FINAL ENVIRONMENTAL ASSESSMENT FOR A ONE-MEGAWATT SOLAR ARRAY AT CHEYENNE MOUNTAIN AIR FORCE STATION

April 2010

Prepared for:

Cheyenne Mountain AFS 1 Norad Road, Building 101, Suite 206 Cheyenne Mountain, Colorado 80914

Prepared by:

Tetra Tech, Inc. 7222 Commerce Center Drive, Suite 185 Colorado Springs, Colorado 80919

	Report Docume	entation Page			Form Approved IB No. 0704-0188
maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate rmation Operations and Reports	or any other aspect of th s, 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE APR 2010		3. DATES COVERED 00-00-2010 to 00-00-2010			
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
	tal Assessment for C	0	Array at	5b. GRANT NUM	1BER
Cheyenne Mountai	in Air Force Station			5c. PROGRAM E	LEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUMB	ER
				5f. WORK UNIT	NUMBER
	ZATION NAME(S) AND AE 22 Commerce Cente		olorado	8. PERFORMINC REPORT NUMB	6 ORGANIZATION ER
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF	18. NUMBER	19a. NAME OF
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT Same as Report (SAR)	OF PAGES 186	RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

-JAVIN

ELV DRONMENTAL ASSUSSMENT

FOR A DNE-MEGAWATT SOLAR ARRAY AF

The State of State of

way, having you'd

Construct Personnel 1971 1 Norma Speed, Berger on Diff, Annie 2011 Constructs Mercury of Sciences 2010 A

AND DEPARTURES

Logis Let a Jac. 127 - Linearan Control Priver, Santa M.C.

EXECUTIVE SUMMARY AND FINDING OF NO SIGNIFICANT IMPACT I-MEGAWATT SOLAR ARRAY AT CHEYENNE MOUNTAIN AIR FORCE STATION INTRODUCTION

The United States Air Force (USAF) Cheyenne Mountain Air Force Station (CMAFS) proposes to install 6 7 a solar array on CMAFS in response to legislation requirements including Executive Order 13423 and the 8 Energy Policy Act of 2005. Within the past several years, costs and demand for energy produced through 9 non renewable resources, such as crude oil, have increased dramatically. In response to this energy crisis, 10 Congress passed the Energy Policy Act of 2005 (PL 109-58), which was signed by President Bush on August 8, 2005. Among the many energy conservation measures, the Act directs the federal government 11 12 to use more renewable energy, with a goal of using 7.5 percent or more by 2013. Solar power is among 13 the renewable energy sources promoted in the Act.

14 Outside sources of electric power used by CMAFS are provided by Western Area Power Administration 15 (WAPA) and by Demand Side Management and Renewable Energy Solutions - Colorado Springs 16 Utilities (CSU) which also provides electrical power to the Colorado Springs metropolitan area. The CSU 17 have a mix of self-generated hydroelectric power (34-megawatt [MW]); purchased wind power (1-MW); and customer provided photovoltaic power (189 kilowatts in 2008, and approximately 400 kilowatts in 18 2009). Colorado Springs Utilities have purchased renewable energy credits (RECs) and are in the process 19 20 of purchasing 50 MW of electricity from wind generating sources. The CSU has been able to meet their 21 Renewable Energy requirement in 2008 with self-generated hydroelectric power.

The construction and operation of a 1-MW solar array would provide the base with up to 4.5 percent of its required electricity, which would decrease the CMAFS reliance on WAPA and CSU electrical power. The Proposed Action would support the EPACT, increase overall Air Force use of renewable energy, and allow CMAFS to support the DOD installation energy policy long-range goal for renewable energy use.

26

The Proposed Action and Alternatives were assessed in an Environmental Assessment (EA) which is incorporated herein by reference.

29 2.0 PROPOSED ACTION

30 The Proposed Action is to install a 1-Megawatt (MW) Solar Array on Cheyenne Mountain Air Force Station (CMAFS), Colorado Springs, Colorado. The solar array would be designed for future expansion 31 32 to a 2-plus MW system and would comply with 2008 National Electric Code (NEC) and National Fire 33 Protection Association (NFPA)-70 criteria. A 1 MW system encompassing approximately 5,600 solar 34 panels mounted on racks, aligned in access rows, and positioned in a southerly direction and would be 35 located on Site 1, approximately 10.3 acres, as shown on Figure 1. The arrays would be embedded into 36 the ground with concrete footings. A small unmanned building, no larger than 1,500 square feet would be 37 built to house inverters and optional battery storage; no heat, water, or sewer would be required for the 38 building. The building would include a containment system to safeguard battery leaks. Inverters would be 39 used to transform direct current (DC) to alternating current (AC). Transformers would be installed to step up voltage so that it is compatible with the CMAFS electrical system. The stepped-up power would then 40

be connected to the CMAFS power distribution system. Security fencing would completely surround the solar array site.

3 4

Figure 1 Proposed Action and Alternative Site Locations

5 The solar array would tie into the CMAFS electrical system through a 15 kilovolt ampere (kVA) switch. The switch would feed the Chevenne Mountain Complex electrical system. This would protect the 6 7 integrity of the CMAFS system during electrical failures and lightning strikes. The power from the solar 8 array would be designed to continuously feed power to the CMAFS electrical system. All power 9 produced from the solar array would be used by CMAFS. It is estimated that the system would meet 10 approximately 9.5 percent of the CMAFS electrical power demands. An electric meter would be placed 11 where the power connects to the CMAFS system to provide the CSU and WAPA new metering 12 requirements. Concrete encased conduit connecting the solar panel arrays to the switch would be placed 13 underground in trenches that could be as deep as 5 feet in some areas, but typically no deeper than 3 feet, 14 and covered with earth. Following emplacement of the conduit, disturbed areas would be graded to 15 maintain current drainage patterns. Transformers would be located at least 100 feet away from other 16 facilities. Regular cleaning of the solar panels would be accomplished by either rinsing with water, 17 blowing with compressed air, or a combination of both. All solid waste generated during construction 18 would be removed by the contractor and disposed of at an appropriate disposal facility outside of 19 CMAFS.

1 2.1 ALTERNATIVE A

Alternative A would be the same as the Proposed Action except for the location of the solar array. Under
 Alternative A the solar array would be located at Site 2. Site 2 as shown on Figure 1 would comprise
 approximately 10.1 acres.

5 2.2 ALTERNATIVE B

Alternative B would be the same as the Proposed Action except for the location of the solar array. Under
 Alternative B the solar array would be located at Site 3. Site 3 as shown on Figure 1 would comprise
 approximately 17.2 acres.

9 2.3 NO-ACTION ALTERNATIVE

10 Under the No-Action Alternative the solar array would not be constructed at CMAFS. The base would 11 not meet the DOD and Air Force goals for use and generation of renewable energy sources.

12 2.4 ALTERNATIVES CONSIDERED BUT ELIMINATED FROM FURTHER 13 REVIEW

14 Because CMAFS is only 568 acres and is predominately rocky mountainous terrain with slopes up to 90 percent grade, there is limited space for construction of a solar array system or other facilities without 15 creating a visual impact on the area. The Air Force considered construction and operation of a wind 16 turbine; however, a wind turbine needed to provide over 1-MW would be extremely large. For example 17 the widely used General Electric 1.5-MW model, consists of 116-foot long blades atop a 212-foot high 18 19 tower for a total height of 328 feet. The blades sweep a vertical airspace of just under an acre. Another model being seen more in the United States is the 2-MW Gamesa G87 from Spain, which sports 143-foot 20 long blades (just under 1.5 acres) on a 256-foot tower, totaling 399 feet. Many existing models and new 21 22 ones being introduced reach well over 400 feet high. Additionally, since the average wind speed is less than 10 miles per hour, the efficiency of a wind turbine would be less than optimal because wind power is 23 24 in the poor to marginal range west of Colorado Springs (United States Department of Energy and 25 National Renewable Energy Laboratory 2004).

26 2.5 SUMMARY OF ANTICIPATE ENVIRONMENTAL IMPACTS

Analysis performed in the EA addressed potential effects of the Proposed Action and Alternatives on Air Quality, Biological Resources, Climate, Cultural Resources, Geology and Soils, Hazardous Materials/Hazardous Waste/Solid Waste, Land Use, Noise, Socioeconomics, Environmental Justice and the Protection of Children, Utilities/Infrastructure, Visual/Aesthetics, and Water Resources. The analysis indicated that implementing the Proposed Action, Alternative A or Alternative B would have no significant direct, indirect, or cumulative effects on the quality of the human or natural environment.

33 2.6 PUBLIC REVIEW AND COMMENT

The Draft EA and Draft FONSI were made available for a 30-day public review and comment from February 12, 2010 through March 15, 2010 at the Penrose Branch of the Colorado Springs Public Library. The availability of the document was advertised for review and comment in the Colorado Springs Gazette on February 10, 2010 and February 14, 2010. Copies of the three comments received along with the Air

38 Force response to those comments are provided in Appendix E.

1 3.0 FINDING OF NO SIGNIFIACNT IMPACT (FONSI)

Reasonable alternatives to the Proposed Action were considered. The Proposed Action was found to be 2 3 the preferable action to meet CMAFS purposes and needs. After review of the EA prepared in 4 accordance with the requirements of the National Environmental Policy Act, the Council on 5 Environmental Quality regulations, and the Environmental Impact Analysis Process (32 Code of Federal Regulations 989, as amended), I have determined that the Proposed Action would not have a significant 6 7 impact on the quality of the human or natural environment. Additionally, Alternative A or Alternative B 8 sites would also result in a less than significant impact on human or natural environment and could be used for similar applications. There would be no significant cumulative impacts resulting from 9 10 implementing the Proposed Action or Alternative Actions. An Environmental Impact Statement (EIS) will not be prepared. This decision has been made after taking into account all submitted information and 11 12 considering a full range of practical alternatives that would meet project requirements and are within the 13 legal authority of the Air Force.

Russell A. Wilson

17 Colonel, USAF 18 Commander

18 19

20

14 15 16

21

22 23

Date

the weblin and thread therein 15112 and 151 and 151 and 151 and

Analysis an arrange of the 1.5 million of a president transformer of the Proposed Analysis and Advancements of Advancements of

TY HARDON DAY WARTANI DATE 15 8.5

The Dark EA and Credit CORVE were stable would be for a bidley guide, where and compare the federator 12, 2010 therein March 13, 2000 a die France Reach of the Colorade frency: Paleter Littary, The transmitty of the Assumers' were advertical for an one with symptomic to be Colorade Springs Claustic on Polycary via 1010 and Federato, etc. 2018. Coptor or the free conserver reduced claug with the Air former conserver a 1010 and Federato at 2018. Coptor or the first encourses reduced claug with the Air

1 TABLE OF CONTENTS

2	EXEC	CUTIVE	E SUMMARY AND FINDING OF NO SIGNIFICANT IMPACT (FONSI)	ES-1
3	1.0	PUR	POSE AND NEED	1-1
4		1.1	INTRODUCTION	
5		1.2	LOCATION	
6		1.3	HISTORY	
7		1.4	INSTALLATION MISSION	
8		1.5	PURPOSE AND NEED FOR THE PROPOSED ACTION	
9		1.6	RELEVANT STATUTES, REGULATIONS, AND OTHER PLANS	
10		1.7	FEDERAL, STATE, LOCAL PERMITS, AND LICENSES/CMAFS	
11		1.7	ENVIRONMENTAL PLANS	
12	2.0		CRIPTION OF PROPOSED ACTION AND ALTERNATIVES	2-1
13		2.1	PROPOSED ACTION	
14		2.2	ALTERNATIVE A	
15		2.3	ALTERNATIVE B	
16		2.4	NO-ACTION ALTERNATIVE	2-2
17		2.5	ALTERNATIVES CONSIDERED BUT ELIMINATED FROM	
18			FURTHER REVIEW	2-2
19		2.6	COMPARISON OF ALTERNATIVES	2-3
20	3.0	AFFF	CTED ENVIRONMENT	3-1
21	5.0	3.1	AIR QUALITY	
22		5.1	3.1.1 Air Quality Standards, Conditions, and Regulatory Considerations	
23			3.1.1.1 National and State Ambient Air Quality Standards	
24			3.1.1.2 Air Quality Conditions	
25				
		2.2	3.1.1.3 Clean Air Act Conformity Guidelines	
26		3.2	BIOLOGICAL RESOURCES	
27			3.2.1 Vegetation	
28			3.2.1.1 Oak Scrub	
29			3.2.1.2 Pine Woodlands	
30			3.2.1.3 Oak-Pine Woodlands	
31			3.2.1.4 Pine-Rock (Mixed Conifer-Rock)	
32			3.2.1.5 Noxious Weeds and Vegetative Pests	
33			3.2.2 Wildlife	3-7
34			3.2.2.1 Mammals	3-7
35			3.2.2.2 Birds	
36			3.2.3 Special Status Species (Threatened and Endangered Species)	
37			3.2.3.1 Federally Listed Species	
38			3.2.3.2 State Listed Species	
39			3.2.3.3 Rare and Sensitive Species	
40		3.3	CLIMATE	
41		3.4	CULTURAL RESOURCES	
42		0.4	3.4.1 Native American Issues	
		25		
43		3.5	GEOLOGY AND SOILS	
44			3.5.1 Geophysical Hazards	
45		3.6	HAZARDOUS MATERIALS/HAZARDOUS WASTE/SOLID WASTE	

2			3.6.1 Hazardous Materials	
3			3.6.2 Hazardous Waste	
4			3.6.3 Solid Waste	
5		3.7	LAND USE	
6		3.8	NOISE	
7		3.9	SOCIOECONOMICS	
8			3.9.1 Population	
9			3.9.2 Employment	
0			3.9.3 Income	
1			3.9.4 Housing	
2			3.9.5 Schools/Education	
3		3.10	ENVIRONMENTAL JUSTICE AND THE PROTECTION (
4			CHILDREN	
5		3.11	UTILITIES/INFRASTRUCTURE	
6		3.12	VISUAL/AESTHETICS	
7		3.13	WATER RESOURCES	
8	4.0	ENVI	RONMENTAL CONSEQUENCES	4-1
9	1.0	4.1	AIR QUALITY	4-1
ò		1.1	4.1.1 Proposed Action	4-1
í			4.1.2 Alternative A	
			4.1.3 Alternative B	
5			4.1.4 No-Action Alternative	
k.		4.2	BIOLOGICAL RESOURCES	
5		7.2	4.2.1 Proposed Action	
5			4.2.1.1 Vegetation	
7			4.2.1.2 Wildlife	
3			4.2.1.3 Special Status Species	
)			4.2.2 Alternative A	
)			4.2.2.1 Vegetation	
			4.2.2.2 Wildlife	
2			4.2.2.3 Special Status Species	
3			4.2.3 Alternative B	
4			4.2.3 Anternative B. 4.2.3.1 Vegetation.	
5			4.2.3.2 Wildlife	
5			4.2.3.3 Special Status Species	
7			4.2.5 Special Status Species	
8			4.2.4 No-Action Alternative	
>		4.3	4.2.5 Significance/ Minimization Measures	
<i>,</i>			CULTURAL RESOURCES	
		4.4		
1			4.4.1 Proposed Action	
2			4.4.2 Alternative A	
3			4.4.3 Alternative B	
1			4.4.4 No-Action Alternative	
5			4.4.5 Significance/ Minimization Measures	
5		4.5	GEOLOGY AND SOILS	
			4.5.1 Proposed Action	
3			4.5.1.1 Geological Hazards	

TABLE OF CONTENTS (Continued)

	4.5.2 Alternative A	
	4.5.3 Alternative B	
	4.5.4 No-Action Alternative	
	4.5.5 Significance/Mitigation Measures	
4.6	HAZARDOUS MATERIALS/HAZARDOUS WASTE/SOLID WAS	ТЕ4-15
	4.6.1 Proposed Action	
	4.6.1.1 Hazardous Materials and Hazardous Waste	
	4.6.1.2 Solid Waste	
	4.6.2 Alternative A	
	4.6.3 Alternative B	
	4.6.4 No-Action Alternative	
4.7	LAND USE	
	4.7.1 Proposed Action	
	4.7.2 Alternative A	
	4.7.3 Alternative B	
	4.7.4 No-Action Alternative	
	4.7.5 Significance/Mitigation Measures	
4.8	NOISE	
4.0	4.8.1 Proposed Action	
	4.8.2 Alternative A	
	4.8.3 Alternative B.	
	4.8.4 No-Action Alternative	
	4.8.5 Significance/Mitigation Measures	
4.9	SOCIOECONOMICS	
4.3	4.9.1 Proposed Action, Alternative A, or Alternative B	
	4.9.1 No-Action Alternative	
4.10	ENVIRONMENTAL JUSTICE AND THE PROTECTION OF	
4.10	CHILDREN	4-21
	4.10.1 Proposed Action, Alternative A, and Alternative B	
	4.10.1 Proposed Action, Alternative A, and Alternative B 4.10.2 No-Action Alternative	
4.11	UTILITIES/INFRASTRUCTURE	
4.11	가지 않는 것은 것이 같은 것이 같은 것이 있는 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 많이 많이 많이 많이 많이 했다.	
	 4.11.1 Proposed Action, Alternative A, and Alternative B 4.11.2 No-Action Alternative 	
	4.11.2 No-Action Alternative	
4.12	4.11.5 Significance/Miligation Measures	
4.12		
	4.12.1 Proposed Action	
	4.12.2 Alternative A	
	4.12.3 Alternative B.	
	4.12.4 No-Action Alternative	
4.13	WATER RESOURCES	
	4.13.1 Proposed Action, Alternative A, and Alternative B	
	4.13.2 No-Action Alternative	
	4.13.3 Significance/Mitigation Measures	
4.14	CUMULATIVE EFFECTS	
	4.14.1 Future Solar Projects	
	4.14.1.1 United States Air Force Academy (USAFA)	
	4.14.2 Colorado Springs Airport	
	4.14.3 Current Solar Projects	

1	TAB	BLE OF CONTENTS (Continued)	
2		4.14.4 Combined Effects of Solar Projects	
3		4.15 IRREVERSIBLE AND IRRETRIEVABLE COMMITMENTS OF	
4		RESOURCES	
5		4.16 UNAVOIDABLE ADVERSE IMPACTS	
6		4.16.1 Biological Resources	
7		4.17 COMPATIBILITY OF THE PROPOSED ACTION AND	
8		ALTERNATIVES WITH THE OBJECTIVES OF FEDERAL,	
9		REGIONAL, STATE, AND LOCAL LAND USE PLANS, POLICIES,	
10		AND CONTROLS	
11		4.18 RELATIONSHIP BETWEEN THE SHORT-TERM USE OF THE	
12		ENVIRONMENT AND LONG-TERM PRODUCTIVITY	
13		4.19 IRREVERSIBLE AND IRRETRIEVABLE COMMITMENTS OF	
14		RESOURCES	
15		4.19.1 Material Resources	
16			
17		4.19.3 Biological Resources	
18		4.19.4 Human Resources	
19	5.0	CONSULTATION AND COORDINATION	
20		5.1 SCOPING	
21		5.2 PUBLIC REVIEW	
22	6.0	LIST OF PREPARERS	6-1
23	7.0	REFERENCES	7-1
24	8.0	ABBREVIATIONS AND ACRONYMS	8-1
25	APP	PENDICES	
26	A	AIR QUALITY DATA AND CALCULATIONS	
27	в	ENERGY DATA	
28	с	DISTRIBUTION LIST	
29	D	AF 813 and AF 332	
30	E	COMMENTS/RESPONSE TO COMMENTS	
50	2		
31	LIST	r of figures	
32	1-1	Location of Cheyenne Mountain Air Force Station	1-1
33			10000
34	2-1	Proposed Action and Alternative Site Locations	2-2
35			2010
36	3-1	Vegetation Communities at CMAFS	
37	3-2	Seismicity of Colorado and Surrounding Areas, 1870-1992	
38	3-3	Known or Suspected Faults and Earthquakes within 25 miles of CMAFS	3-16

1 LIST OF FIGURES (Continued)

2	3-4	Seismic Zone Map for the State of Colorado
3		
4	4-1	Vegetation at the Proposed Action Site
5	4-2	Vegetation at the Alternative A Site
6	4-3	Vegetation at the Alternative B Site
7	4-4	Restricted Access to CMAFS via Norad Road
8	4-5	Artist Rendition of Air Force Academy Solar Array

9 LIST OF TABLES

10	2-1	Summary of Potential Effects of the Proposed Action and Alternatives	2-3
11			
12	3-1	NAAQS, CAAQS, and Prevention of Significant Deterioration (PSD) Significant	
13		Monitoring Concentrations	
14	3-2	Significant Air Emissions - Permit Limits Versus Actual (Tons Per Year)	
15	3-3	Forested Community at CMAFS	3-4
16	3-4	Federally Listed Species in the Vicinity of CMAFS	
17	3-5	State Listed Species in the Vicinity of CMAFS	
18	3-6	Rare And Sensitive Species in the Vicinity of CMAFS	
19	3-7	Colorado Noise Limits	
20	3-8	Population for the Region of Interest	
21	3-9	Civilian Labor Force General Employment (2000, 2006)	
22	3-10	Industry (2006)	
23	3-11	Total Personal Income and Per Capita Income, El Paso County and State of	
24		Colorado	
25	3-12	Housing 2006	3-23
26	3-13	Educational Attainment (2006)	3-24
27	3-14	Total Population of Colorado Springs by Race/Ethnicity (2000, 2006)	
28	3-15	Poverty Statistics (2000, 2006)	
29	3-16	Electrical Power Consumption at CMAFS	
30			
31	4-1	Estimated Criteria Pollutant Emissions for Construction Activity-Proposed	
32		Action	
33	4-2	Estimated Greenhouse Gas Emissions for Construction Activity-Proposed	
34		Action	
35	4-3	Emission Inventory for El Paso County (2007)	4-3
36	4-4	Estimated Criteria Pollutant Emissions for Construction Activity - Alternative A	
37	4-5	Estimated Greenhouse Gas Emissions for Construction Activity - Alternative A	
38	4-6	Estimated Criteria Pollutant Emissions for Construction Activity - Alternative B	
39	4-7	Estimated Greenhouse Gas Emissions for Construction Activity - Alternative B	
40	4-8	Noise Levels Associated with Typical Construction Equipment	
41	4-9	Permissible Noise Levels for Colorado	
42			

43 44

This page intentionally left blank	
This page intentionally left blank.	

1 1.0 PURPOSE AND NEED

2 1.1 INTRODUCTION

3 This Environmental Assessment (EA) evaluates the potential environmental effects associated with the proposed construction and operation of a 1-Megawatt (MW) Solar Array at Cheyenne Mountain Air 4 5 Force Station (CMAFS), Colorado. This EA is being prepared in accordance with the requirements of the National Environmental Policy Act (NEPA) of 1969, as amended (42 United States Code [U.S.C.] 4321 6 et seq.); the Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural 7 8 Provisions of NEPA (40 Code of Federal Regulations [CFR] 1500-1508); Title 32 CFR Part 989; and all 9 other applicable federal and local regulations. CMAFS initiated an Air Force Form 332 and 813 to ensure 10 applicable environmental requirements were included as part of the decision-making process (Appendix D). The NEPA requires federal agencies to consider the environmental consequences of all Proposed 11 12 Actions in their decision making process. The intent of NEPA is to protect, restore, or enhance the 13 environment through a well-informed decision making process. The CEQ was established under NEPA to 14 implement and oversee federal policy in this process. To this end, the CEQ issued the Regulations for Implementing the Procedural Provisions of NEPA. The United States Air Force (Air Force) is 15 16 representing the Department of Defense (DOD) as the lead agency.

17 1.2 LOCATION

20

21

18 CMAFS is located in El Paso County, Colorado approximately 72 miles south of Denver, Colorado and 7 miles south-south-west of Colorado Springs as shown on Figure 1-1.

Figure 1-1 Location of Cheyenne Mountain Air Force Station

Environmental Assessment for a 1-Megawatt Solar Array at Cheyenne Mountain AFS, CO

CMAFS is approximately 568 acres (230 hectares), with an approximate elevation of 7,000 feet (2,134 1 2 meters) above mean sea level (MSL). Of the 568 (230 hectares) acres that CMAFS encompasses, two 3 acres are improved lands, 86 acres (35 hectares) are semi-improved, and 480 acres (194 hectares) are 4 unimproved. The 88 (36 hectares) acres of improved and semi-improved land is divided into the upper 5 support complex and the lower support complex. The upper support complex includes the North and 6 South Portals to the underground complex, the Technical Support Facility, the Security Operations 7 Center, a microwave antenna area, and parking for over 400 vehicles. The lower support complex 8 includes the Roads and Grounds Compound, the Visitor's Center, the Mountain Man Park recreation area, 9 and parking for over 150 vehicles. An overflow parking lot is east of the Roads and Grounds Compound, 10 at a slightly lower elevation.

11

12 1.3 HISTORY

13 Before the US Air Force acquired the CMAFS, the land was used for a variety of purposes. The largest portion of land (266 acres [108 hectares]) was acquired from the estate of J. Robert Neal. Other uses 14 15 included the JL Ranch, which was used for cattle grazing, and the Star Ranch, which was the location of a youth camp. In January 1950, the CMAFS area and large areas surrounding it were heavily burned by a 16 major fire that covered a large portion of the east slope of Chevenne Mountain. 17 18 In January 1956, General Earle E. Partridge, Commander in Chief of what was then the Continental Air 19 Defense Command, laid the groundwork for the DOD requirement for a new underground combat 20 operations center. The old aboveground center at Ent Air Force Base in Colorado was too small to 21 manage the growing air defense system and was highly vulnerable to sabotage or attack. This new combat 22 operations center was to be remote from other prime targets and hardened to withstand a thermonuclear 23 blast. Studies and analyses showed that a command center hollowed out of Cheyenne Mountain in the 24 Colorado Springs area was the best solution and could be done at reasonable cost. To oversee this new 25 command center and the entire air defense network of the United States and Canada, the North American 26 Aerospace Defense (NORAD) was established. On May 12, 1958, the first NORAD agreement was 27 signed with both countries, providing a framework for cooperative defense planning and operations 28 between both governments.

29

30 Excavation began for the new NORAD Combat Operations Center in Cheyenne Mountain in May 1961. The excavation was nearly complete one year later except for the repair of a geological fault in the ceiling 31 that was completed in May 1964. On February 6, 1966, the NORAD Combat Operations Center attained 32 33 full operational capability. Operations were transferred from Ent Air Force Base to Cheyenne Mountain 34 on April 20, 1966. In early 1979, the Air Force established a Space Defense Operations Center to counter 35 the emerging Soviet anti-satellite threat. Although the space defense capabilities and systems established in Cheyenne Mountain were in their infancy, this marked the beginning of an increasing role in space. 36 37 The evolution continued into the 1980s when Air Force Space Command (AFSPC) was created and 38 tasked with the Air Force space mission. AFSPC formed the Space Combat Operations, which absorbed 39 control of the space/missile warning activities in Cheyenne Mountain. In April 1981, Space Defense 40 Operations Center crews and their worldwide sensors, under the direction of Air Defense Command, 41 supported the first flight of the space shuttle. Cheyenne Mountain has continued to support every shuttle 42 mission since. In the latter part of the 1980s, the air sovereignty mission received renewed emphasis and 43 continues to play a role today in working with United States and Canadian Customs Agencies. The Air Defense Operations Center uses its air defense network to provide surveillance and control of air 44 45 operations and unknown traffic.

46

Electricity for CMAFS comes primarily from the city of Colorado Springs and Western Area Power
 Administration (WAPA), with six 1,750 kilowatt diesel generators for backup.

1 1.4 INSTALLATION MISSION

2 The host unit at CMAFS is the 721st Mission Support Group (MSG), which is an element of 21st Space Wing and AFSPC. The primary mission of 721st MSG is to provide and operate secure, survivable 3 systems and facilities for all tenant units including elements of United States Northern Command 4 (USNORTHCOM), NORAD, United States Strategic Command (STRATCOM), Air Force Technical 5 Applications Center (AFTAC), and Defense Intelligence Agency (DIA), CMAFS provides critical 6 7 support for US air defense, space surveillance, and missile warning missions and the 721st MSG directs all support operations, maintenance, and testing for Chevenne Mountain's integrated tactical warning and 8 9 attack assessment systems (ITW/AA).

10 1.5 PURPOSE AND NEED FOR THE PROPOSED ACTION

In response to the energy crisis, Congress passed the Energy Policy Act of 2005 (EPACT) (Public Law 109-58), which was signed by President George W. Bush on August 8, 2005. The Act, in part, requires that the President, acting through the Secretary of Energy, seek and ensure that, to the extent feasibility and technically practicable, the total amount of electric energy the federal government consumes during any fiscal year should be:

- Not less than 3 percent renewable energy in fiscal years 2007 through 2009;
- Not less than 5 percent renewable energy in the fiscal years 2010 through 2012; and
- Not less than 7.5 percent renewable energy in the fiscal year 2013 and beyond.

19 Section 203(a) of the EPACT 2005 (42 U.S.C. 15852(a) identifies solar power as one of the sources of 20 renewable energy.

The Air Force purchased over 40 percent of the federal governments energy from renewable power in 2008 which surpassed the EPACT mandates by 2 percent. The DOD stated in a memorandum titled 23 Installation Energy Policy Goals, dated November 15, 2005 that each DOD component should strive to 24 aggressively expand the use of renewable energy to a total of 25 percent by the year 2025.

- 25 Executive Order (EO) 13423, signed on January 24, 2007 requires agencies to ensure that:
- At least half of the statutorily required renewable energy consumed by the agency in a fiscal year come from renewable sources; and
- To the extent feasible, the agency implements renewable energy generation projects on agency property for agency use.

30 Outside sources of electric power used by CMAFS are provided by WAPA and by DSM and Renewable Energy Solutions, Colorado Springs Utilities (CSU) which also provides electrical power to the Colorado 31 Springs metropolitan area. The CSU has a mix of self-generated hydroelectric power (34-megawatt 32 [MW]); purchased wind power (1-MW); and customer provided photovoltaic power (189 kilowatts in 33 34 2008, and approximately 400 kilowatts in 2009). Colorado Springs Utilities have purchased renewable energy credits (RECs) and are in the process of purchasing 50 MW of electricity from wind generating 35 36 sources. The CSU has been able to meet their Renewable Energy requirement in 2008 with self-generated 37 hydroelectric power.

WAPA is the preferred source during "peak" consumption times due to lower peak cost. From CSU,
 power is fed from the Bradley Power Plant, and from the Drake Power Plant, both by underground lines.

The construction and operation of a 1-MW solar array would provide the base with up to 9.5 percent of its required electricity, which would decrease the CMAFS reliance on WAPA and CSU electrical power. The Proposed Action would support the EPACT, increase overall Air Force use of renewable energy, and allow CMAFS to support the DOD installation energy policy long-range goal for renewable energy use.

7 1.6 RELEVANT STATUTES, REGULATIONS, AND OTHER PLANS

8 This EA is prepared in compliance with the NEPA (Public Law [PL] 91-190, 1969, as amended), and the 9 CEQ Regulations for Implementing the Procedural Provisions of NEPA (40 CFR, 1500-1508, 1993) and 10 32 CFR, Part 989.

11 1.7 FEDERAL, STATE, LOCAL PERMITS, AND LICENSES/CMAFS 12 ENVIRONMENTAL PLANS

Implementing this Proposed Action would disturb more than one-acre of soil; consequently, a
 Construction Storm Water permit from the United States Environmental Protection Agency (U.S. EPA)
 Region 8 would be required for the construction contactor and CMAFS.

16

17 CMAFS plans that are applicable to the Proposed Action and Alternative actions are the CMAFS Energy
 18 and Water Conservation Management Plan, CMAFS Integrated Natural Resources Management Plan,
 19 CMAFS Integrated Cultural Resources Management Plan, CMAFS Hazardous Waste Management Plan,
 20 CMAFS Integrated Contingency Plan, the CMAFS Spill Prevention, Control and Countermeasures Plan,

21 Facilities Excellence Plan and CMAFS General Plan.

Environmental Assessment for a 1-Megawatt Solar Array at Cheyenne Mountain AFS, CO

1 2.0 DESCRIPTION OF PROPOSED ACTION AND ALTERNATIVES

2 2.1 PROPOSED ACTION

3 The Proposed Action is to install a 1-MW Solar Array at Site 1 on CMAFS. The solar array would be designed for future expansion to a 2-plus MW system and would comply with 2008 National Electric 4 5 Code (NEC) and National Fire Protection Association (NFPA)-70 criteria. Initially, a 1 MW system encompassing approximately 5,600 solar panels mounted on racks, aligned in access rows, and positioned 6 in a southerly direction and would be located on approximately 10.3 acres as shown on Figure 2-1. The 7 8 arrays would be embedded into the ground with concrete footings. A small unmanned building, no larger than 1,500 square feet would be built to house inverters and optional battery storage; no heat, water, or 9 10 sewer would be required for the building. The building would include a containment system to safeguard battery leaks. Inverters would be used to transform direct current (DC) to alternating current (AC). 11 Transformers would be installed to step up voltage so that it is compatible with the CMAFS electrical 12 13 system. The stepped-up power would then be connected to the CMAFS power distribution system. Security fencing would completely surround the solar array site. 14

15 The solar array would tie into the CMAFS electrical system through a 15 kilovolt ampere (kVA) switch. The switch would feed the Cheyenne Mountain Complex electrical system. This would protect the 16 integrity of the CMAFS system during electrical failures and lightning strikes. The power from the solar 17 array would be designed to continuously feed power to the CMAFS electrical system should the CSU and 18 WAPA electrical power feed fail. All power produced from the solar array would be used by CMAFS. It 19 is estimated that the system would meet approximately 4.5 percent of the CMAFS electrical power 20 21 demands. An electric meter would be placed where the power connects to the CMAFS system to provide the CSU and WAPA new metering requirements. Concrete encased conduit connecting the solar panel 22 23 arrays to the switch would be placed underground in trenches that could be as deep as 5 feet in some areas, but typically no deeper than 3 feet, and covered with earth. Following emplacement of the conduit, 24 25 disturbed areas would be graded to maintain current drainage patterns. Transformers would be located at least 100 feet away from other facilities. Regular cleaning of the solar panels would be accomplished by 26 either rinsing with water, blowing with compressed air, or a combination of both. All solid waste 27 generated during construction would be removed by the contractor and disposed of at an appropriate 28 29 disposal facility outside of CMAFS.

This placement of the solar array at Site 1 would be designed to accommodate future expansion to a 2-plus MW system.

32 2.2 ALTERNATIVE A

Alternative A would be the same as the Proposed Action except for the location of the solar array. Under Alternative A the solar array would be located at Site 2. Site 2 as shown on Figure 2-1 would comprise approximately 10.1 acres.

36 2.3 ALTERNATIVE B

Alternative B would be the same as the Proposed Action except for the location of the solar array. Under
 Alternative B the solar array would be located at Site 3. Site 3 as shown on Figure 2-1 would comprise

39 approximately 17.2 acres.

40

Environmental Assessment for a 1-Megawatt Solar Array at Cheyenne Mountain AFS, CO

1

2 3

Figure 2-1 Proposed Action and Alternative Site Locations

4 2.4 NO-ACTION ALTERNATIVE

5 Under the No-Action Alternative the solar array would not be constructed at CMAFS. The base would 6 not meet the DOD and Air Force goals for use and generation of renewable energy sources.

7 2.5 ALTERNATIVES CONSIDERED BUT ELIMINATED FROM FURTHER 8 REVIEW

9 Because CMAFS is only 568 acres and is predominately rocky mountainous terrain with slopes up to 90 10 percent grade, there is limited space for construction of a solar array system or other facilities without 11 creating a visual impact on the area. The Air Force considered construction and operation of a wind 12 turbine; however, a wind turbine needed to provide over 1-MW would be extremely large. For example 13 the widely used General Electric 1.5-MW model, consists of 116-foot long blades atop a 212-foot high 14 tower for a total height of 328 feet. The blades sweep a vertical airspace of just under an acre. Another model being seen more in the United States is the 2-MW Gamesa G87 from Spain, which sports 143-foot 15 16 long blades (just under 1.5 acres) on a 256-foot tower, totaling 399 feet. Many existing models and new 17 ones being introduced reach well over 400 feet high. Additionally, since the average wind speed is less 18 than 10 miles per hour, the efficiency of a wind turbine would be less than optimal because wind power is 19 in the poor to marginal range west of Colorado Springs (United States Department of Energy and 20 National Renewable Energy Laboratory 2004).

1 2.6

4 5

COMPARISON OF ALTERNATIVES

Table 2-1 summarizes the potential effects of the Proposed Action and Alternatives on natural and human 2 3 resources.

Table 2-1

Summary of Potential Effects of the Proposed Action and Alternatives

Resource Areas	Proposed Action	Alternative A	Alternative B	No-Action Alternative
AICUZ	N/A	N/A	N/A	None
Airspace	N/A	N/A	N/A	None
Air Quality	-	-		None
Biological ResourcesVegetation	-	_	-	None
 Wildlife 	(—)	-		None
T&E/Special Concern Species	0	0	0	None
Cultural Resources	0	0	0	None
Hazardous Materials	0	0	0	None
Hazardous Waste	0	0	0	None
Land Use	0	0	0	None
Noise	_	-	-	None
Safety and Occupational Health	0	0	0	None
Socioeconomics	+	+	+	None
Utilities	+	+	+	None
Water Resources	0	0	0	None

AICUZ – Air Installation Compatibility Use Zones T&E – Threatened and Endangered

X - Significant impact

- - Adverse, but not significant impact

11 + - Positive, beneficial impact

12 0 - No change

N/A - Not applicable

13 14

STATISTICS OF AN ADVANCES AND

This page intentionally left blank.	

1 3.0 AFFECTED ENVIRONMENT

2 This chapter describes relevant existing environmental conditions at CMAFS for resources potentially affected by the Proposed Action and Alternatives as described in Chapter 2.0. In compliance with 3 4 guidelines contained in NEPA, CEQ regulations, and the requirements of 42 U.S.C. 4321-4347, CEQ 5 Regulations for Implementing the Procedural Provisions of NEPA (40 CFR § 1500-1508), and 32 CFR 6 Part 989, et seq., Environmental Impact Analysis Process (formerly known as Air Force Instruction [AFI] 7 32-7061), the description of the existing environment focuses on those environmental resources 8 potentially subject to impacts. These resources and conditions are: Air Quality, Biological Resources, 9 Cultural Resources, Climate, Hazardous Materials, Hazardous Waste, Solid Waste, Land Use, Utilities, 10 Infrastructure, Noise, Socioeconomics/Environmental Justice and the Protection of Children, 11 Visual/Aesthetics, and Water Resources. The expected geographic scope of potential impacts, known as 12 the ROI, is defined for each resource analyzed.

13 3.1 AIR QUALITY

The Colorado Department of Public Health and Environment (CDPHE), Air Pollution Control Division (APCD) is the primary Colorado authority for protecting air quality in the state under the Colorado Air Pollution Prevention and Control Act. Included in the APCD standards are National Ambient Air Quality Standards for six criteria pollutants that the U.S. EPA is required to monitor: sulfur dioxide (SO₂), carbon monoxide (CO), ozone (O₃), nitrogen dioxide (NO₂), particulate matter (PM_{2.5} and PM₁₀), and lead (Pb).

The ROI for air quality varies according to the type of air pollutant being discussed. Primary pollutants, such as CO and directly emitted particulate matter, have a localized region of effects generally restricted to the immediate vicinity of the source of emissions. Secondary pollutants, such as O_3 and carbon dioxide (CO₂), have a broader region of effects.

23 Air pollutants that are covered by adopted federal ambient air quality standards are called criteria air pollutants (see Section 3.1.1.1-National and State Air Quality Standards). In addition to the six criteria 24 air pollutants covered by federal ambient air quality standards, a large number of compounds have been 25 designated as hazardous air pollutants, which are regulated primarily by emission limits on specific types 26 27 of industrial emission sources. Greenhouse gases (GHG) are another air pollutant category of general 28 concern. Greenhouse gases are compounds in the atmosphere that absorb infrared radiation and radiate a 29 portion of that radiation toward the earth's surface, thus trapping heat and warming the atmosphere. The most important GHG compounds are CO2, methane (CH4), and nitrous oxide (N2O). The overall global 30 warming potential of GHG emissions is typically presented in terms of CO₂ equivalents (CO₂e), using 31 32 equivalency factors developed by the Intergovernmental Panel on Climate Change.

33 3.1.1 Air Quality Standards, Conditions, and Regulatory Considerations

34 3.1.1.1 National and State Ambient Air Quality Standards

The federal CAA, as amended, authorizes the U.S.EPA to establish national ambient air quality standards to protect public health and welfare. Federal ambient air quality standards have been adopted for six criteria pollutants: O₃, CO, NO₂, SO₂, suspended particulate matter (including inhalable particulate matter [PM₁₀] and fine particulate matter [PM_{2.5}]), and airborne Pb. Table 3-1 shows the federal and Colorado Ambient Air Quality Standards.

