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MODEL-BASED ARRAY PROCESSING 

1. INTRODUCTION 

Sonar systems are being driven to use ever lower frequencies to compensate for the quieting of acoustic 
emissions from targets of interest. Because these low-frequency sounds are more difficult to suppress at 
the source and thus can propagate further through the underwater medium, reasonable detection ranges 
can be maintained. 

For a given sonar receiver and processing chain, the beamwidth of the system increases as the frequency 
decreases. As the beams become broader, there is a greater chance that more than one acoustic source will 
be present in the same beam. This report introduces beamforming methods that are aimed at detecting 
more than one source within a single beam. The techniques are based on planewave models and use fitting 
procedures to find optimal sets of planewaves, in a minimal squared-error sense, to match measured time 
series data. 

Each of the following sections first presents the theoretical development and then discusses the results 
with simulated data, comparing these results with conventional beamforming techniques. 

In section 2, a single or one-planewave model is fitted to data observed by a line array of sensors that 
can be arbitrarily spaced; also discussed is the special case of a sparse equispaced array. 

In section 3, a two-planewave model is fitted to linear array data (arbitrarily spaced). Section 4 applies 
a similar technique to the situation where the two planewaves are related by a single change in amplitude 
and a time delay. This case represents the arrival of two planewaves from a single source via two different 
propagation paths (multipath). 

Finally, in section 5, a model is fitted of a planewave arriving at an arbitrarily spaced two-dimensional 
array from a moving source. In this case, the fitting procedure yields two-dimensional start and end 
positions of the source, and indicates the strengths of its frequency components. 

Model-based processing can be used as a preprocessor prior to such additional beamforming as con
ventional, adaptive, Fourier Integral Method (FIM) , etc. If a double source is found, the stronger one can 
be coherently removed, using the modeled coefficients yielded by the fitting procedure, to better identify 
the weaker source(s). Removed sources can be added to subsequent sonar displays to prevent loss of 
information to operators. 
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2. ONE-PLANEWAVE FIT FOR 
UNEQUALLY SPACED LINE ARRAYS 

2.1 THEORY 

2.1.1 Arbitrarily Spaced Line Array 

A continuous pressure field p(t,x) is assumed at timet and location x. Time samples are taken at 
t = n~ for n = O:N -1, and spatial samples are taken at locations X= x(m) form = O:M -1. The 
colon symbol J: K is used to denote { J, J + 1, . . . , K} with J < K. The total discrete data available are 
p(n,m) :p(n~,x(m)) for n = O:N-1, m = O:M-1. 

If a single planewave arrives from angle u1 = sin lh comprised of frequencies {h (k)}~:, the observed 
complex pressure field at ( t, x) is modeled as 

k~ 

i>l(t,x) = L a1(k) exp[i211" h(k)(t- ~u1)], (1) 
k=k .. 

where the hypothesized amplitudes {a1(k)}~! are complex. For given frequencies {h(k)}~! and arrival 
angle u1, amplitudes { a1 ( k)} ~~ should be chosen so that the total weighted fitting error e is minimized. 
Here, error is defined as 

N-1M-1 data ~2 
e = L L Wt(n)w:z:(m)lp(n~,x(m)) -.P1(n~,x(m))l 

n=O m=O 

= LWt(n)w:z:(m) L(n,m)- l:a1 (k)exp{ia1 (k)[n- ,B(m)ul]} 

2

, 

~m r k 

(2) 

where the temporal and spatial weights, {wt(n)} and {w:z:(m)}, are real and positive, and the known 
dimensionless parameters are 

(3) 

To minimize e, Kay's partial derivative procedure1 is used; thus, 

EJa~e(k) =- LWt(n)w:z:(m) [p(n,m)- l:al(k)exp{ial(k)[n-.8(m)u1]}] 
1 - n,m k 

x exp{ -i a1 (k) [n- ,B(m)u1]} fork= ka.: kb. (4) 

The temporal and spatial windows are defined as 

N-1 

Wt(a) = L Wt(n) exp(-i an) for all a, Wt(O) = 1, (5) 
n=O 

M- 1 
W:b) = L w:(m)exp(i,B(m)'y) for all-y, W:(O) = 1, (6) 

m=O 

3 



and the two-dimensional data spectrum as 

N-lM-1 

P(o:, 1) = L L Wt(n) Wx (m) p(n, m) exp [ -i o:n + i,B(mh] for all a, 'Y· (7) 
n=O m=O 

Then, from equation (4), the conditionally optimal complex amplitudes {!h (k)}!: , for hypothesized arrival 
angle u1, satisfy the simultaneous linear equations 

kb 

L !h (k) Wt (o:1 (k) - 0.1 (k)) Wx ([a1 (k) - 0.1 (k)] u1) 
k=ka 

= P(o:1 (k), 0:1 (k)ut), fork= ka :kb. 

