be needed than used in the 

present study. For instance, since D2 stimulatory control 

of AL iB-endorphin appears to be a rate-sensitive mechanisw 

that rapidly adapts to receptor activation, dopamine 

neurons may influence the rate of release of CRF hence 

iB-endorphin secretion by corticotrophs rather than the 

maximal level of release. To examine this possibility 
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requires comparison of time-course related effects of D2 

agonists on stress-induced iB-endorphin secretion. 

Consistent with the IL-directed effects of 

dopaminergic agonists during immobilization are results 

which show that haloperidol treatments augmented 

stress-induced release of iB-endorphin by enhancing 

secretion of B-endorphin-sized immunoreactivity (Figure 

29). Since haloperidol had been administered for several 

days in succession prior to restraint stress, disinhibition 

of melanotrophs probably increased the secretory reserve of 

the IL. These findings together with the actions of 

dopaminergic agonists on stress-induced secretion of 

iB-endorphin indicate that physiological release of 

iB-endorphin from the IL is highly sensitive to 

dopaminergic transmission and highlights the importance of 

tuberohypophyseal innervation to the IL and the D2 receptor 

mechanisms therein. 

4.0.4.2 b.Effects of Dopaminergic Treatments on 

Metyrapone-Induced Release of iB-endorphin 

Administration of metyrapone to rats causes a rapid 

decline in circulating corticosterone (Chart et al, 1958 

;deNichola and Dahl, 1971) which is accompanied by an 

equally rapid increase in pituitary release of iB-eodorphin 

(Pettibone and Mueller, 1984; Mueller et al, submitted). 

Unlike the release evoked by stress, however, metyrapone 
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almost exclusively elevates AL secretion of iB-endorphin 

(Pettibone and Mueller, 1984; Mueller et al, submitted), a 

finding which is consistent with the selective inhibitory 

control of corticotrophs by glucocorticoids. Judging from 

the additive release of pituitary iB-endorphin in response 

to combined treatment with metyrapone and haloperidol (Dl, 

D2 blocker), glucocorticoid feedback control and 

dopaminergic inhibitory regulation of AL iB-endorphin 

secretion appear to be mediated through separate, perhaps 

parallel, mechanisms (Figures 27, 31). This conclusion is 

further supported by the failure of bromocriptine to alter 

metyrapone-induced release of iB-endorphin (Table 16). The 

present lack of evidence for 

CNS-pituitary-adrenal feedback 

dopaminergic 

mechanisms 

surprising because others have shown 

influence on 

is somewhat 

a functional 

association between hypothalamic dopamine neurons and 

adrenal glucocorticoids. Metyrapone's acute effects on 

circulating corticosterone are quite similar to those of 

adrenalectomy. The activity 

neurons reportedly increases 

of hypothalamic dopamine 

soon after adrenalectomy 

(Versteeg et al, 1984) which is consistent with the longer 

term increase in hypothalamic content of dopamine observed 

after either adrenalectomy or hypophysectomy (Smith and 

Fink, 1972; Olsen et al, 1972; Konstantinova and Danilova, 

1975). Notwithstanding those studies, the present results 

clearly militate against interactions of dopaminergic 

mechanisms with adrenocortical feedback control of 
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corticotrophs. · 

4.0.5 SUMMARY AND CONCLUSIONS 

The purpose of the present study was to determine 

what role brain dopamine neurons have in the regulation of 

B-endorphin secretion from the pituitary gland. Through 

results obtained from pharmacologic treatments of adult 

male rats, dopamine receptors appear to participate in 

controlling secretion of B-endorphin peptides from both the 

AL and IL of the pituitary gland. Whereas dopamine 

exclusively inhibits IL iB-endorphin release through a D2 

subtype of the dopamine receptor, Dl and D2 receptors 

oppositely influence AL secretion. A Dl mechanism inhibits 

AL secretion of iB-endorphin, whereas, a D2 mechanism is 

capable of potently stimulating AL iB-endorphin release. 

Since dopamine has no direct influence on AL corticotrophs, 

the opposing effects of Dl and D2 activation are likely to 

be mediated by actions of dopamine on CRF neurons. In 

contrast to the more remote and opposing influences of 

dopamine on AL B-endorphin secretion, hypothalamic dopamine 

neurons directly inhibit the release of IL B-endorphin. 

This conclusion is entirely consistent with the known 

innervation and actions of dopamine at inhibitory D2 

receptors located on IL melanotrophs. Together, these 

differential dopaminergic mechanisms for controlling AL and 

IL secretion of B-endorphin peptides indicate that brain 

dopamine neurons play an important role in the physiology 



of the opiomelanocortin endocrine system. 