1 2 3

		Significant Mon	itoring Concentra	ations	
Pollutant	Average Period	Primary NAAQS	Secondary NAAQS	(Additional Standards) CAAQS	PSD Significant Monitoring Concentration ¹
Nitrogen dioxide	Annual	0.053 parts per million (ppm)(100 micrograms per cubic meter [μg/m ³])	0.053 ppm (100 μg/m ³)	100 μg/m ³	14 μg/m ³
Carbon monoxide	1-hour	35 ppm (40,000 μg/m ³)	NA	40,000 μg/m ³	NA
Carbon monoxide	8-hour	9 ppm (10,000 μg/m ³)	NA	10,000 μg/m ³	575 μg/m ³
Sulfur dioxide	3-hour	NA	0.5 ppm(1,300 μg/m ³)	700 μg/m ³	NA
Sulfur dioxide	24-hour	0.14 ppm(365 μg/m ³)	NA	NA	13 µg/m3
Sulfur dioxide	Annual	0.030 ppm (80 μg/m ³)	NA	NA	NA
Ozone	1-hour	Rescinded	Rescinded	235 μg/m ³	100 tpy VOCs
Ozone	8-hour	0.05 ppm(147 μg/m ³)	0.075 ppm(147 μg/m ³)	NA	100 tpy VOCs
Particulate matter <10 μm (PM ₁₀)	24-hour	150 μg/m ³	150 μg/m ³	150 μg/m ³	10 μg/m ³
PM ₁₀	Annual	Rescinded	Rescinded	50 μg/m ³	NA
PM _{2.5}	24-hour	35 μg/m ³	35 μg/m ³	NA	NA
PM _{2.5}	Annual	15 μg/m ³	15 μg/m ³	NA	NA
Lead	Quarterly	1.5 μg/m ³	1.5 μg/m ³	NA	0.1 μg/m ³
Lead	Monthly	NA	NA	1.5 μg/m ³	NA
Fluorides	24-hour	NA	NA	NA	0.25 μg/m ³
Total reduced sulfur	1-hour	NA	NA	NA	10 μg/m ³
Hydrogen sulfide	1-hour	NA	NA	NA	0.2 μg/m ³
Reduced sulfur compounds	1-hour	NA	NA	NA	10 μg/m ³

Source: Colorado Department of Public Health and Environment (CDPHE) 2005, U.S. EPA 2009

C. µg N. P! P! P! P!	NAAQS The significant mo AAQS – Colorado (m ³ - microgram po AAQS – National A (10 – particulate m M2.5 – particulate m m- parts per millio y – tons per year ir Quality Con	Signifi mitoring concentr Ambient Air Qua er cubic meter Ambient Air Qua atter less than 10 atter less than 2.5	cant Monitor ations (lowest lev lity Standards lity Standards microns in diame	of Significant	tions	als dans also	
C. µg N. P! P! P! P! P! P! P! P! P! P! P! P! P!	The significant mo AAQS – Colorado $/m^3$ - microgram po AAQS – National A A_{10} – particulate m $A_{2.5}$ - particulate m m- parts per millio y – tons per year	Signifi mitoring concentr Ambient Air Qua er cubic meter Ambient Air Qua atter less than 10 atter less than 2.5	cant Monitor ations (lowest lev lity Standards lity Standards microns in diame	ing Concentra	tions	als dans also	
C. µg N. P! P! P! P! P! P! P! P! P! P! P! P! P!	AAQS – Colorado y/m^3 - microgram po AAQS – National A M_{10} – particulate m $M_{2.5}$ - particulate m m- parts per millio y – tons per year	onitoring concentr Ambient Air Qua er cubic meter Ambient Air Qua atter less than 10 atter less than 2.5	ations (lowest lev lity Standards lity Standards microns in diame			nodifications.	
C. µg N. P! P! P! P! P! P! P! P! P! P! P! P! P!	AAQS – Colorado y/m^3 - microgram po AAQS – National A M_{10} – particulate m $M_{2.5}$ - particulate m m- parts per millio y – tons per year	Ambient Air Qua er cubic meter Ambient Air Qua atter less than 10 atter less than 2.5	lity Standards lity Standards microns in diame	els) apply only to	new sources and i	nodifications.	
N. PI PI PT tp 3.1.1.2 A	AAQS – National A_{10} – particulate m $M_{2.5}$ – particulate m m- parts per millio y – tons per year	Ambient Air Qua atter less than 10 atter less than 2.5	microns in diame				
P1 P1 p1 tp 3.1.1.2 A	M_{10} – particulate m $M_{2.5}$ – particulate m m- parts per millio y – tons per year	atter less than 10 atter less than 2.5	microns in diame				
pr tp 3.1.1.2 A	m- parts per millio y – tons per year		microns in diame	ter			
tp 3.1.1.2 A	y – tons per year	n	and only in undiffe	ter			
3.1.1.2 A							
	ir Quality Con						
The U.S.I		ditions					
nonattainr unclassifia six air qu Synthetic December	nent to attainme able and are tre ality pollutants Minor Constru 1999, and Fi from Novembe	ent are mainte ated as attainn (Pikes Peak action Permit nal Permit iss r 2008 to Octo	nance areas. A ment areas. T Area Council (95EP780) (da sued 19 July, ober 2009 are s Table	Areas of uncert he Colorado Sp of Governmer ted September 2002). Perm hown in Table	ain status are p prings area is tts [PPACG] 2 1995, modifi it limits comp 3-2.	een re-designate generally desig in attainment fo 2003). CMAF cation to Perm pared to actual er year)	nated or all S ha nit da
	PM	PM10	SO ₂	NO _x	VOC	CO	
Permit 95EP780 ¹	5.00	5.00	5.00	82.40	10.00	21.63	
2009 Actual ²	0.16	0.16	0.08	4.97	0.12	1.32	1.10
	- Final Permit issue - October 2009; 12		mmary				
PN)-carbon monoxid f_{10} - particulate ma $f_{2.5}$ - particulate ma $f_{2-sulfur}$ dioxide $f_{2-sulfur}$ dioxide $f_{2-sulfur}$ or oxide $f_{2-sulfur}$ dioxide $f_{2-sulfur}$ dioxide $f_{2-sulfur}$ dioxide $f_{2-sulfur}$ dioxide $f_{2-sulfur}$ dioxide $f_{2-sulfur}$ dioxide $f_{2-sulfur}$ dioxide	atter less than 10 atter less than 2.5		ter			
SC							
SC NO VC	ean Air Act C	onformity Gu	idelines				

3

1 including actions receiving federal funding. This section of the CAA requires federal agencies to ensure that their actions are consistent with the CAA and with applicable state air quality management plans. 39 40

Environmental Assessment for a 1-Megawatt Solar Array at Cheyenne Mountain AFS, CO

1 Federal agencies are required to evaluate their proposed actions to make sure that they will not cause or

2 contribute to new violations of any federal ambient air quality standards, that they will not increase the

3 frequency or severity of any existing violations of federal ambient air quality standards, and that they will

4 not delay the timely attainment of federal ambient air quality standards.

The U.S.EPA general conformity rule requires a formal conformity determination document for federally sponsored or funded actions in nonattainment or maintenance areas when the net increase in direct and indirect emissions of nonattainment or maintenance pollutants exceeds specified *de minimis* thresholds. The *de minimis* threshold for CO is 100 tons per year. Since the Colorado Springs area is within a CO

9 maintenance area, a formal conformity determination is required for the Proposed Action.

10 3.2 BIOLOGICAL RESOURCES

11 3.2.1 Vegetation

12 CMAFS is characterized by two distinct native plant communities—oak scrub and pine woodlands—and 13 two transitional communities. The four plant communities are the Oak-Pine Woodland, Oak Scrub, Pine 14 Woodland/Rock, and Pine Woodland (Figure 3-1). They cover approximately 480 acres (194 hectares), or 15 85 percent, of CMAFS; the remaining 15 percent of the installation represents improved and semi-16 improved areas and include manmade and maintained structures, roads, parking lots, and lawns.

Distribution of the four native plant communities is controlled by soil depth, aspect, soil moisture levels,
 elevation, and topography. The percentage of forested community is shown in Table 3-3.

19

Table 3-3 Forested Community at CMAFS

Vegetation Type	Acres/Hectares	Percentage of Total Cover
Oak Scrub	122/49	25
Pine Woodland	107/43	22
Oak-Pine Woodland	134/54	29
Pine Woodland/Rock	117/47	24
Total	480/194	100

20

Other vegetation of interest at CMAFS includes noxious weeds, several species of which have been mapped and are discussed in Section 3.2.1.5.

23 3.2.1.1 Oak Scrub

24 The oak scrub community is most common at elevations below 6,750 feet (2,057 meters) MSL and 25 represents a traditional zone between grassland and montane communities. It covers approximately 122 acres (49 hectares), or 25 percent of the undeveloped land at CMAFS. The predominant species is 26 27 Gambel oak (Quercus gambelii). Other species observed in this community include ponderosa pine 28 (Pinus ponderosa), mountain mahogany (Cercocarpus montanus), bitterbrush (Purshia tridentata), 29 skunkbush (Rhus americana), Arizona fescue (Festuca arizonica), and blue grama (Bouteloua gracilis). In the wetter locations, such as canyon bottoms, occasional willows (Salix spp.) and plains cottonwoods 30 (Populous sargentii) have been observed. At CMAFS, the shrub-like Gambel oak averages in height from 31 32 6 to 10 feet (2 to 3 meters) and typically grows in dense thickets. The density of grasses growing at ground level varies inversely with the density of scrub oak, ranging from moderately abundant to 33

Figure 3-1 Vegetation Communities at CMAFS

Environmental Assessment for a 1-Megawatt Solar Array at Cheyenne Mountain AFS, CO

1 2

1 nonexistent. This community represents a relatively high risk for wildland fire because the oak thickets

- 2 provide connectivity to conifer tree crowns, creating conditions whereby crown fires could occur were a
- 3 fire to ignite.

4 3.2.1.2 Pine Woodlands

5 The pine woodlands community exists predominately at elevations above 6,750 feet (2,057 meters) MSL in areas where the depth of the soil to bedrock is adequate to support vegetation. It covers approximately 6 7 107 acres (43 hectares), or 22 percent of the undeveloped land at CMAFS. Trees found in this community 8 include ponderosa pine, Douglas fir (Pseudotsuga menziesii), white fire (Abies concolor), Siberian elm 9 (Ulmus pumila), blue spruce (Picea pungens), and Rocky Mountain juniper (Juniperus scopulorum). At 10 elevations between 6,750 and 7,500 feet (2,057 and 2,286 meters) MSL, the predominant species is the 11 ponderosa pine; above 7,500 feet (2,286 meters) MSL, Douglas fir and white fir dominate. Other plants associated with this community include mountain muhly (Muhlenbergia montana), cinquefoil (Potentilla 12 13 spp.), Arizona fescue, Kentucky bluegrass (Poa pratensis), and golden ragwort (Senecio fendleri). Due to 14 the absence of timber harvest activity and the suppression of forest fires over the past 50 years, the 15 overstory structure of the pine woodlands on CMAFS can be characterized as multiaged. Mature sawtimber-sized trees (greater than nine inches [23 centimeters] in diameter at breast height) are present 16 17 in the co-dominant and understory sizes along with a variety of miscellaneous tree and shrub species. The 18 existing structure to the vegetation creates high canopy connectivity between the various canopy layers. 19 Some isolated incidences of mountain pine beetle (Dendroctonus ponderosae) and dwarf mistletoe 20 (Arceuthobium spp.) have been observed in these areas.

21 3.2.1.3 Oak-Pine Woodlands

The oak-pine woodlands community, which covers approximately 134 acres (54 hectares), or 29 percent of the undeveloped land at CMAFS, is primarily between the elevations of 6,625 and 7,375 feet (2,019 and 2,248 meters) MSL. Oak-pine woodlands, a transitional community, consist of ponderosa pine (and other conifers), with Gambel oak interspersed throughout the understory. The difference between this community and the oak scrub community is the density ratio of conifer trees to Gambel oak.

27 3.2.1.4 Pine-Rock (Mixed Conifer-Rock)

28 The pine-rock (mixed conifer-rock) community is an extension of the pine woodlands community into areas of shallow to nonexistent soil cover. This community covers approximately 117 acres (47 hectares), 29 30 or 24 percent of the undeveloped land at CMAFS. The pine rock community is primarily in areas of 31 exposed bedrock at elevations above 7,500 feet (2,286 meters) MSL. Slopes in this community can be in 32 excess of 80 percent. Native vegetation consists of scattered individuals and small stands of coniferous 33 trees, primarily Douglas fir, ponderosa pine, and white fir, as well as some Gambel oak. Vegetation cover 34 ranges from 0 to 60 percent throughout this community. Detailed surveys on both structure and health of 35 this community have not been conducted to date.

36 3.2.1.5 Noxious Weeds and Vegetative Pests

37 Pests may include weeds (terrestrial and aquatic), insects and related lower animals, domestic and feral

rodents, birds, feral predatory animals, snakes, nematodes, snails, algae, fungal plant diseases, and other

39 organisms that are not desirable (other than domestic animals). Control programs are carried out when

40 pests impair safe and efficient land use, pose health or safety hazards to humans or animals, or impair

41 military operations. Programs for controlling or eradicating noxious weeds are mandatory and must be

1 coordinated with state and local agencies. Integrated pest management procedures are to be used when 2 practicable. Management must ensure that pests are controlled effectively and economically, while 3 minimizing contamination of the environment and risks to human health. Several insect pests are 4 prevalent in the forests of the Front Range, including species of bark beetles, spruce budworms, and 5 Douglas fir tussock moths. Of primary concern at CMAFS are the parasitic plant dwarf mistletoe and, to a lesser degree, mountain pine beetles. These pests can damage and kill coniferous trees and may occur in 6 7 widespread epidemics. Seven invasive plant species have been identified at CMAFS, primarily in 8 undeveloped areas and on the periphery of improved/semi-improved areas:

- 9 Canada thistle (*Cirsium arvense*);
- Musk thistle (Carduus nutans);
- Russian thistle (Salsola kali);
- Russian olive (*Elaeagnus angustifolia*);
- Field bindweed (Convolvulus arvensis);
- Cheatgrass (Bromus tectorum); and
- 15 Kochia (Kochia scoparia).

Infestations have the potential to adversely impact the success of natural resources management activities targeted at soil erosion control and revegetation. Invasive plant species also pose threats to native habitats, endangered species, and plant community composition and diversity. Invasive species can out-compete native species, resulting in a monoculture of undesirable unsightly vegetation. As a consequence, CMAFS is committed to monitoring levels and controlling these insect pests and invasive plant species, as warranted, to avert potential effects.

22 3.2.2 Wildlife

Wildlife present at CMAFS includes species that are typical of the foothills area of the Front Range of Colorado. Complete wildlife surveys have not been conducted, but the Natural Resources Management Plan (CMAFB 1991), a biodiversity study (CMAFS 1995), and a baseline survey of avifauna (birds) (Engineering and Environment Inc. 2005) identified a number of species that have been observed on CMAFS.

28 3.2.2.1 Mammals

29 Mammals commonly seen at CMAFS include mule deer (Odocoileus hemionus) and a variety of small 30 mammals, such as raccoons (Procyon lotor), fox squirrels (Sciurus niger), Abert's squirrels (S. aberti), 31 red squirrels (Tamiasciurus hudsonicus), and striped skunks (Mephitis mephitis) (CMAFS 1995). No 32 studies of mule deer populations at CMAFS have been conducted, but observations made by Kufeld et al. 33 (1989) of mule deer inhabiting a similar setting approximately 140 miles (225 kilometers) north of 34 CMAFS probably apply to local herds. According to Kufeld, mule deer living in the Front Range area are 35 resident throughout the year and do not make seasonal migrations to higher or lower elevations. Home 36 ranges are relatively small, from about 290 to 800 acres (117 to 324 hectares) because of habitat conditions and abundant food supplies. According to state wildlife biologists, most mule deer move in a 37 38 north-south direction along the Front Range. Relatively few deer move west over the mountains (CMAFB 39 1991). A small colony of black-tailed prairie dogs (Cynomys ludovicianus) occurs near the CMAFS 40 entrance and extends onto the right-of-way from surrounding property. Less conspicuous mammals

1 observed at CMAFS include black bears (Ursus americanus), coyotes (Canis latrans), red foxes (Vulpes

2 vulpes), grey foxes (Urocyon cinereoargenteus), bobcats (Felis rufus), and mountain lions (F. concolor).

3 3.2.2.2 Birds

4 A preliminary baseline survey of birds at CMAFS was conducted in August 2005 (Engineering and Environment 2005). Thirty-nine species of birds were detected during the survey time frame. None of the 5 species detected were federally or state listed as threatened or endangered, although most are protected 6 7 under the Migratory Bird Treaty Act (MBTA). All observed species are common residents of the habitat 8 associations that are present on CMAFS. Rufous hummingbirds (Selasphorus rufus), mountain 9 chickadees (Poecile gambeli), and Steller's jay (Cyanocitta stelleri) were among some of the most 10 commonly observed species on the installation. Some individuals that were detected during this survey 11 were likely early fall migrants and not necessarily resident breeders. The most notable find during this 12 survey was the discovery of a nesting pair of golden eagles (Aquila chrysaetos) observed on a cliff face in the northernmost canyon on CMAFS at approximately 8,000 feet MSL(2,438 meters). Both parents were 13 observed visiting the nest, and at least one eaglet was heard begging for food. Golden eagles are 14 protected under the Bald and Golden Eagle Protection Act. Peregrine falcons (Falco peregrinus), a state 15 16 species of concern and a federally delisted species, also have been observed nesting in the general vicinity 17 around CMAFS. At CMAFS, wild turkeys (Meleagris gallopavo) are common in groups of approximately 10 to 15 birds, although groups as large as 40 birds have been observed. The Gambel 18 oak/ponderosa pine habitat is well suited to turkeys (Hoffman 1962). According to state wildlife 19 20 biologists, turkeys in the area are rather mobile and may move as far as 3 to 5 miles (5 to 8 kilometers) 21 per day and 30 to 40 miles (48 to 64 kilometers) over longer periods (CMAFB 1991).

22 3.2.3 Special Status Species (Threatened and Endangered Species)

23 No threatened or endangered species of plants or animals have been detected at CMAFS to date. In 1994, 24 a biodiversity study was conducted to establish a baseline inventory for rare, threatened, and endangered 25 flora and fauna at CMAFS, focusing on their presence, status and habitat locations (CMAFS 1995). The 26 biodiversity study consisted of a literature search followed by field surveys during the fall and winter of 27 1994. Field surveys for rare plants consisted of foot surveys of all major vegetations types, with emphasis on areas of high soil moisture and humidity, including drainage channels and beneath conifer forest 28 29 canopies. Ravines with seasonal runoff were surveyed because of their potential habitat for mesic and 30 hydric species having limited distribution on the eastern slope of the Front Range. Rock outcrops were also surveyed for the presence of rare species. Animal surveys were conducted using standard techniques. 31 32 Small mammals were surveyed using live traps and pitfall traps for shrews along transect lines in two 33 main locations at CMAFS, which were considered to be representative of the major vegetation 34 communities. Spotting scope surveys were used to locate nesting/roosting raptors. Walkover surveys were 35 conducted to determine the presence of reptiles, amphibians and larger mammals. Although this survey is dated, the conditions have not changed significantly and the study is still considered to be valid. 36

37 3.2.3.1 Federally Listed Species

Per the Endangered Species Act (ESA), the United States Fish and Wildlife Service (USFWS) maintains lists of plants and animals classified as threatened and endangered. The federally listed species that potentially occur in El Paso County are listed in Table 3-4. Of the federally listed species in the vicinity of CMAFS, only the Mexican spotted owl (*Strix occidentalis lucida*) has suitable habitat present at CMAFS. Suitable habitat has been documented in the North Canyon of CMAFS based on the presence of a dense mixed conifer forest. With the exception of length (the canyon at CMAFS is shorter), the

conditions in this canyon are similar to conditions in canyons to the south where owls have been
 observed. No Mexican spotted owls, however, have been identified to date at CMAFS.

In 2005, the preliminary baseline survey of avifauna focused on identifying any Mexican spotted owls and suitable habitat at CMAFS (Engineering and Environment 2005). Conducted in mid-August, field survey methods included unlimited distance point count sampling, general area searches (focused on canyons), and nocturnal owl call back surveys. Critical habitat for the Mexican spotted owl has been designated in Colorado. No critical habitat exists on CMAFS; however, it is designated on other federal lands (United States Forest Service [USFS]) adjacent to the CMAFS boundary.

9

10

Table 3-4 Federally Listed Species in the Vicinity of CMAFS

Common Name	Scientific Name	Status	Comments
	Birds	an activity of	
Mexican spotted owl	Strix occidentalis lucida	Threatened	Suitable habitat present
Whooping crane	Grus americana	Endangered	No suitable habitat
Interior least tern	Sterna antillarum athalassos	Endangered	No suitable habitat
Piping plover	Charadrius melodus	Threatened	No suitable habitat
Sand Sulling	Mammals	March 1	Security Press
Black-footed ferret	Mustela nigripes	Endangered	No suitable habitat
Gunnison's prairie dog	Cynomys gunnisoni	Candidate	No suitable habitat
Preble's meadow jumping mouse	Zapus hudsonius preblei	Threatened	No suitable habitat
na si allum ment	Fish		
Greenback cutthroat trout	Salmo clarkii stomias	Threatened	No suitable habitat
Arkansas darter	Etheostoma cargini	Candidate	No suitable habitat
Pallid sturgeon	Scaphirhychus albus	Endangered	No suitable habitat
Angles of house	Plants		
Colorado Butterfly Plant	Gaura neomexicana spp. Coloradensis	Threatened	No suitable habitat
Ute Ladies'-tresses	Spiranthes diluvalis	Threatened	No suitable habitat

11 3.2.3.2 State Listed Species

Title 33 of the Colorado State Statutes (Colo. Rev. Stat. Ann. §§ 33-2-102-106) identifies the State's 12 intent to protect endangered, threatened or rare species. The Colorado Department of Wildlife (CDOW) 13 14 maintains a list of animal species that are threatened or endangered in the state. In addition, the state 15 recognizes species of special concern that potentially warrant state protection. Several of these species 16 have suitable habitat present or potentially present at CMAFS (Table 3-5). Those species are the bald eagle (Haliaeetus leucocephalus), Mexican spotted owl(Strix occidentalis lucida), burrowing owl (Athene 17 cunicularia), ferruginous hawk (Buteo regalis), mountain plover (Charadrius montanus), long-billed 18 curlew (Numenius americanus), peregrine falcon, black-footed ferret(Mustela nigripes), and swift fox 19

3

1 (*Vulpes velox*). Of these species with potential habitat occurring on CMAFS, only the peregrine falcon 2 has been identified within the immediate vicinity.

Common Name	Scientific Name	Status	Comments
to be seen in the second set of	Birds		Querel Martin a
Bald Eagle	Haliaeetus leucocephalus	Threatened	Suitable habitat within 5 miles of CMAFS
Mexican Spotted Owl	Strix occidentalis lucida	Threatened	Suitable habitat present
Whooping Crane	Grus Americana	Endangered	No suitable habitat
Interior Least Tern	Sterna antillarum athalassos	Endangered	No suitable habitat
Burrowing Owl	Athene cunicularia	Threatened	Suitable habitat present in grasslands
Western Snowy Plover	Charadrius alexandrinus nivosus	State Special Concern	No suitable habitat
Ferruginous Hawk	Buteo regalis	State Special Concern	Suitable habitat potentially present
Mountain Plover	Charadrius montanus	State Special Concern	Suitable habitat present in grasslands
Long-billed Curlew	Numenius americanus	State Special Concern	Suitable habitat present in grasslands
Peregrine Falcon	Falco peregrinus	State Special Concern	Suitable habitat present on cliffs to the west; Previously observed at CMAFS
and state in the second	Mammals	n Ra Beren Linda S	adust support
Black -footed ferret	Mustela nigripes	Endangered	No suitable habitat
Swift Fox	Vulpes velox	State Special Concern	Suitable habitat present in grasslands
at for stealer of	Amphibians	to metho marks	where the therein.
Northern Leopard Frog	Rana pipiens	State Special Concern	No suitable habitat
	Fish		
Greenback Cutthroat Trout	Salmo clarki stomias	Threatened	No suitable habitat
Arkansas Darter	Etheostoma cragini	Threatened	No suitable habitat
Southern Redbelly Dace	Phoxinus erythrogaster	Endangered	No suitable habitat

1 3.2.3.3 Rare and Sensitive Species

2 The Colorado Natural Heritage Program (CNHP), the State's primary repository of information 3 describing biological diversity, publishes lists of rare and imperiled animals, plants and natural 4 communities (CNHP 1995).

5 These lists include species protected by state listing and, as appropriate, federal listing, as well as species 6 determined by the CNHP to be critically imperiled. The CNHP ranks species in terms of relative degree 7 of imperilment primarily on the basis of occurrences but also on the size of geographic range, number of 8 individuals, population trends, and distribution, identified threats, and the number of already protected 9 occurrences. Listing and ranking of a species by the CNHP does not affect or determine its protected 10 status; however, it does give an indication of biological diversity issues that may be of importance at 11 CMAFS. Rare and sensitive species in the vicinity of CMAFS are listed in Table 3-6.

	Table 3-	6	
Rare and Sensitive Species in the Vicinity of CMAFS			
Common Name	Scientific Name	CNHP Ranking	Comments
Birds by Habitat (USFW	/S Birds of Conservation	Concern and Pl	IF Priority Species)
Cliff/Rock			
Peregrine falcon	Falco peregrinus	G4 S2	Suitable habitat present on cliffs west of CMAFS
Golden eagle	Aquila chrysaetos	NA	Suitable habitat present; Previously observed at CMAFS
Prairie falcon	Falco mexicanus	G5 S4	Suitable habitat present; Previously observed at CMAFS
Ponderosa Pine	STOCIO DE COMPANY		the second s
Band-tailed pigeon	Columbia fasciata	NA	Suitable habitat present
Flammulated owl	Otus flammeolus	NA	Suitable habitat present
Mexican spotted owl	Strix occidentalis lucida	G3 S1	Suitable habitat present
Lewis' woodpecker	Melanerpes lewis	G4 S4	Suitable habitat present
Mountain Shrub			
Virginia's warbler	Vermivora virginiae	NA	Suitable habitat present; Previously observed at CMAFS
Green-tailed towhee	Pipilo chlorurus	G5 S5	Suitable habitat present
able 2.6 Dags 1 of 2			

14

12 13

Table 3-6, Page 1 of 2

Environmental Assessment for a 1-Megawatt Solar Array at Cheyenne Mountain AFS, CO

0
1

Table 3-6 (Continued)

Rare and Sensitive Species in the Vicinity of CMAFS

Common Name	Scientific Name	CNHP Ranking	Comments
Mammals (CNHP S1, S	S2 and S3)		
Plains pocket mouse	Perognathus flavescens relictus	G5 S2	Suitable habitat potentially present
Fringed myotis	Myotis thysanodes	G4-G5 S3	Suitable habitat present
Dwarf shrew	Sorex nanus	G4 S2	Suitable habitat potentially present
Merriam's shrew	S. merriami	G5 S3	No suitable habitat
Plants	64 M 87		
Slender moonwort	Botrychium lineare	G1 S1	Suitable habitat potentially present
Rattlesnake fern	Botrypus virginianus spp. europaeus	G5 S1	No suitable habitat
Birdbill dayflower	Commelina dianthifolia	G5 S1?	Suitable habitat potentially present
Yellow lady-slipper	Cypripedium calceolus spp. Parviflorum	G5 S2	Suitable habitat potentially present
Wood lily	Lilium philadelphicum	G5 S3-S4	No suitable habitat
Purple cliff-brake	Pallaea atropurpurea	G5 S3-S4	No suitable habitat
American currant	Ribes americanum	G5 S2	Suitable habitat potentially present
Carrionflower	Smilax lasioneuron	G5 S3-S4	Suitable habitat present
James telesonix	Telesonix jamesii	G2 S2	Suitable habitat present
Prairie goldenrod	Unamia alba	G5 S2-S3	Suitable habitat potentially present
Table 3-6, Page 2 of 2		States and the second	

Table 3-6, Page 2 of 2

 Notes:
 *The Colorado Natural Heritage Program (CNHP) conservation status of a species or community is designated by a number from 1 to 5, preceded by a letter reflecting the appropriate geographic scale of the assessment (G = Global, N = National, and S = Sub-national). The numbers have the following meaning:

 1 = critically imperiled
 2 = imperiled

 3 = vulnerable to extirpation or extinction
 4 = apparently secure

 5 = demonstrably widespread, abundant, and secure
 N/A - not applicable

 PIF - Partners in Flight
 USFWS - United States Fish and Wildlife Service

3

11 12 13

14

1 While the MBTA protects all migratory birds, the USFWS Birds of Conservation Concern list is intended 2 to identify species, subspecies, or populations of migratory nongame birds that, without additional 3 conservation actions, are likely to become candidates for listing under the ESA (USFWS 2002). Species 4 identified to date at CMAFS from the USFWS Region 6 Birds of Conservation Concern 2002 list include 5 the golden eagle, prairie falcon, and Virginia's warbler (Vermivora virginae). In 2006, the DOD and the USFWS signed a memorandum of understanding to promote the conservation of migratory birds in 6 response to Executive Order 13186, Responsibilities of Federal Agencies to Protect Migratory Birds. In 7 8 addition, Priority Species have been identified by the Partners in Flight (PIF) by physiographic region and 9 habitat. The PIF Land Birds Conservation Plan for Colorado identifies priority species, conservation 10 opportunities and implementation strategies (Partners in Flight [PIF] 2000).

11 **3.3 CLIMATE**

The climate at CMAFS is characterized by hot summers and cold winters. During the winter (December 12 13 through February), the average temperature is 31 degrees Fahrenheit (°F)/ minus 1 degree Centigrade (-1°C), and the average minimum temperature is 18°F (-8°C). In the summer (June through August), the 14 average temperature is 68°F (20°C), and the average maximum temperature is 82°F (28°C). The regional 15 16 growing season is approximately 4.5 months and extends from the average last freeze in mid-May to the 17 average first freeze in late September. Annual precipitation in the Colorado Springs area is approximately 15 inches (38 centimeters), most of which occurs as rainfall between April and September. Summer 18 19 storms tend to be violent isolated thunderstorms accompanied by hail, lightening, and high winds. The average snowfall is 42 inches (107 centimeters) per year. The average relative humidity is low and 20 21 averages below 40 percent during daytime (11:00 AM to 5:00 PM). The average wind speed in the Colorado Springs area is 10 miles per hour. The annual sky cover is 30 percent (National Oceanic and 22 23 Atmospheric Administration [NOAA] 2009) with the amount of available sunshine varies from 9:30 to 14:45 hours per day (December and June) (Time and Date.com 2009). 24

25 3.4 CULTURAL RESOURCES

26 A cultural resources survey conducted in 1990 by an archeologist that met standards for the profession 27 established by the United States Secretary of the Interior found no evidence of pre-historic archeological sites at CMAFS. As such, there are no current requirements to perform archeological surveys at CMAFS. 28 29 Historic resources at CMAFS can be categorized by those preceding the construction of CMAFS (Pre-1961) and those dating after the construction of CMAFS (post-1961). Surveys conducted in 1990 did not 30 31 identify any historic resources from a time period before 1961. An inventory and National Register of Historic Places (NRHP) evaluation of buildings and structures dating post-1962 was completed in 2003. 32 That report concluded that a district eligible for inclusion on the NRHP was present at CMAFS, one that 33 included 18 contributing buildings and features. The district and contributing buildings and structures are 34 considered to be eligible in the NRHP on the basis of their association with the Cold War. Consultation 35 36 with the Colorado State Historic Preservation Officer regarding this evaluation has not yet been 37 completed; however, these buildings and features appear to meet the standard of "exceptional importance" required for properties that are less than 50 years old. 38

39 3.4.1 Native American Issues

40 Native American issues at CMAFS would likely relate to Traditional Cultural Properties (TCPs) or sacred 41 sites. A TCP is defined generally as a historic property that is eligible for inclusion in the NRHP because 42 of its association with cultural practices or beliefs of a living community that (a) are rooted in the 43 community's history; and (b) are important in maintaining the continuing cultural identity of the

community. The community may entail a Native American tribe, a local ethnic group, or the people of the nation as a whole. To date, no TCPs or sacred sites have been identified at CMAFS. Their presence largely will be determined by consultation with Native American groups that may have attached cultural values to landscape features, including Cheyenne Mountain itself. In 2004, CMAFS sent a questionnaire to 46 Native American tribes with 40 tribes responding with expressions of interest. Consultations with these 40 tribes would establish not only whether or not TCPs might be located on the site, but also if there are any sacred sites.

8 3.5 GEOLOGY AND SOILS

9 CMAFS is on the eastern flank of Cheyenne Mountain, which is part of the Front Range of the southern 10 Rocky Mountains. The area to the east is semiarid plains, and immediately to the west are mountains with elevations to 14,000 feet (4,267 meters) MSL. The principal topographic features include rocky cliff faces 11 12 and steep ravines in the western half of the site and broad alluvium-covered slopes in the remainder of the 13 site. The elevation at CMAFS ranges from a maximum of 9,020 feet (2,749 meters) MSL on the western 14 side of the property to a minimum of 6,000 feet (1,829 meters) MSL on the eastern side near Highway 15 115 at the access to NORAD road. The elevation of most of the exterior facilities ranges from 6,820 to 16 6,700 feet (2,079 to 2,042 meters) MSL.

6,700 feet (2,079 to 2,042 meters) MSL.

17 There are three principal soil types at CMAFS. The western half of the site (down to an elevation of 18 approximately 7,000 feet [2,134 meters] msl) is characterized by rock outcrops and soils from the 19 Coldcreek (cobbly loam) and Tolman (gravely loam) series. The soil in the Building 300 area is a sandy 20 arkosic loam from the Bresser series (likely underlain by the Post-Piney and Piney Creek Alluvium). The 21 remainder of the site is characterized by soils from the Jarre (gravely-sandy loam) and Tecolote (stony 22 loam) series. Although not shown on geologic maps, some sedimentary rock, including limestone, was observed during field investigations conducted for the Cultural Resources Management Plan. Members of 23 24 the Pikes Peak Chapter of the Colorado Archeological Society also reported the existence of limestone 25 outcrops in the area.

26 Coldcreek soils are deep and well-drained, with moderate permeability. They typically have a maximum 27 rooting depth of 40 inches (102 centimeters) or more. Tolman soils are shallow and well-drained with a 28 moderate permeability and have an effecting rooting depth of 10 to 20 inches (25 to 50 centimeters). Both 29 are derived from weathered acidic igneous rock and exhibit medium surface runoff and moderate erosion 30 hazard. Bresser soils are deep and well-drained with moderate permeability, formed in Arkosic alluvium and residium, with some clay, on terraces and uplands, and they have an effective rooting depth of 60 31 32 inches (152 centimeters) or more. This soil type also has medium surface runoff and moderate erosion 33 hazard. Tecolote soils are deep and well-drained, with moderate permeability, formed in alluvium from 34 acidic igneous rock. The surface typically has 30 to 50 percent cobbles and stones, with an effective 35 rooting depth of 40 inches (102 centimeters) or more. These soils have medium surface runoff and 36 moderate erosion hazard.

Available soil maps do not differentiate between the soils of the Coldcreek and Tolman series or the Jarre and Tecolote series. The Soil Survey of the El Paso, Colorado area presents more detailed information on the soil characteristics, distribution, and potential uses (United States Department of Agriculture [USDA] 1981). For construction purposes, the primary soil factors to consider are erodibility, permeability, and high-water table, elasticity, shrink/swell potential, compactibility, and bearing strength.

1 3.5.1 Geophysical Hazards

Colorado's earthquake hazard is similar to other states in the intermountain west region. It is less than in states like California, Nevada, Washington, and Oregon, but greater than many states in the central and eastern United States.

5

6 The level of seismicity in Colorado has been characterized as being low to moderate (Kirkham and 7 Rogers 1981) due in part to the lack of adequate seismographic coverage in the state, and a number

7 Rogers 1981) due in part to the lack of adequate seismographic coverage in the state, and 8 of sizable earthquakes have occurred in the historical and more recent record (Figure 3-2).

12

13

Figure 3-2

Seismicity of Colorado and Surrounding Areas, 1870-1992

The largest known historical earthquake in Colorado was the November 8, 1882 earthquake whose size (estimated Moment Magnitude 6.6 +/- 0.6 (Spence et al. 1996)) and location (somewhere in north-central Colorado) remain uncertain (McGuire *et. al.* 1982; Kirkham and Rogers 1986; Spence *et. al.* 1996). Perhaps the best known earthquakes in Colorado have been those induced by the disposal of waste fluids at the Rocky Mountain Arsenal near Denver (Evans, 1966; Healy et al. 1968; Herrmann, 1981) and secondary oil recovery in western Colorado at the Rangely oil field (Gibbs *et. al.* 1973). Earthquake swarms in Colorado are not uncommon (Bott and Wong 1995). A swarm of
1 earthquakes, including one of magnitude 4.6, occurred near Trinidad, Colorado in the fall of 2001

2 (Meremonte et. al. 2002). The largest instrumentally recorded natural earthquake in Colorado was a

3 magnitude 5.5 earthquake in 1960 which occurred near Ridgeway in southwest Colorado (Talley and

4 Cloud 1962). As noted above, earthquakes have occurred in geographic locations spread throughout

5 the region.

6 Between 1962 and 2007 three earthquake epicenters (magnitude 3 to 3.9 [small purple circles]) occurred

7 within 30 miles of CMAFS (Figure 3-3). A Colorado Earthquake and Fault map compiled by Matthew L.

8 Morgan of the Colorado Geological Survey shows that there are known or suspected faults with 9 displacement of late Quaternary deposits (approximately past 130,000 to 2 million years old [maroon

10 lines] and approximately past 130,000 years[red lines]) within the region of interest.

13 14

 $\frac{11}{12}$

Known or Suspected Faults and Earthquakes within 25 miles of CMAFS

According to the Colorado Geological Survey, Colorado Division of Emergency Management, and the Colorado Earthquake Hazard Mitigation Council the largest recorded earthquake in Colorado (Category VII) resulted in the following type of reaction and damage:

18 Frightened all, ran outdoors. Rang large church bells. Damage negligible in buildings of good design and 19 construction, slight in poorly built or badly designed buildings. Cracked chimneys to considerable extent, 20 walls to some extent. Fall of plaster considerable. Shook down loosened brickwork and tiles. Broke 21 weak chimneys. Dislodged bricks and stones.

It is prudent to expect future earthquakes as large as magnitude 6.6, the largest historical event in 1 2 Colorado. Based on Colorado's historical earthquake record and geologic studies, an event as large as 3 magnitude 6.5 to 7.25 could occur somewhere in the state. Scientists are unable to accurately predict 4 when the next major earthquake will take place in Colorado; only that one will occur. Seismic zones for 5 Colorado range from Zone 0 to Zone 2B, with the area around CMAFS being located in Zone 1 (Figure 3-4). According to the USDA State Architect actual ramifications to new construction in Colorado as a 6 7 result of implementing Federal level regulations are probably negligible due to the relatively low seismic 8 risk zone pattern for the State as well as the Stat of Colorado's requirement that more complex structures 9 already be designed by a registered architect or engineer. By comparison, seismic zones in California are 10 Zone 3 and Zone 4. Seismic safety provisions of the national model building codes (i.e. International Building Code 2003 [adopted by El Paso County]) are only intended to prevent fatalities and do not claim 11 to prevent fatalities and do not claim to prevent property damage. This is due to the generally 12 unpredictable nature of earthquake events and the economic unfeasibility of designing modern structures 13 14 to prevent significant property damage (United States Department of Agriculture 2006).

Environmental Assessment for a 1-Megawatt Solar Array at Cheyenne Mountain AFS, CO

15

17

18

Page 3-17

1 A Seismic Survey was conducted at CMAFS as part of a FEMA 178 Review in April 1978. In the 2 summary of that report four potential earthquake-related hazards were assessed for the site; strong ground 3 shaking, ground surface rupture, soil liquefaction, and slope failure. The report further stated that the facility is located in a low seismic active region of the United States. FEMA-178 indicates that the site 4 5 coefficients for the seismicity are Aa=0.05 and Av=0.05. Similarly, the site falls within Seismic Zone 1 (Scale of 0 to 4) of the Uniform Building Code, where 4 is a high risk and 0 is no risk. Potential for soil 6 7 amplification, liquefaction, and surface rupture were considered minimal for the site. For buildings 8 located near the north entry, a moderate potential exists for rockfall from the granite outcroppings located 9 above the site(CMAFS 1978).

10 3.6 HAZARDOUS MATERIALS/HAZARDOUS WASTE/SOLID WASTE

11 3.6.1 Hazardous Materials

Hazardous material (Hazmat) inventories are maintained by each work center in accordance with the 12 13 CMAFS Hazardous Material Management Plan (HMMP), AFI 32-7086 dated 1 August 2004. The 14 HMMP specify the use by workcenter personnel of material safety data sheets, environmental 15 management inventory system, Hazardous Materials Pharmacy (HazMart), and other related subjects. 16 Emergency response procedures, hazard assessment, risk management, and on-site transportation issues are included in the CMAFS Integrated Contingency Plan (ICP) dated 2007. Workcenter-specific surveys 17 18 have been conducted to address Hazmat issues present in each area, including flammable/combustible 19 liquids and compressed gases. Hazardous materials used on CMAFS are typical petroleum, oils, and 20 lubricants (POLs), herbicides, and pesticides.

21 3.6.2 Hazardous Waste

22 Hazardous waste generated at CMAFS include: non-hazardous waste that cannot be disposed of in 23 landfills (such as used oil and spent antifreeze); hazardous waste as defined under federal and state 24 regulations; and universal wastes that, due to commonality of generation and high potential for recycling, 25 are subject to slightly less stringent regulatory requirements than other hazardous waste. Additionally, 26 there are several collection areas maintained for non-Resource Conservation and Recovery Act (RCRA) 27 regulated absorbent materials contaminated with POLs. These materials are also disposed through the 28 Defense Reutilization Marketing Service. Under conditionally-exempt small-quantity generator 29 (CESQG) status, a full permit is not required at CMAFS, only a U.S. EPA identification number is 30 required. CMAFS maintains a U.S. EPA identification number that would be used if they were to lose the 31 CESQG status. Surveillance to ensure continued program conformity with regulatory requirements and mission changes is the main consideration. 32

33 3.6.3 Solid Waste

The solid waste, including municipal solid waste (MSW) and industrial solid waste (ISW) is managed through the CMAFS Solid Waste Management Plan. MSW/ISW disposal and recycling of aluminum cans, bond paper, newspaper, and baled cardboard, are performed under contract by Waste Connections. Waste disposal is in the El Paso County Landfill. Some recyclable items, including computers and furniture, and scrap metal other than aluminum cans, are managed through the Defense Reutilization and Marketing Service (DRMS).

40

41 The recycling program includes materials for which a market exists in Colorado. The materials separated 42 from MSW/ISW for recycling include:

- Metals (sorted into several categories per DRMS guidance) and aluminum cans;
 - High quality paper; newspaper; cardboard (shipping boxes are baled for collection);
 - Lead/acid batteries (most of which are returned to the supplier in lieu of core charges); and
 - Used oil (picked up as a non-hazardous waste by DRMS).

7 Tires are turned in to tire suppliers in lieu of core charges by the personnel responsible for maintenance of 8 the specific vehicle. Only brown glass, uncommon on-site, has a ready market in Colorado, and plastic 9 does not have local market potential at this time. Additionally, laser printer and copier toner cartridges 10 are turned in for recycling from all workcenters that use them. Bond paper and printer toner cartridges 11 are found in virtually every workcenter. Spent fluorescent light tubes and non-lead/acid batteries, which 12 are managed and disposed of through the Defense Reutilization Marketing Office (DRMO) as "universal 13 waste", are also ultimately recycled.

Medical wastes generated by the Dental Clinic are disposed through a separate contract at Peterson AFB (PAFB).

16 3.7 LAND USE

Land use surrounding the CMAFS has grown significantly in the past decade. The parcel of land to the 17 north-northeast (formerly part of the Star Ranch) has been subdivided into single-family residential 18 19 housing. A portion of the land adjacent to the south-southeast (formerly the JL Ranch) has been 20 designated as Chevenne Mountain State Park. The park consists of 1,680 acres (680 hectares) and its 21 ecology is similar to CMAFS. Commercial broadcast antennas are located to the west atop the summit of 22 Chevenne Mountain. A limited access road leading to the antenna farm is located north-northeast of the 23 site. Lands to the west of the CMAFS boundary are managed by the United States Forest Service, Pike's 24 Peak District of the Pike National Forest and consist of undeveloped mountain land. Fort Carson Army 25 post is located to the east across State Highway 115.

26 3.8 NOISE

27 Sound travels through the air as waves of minute air pressures fluctuations caused by vibration. Sound 28 level meters measure pressure fluctuations from sound waves, with separate measurements made for 29 different sound frequency ranges. These measurements are reported in a logarithmic decibel (dB) scale. 30 Because the human ear is not equally sensitive to all frequencies, the "A-weighted" decibel scale (dBA) is 31 used to weight the meter's response to approximate that of the human ear. Average noise exposure over a 24-hour period often is presented as a day-night average noise level (Ldn). Ldn values are calculated 32 33 from 24-hour averages in which nighttime values (10:00 PM to 7:00 AM) are increased 10 dB to account for the greater disturbance potential from nighttime noises. 34

35

1

3

45

6

Example noise levels include the following: military aircraft at 500 feet is 100 dB, a heavy truck at 50 feet is 80 dB, military aircraft at 10,000 feet is 70 dB, rural daytime outdoors is 40dB, and a bedroom at night is 40 dB. Relative to human receptors, noise levels under 40 dBA are considered quiet, 46 to 65 dBA are considered moderately loud, 66 to 75 dBA are considered loud, and 76 to 110 dBA are considered very loud and 111 dBA and above are considered uncomfortable. Sounds over 80 dB are considered dangerous. Land uses that are considered to be sensitive to noise are known as sensitive receptors. Sensitive receptors can include residences, schools, libraries, hospitals, and other land uses where people 1 general expect and need a quiet environment. There are no on-site sensitive receptors at CMAFS. Off-site

2 sensitive receptors include the adjacent residential developments.

The federal Noise Control Act of 1972 (42 U.S.C. § 4901 *et seq*. [1994]) requires that all federal agencies comply with applicable federal, state, interstate, and local noise control regulations. Local and state agencies have no applicable authority over military aircraft operations. The State of Colorado passed statute 25-12-103 on maximum permissible noise levels. It states that if sound levels of a noise are above the given limit when 25 feet away, than the noise is public nuisance. The established noise limits are in Table 3-7.