Henceforth, only the case of flat temporal weighting is considered: 

1 
Wt ( n) = N for n = 0: N -1. 

Then, from equation (5), 

. N _ 1 sin(N o:/2) 
Wt(a.) = exp ( -2 o:-2-) N sin(o:/2), 

from which 

{ 
1 fork= 0 } 

Wt (21rkjN) = 0 fork=/; 0 ' 

Also, the fitting frequencies are taken as 

which leads to 

lkl < N. 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Now, an explicit solution to equation (8) can be written for the conditionally optimal amplitudes; namely, 

(14) 

The conditionally minimal error then becomes 

~ = L Wt(n) Wx(m) [p(n , m)- L ~h (k) exp{ i 0:1 (k) [n- ,B(m) u1J}] p*(n , m) 
n ,m k 

= LWt(n) wx(m)ip(n,m)i
2 

n,m 

- LQ1 (k) L Wt(n) wx(m) p*(n, m) exp{ i o:1(k) [n- ,B(m) u1]}. 
k n,m 

(15) 
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Now the conditionally optimal amplitudes (equation (14)) are substituted to obtain 

(16) 
n,m k 

= L Wt(n) Wx(m) jp(n,m)j
2

- I:IP(o1(k), o1(k)u!) 1
2

• 

n,m k 

(17) 

= r(ul) 

Next, the error ~ is further minimized by choosing the planewave arrival angle u1 that maximizes 
r(ul). Using the definition of the two-dimensional data spectrum P (equation (7)) and the flat temporal 
weighting (equation (9)), results in 

r(u1) = L~~LWx(m)p(n,m)exp [-i~kn+i,B(m)~ku1JI
2 

k n,m 

kb IM-1 [2k Jl
2 

= k~ .. fo Wx(m) q(k, m) exp i ~ ,8(m)u1 (18) 

where 

N-1 

q(k, m) = ~ L p(n, m) exp( -i27rkn/N) fork= O:N -1,m = O:M -1 
n=O 

(19) 

is the temporal discrete Fourier transform of the m-th element data. The maximization of r(ul) by choice 
of u1 is depicted in the following sketch: 

r(ul) 

--+--------1-:------- U1 u1 
Best estimate of arrival angle is '111. 

The processing given by equation (18) has a very plausible form. It says to (1) first transform the time
space data {p(n,m)} into the frequency-space domain {q(k,m)}, and then (2) for hypothesized arrival 
angle u1, scale and phase shift the m-th element component in frequency bin k by (27rk/N),B(m)u1. But 
this phase shift exactly compensates for that of a single-frequency planewave arriving at angle u1: 

. k x(m) 27rk 
phase sh1ft(k,m) = -27r N.6.-c-u1 = -N,B(m)u1 . (20) 

Thus, the inner complex sum over m in equation (18) is a coherent one for any planewave arriving at 
angle u1 . Finally, the outer sum over k in equation (18) is an incoherent sum over frequencies in the band 
of interest. This incoherent sum is necessary because no interrelations have been assumed for individual 
frequency components in the planewave arrivals. After the sum over k is complete, then r(ul) is plotted 
for all u1 in the angular sector of interest, and its maximum is located at u1. 
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The complex sum on element number m in equation (18) cannot be accomplished by a fast Fourier 
transform (FFT) because, in general, /3(m) = x(m)/(c6.) is not linear in m for an unequally spaced line 
array (but see section 2.1.2 for a sparse equispaced line array). This complex sum must be carried out by 
brute force. However, one shortcut available uses the recursion 

exp [i 2;k /3(m)u1] = exp [i 
211'(~- 1

) /3(m)u1] exp [i ~ /3(m)u1] (21) 

for each m and u1 to generate the k~values needed for the exponentials. 

Finding the best spatial weights {wx(m)} is not trivial; they should not simply be taken as flat but 
should reflect known element locations {x(m)}. For example, wx(m) might be taken to be proportional 
to the shaded area between adjacent element midpoints, as shown in the following sketch: 

After the conditionally best coefficients {!h (k)} are found for a specified u1, the minimal conditional 
time~space residual is, from equations (1) and (2), 

E(n,m) = p(n6.,x(m))- p1 (n6.,x(m)) 

= p(n, m)- ~Q1 (k) exp [i2;k (n- /3(m)u!)] . 

The corresponding FFT of this residual is, from equation (19) , 

N-1 

lJ,(k,m) = ~ LE(n,m) exp(-i211'kn/N) 
n=O 

1 kb [ 2 k ] N-1 
=q(Ji,m)- N LQ1(k)exp -i ~ /3(m)u1 l:exp[-i211'(]£-k)nfN] 

k=k4 n=O 
~-------v---------# 

N6(k- k) 

= q(Ji, m)- Q1 (k) exp [ -i 
2
;k/3(m)u1] , fork= ka :kb. 

The conditionally optimal amplitudes are, from equations (14) , (9), (12) , (7) , and (19) , 

g 1 (k) = P ( a1 (k), a1 (k)u1) 

M-
1 

[ 2 k ] = fa Wx(m) q(k, m) exp i ; f3(m)u1 

(22) 

(23) 

(24) 

These complex amplitudes should be evaluated only after the best arrival angle u1 (namely u1) has been 
determined. Then, equation (23) should be evaluated, using u1 in place of u1. That is, the unconditionally 
optimum amplitudes are 

M - 1 [ ] =fa wx(m) q(k, m) exp i
2
;k /3(m)u1 (25) 
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and the minimal residual in the frequency-space domain is 

ii(k,m) = {q(k,m)- a1(k)exp [-i 2
;k P(m)u1] fork= ka:kb, 

q(k, m) fork(/. ka :kb. 