Interestingly, 

iB-endorphin release, 

under conditions of stimulated 

dopaminergic treatments had little 

apparent effect on AL secretion. It may be necessary to 

employ more selective dopaminergic agents (e.g., LY141865 

or SCH 23390) or use different treatment paradigms than 

those used in the present studies. Alternatively, the 

multiplicity of control mechanisms involved with 

hypothalamic CRF release could rapidly compensate for acute 

perturbations in CRF release caused by dopaminergic 

treatments. Under basal conditions, however, when control 

of CRF is not marshalled by the powerful stimuli of stress 

or decreased glucocorticoid feedback control, the 

reciprocal actions of Dl and D2 mechanisms on CRF secretion 

are evident. 
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APPENDIX 

Radioimmunoassay [RIA} Protocol 

Reagents for the radioimmunoassay were pipetted on 

ice into prelabeled 12 x 75 mm borosilicate glass culture 

tubes in the order presented below. Two tubes received 

tracer alone (total counts tubes), two received tracer plus 

heat-inactivated horse serum (GIBCO) and assay buffer to 

volume (non-specific binding tubes) and two received all 

reagents except for standards or unknowns (maximum specific 

binding tubes). Routinely used standards (10 J 30, 

60, ••• 1000 pg/0.1 ml) were stored at -20 C in convenient 

aliquots and assayed in duplicate. Unknowns were assayed 

in duplicate at two dilutions. After vortexing and 

covering with Parafilm, the assay was 

equilibrate for 60-72 h at 4 C. 

RIA Reagent Mix 

ASSAY REAGENT Volume 

Heat-Inactivated Horse 
Serum (except in prolactin 
assay) 0.05 m1 

Standards or unknowns 0.01-0.25 ml 

Assay Buffer as needed 

Antiserum (pre-diluted) 0.10 ml 

Tracer (-15,000 cpm) 0.10 ml 

total volume 0.50 wl 
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The beta-endorphin (B-endorphin) and alpha-MSH 

assays were terminated by adsorption of unbound antigen 

into charcoal. A suspension of charcoal and bovine serum 

albumin (0.5% and 0.05% by weight, respectively, in 0,05 M 

sodium phosphate, pH 7,4) was maintained by vigorous 

stirring as 1 ml of the suspension was added to each assay 

tube. Assay tubes were then vortexed, incubated at 4 C for 

30 min and centrifuged at -3,000 rpm (Sorval RC-3B, Dupont 

Instruments, Newtown, CT) for another 30 m1n at 4 C. 

Supernatants were decanted into appropriately-labeled 12 x 

75 mm glass tubes counted for 1 min/tube at 80% efficiency 

(Automatic Gamma System Model 

Atlanta, GA). 

1185, Tracer Analytic, 

The prolactin radioimmunoassays were pipetted in 10 

x 75 mm glass culture tubes with standards ranging from 60 

to 6000 ng tube. Unlike the other hormone assays, the 

prolactin assays were terminated by second antibody 

precipitation of antigen bound to the primary antiserum as 

follows. After a 60-72 hr equilibration period at 4 C all 

assay tubes (except the total count tubes) received a 0.1 

ml aliquot of goat anti-rabbit antiserum (diluted 1:20 in 

assay buffer) and vortexed and allowed to incubate for an 

additional 12-24 h at 4 C. The second antibody-primary 

antibody complex was precipitated by addition of 1 ml 

deionized water and centrifugation as described above. 

Supernatants were discarded and the pellets were counted. 
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REAGENTS 

ASSAY BUFFER: 0.05 M sodium phosphate (pH 7.4)/0.05% bovine 
serum albumin/0.02% sodium azide/5 mg% bacitracin 

The reagents below were routinely dissolved in 4 liters of 

deionized filtered water (Millipore 

Freehold, NJ) with a resulting pH of 7.3-7.4. 

and Corporation, 

Recipe for 4 liters of Assay Buffer: 

6.62 g hydrated sodium monobasic phosphate, NaR2P04:H20 
(No.S-368; Fisher Scientific Company, Fairlawn, NJ) 
21.57 g anhydrous sodium dibasic phosphate, Na2HP04 
(No.S-374; Fisher) 
2.00 g bovine serum albumin, fraction 5 
(No.A-4503; Sigma Chemical Company, St. Louis, MO) 
0.80 g sodium azide, NaN3 (No.S-2002; Sigma) 
0.20 g bacitracin, 56,300 Units/g 
(No.B-0125; Sigma) 

ANTISERA: 

Anti-rat prolactin antiserum was provided through the 

National Hormone Distribution Program of the NIADDK. Other 

antisera were developed in rabbits as follows: 

A peptide-thyroglobulin conjugate (see below) was 

emulsified in a mixture of Freunds Complete and Incomplete 

Adjuvant (DIFCO Laboratories, Detroit, MI) for the initial 

inoculation and subsequently in Incomplete Adjuvant to a 

concentration of approximately 0.3 mg of conjugate per ml 

of emulsion. The inoculum was injected intradermally into 

10-20 sites along the hind quarters of female New Zealand 

albino rabbits every three or four weeks. Three months 

after the initial inoculation and two weeks after every 

subsequent booster inoculation, rabbits were bled (-15 cc) 
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from the dorsal ear vein (vasodilated with xylene and 

nicked using a straight razor blade) and the blood 

allowed to clot overnight at 4 c. Serum was obtained 

was 

by 

centrifugation and stored at -20 c. Titers of antiserum 

were estimated by incubating serial dilutions of the serum 

(in assay buffer) with peptide tracer (see below). 