Table 3-7 Colorado Noise Limits	1
---------------------------------	---

7:00 AM to 7:00 PM	7:00 PM to 7:00 AM
55 dBA	50 dBA
60 dBA	55dBA
70 dBA	65 dBA
80 dBA	75 dBA
	55 dBA 60 dBA 70 dBA

10 "Residential" refers to an area where houses, apartments, etc are located. It may or may not include 11 hotels/motels or limited office development, but does not include retail shops. "Commercial" refers to an area where offices, clinics, shopping centers, hotels/motels, gas stations, retail or commercial businesses 12 are located. It could also mean a commercially dominated area where multiple-unit dwellings (i.e. 13 apartments) are located. A "Light Industrial" area is one in which there are clean and quite research 14 15 laboratories, warehouses, clean and quiet industrial activities, or where the general environment is free from concentrated industry. "Industrial" is an area where noise restrictions on industry are necessary to 16 17 protect neighboring properties. The only zones near the boundary of CMAFS are residential.

The Air Installation Compatibility Use Zone/Land (AICUZ) is the DOD instruction on managing noise and flight safety for installations with airfields (DoD Instruction 4165.57 and AFI 32-7063). A helipad is located adjacent to NORAD Road and is used approximately 6 times a year. Other than the occasional use of this helipad, CMAFS does not conduct air operations on the installation; therefore, AICUZ is not applicable.

23

24 The most prevalent sources of noise at CMAFS include vehicle traffic and landscaping and maintenance 25 equipment.

26 3.9 SOCIOECONOMICS

27 The area identified as the affected environment for socioeconomic analysis is both the City of Colorado Springs and El Paso County because most of the effects on the population and economy would occur in 28 29 this area. Data for Colorado Springs is included because it is the largest city in El Paso County and the 30 city nearest to CMAFS. Other nearby cities includes Manitou Springs to the north and Fountain to the 31 east. Nearby counties include Teller (approximately 5 miles west), Fremont (approximately 9 miles southwest) and Pueblo (approximately 15 miles south). Data for the state of Colorado is presented for 32 comparison. Socioeconomic resources include data on population, employment, income, housing and 33 34 schools. Population includes the number of residents in the area and the recent change in population 35 growth. Employment data includes labor sectors, labor force and statistics on unemployment. Income information is provided as an annual total by county and as per capita income. Housing information is 36

⁹

presented as total units, owner occupancy rate, and vacancy information. School enrollment and capacity
are important considerations in assessing the effects of potential socioeconomic growth.

3 3.9.1 Population

The 2006 population of Colorado Springs was approximately 399,452, representing an increase of 14.8 percent over the 2000 population. By comparison, the population of El Paso County grew by approximately 13.6 and Colorado grew by 13.0 percent over the same 6 year period (Table 3-8). Colorado Springs had a population density of 2,147 persons per square mile in 2006. El Paso County had a population density of approximately 276 persons per square mile in 2006.

9

Table 3-8 Population for the Region of Interest

Region	2000	2006	Percent Change
City of Colorado Springs	360,890	399,452	14.8
El Paso County	516,929	587,272	13.6
State of Colorado	4,301,261	4,861,515	13.0

Source: U.S. Census Bureau 2000a, b, and c and 2006a, b, and c

10

11 3.9.2 Employment

Table 3-9 shows that Colorado Springs had a civilian labor force of approximately 213,248 people with approximately 12,410, or 5.8 percent, unemployed. The unemployment rate in Colorado Springs, El Paso County, and the state of Colorado has increased from 2000 to 2006. This increase was highest in El Paso County where the unemployment rate grew by 1.6 percent. In Colorado Springs and the state, the unemployment rate grew by 1.2 percent.

17

18

Table 3-9 Civilian Labor Force General Employment (2000, 2006)

	TENT MADA	Employed	Unemployed	Unemployment Rate
Region	(2000/2006)	(2000/2006)	(2000/2006)	(2000/2006)
City of Colorado Springs	185,047/213,248	176,527/200,838	8,520/12,410	4.6/5.8
El Paso County	256,858/294,319	244,913/275,848	11,945/18,471	4.7/6.3
State of Colorado	2,304,454/2,574,211	2,205,194/2,432, 651	99,260/141,56 0	4.3/5.5

Source: U.S. Census Bureau 2000a, b, and c, and 2006a, b, and c

Table 3-10 shows the breakdown of employment by industry sector in Colorado Springs, El Paso County, and the state of Colorado. The largest portion of the City, as well as the County and State, was employed in educational services and health care and social assistance. Professional, scientific, management, administrative, and waste management service are the second most common sources of employment. Retail trade is the third. Colorado Springs and El Paso County are similar in the percentage of the civilian work force in each sector. Less than one percentage point separates the two for each sector. More variation exists between the City and County and the State of Colorado, although they don't vary more than two percentage points. A larger percentage of the population of Colorado Springs and El Paso County are employed by the Armed Forces than by the state. The armed services employed approximately 3.3 percent of the population of Colorado Springs and 6.9 percent of El Paso County. By comparison, less than 1 percent of the population of the State was employed in this sector. Although there are several military installations (Fort Carson, CMAFS, PAFB) in Colorado, the majority of the military infrastructure is located in El Paso County. CMAFS employs approximately 800 civilian and military personnel, which represents 4 percent of El Paso County residents.

Table 3-10 Industry (2006)

City of C	olorado Springs	El Paso County	State of Colorado
	(% of Total)	(% of Total)	(% of Total)
Agriculture, forestry, fishing, hunting, and mining	858 (0.4)	1,314 (0.5)	49,133 (2.0)
Construction	16,531(8.2)	22,842 (8.3)	244,324 (10.0)
Manufacturing	14,968 (7.5)	21,956 (8.0)	176,431 (7.3)
Wholesale trade	5,141 (2.6)	6,165 (2.2)	75,794 (3.1)
Retail trade	24,070 (12.0)	32,369 (11.7)	278,109 (11.4)
Transportation, warehousing, and utilities	7,301 (3.6)	12,278 (4.5)	112,093 (4.6)
Information	6,566 (3.3)	8,558 (3.1)	88,911 (3.7)
Finance and insurance, and real estate and rental and leasing	18,450 (9.2)	24,827 (9.0)	200,870 (8.3)
Professional, scientific, management, administrative, and waste management services	27,656 (13.8)	37,651 (13.6)	302,168 (12.4)
Educational services, health care, and social assistance	35,196 (17.5)	48,455 (17.6)	430,446 (17.7)
Arts, entertainment, recreation, accommodation, and food services	21,493 (10.7)	26,809 (9.7)	237,443 (9.8)
Other services, except public administration	11,506 (5.7)	16,070 (5.8)	122,491 (5.0)
Public administration	11,102 (5.5)	16,554 (6.0)	114,438 (4.7)
Civilian Labor Force Total	198,726 (100)	273,736 (100)	2,430,539 (100)
Armed Forces*	6,883 (3.3)	20,559 (6.9)	25,008 (0.01)

Source: U.S. Census Bureau 2006a, b, and c

Note: *Percentage of the Armed Forces based on civilian labor force total and armed forces total combined.

9 3.9.3 Income

10 Table 3-11 shows the total personal income and the per capita income for El Paso County and for the

11 State of Colorado. Per capita income for El Paso County in 2006 was \$34,189. This income level ranked

12 as 22nd in the state out of 63 counties and was approximately 87 percent of the state average of \$39,491.

13 Between 2005 and 2006 per capita income grew by 3.2 percent, and over the ten year period between

from 1997 to 2006 it grew by 30.0 percent. The state average per capita income increased 4.8 percent from 2005 to 2006 and approximately 32.0 percent from 1997 to 2006. In 2006 El Paso County ranked 4th in the State in total personal income. Total personal income in El Paso County grew 5.4 percent between 2005 and 2006 and grew by 41.4 percent between 1997 and 2006. For the state of Colorado, total personal income grew 6.6 percent from 2005 to 2006 and 42.7 percent from 1997 to 2006.

	Table	3-11		
Total Personal	Income a	and Pe	er Capita	Income.

El Paso County and State of Colorado

196	Total Personal I	Total Personal Income (\$1,000s)		come (\$)
Year	El Paso County	Colorado	El Paso County	Colorado
1997	11,646,647	107,873,315	23,918	26,846
1998	12,887,952	118,492,917	25,876	28,784
1999	13,940,945	128,859,584	27,387	30,492
2000	15,373,444	144,393,687	29,595	33,361
2001	16,121,711	152,699,639	30,097	34,438
2002	16,299,408	153,066,193	29,907	33,956
2003	16,619,056	154,828,993	30,137	33,989
2004	17,540,888	163,736,180	31,360	35,523
2005	18,794,435	175,734,027	33,082	37,600
2006	19,862,031	188,221,719	34,189	39,491

Source: U.S. Bureau of Economic Analysis 2006

9 3.9.4 Housing

Table 3-12 shows the total housing units in the City, County and State for 2006. Colorado Springs had the lowest owner occupancy rate (64.4 percent) and the lowest owner vacancy rate (1 percent). The owner vacancy rate for Colorado Springs and El Paso County are lower than the State of Colorado. The median home values for the Colorado Springs (\$204,900) and El Paso County (\$208,200) are lower by approximately \$30,000 than the State median home price (\$232,900).

15

6

7

8

Table 3-12 Housing 2006

City o	f Colorado Springs	El Paso County	State of Colorado
Total Units	174,676	239,752	2,095,235
Owner Occupancy Rate	64.4	68.7	68.7
Vacancy: Owner/Renter	1/11.8	1.5/11.8	2.7/8.4
Number Vacant	15,352	20,906	248,247

Source: U.S. Census Bureau 2006a, b, and c

16 3.9.5 Schools/Education

17 El Paso County has 15 school districts and Colorado Springs has 6 of those districts. School enrollment in

18 2006 for Colorado Springs was 73,497 (K-12) compared with 71,243 children enrolled in 2000. Table

19 3-13 shows the education attainment for the City of Colorado Springs, El Paso County, and the State of

20 Colorado.

1

City o	f Colorado Springs (% of Total)	El Paso County (% of Total)	State of Colorado (% of Total)
Less than 9th grade	7,995 (3.1)	9,925 (2.7)	142,859 (4.6)
9th to 12th grade, no diploma	14,683 (5.6)	20,943 (5.7)	229,951 (7.4)
High School Graduate (include equivalency)	55,689 (21.4)	83,744 (22.7)	765,604 (24.5)
Some College, No Degree	65,182 (25.1)	91,450 (24.8)	672,932 (21.5)
Associate's Degree	24,225 (9.3)	35,685 (9.6)	235,974 (7.6)
Bachelor's Degree	59,116 (22.7)	81,389 (22.1)	685,736 (22.0)
Graduate or Professional Degree	33,302 (12.8)	45,722 (12.4)	385,444 (12.4)
Total Population Over 25 Years Old	258,077 (100)	366,743 (100)	3,116,385 (100)
Source: U.S. Census Bureau 2006a h and c			

Table 3-13 Educational Attainment (2006)

Source: U.S. Census Bureau 2006a, b, and c

2 3.10 ENVIRONMENTAL JUSTICE AND THE PROTECTION OF CHILDREN

3 Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, directs federal agencies to, "make achieving environmental justice part of its 4 mission by identifying and addressing, as appropriate, disproportionately high and adverse high and 5 6 adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income populations in the United States and its territories." Environmental justice 7 8 means that, to the greatest extent practicable and permitted by law, all populations are provided the 9 opportunity to comment before decisions are made; allowed to share in and not excluded from benefits of 10 actions; and are not affected in a disproportionately high and adverse manner by government programs and activities affecting human health or the environment (EO 12898 and Department Regulation 5600-2). 11 Tables 3-14 and 3-15 provide data on potential environmental justice populations in the area of CMAFS. 12 13 Table 3-14 shows the race and ethnicity characteristics of the population of Colorado Springs. Black or African Americans formed the dominant racial minority in 2006, and the Hispanic or Latino group was 14 the dominant ethnic minority. Low-income households can be subject to disproportionate environmental 15 16 effects. Poverty statistics can provide a measure of the distribution and prevalence of low income levels.

- 17
- 18

Table 3-14

Total Population of Colorado Springs by Race/Ethnicity (2000, 2006)

Race/Ethnicity	2000	2006	Percent of Total (2000/2006)
White	291,095	314,025	80.6/78.6
Black or African American	23,677	27,273	6.6/6.8
Native American	3,175	3,766	0.9/0.9
Asian	10,179	11,063	2.8/2.8
Native Hawaiian and Other Pacific Islander	764	762	0.2/0.2
Table 3-14, Page 1 of 2			

	ı.	

Table 3-14 (Continued)

Total Population of Colorado Springs by Race/Ethnicity (2000, 2006)

2000	2006	Percent of Total (2000/2006)
43,330	56,489	12.0/14.1
18,091	25,380	5.0/6.4
13,909	17,183	3.9/4.3
360,890	399,452	
	43,330 18,091 13,909	43,330 56,489 18,091 25,380 13,909 17,183

Table 3-14, Page 2 of 2

Source: U.S. Census Bureau 2000a, 2006a

Note: *In combination with other races. The categorical figures/percentages may add up to more than 100 percent because individuals may report more than one race.

Table 3-15 provides poverty statistics for Colorado Springs, El Paso County, and the state of Colorado. The poverty rate for families, individual persons, and children under the age of 18 in Colorado Springs is slightly higher than for all of El Paso County and Iower than for all of Colorado. Between 2000 and 2006

6 the rates of families, individuals, and children under the age of 18 living in poverty has risen in the city,

7 county, and state. The largest jump between 2000 and 2006 occurred with the percentage of children that

8 are living in poverty.

9

Table 3-15 Poverty Statistics (2000, 2006)

Alter week and the state of the second	City of Colorado Springs (percent)	El Paso County (percent)	State of Colorado (percent)	
Families living in poverty	6.1/6.3	5.7/5.9	6.2/8.4	
Population living in poverty	8.7/9.6	8.0/9.0	9.3/12	
Children under 18 living in poverty	10.8/11.8	10.0/11.1	10.8/15.7	

Source: U.S. Census Bureau 2000a, b, and c and 2006a, b, and c

Executive Order 13045, Protection of Children from Environmental Health Risks and Safety Risks (62 10 Federal Register, 19885), states that each federal agency shall make it a high priority to identify and 11 assess environmental health risks and safety risks that may disproportionately affect children and ensure 12 that its policies, programs, activities, and standards address disproportionate risks to children that result 13 from environmental health risks or safety risks. Environmental health risks and safety risks mean risks to 14 15 health or to safety that are attributable to products or substances that the child is likely to come into contact with or to ingest. These risks are the most likely to be encountered in areas where children are 16 most likely to be present, for example schools, playgrounds, day care facilities, and neighborhoods with 17 high concentrations of children. While children may occasionally visit CMAFS, there is no housing there, 18 19 and no children are there regularly. However, there may be families with children living in the housing 20 community next to the northeast boundary of CMAFS.

1 3.11 UTILITIES/INFRASTRUCTURE

2 Infrastructure typically refers to the systems and physical structures that enable a population in a specified 3 area to function. Components of the infrastructure at CMAFS include transportation and circulation (i.e., 4 movement of vehicles), and utilities (communication lines, drinking water, electricity, natural gas, solid 5 waste handling and wastewater). Transportation, circulation, communication lines, drinking water, 6 electricity, natural gas, solid waste handling and wastewater would not be significantly affected by the 7 Proposed Action or Action Alternatives. Therefore, this EA focuses on electricity and electrical power. 8 Outside sources of electric power used by CMAFS are provided by WAPA and by CSU which also 9 provides electrical power to the Colorado Springs metropolitan area. Colorado Springs Utilities has a mix 10 of self-generated hydroelectric power (34-MW); purchased wind power (1-MW); and customer provided 11 photovoltaic power (189 kilowatts in 2008, and approximately 400 kilowatts in 2009). Colorado Springs 12 Utilities have purchased RECs and are in the process of purchasing 50 MW of electricity from wind 13 generating sources. Colorado Springs Utilities has been able to meet their Renewable Energy requirement 14 in 2008 with self-generated hydroelectric power.

WAPA is the preferred source during "peak" consumption times due to lower peak cost. From CSU, power is fed from the Bradley Power Plant, and from the Drake Power Plant, both by underground lines.

power is red from the Bradley Power Franc, and from the Drake Power Franc, both by underground fines.

The production of power over time is measured in megawatt-hours (MWh) or kilowatt-hours (kWh) of energy. A kilowatt is one thousand watts. Production of power at the rate of 1 MW for 1 hour equals 1

19 MWh of energy. The rate of consumption of commercial electricity for CMAFS is approximately 2,555

20 megawatt hours per month (MWh/mo) to 2,717 MWh/mo as shown in Table 3-16.

21 CMAFS has six 1,750 kilowatt diesel generators for backup that would be used if electricity from WAPA 22 and CSU were to fail.

23

Table 3-16 Electrical Power Consumption at CMAFS

Source	Units	2005	2006	2007	2008	2009
WAPA	MWh	5,569	5,505	5,510	5,510	5,495
CSU	MWh	25,778	27,051	27,096	27,224	27,631
Total	MWh	31,347	32,556	32,606	32,734	33,126
Monthly	MWh	2,612	2,713	2,717	2,728	2,761

Notes: CSU – Colorado Springs Utilities

MWh - megawatts hours

WAPA - Western Area Power Administration

28 3.12 VISUAL/AESTHETICS

Scenic resources are considered to be a critical natural resource along the Colorado Front Range. In 1995, El Paso County joined with Boulder, Douglas, Jefferson, and Larimer Counties to better understand and communicate the significance of the Front Range Mountain Backdrop (FRMB) and to cooperate in conserving lands within the FRMB. The northern portion of Cheyenne Mountain, south to the CMAFS boundary, including a small area of the extreme northern portion of the installation, is included in a "critical preservation candidate lands" designation. The El Paso County Parks Department also has identified Cheyenne Mountain as a "significant landmark." Cheyenne Mountain State Park was acquired

in part because of the "dramatic visual backdrop" of Cheyenne Mountain. The scenic resources at
CMAFS are thus of obvious and significant importance, both locally and regionally.

3 3.13 WATER RESOURCES

4 Seasonal runoff occurs along the upper portion of NORAD Road, upslope from the South Portal Road. This runoff creates a small area where salt cedar (Tamarisk sp.) is present along the road margin. Another 5 area has vegetation and moist soils that indicate a seep, but flowing water has not been observed. This 6 7 area is to the east (down slope) of the northern portion of South Portal Road and west (upslope) of the 8 Building 300 compound and the overflow parking area/alternate helipad. Surface drainage at CMAFS 9 flows generally eastward along several unnamed, ephemeral stream channels. These seasonal flows for three intermittent drainages lead off-site to the watershed of Fountain Creek (but not directly into 10 11 Fountain Creek, which is east of Fort Carson) and eventually to the Arkansas River. One of these drainages originates in a steep ravine next to the North Portal. These streams typically do not flow during 12 13 parts of the winter and dry months. Spring water discharging from the interior storm drainage system under a National Pollutant Discharge Elimination System permit evaporates or is absorbed into the soil 14 15 and does not appear to exit the CMAFS property. The nearest permanent water source is Rock Creek, 16 approximately 2.5 miles (four kilometers) south of the CMAFS boundary. Water is diverted through 17 curbs and gutters, beaver slides, and parking lot diversion ponds.

18 There are no surface water impoundments on CMAFS property; CMAFS is not located within the 19 100-year or 500-year floodplain.

Carl page excentionally left March

part base and be "described about behind of a part of the base of the ment of the second of the seco

2108-10612-0512-07

How as if is some is reaching the ingree prefirm of both 11 have, applicate their lines for and reaches there is an interm or the same is reaching when where the solution of a same bet around there is not reaches to the inmeters or the same is been shorted of the constraint partners (stored partners to the solution). (in the source of the is the solution of the solution of

 Yinde altrice weiter mean representants on CVAPA processy: [20,342] if an Intelect altric the Million Advance Volument Locatedain.

This page intentionally left blank.

1 4.0 ENVIRONMENTAL CONSEQUENCES

2 Chapter 4.0 presents the environmental consequences of the Proposed Action and Alternatives for each 3 resource area discussed in Chapter 3.0. To define the consequences, this chapter evaluated the project 4 elements described in Chapter 2.0 against the affected environment identified in Chapter 3.0. Cumulative 5 effects of the Proposed Action with other past, current, and foreseeable future actions are presented at the 6 end of Chapter 4.0. The following assumptions we made to determine the environmental consequences:

- 7 •
- The project would take up to one year to complete.
- Up to 15 workers would be required for grading, digging, leveling, construction of concrete pads, fencing, battery storage building, and solar array panels.

10 4.1 AIR QUALITY

The ROI for air quality was defined as El Paso County, Colorado where the 1-MW solar array would be constructed and operated. To evaluate air emissions and their impact on the ROI, the emissions associated with the project activities were compared to total emissions on a pollutant by pollutant basis. Potential impacts to air quality would be identified as any pollutants that exceeds the *de minimus* threshold or permit threshold.

16 This project requires a Conformity Review because the project falls within the Colorado Springs Carbon 17 Dioxide Maintenance Area. Estimated CO emissions from the Proposed Action would be well below the 18 conformity *de minimus* threshold of 100 tons per year. Consequently, a Record of Non-applicability 19 (RONA) has been prepared for the Proposed Action and is included in Appendix A.

20 4.1.1 Proposed Action

The air quality analysis focused on emissions associated with construction of the solar array, including the 21 22 transportation-related emissions. Under the Proposed Action a 10.3 acre site adjacent to Norad Road 23 would need to be prepared for installation of the solar panels. This would require clearing and grading 24 the Site and involve the use large equipment such as bulldozers, loaders, backhoes, brush chippers, drill 25 rigs, forklifts, and trenchers. In addition, powered hand tools, such as chain saws, would be required 26 during the site preparation phase. Emissions from construction activities were estimated using a detailed 27 spreadsheet model that evaluates multiple phases of construction activity and that accounts for federal 28 emission standards applicable for non-road equipment. For purposes of this analysis, overall construction 29 activity was divided into four phases: site preparation; trenching and installation of solar array footings, 30 equipment pads, and construction of a storage building; installation of the solar array; and installation of 31 security fencing. Emissions from construction worker traffic and construction-related truck traffic were estimated using vehicle emission rates from the MOBILE6.2 model. Table 4-1 summarizes criteria 32 33 pollutant emissions from construction activity under the Proposed Action. Table 4-2 summarizes GHG 34 emissions from this activity. Calculations are provided in Appendix A.

Calculated air emissions for El Paso County are shown in Table 4-3. Estimated construction activity emissions of criteria pollutants are less than one ton for any individual pollutant over the entire construction period. These emissions are a very small fraction of exiting CMAFS and El Paso County emissions. Estimated GHG emissions from criteria pollutants are numerically much larger than emissions of criteria pollutants. However, the emissions are extremely small, 0.00000075 percent of the estimated 129.7 million tons per year carbon dioxide equivalents (CO₂e), when compared to statewide GHG

emissions for Colorado in 2005 (CDPHE 2007). Although the impact of GHG resulting from the Proposed Action would be less than significant when compared to the mega-million tons of emissions created by other sources, it is still an issue of global concern. To help minimize these potential impacts on GHG, truck drivers and equipment operators would be instructed to limit truck idle times and the Contracting Officer would require the construction contractors have their engines optimized for fuel efficiency.

7

Table 4-1

8

Estimated Criteria Pollutant Emissions for Construct	ion Activity-Proposed Action
--	------------------------------

Construction	Construction Activity Emissions (tons)								
Phase	VOC	NOx	СО	SO ₂	PM10	PM2.5			
Site Preparation	0.12	0.04	0.21	0.01	0.03	0.01			
Trenching, Pads, and Building	0.02	0.11	0.26	0.02	0.02	0.01			
Panel Array Installation	0.01	0.07	0.07	0.02	0.01	0.01			
Fencing	0.002	0.02	0.01	0.003	0.01	0.002			
On-Site Total	0.16	0.24	0.56	0.04	0.07	0.03			
Vehicle Traffic	0.07	0.27	0.82	nd	nd	nd			
Total	0.23	0.51	1.38	0.04	0.07	0.03			

9 Notes:

10 CO-carbon monoxide

11 NO_x – nitrogen oxides

12 PM₁₀ - particulate matter less than 10 microns in diameter

13 PM2.5 - particulate matter less than 2.5 microns in diameter

14 SO₂ – sulfur dioxide

15 VOC - volatile organic compounds

16 17

Estimated Greenhouse Gas Emissions for Construction Activity-Proposed Action

Table 4-2

Dettern of the second	Construction Activity Emissions (tons)								
Construction Phase	Carbon Dioxide	Methane	Nitrous Oxide	Carbon Dioxide Equivalents (CO ₂ e)					
Site Preparation	5.0	0.0002	0.0002	5.0					
Trenching, Pads, and Building	15.2	0.001	0.001	15.3					
Panel Array Installation	11.3	0.001	0.0004	11.4					
Fencing	2.0	0.0001	0.0001	2.0					
On-Site Total	33.4	0.002	0001	33.8					
Vehicle Traffic	63.5	nd	nd	63.5					
Total	96.9	0.002	0.0001	97.3					

If land disturbance is less than one acre or less than six months in duration, then the project may be exempt from El Paso County or State of Colorado construction permit requirements. In March 2009 El Paso County eliminated its air quality program due to budget cuts and unstable funding (El Paso County Department of Health and Environment 2009). The Colorado Air Pollution Emission Notice (APEN) states that land development projects that are greater than or equal to 25 continuous acres and/or six months in duration would require a permit.

Consequently, construction permits from the State of Colorado would be required if the project period of
performance is longer than six months.

9 Grading emissions would cause an increase in particulate matter emissions; however, these emissions 10 would not exceed the 100 tons per year (tpy) *de minimus* threshold. Particulate matter emissions would 11 be minimized by implementing dust control measures in accordance with best management practices.

12 Carbon monoxide emissions would be expected to remain below the 100 tpy de minimus threshold.

Table 4-3

13 14

Emission Inventory for El Paso County (2007)

Category	Benzene	СО	NOx	PM10	SO ₂	VOC
	and a second state					
Agriculture		and the second		108.58	Sec. of March	
Aircraft	1.67	1,064.31	147.29	18.70	6.48	56.98
Biogenic	0.00	2,792.14	929.75	0.00	0.00	17,644.65
Commercial Cooking	2.67	70.69	LUNCTED SOM	185.49	inverse and	24.72
Construction	the second	dantes shires	store formers a	10,745.36	LUCCESS.	ing toolig
Forest and Prescribed Fire	4.50	1,315.00	51.66	131.53	8.44	59.78
Fuel Combustion	0.01	328.76	764.50	4.45	9.67	44.62
Highway Vehicles	171.88	90,269.87	9,628.58	230.09	73.09	6,098.37
Non-Road	76.21	36,802.20	2,729.85	250.42	82.24	2,317.15
Oil & Gas point	0.04	81.66	55.44	0.24	0.49	1.42
Other Point Sources	23.32	1,430.62	7,197.77	1,277.40	6,927.05	2,521.16
Railroads	0.09	83.98	836.34	20.89	44.23	36.10
Road Dust				4,058.03		
Solvent Utilization	33.12					1,429.12
Structure Fires		35.38	0.82	6.37		6.49
Surface Coating						1,008.85
Wood burning	181.17	28,301.36	301.71	4,002.98	61.88	8,649.20
Total	494.65	162,576.00	22,643.71	21,040.53	7,213.56	39,898.62

15 Source: Colorado Department of Public Health and Environment 2008

16 Notes:

- 17 CO carbon monoxide
- 18 NO_x nitrogen oxides

19 PM₁₀ - particulate matter less than 10 microns in diameter

20 PM2.5 - particulate matter less than 2.5 microns in diameter

21 SO₂ - sulfur dioxide

22 VOC – volatile organic compounds

1 Emissions from mobile sources and fugitive sources would produce localized, short-term elevated air

2 pollution concentrations which would not result in any long-term impacts on air quality in the Colorado

3 Springs or El Paso County areas. The emissions of PM_{10} and CO created during clearing and grading

4 activities would be temporary and are not expected to adversely affect air quality or visibility.

5 Once the solar arrays have been constructed, the land surrounding the arrays would require fugitive dust 6 suppression measures until the disturbed areas have been stabilized by paving, landscaping, or other 7 methods. Particulate matter emissions would be controlled by applying adequate amounts of water, 8 chemical stabilization, or other effective dust suppression methods. With the use of dust suppressants and 9 long-term plans to stabilize graded soils within and around the solar arrays, long-term adverse impacts on

10 air quality would not be expected.

11 4.1.2 Alternative A

12 Impacts on air quality would be similar to the impacts identified for the Proposed Action if Alternative A 13 is implemented. Although the total site acreage for Alternative A is only 0.2 acre smaller than the 14 Proposed Action site, Alternative A would require more brush and tree clearing than the Proposed Action. 15 As a result, emissions from Alternative A would be slightly higher than those for the Proposed Action. Table 4-4 summarizes criteria pollutant emissions from Alternative A. Table 4-5 summarizes GHG 16 17 emissions from Alternative A. Impacts on air quality would last for the duration of the construction phase 18 of the project; however, these impacts would be temporary and less than significant. Particulate matter 19 emissions would be minimized through dust suppression methods.

20 Estimated GHG emissions from criteria pollutants are numerically much larger than emissions of criteria 21 pollutants. However, the emissions are extremely small, 0.00000076 percent of the estimated 129.7 22 million tons per year CO₂e, when compared to statewide greenhouse gas emissions for Colorado in 2005 23 (CDPHE 2007). Although the impact of GHG resulting from the implementing Alternative A would also 24 be less than significant when compared to the mega-million tons of emissions created by other sources, it 25 is still an issue of global concern. To help minimize these potential impacts on green house gases, truck 26 drivers and equipment operators would be instructed to limit truck idle times and the Contracting Officer 27 would require the construction contractors have their engines optimized for fuel efficiency.

28 Calculations are provided in Appendix A.

Ta	abl	le	4	4

1 2

Estimated Criteria Pollutant Emissions for Construction Activity - Alternative A

Construction	Construction Activity Emissions (tons)								
Phase	VOC	NOx	CO	SO ₂	PM10	PM _{2.4}			
Site Preparation	0.14	0.05	0.25	0.01	0.03	0.01			
Trenching, Pads, and Building	0.02	0.11	0.26	0.02	0.02	0.01			
Panel Array Installation	0.01	0.07	0.07	0.02	0.01	0.01			
Fencing	0.002	0.02	0.01	0.003	0.01	0.002			
On-Site Total	0.18	0.25	0.59	0.05	0.07	0.03			
Vehicle Traffic	0.07	0.28	0.83	nd	nd	nd			
Total	0.25	0.53	1.42	0.05	0.07	0.03			

3 Notes:

CO - carbon monoxide

NOx - nitrogen oxides

PM10 - particulate matter less than 10 microns in diameter

PM2.5 - particulate matter less than 2.5 microns in diameter

45678 SO₂ - sulfur dioxide 9

VOC - volatile organic compounds

10

11

Estimated Greenhouse Gas Emissions for Construction Activity - Alternative A

Table 4-5

	Construction Activity Emissions (tons)								
Construction Phase	Carbon Dioxide	Methane	Nitrous Oxide	Carbon Dioxide Equivalents (CO ₂ e)					
Site Preparation	5.8	0.0002	0.0002	5.9					
Trenching, Pads, and Building	15.2	0.001	0.001	15.3					
Panel Array Installation	11.3	0.001	0.0004	11.4					
Fencing	2.0	0.0001	0.0001	2.0					
On-Site Total	34.3	0.002	0001	34.7					
Vehicle Traffic	64.6	nd	nd	64.6					
Total	98.9	0.002	0.001	99.3					

12 4.1.3 Alternative B

13 Impacts on air quality would be similar to the impacts identified for the Proposed Action if Alternative B is implemented. Alternative B is approximately 7 acres larger than the Proposed Action and Alternative 14 A sites. In addition, Alternative B has more brush and tree cover than the other sites. Consequently, 15 emissions from Alternative B would be somewhat greater than those from the Proposed Action or 16

Alternative A sites. Table 4-6 summarizes criteria pollutant emissions from Alternative B. Table 4-7 1

2 summarizes GHG emissions from Alternative B. Impacts on air quality would last for the duration of the

3 construction phase of the project; however, these impacts would be temporary and less than significant. 4 Particulate matter emissions would be minimized through dust suppression methods.

5

Table 4-6

6

Estimated Criteria Pollutant Emissions for Construction Activity - Alternative B

Construction	Emissions (tons) From Construction Activity								
Phase	VOC	NOx	CO	SO ₂	PM10	PM _{2.5}			
Site Preparation	0.20	0.07	0.35	0.01	0.06	0.02			
Trenching, Pads, and Building	0.02	0.11	0.26	0.02	0.02	0.01			
Panel Array Installation	0.01	0.07	0.07	0.02	0.01	0.01			
Fencing	0.003	0.02	0.01	0.003	0.01	0.003			
On-Site Total	0.24	0.27	0.70	0.05	0.10	0.04			
Vehicle Traffic	0.08	0.30	0.89	nd	nd	nd			
Total	0.32	0.57	1.59	0.05	0.10	0.04			

Notes:

CO - carbon monoxide

789 NO_x - nitrogen oxides

10 PM10 - particulate matter less than 10 microns in diameter

PM2.5 - particulate matter less than 2.5 microns in diameter

11 12 SO2 - sulfur dioxide

13 VOC - volatile organic compounds

- 14
- 15

Г	a	b	1	e	4	-	7

Estimated Greenhouse Gas Emissions for Construction Activity - Alternative B

	Emissions (tons) From Construction Activity					
Construction Phase	Carbon Dioxide	Methane	Nitrous Oxide	Carbon Dioxide Equivalents (CO ₂ e)		
Site Preparation	8.3	0.0004	0.0003	8.4		
Trenching, Pads, and Building	15.2	0.001	0.001	15.3		
Panel Array Installation	11.3	0.001	0.0004	11.4		
Fencing	2.6	0.0001	0.0001	2.7		
On-Site Total	37.4	0.002	0001	37.8		
Vehicle Traffic	69.7	nd	nd	69.7		
Total	107.1	0.002	0.001	107.5		

Estimated GHG emissions from criteria pollutants are numerically much larger than emissions of criteria pollutants. However, the emissions are extremely small, 0.00000083 percent of the estimated 129.7 million tons per year CO₂e, when compared to statewide greenhouse gas emissions for Colorado in 2005 (CDPHE 2007).

5 Calculations are shown in Appendix A.

6 4.1.4 No-Action Alternative

7 If the No-Action Alternative is implemented, no new air emissions would be generated. Impacts on air quality would be less than significant and no mitigation measures would be required.

9 4.2 BIOLOGICAL RESOURCES

10 Federal agencies are required by Section 7 of the Endangered Species Act (ESA) to assess the effect of any project on federally-listed threatened and endangered species. Under Section 7, consultation with the 11 12 USFWS is required for federal projects if such actions could directly or indirectly affect listed species or 13 destroy or adversely modify critical habitat. A conference is required if such action could directly or 14 indirectly affect a proposed listed species or proposed critical habitat. It is Air Force policy to follow 15 management goals and objectives specified in Integrated Natural Resources Management Plans (INRMP), 16 and to consider special-status species, sensitive communities, and habitats recognized by state and local 17 agencies when evaluating impacts of a project.

Impacts on biological resources would be considered significant if special-status species or their habitats, as designated by federal, state, or local agencies, were affected directly or indirectly by project-related activities. In addition, impacts to biological resources would be considered significant if substantial loss, reduction, degradation, disturbance, or fragmentation occurred in native species habitats or in their populations. These could be short- or long-term impacts; for example, short-term or temporary impacts may occur during project implementation, and long-term impacts may result from loss of vegetation and thereby loss of the capacity of habitats to support wildlife populations.

25 4.2.1 Proposed Action

If the Proposed Action is implemented, biological resources would be expected to experience less than significant short-term impacts during the grading and construction of the solar arrays and minor long-term adverse impacts resulting from loss of suitable habitat for foraging. Mitigation measures would be implemented as described in Section 4.2.5.

30 4.2.1.1 Vegetation

31 Implementing the Proposed Action would result in the removal of up to 10.3 acres of sparsely populated Oak-Pine woodlands and Oak Scrub (Figure 4-1). Several individuals of a plant species could be lost 32 during the clearing and grading of the Site; however, it is unlikely that an entire plant species would be 33 lost because of the distribution of the species in other locations on CMAFS and El Paso County. 34 35 Removing vegetation would result in loss of habitat, a long-term adverse impact. However, because this 36 Site is located adjacent to other buildings and parking areas on CMAFS, and no threatened, endangered, 37 or species of special concern are known to be located within the 10.3 acres, removal of the vegetation 38 would be unlikely to result in a significant adverse impact on biological resources.

Five of the seven known invasive plant species listed in Section 3.2.1.5 are located on or adjacent to the 1 2 Proposed Action Site (CMAFS 2005). To prevent the spreading of these invasive plant species mitigation 3 measures identified in the Invasive Plant Species Control Plan (CMAFS 2005). Specific control measures 4 include requiring contractors to clean equipment and vehicles with high pressure air or water prior to use 5 in the project area and before leaving unavoidable infestation zones in the construction areas. Cleaning should concentrate on the undercarriage, axles, frames, cross members, on and under steps, running 6 7 boards, and front bumper/brush guard assemblies. Vehicle cabs should be swept and refuse disposed of in 8 waste receptacles. Care should be taken that wash water be retained on-site to prevent invasive plant 9 material transport.

10

11

12

Figure 4-1

Vegetation at the Proposed Action Site

Additionally the contractor would be required to use certified invasive weed-free imported materials (e.g., straw bales, fill material, and erosion control seed) when and where needed during construction, reclamation, maintenance, and operations.

16 4.2.1.2 Wildlife

Implementation of the Proposed Action would likely result in short-term, temporary impacts on common 17 18 wildlife species expected to be in the local area as identified in Section 3.2. Several individuals of a 19 wildlife species could be lost during the clearing and grading of the Site due to crushing, digging, or 20 burial; however, it is unlikely that an entire wildlife species would be lost because of the limited activities 21 and distribution of the species in other locations. Increased soil erosion in adjacent habitats may also 22 result in a loss of individuals. Construction noise and disturbance may also result in the abandonment of 23 any breeding and/or roosting sites that could potentially occur in the trees or rock outcroppings and the 24 disruption of foraging or roosting activities. These impacts may occur within the Site as well as within 25 adjacent habitats. These impacts would be localized, and due to the abundance of surrounding habitat, 26 most wildlife species would likely move to suitable habitats that are out of the area of disturbance. 27 Additional fencing at the Site might create a barrier to wildlife movement, causing a short-term

population displacement or alteration of population distribution. Because of the location of the Proposed
Action Site, inside the curve of Norad Road and adjacent to buildings and parking areas, it is unlikely that

wildlife would migrate or forage in this area on a regular basis. Consequently, while the potential exists,
the impacts on wildlife are not expected to be significant.

5 4.2.1.3 Special Status Species

Implementing the Proposed Action would not be expected to significantly affect any special status species
that might occur at CMAFS.

8 Federal and State-Listed Threatened and Endangered Species

9 No federally listed threatened or endangered species are known to occur on CMAFS; therefore, there 10 would be no effects on these species. Although suitable habitat for the federally and state-listed Mexican Spotted Owl exists on CMAFS, the available habitat is not critical habitat and the presence of this species 11 has not been documented at CMAFS (Engineering and Environment 2005). According to 50 CFR Part 12 17.95(b) critical habitat exists adjacent to CMAFS; however, the removal of the sparse vegetation from 13 14 the Proposed Action site would not be considered primary constituent elements related to forest structure or primary constituent elements related to maintenance of adequate prey species. CMAFS will conduct 15 a Mexican Spotted-Owl study in 2010 prior to any construction on the solar array to verify that the 16 species would not be located on the Proposed Action or Alternative Action sites. 17

18 The only other state-listed threatened or endangered species with habitat near CMAFS are the Bald Eagle 19 and Burrowing Owl. Suitable Bald Eagle habitat is within 5 miles of CMAFS and suitable Burrowing 20 Owl habitat would include grasslands on and in the vicinity of CMAFS. However, like the Mexican 21 Spotted Owl, no Bald Eagles or Burrowing Owls have been observed at CMAFS; therefore, no effects on 22 state-listed threatened or endangered species would likely occur from the Proposed Action.

23 State-Listed Species of Concern and Rare and Sensitive Species

As shown on Table 3-5 and 3-6 there are several state-listed species of concern and rare and sensitive species with suitable habitat on or in the vicinity of CMAFS. Only the peregrine falcon, golden eagle, prairie falcon, and Virginia's warbler have been previously observed at CMAFS. Clearing and grading the Proposed Action Site would remove habitat that could be used by these species; however, the habitat is not identified as critical habitat and the species are likely to move to other nearby habitat. Construction activities may also result in abandonment of any breeding and/or roosting sites that could potentially occur in the trees, rock outcroppings, or grasslands, or disrupt foraging activities.

CMAFS would maintain awareness of the presence of state-listed species of concern and rare and sensitive species and determine whether the management of listed species would mutually benefit these species as required by the INRMP.

34 4.2.2 Alternative A

35 Under Alternative A, impacts on biological resources would be similar to the impacts identified for the 36 Proposed Action. No significant impacts would be expected. Mitigation and minimization measures 37 would be implemented as described in Section 4.2.5.

1 4.2.2.1 Vegetation

2 Implementing Alternative A would result in the removal of up to 10.1 acres of Oak Scrub and Oak-Pine 3 woodlands (Figure 4-2). The vegetation is primarily Oak Scrub with stands averaging 6 to 10 feet in 4 height. Although the Alternative A Site is smaller than the Proposed Action Site, more vegetation and 5 habitat would be removed if this Alternative were implemented. Removing vegetation would result in loss of habitat, a long-term adverse impact. However, because this Site is located adjacent to privately-6 7 owned family housing at Broadmoor Bluffs and segregated from other habitat by Norad Road, and because no threatened, endangered, or species of special concern are known to be located within the 10.1 8 9 acres, removal of the vegetation would be unlikely to result in a significant adverse impact on biological 10 resources.

11

- 12
- 13

Figure 4-2

Vegetation at the Alternative A Site

14 Like the Proposed Action Site, five of the seven known invasive plant species listed in Section 3.2.1.5 are 15 located on or adjacent to the Proposed Action Site (CMAFS 2005). To prevent the spreading of these 16 invasive plant species mitigation measures identified in the Invasive Plant Species Control Plan (CMAFS

17 2005) would be implemented.

18 4.2.2.2 Wildlife

Impacts on wildlife would be similar to the impacts identified for the Proposed Action if Alternative A were implemented. Because of the location of the Alternative A Site, inside the curve of Norad Road and adjacent to privately-owned family housing at Broadmoor Bluffs, it is unlikely that wildlife would migrate or forage in this area on a regular basis. Consequently, while the potential exists, the impacts on wildlife are not expected to be significant.

1 4.2.2.3 Special Status Species

Impacts on special status species would be the same for Alternative A as identified for the Proposed
Action. No significant impacts would be expected.

4 4.2.3 Alternative B

5 Under Alternative B, impacts on biological resources would be similar to the impacts identified for the 6 Proposed Action. No significant impacts would be expected. Mitigation and minimization measures 7 would be implemented as described in Section 4.2.5.

8 4.2.3.1 Vegetation

9 Implementing Alternative B would result in the removal up to 17.2 acres of Oak Scrub, Oak-Pine woodlands, and Pine Woodlands (Figure 4-3). The vegetation is primarily Oak Scrub with sparse stands averaging 6 to 10 feet in height. Less than 2.5 acres of Pine Woodlands would be removed. Removing vegetation would result in loss of habitat, a long-term adverse impact. Because no threatened, endangered, or species of special concern are known to be located within the 17.2 acres, removal of the vegetation would be unlikely to result in a significant adverse impact on biological resources.