Letting the spatially weighted FFT at frequency bin k be defined as 

qw(k,m) = q(k,m) W:z:(m), 

and its spatial autocorrelation for frequency bin k be defined as 

m 

then, from equation (18), if x(m) = dm (equally spaced line array), 

2 
kb M-1 [ 2 kd ] 

r(u1) = L L q111(k,m)exp i ~ c:u1 
k=k,. m=O 

kb M-1 ( 2 k d ) 
= L . L ¢>(k,j)exp i ~ cAju1 . 

k=k,. 3=1-M 

(26) 

(27) 

(28) 

(29) 

A FIM-like2- 6 generalization would be to weight the spatial sum over j to obtain the modification 

where the {w8(j)}M-I are separation weights (real and even about j = 0). 
1-M 

2.1.2 Sparse Equispaced Line Array 

From equation (18) with z(m) = w:z:(m)q(k, m) (holding k fixed), let 

M-1 

j(v) = L z(m) exp [iv,B(m)], 
m=O 

and, as an example of a sparse equispaced line array, consider 

then 

and 

{x(m)} = [x(O) x(1) · · · x(M- 1)] 

= [0 d ...._.. 3d 4d __, 7d 8d 9d .. ·]; 
1 missing 2 missing 

{P(m)} = .B [0 1 3 4 7 8 9 .. ·), 
d 

.B=cA' 

j(v) = z(O) + z(1) exp(iv.B) + z(2) exp(ivP3) + z(3) exp(ivP4) 

+ z(4)exp(iv,B7)+z(5)exp(ivP8) + z(6)exp(ivP9) + .... 

(30) 

{31) 

(32) 

(33) 

(34) 
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Letting 

y = (z(O) z(l) 0 z(2) z(3) 0 0 z(4) z(5) z(6) · · ·], (35) 

then 

f(v) = y(O) +y(l)exp(iv,B) +y(3)exp(iv3,8) +y(4)exp(iv4,8) 

+ y(7) exp(iv7,B) + y(8) exp(iv8,8) + y(9) exp(iv9,8) + · · · 

= LY(j) exp(iv,Bj) 
j=O 

= LY(i) exp [i271' ~ c~ u1j] . 
J=O 

(36) 

By taking ~ c~ u 1 = ;;, , this process can be performed by an N'-point FFT. Sequence {y(j)} has zeros 
in it, dictated by the missing element locations; as a result, the {z(m)} are merely "spaced out" by the 
missing element locations. 

2.2 IMPLEMENTATION 

The theory outlined in the last section was implemented in a MATLAB program and tested on simulated 
data for a variety of scenarios. 

2.2.1 Coding 

The first step was to generate the data that an unequally spaced line array of sensors would produce 
in the presence of a plane wave arriving from angle u1 = sin 81. First, the source direction, frequencies, 
and amplitudes were defined: 

u1_source = .5; 'l. sin(source angle) 
f1_source = 45:60; 'l. frequencies (Hz) 
al = [0 1 2 3 4 54 3 2 1 0 1 2 3 4 5]; 'l. amplitudes 

The fitting band and sensor parameters were also defined: 

M = 16; 'l. Number of sensors 
wx_m = ones(1,M)/M; 'l. spatial error weighting 
ka = 45; 
kb = 60; 
i = sqrt(-1); 
N = 1024; 'l. Number of time points 
delta= 1/1024; 'l. sampling increment (s) 
c = 1500; 'l. sound speed (m/s) 
tvect = delta*(O:N- 1); 'l. vector of sample times 
rand('state',O); 'l. Same random array each t ime 
xarray = sort(50*rand(M,1)); 'l. random sensor positions (m) (0,50) 

8 



The time-space data were then computed as a sum of planewaves at the source frequencies f 1_source: 

[xmatrix,tmatrix] = meshgrid(xarray,tvect); 
pnm = zeros(N,M); 
for k = 1:length(f1_source) 

pnm = pnm + al(k)*exp(2*pi*f1_source(k)* ... 
(tmatrix- xmatrix•ul_source/c)*i); 

end 

The next step was to find the value of u1 that maximized r(u1) given by equation (18). First, a coarse 
grid search was carried out over L evenly spaced points in u1 between -1 and 1: 

L = 51; 
ul_l = linspace(-1,1,1); 
% Calculate r(ul) using equation (17) 
beta_m = xarray/(c*delta); 
r_l = -calcrl(ul_l, beta_m, ka, kb, N, wx_m, pnm); 

A subroutine calcrl was used to compute the values of r _l for an input vector ul_l, given the parameter 
list beta_m, ka, kb, N, wx_m, and pnm (see section 2.2.2). The negative sign was used because the function 
calcrl was employed as the argument of a function-minimizing routine (see below), whereas it was 
required to find the function's maximum. The maximum value of r _l resulting from the coarse search 
and the corresponding value of ul_l were found, as well as the ul_l values immediately adjacent: 

[dum,ind] = max(r_l); 
if ind==l 

i1 = 1; 
i2 = 3; 

elseif ind==L 
il = L - 2 
i2 = L; 

else 
il = ind - 1; 
i2 = ind + 1; 

end 

(Maxima at the domain limits were handled as special cases.) An accurate estimate of the peak was 
obtained by using an iterative parabolic fitting routine (FMINBND ): 

options= optimset('TolX',le-10); 
best_ul = fminbnd('calcrl' ,ul_l(il),ul_l(i2),options,beta_m, ... 

ka,kb,N,wx_m,pnm); 

The fitting routine used the absolute tolerance set by the function OPTIMSET, here equal to w-10. 