Appropriate dilutions of antisera for routine use were made 

in assay buffer and stored at -20 c. 

Peptide-thyroglobulin Conjugate: 

Peptide (0.5 mg of camel B-endorphin 1-31 or alpha-MSH 

[alpha-N-acetyl ACTH 1-13 amide] from Peninsula 

Laboratories, San Carlos, CA) was mixed with 5.0 mg of 

bovine thyroglobulin (No.T-1001;Sigma) in 1. 0 ml of 

deionized water. The reaction was performed on ice with 

constant stirring by the dropwise addition of 0.5 ml 100 

mg/ml carbodiimide {EDAC (1-ethyl-3-[dimethylaminopropyl) 

carbodiimide HCL), No.153-0990, Bio-Rad Laboratories, 

Richmond, CA} in deionized water; the mixture was stirred 

on ice for 10 ~in and then brought to room temperature c-23 

C) for 20 min with stirring. Reagents were separated from 

the peptide-thyroglobulin conjugate by extensive dialysis 

(12,000 mw cut off) against 4 liters of water at 4 C. The 

dialyzate was diluted to a final volume of Sec (-1 mg 

conjugate/cc) and stored at -20 C. As needed, 

conjugate was emulsified with 2-3 parts adjuvant 

Complete or Incomplete) 

one part 

(Freunds 
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TRACERS: 

Camel B-endorphin 1-31, N-Acetyl B-endorphin 1-27, 

alpha-MSH (Peninsula Laboratories) and rat prolactin 

(National Hormone Distribution Program) were 

radioisotopically labeled with 125-I in a chemical 

oxidative reaction by sequential addition of the following 

reagents into a vial containing -r mCi sodium 125-I in 10 

microliters of carrier-free sodium hydroxide (Amersham 

Corporation, Arlington Heights, IL). 

20 microliters-0.5 M sodium phosphate buffer, pH 7.4 

20 microliters-0.1 mg/ml peptide (- 2 meg) 
in 0.05 M phosphate buffer, pH 7.4 

10 microliters-! mg/ml Chloramine-! (N-chloro-p­
toluene-sulfonamide sodium; No.C-9887, Sigma 
Chemical Company) in 0.05 M phosphate buffer, pH 7.4 

The oxidation mixture was vortexed for 30 sec then 

the reaction was quenched by addition of: 

20 microliters-0.66 mg/ml sodium bisulfite (No.S-9000, 
Sigma Chemical Co) in 0.05 M phosphate buffer, pH 7.4. 

The iodination mixture was then transferred for 

chromatographic purification using a tuberculin syringe 

containing 0.3 ml of either 0.05% triflouroacetic acid 

(B-endorphin or alpha-MSR tracers) or 0.05 M phosphate 

buffer (prolactin tracer). 

125 !-labeled B-endorphin or alpha-MSH peptides were 

crudely purified by reverse-phase chromatography on 
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commercially-available Cl8 cartridges (Sep-Pak, Waters 

Associates, Millford, MA). Sep-Pak cartridges were prepared 

by rinsing first with 2-3 ml of acetonitrile containing 

0.05% triflouroacetic acid (TFA) followed by 2-3 ml of 

water containing 0.05% TFA. Radioisotopically-labeled 

peptide (see above) were applied to the column in 0.05% TFA 

and rinsed with a 2 ml fraction of the aqueous 0.05% TFA 

solution. The 125 !-labeled peptide was eluted with 

stepwise r1.nses of 25%, 50% and 100% acetonitrile 

containing 0.05% TFA. B-endorphin and MSH tracers were 

routinely eluted from the Sep-Pak cartridges in the 50% 

acetonitrile-TFA fraction. The tracer was kept at 4 C with 

0.2 ml of absolute ethanol added as a free radical 

scavenger. 

12 5 !-labeled prolactin was purified by gel 

filtration chromatography. Briefly, the iodination mixture 

was applied to a 1 x 50 em column of Sephadex G-50 

(Pharmacia Fine Chemicals, Piscataway, NJ) equilibrated and 

eluted with the sodium phosphate assay buffer. Fractions 

(-1.5-2 ml) were collected with an automatic sampler 

(Gilson Medical Electronics, Middleton, NJ) and the 

prolactin tracer routinely eluted between fractions 9 and 

15. Peak tubes of radioactivity were covered and stored at 

4 C with 0.2 ml of absolute ethanol. 
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