15 16

17

Figure 4-3 Vegetation at the Alternative B Site

Environmental Assessment for a 1-Megawatt Solar Array at Cheyenne Mountain AFS, CO

1 Like the Proposed Action and Alternative A sites, five of the seven known invasive plant species listed in

2 Section 3.2.1.5 are located on or adjacent to the Alternative B Site (CMAFS 2005). To prevent the

3 spreading of these invasive plant species mitigation measures identified in the Invasive Plant Species

4 Control Plan (CMAFS 2005) would be implemented.

5 4.2.3.2 Wildlife

Impacts on wildlife would be similar to the impacts identified for the Proposed Action if Alternative B 6 were implemented. Because the Alternative B Site is located away from previously disturbed areas, 7 8 buildings, parking areas, roads, and privately-owned family housing areas at Broadmoor Bluffs, wildlife 9 is more likely to migrate, forage, or be found at this Site. Construction noise and disturbance may also result in abandonment of any breeding and/or roosting sites that could potentially occur in the trees or 10 rock outcroppings, or disrupt foraging activities. These impacts may occur within the Site as well as 11 The installation of fencing at the Site would create a barrier to wildlife 12 within adjacent habitats. 13 movement and could cause a short- term population displacement or alteration of population distribution. These impacts would be localized, and due to the abundance of surrounding habitat, most wildlife species 14 would likely move to suitable habitats that are out of the area of disturbance. Consequently, while 15 16 potential impacts exist, the impacts on wildlife are not expected to be significant because of the 17 abundance of similar habitat.

18 4.2.3.3 Special Status Species

19 Impacts on special status species would be the same for Alternative B as identified for the Proposed 20 Action. No significant impacts would be expected.

21 4.2.4 No-Action Alternative

If the No-Action Alternative is implemented, no new impacts on biological resources would occur. Impacts on biological resources would be less than significant and no additional mitigation or minimization measures would be required.

25 4.2.5 Significance/ Minimization Measures

Although no significant impacts are expected, CMAFS will implement minimization measures to reduce the potential for any adverse impacts resulting from the Proposed Action or Alternatives. This will include use of control measures to prevent the spread of invasive plant species and monitoring the selected Site during clearing and grading activities for threatened or endangered species that might migrate through the area.

31 4.3 CLIMATE

32 Implementing the Proposed Action or any of the Alternatives would not impact climate in the region. 33 Climate could impact clearing, grading, construction, and operation of the solar array. These impacts 34 would be seasonal. Rain or snow could delay activities; however, the delays would be expected to be 35 temporary. Minimization measures to reduce any impact resulting from runoff of rain and snow melt are 36 addressed in Section 4.5

36 addressed in Section 4.5.

1 4.4 CULTURAL RESOURCES

2 4.4.1 Proposed Action

3 The Proposed Action would have no impact on cultural resources at CMAFS because no prehistoric or historic sites, sacred sites, or traditional cultural properties have been identified at CMAFS. 4 Additionally, the Proposed Action would not have any effect on any landscapes that have cultural 5 significance to any Native American tribes. Cultural resources are managed under the Integrated Cultural 6 7 Resources Management Plan. Although there are no cultural sites, traditional cultural properties, or 8 Native American landscapes that would potentially be affected, consultation with the State Historic 9 Property Office under Section 106 will be required. Copies of this EA will be distributed to the Native 10 American tribal representatives responsible for the Colorado Springs area. No additional mitigation 11 measures would be needed.

12 4.4.2 Alternative A

Impacts on cultural resources would be the same for Alternative A as identified for the Proposed Action.
Since there would be no impacts, no mitigation would be required.

15 4.4.3 Alternative B

Impacts on cultural resources would be the same for Alternative B as identified for the Proposed Action.
Since there would be no impacts, no mitigation would be required.

18 4.4.4 No-Action Alternative

19 If the No-Action Alternative is implemented no new impacts on cultural resources would occur. Impacts 20 on cultural resources would be less than significant and no new mitigation or minimization measures 21 would be required.

22 4.4.5 Significance/ Minimization Measures

23 Since there are no impacts expected, no mitigation or minimization measures would be required.

24 4.5 GEOLOGY AND SOILS

A project may result in significant geologic impact if it increases the likelihood of or results in exposure to earthquake damage, slope failure, foundation instability, land subsidence, or other severe geologic hazards. It also may be considered a significant geologic impact if it results in loss of aesthetic value from a unique landform, loss of mineral resources, substantially affects the contaminant distribution and fate and transport of soils, or results in severe erosion or sedimentation.

30 4.5.1 Proposed Action

The Proposed Action would have no long-term adverse effects on geology and soils at CMAFS because the area cleared and graded would be stabilized with compacted fill to provide the base for construction of the solar array. Due to the sandy loamy soils and steep topography at CMAFS, short-term impacts resulting from erosion could occur because of the water runoff occurring during and after rain and snow melt events. Removing trees, bushes, and grasses during construction could also cause or accelerate

surface erosion. Mitigation measures described in Section 4.5.5 would be implemented to limit these
potential short-term adverse impacts.

3 4.5.1.1 Geological Hazards

4 CMAFS is located in an area of low seismic activity; consequently, the potential for effects from 5 earthquakes would be assumed to be low. Since earthquakes could occur it would be prudent to design 6 the solar array as necessary to ensure the construction meets International Building Codes 2003 standards. 7 The solar panels would be bolted to concrete pads that would minimize movement during any seismic 8 event. Consequently, the potential impact from geological hazards would be considered less than 9 significant. Mitigation measures described in Section 4.5.5 would be implemented to limit the potential 10 impacts that may occur as a result of seismic events.

11 4.5.2 Alternative A

12 The potential impacts on geology and soils would be similar if Alternative A were implemented instead of 13 the Proposed Action. Mitigation measures described in Section 4.5.5 would be implemented to limit 14 these potential short-term adverse impacts.

15 4.5.3 Alternative B

16 The potential impacts on geology and soils would be similar if Alternative B were implemented instead of 17 the Proposed Action or Alternative A. The Ute Pass fault passes north to south through the Alternative B 18 Site. Mitigation measures described in Section 4.5.5 would be implemented to limit these potential short-

19 term adverse impacts.

20 4.5.4 No-Action Alternative

If the No-Action Alternative is implemented no new impacts on geology and soils would occur. Impacts on geology and soils would be less than significant and no additional mitigation or minimization measures would be required.

24 4.5.5 Significance/Mitigation Measures

Design goals will be established that will include the following. The construction will conform to local building codes providing "Life Safety," meaning that the building may collapse eventually but not during an earthquake, the building will be designed for repairable structural damage, required evacuation of the building, and acceptable loss of business for stipulated number of days. The array will be designed for repairable nonstructural damage, partial or full evacuation, and acceptable loss of business for stipulated number of days due to repair.

To prevent any negative effects from project activities, CMAFS would implement State of Colorado best management practices to limit soil movement, stabilize runoff, and control sedimentation. Provisions would be included in the CMAFS Operations and Maintenance Contract to plant grasses, wildflowers, and indigenous vegetation, as well as place boulders and rock lining along the drainage swales along each side of Norad Road. Runoff would be diverted into these drainage swales.

1 4.6 HAZARDOUS MATERIALS/HAZARDOUS WASTE/SOLID WASTE

2 4.6.1 Proposed Action

3 4.6.1.1 Hazardous Materials and Hazardous Waste

4 Construction of the solar array may require the use of hazardous materials by contractor personnel. 5 Project contractors would comply with federal, state, and local environmental laws and would employ 6 affirmative procurement practices when economically and technically feasible. All hazardous materials 7 and construction debris generated by the construction would be handled, stored, and disposed of in 8 accordance with federal, state, and local regulations and laws. Permits for handling and disposal of 9 hazardous materials would be the responsibility of the contractor conducting the work.

10

In the event of a fuel spill during construction, the contractor would be responsible for its containment, clean up, and related disposal costs. The contractor would have sufficient spill supplies readily available on the pumping vehicle and/or at the site to contain any spillage. In the event of a contractor related release, the contractor would contact the Environmental Coordinator, MSG/CEAN and take appropriate actions to correct its cause and prevent future occurrences.

16 4.6.1.2 Solid Waste

17 Construction of the proposed solar array would generate minimal quantities of solid wastes. The 18 construction comprises ground disturbance and digging for concrete footings, transmission lines, and 19 fencing. Concrete footings would be installed and solar panels would be assembled. Solid wastes that 20 would be generated may include concrete, scrap wire, and packing materials. Contractors would be directed to recycle materials to the maximum extent possible, thereby reducing the amount of debris 21 disposed of in landfills. Materials not suitable for recycling would be taken to a landfill permitted to 22 handle construction debris wastes. The proper management and recycling or disposal of construction 23 debris would be the responsibility of construction contractors. The amount of waste generated by the 24 25 Proposed Action would not have a significant impact to the operating life of the landfill. No environmental impacts to solid waste management would be expected from implementation of the 26 27 Proposed Action.

28 4.6.2 Alternative A

Impacts on hazardous materials, hazardous waste, and solid waste would be similar if Alternative A were implemented instead of the Proposed Action. No significant impacts would be expected and no mitigation measures would be required.

32 4.6.3 Alternative B

33 Impacts on hazardous materials, hazardous waste, and solid waste would be similar if Alternative B were

34 implemented instead of the Proposed Action or Alternative A. No significant impacts would be expected;

35 no mitigation measures would be required.

1 No-Action Alternative 4.6.4

If the No-Action Alternative is implemented no new impacts on hazardous materials, hazardous waste, or 2 3 solid waste would occur. Impacts on hazardous materials, hazardous waste, or solid waste would be less 4 than significant. Therefore, no mitigation measures would be required.

5 4.7 LAND USE

6 4.7.1 **Proposed** Action

7 Implementing the Proposed Action would be compatible with both current and planned land use. Land 8 use associated with the project location site would be converted from open space and future facility 9 development to light industrial use. El Paso County classifies the area for military use. Since there would be no change in ownership and land use would be consistent with the CMAFS General Plan, no 10 significant impacts on land use would be expected to occur if the Proposed Action were implemented. No 11 12 mitigation measures would be required.

13 4.7.2 Alternative A

14 Implementing the Alternative A would also be compatible with both current and planned land use. Land use associated with the project location site would be converted from open space to light industrial. A 15 16 helicopter pad would be adjacent to the Alternative B Site. A letter from the Division of Aeronautics, 17 California Department of Transportation to the California Energy Commission indicated that no unusual turbulence or thermal plume occurred during test flights flying at 200 to 300 feet above solar arrays. The 18 19 reflectivity was sharper and cleaner than flying over a smooth water surface; however, the flash and distraction level appeared to be the same for four different observers in two separate aircraft. It was 20 21 indicated that a Notice of Proposed Construction or Alteration (Form 7460-1) would need to be submitted 22 to the Federal Aviation Administration (FAA) prior to beginning construction.

23 4.7.3 Alternative B

24 Implementing Alternative B would be compatible with both current and planned land use. Land use 25 associated with the project location site would be converted from open space and light industrial use to 26 light industrial use. El Paso County classifies the area for military use. Since there would be no change 27 in ownership and land use would be consistent with the CMAFS General Plan, no significant impacts on 28 land use would be expected to occur if the Proposed Action were implemented. No mitigation measures 29 would be required.

30 4.7.4 **No-Action Alternative**

31 If the No-Action Alternative is implemented no new impacts on land use would occur. Impacts on land 32 use would be less than significant and no additional mitigation or minimization measures would be 33

required.

34 4.7.5 Significance/Mitigation Measures

35 If Alternative A is selected for implementation CMAFS will submit a request for a Notice of Proposed Construction or Alteration (Form 7460-1) to the FAA before any actions are initiated. Because of the 36 37 limited use of the helipad (less than once per month) and availability of an alternative helicopter landing

38 site, the impact on land use would be less than significant. There would be no change in the land use

classification if the Proposed Action or any of the Alternatives are implemented; consequently, no
additional mitigation would be needed.

3 4.8 NOISE

4 4.8.1 Proposed Action

5 Two types of noise would be expected to occur as a result of the construction and operation of a solar 6 array at CMAFS; construction noise and transformer noise.

7 Construction work would cause an increase in sound above normal ambient noise levels. Noise would 8 emanate from trucks, excavators, bulldozers, chain saws, augers, brush chippers, welders, saws, trenchers, and other pieces of equipment that would be used to clear, grade, and prepare the ground surface and 9 10 during installation of the solar panels. Most construction equipment usually exceeds the ambient noise level by 20 to 25 A-weighted decibels (dBA) in urban areas and 30 to 35 dBA in suburban areas. 11 12 Construction at the Proposed Action Site would likely result in temporary noise impacts for the housing 13 areas located northeast of the Site. Noise generation would last only for the duration of construction 14 activities and would be isolated to normal working hours (between 7:00 AM and 5:00 PM). Because the 15 Proposed Action Site has a sparse covering of vegetation and is fairly flat, the use of heavy equipment 16 would be estimated to last for less than 2 months. Predicted noise levels for construction equipment are 17 shown in Table 4-8. The State of Colorado has established permissible noise levels for residential, commercial, light industrial and industrial areas, as shown in Table 4-9. The city of Colorado Springs 18 19 has adopted these same permissible noise levels.

Short-term increases in noise levels would characterize the clearing and construction phase of the project. Based on the Inverse Square Law of Noise Propagation (Harris 1991) noise levels would be reduced by 6 dBA as the source distance is doubled (e.g., at 50 feet -6 dBA, 100 feet -12 dBA, at 200 feet -18 dBA, at 400 feet -24dBA, and at 800 feet -30 dBA). Average construction site noise level of 67 dBA at 400 feet (Table 4-8) would be expected and construction noise would equal approximately 59 dBA at 1,000 feet. At 1,000 feet, noise levels would approximate those of an active commercial area (United States Department of Interior 2009).

- 27
- 28

		18	ible 4-8		
Noise Levels	Associated	with	Typical	Construction	Equipment

Equipment	Noise Level (dBA)					
	At Site	50 feet ¹	100 feet	200 feet	400 feet	800 feet
Average Construction Site	91	85	79	73	67	61
Auger Drill Rig	91	85	76	70	64	58
Backhoe	86	80	74	68	62	56
Chain Saw	91	85	79	73	67	61
Compressor (Air)	86	80	74	68	62	56
Crane	91	85	79	73	67	61
Dozer	91	85	79	73	67	61
Dump Truck	90	84	78	76	70	64
Grader	91	85	79	73	67	61
Rock Drill	91	85	79	73	67	61

29 Source: Department of Transportation, Federal Highway Administration 2009

1 2

Table 4-9

Permissible Noise Levels for Colorado

7	7:00 AM to 7:00 PM	7:00 PM to 7:00 AM	
Zone	dl	BA	
Residential	55	50	
Commercial	60	55	
Light industrial	70	65	
Industrial	80	75	

3 Source: CMAFS 2009

The noise ordnance for Colorado Springs states that construction projects shall be limited to the maximum permissible noise levels specified in the industrial zones for the period within which construction is to be completed pursuant to any applicable construction permit issued by proper authority, or if no time limitation is imposed, then for a reasonable period of time for completion of the project

8 (Colorado Springs Ordnance 96-41 and 01-42).

9 Although CMAFS is not located within the city of Colorado Springs, residential areas that are within the 10 incorporated area are adjacent to the base and would be affected by the noise created during project 11 activities. The eastern edge of the Proposed Action Site is approximately 450 feet from the closest 12 residential area that backs up to Norad Road. At that distance noise levels would be less than or equal to 13 the permissible industrial limits for 7 AM to 7 PM or 7 PM to 7 AM as shown in Table 4-9.

Noise impacts from vehicles transporting workers and equipment would not be expected to be significant. Access to CMAFS via Colorado Highway 115 is restricted to authorized traffic (Figure 4-4). It is estimated that 6 additional vehicles would transport work crews of up to 10 workers to the Site each morning. Heavy equipment required for the project would be mobilized on Site and demobilized via Norad Road once it is no longer needed on site. Noise impacts resulting from adding less than a dozen vehicles per day would not be expected to create a significant impact on noise on the area.

1

2

3

CHEYENNE MOUNTAIN AFS, COLORADO

Figure 4-4

Restricted Access to CMAFS via Norad Road

Transformers are designed for the transmission and distribution of electrical power. Apart from satisfying this functional performance objective, the operation of a transformer may induce annoying acoustic radiation. Transformer acoustic noise is a hum characterized by spectral spikes at harmonics of the fundamental frequency (100 Hertz [Hz] /120 Hz) which is twice the line supply frequency. The transformer's low frequency tonal noise components would be the major source of annoyance and intrusion, potentially invoking noise complaints from nearby residents.

10 Transformers typically generate a noise level ranging from 60 to 80 dBA. Transformer noise will "transmit" and attenuate at different rates depending on the transformer size, voltage rating, and design. 11 12 Few complaints from nearby residents are typically received concerning substations with transformers of 13 less than 10 megavolt amperes (MVA) capacity, except in urban areas with little or no buffers. 14 Complaints are more common at substations with transformers sizes of 20 to 150 MVA, especially within 15 the first 500 to 600 feet (McDonald 2003). At 80 dBA the noise would be attenuated to less than 55 dBA 16 at the closest residence without any mitigation (i.e., equipment placement, barriers or walls). Since the 17 transformer would be expected to be a 15 kilovolts amperes (kVA) input with a capacity of 34.5 kVA 18 (same as current WAPA and CSU source), but still a hundred times smaller that the 10 MVA transformer 19 that does not typically impact residents, it is unlikely the transformer noise would be significant.

Environmental Assessment for a 1-Megawatt Solar Array at Cheyenne Mountain AFS, CO

1 4.8.2 Alternative A

The noise levels generated at the Site during clearing and construction activities would be the same as for 2 3 the Proposed Action Site. The Alternative A Site would be located approximately 100 feet from the 4 nearest residence. The average noise level at 100 feet from the Alternative A Site would be below the 5 industrial standard used for daytime construction projects, but would be above nighttime permissible 6 limits. Consequently, Site clearing and construction activities would be limited to 7 AM to 7 PM if 7 Alternative A were implemented. Road noise levels from worker commute and equipment mobilization 8 and demobilization would be the same as identified for the Proposed Action and no additional mitigation 9 measures would be required. Transformer noise would be the same as describe for the Proposed Action; 10 however, because the closest home is 100 feet from Alternative A Site transformer noise could be heard. Consequently, mitigation measures would be implemented to reduce the potential noise below 50 dBA, a 11 12 less than significant noise level for residential areas at night

13 4.8.3 Alternative B

The noise levels generated at the Site during clearing and construction activities would be the same as for 14 15 the Proposed Action Site. The Alternative B Site would be located over 3,500 feet from the nearest 16 residence. The average noise level at 3,500 feet from the Alternative B Site would be well below the 17 industrial standards used for daytime or nighttime construction projects; and below the noise level produced by any of the equipment used on the project. Because the noise resulting from clearing, 18 19 construction, and traffic would be less than significant, no mitigation measures would be required during 20 this phase of the project. Transformer noise would not be expected to be heard once the solar array is 21 operational because of the distance from any potential receptors. Noise levels would be expected to be 22 below 38 dBA at 3,500 feet from the closest residence.

23 4.8.4 No-Action Alternative

If the No-Action Alternative is implemented, no new impacts on noise would occur. Impacts on noise would be less than significant and no additional mitigation or minimization measures would be required.

26 4.8.5 Significance/Mitigation Measures

27 The following mitigation measures would be implemented to ensure noise resulting from the construction 28 and operation of the solar array would not result in a significant impact on the human or natural 29 environment. Site preparation and construction activities would be limited to normal working hours of 7 30 AM to 7 PM. The transformer and uninterrupted power supply (UPS) building will be located at least 31 500 feet from the closest residence. Properly constructed sound barriers can provide several decibels of 32 reduction in the noise level. An effective barrier involves a proper application of basic physics of 33 transmission loss through masses, sound diffraction around obstacles, standing waves behind reflectors, 34 and adsorption at surfaces. A sound barrier made of vegetation or concrete block would be installed 35 around the building, if necessary to attenuate the sound emanating from the building.

36 4.9 SOCIOECONOMICS

37 4.9.1 Proposed Action, Alternative A, or Alternative B

38 Under the Proposed Action, Alternative A, or Alternative B the potential impacts on socioeconomics 39 would be the same. Potential socioeconomic effects were assessed in terms of direct effects that would

be created during preparation and construction of the Site and indirect effects that would result from the
operation of the Site.

3 The construction of the solar array would provide a short-term beneficial impact on socioeconomics. 4 Construction activities would generate 13 jobs during the construction activities, 11 jobs in support of 5 equipment and supply chain activities, and 12 jobs from induced impacts. Annual on-site labor impacts would result in 3 jobs for maintenance of the solar array and 2 to 3 jobs through local revenue and supply 6 7 chain impacts and induced impacts. Total construction costs for labor and materials would be 8 approximately \$1.3 million and the annual operating costs are estimated at \$238,219 (National Renewable 9 Energy Laboratory 2009). Based on the employment in El Paso County and City of Colorado Springs 10 adding 13 jobs would be an increase of less than 0.1 percent, a less than significant number. Since the 11 workforce would be expected to come from the local Colorado Springs area, impacts on housing, schools 12 and the local population would not be expected to be significant. No mitigation measures would be 13 required.

14 4.9.2 No-Action Alternative

15 If the No-Action Alternative is implemented, no new impacts on socioeconomics would occur. Impacts 16 on socioeconomics would be less than significant and no mitigation or minimization measures would be 17 required.

18 4.10 ENVIRONMENTAL JUSTICE AND THE PROTECTION OF CHILDREN

19 Implementing the Proposed Action or Alternatives would result in adverse environmental effects if any of 20 the following criteria was identified:

- Significant impacts on employment, income, and population; or
- Pose potentially substantial harm to the safety of children during construction activities.

23 4.10.1 Proposed Action, Alternative A, and Alternative B

24 Environmental Justice addresses the disproportionately high and adverse human health or environmental 25 effects on minority and low-income populations. Determination of disproportionately high and adverse human health effects are established by identifying the impact on the natural or physical environment and 26 27 influence on minority and low-income populations. The construction and subsequent operation of the solar array would not create any significant adverse impacts on human health because construction 28 29 activities would be limited to sites located on the base where minority or low-income populations are not present, and therefore, would not be affected. Access to the base is restricted to authorized personnel. 30 31 The construction areas would be restricted to effectively bar any person, including children, from 32 unauthorized access. To minimize any potential for human health effect that might result from using any hazardous materials, Hazmat would be managed per State of Colorado best management practices and Air 33 Force pollution prevention guidelines. The completed solar array would have a fence surrounding the 34 area as a safeguard to prevent unauthorized access. Implementing the Proposed Action or Alternatives 35 36 would not displace any low-income or minority populations; consequently, no significant impact on 37 environmental justice would be expected and no mitigation would be required.

The Proposed Action and Alternative Action Sites are within the boundaries of a restricted access military facility where children are not typically present except at scheduled events at Mountain Man Park or the

1 use of the playground, picnic pavilion, and outside volleyball courts. There are no housing areas within 2 the fenceline of the base. Because the Site is approximately 2 miles from the nearest public highway, it is 3 unlikely that children would have any reason to visit the Site, except as the children of workers that may be part of the construction activities. Consequently, workers would be reminded that their children 4 5 should not be brought to the Site because of the inherent dangers associated with site grading, clearing, 6 and construction. The Site Safety Plan would consider adequate measures to protect children during the 7 implementation of the Proposed Action or Alternatives. Such measures may include barrier fencing and warning signs at the project Site and implementation of dust control measures. Implementing a Site 8 9 Safety Plan would mitigate any potential impacts on children to a less than significant level.

10 4.10.2 No-Action Alternative

11 If the No-Action Alternative is implemented no new impacts on geology and soils would occur. Impacts 12 on geology and soils would be less than significant and no additional mitigation or minimization 13 measures would be required.

14 4.11 UTILITIES/INFRASTRUCTURE

15 Issues and concerns regarding the impacts on infrastructure are typically related to the availability of 16 necessary infrastructure to support the project and the creation of excess demand on those systems such 17 that they must be changed of undated

17 that they must be changed of updated.

18 4.11.1 Proposed Action, Alternative A, and Alternative B

19 Potential effects on utilities and infrastructure if the Proposed Action or Alternatives would be 20 implemented include effects on electricity and traffic.

21 The main purpose of the Proposed Action, Alternative A, or Alternative B, would be to increase the use 22 of renewable energy and reduce the demand on regional power sources. Based on annual energy 23 demands as shown in Table 3-16, the operation of a 1-MW solar array would result in approximately 24 3,106 MW per year produced from the solar array (Appendix B, Table B-1), or 9.5 percent of the yearly 25 demand. Since the numerical goal would be to generate not less than 7.5 percent of the demand in fiscal 26 year 2013 and beyond, implementing the Proposed Action, Alternative A, or Alternative B would achieve 27 the goal. Cost for electricity in 2007 was approximately \$1,666,000 (CMAFS Energy Manager 2009). 28 Savings would be expected to be approximately \$158,270 per year, based on cost for 2007.

20 Savings would be expected to be approximately \$150,270 per year, based on cost tor 2007.

Impacts on traffic would be the same for the Proposed Action, Alternative A, and Alternative B. Minor adverse impacts on traffic would occur when the construction equipment is mobilized and demobilized and when the construction workers arrive and depart the selected Site; however, because the number of

32 vehicles and pieces of construction is small, no significant impacts would be expected.

33 4.11.2 No-Action Alternative

34 If the No-Action Alternative is implemented no new impacts on utilities and infrastructure would occur.

35 Impacts on utilities and infrastructure would be less than significant and no additional mitigation or 36 minimization measures would be required

36 minimization measures would be required.

1 4.11.3 Significance/Mitigation Measures

To reduce the potential impact of mobilization and demobilization from the Site on other base traffic, the heavy equipment (i.e., bulldozer, crane, dump trucks, backhoe, grader auger drill rig, etc.) will enter Norad Road after 8:30 AM and leave the base prior to 4:00 PM.

5 4.12 VISUAL RESOURCES/AESTHETICS

6 4.12.1 Proposed Action

7 The solar array would be oriented in a flat-plane southerly-facing direction. Because the elevation of the 8 array would be over 500 feet above highway traffic, oriented in a flat plane (parallel to the ground 9 surface), and behind buildings to the east of the Site, it is unlikely that it would be visible except to 10 anyone above the plane of the array. Consequently, impacts on visual resources and aesthetics would be 11 expected to be less than significant. No mitigation measures would be required.

12 4.12.2 Alternative A

The Alternative A Site would not be behind any buildings, but the solar array would be partially hidden from view by stands of 6 to 10 feet high oak scrub to the east and south of the Site. It is unlikely that it would be visible except to anyone above the plane of the array. Consequently, impacts on visual resources and aesthetics would be expected to be less than significant. No mitigation measures would be required.

18 4.12.3 Alternative B

The Alternative B Site would not be behind any buildings, but the solar array would be partially hidden from view by stands of 6 to 10 feet high oak scrub, oak-pine and pine woodlands to the east and south of the Site. It is unlikely that it would be visible except to anyone above the plane of the array. Consequently, impacts on visual resources and aesthetics would be expected to be less than significant. No mitigation measures would be required.

24 4.12.4 No-Action Alternative

25 If the No-Action Alternative is implemented no new impacts on visual resources and aesthetics would 26 occur. Impacts on utilities and infrastructure would be less than significant and no additional mitigation 27 or minimization measures would be required.

28 4.13 WATER RESOURCES

29 4.13.1 Proposed Action, Alternative A, and Alternative B

Under the Proposed Action, Alternative A, or Alternative B adverse short-term and long-term effects on water resources at CMAFS would be unlikely. The Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management directs federal agencies to work with states, tribes, local governments, private landowners, and other interested parties to take a watershed approach to federal land and resource management. This policy guides the protection of water quality and aquatic ecosystem health by reducing polluted runoff, improving natural resources stewardship, and increasing public involvement in watershed management on federal lands. Watershed planning includes assessing and
U.S. AIR FORCE

1 monitoring watershed conditions and identifying priority watersheds on which to focus financial aid and

2 other resources. Due to steep topography and the absence of any permanent water sources on CMAFS.

3 water resources management is limited to controlling the velocity and volume of storm water runoff carrying sediment to Fountain Creek. Erosion control measures at CMAFS are directed at the right-of-

- 4
- 5 way for Norad Road.

6 Clearing, grading, and Site preparation associated with the Proposed Action or Alternatives could 7 potentially affect storm water runoff. Potential impacts include disruption of natural drainage patterns, 8 contamination entering storm water discharge, or heavy sediment loading from construction activities. 9 Mitigation measures as described in Section 4.13.3 would be implemented to reduce the potential impacts

10 on water resources to a less than significant level.

11 4.13.2 No-Action Alternative

If the No-Action Alternative is implemented, no new impacts on water resources would occur. Impacts 12 on water resources would be less than significant and no additional mitigation or minimization measures 13

14 would be required.

15 Significance/Mitigation Measures 4.13.3

16 Preparing and implementing a Storm Water Pollution Prevention Plan (SWPPP) would minimize adverse 17 impacts. The SWPPP would provide construction and post-construction best management practices 18 (BMPs) intended to control and manage the loading of sediment and other pollutants to levels that would 19 minimize degradation of downstream water quality. Compliance with Air Force Engineering Technical 20 Letter (ETL) 03-1: Storm Water Construction Standards requires implementation of BMPs to reduce 21 stormwater discharges and pollutant loadings to preconstruction levels or better. A stormwater control 22 site plan would be required by the construction contractor and must contain a National Pollutant 23 Discharge Elimination System (NPDES) permit declaration.

24 A negligible increase in stormwater volume would result from the reduction of pervious surfaces on the 25 installation as a consequence of constructing concrete footings for the arrays. BMPs would be 26 implemented to reduce post-construction runoff peak flows from the increased impervious surfaces, 27 including post-construction grading to restore original grade to those areas where solar panel arrays are 28 placed and trenching for conduit occurs. No solar panel arrays or conduit would be located in drainages.

29 Construction BMPs would also be implemented to decrease sedimentation by erosion. Common BMPs 30 for construction activities would be followed to minimize erosion. Preventive BMPs include the 31 following:

32 33

34

- Limit stockpiling of materials on-site;
- Manage stockpiled materials to minimize the time between delivery and use; .
- 35 Cover stockpiled materials with tarps; .
- Install snow or silt fences around material stockpiles, storm water drainage routes, culverts, and 36 37 drains; and
 - Install hay or fabric filters, netting, and mulching around material stockpiles, storm water drainage routes, culverts, and drains.
- 39 40

38

1 Construction would slightly increase impermeable surfaces. The construction activities and the 2 associated slight increased amount of impervious surface would have adverse, negligible, short-term 3 impacts on surface waters at CMAFS.

4 All specifications and plans for proposed projects or undertakings would be reviewed for potential effects 5 on soil stability.

Post-construction revegetation of the area down-gradient of the selected Site would minimize long-term
 sediment loading and reduce runoff velocity to drainage channels and culverts.

8 4.14 CUMULATIVE EFFECTS

9 The CEQ regulations implementing the procedural provisions of NEPA define cumulative effects as 10 follows:

11

12 "The impact on the environment (that) results from the incremental impact of the action when added to 13 other past, present, and reasonably foreseeable future actions regardless of what agency (federal or non-14 federal) or person undertakes such other actions (40 CFR § 1508.7 [1997])."

15 16 The potential for construction at CMAFS is limited by constraints on available space and the existence of

17 steep slopes over much of the site. According to the General Plan, the only areas expected to experience

18 new development or changes in native vegetation from mission activities are near the office complex and

19 buildings along the access road and in the 300 area.

Three concepts would incorporate a landscaped berm along the west side of the main access road of the 300 area. The berm would help to screen the buildings from the neighboring residences at Broadmoor Bluffs.

23 However, no specific plans have been developed for future construction or growth at CMAFS. In addition to the projects ongoing at CMAFS, activities outside of the CMAFS boundaries would affect the 24 25 natural resources there. Land to the west and south of CMAFS are managed by the USFS, Pikes Peak District, and the Chevenne Mountain State Park, and no work is being planned in either of those areas. 26 North and northeast of CMAFS boundaries are residential communities. Development of these 27 28 communities is expected to continue and would likely be built up to the boundary fence. During the 29 construction phase, some wildlife species and individuals within species would likely experience an 30 increase in alert behavior, energy expenditure, and stress levels. Short-term effects on large mammals 31 such as mule deer could result in displacement or alteration of behavior to avoid human activity. Since 32 Colorado receives about 300 days of sun per year, the state provides an excellent platform for solar 33 power. Solar electric, or photovoltaic, systems convert the renewable energy of the sun into useful electricity. Other future and present day solar array projects are described below. 34

35 4.14.1 Future Solar Projects

36 4.14.1.1United States Air Force Academy (USAFA)

The United States government has contracted with Colorado Springs Utilities for the provision of reliable electric power generation through the payment of an \$18.3 million connects charge. As the provider of electric service to USAFA, Colorado Springs Utilities will design, build, own, and operate a Solar Array that will generate renewable electricity for use by the Academy. The 4- to 5-megawatt Solar Array will produce approximately 4 to 7 percent of the total power requirement for the Academy. This project will

U.S. AIR FORCE

45

6

1 be completely funded by the USAFA and will not impact Colorado Springs Utilities electric rates. The

2 plant will be funded entirely with federal stimulus money provided to the Academy. Artist rendering of

3 proposed solar array is shown in Figure 4-5.

Figure 4-5

Artist Rendition of Air Force Academy Solar Array

7 4.14.2 Colorado Springs Airport

8 The Colorado Springs Airport has requested stimulus money to design, build, and operate a PV solar 9 array that would supply up to 10 percent of the needed energy to operate the airport. The proposed PV 10 array would cost an estimated \$15 million dollars.

11 4.14.3 Current Solar Projects

3 Phases Energy Services, LLC, SunTechnics Energy Systems, Inc., and Morgan Stanley, developed, 12 13 engineered, installed and financed a 2-megawatt (MW), ground-mounted solar photovoltaic (PV) array at Fort Carson, CO. This landmark PV project covers nearly 12 acres at Fort Carson making it the largest 14 15 solar array at a U.S. Army facility and one of the largest in Colorado. The PV array will generate 3,200 16 megawatt-hours (MWh) of solar power annually, reflecting the U.S. Army's strong commitment to clean, 17 renewable energy. "Using Colorado's abundant sunshine and available federal land to continue charting a 18 new course for our energy future made sense," said Ft. Carson Utilities Manager Vince Guthrie, who was 19 instrumental in bringing solar power to Fort Carson.

20 4.14.4 Combined Effects of Solar Projects

While there may be a potential for minor adverse effects on biological resources; sitting of the projects would minimize these effects to less than significant. The beneficial effects are that these systems are easy on the environment (since solar power does not use fossil fuels, these systems are pollution free) and help meet climate change regulations, and reduces the demand for electricity from non-renewable sources.

26 Overall, the Proposed Action, Alternative A, Alternative B, or the No Action Alternative would not have

a long-term, negative cumulative effect on the resources at CMAFS or on resources in the ColoradoSprings area.

1 4.15 IRREVERSIBLE AND IRRETRIEVABLE COMMITMENTS OF RESOURCES

2 NEPA requires an analysis of significant irreversible effects. Resources that are irreversibly or irretrievably committed to a project are those that are used on a long-term or permanent basis. This 3 includes the use of nonrenewable resources such as metal, wood, fuel, paper, and other natural or cultural 4 resources. These resources are irretrievable in that they would be used for this project when they could 5 have been used for other purposes. Another impact that falls under the category of the irreversible and 6 7 irretrievable commitment of resources is the unavoidable destruction of natural resources that could limit 8 the range of potential uses of that particular environment. No irreversible or irretrievable effects are expected from implementing either of the alternatives. Under the two alternatives, cultural resources and 9 protected habitats would not be adversely affected. Likewise, both alternatives would have a negligible to 10 beneficial effect on net consumption of resources. 11

12 4.16 UNAVOIDABLE ADVERSE IMPACTS

13 Unavoidable adverse impacts would result from implementation of the Proposed Action.

14 4.16.1 Biological Resources

Under the Proposed Action, construction activities, such as grading, excavating, and contouring of the soil, would result in vegetation removal and subsequent habitat loss for wildlife. Implementation of BMPs during and after construction, re-vegetation with native species and the limited footprint of the solar array would limit potential effects resulting from construction. Although unavoidable, these impacts on wildlife at the installation would not be considered significant.

20 4.17 COMPATIBILITY OF THE PROPOSED ACTION AND ALTERNATIVES WITH 21 THE OBJECTIVES OF FEDERAL, REGIONAL, STATE, AND LOCAL LAND 22 USE PLANS, POLICIES, AND CONTROLS

Impacts on the ground surface as a result of the Proposed Action would occur entirely within the boundaries of CMAFS. Construction of the new solar array would not result in any incompatible land uses on or off installation. The proposed location was selected according to existing land use zones. Consequently, construction would not conflict with installation land use policies or objectives. The Proposed Action would not conflict with any applicable off-installation land use ordinances or designated clear zones.

29 4.18 RELATIONSHIP BETWEEN THE SHORT-TERM USE OF THE 30 ENVIRONMENT AND LONG-TERM PRODUCTIVITY

Short-term uses of the biophysical components of the human environment include direct constructionrelated disturbances and direct impacts associated with an increase in population and activity that occurs over a period of less than 2 years. Long-term uses of the human environment include those impacts that occur over a period of more than 2 years, including permanent resource loss.

Several kinds of activities could result in short-term resource uses that compromise long-term productivity. Loss of important habitats and consumptive use of high-quality water at nonrenewable rates are examples of actions that affect long-term productivity.

U.S. AIR FORCE

1 The Proposed Action would not result in a significant intensification of land use at CMAFS or the

2 surrounding area. The Proposed Action does not represent a significant loss of open space. Therefore, it

3 is anticipated that the Proposed Action would not result in any cumulative land use or aesthetic impacts.

4 Long-term productivity of this site would be increased by the development of the Proposed Action.

5 4.19 IRREVERSIBLE AND IRRETRIEVABLE COMMITMENTS OF RESOURCES

6 The irreversible environmental changes that would result from implementation of the Proposed Action 7 involve the consumption of material, energy, land, biological, and human resources. The use of these 8 resources would be permanent. Irreversible and irretrievable resource commitments are related to the use 9 of nonrenewable resources and the effects that use of these resources would have on future generations. 10 Irreversible effects primarily result from use or destruction of a specific resource that cannot be replaced 11 within a reasonable time frame (e.g., energy and minerals). Irretrievable resource commitments involve 12 the loss in value of an affected resource that cannot be restored as a result of the Proposed Action.

13 4.19.1 Material Resources

Material resources irretrievably utilized for the Proposed Action include solar panels, concrete, and various material supplies (for infrastructure). Such materials are not in short supply, would not limit other unrelated construction activities, and their irretrievable use would not be considered significant.

17 4.19.2 Energy Resources

Energy resources utilized for the Proposed Action would be irreversibly lost. These include petroleumbased products (such as gasoline and diesel), natural gas, and electricity. During construction, gasoline and diesel would be used for the operation of construction vehicles. During operation, gasoline would be used for the operation of private and government-owned vehicles. Consumption of these energy resources would not place a significant demand on their availability in the Colorado Springs area.

Therefore, no significant adverse impacts would be expected. The energy produced by the solar array would provide a long term renewable energy source for CMAFS, and would be considered beneficial.

25 4.19.3 Biological Resources

The Proposed Action would result in minimal, irretrievable loss of vegetation and wildlife habitat on the proposed construction site.

28 4.19.4 Human Resources

The use of human resources for construction and operation is considered an irretrievable loss, only in that it would preclude such personnel from engaging in other work activities. However, the use of human

31 resources for the Proposed Action represents employment opportunities, and would be considered

32 beneficial.

1 5.0 CONSULTATION AND COORDINATION

2 5.1 SCOPING

The public and other state and federal agencies were provided with an opportunity to comment on the scoping and assessment of this EA for a 1-MW Solar Array at CMAFS. A public notice was posted in the Gazette, the primary newspaper for the Colorado Springs area. No public scoping meetings were held for the preparation of this EA.

7 5.2 PUBLIC REVIEW

8 This EA was available for a 30-day public review from February 12, 2010 through March 15, 2010. A 9 Notice of Availability was posted in the Colorado Springs Gazette on Wednesday February 10, 2010 and 10 Sunday February 14, 2010. Copies of the three comments and the Air Force response are provided in 11 Appendix E.

and the second second second

CONSULTATION AND COOLDINATION

The profile and other make and federal agardian areas pre-solid with an opportunity to summarial terms wereasty too response at all his CA for a 1-MER factor trace of LMCAC . A public profession parks in the County, As where superpaper for the Cartor party species area. No public compressing to the hold for the propagation of this D.C.

-4020 V 2010 D 1 10 D 201

The KAN was confided from Model within some from Street Printers (2, 2010 Benety) (2006 (2, 2010 A benetic of Americality and power in the Computer for the second of Partition (4, 2010 and backet (2000) (4, 2011). Computer (40) (2001) and (40) (2000) for all the second of printers (2000) (2000) (2000).

This page intentionally left blank.

1 6.0 LIST OF PREPARERS

- 2 U.S. Air Force
- 3 Cheyenne Mountain Air Force Station
- 4 Dwayne Ray, Environmental Coordinator
- 5 Tetra Tech, Inc.
- 6 Eldridge, Jacqueline C., Senior Scientist, Tetra Tech, Inc.
- 7 M.B.A., Business Administration, National University, Vista, California, 1983
- 8 M.S., Marine Science, Long Island University, Greenvale, New York, 1978
- 9 B.S., Biology, Fairleigh Dickinson University, Teaneck, New Jersey, 1971
- 10 Years of Experience: 32
- 11
- 12 Jim Knight, Project Manager
- 13 B.S., Biology/Chemistry Texas State University 1974;
- 14 M.A., Business/Management Webster University 1981
- 15 Years of Experience: 35
- 16
- 17 Robert Sculley, Air Quality
- 18 MS, Ecology, University of California at Davis
- 19 B.S., Zoology, Michigan State University at East Lansing
- 20 Years of Experience: 36
- 21
- 22 23

Environmental Assessment for a 1-Megawatt Solar Array at Cheyenne Mountain AFS, CO This page intentionally left blank.

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

24

25

26 27

28

29 30

31 32

7.0 REFERENCES Bott, J.D.J. and Wong, I.G. 1995 The 1986 Crested Butte earthquake swarm and its implications of seismogenesis in Colorado: Bulletin Seismology Society America, 85, pp. 1495-1500. Cheyenne Mountain Air Force Base (CMAFB) 'Natural Resources Management Plan, Cheyenne Mountain Air Force Base, Colorado, 1991 Air Force Space Command, Colorado Springs, CO. On File at CMAFS. Cheyenne Mountain Air Force Station (CMAFS) Landscape Plan. Cheyenne Mountain Air Force Station, Colorado. US Air Force Space n.d. Command, Colorado Springs, Colorado. On-file at CMAFS Environmental Management Office. Seismic Survey, Cheyenne Mountain Air Force Station. US Air Force Space Command, 1978 Colorado Springs, Colorado. On File at CMAFS Environmental Management Office. April. General Plan. SAXC 01-1032E. Cheyenne Mountain Air Force Station, Colorado. US 2003 Air Force Space Command, Colorado Springs, Colorado. August. On-file at CMAFS Environmental Management Office. 2005 Invasive Plant Species Control Plan. Cheyenne Mountain Air Force Station, Colorado. US Air Force Space Command, Colorado Springs, Colorado. On-file at CMAFS Environmental Management Office. Spill Prevention, Control and Countermeasures Plan. Cheyenne Mountain Air Force 2006 Station, Colorado. US Air Force Space Command, Colorado Springs, Colorado. May. On-file at CMAFS Environmental Management Office. 2007 Integrated Natural Resources Management Plan. Cheyenne Mountain Air Force Station, Colorado. US Air Force Space Command, Colorado Springs, Colorado. December. On-file at CMAFS Environmental Management Office. 2008a Energy and Water Conservation Management Plan. Cheyenne Mountain Air Force Station, Colorado. US Air Force Space Command, Colorado Springs, Colorado. November. Onfile at CMAFS Environmental Management Office. 2008b Integrated Cultural Resources Management Plan. Cheyenne Mountain Air Force Station, Colorado. US Air Force Space Command, Colorado Springs, Colorado. November. On-file at CMAFS Environmental Management Office. 2009 Environmental Assessment for the Emergency Response Center, Building 309, CHAFS. March. On-file at CMAFS Environmental Management Office.