After the best estimate of arrival angle (best_ul) was found, the optimal amplitudes {~h (k)} were 
then calculated from equation (14): 
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a_1_bar = zeros(1,length(k)); 
[beta_m_mx,n_mx]=meshgrid(beta_m,O:(N- 1)); 
ik = 0; 
for this_k = k 

ik = ik + 1; % index for a_1_bar; 
alpha_1_k = 2*pi*this_k/N; 
Enm = exp((-alpha_1_k*n_mx + beta_m_mx*alpha_1_k*best_u1)•i); 
Gnm = pnm. *Enm; 
Fn = vx_m•Gnm.';% sum over m 
a_1_bar(ik) = sum(Fn)/N; % sum over n 

end 

2.2.2 Calculation of r(ul) 

The Fourier transform of the element data was computed explicitly for each frequency component k. 
A matrix product was used to perform the sum over n required in the evaluation of the transform qkm: 

n = (O:(N- 1)). 1 ; 

r_l = zeros(size(u1_1)); 
for k = ka:kb 

En= exp((-2*pi*k*n/N)•i); 
% Fourier transform at frequency k 
%(matrix product does sum over n): 

qkm = (pnm. ')*En; 
E_ml = exp((2*pi*k*beta_m*u1_l/N)*i); 

% matrix product does sum over m: 
r_l = r_l + abs((vx_m. *qkm. ')*E_m1).~2; 

end % loop does sum over k 
r_l = -r_l; % for use with MINimizer 

The negative of the final result was taken so that the routine could be used as the argument of a minimizer, 
as explained previously. 

2.3 EXAMPLES 

2.3.1 Noise-Free Simulations 

2.3.1.1 Scenario 1: Matched Frequencies. The above code gave rise to M = 16 array ele
ments at the following positions: xarray = [0.92518, 8.8133, 11.557, 20.285, 22.235, 22.823, 24 . 299, 
30.342, 30.772, 36.910, 38.105, 39.597, 41.070, 44.565, 46.091, 47. 506]. These positions are plotted 
in the following sketch: 

0 10 

10 

20 30 
x(m) position, m 

40 50 



For this example, the result of the maximization of r by choice of u1 is shown in figure 1. In this noiseless 
case, the resulting estimate of u1 was 0.5 + 5.8 x w-11 , yielding the optimal amplitudes {g1 (k) }, shown 
in figure 2. 

The optimal amplitude errors, shown in table 1, are defined as a1 (k) - fh (k). The real parts of the 
fitted amplitude errors are on the order of the machine precision, and the imaginary parts are of a size 
comparable to the tolerance on the estimation of the arrival angle {10-10), except for the cases of zero 
amplitude, where they are of a size comparable to the machine precision. As shown in the lower plot of 
figure 2, the amplitudes of the imaginary parts are proportional to the real parts. 

For the matched-frequency case, the set of source frequencies was equal to the set of fitting frequencies. 
In the following four scenarios (subsections 2.3.1.2 to 2.3.1.5), cases where the set of source frequencies is 
not equal to the set of fitting frequencies are considered. 

r(ul) 

8 

2 
X 10 

1.5 

1 

x = U1, result of fminbnd 

True value of u1 = 0.5 

0.5 • =coarse grid 

0~~~~--~~~------+-----~ 
-1 -0.5 0 0.5 

u1 = sinfh 

Figure 1. The Result of the Maximization of r by Choice of u1 
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Figure 2. Optimal Amplitudes for Noiseless Example 
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Table 1. Optimal Amplitude Errors for Noiseless Example 

k, or Input Optimal Amplitude Error 
Frequency (Hz) Amplitude, a1 (k) Real Part Imaginary Part 

45 0 1.7 X 10-!r 5.2 X 10-15 

46 1 2.7 X 10-14 -3.3 X 10-IO 
47 2 -3.0 X 10-14 -6.8 X 10-10 

48 3 -1.7 X 10-14 -1.0 X 10-9 

49 4 2.5 X 10-14 -1.4 X 10-9 

50 5 9.8 X 10-15 -Ls x w-9 

51 4 0 -1.5 x w-9 

52 3 2.1 X 10-14 -1.1 x w-9 

53 2 -1.9 X 10-14 -7.7 x w-10 

54 1 -2.4 X 10-14 -3.9 x w-10 

55 0 -7.6 X 10-15 9.1 X 10-15 

56 1 -1.7 X 10-14 -4.0 x w-10 

57 2 7.5 x w-15 -8.2 X 10-10 

58 3 -1.6 X 10-14 -1.2 x w-9 

59 4 -2.9 X 10-14 -1.7 x w-9 

60 5 -3.9 X 10-14 -2.2 x w-9 

2.3.1.2 Single Source Component Midway Between Fitting Bins. In practice, the exact 
source frequencies are not known prior to conducting the single planewave fit, or the frequency bins 
available in an operational system may not match those of the source. To examine such a situation, 
the fitting procedure was run for a source frequency midway between two of the fitting frequencies , as 
shown in figure 3. The input angle for this case was u1 = 0.5 (dashed line in the graph), and the input 
frequency was 52.5 Hz. The fitting frequencies were fk = k = 45, 46, . .. 60. Although the peak of the 
function r( u 1 ) was found within the requested tolerance (10-10), the result differed from the input angle 
by 3.0 x w-4 • The fitted amplitudes in figure 4 show the leakage phenomenon typically encountered with 
Fourier transform processing. 