1	Cheyenne Mountain Energy Manager
2	2009 Yearly Energy Data for 2003 through 2007, Electrical Consumption, Electric Costs, and
3	Energy Intensity. (See Appendix B for copy of spreadsheet data).
4	Cheyenne Mountain Air Station
5	1995 Biodiversity Study: Endangered Species Survey for Cheyenne Mountain Air Station.
6	U.S. Air Force. Cheyenne Mountain Air Station. On file at CMAFS.
7	Colorado Department of Public Health and Environment (CDPHE)
8	2005 Colorado Modeling Guideline for Air Quality Permits. Air Pollution Control Division.
9	December 27, 2005. Denver, Colorado.
10	2007 Colorado Greenhouse Gas Inventory and Reference Case Projections 1990-2020.
11	Accessed at http://www.cdphe.state.co.us/ap/studiesreports.html on 27 October 2009.
12	2008 2007 Emission Inventory for El Paso County. Accesses at
13	www.colorado.gov/airquality/county_inventory.aspx on September 18, 2009.
14	Colorado Earthquake Hazard Mitigation Council
15	
16	2008 Colorado Earthquake Hazards. Colorado's Earthquake and Hazards Map. Showing
17	Locations of Historical Earthquakes and Known or Suspected Geologically Young Faults. Map
18	Compilation by Matthew L. Morgan, Colorado Geological Survey, 2006–2007
19	Colorado Natural Heritage Program (CNHP)
20	
21 22	1995 Colorado's Natural Heritage: Rare and Imperiled Animals, Plants, and Natural Communities. Colorado Natural Heritage Program, Colorado State University, Fort Collins.
23	El Paso County Department of Health and Environment
24	2009 Reference to elimination of Air Quality Program due to lack of funding. March.
25	http://www.elpasocountyhealth.org/pdf/EHS/Air/AirQualityFAQ_03_18_09.pdf.
26	Engineering and Environment, Inc.
27	2005 Cheyenne Mountain Air Force Station (CMAFS) Biological Inventory Report and
28	Recommendations. On file at CMAFS.
29	Evans, D.M.
	Evans, D.M.
30	1966 The Denver area earthquakes and the Rocky Mountain disposal well: The Mountain
31	Geologist, 3, pp. 23-26.

1	Federal Highway Administration
2	2009 Construction Equipment Noise Levels and Ranges. U.S. Department of Transportation,
3	Federal Highway Administration. Internet Web Site:
4	http://www.fhwa.dot.gov/environment/noise/handbook/09.htm. Accessed on October 7, 2009.
5	
6	Gibbs, J.F., Healy, J.H., Raleigh, C.B., and Coakley, J.
7	Choos, s.r., ricary, s.r., Raleigh, C.D., and Coakley, s.
8	1072 Seismisity in the Benealty Colorade areas 1062 1070; Bullatia Saismalary Seciety
	1973 Seismicity in the Rangely Colorado area: 1962-1970: Bulletin Seismology Society
9	America, 63, pp. 1557-1570.
10	
11	Harris, Cyril M., Johnson, D.L., A.H. Marsh
12	
13	1991 Inverse Square Law of Noise Propagation. Handbook of Acoustical Measurements and
14	Noise Control. New York: Columbia University.
	the start of a start o
15	Healy, J.H., Rubey, W.W., Griggs, D.T., and Raleigh, C.B.
16	
17	1968 The Denver earthquakes: Science, 161, pp. 1301-1310.
17	1908 The Deriver calliquares. Science, 101, pp. 1501-1510.
18	Herrmann, R.B., Park, S.K., and Wang, C.Y.
19	Tienniann, K.D., Fark, S.K., and Wang, C.T.
20	1981 The Denver earthquakes of 1967-1968: Bulletin Seismology Society America, 71,
21	pp.731-745.
22	Hoffman, D. M.
23	Hoffman, D. W.
	10(2) TI WILT I C F & CI I D LI CI I C I I C
24	1962 The Wild Turkey in Eastern Colorado, Pamphlet, Colorado Game and Fish
25	Department, Colorado Division of Wildlife, Fort Collins, Colorado. Internet Web site:
26	http://fwie.fw.vt.edu/rhgiles/forestfauna/LitCite.htm.
27	
28	Kirkham, R.M. and Rodgers, W.P.
29	
30	1981 Earthquake Potential in Colorado: Colorado Geological Survey Special Bulletin # 43. 171
31	p.
	r.
32	Kirkham, R.M. and Rodgers, W.P.
33	
34	1986 An interpretation of the November 7, 1882 Colorado Earthquake: Contributions to
35	Colorado Seismicity and Tectonics – A 1986 update, Colorado Geological Survey Special
36	Publication, 28, pp. 122-144.
27	Kufeld P.C. D.C. Power and D.L. Sahrunn
37	Kufeld, R.C., D.C. Bowen, and D.L. Schrupp
20	1000 (D'A'L d'A CM and CE and MILD 'A D D A M AND A MIL
38	1989 "Distribution of Movements of Female Mule Deer in the Rocky Mountain Foothills,"
39	Journal of Wildlife Management 53(4):871 -877.

U.S. AIR FORCE

1	Pikes Peak Area Council of Governments (PPACG)
2	2009 Regional Settings of the 2035 Regional Transportation Plan. Internet Web Site:
3	http://www.ppacg.org/cms/images/stories/pdf files/final moving forward plan web part3.pdf.
4	Accessed on October 13, 2009.
5	
6	2003 Air Quality in the Pikes Peak Region: Monitoring and Trends Report. October.
7	National Oceanic Atmospheric Administration (NOAA)
8	
9	2009 Year End Summaries for Colorado Springs. Internet Web Site:
10	www.crh.noaa.gov/pub/?n=/climate/yeat.php. Accessed on October 7, 2009.
11	National Renewable Energy Laboratory
12	2009 Job and Economic Development Impact Model (JEDI). JEDI Model CSP Trough Model
13	rel CSP1.09.01. Accessed at http://www.nrel.gov/analysis/jedi/. November.
14	Ter CSF 1.09.01. Accessed at <u>http://www.hter.gov/anarysis/jedi/</u> . ivovember.
15	McDenald John
	McDonald, John
16	2002 Electric Deven Schotztions Engineering Transformer Mains Chapter 0.2.2 Internet Wah
17	2003 Electric Power Substations Engineering. Transformer Noise Chapter 9.2.3. Internet Web
18	Site: http://books.google.com/books?id=Z_YeHVmcBGkC&pg=PT134&lpg=PT134&dq=
19	Electrical+Transformer+noise+levels+dBA&source=bl&ots=iHrH8M6mpX&sig=z03CyfCMVo
20	0gopQgANTHRlkW3EI&hl=en&ei=BIbPSvuTGpP6sgP30cW-Dg&sa=X&oi=book_result&ct=
21	result&resnum=2&ved=0CBAQ6AEwAQ#v=onepage&q=&f=false
22	
23	McGuire, R.K., Krusi, A., and Oaks, S.D.
24	
25 26	1982 The Colorado Earthquake of November 7, 1882: Size, epicentral location, intensities, and possible causative fault: The Mountain Geologist, 19, pp 11-23.
27	Meremonte, M.E.; Lahr, J.C.; Frankel, A.D.; Dewey, J.W.; Crone, A.J.; Overturf, D.E.; Carver, D.L.; and
28	Bice W.T.
29	
30	2002 The Investigation of an Earthquake Swarm near Trinidad, Colorado, August - October
31	2001: USGS Open File Report 02-0073.
32	Partners in Flight (PIF)
33	2000 Land Bird Conservation Plan for Colorado.
34	Spence, W., Langer, C.J., and Choy, G.L.
35	1996 Rare, large earthquakes at the Laramide Deformation Front- Colorado (1882) and
36	Wyoming (1984): Bulletin Seismology Society America, 86, pp. 1804-1819.
37	Talley, H.C. and Cloud, W.K.
38	1962 United States Earthquakes 1960:U.S. Coast and Geodetic Survey, 90 p.

1	Time and Date.com
2	2009 Sunrise and Sunset for U.S.AColorado -Colorado Springs. Internet Web Site:
3 4	http://www.timeanddate.com/worldclock/astronomy.html?n=398
5	United States Bureau of Economic Analysis
6	
7 8	2008 Regional Economic Accounts of Colorado and El Paso County. Internet Web site: www.bea.gov.regional/reis/drill.cfm.
9	Internet web site. www.bea.gov.regional/reis/drint.chit.
10	United States Census Bureau
11	teres and a second second statement in the second of the second second second second second second second second
12	2000a FactFinder Census data for Colorado Springs, Colorado. Internet Web site:
13	http://factfinder.census.gov/servlet/SAFFFacts?_event=&geo_id=16000US0816000&_geoConte
14	xt=01000US%7C04000US08%7C16000US0816000&_street=&_county=colorado+springs&_cit
15	yTown=colorado+springs&_state=&_zip=&_lang=en&_sse=on&ActiveGeoDiv=&_useEV=&pc
16	txt=fph&pgsl=160&_submenuId=factsheet_1&ds_name=ACS_2006_SAFF&_ci_nbr=null&qr_n
17	ame=null®=&_keyword=&_industry=.
18	where the set is a set of the set
19	2000b FactFinder Census data for El Paso County, Colorado. Internet Web site:
20	http://factfinder.census.gov/servlet/SAFFFacts?_event=&geo_id=05000US08041&_geoContext=
21	01000US%7C04000US08%7C05000US08041&_street=&_county=El+Paso+COunty&_cityTow
22	n=El+Paso+COunty&_state=04000US08&_zip=&_lang=en&_sse=on&ActiveGeoDiv=&_useE
23	V=&pctxt=fph&pgsl=050&_submenuId=factsheet_1&ds_name=ACS_2006_SAFF&_ci_nbr=nul
24	l&qr_name=null®=&_keyword=&_industry=
25 26	2000c FactFinder Census data for the State of Colorado. Internet Web site:
20 27	http://factfinder.census.gov/servlet/SAFFFacts? event=&geo_id=04000US08&_geoContext=010
28	00US%7C04000US08& street=& county=& cityTown=& state=04000US08& zip=& lang=e
29	n& sse=on&ActiveGeoDiv=& useEV=&pctxt=fph&pgsl=040& submenuId=factsheet 1&ds n
30	ame=ACS 2006 SAFF& ci nbr=null&qr_name=null®=null%3Anull&_keyword=&_industr
31	y=
32	a foreign of the particular of the particular of the second s
33	2006a FactFinder Census data for Colorado Springs, Colorado. Internet Web site:
34	http://factfinder.census.gov/servlet/ACSSAFFFacts?_event=&geo_id=16000US0816000&_geoC
35	ontext=01000US%7C04000US08%7C16000US0816000&_street=&_county=colorado+springs&
36	_cityTown=colorado+springs&_state=&_zip=&_lang=en&_sse=on&ActiveGeoDiv=&_useEV=
37	&pctxt=fph&pgsl=160&_submenuId=factsheet_1&ds_name=DEC_2000_SAFF&_ci_nbr=null&
38	qr_name=null®=null%3Anull&_keyword=&_industry=
39	
40	2006b FactFinder Census data for El Paso County, Colorado. Internet Web site:
41	http://factfinder.census.gov/servlet/ACSSAFFFacts?_event=&geo_id=05000US08041&_geoCon
42	text=01000US%7C04000US08%7C05000US08041&_street=&_county=El+Paso+COunty&_cit
43	yTown=El+Paso+COunty&_state=04000US08&_zip=&_lang=en&_sse=on&ActiveGeoDiv=&_
44 45	useEV=&pctxt=fph&pgsl=050&_submenuId=factsheet_1&ds_name=DEC_2000_SAFF&_ci_nb r=null&qr_name=null®=null%3Anull& keyword=& industry=
45 46	r=nuncqr_name=nuncreg=nun703Anunce_keyword=ce_industry=
10	

U.S. AIR FORCE

1 2	2006c FactFinder Census data for the State of Colorado. Internet Web site: http://factfinder.census.gov/servlet/ACSSAFFFacts? event=Search&geo id=& geoContext=& s
3	treet=& county=& cityTown=& state=04000US08& zip=& lang=en& sse=on&pctxt=fph&pg
4	sl=010
5	\$1=010
	United States Department of Amigulana (USDA)
6	United States Department of Agriculture (USDA)
7	
8	1981 Soil Survey of El Paso County Area, Colorado. Soil Conservation Service, Washington
9	DC. Internet Web site: www.rurdev.usda.gov/co/pdf%20files/rhsivb6.pdf
10	
11	United States Department of Energy and National Renewable Energy Laboratory (U.S. DOE and NREL)
12	
13	2004 50 Meter Wind Power, Colorado. Internet Web Site:
14	http://www.windpoweringamerica.gov/pdfs/wind maps/co 50m.pdf. Accessed on October 8,
15	2009.
16	
17	2006 Architectural Technical Guide 0005 (March 10, 2006) Seismic Safety Requirements for
18	New Building Construction and Substantial Rehabilitation Using Rural Housing Service(RHS),
19	Rural Business- Cooperative Service (RBS), and Rural Utilities Service (RUS) Loan, Grant, and
20	Guaranteed Funds, Colorado State Office, Lakewood, CO. March.
20	Guaranteed Funds, colorado State Onice, Eaxewood, CO. Marcin.
21	U.S. Department of the Interior
22	2009 Bureau of Land Management Environmental Assessment Proposal to Drill Two Federal
23	Wells on Existing Fee Pad RMV 120-27. NUMBER: DOI-BLM-CO-N040-2009-0063EA,
24	CASEFILE NUMBER: Federal Lease COC2799. Glenwood Springs Energy Office 2425 South
24	Grand Avenue, Suite 101 Glenwood Springs, Colorado 81601. Page 27.
25	Grand Avenue, Suite for Glenwood Springs, Colorado 81601. Page 27.
26	United States Department of Transportation
27	2009 Construction Equipment Noise Levels and Ranges. Highway Construction Noise
28	Handbook. Federal Highway Administration Website. Accessed at
29	
29	http://www.fhwa.dot.gov/environment/noise/handbook/09.htm. November.
30	United States Fish and Wildlife Service (USFWS)
31	2002 Birds of Conservation Concern. Division of Migratory Bird Management. 99 pp.
32	United States Environmental Protection Agency (U.S. EPA)
33	2009a Carbon Monoxide Maintenance Areas. Internet web site:
	www.epa.gov/oar/oaqps/greenbk/cmp.html. Accessed on October 27, 2009.
34	www.epa.gov/oar/oaqps/greenok/cmp.num. Accessed on October 27, 2009.
35	2009b National Ambient Air Quality Standards (NAAQS). Internet web site:
36	www.epa.gov/criteria.html. Accessed on August 26, 2009.
1000202	1

1	8.0	ABBREVIATIONS AND ACRONYMS	
2	°C	degrees Celsius	
3	°F	degrees Fahrenheit	
4	Г	degrees ramemen	
5	AC	alternating aurrent	
6	AFI	alternating current Air Force Instruction	
7	AFH	Air Force Handout	
8	AFS	Air Force Station	
9	AFSPC		
10	AFTAC	Air Force Space Command	
11	Air Force	Air Force Technical Applications Center	
12		United States Air Force	
	AICUZ	air installation compatible use zone/land	
13	APCD	Air Pollution Control Division	
14	APEN	Air Pollution Emission Notice	
15	C + +		
16	CAA	Clean Air Act	
17	CAAQS	Colorado Ambient Air Quality Standards	
18	CDOW	Colorado Division of Wildlife	
19	CDPHE	Colorado Department of Public Health and Environment	
20	CEQ	Council on Environmental Quality	
21	CESQG	conditionally exempt small quantity generator	
22	CFR	Code of Federal Regulations	
23	CH ₄	methane	
24	CMAFS	Cheyenne Mountain Air Force Station	
25	CMD	Cheyenne Mountain Directorate	
26	CMOC	Cheyenne Mountain Operations Center	
27	CNHP	Colorado Natural Heritage Program	
28	CO	carbon monoxide	
29	CO ₂	carbon dioxide	
30	CO ₂ e	carbon dioxide equivalents	
31	CSU	Colorado Springs Utilities	
32			
33	dB	decibel	
34	dBA	A-weighted decibel	
35	DC	direct current	
36	DIA	Defense Intelligence Agency	
37	DOD	Department of Defense	
38	DRMS	Defense Reutilization and Marketing Service	
39			
40	EA	Environmental Assessment	
41	EO	Executive Order	
42	EIS	Environmental Impact Statement	
43	EPACT	Energy Policy Act of 2005	
44	ESA	Endangered Species Act	
45	ETL	engineering technical letter	
46			
47	FAA	Federal Aviation Administration	
	100 (B) (B) (B)		

l	FEP	Facilities Excellence Plan	
ÿ.	FONSI	Finding Of No Significant Impact	
	FRMB	front range mountain backdrop	
		Exclusive Country of	
	GHG	greenhouse gases	
	GIS	geographical information system	
	**	the second se	
3	Hazmat	hazardous materials	
)	HMMG	Hazardous Material Management Guides	
)	Hazmart	hazardous material pharmacy	
	ICD	Intermeted Contingenery Plan	
	ICP ICRMP	Integrated Contingency Plan	
ł		Integrated Cultural Resources Management Plan	
;	INRMP	Integrated Natural Resources Management Plan industrial solid waste	
	ISW ITW/AA		
	kVA	integrated tactical warning/attack assessment kilovolts amperes	
		kilovotts amperes	
;	kWh	knowatt nours	
	Ldn	day night average noise level	
	Lan	day-night average noise level	
	MBTA	Migratory Bird Treaty Act	
	MSG	Migratory Bird Heaty Act Mission Support Group	
	MSU	mean sea level	
	MSU	municipal solid waste	
	MVA	megavolt amperes	
	MW	megawatt	
	MWh	megawatt hours	
		inegawatt nouis	
)	NAAQS	National Ambient Air Quality Standards	
	NEC	National Electric Code	
	NEPA	National Environmental Policy Act	
	NFPA	National Fire Protection Association	
	NO ₂	nitrogen dioxide	
	NOAA	National Oceanic Atmospheric Administration	
	NORAD	North American Aerospace Defense	
	NRHP	National Register of Historic Places	
	O ₃		
	~5		
	PIF	Partners in Flight	
	PL	Public Law	
	PM _{2.5}	particulate matter less than 2.5 microns in diameter	
	PM ₁₀	particulate matter less than 10 microns in diameter	
	POL	petroleum, oils, and lubricants	
	PPACG	Pike's Peak Area Council of Government	
	ppm	parts per million	
	PSD	prevention of significant deterioration	
	REC	and the second sec	
		renewable energy credits	

1	RONA	record of non-applicability
2	SHPO	State Historic Preservation Office
3	SO ₂	sulfur dioxide
4 5		
5	TCP	Traditional Cultural Properties
6	tpy	tons per year
7		
8	USDA	United States Department of Agriculture
9	USC	United States Code
10	U.S. EPA	United States Environmental Protection Agency
11	USFS	United States Forest Service
12	USFWS	United States Fish and Wildlife Service
13	USNORTHCOM	United States Northern Command
14	USSTRATCOM	United States Strategic Command
15		
16	WAPA	Western Area Power Association

Fight in a state of the second

Environmental Assessment for a 1-Megawatt Solar Array at Cheyenne Mountain AFS, CO

This page intentionally left blank.

Environmental Assessment for a 1-Megawatt Solar Array at Cheyenne Mountain AFS, CO

Page 8-4

and copyright by:	
	ROBERT D. SCULLEY
	3469 OYSTER BAY AVENUE
	DAVIS, CALIFORNIA 95616
PHONE/FAX:	(530) 756-3012
E-MAIL:	Sculley1@mindspring.com

TO ASSAULT AND A PROPERTY OF

Contract any depth - twicks (contract, which are supply and the second state of the

CONSTRUCTION ACTIVITY EMISSIONS SUMMARY

CHEYENNE MOUNTAIN AFS SOLAR POWER-SYSTEM - PROPOSED PROJECT CONSTRUCTION YEAR: 2010

EQUIPMENT USE SUMMARY:

	ACTIVITY			HOURS OF	TOTAL	TRUCK TRAFFIC (1-way trips)	
PROJECT PHASE	DURATION, WORKING DAYS	ACREAGE SUBJECT TO DISTURBANCE	NUMBER OF EQUIPMENT ITEMS	ON-SITE EQUIPMENT USE	EQUIPMENT FUEL USE, GALLONS	TRUCK TRIPS TO/ FROM SITE	TRUCK TRIPS PER DAY
SITE PREP	12	10.3	10	240	457	120	10
FOOTINGS, PADS, BLDG	48	4.3	12	624	1,377	384	8
ARRAY INSTALLATION	90	2.8	4	297	1,019	360	4
FENCING	15	2.0	3	75	177	60	4
NET WORKING DAYS AND TOTALS:	165			1,236	3,031	924	10
MINIMUM PHASE:		2.0	3			and the second	4
MEAN OVER NET WORK PERIOD:		3.7	7				6
MAXIMUM PHASE:		10.3	12				10

No overlap among phases.

Page A-1

ALENDAR QUARTER PH	IASE OVERLA	P CALCULAT	OR:		Tot	al Work Day	$y_s =$		1
				WORK DAY	YS PER Q	UARTER			
PHASE		Q1		Q2		Q3		Q4	
SITE PREP		0		12		0		0	
FOOTINGS, PADS, BLDG		0		48		0		0	
ARRAY INSTALLATION		0		0		64			
FENCING		0		0		0		15	
Available Work Days p	able Work Days per Quarter 61 64 64 EMISSIONS BY QUARTER, TONS			64					
			El	MISSIONS E	BY QUAR	TER, TONS	S		
POLLUTAN	ſ	Q1	1201	Q2		Q3		Q4	
ROG		0.00		0.14		0.01		0.00	
NOx		0.00		0.16		0.05		0.03	
CO		0.00		0.48		0.05		0.03	
SOx		0.00		0.03		0.01		0.01	
PM10		0.00		0.05		0.01		0.01	
- A 1		ul 11 C		1			112		
ote: Analysis assumes a 5-da	ay work week w	ith allowances to	r major hol	idays.					

CRITERIA POLLUTANT EMISSIONS, TYPICAL CONSTRUCTION DAY:

2010

					DAILY EMISS	IONS, POUNDS P			
PROJECT PHASE		COMPONENT	ROG	NOx	CO	SOx	PM10	PM2.5	DPM
SITE PREP		Equipment	20.41	7.44	35.47	1.10	0.66	0.60	0.65
		Fugitive Dust	0.00	0.00	0.00	0.00	5.16	1.03	0.00
		Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Subtotal	20.41	7.44	35.47	1.10	5.82	1.63	0.65
FOOTINGS, PADS, BLDG		Equipment	0.93	4.66	10.99	0.83	0.45	0.41	0.44
	1	Fugitive Dust	0.00	0.00	0.00	0.00	0.36	0.07	0.00
		Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		Subtotal	0.93	4.66	10.99	0.83	0.81	0.48	0.44
ARRAY INSTALLATION		Equipment	0.20	1,48	1.48	0.34	0.16	0.15	0.16
		Fugitive Dust	0.00	0.00	0.00	0.00	0.07	0.01	0.00
	1.449.445	Fugitive ROG	0.00	0.00	0.00	0,00	0.00	0.00	0.00
	20%	Subtotal	0.20	1.48	1.48	0.34	0.24	0.16	0.16
FENCING	0.0	Equipment	0.31	2.03	1.76	0.34	0.20	0.18	0.20
	1404	Fugitive Dust	0.00	0.00	0.00	0.00	0.62	0.12	0.00
	1000	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	ROG	Subtotal	0.31	2.03	1.76	0.34	0.82	0.31	0.2.0
					10.00				
TOTALS	1. J. D. L. T. H.	Equipment	21.85	15.61	49.69	2.61	1.46	1.34	1.45
		Fugitive Dust	0.00	0.00	0.00	0.00	6.22	1.24	0.00
		Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		TOTAL	21.85	15.61	49.69	2.61	7.68	2.59	1.45
MAXIMUM D	AV	Equipment	20.41	7.44	35.47	1.10	0.66	0.60	0.65
MAAIMONID		Fugitive Dust	0.00	0.00	0.00	0.00	5.16	1.03	0.00
		Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	ne ai m				25.45	1.10	5.00	1.72	0.5
		TOTAL	20.41	7.44	35.47	1.10	5.82	1.63	0.65

Maximum day estimates made on a pollutant-by-pollutant basis, accounting for expected overlaps among construction phases.

ROG = reactive organic compounds (ozone precursor)

NOx = nitrogen oxides (ozone precursor)

CO = carbon monoxide

SOx = sulfur oxides

PM10 = inhalable particulate matter (below 50 microns aerodynamic equivalent diameter); the "10" in PM0 is the size with 50% mass

collection efficiency in a certified sampler, not an upper particle size limit

PM2.5 = fine particulate matter (below 6 microns aerodynamic equivalent diameter); the "2.5" in PM2.5 is the size with 50% mass

collection efficiency in a certified sampler, not an upper particle size limit

DPM = diesel particulate matter (carcinogen)

A MEAN OF ANY TAXABLE PROVIDED NOT DEPOSIT A LINE OF THE

2000

CRITERIA POLLUTANT EMISSIONS FOR CONSTRUCTION YEAR:

2010

				TOTAL EMIS	SIONS, TONS PER	YEAR		
PROJECT PHASE	COMPONENT	ROG	NOx	CO	SOx	PM10	PM2.5	DPM
SITE PREP	Equipment	0.12	0.04	0.21	0.01	0.00	0.00	0.00
	Fugitive Dust	0.00	0.00	0.00	0.00	0.03	0.01	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.12	0.04	0.21	0.01	0.03	0.01	0.00
FOOTINGS, PADS, BLDG	Equipment	0.02	0.11	0.26	0.02	0.01	0.01	0.01
	Fugitive Dust	0.00	0.00	0.00	0.00	0.01	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.02	0.11	0.26	0.02	0.02	0.01	0.01
ARRAY INSTALLATION	Equipment	0.01	0.07	0.07	0.02	0.01	0.01	0.01
	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.01	0.07	0.07	0.02	0.01	0.01	0.01
FENCING	Equipment	0.00	0.02	0.01	0.00	0.00	0.00	0.00
	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.002	0.02	0.01	0.003	0.01	0.002	0.00
TOTALS	Paulament	0.16	0.24	0.56	0.04	0.02	0.02	0.02
TOTALS	Equipment Fugitive Dust	0.00	0.00	0.00	0.04	0.02	0.02	0.02
		0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL	0.16	0.24	0.56	0.04	0.07	0.03	0.02
MAX CALENDAR QUARTER	Equipment	0.14	0.16	0.48	0.03	0.01	0.01	0.01
	Fugitive Dust	0.00	0.00	0.00	0.00	0.04	0.01	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL	0.14	0.16	0.48	0.03	0.05	0.02	0.01

Maximum calendar quarter estimates made on a pollutant-by-pollutant basis, accounting for expected overlaps among construction phases.

ROG = reactive organic compounds (ozone precursor)

NOx = nitrogen oxides (ozone precursor)

CO = carbon monoxide

SOx = sulfur oxides

PM10 = inhalable particulate matter (below 50 microns aerodynamic equivalent diameter); the "10" in PM0 is the size with 50% mass collection efficiency in a certified sampler, not an upper particle size limit

PM2.5 = fine particulate matter (below 6 microns aerodynamic equivalent diameter); the "2.5" in PM2.5 is the size with 50% mass collection efficiency in a certified sampler, not an upper particle size limit

DPM = diesel particulate matter (carcinogen)

Party Arb

FUGITIVE EMISSIONS DETAILS BY PHASE:

PARAMETER	PHASE 1	PHASE 2	PHASE 3	PHASE 4
Assumed Soil Texture Class	sandy loam	sandy loam	sandy loam	sandy loam
Soil PM10 Fraction	20.0%	20.0%	20.0%	20.0%
Dust Control Program Effectiveness	50%	50%	50%	0%
Area Disturbed on a Typical Day, acres	0.86	0.09	0.03	0.13
Days of Distrubance	12	48	90	15
Uncontrolled TSP Rate, lbs/acre-day	60.0	40.0	24.0	24.0
Controlled PM10 Rate, lbs/acre-day	6.0	4.0	2.4	4.8
Demolition PM10, total pounds	0	0	0	0
Construction Blasting PM10, total pounds	0	0	0	0
Acres of asphalt paving	0.00	0.00	0.00	0.00
Painted Surface Area, square feet	0	0	0	0
PM2.5 fraction of engine exhaust PM10	92.0%	92.0%	92.0%	92.0%
PM2.5 fraction of fugitive dust PM10	20.0%	20.0%	20.0%	20.0%
PM2.5 fraction of spray paint PM10	91.2%	91.2%	91.2%	91.2%

PM2.5 fractions of diesel engine exhaust PM10 and spray paint PM10 are based on data from the California Air Resources Board CEIDARS (California Emission Inventory Data and Reporting System) database, as presented in Appendix A of SCAQMD 2003, Final Methodology to Calculate PM2.5 and PM2.5 Significance Thresholds.

PM2.5 fraction of fugitive dust PM10 based on typical clay and fine silt content for soils texture class.

Default PM2.5 fractions from CEIDARS database are 92% for diesel engine exhaust, 20.8% for fugitive dust, and 91.2% for spray paint.

SELECTED GWP DATA SET (1, 2, ar 3)~ 1 - Early

Page A-5

Page A-6

CH4 factor:

N2O factor:

SELECTED GWP DATA SET (1, 2, or 3) =<== Enter code for selected data set. 3

GLOBAL WARMING POTENTIAL DATA SET SELECTION:

DATA SOURCE	DATA SET CODE	GWP FOR CH4	GWP FOR N2O
IPCC 2nd Assessment, 1995:	1	21	310
IPCC 3rd Assessment, 2001:	2	23	296
IPCC 4th Assessment, 2007:	3	25	298

25

298

REENHOUSE GAS EMISSIONS SUMMARY		2010	20101	The second second
		E DAILY GHG EMIS		
PROJECT PHASE	CO2	CH4	N2O	GWP, CO20
SITE PREP	831.8	0.04	0.03	840.2
FOOTINGS, PADS, BLDG	632.3	0.03	0.02	639.3
ARRAY INSTALLATION	250.9	0.01	0.01	254.1
FENCING	262.2	0.01	0.01	265.4
MAXIMUM DAY:	831.8	0.04	0.03	840.2
		TAL GHG EMISSION		
PROJECT PHASE	CO2	CH4	N2O	GWP, CO2e
SITE PREP	5.0	0.0002	0.0002	5.0
FOOTINGS, PADS, BLDG	15.2	0.001	0.001	15.3
ARRAY INSTALLATION	11.3	0.001	0.0004	11.4
FENCING	2.0	0.0001	0.0001	2.0
MAXIMUM QUARTER:	20.2	0.001	0.001	20.4
CONSTRUCTION PERIOD TOTALS:	33.4	0.002	0.001	33.8

GHG = greenhouse gas

CO2 = carbon dioxide; GWP multiplier = 1

CH4 = methane; GWP multiplier = 25

N2O = nitrous oxide; GWP multiplier = 298

GWP = global warming potential, CO2 equivalents (CO2e) from Intergovernmental Panel on Climate Change (IPCC) 2007 fourth assessment report, 100 year time frame

Maximum day estimates based on expected overlaps among construction phases.

FORMATTED FOOTNOTE SETS:

GWP Data Set 1 footnotes:

CH4 = methane; GWP multiplier = 21

N2O = nitrous oxide; GWP multiplier = 310

GWP = global warming potential, CO2 equivalents (CO2e) from Intergovernmental Panel on Climate Change (IPCC) 1995 second assessment report, 100 year time frame

GWP Data Set 2 footnotes:

CH4 = methane; GWP multiplier = 23

N2O = nitrous oxide; GWP multiplier = 296

GWP = global warming potential, CO2 equivalents (CO2e) from Intergovernmental Panel on Climate Change (IPCC) 2001 third assessment report, 100 year time frame

GWP Data Set 3 footnotes:

CH4 = methane; GWP multiplier = 25

N2O = nitrous oxide; GWP multiplier = 298

GWP = global warming potential, CO2 equivalents (CO2e) from Intergovernmental Panel on Climate Change (IPCC) 2007 fourth assessment report, 100 year time frame

and the second states

adoption: "DetD shakeds include: pro-

Fig. - Inclusion Printly - American - Alter

the substitute of the time succession where

and the second second

strand in a summer based and successful to prove the part of the successful to the s

CALENDAR OUARTER CRITERIA POLLUTANT EMISSIONS

	1	2010 CRITERIA POLLUTANT EMISSIONS, TONS BY CALENDAR QUARTER						
CALENDAR QUARTER	COMPONENT	ROG	NOx	CO	SOx	PM10	PM2.5	DPM
QUARTER 1	Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
QUARTER 2	Equipment	0.14	0.16	0.48	0.03	0.01	0.01	0.01
	Fugitive Dust	0.00	0.00	0.00	0.00	0.04	0.01	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.14	0.16	0.48	0.03	0.05	0.02	0.01
QUARTER 3	Equipment	0.01	0.05	0.05	0.01	0.01	0.00	0.01
	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.01	0.05	0.05	0.01	0.01	0.01	0.01
QUARTER 4	Equipment	0.00	0.03	0.03	0.01	0.00	0.00	0.00
	Fugitive Dust	0.00	0.00	0.00	0.00	0.01	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.00	0.03	0.03	0.01	0.01	0.00	0.00
MAXIMUM QUARTER	Paulament	0.14	0.16	0.48	0.03	0.01	0.01	0.01
MAXIMUM QUARTER	Equipment							
	Fugitive Dust	0.00	0.00	0.00	0.00	0.04	0.01	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL	0.14	0.16	0.48	0.03	0.05	0.02	0.01
i = reactive organic compounds (ozone	precursor)			Which is the string field was the				
= nitrogen oxides (ozone precursor) = carbon monoxide								
= sulfur oxides				0.000				
o = inhalable particulate matter (below collection efficiency in a certified			the "10" in PMo is the s	size with 50% mass				
5 = fine particulate matter (below 6 mi collection efficiency in a certified	crons aerodynamic equivaler	nt diameter); the "2	.5" in PMt 5 is the size v	with 50% mass				
1 = diesel particulate matter (carcinoge								

CALENDAR QUARTER GHG EMISSIONS:

2010

DAR QUARTER ONO EMISSIONS.		2010		
	GHG EM	IISSIONS, TONS BY	CALENDAR QU	ARTER
CALENDAR QUARTER	CO2	CH4	N2O	GWP, CO2
QUARTER 1	0.0	0.000	0.000	0.0
QUARTER 2	20.2	0.001	0.001	20.4
QUARTER 3	8.0	0.000	0.000	8.1
QUARTER 4	5.2	0.000	0.000	5.3
MAXIMUM QUARTER	20.2	0.001	0.001	20.4

GHG = greenhouse gas

CO₂ = carbon dioxide; GWP multiplier = 1

CH4 = methane; GWP multiplier = 25

N2O = nitrous oxide; GWP multiplier = 298

GWP = global warming potential, CO₂ equivalents (CO₂e) from Intergovernmental Panel on Climate Change (IPCC) 2007 fourth assessment report, 100 year time frame

CHARGE AND AND AND ANY ADDRESS FOR ADDRESS

Page A-10

EQUIPMENT USE DETAILS, PHASE 1: SITE PREP

	ENGINE	LOAD	OPERATING	NUMBER	HOURS	FUEL USE
EQUIPMENT ITEM	HP	FACTOR	FACTOR	OF ITEMS	PER DAY	RATE, gal/h
Small Tracked Dozer, 75 - 175 HP	150	59%	85%	1	2	4.62
Small Tracked Loader, 75 - 175 HP	100	57%	75%	1	4	2.97
Small Tracked Shovel Excavator, 75 - 175 HP	100	59%	85%	1	2	3.08
Gas Engine Chippers & Stump Grinders, < 25 HP	15	39%	65%	1	6	0.76
Gasoline Small Chain Saw, < 25 HP	3	50%	65%	2	6	0.19
Small Trencher, < 25 HP	20	64%	85%	0	0	0.74
Small Wheeled Backhoe-Loader, 25 - 75 HP	70	38%	85%	0	0	1.80
Small Roller/Compactor, 25 - 75 HP	35	59%	85%	0	0	1.20
Small Concrete Pump, 25 - 75 HP	70	62%	75%	0	0	2.52
Gas Engine Concrete Finisher/Vibrator, < 25 HP	8.5	59%	85%	0	0	0.69
Small Rough Terrain Forklift, 25 - 75 HP	70	35%	65%	0	0	1.42
Medium (1,200 gal) Water Truck, 175 - 750 HP	180	57%	65%	1	1	5.35
5-Ton (3.5-5 yd) Dump Truck, 175 - 750 HP	200	57%	25%	2	2	5.95
Standard (4-5 Yard) Cement Mixer Truck	275	57%	40%	0	0	8.18
Medium Flatbed Truck, 175 - 750 HP	300	57%	25%	1	1	8.92
not used	1	100%	100%	0	0	0.00
not used.	1	100%	100%	0	0	0.00
not used.	1	100%	100%	0	0	0.00
not used.	1	100%	100%	0	0	0.00
not used.	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00

Emission rates reflect engine HP and load factor, operating time factor is accounted for in net engine-bours calculations. CRITERIA POLLUTANT EMISSION RATE, GRAMS/HOUR GHG EMISSION RATE, LBS/HOUR ROG NOx CO SOx PM10 CO2 CH4 N2O 75.62 596.45 366.39 66.20 50.98 102.34 0.0029 0.0020 48.70 384.15 235.98 42.64 32.83 65.92 0.0028 0.0020 22.99 343.99 236.00 46.09 27.38 68.23 0.0010 0.0007 403.59 11.82 3,504.15 2.16 0.29 14.76 0.0005 0.0004 938.70 8.70 12.75 0.81 0.24 3.60 0.0001 0.0001 13.38 58.81 62.72 9.05 6.14 16.46 0.0002 0.0002 185.96 131.40 19.90 15.53 39.95 26.57 0.0011 0.0008 12.52 140.71 76.41 18 17 11.07 26.55 55.79 0.0004 0.0003 215.45 28.89 79.09 28.02 160.58 30.68 11.63 0.0008 0.0006 1,886.64 1.25 13.35 0.0002 9.63 1.10 0.0002 129.91 121.52 19.14 13.20 31.50 0.0013 0.0009 22.52 233.98 270.86 76.70 28.73 118.65 0.0041 0.0030 25.03 259.97 300.96 85.23 31.92 131 83 0.0110 0.0079 34.41 357.46 413.82 117.19 43.89 181.27 0.0152 0.0108 37.43 388.70 451.44 127.84 47.88 197 75 0.0165 0.0118 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000.0 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0.00

Heavy truck hourly operating factor reflects on-site and immediate vicinity use only.

EQUIPMENT USE DETAILS, PHASE 2: FOOTINGS, PADS, BLDG

	ENGINE	LOAD	OPERATING	NUMBER	HOURS	FUEL USE
EQUIPMENT ITEM	HP	FACTOR	FACTOR	OF ITEMS	PER DAY	RATE, gal/h
Small Tracked Dozer, 75 - 175 HP	150	59%	85%	0	0	4.62
Small Tracked Loader, 75 - 175 HP	100	57%	75%	1	2	2.97
Small Tracked Shovel Excavator, 75 - 175 HP	100	59%	85%	0	0	3.08
Gas Engine Chippers & Stump Grinders, < 25 HP	15	39%	65%	0	0	0.76
Basoline Small Chain Saw, < 25 HP	3	50%	65%	0	0	0.19
Small Trencher, < 25 HP	20	64%	85%	1	4	0.74
Smail Wheeled Backhoe-Loader, 25 - 75 HP	70	38%	85%	1	2	1.80
Small Roller/Compactor, 25 - 75 HP	35	59%	85%	1	1	1.20
mall Concrete Pump, 25 - 75 HP	70	62%	75%	1	1	2.52
Gas Eng ine Concrete Finisher/Vibrator, < 25 HP	8.5	5996	85%	2	1	0.69
Small Rough Terrain Forklift, 25 - 75 HP	70	35%	65%	1	2	1.42
Medium (1,200 gal) Water Truck, 175 - 750 HP	180	57%	65%	1	1	5.35
-Ton (3.5-5 vd) Dump Truck, 175 - 750 HP	200	5796	25%	1	1	5.95
standard (4-5 Yard) Cement Mixer Truck	275	57%	40%	1	1	8.18
Medium Flathed Truck, 175 - 750 HP	300	57%	25%	1	2	8.92
int used	1	100%	100%	0	0	0.00
ot used	1	100%	100%	0	0	0.00
ot used	1	100%	100%	0	0	0.00
iot used	1	100%	100%	0	0	0.00
ot used	1	100%	100%	0	0	0.00
tot used	1	100%	100%	0	0	0.00
iot used	1	100%	100%	0	0	0.00
ot used	1	100%	100%	0	0	0.00
ot used	1	100%	100%	0	0	0.00
iot used.	1	100%	100%	0	0	0.00
ot used.	1	100%	100%	0	0	0.00
not used.	1	100%	100%	0	0	0.00
not used.	1	100%	100%	0	0	0.00
not used.	1	100%	100%	0	0	0.00
tot used	1	100%	100%	0	0	0.00

CRITERI	A POLLUTA	NT EMISSION	RATE, GRAM	S/HOUR	GHG EMIS	SION RATE, I	BS/HOUI
ROG	NOx	CO	SOx	PM10	CO2	CH4	N2O
75.62	596.45	366.39	66.20	50.98	102.34	0.0029	0.0020
48.70	384.15	235.98	42.64	32.83	65.92	0.0028	0.0020
22.99	343.99	236.00	46.09	27.38	68.23	0.0010	0.0007
403.59	11.82	3,504.15	2.16	0.29	14.76	0.0005	0.0004
938.70	8,70	12.75	0.81	0.24	3.60	0.0001	0.0001
13.38	58.81	62.72	9.05	6.14	16.46	0.0001	0.0002
26.57	185.96	131.40	19.90	15.53	39.95	0.0011	0.0002
12.52	140.71	76.41	19.90	11.07	26.55	0.0004	0.0003
28.89	215.45	160.58	30.68	11.63	55.79	0.0004	0.0005
79.09	9.63	1,886.64	1.25	1.10	13.35	0.0002	0.0002
28.02		121.52	19.14	13.20	31.50	0.0002	0.0002
22.52	129.91 233.98	270.86	76.70	28.73	118.65	0.0013	0.0030
25.03	259.98	300.96	85.23	31.92	131.83	0.0041	0.005
25.03	357.46	413.82	85 23	43.89	131.83	0.0110	0.007
34.41	357.46	413.82	127.84	43.89	197.75	0.0152	0.010
	0.00	431.44	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00		0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00		0.00		0.00	0.00	0.0000	0.000
0.00	0.00		0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00				
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000

Heavy truck hourly operating factor reflects on-site and immediate vicinity use only.