u
1
=sin{8

1
) 

rlmax(r) _ 1 0 
.,....---0_.4.._9_9 ___ 0._49!:79 .... 5~......,...,...-!0 . ..::...5 __ ......::...0 . ..::...500._5_ 

6 • • • "• I 

{xlo- )_2 • • ·:· •• 
.· 

-4 

-6 

-8 

Figure 3. Source Frequency Midway Between Two Fitting Frequencies 

2.3.1.3 Source Components Outside the Fitting Band and Misaligned with Fitting Bins. 
To investigate the effect of planewave arrivals at frequencies outside the fitting band, a set of planewaves 
at frequencies above and below the fitted frequencies was included. The resulting angle estimate is shown 
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in figure 5. The input angle for this case was again u1 = 0.5 (dashed line). The fitting frequencies were 
b. = k = 45, 46, ... 60. Although the peak of the function r(u1) was found within the requested tolerance 
(lQ-10), the result differed from the input angle by 9.5 X 10-4 • 

The fitted amplitudes are shown in figure 6. The fitted amplitudes are generally larger than the input 
amplitudes. 

2.3.1.4 Source Components Outside the Fitting Band and Aligned with the Fitting Bins. 
Figure 7 shows the effect of frequencies outside the fitting band, but this time the actual and fitted 
frequencies are aligned over the same equispaced Fourier bin frequencies. The angle is able to be accurately 
estimated by the fitting procedure, as are the amplitudes. 

2.3.1.5 Source Components Outside the Fitting Band Are Misaligned, While Source Com
ponents Inside the Fitting Band Are Aligned with Fitting Bins. If the frequencies outside the 
fitting band are not aligned over the Fourier bin frequencies, as in figure 8, then the optimal angle and 
amplitudes are not able to be accurately estimated by the one-planewave fitting procedure. 
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Figure 4. Fitted Amplitudes from One-Planewave Fitting Procedure 

u
1
=sin(9

1
) 

rlmax(r) _ 1 0 r-__ 0_.4._98_5 __ •• -;-..... o ..... 4'*99~ • .-:-.-. _0_.4..._9_95 ___ 0~.5 

(xi0-6) _2 •••••• • • • • •• •••••• 

-4 • 

-6 

-8 •. 

I ·.· L 
' · 

Figure 5. Effect of Planewave Arrivals Outside the Fitting Band 

13 



14 

Amplitude, 
Real Part 

15 0 

10 

5 

0~--~~_L~LL~~~~----~ 
40 45 50 55 60 65 

4 

Amplitude, 2 

Imaginary Part o-P*--illlll!llil~m~~~~~~·~·--
-2 

-4~----~------~----~------~----~ 
40 45 50 55 60 65 

k, or Frequency, Hz 

Figure 6. Fitted Amplitudes with Source Frequencies Outside the Fitting Band and 
Misaligned with the Fitting Bins 

Figure 7. R esults of Fitting with Source Components Outside the Fitting Band and 
Aligned with the Fitting Bins 



u
1
=sin(e

1
) 

rlmax(r) - 1 o.----0_.4._99 ___ o__, .• ,...~9,_,9...;5*-'..-:--0-:-.5 ___ o_.5 ...... 00_5 
-6 I • ·•• •. · 

(xlO )_2 • •• •• •••• •· ••••• 

Amplitude, 
Real Part 

-4 

-6 
-8 . 

10 
x Actual 
o Fitted 
+ Fitted (abs) 

::,, , l ~1IIII!lli ~ii II, X, X X 

40 45 50 55 60 65 

40 45 50 55 60 65 
k, or Frequency, Hz 

Figure 8. Results of Fitting with Source Components Outside the Fitting Band Misaligned, 
While Source Components Inside the Fitting Band Are Aligned with Fitting Bins 

It is concluded from this set of numerical trials that the fitting procedure is able to accurately estimate 
the angle and amplitudes of a single multifrequency planewave, provided that the Fourier bin frequencies 
match the frequencies emitted by the source. 

2.3.2 Comparison with Conventional Beamformer 

In this section, the one-planewave fitting algorithm is compared to conventional beamforming. Consider 
the quantity r(u1) (equation (18)), which is maximized by the choice of arrival angle u1. and let the 
summand in equation (18) be denoted by r(u1 ,k); that is, 

(37) 

(38) 
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where 

2 

M - l [ 2 k ] 
r(u1, k) = fo wx(m) q(k, m) exp i .~ f1(m)u1 (39) 

The conventional bea.mformer produces an output at frequency index k and arrival angle u1 = sin(Bl) 
given by 

Pc(ul, k) = ~2 v'(k) R(k) v(k), (40) 

where v( k) is the j\tf-element steering vector at frequency index k and at arrival angle el, 

( 41) 

(42) 

and the M x M sample covariance matrix R(k) = X(k)X'(k), where X(k) is the M-element vector of 
the Fourier coefficients at frequency k. If equation ( 40) is compared with equation (18), it is seen that, 
to within a scaling factor N, the conventional beamformer is equal to the summand of the function r(ul) 
with flat spatial weighting. 

In the following examples, the "matched frequencies" case of the previous section is used; that is, the 
planewave is composed of frequencies corresponding to k = fk = 45:60, and the arrival angle corresponds 
to u1 = 0.5. 