Page A-12

EQUIPMENT ITEM	ENGINE	LOAD FACTOR	OPERATING FACTOR	NUMBER OF ITEMS	HOURS PER DAY	FUEL USE RATE, gal/b
EQUEMENTITEM	nr	PACION	PAULOR	OFTEMS	PERDAY	RATE, gal/h
Small Tracked Dozer, 75 - 175 HP	150	59%	85%	0	0	4.62
Small Tracked Loader, 75 - 175 HP	100	57%	75%	0	0	2.97
Small Tracked Shovel Excavator, 75 - 175 HP	100	59%	85%	0	0	3.08
Gas Engine Chippers & Stump Grinders, < 25 HP	15	39%6	65%	0	0	0.76
Gasoline Small Chain Saw, < 25 HP	3	5056	65%	0	0	0.19
Small Trencher, < 25 HP	20	64%	85%	0	0	0.74
Small Wheeled Backhoe-Loader, 25 - 75 HP	70	38%	85%	1	1	1.80
Small Roller/Compactor, 25 - 75 HP	35	5996	85%	0	0	1.20
Small Concrete Pump, 25 - 75 HP	70	62%	75%	0	0	2.52
Gas Engine Concrete Finisher/Vibrator, < 25 HP	8.5	5996	85%	0	0	0.69
Small Rough Terrain Forklift, 25 - 75 HP	70	35%	65%	1	2	1.42
Medium (1,200 gal) Water Truck, 175 - 750 HP	180	57%	65%	1	1	5.35
5-Ton (3.5-5 vd) Dump Truck, 175 - 750 HP	200	57%	25%	0	0	5.95
Standard (4-5 Yard) Cement Mixer Truck	275	57%	40%	0	0	8.18
Medium Flathed Truck, 175 - 750 HP	300	57%	25%	1	2	8.92
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	106%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used.	1	100%	100%	0	0	0.00

CRITER	IA POLLUTA	NT EMISSION	RATE, GRAN	S/HOUR	GHG EMI	SSION RATE,	
ROG	NO1	CO	SOL	PM10	COr	CH4	N2O
75.62	596.45	366.39	66.20	50.98	102.34	0.0029	0.0020
48.70	384.15	235.98	42.64	32.83	65.92	0.0028	0.0020
22.99	343.99	236.00	46.09	27 38	68.23	0.0010	0.000
403.59	11.82	3,504.15	2.16	0.29	14.76	0.0005	0.0004
938.70	8.70	12 75	0.81	0.24	3.60	0.0001	0.000
13.38	58 81	62 72	9.05	6.14	16.46	0.0002	0.000
26.57	185.96	131.40	19.90	15.53	39.95	0.0011	0.000
12.52	140.71	76.41	18.17	11.07	26.55	0.0004	0.000
28.89	215.45	160.58	30.68	11.63	55.79	0.0008	0.000
79.09	9.63	1,886.64	1.25	1.10	13.35	0.0002	0.000
28.02	129.91	121.52	19.14	13.20	31.50	0.0013	0.000
22.52	233.98	270.86	76.70	28.73	118.65	0.0041	0.003
25.03	259.97	300.96	85.23	31.92	131.83	0.0110	0.007
34.41	357.46	413.82	117.19	43.89	181.27	0.0152	0.010
37.43	388.70	451.44	127.84	47.88	197.75	0.0165	0.011
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	00.6	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0005	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0,0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.000

Heavy truck hourly operating factor reflects on-site and immediate vicinity use only.

Page A-13
EQUIPMENT USE DETAILS, PHASE 4: FENCING

	ENGINE	LOAD	OPERATING	NUMBER	HOURS	FUEL USE
EQUIPMENT ITEM	HP	FACTOR	FACTOR	OF ITEMS	PER DAY	RATE, gal/h
Small Tracked Dozer, 75 - 175 HP	150	59%	85%	0	0	4.62
Small Tracked Loader, 75 - 175 HP	100	57%	75%	0	0	2.97
Small Tracked Shovel Excavator, 75 - 175 HP	100	59%	8596	0	0	3.08
Gas Engine Chippers & Stump Grinders, < 25 HP	15	39%	65%	0	0	0.76
Gasoline Small Chain Saw, < 25 HP	3	50%	65%	0	0	0.19
Small Trencher, < 25 HP	20	6496	85%	0	0	0.74
Small Wheeled Backhoe-Loader, 25 - 75 HP	70	38%	85%	1	3	1.80
Small Roller/Compactor, 25 - 75 HP	35	59%	85%	0	0	1.20
Small Concrete Pump, 25 - 75 HP	70	62%	75%	0	0	2.52
Gas Engine Concrete Finisher/Vibrator, < 25 HP	8.5	59%	85%	0	0	0.69
Small Rough Terrain Forklift, 25 - 75 HP	70	35%	65%	1	3	1.42
Medium (1,200 gal) Water Truck, 175 - 750 HP	180	5796	65%	0	0	5.35
5-Ton (3 5-5 vd) Dump Truck, 175 - 750 HP	200	57%	25%	0	0	5.95
Standard (4-5 Yard) Cement Mixer Truck	275	57%	40%	0	0	8.18
Medium Flatbed Truck, 175 - 750 HP	300	57%	25%	1	2	8.92
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	E E	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	t	100%	100%	0	0	0.00

CRITERI	A POLLUTA	NT EMISSION	RATE, GRAM	S/HOUR		SION RATE,	
ROG	NO1	CO	S01	PM10	CO2	CH4	N
75.62	596,45	366.39	66.20	50.98	102.34	0.0029	-0.0
48.70	384.15	235.98	42.64	32.83	65.92	0.0028	0.0
22.99	343.99	236.00	46.09	27.38	68.23	0.0010	0.0
403.59	11.82	3,504.15	2.16	0.29	14.76	0.0005	0.0
938.70	8.70	12.75	0.81	0.24	3.60	0.0001	0.0
13.38	58.81	62.72	9.05	6.14	16.46	0.0002	0.0
26.57	185.96	131.40	19.90	15.53	39.95	0.0011	0.0
12.52	140.71	76.41	18.17	11.07	26.55	0.0004	0.0
28.89	215.45	160.58	30.68	11.63	55.79	0.0008	0.0
79.09	9.63	1,886.64	1.25	1.10	13.35	0.0002	0.0
28.02	129.91	121.52	19.14	13.20	31.50	0.0013	0.0
22.52	233.98	270.86	76.70	28.73	118.65	0.0041	0.0
25.03	259.97	300.96	85 23	31.92	131.83	0.0110	0.0
34.41	357,46	413.82	117.19	43.89	181.27	0.0152	0.0
37.43	388,70	451.44	127.84	47.88	197.75	0.0165	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0

Heavy truck hourly operating factor reflects on-site and immediate vicinity use only.

Vehicle Traffic Estimates for CMAFS Solar Array Project

													C. PNE MC							
		PROPOSED	ALTER	NATIVE			S/VMT				OJECT, 1				IVE A, TO		AI	TERNAT		
PHASE	TRIP TYPE	PROJECT	A	B	VOC	NOX	со	CO2	VOC	NOX	CO	CO2	VOC	NOX	CO	CO2	VOC	NOX	CO	CO2
Site Prep	Workers	20	20	24																
	Trucks	10	10	10																
	TOTAL	30	30	34																
	Work Days	12	14	20																
	LDV mi/trip	18	18	18		-	17.41 - 14 - 14.444 -			Contraction of the second										
	Truck mi/trip	25	25	25																
	Total LDV VMT	4,320	5,040	8,640	0.79	1.47	10.86	425.97	0.004	0.007	0.052	2.028	0.004	0.008	0.060	2.367	0.008	0.014	0.103	4.0
	Total Truck VMT	3,000	3,500	5,000	0.77	6.87	4.27	1,402.29	0.003	0.023	0.014	4.637	0.003	0.027	0.016	5.410	0.004	0.038	0.024	7.73
	TOTAL VMT	7,320	8,540	13,640					0.006	0.030	0.066	6.666	0.007	0.035	0.077	7.777	0.012	0.052	0.127	11.7
renching & Pads	Workers	16	16	16																-
	Trucks	8	8	8								Strain Prove					1			1
	TOTAL	24	24	24																
	Work Days	48	48	48													Summit Terris			-
	LDV mi/trip	18	18	18					111 100											
	Truck mi/trip	25	25	25																
	Total LDV VMT	13,824	13,824	13,824	0.79	1.47	10.86	425.97	0.012	0.022	0.165	6.491	0.012	0.022	0.165	6.491	0.012	0.022	0.165	6.4
	Total Truck VMT	9,600	9,600	9,600	0.77	6.87	4.27	1,402.29	0.008	0,073	0.045	14.839	0.008	0.073	0.045	14.839	0.008	0.073	0.045	14.8
	TOTAL VMT	23,424	23,424	23,424					0.020	0.095	0.211	21.330	0.020	0.095	0.211	21.330	0.020	0.095	0.211	21.3
Installation	Workers	24	24	24			10				27									
	Trucks	4	4	4												1.	2			-
	TOTAL	28	28	28																
	Work Days	90	90	90	-								T							-
	LDV mi/trip	18	18	18																
	Truck mi/trip	25	25	25																
	Total LDV VMT	38,880	38,880	38,880	0.79	1.47	10.86	425.97	0.034	0.063	0.465	18.256	0.034	0.063	0.465	18.256	0.034	0.063	0.465	18.2
	Total Truck VMT	9,000	9,000	9,000	0.77	6.87	4.27	1,402.29	0.008	0.068	0.042	13.912	0.008	0.068	0.042	13.912	0.008	0.068	0.042	13.9
	TOTAL VMT	47,880	47,880	47,880					0.041	0.131	0.508	32.168	0.041	0.131	0.508	32.168	0.041	0.131	0.508	32.1
Fencing	Workers	8	8	8																
	Trucks	4	4	4								1					1000 March 1			
	TOTAL	12	12	12																
	Work Days	15	15	20																
	LDV mi/trip	18	18	18													LETTE STREET			
	Truck mi/trip	25	25	25									Lan and						ans an an an	a horasi ya
	Total LDV VMT	2,160	2,160	2,880	0.79	1.47	10.86	425.97	0.002	0.004	0.026	1.014	0.002	0.004	0.026	1.014	0.003	0.005	0.034	1.3
	Total Truck VMT	1,500	1,500	2,000	0.77	6.87	4.27	1,402.29	0.001	0.011	0.007	2.319	0.001	0.011	0.007	2.319	0.002	0.015	0.009	3.09
	TOTAL VMT	3,660	3,660	4,880	_				0.003	0.015	0.033	3.333	0.003	0.015	0.033	3.333	0.004	0.02.0	0.044	4.44
								TOTAL	0.05	0.10	0.71	27.79	0.05	0.10	0.72	28,13	0.06	0.10	0.77	30,
									0.02	0.18	0.11	35.71	0.02	0.18	0.11	36.48	0.02	0.19	0.12	39.5
									0.07	0.27	0.82	63.50	0.07	0.28	0.83	64.61	0.08	0.30	0.89	69.

CONSTRUCTION ACTIVITY EMISSIONS SUMMARY

CHEYENNE MOUNTAIN AFS SOLAR POWER-SYSTEM - ALTERNATIVE A CONSTRUCTION YEAR: 2010

EQUIPMENT USE SUMMARY:

and the second sec	ACTIVITY			HOURS OF	TOTAL	TRUCK TRAFF	C (1-way trips)
PROJECT PHASE	DURATION, WORKING DAYS	ACREAGE SUBJECT TO DISTURBANCE	NUMBER OF EQUIPMENT ITEMS	ON-SITE EQUIPMENT USE	EQUIPMENT FUEL USE, GALLONS	TRUCK TRIPS TO/ FROM SITE	TRUCK TRIPS PER DAY
SITE PREP	14	10.1	10	280	533	140	10
FOOTINGS, PADS, BLDG	48	4.3	12	624	1,377	384	8
ARRAY INSTALLATION	90	2.8	4	297	1,019	360	4
FENCING	15	2.0	3	75	177	60	4
NET WORKING DAYS AND TOTALS:	167		1211	1,276	3,107	944	10
MINIMUM PHASE:		2.0	3	a contract from		ALL COMPANY	4
MEAN OVER NET WORK PERIOD:		3.8	7				6
MAXIMUM PHASE:		10.1	12				10

No overlap among phases.

the property of the part of th

Page A-16

ALENDAR QUARTER	PHASE OVERLA	P CALCULATOI	{ :	167	Total W	ork Days
			WORK DAYS	S PER QUARTER		
PHASE		Q1	Q2	Q3		Q4
SITE PREP		0	14	0		0
FOOTINGS, PADS, BLD	OG	0	48	0		0
ARRAY INSTALLATIO	N	0	0	64		26
FENCING		0	0	0		15
Available Work Day	s per Quarter	61	64	64		64
	A science section		EMISSIONS BY	QUARTER, TONS	\$	1000
POLLUTA	NT	Q1	Q2	Q3		Q4
ROG		0.00	0.17	0.01		0.00
NOx		0.00	0.16	0.05		0.03
CO		0.00	0.51	0.05		0.03
SOx		0.00	0.03	0.01		0.01
PM10		0.00	0.05	0.01		0.01
ote: Analysis assumes a :	5-day work week w	ith allowances for n				in the

CRITERIA POLLUTANT EMISSIONS, TYPICAL CONSTRUCTION DAY:

2010

		Section of Section - The		And and a second se	SIONS, POUNDS P			
PROJECT PHASE	COMPONENT	ROG	NOx	CO	SOx	PM10	PM2.5	DPN
SITE PREP	Equipment	20.41	7.44	35.47	1.10	0.66	0.60	0.65
	Fugitive Dust	0.00	0.00	0.00	0.00	4.32	0.86	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	20.41	7.44	35.47	1.10	4.98	1.47	0.65
FOOTINGS, PADS, BLDG	Equipment	0.93	4.66	10.99	0.83	0.45	0.41	0.44
	Fugitive Dust	0.00	0.00	0.00	0.00	0.36	0.07	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.93	4.66	10.99	0.83	0.81	0.48	0.44
ARRAY INSTALLATION	Equipment	0.20	1.48	1.48	0.34	0.16	0.15	0.16
	Fugitive Dust	0.00	0.00	0.00	0.00	0.07	0.01	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.20	1.48	1.48	0.34	0.24	0.16	0.16
FENCING	Equipment	0.31	2.03	1.76	0.34	0.20	0.18	0.20
	Fugitive Dust	0.00	0.00	0.00	0.00	0.62	0.12	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.31	2.03	1.76	0.34	0.82	0.31	0.20
TOTALS	Equipment	21.85	15.61	49.69	2.61	1.46	1.34	1.45
TOTALS	Fugitive Dust	0.00	0.00	0.00	0.00	5.38	1.08	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Sector Concerns							
	TOTAL	21.85	15.61	49.69	2.61	6.84	2.42	1.45
MAXIMUM DAY	Equipment	20.41	7.44	35.47	1.10	0.66	0.60	0.65
MAAMUMDAT	Fugitive Dust	0.00	0.00	0.00	0.00	4.32	0.86	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive KOG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL	20.41	7.44	35.47	1.10	4.98	1.47	0.65
1.12 March				100		-		24

CALEMBAR OUARTER PRAME OF GILLAP CALOULATOR

Total Work Days -

otals apply only if phase durations or s lo overlap among phases.			p b			
faximum day estimates made on a poll	utant-by-pollutant basis, account	ing for expected over	erlaps among construc	tion phases.		
OG = reactive organic compounds (oz		0 1	1 0			
Ox = nitrogen oxides (ozone precursor						
O = carbon monoxide						
Ox = sulfur oxides						
M ₁₀ = inhalable particulate matter (bel	ow 50 microns aerodynamic equ	ivalent diameter) th	e "10" in PMo is the	ize with 50% mass		
	ied sampler, not an upper particl					
$M_{2.5} =$ fine particulate matter (below 6			" in PM 5 is the size y	with 50% mass		
	ied sampler, not an upper particl		In these to the once t	nui 5070 mass		
OPM = diesel particulate matter (carcino		e size mint				
vi wi – uleser particulate matter (carenne	Jgen)					

CRITERIA POLLUTANT EMISSIONS FOR CONSTRUCTION YEAR:

2010

					SIONS, TONS PER			
ROJECT PHASE	COMPONENT	ROG	NOx	CO	SOx	PM10	PM2.5	DPM
ITE PREP	Equipment	0.14	0.05	0.25	0.01	0.00	0.00	0.00
	Fugitive Dust	0.00	0.00	0.00	0.00	0.03	0.01	0.00
	Fugitive ROG	0.00	0,00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.14	0.05	0.25	0.01	0.03	0.01	0.00
OOTINGS, PADS, BLDG	Equipment	0.02	0.11	0.26	0.02	0.01	0.01	0.01
	Fugitive Dust	0.00	0.00	0.00	0.00	0.01	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.02	0.11	0.26	0.02	0.02	0.01	0.01
RRAY INSTALLATION	Equipment	0.01	0.07	0.07	0.02	0.01	0.01	0.01
	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.01	0.07	0.07	0.02	0.01	0.01	0.01
ENCING	Equipment	0.00	0.02	0.01	0.00	0.00	0.00	0.00
	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.002	0.02	0.01	0.003	0.01	0.002	0.00
TOTALS	Equipment	0.18	0.25	0.59	0.05	0.02	0.02	0.02
TOTALS	Fugitive Dust	0.00	0.00	0.00	0.03	0.02	0.02	0.02
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL	0.18	0.25	0.59	0.05	0.07	0.03	0.02
MAN CALENDAD OUADTED	Faulanant	0.17	0.16	0.51	0.03	0.02	0.01	0.02
MAX CALENDAR QUARTER	Equipment Fugitive Dust	0.00	0.00	0.00	0.03	0.02	0.01	0.02
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL	0.17	0.16	0.51	0.03	0.05	0.02	0.02

Maximum calendar quarter estimates made on a pollutant-by-pollutant basis, accounting for expected overlaps among construction phases.

ROG = reactive organic compounds (ozone precursor)

NOx = nitrogen oxides (ozone precursor)

CO = carbon monoxide

SOx = sulfur oxides

PM10 = inhalable particulate matter (below 50 microns aerodynamic equivalent diameter); the "10" in PM 10 is the size with 50% mass collection efficiency in a certified sampler, not an upper particle size limit

PM2.5 = fine particulate matter (below 6 microns aerodynamic equivalent diameter); the "2.5" in PM2.5 is the size with 50% mass collection efficiency in a certified sampler, not an upper particle size limit

FUGITIVE EMISSIONS DETAILS BY	PHASE:		
PARAMETER	PHASE 1	PHASE 2	T
			T

FARAMETER	THASET	FRASE 4	THASE 5	THASE 4
Assumed Soil Texture Class	sandy loam	sandy loam	sandy loam	sandy loam
Soil PM10 Fraction	20.0%	20.0%	20.0%	20.0%
Dust Control Program Effectiveness	50%	50%	50%	0%
Area Disturbed on a Typical Day, acres	0.72	0.09	0.03	0.13
Days of Distrubance	14	48	90	15
Uncontrolled TSP Rate, lbs/acre-day	60.0	40.0	24.0	24.0
Controlled PM10 Rate, lbs/acre-day	6.0	4.0	2.4	4.8
Demolition PM10, total pounds	0	0	0	0
Construction Blasting PM10, total pounds	0	0	0	0
Acres of asphalt paving	0.00	0.00	0.00	0.00
Painted Surface Area, square feet	0	0	0	0
PM2.5 fraction of engine exhaust PM10	92.0%	92.0%	92.0%	92.0%
PM2.5 fraction of fugitive dust PM10	20.0%	20.0%	20.0%	20.0%
PM2.5 fraction of spray paint PM10	91.2%	91.2%	91.2%	91.2%

PHASE 3 PHASE 4

PM2.5 fractions of diesel engine exhaust PM10 and spray paint PM10 are based on data from the California Air Resources Board CEIDAF (California Emission Inventory Data and Reporting System) database, as presented in Appendix A of SCAQMD 2003, Final Methodolog to Calculate PM2.5 and PM2.5 Significance Thresholds.

PM2.5 fraction of fugitive dust PM10 based on typical clay and fine silt content for soils texture class.

Default PM2.5 fractions from CEIDARS database are 92% for diesel engine exhaust, 20.8% for fugitive dust, and 91.2% for spray paint.

GLOBAL WARMING POTENTIAL DATA SET SELECTION:

DATA SOURCE	DATA SET CODE	GWP FOR CH4	GWP FOR N2O
IPCC 2nd Assessment, 1995:	1	21	310
IPCC 3rd Assessment, 2001:	2	23	296
IPCC 4th Assessment, 2007:	3	25	298
SELECTED GWP DATA SET (1, 2, or 3) =	3	<== Enter code for	selected data set
	~	· Enter coucier	servereu unta sec
CH4 factor:	25	· Enter coue for	selected data set.

GREENHOUSE GAS EMISSIONS SUMMARY:

2010

REENHOUSE GAS EMISSIONS SUMMARY		E DAILY GHG EMISS	SIONS, POUNDS F	PER DAY
PROJECT PHASE	CO2	CH4	N2O	GWP, CO2e
SITE PREP	831.8	0.04	0.03	840.2
FOOTINGS, PADS, BLDG	632.3	0.03	0.02	639.3
ARRAY INSTALLATION	250.9	0.01	0.01	254.1
FENCING	262.2	0.01	0.01	265.4
MAXIMUM DAY:	831.8	0.04	0.03	840.2
	TO	TAL GHG EMISSION	S, TONS PER YE	
PROJECT PHASE	CO2	CH4	N2O	GWP, CO2e
SITE PREP	5.8	0.0002	0.0002	5.9
FOOTINGS, PADS, BLDG	15.2	0.001	0.001	15.3
ARRAY INSTALLATION	11.3	0.001	0.0004	11.4
FENCING	2.0	0.0001	0.0001	2.0
MAXIMUM QUARTER:	21.0	0.001	0.001	21.2
CONSTRUCTION PERIOD TOTALS:	34.3	0.002	0.001	34.7

GHG = greenhouse gas

 $CO_2 = carbon dioxide; GWP multiplier = 1$

CH4 = methane; GWP multiplier = 25

N2O = nitrous oxide; GWP multiplier = 298

GWP = global warming potential, CO₂ equivalents (CO₂e) from Intergovernmental Panel on Climate Change (IPCC) 2007 fourth assessment report, 100 year time frame

Maximum day estimates based on expected overlaps among construction phases.

FORMATTED FOOTNOTE SETS:

GWP Data Set 1 footnotes:

CH4 = methane; GWP multiplier = 21

N2O = nitrous oxide; GWP multiplier = 310

GWP = global warming potential, CO2 equivalents (CO2e) from Intergovernmental Panel on Climate Change (IPCC) 1995 second assessment report, 100 year time frame

GWP Data Set 2 footnotes:

CH4 = methane; GWP multiplier = 23

N2O = nitrous oxide; GWP multiplier = 296

GWP = global warming potential, CO₂ equivalents (CO₂e) from Intergovernmental Panel on Climate Change (IPCC) 2001 third assessment report, 100 year time frame

GWP Data Set 3 footnotes:

CH4 = methane; GWP multiplier = 25

N2O = nitrous oxide; GWP multiplier = 298

GWP = global warming potential, CO2 equivalents (CO2e) from Intergovernmental Panel on Climate Change (IPCC) 2007 fourth assessment report, 100 year time frame

Page 14-23

CALENDAR QUARTER CRITERIA POLLUTANT EMISSIONS:

2010

			CRITERIA P	OLLUTANT EMIS	SSIONS, TONS BY	CALENDAR QUA		
CALENDAR QUARTER	COMPONENT	ROG	NOx	CO	SOx	PM10	PM2.5	DPM
QUARTER 1	Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Quintiner	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
QUARTER 2	Equipment	0.17	0.16	0.51	0.03	0.02	0.01	0.02
	Fugitive Dust	0.00	0.00	0.00	0.00	0.04	0.01	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.17	0.16	0.51	0.03	0.05	0.02	0.02
QUARTER 3	Equipment	0.01	0.05	0.05	0.01	0.01	0.00	0.01
	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.01	0.05	0.05	0.01	0.01	0.01	0.01
QUARTER 4	Equipment	0.00	0.03	0.03	0.01	0.00	0.00	0.00
	Fugitive Dust	0.00	0.00	0.00	0.00	0.01	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.00	0.03	0.03	0.01	0.01	0.00	0.00
MAXIMUM QUARTER	Equipment	0.17	0.16	0.51	0.03	0.02	0.01	0.02
and a second sec	Fugitive Dust	0.00	0.00	0.00	0.00	0.04	0.01	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL	0.17	0.16	0.51	0.03	0.05	0.02	0.02

ROG = reactive organic compounds (ozone precursor)

NOx = nitrogen oxides (ozone precursor)

CO = carbon monoxide

SOx = sulfur oxides

PM10 = inhalable particulate matter (below 50 microns aerodynamic equivalent diameter); the "10" in PM0 is the size with 50% mass collection efficiency in a certified sampler, not an upper particle size limit

PM2.5 = fine particulate matter (below 6 microns aerodynamic equivalent diameter); the "2.5" in PM2.5 is the size with 50% mass collection efficiency in a certified sampler, not an upper particle size limit

DAR QUARTER GHG EMISSION	GHG EMISSIONS, TONS BY CALENDAR QUARTER						
CALENDAR QUARTER	CO2	CH4	N2O	GWP, CO2			
QUARTER 1	0.0	0.000	0.000	0.0			
QUARTER 2	21.0	0.001	0.001	21.2			
QUARTER 3	8.0	0.000	0.000	8.1			
QUARTER 4	5.2	0.000	0.000	5.3			
MAXIMUM QUARTER	21.0	0.001	0.001	21.2			

GHG = greenhouse gas

CO₂ = carbon dioxide; GWP multiplier = 1

CH4 = methane; GWP multiplier = 25

N2O = nitrous oxide; GWP multiplier = 298

GWP = global warming potential, CO₂ equivalents (CO₂e) from Intergovernmental Panel on Climate Change (IPCC) 2007 fourth assessment report, 100 year time frame

Page A-25

EQUIPMENT ITEM	ENGINE HP	LOAD FACTOR	OPERATING FACTOR	NUMBER OF ITEMS	HOURS PER DAY	FUEL USE RATE, gal/hr
Small Tracked Dozer, 75 - 175 HP	150	59%	85%	1	2	4.62
Small Tracked Loader, 75 - 175 HP	100	57%	75%	i	4	2.97
Small Tracked Shovel Excavator, 75 - 175 HP	100	59%	85%	i	2	3.08
Gas Engine Chippers & Stump Grinders, < 25 HP	15	39%	65%	1	6	0.76
Gasoline Small Chain Saw, < 25 HP	3	50%	65%	2	6	0.19
Small Trencher, < 25 HP	20	64%	85%	0	0	0.74
Small Wheeled Backhoe-Loader, 25 - 75 HP	70	38%	85%	0	0	1.80
Small Roller/Compactor, 25 - 75 HP	35	59%	85%	0	0	1.20
Small Concrete Pump, 25 - 75 HP	70	62%	75%	0	0	2.52
Gas Engine Concrete Finisher/Vibrator, < 25 HP	8.5	59%	85%	0	0	0.69
Small Rough Terrain Forklift, 25 - 75 HP	70	35%	65%	0	0	1.42
Medium (1,200 gal) Water Truck, 175 - 750 HP	180	57%	65%	1	1	5.35
5-Ton (3.5-5 yd) Dump Truck, 175 - 750 HP	200	57%	25%	2	2	5.95
Standard (4-5 Yard) Cement Mixer Truck	275	57%	40%	0	0	8.18
Medium Flatbed Truck, 175 - 750 HP	300	57%	25%	1	1	8.92
not used	1	100%	100%	0	0	0.00
not used	i	100%	100%	0	0	0.00
not used	1 i	100%	100%	0	0	0.00
not used	i	100%	100%	0	0	0.00
not used	i	100%	100%	0	0	0.00
tot used	i i	100%	100%	0	0	0.00
not used	i i	100%	100%	0	0	0.00
ot used	i	100%	100%	0	0	0.00
tot used	i	100%	100%	0	0	0.00
tot used	i	100%	100%	0	0	0.00
not used	i	100%	100%	0	0	0.00
ot used	i	100%	100%	0	0	0.00
iot used	i	100%	100%	0	ō	0.00
ot used	1	100%	100%	0	o	0.00
not used	i	100%	100%	o	ŏ	0.00

Heavy truck hourly operating factor reflects on-site and immediate vicinity use only.

CRITER	IA POLLUTA	NT EMISSION	RATE, GRAN	IS/HOUR		SSION RATE,	LBS/HOUI
ROG	NOx	CO	SOx	PM10	CO2	CH4	N2O
75.62	596.45	366.39	66.20	50.98	102.34	0.0029	0.0020
48.70	384.15	235.98	42.64	32.83	65.92	0.0028	0.0020
22.99	343.99	236.00	46.09	27.38	68.23	0.0010	0.0007
403.59	11.82	3,504.15	2.16	0.29	14.76	0.0005	0.0004
938.70	8.70	12.75	0.81	0.24	3.60	0.0001	0.0001
13.38	58.81	62.72	9.05	6.14	16.46	0.0002	0.0002
26.57	185.96	131.40	19.90	15.53	39.95	0.0011	0.0008
12.52	140.71	76.41	18.17	11.07	26.55	0.0004	0.0003
28.89	215.45	160.58	30.68	11.63	55.79	0.0008	0.0006
79.09	9.63	1,886.64	1.25	1.10	13.35	0.0002	0.0002
28.02	129.91	121.52	19.14	13.20	31.50	0.0013	0.0009
22.52	233.98	270.86	76.70	28.73	118.65	0.0041	0.0030
25.03	259.97	300.96	85.23	31.92	131.83	0.0110	0.0079
34.41	357.46	413.82	117.19	43.89	181.27	0.0152	0.0108
37.43	388.70	451.44	127.84	47.88	197.75	0.0165	0.0118
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000

Emission rates reflect engine HP and load factor; operating time factor is accounted for in net engine-hours calculations.

			ENGINE	LOAD	OPERATING	NUMBER	HOURS	FUEL US
EQUIPM	IENT ITEM		HP	FACTOR	FACTOR	OF ITEMS	PER DAY	RATE, gal/
Small Tracked Doze	ar 75 175 HP		150	59%	85%	0	0	4.62
Small Tracked Load			100	57%	75%	1	2	2.97
	vel Excavator, 75 - 175 HP		100	59%	85%	0	õ	3.08
	rs & Stump Grinders, < 25 HI	and the second se	15	39%	65%	0	0	0.76
Gasoline Small Cha			3	50%	65%	0	0	0.19
Small Trencher, < 2			20	64%	85%	1	4	0.74
	khoe-Loader, 25 - 75 HP		70	38%	85%	1	2	1.80
Small Roller/Compa			35	59%	85%	1	1	1.20
Small Concrete Pun	np, 25 - 75 HP		70	62%	75%	1	1	2.52
Gas Engine Concret	te Finisher/Vibrator, < 25 HP		8.5	59%	85%	2	1	0.69
Small Rough Terrain	n Forklift, 25 - 75 HP		70	3 5%	65%	1	2	1.42
Medium (1,200 gal)	Water Truck, 175 - 750 HP		180	57%	65%	1	1	5.35
5-Ton (3.5-5 yd) Du	imp Truck, 175 - 750 HP		200	57%	25%	1	1	5.95
	Cement Mixer Truck		275	57%	40%	1	1	8.18
Medium Flatbed Tru	uck, 175 - 750 HP		300	57%	25%	1	2	8.92
not used			1	100%	100%		0	0.00
iot used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100% 100%	100% 100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used			i	100%	100%		0	0.00
not used			1	100%	100%	o	0	0.00
not used			1	100%	100%		0	0.00
not used			i	100%	100%	-	0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
avy truck hourly op	perating factor reflects on-site	and immediate vici	nity use only.	-				- International

EOUIPMENT USE DETAILS, PHASE 2: FOOTINGS, PADS, BLDG

CRITER	IA POLLUTA	NT EMISSION	RATE, GRAM	IS/HOUR	GHG EMIS	SSION RATE,	LBS/HOUF
ROG	NOx	CO	SOx	PM10	CO2	CH4	N2O
75.62	596.45	366.39	66.20	50.98	102.34	0.0029	0.0020
48.70	384.15	235.98	42.64	32.83	65.92	0.0028	0.0020
22.99	343.99	236.00	46.09	27.38	68.23	0.0010	0.0007
403.59	11.82	3,504.15	2.16	0.29	14.76	0.0005	0.0004
938.70	8.70	12.75	0.81	0.24	3.60	0.0001	0.0001
13.38	58.81	62.72	9.05	6.14	16.46	0.0002	0.0002
26.57	185.96	131.40	19.90	15.53	39.95	0.0011	0.0008
12.52	140.71	76.41	18.17	11.07	26.55	0.0004	0.0003
28.89	215.45	160.58	30.68	11.63	55.79	0.0008	0.0006
79.09	9.63	1,886.64	1.25	1.10	13.35	0.0002	0.0002
28.02	129.91	121.52	19.14	13.20	31.50	0.0013	0.0009
22.52	233.98	270.86	76.70	28.73	118.65	0.0041	0.0030
25.03	259.97	300.96	85.23	31.92	131.83	0.0110	0.0079
34.41	357.46	413.82	117.19	43.89	181.27	0.0152	0.0108
37.43	388.70	451.44	127.84	47.88	197.75	0.0165	0.0118
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000

Emission rates reflect engine HP and load factor; operating time factor is accounted for in net engine-hours calculations.

FOUR	MENT PTPM		ENGINE	LOAD	OPERATING	NUMBER	HOURS	FUEL US
EQUIP	MENT ITEM		HP	FACTOR	FACTOR	OF ITEMS	PER DAY	RATE, gal/
Small Tracked Doz	ter, 75 - 175 HP		150	59%	85%	0	0	4.62
Small Tracked Loa			100	5.7%	75%	0	0	2.97
Small Tracked Sho	vel Excavator, 75 - 175 HP		100	59%	85%	0	0	3.08
Gas Engine Chippe	ers & Stump Grinders, < 25 I		15	3.9%	65%	0	0	0.76
Gasoline Small Cha			3	50%	65%	0	0	0.19
Small Trencher, <			20	64%	85%	0	0	0.74
	ckhoe-Loader, 25 - 75 HP		70	38%	85%	1	1	1.80
Small Roller/Comp Small Concrete Pur			35 70	59% 62%	85% 75%	0	0	1.20
	te Finisher/Vibrator, < 25 H	P	8.5	59%	85%	o	0	0.69
and the second	in Forklift, 25 - 75 HP		70	35%	65%	1	2	1.42
) Water Truck, 175 - 750 HI		180	57%	65%	i	ī	5.35
	ump Truck, 175 - 750 HP		200	57%	25%	0	0	5.95
) Cement Mixer Truck		275	57%	40%	0	0	8.18
Medium Flatbed Tr	nuck, 175 - 750 HP		300	57%	25%	1	2	8.92
not used			1	100%	100%		0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used not used			1	100%	100% 100%	0	0	0.00
not used			i	100%	100%	0	0	0.00
not used			i	100%	100%		0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used not used			1	100%	100%	0	0	0.00
not used			1	100%	100% 100%	0	0	0.00
				10070	10076		•	0.00
avy truck hourly o	perating factor reflects on-si	te and immediate vici	nity use only.					

EQUIPMENT USE DETAILS, PHASE 3: ARRAY INSTALLATION

CRITER	IA POLLUTA	NT EMISSION	RATE, GRAN	IS/HOUR	GHG EMIS	SION RATE,	LBS/HOUI
ROG	NOx	CO	SOx	PM10	CO2	CH4	N2O
75.62	596.45	366.39	66.20	50.98	102.34	0.0029	0.0020
48.70	384.15	235.98	42.64	32.83	65.92	0.0028	0.0020
22.99	343.99	236.00	46.09	27.38	68.23	0.0010	0.0007
403.59	11.82	3,504.15	2.16	0.29	14.76	0.0005	0.0004
938.70	8.70	12.75	0.81	0.24	3.60	0.0001	0.0001
13.38	58.81	62.72	9.05	6.14	16.46	0.0002	0.0002
26.57	185.96	131.40	19.90	15.53	39.95	0.0011	0.0008
12.52	140.71	76.41	18.17	11.07	26.55	0.0004	0.0003
28.89	215.45	160.58	30.68	11.63	55.79	0.0008	0.0006
79.09	9.63	1,886.64	1.25	1.10	13.35	0.0002	0.0002
28.02	129.91	121.52	19.14	13.20	31.50	0.0013	0.0009
22.52	233.98	270.86	76.70	28.73	118.65	0.0041	0.0030
25.03	259.97	300.96	85.23	31.92	131.83	0.0110	0.0079
34.41	357.46	413.82	117.19	43.89	181.27	0.0152	0.0108
37.43	388.70	451.44	127.84	47.88	197.75	0.0165	0.0118
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000

Emission rates reflect engine HP and load factor; operating time factor is accounted for in net engine-hours calculations.

EOUIPMENT	USE	DETAILS	PHASE 4	FENCING
EQUIL MILLINI	UGE	DETRILD,	I LLIBUR W.	T. WILL CHILLO

EQUIPM	1ENT ITEM		ENGINE HP	LOAD FACTOR	OPERATING FACTOR	NUMBER OF ITEMS	HOURS PER DAY	FUEL USE RATE, gal/t
Small Tracked Doze	er 75 - 175 HP	1000	150	59%	85%	0	0	4.62
Small Tracked Load			100	57%	75%	o	o	2.97
	el Excavator, 75 - 175 HP		100	59%	85%	0	0	3.08
Gas Engine Chipper	rs & Stump Grinders, < 25 HP		15	39%	65%	0	0	0.76
Gasoline Small Cha	and the second		3	50%	65%		0	0.19
Small Trencher, < 2			20	64%	85%	0	0	0.74
	khoe-Loader, 25 - 75 HP		70 35	38% 59%	85% 85%	1		1.80
Small Roller/Compa Small Concrete Pure			70	62%	75%	0	0	2.52
	te Finisher/Vibrator, < 25 HP		8.5	59%	85%	0	0	0.69
	n Forklift, 25 - 75 HP		70	35%	65%	1	3	1.42
Medium (1,200 gal)	Water Truck, 175 - 750 HP		180	57%	65%	0	0	5.35
	amp Truck, 175 - 750 HP		200	57%	25%	0	0	5.95
	Cement Mixer Truck		275	57%	40%	0	0	8.18
Medium Flatbed Tra not used	uck, 175 - 750 HP		300	57% 100%	25% 100%	1	2	8.92 0.00
not used			i	100%	100%	0	0	0.00
not used			i	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100% 100%	100% 100%	0	0	0.00
not used			i	100%	100%		0	0.00
not used			i	100%	100%		0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100%	100%	0	0	0.00
not used			1	100% 100%	100%	0	0	0.00
not used	10000.0			100%	100%		.0	0.00

CRITER	ITERIA POLLUTANT EMISSION RATE, GRAMS/HOUR		IS/HOUR	GHG EMIS	SION RATE,	LBS/HOU	
ROG	NOx	CO	SOx	PM10	CO2	CH4	N2O
75.62	596.45	366.39	66.20	50.98	102.34	0.0029	0.0020
48.70	384.15	235.98	42.64	32.83	65.92	0.0028	0.0020
22.99	343.99	236.00	46.09	27.38	68.23	0.0010	0.0007
403.59	11.82	3,504.15	2.16	0.29	14.76	0.0005	0.0004
938.70	8.70	12.75	0.81	0.24	3.60	0.0001	0.0001
13.38	58.81	62.72	9.05	6.14	16.46	0.0002	0.0002
26.57	185.96	131.40	19.90	15.53	39.95	0.0011	0.0008
12.52	140.71	76.41	18.17	11.07	26.55	0.0004	0.0003
28.89	215.45	160.58	30.68	11.63	55.79	0.0008	0.0006
79.09	9.63	1,886.64	1.25	1.10	13.35	0.0002	0.0002
28.02	129.91	121.52	19.14	13.20	31.50	0.0013	0.0009
22.52	233.98	270.86	76.70	28.73	118.65	0.0041	0.0030
25.03	259.97	300.96	85.23	31.92	131.83	0.0110	0.0079
34.41	357.46	413.82	117.19	43.89	181.27	0.0152	0.0108
37.43	388.70	451.44	127.84	47.88	197.75	0.0165	0.0118
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000

Emission rates reflect engine H	and load factor; operation	ng time factor is accounted	for in net engine-hours calculations.
---------------------------------	----------------------------	-----------------------------	---------------------------------------

A-33

CONSTRUCTION ACTIVITY EMISSIONS SUMMARY

CHEYENNE MOUNTAIN AFS SOLAR POWER-SYSTEM - ALTERNATIVE B CONSTRUCTION YEAR: 2010

EQUIPMENT USE SUMMARY:

	ACTIVITY					HOURS OF	TOTAL	TRUCK TRAFF	IC (1-way trip
PROJECT PHASE	DURATION, WORKING DAYS		ACREA(SUBJECT ISTURBA	то	NUMBER OF EQUIPMENT ITEMS	ON-SITE EQUIPMENT USE	EQUIPMENT FUEL USE, GALLONS	TRUCK TRIPS TO/ FROM SITE	TRUCK TRIPS PER DAY
SITE PREP	20		17.2		10	400	762	200	10
FOOTINGS, PADS, BLDG	48	-	4.3		12	624	1,377	384	8
ARRAY INSTALLATION	90		2.8		4	297	1,019	360	4
FENCING	20	8.81	3.0		3	100	237	80	4
NET WORKING DAYS AND TOTALS: MINIMUM PHASE: MEAN OVER NET WORK PERIOD: MAXIMUM PHASE:	178		2.8 4.8 17.2		3 7 12	1,421	3,395	1,024	10 4 6 10
o overlap among phases.									
o overtap among phases.									
o overrap among prases.									