2.3.2.1 Noise-Free Case. Figure 9 shows the function r(u1 ,k) (equation (39)) on the left and 
the conventionally beamformed output (equation (40)) on the right. The darker regions denote high 
amplitude, and the lighter regions denote low amplitude. The set of input frequencies is shown as a set 
of white dots at u1 = 0.5. The intensity image was produced using 10logr(u1, k). For the conventional 
beamformer shown at the right, temporal FFTs with a length equal to the number of time samples for 
each sensor (1024 points) were used to estimate the covariance matrix. Both plots have the same k, u1, 
and gray intensity scales. As can be seen, the two plots are virtually identical. 
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Figure 10 shows r( u1) and the sum over k of the conventional beamformer output, both plotted as 
functions of u1 on a linear ordinate scale. The function r( u1) corresponds to the conventional beamformer 
output summed over the fitting frequencies. The resulting peak is at the correct value of u1; namely, 
u1 = 0.5. The two plots are identical and hence superimposed. 

Figure 11 shows the strengths of the fitted frequency components and the amplitudes of the conven
tional beamformer output plotted against the frequency bin number at u1 = 0.5. The top plot shows the 
actual strengths, and the bottom plot shows (1) the differences between the one-planewave fit and the 
input strengths (circles), and (2) the differences between the conventional beamformer output and the 
input strengths (triangles). There is a small error between the conventional beamformer output and the 
input strengths, which is not evident in the one-planewave fit. 
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Figure 10. The Quantity r(u1) and the Sum over k of the Conventional Beamformer 
Output, Both Plotted as Functions uf u1 
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2.3.2.2 Case with Noise. Complex normally-distributed random noise is added to the simulated 
pressure data in the following manner: 

snr = -10; 
Noise= randn(size(pnm)) + i*randn(size(pnm)); 
As= mean(std(pnm)); 
An= mean(std(Noise)); 
NoiseScaleFactor =As I (An*lO-(snr/20)); 
pnm = pnm + Noise * NoiseScaleFactor; 

The quantity snr defines the desired signal-to-noise ratio, which is equal to -10 dB in this case. The 
matrix Noise is the same size as the data matrix and has independent real and imaginary parts. The 
quantity std (pnm) is an M -element vector of standard deviations- one for each array element. The 
quantity As is the mean of these standard deviations; a similar measure is made for the noise amplitude 
An. The noise matrix is multiplied by the scalar NoiseScaleFactor to obtain the desired SNR, and this 
quantity is added to the data sample matrix. 

Figure 12 shows the function r(u1, k) (equation (39)) on the left and the conventionally beamformed 
output (equation ( 40)) on the right for this case, with an SNR of -10 dB. For the conventional beamformer 
shown on the right, temporal FFTs with a length equal to the number of time samples for each sensor (1024 
points) were used to estimate the covariance matrix. The two plots are very similar. Further similarities 
between the one-planewave fitting algorithm and conventional beamforming are identified below. 
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Figure 12. The Function r(u1,k) {Equation {39)) {left) and the Conventionally 
Beamformed Output (Equation {40)} (right} for SNR of -10 dB 

Figure 13 displays r(u1) and the sum over k of the conventional beamformer output, both plotted as 
functions of u1 on a linear ordinate scale. The two lines are, as previously shown, virtually identical. 

Figure 14 shows the frequency strengths plotted against the frequency bin number at u1 = 0.5. As 
seen earlier in the noise-free case, there is no significant difference between the one-planewave fit (dots) 
and the conventional bearnformer (triangles). 

Figure 15 compares the outputs of the conventional beamformer and the one-planewave fit for the 
range of input SNRs shown at the left of each row of plots. Ten realizations are shown for ea.ch SNR value. 
The axis scale for each column is shown at the bottom and is constant within each colwnn, except for the 
second one. The first column shows the conventional beamformer output plotted as a surface in decibels; 
the gray scale vaJues are indicated to the left of the top plot and are constant throughout column 1. The 
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input frequencies are shown as the white dots, and the peak value of the beamformer output is shown by 
the white cross in each plot. Column 2 shows r(u!) and the sum over k of the conventional beamformer 
output, both plotted as functions of u1 on a linear ordinate scale. Solid lines in this column are the 
one-planewave fits; broken lines show the sum over k of the conventional beamformer outputs, but these 
are superimposed on the solid lines and are hence invisible. Column 3 shows the frequency strengths 
for the one-planewave fit (circles) and the conventional beamformer (triangles) at u 1 = 0.5. The set of 
amplitudes listed in table 1 on page 12 was used. There is no significant difference between the outputs 
of the one-planewave fit and the conventional bean1former. 
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3. TWO-PLANEWAVE FIT FOR 
UNEQUALLY-SPACED LINE ARRAYS 

3.1 THEORY 

The discrete data available are again {p(n,m)} for n = O:N-1 and m = O:M-1, and the fitting 
frequencies are taken as 

k k 
/k=-=T Nt:,. (43) 

The range (k,11 kb) represents the common frequencies for the two planewave fits. (It is possible to generalize 
to the case where only some of the fitting frequencies {fk} are common to the two planewaves; the 
corresponding complex amplitudes {a1(k)} and {a2(k)} would then be set to zero in the appropriate 
nonoverlapping frequency bins.) Also defined are 

[3(m) = x:) form= O:M -1. (44) 

If two planewaves arrive from hypothesized angles u1 and u2 , the observed complex pressure field over 
observation interval T = N /),. is modeled as 

kb kb 

fi2(t,x) = L a1(k)exp[i21rf (t- ~u1}] + L a2(k)exp[i21rf (t- ~u2)], 
k=kG k=k,. 

(45) 

where the hypothesized amplitudes { a1 (k)} and { a2 (k)} are complex. The two (broadband) sources are 
assumed to be uncorrelated with each other (see section 4 for a correlated case). Therefore, the sampled 
pressure field is modeled as 

as 

k& 

p2(nt:,.,x(m)) = L al(k)exp[iak(n-{3(m)ul)] 
k=k, 

k& 

+ L a2(k) exp[iak (n- {3(m)u2)]. 
k=k, 

(46) 

A total average squared error between the actual received data and the model (equation ( 46)) is defined 

1 
N-lM-1 2 

e = N L L wx(m)lp(nt:,.,x(m))- J32(n~,x(m))l, 
n=O m=O 

(47) 

where a flat temporal weighting Wt(n) = 1/N for n = O:N -1 is used, and a spatial error-weighting 
function wx(m), which is real and positive, is allowed. Then the errore can be expressed in the form 

. kb 12 - L a2(k)exp[iak(n- {3(m)u2)] 
k=k .. 

(48) 

= ~ Ewz(m) Jd(n,m)J
2 = L:wz(m) ~ I:Jd(n,m)j

2
• (49) 

n,m m n 
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Letting 

N-1 

D(l,m) = L exp(-i27rnl/N) d(n,m) for l = O:N-1, 
n=O 

then 

l N-1 l N-1 [ [ ] 
N 2 L ID(l, m) 1

2 
= N 2 L L exp -i21r(n- n) N d(n, m) d* (!!., m) 

1=0 1=0 n,rr 
N-1 1"" 2 = N ~ jd(n,m)l , 
n=O 

which is a discrete form of Parseval's Theorem. The errore follows from equation (49) as 

e = LWx(m) ~2 L ID(l,mW. 
m I 

However, from equations (49), (50) and (44) , 

~D(l,m) = ~ :L:exp(-i27rnl/N){p(n,m) 
n 

- :L:a1(k)exp[ia:k(n-.B(m)u1)]- L:a2(k)exp[iak(n-,B(m)u2)]} 
k k 

=q(l, m)- a1(l) exp[-ia:1.B(m)u1]- a2(l) exp(-ia:1.B(m)u2], 

where the temporal discrete Fourier transforms have been defined as 

N-1 

q(l,m) = ~ L exp (-i21rnljN)p(n,m), 
n=O 

for l = 0: N -1, m = 0: M -1. Therefore, equation (52) becomes 

22 

e = L Wx(m) L iq(l, m)- a1(l) exp[ -ia:1.B(m)ul) 
m I 

To minimize e, consider 

oa~~k) = - ~ Wx(m){ q(k, m)- a1(k) exp(-ia:k.B(m)ul] 

- a2(k) exp [ -io:k.B(m )u2]} exp [ia:k.8(m)u1] 

=- L Wx (m) q(k, m) exp(ia:k.B(m)u1] + a1 (k) L wx(m) 
m m 

m 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 



where 

X(k,"f) = L:w:z;(m) q(k,m) exp[i"(,B(m)] fork= ka:kb, all'' (57) 
m 

W~('Y) = ~ w:z;(m) exp[i"(,B(m)] for all "f, (58) 
m 

and W~(O) = L w:z:(m) = 1 is used. Similarly, 
m 

(59) 

for k = ka: kb. Minimization of errore results in simultaneous equations for the conditionally best-fitting 
coefficients {g1 ( k)} and {!h ( k)}, namely, 

g 1 (k) + Wk g 2 (k) = X(k,akul)} 
fork= ka :kb, 

Wk' g1 (k) + g 2 (k) = X(k,aku2) 
(60) 

and Wk = Wz: (ak(u1 - u2)). The solutions for the conditionally optimal complex amplitudes are, for 
k = ka:kb, 

(
k) _ X(k, etA:ul)- Wk X(k,aku2) 

gl - 1-IWA:I2 ' 

(
k) _ X(k, O:ktL2) - Wk' X(k, etA:Ul) 

.(h - 1-IWA:I2 . 

(61) 

Decoupling in frequency index k is due to the flat temporal weighting { Wt ( n)} and to the fact that 
frequency increment aj =1fT. The conditionally minimal value of e is now, from equation (55), 

~ = ~ W:z; (m) L { q(k, m) - !h (k) exp [ -ia:A:.B(m)ul] 
m k 

- !h(k) exp [ -io:k.B(m)u2] }q*(k, m) 

= ~w:z:(m) jq(k,m)l2 - :E!h(k)X"(k,a:kul)- :EQ2(k)X*(k,aku2) 
m,k k k 

· = L W:r:(m) lq(k, m)l2 - r(u1,u2), (62) 
m,k 

where the solutions for g 1 (k) and g2(k) from equation (61) have been used, as well as the fact that the 
initial double sum over m and k is independent of u1 and u2, and 

kb 

r(u1,u2) = L 
k=km 

IX(k, 2;ku1)l
2 + IX(k, ~u2)l2 

- 2lR{ W:z:(~(u1 -u2))X*(k, ~ul)X(k, 'bfiu2)} 

1-1w:z;( 2~(u1-u2))r 
(63) 
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where R denotes the real part, and, from equations 57, 58, and 54, 

X(k, 2'l/u) = ~ Wz(m) q(k,m)exp [i 2;kx~~)u], (64) 

2'11'k ) ~
1 

) [·21rk x(m) ] 
Wx( '"'N"'U = ~ Wz(m exp ~ N cA. 'U ' (Wz(O) = 1), (65) 

1 
N-1 

q(k, m) = N I: p(n, m) exp( -i27rkn/N) 
n=O 

form= O:M-1 (66) 

fork= O:N-1. However, only the values fork= ka:kb are needed in equation (63). Equation (66) 
consists of M N-point temporal discrete Fourier transforms. 