Page A-34

CALENDAR QUARTER PHASE OVERLAP CALCULATOR:

178 [otal Work Days =

			N N	VORK DAY	S PER Q	UARTER		
PHASE		Q1		Q2		Q3		Q4
SITE PREP		0		20		0		0
FOOTINGS, PADS, BLDG		0		42		6		0
ARRAY INSTALLATION		0		0		58		32
FENCING		0		0		0		20
Available Work Days pe	r Quarter	61		64		64		64
				IISSIONS E	BY QUAR	FER, TONS		1.1
POLLUTANT		Q1	1.4691	Q2		Q3		Q4
ROG		0.00		0.22		0.01		0.01
NOx		0.00		0.17		0.06		0.04
CO		0.00		0.59		0.08		0.04
SOx		0.00		0.03		0.01		0.01
PM10		0.00		0.08		0.01		0.01
lote: Analysis assumes a 5-da	y work week w	ith allowances fo	or major holio	Construction and Construction	1475	10	1.1	

CRITERIA POLLUTANT EMISSIONS, TYPICAL CONSTRUCTION DAY:

2010

				IONS, POUNDS PI	CAN DIEA	All and a second s	
COMPONENT	ROG	NOx	CO	SOx	PM10	PM2.5	DPM
Equipment	20.41	7 44	35.47	1.10	0.66	0.60	0.65
						0.700.00	0.00
							0.00
Subtotal	20.41	7.44	35.47	1.10	5.82	1.63	0.65
Equipment	0.93	4.66	10.99	0.83	0.45	0.41	0.44
Fugitive Dust	0.00	0.00	0.00	0.00	0.36	0.07	0.00
Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.93	4.66	10.99	0.83	0.81	0.48	0.44
Equipment	0.20	1.48	1.48	0.34	0.16	0.15	0.16
Fugitive Dust	0.00	0.00	0.00	0.00	0.07	0.01	0.00
Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.20	1.48	1.48	0.34	0.24	0.16	0.16
Equipment	0.31	2.03	1.76	0.34	0.20	0.18	0.20
Fugitive Dust	0.00	0.00	0.00	0.00	0.72	0.14	0.00
Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Subtotal	0.31	2.03	1.76	0.34	0.92	0.33	0.20
Equinment	21.85	15.61	49.69	2.61	1.46	1 34	1.45
							0.00
							0.00
Tugiure Roo	0.00	0.00	0.00	0.00	0100	0.00	0100
TOTAL	21.85	15.61	49,69	2.61	7.77	2.60	1.45
Fauinment	20.41	7.44	35.47	1.10	0.66	0.60	0.65
							0.00
							0.00
TOTAL	20.41	7.44	35.47	1.10	5.82	1.63	0.65
		10			in the second		
	Equipment Fugitive Dust Fugitive ROG Subtotal Equipment Fugitive ROG Subtotal Equipment Fugitive Dust Fugitive ROG Subtotal Equipment Fugitive Dust Fugitive ROG Subtotal Equipment Fugitive ROG Subtotal Equipment Fugitive ROG TOTAL Equipment Fugitive Dust Fugitive ROG	Equipment Fugitive Dust20.41 0.00Fugitive ROG Subtotal0.00Subtotal20.41Equipment Fugitive ROG Subtotal0.93Fugitive ROG Subtotal0.00Fugitive ROG Subtotal0.00Fugitive ROG Fugitive ROG Subtotal0.00Equipment Fugitive ROG Subtotal0.20Equipment Fugitive ROG Subtotal0.20Equipment Fugitive ROG Subtotal0.31Equipment Fugitive ROG Subtotal0.31Equipment Fugitive ROG Fugitive ROG Fugitive ROG21.85Equipment Fugitive ROG Fugitive ROG20.41Fugitive ROG Fugitive ROG Fugitive ROG0.00	Equipment Fugitive Dust 20.41 7.44 Fugitive ROG 0.00 0.00 Subtotal 20.41 7.44 Equipment 0.93 4.66 Fugitive Dust 0.00 0.00 Fugitive ROG 0.00 0.00 Subtotal 0.93 4.66 Fugitive ROG 0.00 0.00 Subtotal 0.93 4.66 Equipment 0.20 1.48 Fugitive Dust 0.00 0.00 Fugitive ROG 0.00 0.00 Subtotal 0.20 1.48 Equipment 0.20 1.48 Equipment 0.31 2.03 Fugitive ROG 0.00 0.00 Subtotal 0.31 2.03 Equipment 0.31 2.03 Fugitive ROG 0.00 0.00 Subtotal 0.00 0.00 TOTAL 21.85 15.61 Equipment 20.41 7.44 Fugitive	Equipment Fugitive Dust 20.41 7.44 35.47 Fugitive ROG 0.00 0.00 0.00 Subtotal 20.41 7.44 35.47 Equipment 0.93 4.66 10.99 Fugitive Dust 0.00 0.00 0.00 Fugitive ROG 0.00 0.00 0.00 Subtotal 0.93 4.66 10.99 Fugitive ROG 0.00 0.00 0.00 Subtotal 0.93 4.66 10.99 Equipment 0.20 1.48 1.48 Fugitive Dust 0.00 0.00 0.00 Subtotal 0.20 1.48 1.48 Equipment 0.20 1.48 1.48 Equipment 0.31 2.03 1.76 Fugitive Dust 0.00 0.00 0.00 Subtotal 0.31 2.03 1.76 Fugitive Dust 0.00 0.00 0.00 Fugitive ROG 0.00 0.00 0.00	Equipment Fugitive Dust 20.41 7.44 35.47 1.10 Fugitive ROG 0.00 0.00 0.00 0.00 Subtotal 20.41 7.44 35.47 1.10 Equipment 0.93 4.66 10.99 0.83 Fugitive ROG 0.00 0.00 0.00 0.00 Subtotal 0.93 4.66 10.99 0.83 Fugitive ROG 0.00 0.00 0.00 0.00 Subtotal 0.93 4.66 10.99 0.83 Equipment 0.20 1.48 1.48 0.34 Fugitive ROG 0.00 0.00 0.00 0.00 Subtotal 0.20 1.48 1.48 0.34 Fugitive ROG 0.00 0.00 0.00 0.00 Subtotal 0.20 1.48 1.48 0.34 Equipment 0.31 2.03 1.76 0.34 Fugitive ROG 0.00 0.00 0.00 0.00	Equipment Fugitive Dust Fugitive ROG 20.41 7.44 35.47 1.10 0.66 Fugitive ROG 0.00 0.00 0.00 0.00 5.16 Fugitive ROG 0.00 0.00 0.00 0.00 0.00 5.16 Equipment 0.93 4.66 10.99 0.83 0.45 Fugitive ROG 0.00 0.00 0.00 0.00 0.00 0.00 Subtotal 0.93 4.66 10.99 0.83 0.45 Fugitive ROG 0.00 0.00 0.00 0.00 0.00 0.00 Subtotal 0.93 4.66 10.99 0.83 0.81 Equipment 0.20 1.48 1.48 0.34 0.16 Fugitive ROG 0.00 0.00 0.00 0.00 0.00 Subtotal 0.20 1.48 1.48 0.34 0.24 Equipment 0.31 2.03 1.76 0.34 0.20 Fugitive ROG 0.00	Equipment Fugitive Dust 20.41 0.00 7.44 0.00 35.47 0.00 1.10 0.00 0.66 0.00 0.66 0.00 Subtotal 20.41 7.44 35.47 1.10 0.66 0.00 0.00 Subtotal 20.41 7.44 35.47 1.10 5.82 1.63 Equipment 0.93 4.66 10.99 0.83 0.45 0.41 Fugitive ROG 0.00 0.00 0.00 0.00 0.00 0.00 Subtotal 0.93 4.66 10.99 0.83 0.45 0.41 Fugitive ROG 0.00 0.00 0.00 0.00 0.00 0.00 Subtotal 0.20 1.48 1.48 0.34 0.16 0.15 Fugitive ROG 0.00 0.00 0.00 0.00 0.00 0.00 Subtotal 0.20 1.48 1.48 0.34 0.24 0.16 Fugitive ROG 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CALENDAR OF ARTER PRASF OVERLAP CALCULATORS

1787 utst Wards Darys -

		and share the second		DAILY EMISS	IONS, POUNDS PI	ER DAY		
PROJECT PHASE	COMPONENT	ROG	NOx	CO	SOx	PM10	PM2.5	DPM
TTE PREP	Equipment	20.41	7.44	35.47	1.10	0.66	0.60	0.65
ITE TREE	Fugitive Dust	0.00	0.00	0.00	0.00	5.16	1.03	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0,00	0.00	0.00
	Subtotal	20.41	7.44	35.47	1.10	5.82	1.63	0.65
FOOTINGS, PADS, BLDG	Equipment	0.93	4.66	10.99	0.83	0.45	0.41	0.44
	Fugitive Dust	0.00	0.00	0.00	0.00	0.36	0.07	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.93	4.66	10.99	0.83	0.81	0.48	0.44
ARRAY INSTALLATION	Equipment	0.20	1.48	1.48	0.34	0.16	0.15	0.16
	Fugitive Dust	0.00	0.00	0.00	0.00	0.07	0.01	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.20	1.48	1.48	0.34	0.24	0.16	0.16
FENCING	Equipment	0.31	2.03	1.76	0.34	0.20	0.18	0.20
	Fugitive Dust	0.00	0.00	0.00	0.00	0.72	0.14	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.31	2.03	1.76	0.34	0.92	0.33	0.20
				10.50				
TOTALS	Equipment	21.85	15.61	49.69	2.61	1.46	1.34	1.45
	Fugitive Dust	0.00	0.00	0.00	0.00	6.31	1.26	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL	21.85	15.61	49.69	2.61	7.77	2.60	1.45
MAXIMUM DAY	Equipment	20.41	7.44	35.47	1.10	0.66	0.60	0.65
MARINEWDAT	Fugitive Dust	0.00	0.00	0.00	0.00	5.16	1.03	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0,00	0.00	0.00
	TOTAL	20.41	7.44	35.47	1.10	5.82	1.63	0.65
Totals apply only if phase durations or subare	a sequencings require all pl	hases to overlap at so	me point during the co	onstruction period.				
No overlap among phases. Maximum day estimates made on a pollutant-	by-pollutant basis, account	ing for expected over	laps among constructi	on phases.				
ROG = reactive organic compounds (ozone pa	recursor)		 Remains the state of the state	AT 1-21 TO A 12/1 / AURILL				
NOx = nitrogen oxides (ozone precursor)								
CO = carbon monoxide SOx = sulfur oxides								
PM10 = inhalable particulate matter (below 50	microns serodynamic equ	ivalent diameter): the	"10" in PMin is the ei	ze with 50% mass				
collection efficiency in a certified sa	2014년 1월 2017년 1월 2017년 일종 1월 2017년 1월 1월 2017년 1월 2	영상장 가지 가장 있는 것을 것 것 같아요. 나는 것 같아요. 아파 가지 않는 것 같아요. 아파 가지 않는 것 같아요. 가지 않는 것 같아요. 아파 가지 않는 것 않는 것 않는 것 같아요. 아파 가지 않는 것 않는	To mi rivito is ule si	20 1101 30 /0 11035				

FIVE 3 - The particulate matter (below 6 microns aerodynamic equivalent diaméter); t collection efficiency in a certified sampler, not an upper particle size limit DPM = diesel particulate matter (carcinogen)

CRITERIA POLLUTANT EMISSIONS FOR COM	NSTRUCTION YEAR:
--------------------------------------	------------------

				TOTAL EMIS	SIONS, TONS PER	YEAR		_
PROJECT PHASE	COMPONENT	ROG	NOx	CO	SOx	PM10	PM2.5	DPM
SITE PREP	Equipment	0.20	0.07	0.35	0.01	0.01	0.01	0.01
	Fugitive Dust	0.00	0.00	0.00	0.00	0.05	0.01	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.20	0.07	0.35	0.01	0.06	0.02	0.01
FOOTINGS, PADS, BLDG	Equipment	0.02	0.11	0.26	0.02	0.01	0.01	0.01
	Fugitive Dust	0.00	0.00	0.00	0.00	0,01	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.02	0.11	0.26	0.02	0.02	0.01	0.01
ARRAY INSTALLATION	Equipment	0.01	0.07	0.07	0.02	0.01	0.01	0.01
	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0,00	0.00
	Subtotal	0.01	0.07	0.07	0.02	0.01	0.01	0.01
FENCING	Equipment	0.00	0.02	0.02	0.00	0,00	0.00	0,00
	Fugitive Dust	0.00	0.00	0.00	0.00	0.01	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.003	0.02	0.02	0.003	0.01	0.003	0.00
TOTALS	Fastancet	0.24	0.27	0.70	0.05	0.03	0.02	0.03
IOTALS	Equipment Fugitive Dust	0.00	0.00	0.00	0.05	0.03	0.02	0.03
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL	0.24	0.27	0.70	0.05	0.10	0.04	0.03
MAX CALENDAR QUARTER	Equipment	0.22	0.17	0.59	0.03	0.02	0.01	0.02
MAA CALENDAR QUARTER	Fugitive Dust	0.00	0.00	0.00	0.00	0.02	0.01	0.02
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL	0.22	0.17	0.59	0.03	0.08	0.03	0.02

Maximum calendar quarter estimates made on a pollutant-by-pollutant basis, accounting for expected overlaps among construction phases.

ROG = reactive organic compounds (ozone precursor)

NOx = nitrogen oxides (ozone precursor)

CO = carbon monoxide

SOx = sulfur oxides

PM10 = inhalable particulate matter (below 50 microns aerodynamic equivalent diameter); the "10" in PM10 is the size with 50% mass collection efficiency in a certified sampler, not an upper particle size limit

PM2.5 = fine particulate matter (below 6 microns aerodynamic equivalent diameter); the "2.5" in PM2.5 is the size with 50% mass collection efficiency in a certified sampler, not an upper particle size limit

DPM = diesel particulate matter (carcinogen)

FUGITIVE EMISSIONS DETAILS BY PHASE:

	PHASE 2	PHASE 3	PHASE 4
sandy loam	sandy loam	sandy loam	sandy loam
20.0%	20.0%	20.0%	20.0%
50%	50%	50%	0%
0.86	0.09	0.03	0.15
20	48	90	20
60.0	40.0	24.0	24.0
6.0	4.0	2.4	4.8
0	0	0	0
0	0	0	0
0.00	0.00	0.00	0.00
0	0	0	0
92.0%	92.0%	92.0%	92.0%
20.0%	20.0%	20.0%	20.0%
91.2%	91.2%	91.2%	91.2%
	20.0% 50% 0.86 20 60.0 6.0 0 0 0 0.00 0 92.0% 20.0%	$\begin{array}{c ccccc} 20.0\% & 20.0\% & \\ 50\% & 50\% & \\ 0.86 & 0.09 & \\ 20 & 48 & \\ 60.0 & 40.0 & \\ 6.0 & 40.0 & \\ 0 & 0 & \\ 0 & 0 & \\ 0 & 0 & \\ 0 & 0 &$	$\begin{array}{c cccccc} 20.0\% & 20.0\% & 20.0\% \\ 50\% & 50\% & 50\% & 50\% \\ 0.86 & 0.09 & 0.03 \\ 20 & 48 & 90 \\ 60.0 & 40.0 & 24.0 \\ 6.0 & 40.0 & 24.0 \\ 6.0 & 4.0 & 2.4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$

PM2.5 fractions of diesel engine exhaust PM10 and spray paint PM10 are based on data from the California Air Resources Board CEIDA (California Emission Inventory Data and Reporting System) database, as presented in Appendix A of SCAQMD 2003, Final Methodol to Calculate PM2.5 and PM2.5 Significance Thresholds.

PM2.5 fraction of fugitive dust PM10 based on typical clay and fine silt content for soils texture class.

Default PM2.5 fractions from CEIDARS database are 92% for diesel engine exhaust, 20.8% for fugitive dust, and 91.2% for spray paint

Page A-39

DATA SOURCE	DATA SET CODE	GWP FOR CH4	GWP FOR N2O
IPCC 2nd Assessment, 1995:	1	21	310
IPCC 3rd Assessment, 2001:	2	23	296
IPCC 4th Assessment, 2007:	3	25	298

298

N2O factor:

GREENHOUSE GAS EMISSIONS SUMMARY:

	AVERAGE DAILY GHG EMISSIONS, POUNDS PER DA							
PROJECT PHASE	CO2	CH4	N2O	GWP				

	Ch Y LILLAGI	D DIVITI O TIO TIME	DIVING I VUIND.	I LAN DANK					
PROJECT PHASE	CO2	CH4	N2O	GWP, CO20					
SITE PREP	831.8	0.04	0.03	840.2					
FOOTINGS, PADS, BLDG	632.3	0.03	0.02	639.3					
ARRAY INSTALLATION	250.9	0.01	0.01	254.1					
FENCING	262.2	0.01	0.01	265.4					
MAXIMUM DAY:	831.8	0.04	0.03	840.2					
	TOTAL GHG EMISSIONS, TONS PER YEAR								
PROJECT PHASE	CO2	CH4	N2O	GWP, CO20					
SITE PREP	8.3	0.0004	0.0003	8.4					
FOOTINGS, PADS, BLDG	15.2	0.001	0.001	15.3					
ARRAY INSTALLATION	11.3	0.001	0.0004	11.4					
FENCING	2.6	0.0001	0.0001	2.7					
MAXIMUM QUARTER:	21.6	0.001	0.001	21.8					

2010

GHG = greenhouse gas

CO2 = carbon dioxide; GWP multiplier = 1

CH4 = methane; GWP multiplier = 25

N2O = nitrous oxide; GWP multiplier = 298

GWP = global warming potential, CO2 equivalents (CO2e) from Intergovernmental Panel on Climate Change (IPCC) 2007 fourth assessment report, 100 year time frame

Maximum day estimates based on expected overlaps among construction phases.

FORMATTED FOOTNOTE SETS:

GWP Data Set 1 footnotes:

CH4 = methane; GWP multiplier = 21

N2O = nitrous oxide; GWP multiplier = 310

GWP = global warming potential, CO2 equivalents (CO2e) from Intergovernmental Panel on Climate Change (IPCC) 1995 second assessment report, 100 year time frame

GWP Data Set 2 footnotes:

CH4 = methane; GWP multiplier = 23

N2O = nitrous oxide; GWP multiplier = 296

GWP = global warming potential, CO2 equivalents (CO2e) from Intergovernmental Panel on Climate Change (IPCC) 2001 third assessment report, 100 year time frame

GWP Data Set 3 footnotes:

CH4 = methane; GWP multiplier = 25

N2O = nitrous oxide; GWP multiplier = 298

GWP = global warming potential, CO₂ equivalents (CO₂e) from Intergovernmental Panel on Climate Change (IPCC) 2007 fourth assessment report, 100 year time frame

CALENDAR OUARTER CRITERIA POLLUTANT EMISSIONS:

2010

			CRITERIA P	OLLUTANT EMIS	SSIONS, TONS BY	CALENDAR QUA		
CALENDAR QUARTER	COMPONENT	ROG	NOx	CO	SOx	PM10	PM2.5	DPM
QUARTER 1	Equipment	0.00	0.00	0.00	0.00	0.00	0.00	0.00
QUARTERT	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subiotal	0.00	0.00	0.00	0.00	0.00	0.00	0.00
QUARTER 2	Equipment	0.22	0.17	0.59	0.03	0.02	0.01	0.02
	Fugitive Dust	0.00	0.00	0.00	0.00	0.06	0.01	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.22	0.17	0.59	0.03	0.08	0.03	0.02
QUARTER 3	Equipment	0.01	0.06	0.08	0.01	0.01	0.01	0.01
	Fugitive Dust	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.01	0.06	0.08	0.01	0.01	0.01	0.01
OUARTER 4	Equipment	0.01	0.04	0.04	0.01	0.00	0.00	0.00
	Fugitive Dust	0.00	0.00	0.00	0.00	0.01	0.00	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.01	0.04	0.04	0.01	0.01	0.01	0.00
MAXIMUM QUARTER	Equipment	0.22	0.17	0.59	0.03	0.02	0.01	0.02
and a second generics	Fugitive Dust	0.00	0.00	0.00	0.00	0.06	0.01	0.00
	Fugitive ROG	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	TOTAL	0.22	0.17	0.59	0.03	0.08	0.03	0.02

ROG = reactive organic compounds (ozone precursor)

NOx = nitrogen oxides (ozone precursor)

CO = carbon monoxide

SOx = sulfur oxides

PM10 = inhalable particulate matter (below 50 microns aerodynamic equivalent diameter); the "10" in PM0 is the size with 50% mass collection efficiency in a certified sampler, not an upper particle size limit

PM2.5 = fine particulate matter (below 6 microns aerodynamic equivalent diameter); the "2.5" in PM2.5 is the size with 50% mass collection efficiency in a certified sampler, not an upper particle size limit

DPM = diesel particulate matter (carcinogen)

CALENDAR QUARTER GHG EMISSIONS:

2010

		GHG EN	MISSIONS, TONS BY	CALENDAR QUA	ARTER
CAL	LENDAR QUARTER	CO2	CH4	N2O	GWP, CO2e
	QUARTER 1	0.0	0.000	0.000	0.0
	QUARTER 2	21.6	0.001	0.001	21.8
	QUARTER 3	9.2	0.000	0.000	9.3
	QUARTER 4	6.6	0.000	0.000	6.7
МА	XIMUM QUARTER	21.6	0.001	0.001	21.8

GHG = greenhouse gas

CO₂ = carbon dioxide; GWP multiplier = 1

CH4 = methane; GWP multiplier = 25

N2O = nitrous oxide; GWP multiplier = 298

GWP = global warming potential, CO2 equivalents (CO2e) from Intergovernmental Panel on Climate Change (IPCC) 2007 fourth assessment report, 100 year time frame

EQUIPMENT USE DETAILS, PHASE 1: SITE PREP

	ENGINE	LOAD	OPERATING	NUMBER	HOURS	FUEL USE
EQUIPMENT ITEM	HP	FACTOR	FACTOR	OF ITEMS	PER DAY	RATE, gal/h
Small Tracked Dozer, 75 - 175 HP	150	59%	85%	1	2	4.62
Small Tracked Loader, 75 - 175 HP	100	57%	75%	1	4	2.97
Small Tracked Shovel Excavator, 75 - 175 HP	100	59%	85%	1	2	3.08
Gas Engine Chippers & Stump Grinders, < 25 HP	15	39%	65%	1	6	0.76
Gasoline Small Chain Saw, < 25 HP	3	50%	65%	2	6	0.19
Small Trencher, < 25 HP	20	64%	85%	0	0	0.74
Small Wheeled Backhoe-Loader, 25 - 75 HP	70	38%	85%	0	0	1.80
Small Roller/Compactor, 25 - 75 HP	35	59%	85%	0	0	1.20
Small Concrete Pump, 25 - 75 HP	70	62%	75%	0	0	2.52
Gas Engine Concrete Finisher/Vibrator, < 25 HP	8.5	59%	85%	0	0	0.69
Small Rough Terrain Forklift, 25 - 75 HP	70	35%	65%	0	0	1.42
Medium (1,200 gal) Water Truck, 175 - 750 HP	180	57%	65%	1	1	5.35
5-Ton (3.5-5 yd) Dump Truck, 175 - 750 HP	200	57%	25%	2	2	5.95
Standard (4-5 Yard) Cement Mixer Truck	275	57%	40%	0	0	8.18
Medium Flatbed Truck, 175 - 750 HP	300	57%	25%	1	1	8.92
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	100	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
	1	100%	100%	0	0	0.00
not used	100	100%	100%	0	0	0.00

Heavy truck hourly operating factor reflects on-site and immediate vicinity use only.

ALENDAS OUNDER UN OUR PARSSIONS.

1010

CRITER	IA POLLUTA	NT EMISSION	RATE, GRAN	IS/HOUR	GHG EMI	SSION RATE,	LBS/HOUR	
ROG	NOx	CO	SOx	PM10	CO2	CH4	N2O	
75.62	596.45	366.39	66.20	50.98	102.34	0.0029	0.0020	
48.70	384.15	235.98	42.64	32.83	65.92	0.0028	0.0020	
22.99	343.99	236.00	46.09	27.38	68.23	0.0010	0.0007	
403.59	11.82	3,504.15	2.16	0.29	14.76	0.0005	0.0004	
938.70	8.70	12.75	0.81	0.24	3.60	0.0001	0.0001	
13.38	58.81	62.72	9.05	6.14	16.46	0.0002	0.0002	
26.57	185.96	131.40	19.90	15.53	39.95	0.0011	0.0008	
12.52	140.71	76.41	18.17	11.07	26.55	0.0004	0.0003	
28.89	215.45	160.58	30.68	11.63	55.79	0.0008	0.0006	
79.09	9.63	1,886.64	1.25	1.10	13.35	0.0002	0.0002	
28.02	129.91	121.52	19.14	13.20	31.50	0.0013	0.0009	
22.52	233.98	270.86	76.70	28.73	118.65	0.0041	0.0030	
25.03	259.97	300.96	85.23	31.92	131.83	0.0110	0.0079	
34.41	357.46	413.82	117.19	43.89	181.27	0.0152	0.0108	
37.43	388.70	451.44	127.84	47.88	197.75	0.0165	0.0118	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	

Emission rates reflect engine HP and load factor; operating time factor is accounted for in net engine-hours calculations.

EQUIPMENT USE DETAILS, PHASE 2: FOOTINGS, PADS, BLDG

EOUIPMI	ENT ITEM	100		IGINE HP	LOAD FACTOR	OPERATING FACTOR	NUMBER OF ITEMS	HOURS PER DAY	FUEL USE RATE, gal/h
		0.047				1			
Small Tracked Dozer	75 - 175 HP		02001	150	59%	85%	0	0	4.62
Small Tracked Loade				100	57%	75%	1	2	2.97
Small Tracked Shove	Excavator, 75 - 17	5 HP		100	59%	85%	0	0	3.08
Gas Engine Chippers				15	39%	65%	0	0	0.76
Gasoline Small Chain				3	50%	65%	0	0	0.19
Small Trencher, <25			0.00	20	64%	85%	1	4	0.74
Small Wheeled Backl	hoe-Loader, 25 - 75	HP	10.00	70	38%	85%	1	2	1.80
Small Roller/Compac	tor, 25 - 75 HP		100	35	59%	85%	1	1	1.20
Small Concrete Pump				70	62%	75%	1	1	2.52
Gas Engine Concrete		< 25 HP		8.5	59%	85%	2	1	0.69
Small Rough Terrain				70	35%	65%	1	2	1.42
Medium (1,200 gal) V			-04.07	180	57%	65%	ĩ	1	5.35
5-Ton (3.5-5 yd) Dun				200	57%	25%	1	1	5.95
Standard (4-5 Yard) (121112	275	57%	40%	1	0.001001	8.18
Medium Flatbed Truc			1010	300	57%	25%	1	2	8.92
not used				1	100%	100%	0	0	0.00
not used				1	100%	100%	0	0	0.00
not used			228 277	1	100%	100%	0	0	0.00
not used			100	1	100%	100%	0	0	0.00
not used			1000	1	100%	100%	0	0	0.00
not used				1	100%	100%	0	0	0.00
not used				1	100%	100%	0	0	0.00
not used				1	100%	100%	0	0	0.00
not used			1.0.0	1	100%	100%	0	0	0.00
not used			102212	1	100%	100%	0	0	0.00
not used			10112	1	100%	100%	0	0	0.00
not used			10000102	1	100%	100%	0	0	0.00
not used			52200	1	100%	100%	0	0	0.00
not used			12.2	1	100%	100%	0	0	0.00
not used				1	100%	100%	0	0	0.00

Heavy truck hourly operating factor reflects on-site and immediate vicinity use only.

CRITER	IA POLLUTA	NT EMISSION	RATE, GRAM	IS/HOUR	GHG EMIS	SSION RATE,	LBS/HOUR	
ROG	NOx	CO	SOx	PM10	CO2	CH4	N2O	
75.62	596.45	366.39	66.20	50.98	102.34	0.0029	0.0020	
48.70	384.15	235.98	42.64	32.83	65.92	0.0028	0.0020	
22.99	343.99	236.00	46.09	27.38	68.23	0.0010	0.0007	
403.59	11.82	3,504.15	2.16	0.29	14.76	0.0005	0.0004	
938.70	8.70	12.75	0.81	0.24	3.60	0.0001	0.0001	
13.38	58.81	62.72	9.05	6.14	16.46	0.0002	0.0002	
26.57	185.96	131.40	19.90	15.53	39.95	0.0011	0.0008	
12.52	140.71	76.41	18.17	11.07	26.55	0.0004	0.0003	
28.89	215.45	160.58	30.68	11.63	55.79	0.0008	0.0006	
79.09	9.63	1,886.64	1.25	1.10	13.35	0.0002	0.0002	
28.02	129.91	121.52	19.14	13.20	31.50	0.0013	0.0009	
22.52	233.98	270.86	76.70	28.73	118.65	0.0041	0.0030	
25.03	259.97	300.96	85.23	31.92	131.83	0.0110	0.0079	
34.41	357.46	413.82	117.19	43.89	181.27	0.0110	0.0108	
37.43	388.70	451.44	127.84	47.88	197.75	0.0152	0.0118	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000		
0.00	0.00	0.00	0.00	0.00	0.00		0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	1	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00			0.00	0.0000	0.0000	
0.00			0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	

Emission rates reflect engine HP and load factor; operating time factor is accounted for in net engine-hours calculations.

EQUIPMENT USE DETAILS, PHASE 3: ARRAY INSTALLATION

EQUIPMENT ITEM	0.00	ENGINE HP	LOAD FACTOR	OPERATING FACTOR	NUMBER OF ITEMS	HOURS PER DAY	FUEL USE RATE, gal/h
Small Tracked Dozer, 75 - 175 HP		150	59%	85%	0	0	4.62
Small Tracked Loader, 75 - 175 HP			57%	75%	0	0	2.97
Small Tracked Shovel Excavator, 75 - 17		100	59%	85%	0		3.08
Gas Engine Chippers & Stump Grinders,		15	39%	65%	0	0	0.76
Gasoline Small Chain Saw, < 25 HP		3	50%	65%	0	0	0.19
Small Trencher, < 25 HP		20		85%	0	0	0.74
Small Wheeled Backhoe-Loader, 25 - 75	HP		38%	85%	1	1 0001	1.80
Small Roller/Compactor, 25 - 75 HP			59%	85%	0	0	1.20
Small Concrete Pump, 25 - 75 HP			62%	75%	0	0	2.52
Gas Engine Concrete Finisher/Vibrator,	< 25 HP	8.5	59%	85%	0	0	0.69
Small Rough Terrain Forklift, 25 - 75 HF		70	35%	65%	1	2	1.42
Medium (1,200 gal) Water Truck, 175 - 7		180	57%	65%	1	1	5.35
-Ton (3.5-5 yd) Dump Truck, 175 - 750			57%	25%	0	0	5.95
tandard (4-5 Yard) Cement Mixer Truch			57%	40%	0	0	8.18
Medium Flatbed Truck, 175 - 750 HP		300	57%	25%	1	2	8.92
not used			100%	100%	0	0	0.00
ot used		1	100%	100%	0	0	0.00
ot used			100%	100%	0	0	0.00
ot used				100%	0	0	0.00
ot used		100	100%	100%	0	0	0.00
ot used		1		100%	0	0	0.00
ot used			100%	100%	0	0	0.00
ot used		1	100%	100%	0	0	0.00
ot used		1	100%	100%	0	0	0.00
ot used		1	100%	100%	0	0	0.00
ot used		1	100%	100%	0	0	0.00
ot used		1	100%	100%	0	0	0.00
not used		i		100%	0	0	0.00
at sea of		1	100%	100%	0	0	0.00
not used		1	100%	100%	0	0	0.00

Heavy truck hourly operating factor reflects on-site and immediate vicinity use only.

CREDER VOTTLAND DERIVOR RATE CONVENIOUS CREDER DATA AND TRADER

Page A-48

CRITER	IA POLLUTA	NT EMISSION	RATE, GRAM	1S/HOUR	GHG EMIS	SSION RATE,	LBS/HOUR	
ROG	NOx	CO	SOx	PM10	CO2	CH4	N2O	
75.62	596.45	366.39	66.20	50.98	102.34	0.0029	0.0020	
48.70	384.15	235.98	42.64	32.83	65.92	0.0028	0.0020	
22.99	343.99	236.00	46.09	27.38	68.23	0.0010	0.0007	
403.59	11.82	3,504.15	2.16	0.29	14.76	0.0005	0.0004	
938.70	8.70	12.75	0.81	0.24	3.60	0.0001	0.0001	
13.38	58.81	62.72	9.05	6.14	16.46	0.0002	0.0002	
26.57	185.96	131.40	19.90	15.53	39.95	0.0011	0.0008	
12.52	140.71	76.41	18.17	11.07	26.55	0.0004	0.0003	
28.89	215.45	160.58	30.68	11.63	55.79	0.0008	0.0006	
79.09	9.63	1,886.64	1.25	1.10	13.35	0.0002	0.0002	
28.02	129.91	121.52	19.14	13.20	31.50	0.0013	0.0009	
22.52	233.98	270.86	76.70	28.73	118.65	0.0041	0.0030	
25.03	259.97	300.96	85.23	31.92	131.83	0.0110	0.0079	
34.41	357.46	413.82	117.19	43.89	181.27	0.0152	0.0108	
37.43	388.70	451.44	127.84	47.88	197.75	0.0165	0.0118	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	

Emission rates reflect engine HP and load factor; operating time factor is accounted for in net engine-hours calculations.
EQUIPMENT USE DETAILS, PHASE 4: FENCING

EQUIPMENT ITEM	ENGINE HP	LOAD FACTOR	OPERATING FACTOR	NUMBER OF ITEMS	HOURS PER DAY	FUEL USE RATE, gal/h
Small Tracked Dozer, 75 - 175 HP	150	59%	85%	0	0	4.62
Small Tracked Loader, 75 - 175 HP	100	57%	75%	0	0	2.97
Small Tracked Shovel Excavator, 75 - 175 HP	100	59%	85%	0	0	3.08
Gas Engine Chippers & Stump Grinders, < 25 HP	15	39%	65%	0	0	0.76
Gasoline Small Chain Saw, < 25 HP	3	50%	65%	0	0	0.19
Small Trencher, < 25 HP	20	64%	85%	0	0	0.74
Small Wheeled Backhoe-Loader, 25 - 75 HP	70	38%	85%	1	3	1.80
Small Roller/Compactor, 25 - 75 HP	35	59%	85%	0	0	1.20
Small Concrete Pump, 25 - 75 HP	70	62%	75%	0	0	2.52
Gas Engine Concrete Finisher/Vibrator, < 25 HP	85	59%	85%	0	0	0.69
Small Rough Terrain Forklift, 25 - 75 HP	70	35%	65%	1	3	1.42
Medium (1,200 gal) Water Truck, 175 - 750 HP	180	57%	65%	0	0	5.35
-Ton (3.5-5 yd) Dump Truck, 175 - 750 HP	200	57%	25%	0	0	5.95
Standard (4-5 Yard) Cement Mixer Truck	275	57%	40%	0	0	8.18
Medium Flatbed Truck, 175 - 750 HP	300	57%	25%	1	2	8.92
not used		100%	100%	0	0	0.00
not used	10 10 10 10 10 10 10 10 10 10 10 10 10 1	100%	100%	0	0	0.00
not used	238 82 20 20	100%	100%	0	0	0.00
not used	131 63 1 1010	100%	100%	0	0	0.00
not used	1 1 1 1 1	100%	100%	0	0	0.00
not used	1 1 1 1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used		100%	100%	0	0	0.00
not used	93 3 6 6 6	100%	100%	0	0	0.00
not used	1 1 1 1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1	100%	100%	0	0	0.00
not used	1 00 20	100%	100%	0	0	0.00

Heavy truck hourly operating factor reflects on-site and immediate vicinity use only.

CRITER	A POLLUTA	NT EMISSION	RATE, GRAM	IS/HOUR	GHG EMIS	SSION RATE,	LBS/HOUR
ROG	NOx	CO	SOx	PM10	CO2	CH4	N2O
75.62	596.45	366.39	66.20	50.98	102.34	0.0029	0.0020
48.70	384.15	235.98	42.64	32.83	65.92	0.0029	
22.99	343.99	235.98	46.09	27.38	68.23	0.0028	0.0020
403.59	11.82	3,504.15	2.16	0.29	14.76	0.0005	0.0007
938.70	8.70	12.75	0.81	0.29	3.60	0.0003	0.0004
13.38	58.81	62.72	9.05	6.14	16.46	0.0001	0.0001
26.57	185.96	131.40	19.90	15.53	39.95	0.0002	0.0002
12.52	140.71	76.41	18.17	11.07	26.55	0.0004	0.0008
28.89	215.45	160.58	30.68	11.63	55.79	0.0004	0.0003 0.0006
79.09	9.63	1,886.64	1.25	1.10	13.35	0.0002	0.0002
28.02	129.91	121.52	19.14	13.20	31.50	0.0013	0.0002
22.52	233.98	270.86	76.70	28.73	118.65	0.0013	0.0009
25.03	259.97	300.96	85.23	31.92	131.83		
34.41	357.46	413.82	117.19	43.89	181.27	0.0110	0.0079
37.43	388.70	451.44	127.84	43.89	197.75	0.0152	0.0108
0.00	0.00	0.00	0.00	0.00	1	0.0165	0.0118
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00			0.00	0.0000	0.0000
0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	1	0.0000	0.0000
0.00	0.00	0.00	0.00		0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00		0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.0000	0.0000
0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000

Emission rates reflect engine HP and load factor; operating time factor is accounted for in net engine-hours calculations.

CY	EType	Pol #	Pol Name	LDGV	LDGT1	LDGT2	LDGT3	LDGT4	HDGV2B	HDGV3	HDGV4
2010	MPG	0	MPG	24.1	18.6	18.6	14.3	14.3	10.1	9.4	9.1
2010	VMT	0	VMT	0.3478	0.0899	0.2991	0.0915	0.0421	0.0301	0.001	0.0004
2010	1	1	VOC	0.728	0.762	0.809	1.341	1.399	0.983	0.882	2.498
2010	1	2	СО	9.938	10.966	11.774	15.594	15.787	27.233	29.654	38.885
2010	1	3	NOX	0.598	0.613	0.84	1.111	1.429	1.736	1.768	2.591
2010	1	4	CO2	368.2	477.8	477.8	620.5	620.5	880	947.9	970.5
2010	3	1	Hot Soak	0.127	0.12	0.12	0.215	0.215	0.157	0.122	0.509
2010	4	1	Diurnal	0.026	0.025	0.025	0.044	0.044	0.041	0.034	0.184
2010	5	1	Resting	0.066	0.071	0.071	0.14	0.14	0.105	0.079	0.559
2010	6	1	Running	0.15	0.121	0.121	0.209	0.209	0.178	0.146	0.36
2010	7		Crankcase	0.008	0.01	0.01	0.01	0.01	0.01	0.01	0.01
2010	8	1	Refueling	0	0	0	0	0	0	0	0
2010	11	1	Total Evap	0.377	0.346	0.346	0.617	0.617	0.491	0.39	1.622
	_		100.00					Car Sa		ing hot	
WORKER	R VEHICLE	MIX	100.00	39.96%	10.33%	34.36%	10.51%	4.84%	multh .	0.0056	
		39 64	VOC	0.7906112				111112	AU - 171	0.000	
			CO	10.856655	1.0			2.4 2.5 C			
		1000	NOX	1.4713078		14. · · · · · ·	i len	20.16	An exercise		
	-	10.00	CO2	425.96515	a		Maa	50.22	manu	Ú LITA	
TRUKC N	MIX					-		10.00	6/0000	0 Turnin (
			VOC	0.7655066				177	10000	- A Month	
		101.00	СО	4.2709759	1		130	THE ME	0.000.0		
		22.04	NOX	6.87316	111	10 I		68.53	0.0610	0.0000	
			CO2	1402.2893						to strately	
	_										
L								1 and			

CHARLESON MOTOR I CAL REPORTE IN THE REPORT OF THE REPORT OF

CY	EType	Pol #	Pol Name	HDGV5	HDGV6	HDGV7	HDGV8A	HDGV8B	LDDV	LDDT12	HDDV2B
2010	MPG	0	MPG	8	8.1	7.4	7	0	32.4	24.4	12.9
2010	VMT	0	VMT	0.0011	0.0023	0.001	0	0	0.0003	0	0.0091
2010	1	1	VOC	1.637	1.54	1.746	2.246	0	0.18	2.891	0.329
2010	1	2	СО	36.976	36.047	40.857	45.684	0	0.903	6.729	1.511
2010	1	3	NOX	2.387	2.331	2.659	3.132	0	0.415	2.749	2.502
2010	1	4	CO2	1113.8	1100.6	1200.5	1272.2	0	314.2	417.9	789.1
2010	3	1	Hot Soak	0.32	0.303	0.331	0.452	0	0	0	(
2010	4	1	Diurnal	0.102	0.093	0.103	0.139	0	0	0	(
2010	5	1	Resting	0.278	0.249	0.281	0.399	0	0	0	(
2010	6	1	Running	0.24	0.23	0.247	0.32	0	0	0	(
2010	7	1	Crankcase	0.01	0.01	0.01	0.011	0	0	0	(
2010	8	1	Refueling	0	0	0	0	0	NA	NA	NA
2010	11	1	Total Evap	0.95	0.886	0.972	1.321	0	0	0	(
			1.61								
WORKER	R VEHICLE	MIX									
			VOC	-				-	-		
1010			CO								
			NOX			1.20	-				
5810	1		CO2			-					
Solar					Ű.				1		
TRUKC N	AIX		and an and a								10.95%
10.00	1		VOC	0	0		10				- 10 AP.
1010		i i	СО	l.	0		0.				1000
2016		~	NOX	1825	100010	LDDT 1	d. La per	111253	Thomas T	10/10/1	
10.14			CO2	190	1.10	71003	: 89°	4.4980	1.501		
35.0	1		00	1.21	1.51	1100	5.200	1310	1.20	2 140	120 014
SULE				018	6433	0.158	0.9121	0.5	E 125		120

CY	EType	Pol #	Pol Name	HDDV3	HDDV4	HDDV5	HDDV6	HDDV7	HDDV8A	HDDV8B	MC
2010	MPG	0	MPG	11.6	10.2	9.9	8.7		6.6	6.3	50
2010	VMT	0	VMT	0.0028	0.0028	0.0013	0.0065	0.0094	0.0112	0.04	0.0054
2010	1	1	VOC	0.356	0.479	0.489	0.632	0.79	0.785	0.933	2.757
2010	1	2	CO	1.58	2.28	2.303	2.563	3.219	4.34	5.796	26.134
2010	1	3	NOX	2.62	3.705	3.862	4.882	6.089	7.301	8.873	1.043
2010	1	4	CO2	875.2	1000.9	1032.7	1171.4	1352.5	1550.2	1626.6	177.4
2010	3	1	Hot Soak	0	0	0	0	0	0	0	0.097
2010	4	1	Diurnal	0	0	0	0	0	0	0	0.033
2010	5	1	Resting	0	0	0	0	0	0	0	0.381
2010	6	1	Running	0	0	0	0	0	0	0	(
2010	7		Crankcase	0	0	0	0	0	0	0	(
2010	8	1	Refueling	NA	NA	NA	NA	NA	NA	NA	(
2010	11	1	Total Evap	0	0	0	0	0	0	0	0.5
ALCO/UN	Action	107	ACC.								
WORKER	VEHICLE	MIX									
			VOC								
1010	11		СО	in the second	in the second	1.20			0		
Colfe			NOX						a ser	lev le	. ·
11110			CO2			10	11.01				
1010					0.717					1	
TRUKC M	IIX		Scotter St.	3.37%	3.37%	1.56%	7.82%	11.31%	13.48%	48.13%	
18 50			VOC	01403	1010.00	1000			0		
1000			CO	175	0.00	8.201	0.02				
Let Is			NOX	1.1.1.1	L tons	1.000	1919				
5070			CO2	500		-			0 0000		
2010			6.01		10000				1		
10.10			ASSE			1.7.40			N		. Andre
TR IN	- 21		A241	mon	0.0010	0.040		0	5 0.000		10.000

CY	EType	Pol #	Pol Name	GAS BUS	URB BUS	COM BUS	LDDT34	ALL VEH	Month	Altitude
2010	MPG	0	MPG	6.3	4.3	6.2	17	16.5	7	
2010	VMT	0	VMT	0.0002	0.001	0.0018	0.0019	1	7	
2010	1	1	VOC	4	0.59	1.204	0.438	0.866	7	
2010	1	2	CO	68.316	6.545	5.072	0.818	11.606	7	
2010	1	3	NOX	5.551	12.883	9.577	0.715	1.351	7	
2010	1	4	CO2	1405.2	2342.7	1642.6	597.8	553.8	7	
2010	3	1	Hot Soak	0.513	0	0	0	0.126	7	
2010	4	1	Diurnal	0.179	0	0	0	0.026	7	
2010	5	1	Resting	0.55	0	0	0	0.076	7	
2010	6	1	Running	0.874	0	0	0	0.134	7	2
2010	7	1	Crankcase	0.009	0	0	0	0.009	7	
2010	8	1	Refueling	0	NA	NA	NA	NA	7	
2010	11		Total Evap	2.123	0	0	0	0.371	7	1
			200							
A CALL THE	is minore	P41M	-							
WORKEF	R VEHICLE	MIX	_							
			VOC							
10.00	11		CO		12		10	A-11=0	1.00.000	
50.00		- i	NOX	12		0	10	C. Link	T Info anti-	
30.00			CO2	12			10	41 1441	1 2 44	
	0	1	anito si i				10	11.540	and the second second	
TRUKC N	AIX		design of	100	3.2	-	an	al bag	10.000	
70.14			VOC		2		200	0.00	1.00.444	
50.00		1	CO	12	12		201	DUSTR	1 10 5-0	
3010			NOX	42		- 8	20.	0.020	33 6.540	
30.0			CO2	12			20	alueo -	53 (0, 1940)	
70.00			00		55	6	201	0.249	1010 010	
36140			AOC	12			. 50	0.00	5.000 1000	

CY	EType	Pol #	Pol Name	TMin	Tmax	Nom RVP	Gas Sulfur		I/M?	Avg Spd	NGV?
2010	MPG	0	MPG	45	75	9	30	0	No	27.6	No
2010	VMT	0	VMT	45	75	9	30	0	No	27.6	No
2010	1	1	VOC	45	75	9	30	0	No	27.6	No
2010	1	2	CO	45	75	9	30	0	No	27.6	No
2010	1	3	NOX	45	75	9	30	0	No	27.6	No
2010	1	4	CO2	45	75	9	30	0	No	27.6	No
2010	3	1	Hot Soak	45	75	9	30	0	No	27.6	No
2010	4	1	Diurnal	45	75	9	30	0	No	27.6	No
2010	5	1	Resting	45	75	9	30	0	No	27.6	No
2010	6	1	Running	45	75	9	30	0	No	27.6	No
2010	7		Crankcase	45	75	9	30	0	No	27.6	No
2010	8	1	Refueling	45	75	9	30	0	No	27.6	No
2010	11	1	Total Evap	45	75	9	30	0	No	27.6	No
			1-576								
A CHECK	der in co	101									
WORKER	VEHICLE	MIX									
			VOC								
20.00	1		CO			1			and		
100			NOX		in sure	51.97	100	194			
			CO2					0			
2010	1.1.1.1		1 mm	0.01			1	0	01104		
TRUKC N	AIX I		in the second						1711.00		
1010			VOC						0.000		
Cash D			CO	6.5	2		0	d.	10 1 30		
3016			NOX	1-650		4.5. 4	ing the local	and a second			
30.00			CO2	100		10	1000	10.02	101		
504.5			Cia-			3.85	1000				
5016			000			0.041	17004	1000	11110		
Dub.	And.		And	0.000		1001	to only a	proprie			

CY	EType	Pol #	Pol Name	E200	E300	Arom	Olef	Benz	MTBE vol%	FBE MktFi	TBE vol%
2010	MPG	0	MPG	0	0	0	0	0	0	0	0
2010	VMT	0	VMT	0	0	0	0	0	0	0	0
2010	1	1	VOC	0	0	0	0	0	0	0	0
2010	1	2	CO	0	0	0	0	0	0	0	0
2010	1	3	NOX	0	0	0	0	0	0	0	0
2010	1	4	CO2	0	0	0	0	0	0	0	0
2010	3	1	Hot Soak	0	0	0	0	0	0 0	0	0
2010	4	1	Diurnal	0	0	0	0	C	0 0	0	0
2010	5	1	Resting	0	0	0	0	C	0 0	0	0
2010	6	1	Running	0	0	0	0	C	0	0	0
2010	7	1	Crankcase	0	0	0	0	C	0 0	0	0
2010	8	1	Refueling	0	0	0	0	C	0 0	0	0
2010	11	1	Total Evap	0	0	0	0	C	0 0	0	0
			AD6								
ACCEPTION	A COMPANY	and a									
WORKER	VEHICLE	MIX									
			VOC								
Sec. 10			CO				0				
Toto	1	_	NOX								
1010			CO2	0					0		
752.00	0				0	0	0				
TRUKC N	XIN		areas and					6			
10.00			VOC			n		1	0		
2010			CO	0		0					
3010			NOX		0		ō.				
50.00			CO2		- A			100	0		
2010	1	-	C0		-	1	0.				
7010				<u>n</u>	0	1					
3010	AND	n	APD.	0	D	0	6	0	n		

CY	EType	Pol #	Pol Name	FBE MktFrETO	H vol%OH	MktFifAM	IE vol%ME	MktFi Pa	rt Size	
2010	MPG	0	MPG	0	0	0	0	0	0	
2010	VMT	0	VMT	0	0	0	0	0	0	
2010	1	1	VOC	0	0	0	0	0	0	
2010	1	2	CO	0	0	0	0	0	0	
2010	1	3	NOX	0	0	0	0	0	0	
2010	1	4	CO2	0	0	0	0	0	0	
2010	3	1	Hot Soak	0	0	0	0	0	0	
2010	4	1	Diurnal	0	0	0	0	0	0	
2010	5	1	Resting	0	0	0	0	0	0	
2010	6	1	Running	0	0	0	0	0	0	
2010	7		Crankcase	0	0	0	0	0	0	
2010	8	1	Refueling	0	0	0	0	0	0	
2010	11		Total Evap	0	0	0	0	0	0	
VORKER	R VEHICLE	MIX	VOC							
- hum	1		CO				0			
Sec. 1			NOX							
101.0			CO2							
1010			1 contraction					0		
RUKC N	AIX		Trans - 1			-			0	
1010			VOC		0					
Settin			CO							
2010			NOX							
0.000			CO2							
Julia			60							
10.4.0			100			de la		100		

CY	EType	Pol #	Pol Name	Description				
2010	MPG	0	MPG	CHEYENNE MOUNT	AIN AFS (CONSTRUC	TION VEH	ICLES
2010	VMT	0	VMT	CHEYENNE MOUNT	TAIN AFS (CONSTRUC	TION VEH	ICLES
2010	1	1	VOC	CHEYENNE MOUNT	AIN AFS (CONSTRUC	TION VEH	ICLES
2010	1	2	СО	CHEYENNE MOUNT	TAIN AFS (CONSTRUC	TION VEH	ICLES
2010	1	3	NOX	CHEYENNE MOUNT	TAIN AFS O	CONSTRUC	TION VEH	ICLES
2010	1	4	CO2	CHEYENNE MOUNT	AIN AFS	CONSTRUC	TION VEH	IICLES
2010	3	1	Hot Soak	CHEYENNE MOUNT	TAIN AFS	CONSTRUC	TION VEH	ICLES
2010	4	1	Diurnal	CHEYENNE MOUNT	AIN AFS	CONSTRUC	TION VEH	IICLES
2010	5	1	Resting	CHEYENNE MOUNT	TAIN AFS (CONSTRUC	TION VEH	IICLES
2010	6	1	Running	CHEYENNE MOUNT	TAIN AFS	CONSTRUC	TION VEH	IICLES
2010	7	1	Crankcase	CHEYENNE MOUNT	TAIN AFS	CONSTRUC	TION VEH	IICLES
2010	8	1	Refueling	CHEYENNE MOUNT	TAIN AFS	CONSTRUC	TION VEH	IICLES
2010	11	1	Total Evap	CHEYENNE MOUNT	TAIN AFS	CONSTRUC	TION VEH	IICLES
WORKEF	R VEHICLE	MIX	VOC CO NOX CO2					
TRUKC N	ЛІХ		VOC					
			CO					
			NOX					
			CO2					
			002		1			
								_

MORE ENTRATON BYLES SATE

RECORD OF NONAPPLICABILITY FOR CHEYENNE MOUNTAIN AIR FORCE STATION SOLAR ARRAY

The U.S. Air Force proposes to install a 1-megawatt photovoltaic solar array at Cheyenne Mountain Air Force Station southwest of Colorado Springs, CO. Three alternative sites on the Station have been identified that can accommodate the initial 1-megawatt array and a possible future expansion for the array. The proposed action would assist the Air Force in meeting the renewable energy goals set by the Energy Policy Act of 2005 and Executive Order 13423.

All three alternative sites are in areas designated as maintenance for carbon monoxide. Consequently, the proposed action has been evaluated for compliance with Section 176(c) of the Clean Air Act (42 USC 7506) and with the U.S. Environmental Protection Agency (U.S. EPA) rule promulgated at 40 CFR Part 93.

The Environmental Assessment (EA) prepared for the solar array project estimates the quantities of direct and indirect emissions resulting from its construction and operation. In each case, total direct and indirect emissions would be less than the relevant Clean Air Act conformity de minimis level for carbon monoxide (100 tons per year). Pursuant to 40 CFR 93.153(c)(1), I find that the requirements of the U.S. EPA general conformity rule are not applicable to the proposed Air Force action.

Signature: Jour Cock

RECORD OF NONAPTERCARGERY FOR CREATING MOUNTAIN ADD FORCE. STATION SOLVE AREAY

The Links An Every propagate to partial a Leonground plantor draw adar in my at Chromosovic Measurity Au Corec fundation coefficient of Calaxado Springs, CD . Etters attended a possible Station from Secto Machined for our accommentate discinnent Leonground attended a possible future experiment for the array. The propagate action would avoid the Art Partie in meeting the terrendole tract (2) guidened by the Energy Folicy Act of 2005 and Calaxan (2) (2).

All store almostive sime are normal designated to minimum for ordere minimum. Consequently, the proposal aution for been evaluated for compliance with Sources (20(c) of the Closer Air Air (42 Life: 7100) and with the C.S. for invariant Protection Agency (C.S. EPA) rule from dyntial or 40 CDR from 93.

This page intentionally left blank.

Month	Days	Length of Day Month Low ³	Length of Day Month High ³	Average Available Sunlight (hours/minutes)	Monthly Total Megawatts Possible (days X average available sunlight)	Percent sunshine ²	Megawatts	Convert minutes to percent ¹	Average available sunlight
January	31	9:30	10:14	9:52	305.87	0.7	214.11	0.866666667	9.866666667
February	28	10:16	11:18	10:17	287.93	0.7	201.55	0.283333333	10.28333333
March	31	11:21	12:37	11:59	371.48	0.7	260.04	0.983333333	11.98333333
April	30	12:39	13:48	13:14	397.00	0.7	277.90	0.233333333	13.23333333
May	31	13:50	14:41	14:16	442.27	0.7	309.59	0.266666667	14.26666667
June	30	14:43	14:53	14:48	444.00	0.7	310.80	0.8	14.8
July	31	14:11	14:50	14:31	450.02	0.7	315.01	0.516666667	14.51666667
August	31	13:03	14:09	13:36	421.60	0.7	295.12	0.6	13.6
Spetmeber	30	11:49	13:01	12:25	372.50	0.7	260.75	0.416666667	12.41666667
October	31	10:34	11:46	11:10	346.17	0.7	242.32	0.166666667	11.16666667
November	30	9:40	10:31	10:06	303.00	0.7	212.10	0.1	10.1
December	31	9:27	9:39	9:33	296.05	0.7	207.24	0.55	9.55
Total	365				4,437.88		3,106.52		

Appendix B Potential Megawatts Based on Available Sunshine at Colorado Springs

Notes:

1 - Convert minutes from percent minutes/60 (i.e. 52/60 = 0.866667)

2 - National Ocenanic Atmospheric Administration data shows that average cloud cover is 30 percent over the typical month; consequently the percent of sunshine was calculated at 70 percent.

3 - Source: timeand date.com 2009

Th	is p	bag	ge i	nte	nti	ona	ally	le	ft t	olai	nk.	Application

YEARLY ENERGY DATA

	Category	Unit	2003	2005	% Change	2006	% Change	2007	% Change
Electric	WAPA	mWh	5690	5569	-2.13%	5505	-3.25%	5510	-3.16%
Electric	CSU	mWh	24976	25778	3.21%	27051	8.31%	27096	8.49%
Consumption	Total	mWh	30666	31347	2.22%	32556	6.16%	32606	6.33%
	WAPA	\$K	\$105	\$106	0.95%	\$112	6.67%	\$118	12.38%
Electric Cost	CSU	\$K	\$1,080	\$1,296	20.00%	\$1,423	31.76%	\$1,548	43.33%
Electric Cost	Total	\$K	\$1,185	\$1,402	18.31%	\$1,535	29.54%	\$1,666	40.59%
	Rate	\$/kWh	\$0.0386	0.0447	15.74%	0.0471	22.02%	0.0511	32.23%
	Consumption	MMBTU	104632	106,956	2.22%	111080	6.16%	111251	6.33%
Energy	Intensity	MMBTU/SF	0.2567	0.2624	2.22%	0.2726	6.16%	0.2730	6.33%
Intensity	Intensity	kWh/SF	75.25	76.92	2.22%	79.89	6.16%	80.01	6.33%
	Intensity	\$/SF	\$2.91	\$3	18.31%	\$3.77	29.54%	\$4.09	40.59%

Source: CMAFS Energy Manager 2009

Knight, Jim

From:

Sent: To: Subject: Ray, Dwayne E Ctr USAF AFSPC 721 MSG/CEAN-PWT [dwayne.ray.ctr@cheyennemountain.af.mil] Tuesday, December 22, 2009 1:42 PM Knight, Jim EA, CMAFS

Here's the 2008 and 2009 data to add to the EA

Source	Units	2008	2009
WAPA	MWh	5510	5495
CSU	"	27224	27631
Total	"	32734	33126
Monhly	"	2728	2761

Dwayne Ray, REM Environmental Coordinator 721 MSG/CEAN-PWT Cheyenne Mountain AFS CO 719 474 3620

will deligited

Many's the 2000 and 2000 this to add to the FA

Destroyed Rev. REM

Representation Competition

THE MARCHORN PAYS

Cheynone Mountain Aris CO

NC 474 817

CHEYENNE MOUNTAIN AFS, COLORADO

DISTRIBUTION LIST

2 Mr. Dewey Tsonetokoy

- 3 NAGPRA Representative
- 4 Kiowa Nation of Oklahoma
- 5 P.O. Box 369
- 6 Carnegie, OK 73015
- 7

1

- 8 Mr. Terry Knight, Sr.
- 9 NAGPRA Representative
- 10 Ute Mountain Ute Tribe
- 11 P.O. Box 53
- 12 Towaoc, CO 81334
- 13
- 14 Bryan F. Vigil
- 15 Heritage Specialist
- 16 Jicarilla Apace Nation
- 17 P.O. Box 1367
- 18 Dulce, NM 87528
- 19
- 20 Mr. Ernest House, Jr., Executive Secretary
- 21 Colorado Commission of Indian Affairs
- 22 130 State Capitol
- 23 Denver, CO 80203-1792
- 24
- 25 Office of Archaeology and Historic Preservation
- 26 225 E. 16th Ave., Suite 950
- 27 Denver CO 80203
- 28
- 29 Colorado Springs Planning Office
- 30 30 S. Nevada Avenue, Suite 301
- 31 Colorado Springs, CO 80903
- 32 Colorado Division of Wildlife
- 33 Southeast Region Service Center
- 34 4255 Sinton Road
- 35 Colorado Springs, CO 80907
- 36
- 37 Mr. Les Gruen
- 38 District IX
- 39 Colorado Department of Transportation
- 40 4201 E Arkansas Ave
- 41 Denver CO 80222
- 42

43 Bureau of Land Management

- 44 Front Range Field Office
- 45 3028 East Main Street
- 46 Cañon City, Colorado 81212

- 47 U.S. Forest Service
- 48 Rocky Mountain Region
- 49 740 Simms St
- 50 Golden, CO 80401
- 51
- 52 Bob Jorgenson
- 53 Colorado Department of Public Health and
- 54 Environment Air Pollution Control
- 55 Division (APCD-SS-B1)
- 56 4300 Cherry Creek Dr. South
- 57 Denver, CO 80246-1530
- 5859 Nathan Moore
- 9 Nathan Moore
- 60 Colorado Department of Public Health and
- 61 Environment Water Quality Control
- 62 Division (WQCD-P-B2)
- 63 4300 Cherry Creek Drive South
- 64 Denver, CO 80246
- 6566 Jeffery Burwell
- 67 U.S. Department of Agriculture
- 68 Natural Resource Conservation Service
- 69 655 Parfet St.
- 70 Lakewood, CO 80215
- 71

77

83

- 72 Susan Linner
- 73 Colorado Field Supervisor
- 74 U.S. Fish & Wildlife Service
- 75 134 Union Blvd, Suite 670
- 76 Lakewood, CO 80228
- 78 Diana Huber
- 79 Colorado Department of Public Health and
- 80 Environment Hazardous Materials Division
- 81 4300 Cherry Creek Drive South
- 82 Denver, CO 80246
- 84 Ron Cattany
- 85 Colorado Division of Natural Resources
- 86 Division of Minerals & Geology
- 87 1313 Sherman Street, Room 215
- 88 Denver, CO 80203
- 89 90
- 91
 - 92

U.S. AIR FORCE

CHEYENNE MOUNTAIN AFS, COLORADO

1	Colorado Division of Natural Resources	49	Larry Svoboda, NEPA Program Chief
2	Colorado Geological Survey	50	EPA Region 8 (8EPR-N)
3	1313 Sherman Street, Room 715	51	1595 Wynkoop Street
4	Denver, CO 80203	52	Denver, CO 80202-1129
5		53	
6	Shaun Deeney	54	U.S. Senator Michael Bennet
7	Area Wildlife Manager	55	Pikes Peak Office
8	Colorado Division of Wildlife	56	409 North Tejon St., Suite 107
9	4255 Sinton Road	57	Colorado Springs, 80903
10	Colorado Springs, CO 80907	58	
11		59	U.S. Senator Mike Udall
12	Heather Peterson	60	Colorado Springs Office
13	Colorado Historical Society	61	2880 Intl Cir, Suite 107
14	1300 Broadway	62	Colorado Springs, CO 80910
15	Denver, CO 80203	63	eeroraad opringo, ee oos re
16	Denver, CO 00203	64	U.S. Congressman Doug Lamborn
17	Craig Blewitt	65	District Office
18	City of Colorado Springs	66	1271 Kelly Johnson Blvd. Suite 110
19	Transportation Planning Department.	67	Colorado Springs, CO 80920
20	30 South Nevada Ave, Suite 405	68	Colorado Springs, CO 80920
20	Colorado Springs, CO 80903	69	Keith King
	Colorado Springs, CO 80903	70	
22	Dick Anderwald	71	Colorado State Senator, District 12 Office Location: 200 E. Colfax
23			
24	City of Colorado Springs	72	Denver, CO 80203
25	Planning Department	73	D'IL C. L.
26	30 South Nevada Ave, Suite 301	74	Bill Cadman
27	Colorado Springs, CO 80903	75	Colorado State Senator, District 10
28		76	Office Location: 200 E. Colfax
29	City of Colorado Springs	77	Denver, CO 80203
30	Stormwater Department	78	and a second sec
31	PO Box 1575, MC 435	79	Bob Gardner
32	Colorado Springs, CO 80901	80	Colorado State Representative, District 21
33		81	Office Location: 200 E. Colfax
34	Rita Soller	82	Denver, CO 80203
35	Colorado Springs Utilities	83	
36	845 E. Las Vegas St.	84	Tom Massey
37	Colorado Springs, CO 80903	85	Colorado State Representative, District 60
38		86	Office Location: 200 E. Colfax
39	Mike Hrebenar	87	Denver, CO 80203
40	El Paso County	88	R LI' L'
41	Planning Department	89	Penrose Public Library
42	27 E. Vermijo Ave	90	Pikes Peak District
43	Colorado Springs, CO 80903	91	20 North Cascade Ave
44		92	Colorado Springs, CO 80903
45	Pikes Peak Area Council of Governments		
46	15 South 7th Street		
	Colorado Springs CO 80905		
47			

FRIALIMPALIANALYSIS		of Symb	001	
ctions II and III to be completed by Environmental Planning Function number(s).	. Continue o	n sepan	ate she	ets
	Mericana dia			
2. FROM (Proponent organization and functional address sym	bol) 2a.	TELEP	HONE	NO.
721 MSG/CEO	47	13620		
	CONTROL OF	1000	100	-
		t part	-	
IES (DODAA) (Dravide sufficient details for evaluation of the total act	(an)			
	011.)			
6a. SIGNATURE	6b.	DATE		
Drane Kay		2009	0114	L
Y. (Check appropriate box and describe potential environmental ef 0 = no effect; - = adverse effect; U= unknown effect)	fects +	0	-	U
Noise, accident potential, encroachment, etc.)		1		
ntation plan, etc.)		1	-	
	:	1	1	
on/chemical exposure, explosives safety quantity-distance, bird/wild	ife :	:	:	1
n, solid waste, etc.)		1	4	
ened or endangered species, etc.)	-0	1		
archaeological, historical, etc.)		1		
I, Installation Restoration Program, seismicity, etc.)		t.	500 MH	1
chool and local fiscal impacts, etc.)	1	-		
ISSIBLE USUAL JAMOART	1		1	
ATION				A11
		J.	1000	
ed that no CATEX could be applied to this project.				
	19b.	DATE		
Caron Gon	N4 (*)	2009	0114	
	ENTAL IMPACT ANALYSIS F Ctions II and III to be completed by Environmental Planning Function 2. FROM (Proponent organization and functional address sym 721 MSG/CEO De made and need date) 1 statement ES (DOPAA) (Provide sufficient details for evaluation of the total act Sa SIGNATURE Sa SIGNATURE V. (Check appropriate box and describe potential environmental eff 0 = no effect: - = apverse effect. U= unknown effect) Noise, accident potential, encroachment, etc.) ntation plan, etc.) on/chemical exposure, explosives safety quantity-distance, bird/wildle n, solid waste, etc.) trategological, historical, etc.) trategological, historical, etc.) trategological, historical, etc.) trategological, historical, etc.) chool and local fiscal impacts, etc.) attom AL EXCLUSION (CATEX) #: OR AL EXCLUSION (CATEX) #: OR charter of CATEX could be applied to this project.	RENTAL IMPACT ANALTSIS RCS ctions if and if to be completed by Environmental Planning Function. Continue or umber(s). 2. FROM (Proponent organization and functional address symbol) 2a. 721 MSG/CEO 474 re made and need date) 1 1 statement 5a. SIGNATURE 6b. Statement 6b. With the provide sufficient details for evaluation of the total action.) 6b. Statement 6b. With (Provide sufficient details for evaluation of the total action.) 6b. Statement 6b. With (Provide sufficient details for evaluation of the total action.) 6b. With (Provide sufficient details for evaluation of the total action.) 6b. With (Provide sufficient details for evaluation of the total action.) 6b. With (Provide sufficient details for evaluation of the total action.) 6b. With (Provide sufficient details for evaluation of the total action.) 6b. With (Provide sufficient details for evaluation of the total action.) 6b. With (Provide sufficient details for evaluation of the total action.) 6b. With (Provide sufficient details for evaluation of the total action.) 6b. Institon plan, etc.) Institution plan, etc.) <td>IEENTAL INFACT ANALTSIS RCS. choose is and ill to be completed by Environmental Planning Function. Continue on separation between the second planning function. Continue on separation between the second planning function. Continue on separation between the second planning function. Continue on separative field of the second planning function of the total action. 2. FROM (Proponent organization and functional address symbol) 2a. TELEF 721 MSG/CEO 4743620 we made and need date) 1 1 statement ES (DOPAA) (Provide sufficient details for evaluation of the total action.) Sa. SIGNATURE Bb. DATE W. (Check appropriate box and describe potential environmental effects) 0 Noise. accident potential, encroachment, etc.) V Intation plan, etc.) V Installation Restoration Program. seismicity, etc.) V Installation Restoration Program. seismicity, etc.) V Installation Restoration Program. seismicity, etc.) V ATION ATION AL EXCLUSION (CATEX) #OR OR ATION ATION Installation CATEX could be applied to this project. Ibb. DATE</td> <td>Close with the second second</td>	IEENTAL INFACT ANALTSIS RCS. choose is and ill to be completed by Environmental Planning Function. Continue on separation between the second planning function. Continue on separation between the second planning function. Continue on separation between the second planning function. Continue on separative field of the second planning function of the total action. 2. FROM (Proponent organization and functional address symbol) 2a. TELEF 721 MSG/CEO 4743620 we made and need date) 1 1 statement ES (DOPAA) (Provide sufficient details for evaluation of the total action.) Sa. SIGNATURE Bb. DATE W. (Check appropriate box and describe potential environmental effects) 0 Noise. accident potential, encroachment, etc.) V Intation plan, etc.) V Installation Restoration Program. seismicity, etc.) V Installation Restoration Program. seismicity, etc.) V Installation Restoration Program. seismicity, etc.) V ATION ATION AL EXCLUSION (CATEX) #OR OR ATION ATION Installation CATEX could be applied to this project. Ibb. DATE	Close with the second

۴.

1 2

	Contractor Streams	Contraction of the second	(See	Reverse for Instructions)				WB No. 0704-0188
existi burde Head of Ma	ng data sources, gatheri in estimate or any other quarters Services, Direc	ng and maintaining the de aspect of this collection o torate for information Ope Paperwork Reduction Pro	n is estim ata neede of informa arations a	ated to average .3 hours p ed, and completing and rev tion, including suggestions	per responsiviewing the s for reducing the s for reducing the state of the second s	a, including the time for r collection of information, ig this burden to the Dep hway, Suite 1204, Arling	Send con artment of Ion, VA 22	ments regarding this Defense, Washington 202-4302, and to the Offic
-	the second s	ETED BY REQUESTER	R				-	
	OM (Organization)	2. OFFIC	CAL.	3. DATE OF REQUEST	-	4. WORK REQUE	ST NO. (F	or BCE Use)
	MSG/CEAO	SYMBOL	•	200903	05	2285	-4	
5. NA	ME AND PHONE NO. OF	Contraction of the second		6. REQUIRED COMPLE	25	7. BUILDING, FAC	CILITY OR	STREET ADDRESS
Diar	e Selleny, 474-322	28		bards bein		primary site:		
DE	SCRIPTION OF WORK	TO BE ACCOMPLISHED	(Include	Sketch or Plan, when appr	noniste)	princi j onor		
ppr	oximately 1,400 M approved by the FI	Wh to 1,700 MWh p	er year.	cost: \$7,930,802 (cost, which equals approxiest of 300 area (map	kimately :	5% of CMAFS cons		ay will generate a. Three potential sola
		1						
BP	FE USTIFICATION FOR	WORK TO BE ACCOMP	USHED	(Not required for mainten	ance and re	Dair)	10000	CONTRACTORIST
0. D	ONATED RESOURCES							in some date stime
			Contraction of the			and the second	the second s	and the second se
	FUNDS	LABOR	1	MATERIAL	T	CONTRACT BY REQUES	TER	NONE
1. N/	FUNDS	LABOR	12. G	MATERIAL RADE OF REQUESTER		CONTRACT BY REQUES		
		LABOR	10000	ore comments				
Dian	ME OF REQUESTER e Selleny	721MSL-CE DS 3/9/c	Con	RADE OF REQUESTER			R (See /	
Dian 4. co 24	ME OF REQUESTER e Selleny DORDINATION H 3/9/09 H 3/9 H 3/	721MS6-CE	Con AD	T21 MSG /100			R (See /	Reverse of Form)
Dian 4. co 24	ME OF REQUESTER e Selleny DORDINATION H 3/9/09 H 3/9 H 3/	721MSL-CE DS 3/9/c	Con AD	T21 MSG /100	13. SHG		R (See /	Reverse of Form)
Dian 4. co ECT 5. W	ME OF REQUESTER e Selleny	721 ALS SE-CE DS 3/9/C VIL ENGINEER USE	Con 42 29	TADE OF REQUESTER tractor	13. SHG	And Sel	R (See /	Reverse of Form)
0ian 4. co ECT 5. W	ME OF REQUESTER e Selleny	721 M St-CE DS 3/9/C VIL ENGINEER USE TX' in the appropriate bo SELF-HELP	Con 42 29	TADE OF REQUESTER tractor		And Sel	R (See /	Reverse of Form)
0 22 4. CO ECT 5. W	ME OF REQUESTER e Selleny	721 M St-CS DS 3/9/C VIL ENGINEER USE "X" in the appropriate bo SELF-HELP ORK (Place an "X" in the	Con 42 29	T21 M36 /170 3/10/07 Jf CONTRACT ale box.)		NATURE OF REQUESTE and Sel Month of Requester ABER	R (See /	Reverse of Form) TC (11139 21A-MOSISSPB
0 22 4. CO 92 92 92 5. W	ME OF REQUESTER e Selleny	721 ALS SL-CE DS 3/9/C VIL ENGINEER USE TX* in the appropriate bo SELF-HELP ORK (Place an "X* in the URGENT * in the appropriate box.)	Con 42 29	T21 M36 /170 3/10/07 Jf CONTRACT ale box.)		NATURE OF REQUESTE and Sel Month of Requester ABER	R (See /	Reverse of Form) TC (11139 21A-MOSISSPB
24. CC	ME OF REQUESTER e Selleny	721 M St-CS DS 3/9/C VIL ENGINEER USE "X" in the appropriate box SELF-HELP DRK (Place an "X" in the URGENT " in the appropriate box.)	Con AD 24 appropria	RADE OF REQUESTER tractor 721 MSG /170 31000 JP CONTRACT ate box.) ROUTINE		NATURE OF REQUESTE and Sel Month of Requester ABER	R (See /	Reverse of Form) TC (11139 21AMOSIS9PB
2010 4. CC ECT 5. W 8. DI 7. SE	ME OF REQUESTER e Selleny	721 M St-CS DS 3/9/C VIL ENGINEER USE "X" in the appropriate box SELF-HELP DRK (Place an "X" in the URGENT " in the appropriate box.)	Con AD 24 appropria	RADE OF REQUESTER tractor 721 M36 / 170 3110 / 07 M CONTRACT ete box.) ROUTINE ADEQUATE COORDINAT		NATURE OF REQUESTE and Sel Month of Requester ABER	R (See H	Reverse of Form) TC (11139 21AMOSIS9PB
Dian 4. CC ECT 5. W	ME OF REQUESTER e Selleny DORDINATION H 3/9/09 H	721 M St-CS DS 3/9/C VIL ENGINEER USE "X" in the appropriate box SELF-HELP ORK (Place an "X" in the URGENT " in the appropriate box.) ONLY IF WORK IS TO E 19. PRIORITY OR AN ENVIRONMENTA	Con AD 24 appropria BE ACCO	RADE OF REQUESTER tractor 721 M36 / 170 3110 / 07 Jf CONTRACT ate box.) ROUTINE ADEQUATE COORDINAT OMPLISHED BY WORK 20. ESTIMATED HOURS		AATURE OF REQUESTE AND SUL MADER ABER 1. ESTIMATED FUNDED	R (See H	Reverse of Form) TC (1113)9 2 1A-MOS 159PB M/C INSPECTION REQUIRE ESTIMATED TOTAL ST
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ME OF REQUESTER e Selleny DORDINATION MASI (JAN 9 MASI	721 M St-CS 73 3/9/C VIL ENGINEER USE "X" in the appropriate box SELF-HELP URGENT " in the appropriate box.) ONLY IF WORK IS TO E 19. PRIORITY COR AN ENVIRONMENTA 9-2)		RADE OF REQUESTER tractor 721 M36 /970 3110 /07 0 CONTRACT ate box.) ROUTINE ADEQUATE COORDINA DMPLISHED BY WORK 20. ESTIMATED HOURS	TION ORDER 2 CESSED	ABER 1. ESTIMATED FUNDED OST	R (See /	Reverse of Form) TC (1113)9 2 14-MOS ISGPB M/C INSPECTION REQUIRE ESTIMATED TOTAL ST 1936 SQ). 128.

	C		A for 1-MW Solar Array for CMAFS Dated 1 April 2010
#	Section/page/line/Fig	Commenter	Comment
		1	Suggested Response
1	General	John Schullek (Email response)	A 1 MW solar array spanning 10 acres on the side of Cheyenne Mountain, right in my backyard. Are you kidding there is a finding of 'no significant impact'??? Who are you fricking kidding??? I've worked all my life to deserve my current home which just so happens to be near NORAD. If it's not Ft. Carson shelling at night; it's you guys now tearing up the mountainside. My vote is close the facility!!! It has wasted the taxpayer's dollars for decades running. There seems to never be an end to the amount of waste the military can dream up. The military spending in this country has bankrupted the country!!! I have been saving for years to put solar panels on my roof and now more of my tax dollars go to improving your facility. That's bullshit!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Noted.			the second se
2	Geology and Soils	TC Wait Colorado Geological Survey (Email response)	In response to your request, the CGS has reviewed the location of the proposed 1- megawatt solar array at Cheyenne Mountain AFS and would like to submit comments regarding geologic hazards that may affect the proposed array location. According to the notice, three proposed site locations were evaluated and found to have no significant environmental impact. However, a detailed geologic investigation was not included for review by CGS and geologic hazards were not addressed in the environmental summary.
	Section/page/line/Fig.	Comments	CGS has been involved with extensive mapping and geologic hazard assessment efforts in the Colorado Springs area, and would like to provide comments regarding geologic conditions at the proposed locations for the solar array for your consideration during the planning process.

	Co	omments on DE	A for 1-MW Solar Array for CMAFS
	1		Dated 1 April 2010
#	Section/page/line/Fig	Commenter	Comment
			Suggested Response
		(pung tailotis) menoficar anasol	The proposed site (Site 1) is located directly west of the parking area and east of the Cheyenne Mountain portal.
	Geology and Solin		• Site 1 is largely located on a geologically young debris fan formed from debris flow runoff from Cheyenne Mountain. These debris channels are known to be recently active, with significant debris flow damage occurring in the mid 1960s. Currently the parking area and access road, although not designed with this intent, are serving as a make-shift debris flow catchment for the residential properties to the east.
			 Likely there are large boulders in the subsurface that may make excavation difficult. This site sits about 0.1 miles east from the Ute Pass Fault zone, which is known to
			 have moved during geologically recent times. This site may be impacted by rockfall/roll stemming from the steep slopes and outcrops on Cheyenne Mountain.
	67-20-6		• Site 1 is located on mapped landslide material. The slopes on the east face of Cheyenne Mountain are believed to be largely composed of landslide materials from catastrophic mass movements related to glacial melting. While some of the slide mass has somewhat stabilized over time, some areas have experienced ongoing
	Section/page/line/Fig		instability. Detailed stability analysis and global impacts of development for adjacent properties should be evaluated.
		numents on DE	Alternative A (Site 2) is located north of the final switch back before the parking area, and directly south of a residential area.Site 2 is also partially located on a young debris flow fan. Site 2 is somewhat

Response to Comments on Draft Environmental Assessment

	Comments on DEA for 1-MW Solar Array for CMAFS Dated 1 April 2010					
#	Section/page/line/Fig	Commenter	Comment			
in the second	which have the state of the		Suggested Response			
2.794	a o to trace the Unifiere Builds	n, Cole, where it is also. For buildings	protected from future debris flow impacts by the parking area and access road, which are acting as a make-shift catchment structure.			
	there any plantation and a		• Likely there are large boulders in the subsurface that may make excavation difficult.			
			• This site sits about 0.5 miles east of the Ute Pass Fault zone, which is known to have moved during geologically recent times.			
			• This site is less likely to be impacted by rockfall/roll, which would also likely be slowed by the parking area and access road before reaching the site.			
			• Site 2 is located on mapped landslide material. Detailed stability analysis and global impacts of development for adjacent properties should be evaluated.			
			Alternative B (Site 3) is located south of the portal area along the Limekiln Valley drainage.			
			• Site 3 is located alongside an existing drainage channel which may carry water following precipitation, and could potentially carry debris flow material from the steep slopes to the west.			
	2ection page the set		• There may be large boulders in the subsurface that could make excavation difficult.			
			• This site also sits directly on several faults, including a splay of the Ute Pass Fault zone, which is known to have moved during geologically recent times.			
	C	mments on DE	• This site may be impacted by rockfall/roll stemming from the steep slopes and			

# Section/page/l	ne/Fig Commenter	Comment Suggested Response outcrops on Cheyenne Mountain.
		outcrops on Cheyenne Mountain.
April 1978. In the summar, urface rupture, soil liquefac states. FEMA-178 indicates Scale of 0 to 4) of the Unif- upture are considered minin- putcroppings located above geophysical hazards that ex-	y of that report four potential tion, and slope failure. The rep that the site coefficients for th orm Building Code, where 4 is nal for the site. For buildings the site. We recognize and co sist at each proposed site. To oject as part of a geologic haz	 Site 3 is partially located on mapped landslide material. Detailed stability analysis and global impacts of development for adjacent properties should be evaluated. The presence of the shear zone from the fault may decrease slope stability due to fractured rock and the ability to carry water in the fractures. This site is located on steeper terrain, which would lead to greater problems with slope creep and erosion. CGS feels that a geologic evaluation for all three possible sites would be warranted to determine specific hazards and propose mitigation measures to protect the solar array and also adjacent property. (a Copy of Mr. Wait comments are provided in Appendix E) been conducted at Cheyenne Mountain Air Station as part of a FEMA 178 Review in earthquake-related hazards were assessed for the site; strong ground shaking, ground opt further stated that the facility is located in a low seismic active region of the Unitere seismicity are Aa=0.05 and Av=0.05. Similarly, the site falls within Seismic Zone is a high risk and 0 is no risk. Potential for soil amplification, liquefaction, and surfact located near the north entry, a moderate potential exists for rockfall from the granit mour with CGS's comments regarding the need to identify and evaluate the potentia hese evaluations will be conducted during the design-level geotechnical/geologica ard evaluation. Additional information has been added to the EA concerning geological are evaluation.

Response to Comments on Draft Environmental Assessment

	Co	omments on DE	A for 1-MW Solar Array for CMAFS Dated 1 April 2010
#	Section/page/line/Fig	Commenter	Comment
			Suggested Response
3	General	Alexander Daube (Email response)	Regarding the proposed installation of the 1 Megawatt Solar Array on Cheyenne Mountain, Great idea! Do it! Hey, do you still give public tours? Let me know.

the regard manufacture of the stand.

This page intentionally left blank.

Response to Comments on Draft Environmental Assessment

Knight, Jim

From:

Sent: To: Subject: Ray, Dwayne E Ctr USAF AFSPC 721 MSG/CEAN-PWT [dwayne.ray.ctr@cheyennemountain.af.mil] Wednesday, February 24, 2010 8:42 AM Knight, Jim FW: Response to 1 MW solar array

Dwayne Ray, REM Environmental Coordinator 721 MSG/CEAN-PWT Cheyenne Mountain AFS CO 719 474 3620

-----Original Message-----From: John Schullek [mailto:jschullek@yahoo.com] Sent: Tuesday, February 23, 2010 6:53 PM To: Ray, Dwayne E Ctr USAF AFSPC 721 MSG/CEAN-PWT Subject: Response to 1 MW solar array

Dwayne:

Quit wasting the taxpayer's dollars!!!!

mik MuloN

017

kein: Par Mature

Roy, Dearger B Ca (1578) APEPC 219 MoGAZAN-PWT Program by shifted approximation of trial Medicenting, February 24, 2010 E 42 AM Digits, Jim

STREET CORPORE DOLL

Dampine May 2019 Provid-population all Coundination V21 mEducition and Chapmine Terretally 44% 00 725 424 (454)

Service Structure (mailter (schullsbigenheeter) Servic Translay, February 23, 2030 6:53 Million (schullsbigenheeter)

Surperty Requires to 1 Mil solar array

and the second second

a 1 by color array sparsing 10 acres on yhe side of Chevenie buintain, Fight 16 by backgord, are you slabing times is a filtering of no significant instart 21) who are you fetching kinetagili.

I've warted all wy life to deserve ay correct home while just as beganne to be need 10000. If it's not it. Corver similing at dignit; it's you give new tearing up the mount-clockle. We write it close the facility/it

35 has verified the trappyor's dollars for decades rounding. There seems to rever be an only in the mount of verifie the military can devan up

The additiony spending in this spaintry has baderopted the country (1).

) have been saving for years to get tolar panels on an reat and real area of my taxballars, ye to taxetwing your faultity. Thit's builtanic((1)))(1))(1))(1))(1))).

You have as write to close the adt-dated place. In hetter pet, move it to meride where - sufar prefer should be cultivated.

ittearflup v. asterivet says Jupieres 1100

STATE OF COLORADO

COLORADO GEOLOGICAL SURVEY— serving the people of Colorado

Department of Natural Resources 1313 Sherman Street, Room 715 Denver, CO 80203 Phone: (303) 866-2611 Fax: (303) 866-2461

February 22, 2010

Legal: S 1/2 of S13, T15S, R67W

Mr. Dwayne Ray, REM Environmental Coordinator 721 MSG/CEAN-PWT Cheyenne Mountain AFS CO 80914

Re: Solar Array at Cheyenne Mountain AFS CGS Review No. EP-10-0014

Bill Ritter, Jr. Governor

James B. Martin Executive Director

Vincent Matthews Division Director and State Geologist

Dear Mr. Ray;

In response to your request, the CGS has reviewed the location of the proposed 1-megawatt solar array at Cheyenne Mountain AFS and would like to submit comments regarding geologic hazards that may affect the proposed array location. According to the notice, three proposed site locations were evaluated and found to have no significant environmental impact. However, a detailed geologic investigation was not included for review by CGS and geologic hazards were not addressed in the environmental summary.

CGS has been involved with extensive mapping and geologic hazard assessment efforts in the Colorado Springs area, and would like to provide comments regarding geologic conditions at the proposed locations for the solar array for your consideration during the planning process.

The proposed site (Site 1) is located directly west of the parking area and east of the Cheyenne Mountain portal.

- Site 1 is largely located on a geologically young debris fan formed from debris flow runoff from Cheyenne Mountain. These debris channels are known to be recently active, with significant debris flow damage occurring in the mid 1960s. Currently the parking area and access road, although not designed with this intent, are serving as a make-shift debris flow catchment for the residential properties to the east.
- Likely there are large boulders in the subsurface that may make excavation difficult.
- This site sits about 0.1 miles east from the Ute Pass Fault zone, which is known to have moved during geologically recent times.
- This site may be impacted by rockfall/roll stemming from the steep slopes and outcrops on Cheyenne Mountain.
- Site 1 is located on mapped landslide material. The slopes on the east face of Cheyenne Mountain are believed to be largely composed of landslide materials from catastrophic

mass movements related to glacial melting. While some of the slide mass has somewhat stabilized over time, some areas have experienced ongoing instability. Detailed stability analysis and global impacts of development for adjacent properties should be evaluated.

Alternative A (Site 2) is located north of the final switch back before the parking area, and directly south of a residential area.

- Site 2 is also partially located on a young debris flow fan. Site 2 is somewhat protected from future debris flow impacts by the parking area and access road, which are acting as a make-shift catchment structure.
- Likely there are large boulders in the subsurface that may make excavation difficult.
- This site sits about 0.5 miles east of the Ute Pass Fault zone, which is known to have moved during geologically recent times.
- This site is less likely to be impacted by rockfall/roll, which would also likely be slowed by the parking area and access road before reaching the site.
- Site 2 is located on mapped landslide material. Detailed stability analysis and global impacts of development for adjacent properties should be evaluated.

Alternative B (Site 3) is located south of the portal area along the Limekiln Valley drainage.

- Site 3 is located alongside an existing drainage channel which may carry water following
 precipitation, and could potentially carry debris flow material from the steep slopes to the
 west.
- There may be large boulders in the subsurface that could make excavation difficult.
- This site also sits directly on several faults, including a splay of the Ute Pass Fault zone, which is known to have moved during geologically recent times.
- This site may be impacted by rockfall/roll stemming from the steep slopes and outcrops on Cheyenne Mountain.
- Site 3 is partially located on mapped landslide material. Detailed stability analysis and global impacts of development for adjacent properties should be evaluated. The presence of the shear zone from the fault may decrease slope stability due to fractured rock and the ability to carry water in the fractures.
- This site is located on steeper terrain, which would lead to greater problems with slope creep and erosion.

CGS feels that a geologic evaluation for all three possible sites would be warranted to determine specific hazards and propose mitigation measures to protect the solar array and also adjacent property. If you have further questions about this site, please contact me at (303) 866-2611.

Sincerely. TC Wait

Engineering Geologist

Cc: file

Knight, Jim

From:	Ray, Dwayne E Ctr USAF AFSPC 721 MSG/CEAN-PWT
	[dwayne.ray.ctr@cheyennemountain.af.mil]
Sent:	Wednesday, February 24, 2010 9:11 AM
To:	Knight, Jim
Subject:	FW: Public comments: Cheyenne Mountain - 1 Megawatt Solar Array

Dwayne Ray, REM Environmental Coordinator 721 MSG/CEAN-PWT Cheyenne Mountain AFS CO 719 474 3620

----Original Message----From: booboo894@juno.com [mailto:booboo894@juno.com] Sent: Saturday, February 20, 2010 2:54 PM To: Ray, Dwayne E Ctr USAF AFSPC 721 MSG/CEAN-PWT Cc: booboo894@juno.com Subject: Public comments: Cheyenne Mountain - 1 Megawatt Solar Array

Regarding the proposed installation of the 1 Megawatt Solar Array on Cheyenne Mountain,

Great idea!

Do it!

Hey, do you still give public tours? Let me know.

Alexander Daube

Hotel

Relative, Jim

Front: Ray Drawin E Go USAF AFGRO 7 (Determine vice unit) Wentmining, February 24, 2010 V.1 Fo: Keiget, Jan Subject: FW Patie community Chaymen M

> Delayon Ray, NU Environmental Constitution 731 Hou/Clade-Int 131 Hou/Clade-Int 131 Aug/Clade-Int 131 Aug/Clade-Int 131 Aug/Clade-Int

From Tornino29407umq row [amiltarbuildenered@juma.com]
Ser: Seturity, February 20, 2018 2:54 PH
To Ley, Despire 1 Str USAF APD/C 312 Philitate-Pail
C. Doobset#40()umurow
Schler McDike research. Chayenne Manatute - 1 Necessit Schler Arres
Schler F. Poille research. Chayenne Manatute - 1 Necessit Schler Arres

Regarding the proposed installation of the 1 Megawith Solar Attray in Chevelan, Nouncain,

Analysis and the

101.00

Hey, do you itill give public bound life any ob , well

ALEXAND VERY DAMAGE

1 of the

whites internet in the internet in