To further minimize the conditional error g_ in equation (62), the quantity r(u1,u2) given by equa
tion (63) must be maximized by choice of both arrival angles u1 and u2, which may be taken as u1 < u2 
without loss of generality. The location of the maximum of r(u1, u2) is denoted by ih, 11.2. 

The factor 2'l/ z~~>u in equation (64) is exactly the phase compensation required at frequency Jh; 
and array element m, to coherently "line up" all components arriving at angle u (u = 0 is broadside) . 
Thus, equation (64) is a "coherent" sum carried out prior to the "incoherent" sum over k (frequency) in 
equation (63). The sum for spatial window Wz in equation (65) cannot be carried out a priori in closed 
form because of the irregular element locations {x(m)}; also, Wx('y) is complex and will remain so for 
general {x(m)} locations. 

From equation 63, it is noted that for given u1, u2, and k, only three complex quantities need to be 
computed. However, they must be combined according to equation (63), yielding a purely real quantity, 
which is then summed over the frequency band of interest, k = ka :k,. Equations (64) and (65) cannot be 
carried out with the FFT because the element locations {x(m)} are unevenly spaced. 

A measure of the total power in arrival 1 is available, by reference to equation ( 45), as 

kb 

P1 = 2: I0.1(k)l
2

, (67) 
k=ka 

where {a1 (k)} are the optimal coefficients obtained from equation (61), using angle values 11.1 and 11.2 , after 
the best angles (namely, u1 and 11.2) have been determined from the maximization of r(u1 , u2 ) given by 
equation (63). If P1 is large, then source 1 could be coherently subtracted from the input data p(n, m), as 
indicated in equation (48). If P1 is small, then the coefficients {Q.1(k)} could be discarded and considered 
as noise. 

With the conditionally optimal coefficients {!h (k)} and {!b(k)} for specified u1 and u2, the condition
ally minimal time-space residual is, using equation (46), 

E(n, m) = p(nti, x(m)) - P2(nf1, x(m)) 

= p(n, m)- ~g1(k) exp [i 2
;k (n- .B(m)ul)] 

- ~ g2(k) exp [i2;k (n- .B(m)u2}] . (68) 
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The unconditionally minimal time-space residual is 

p(n, m) = p(n, m)-~ iit(k) exp [i2;k (n- ,B(m)u1)] 

- ~ ii2(k) exp [i2;k (n- ,B(m)u2) J 
(69) 

for n = 0: N -1, m = 0: M -1. The corresponding unconditionally minimal residual in the frequency
space domain is, using equation (66), 

q(k, m) = q(k, m)- ii1(k) exp [ -i
2
;k ,B(m)u1] 

- &2 ( k) exp [ -i 
2
; k ,8 ( m) u2] for k = ka : kb, m = 0 : M- 1. (70) 

These residuals are devoid of the two strongest planewave arrivals and can now be processed further to 
detect additional (weak) arrivals. Without this coherent subtraction, the two strong arrivals could override 
a weak arrival in close angular proximity. 

3.2 IMPLEMENTATION 

The first step of the two-planewave fit is to find the pair of values, u1 and u2 , that maximize the 
function r(u1, u2) given by equation (63). Three-dimensional arrays are used to store the quantities 
X(k, 21r kul/N), X(k, 21r k u2/N), and W~(27r k (u1 - u2)/N), each being considered as a function of u1 , 

u2 , and k. The array geometry, sampling interval, planewave amplitudes and directions, etc., are defined 
as follows: 

f1_source = 45:60; 
a1 = [0 1 2 3 4 54 3 2 1 0 1 2 3 4 5]; 
ka = 45; 
kb = 60; 
f2_source = 45:60; 
a2 = 5 - a1; 
u1_source = 0; Y. sin(source angle) 
u2_source = .5; Y. sin(source angle) 
i = sqrt (-1); 
N = 1024; Y. Number of time points 
delta = 1/1024; Y. sampling increment (s) 
c = 1500; Y. sound speed (m/s) 
tvect = O:delta:(N- 1)*delta;% vector of sample times 
xarray = linspace(0,50,11).'; 
M = length(xarray); X Number of sensors 
wx_m = ones(1,M)/M; X spatial error weighting 

The time-space data are generated by summing the frequency components of the two sources: 

[xmatrix,tmatrix] = meshgrid(xarray,tvect); 
pnm = zeros(N,M); 
arg1 = tmatrix - xmatrix*u1_source/c; 

25 



arg2 = tmatrix - xmatrix•u2_source/c; 
K = length(f1_source); 
for k = 1:K 

pnm = pnm + a1(k)•exp(2•pi•f1_source(k)•arg1•i) + ... 
a2(k)•exp(2*pi•f2_source(k)•arg2*i); 

end 

The Fourier transform q(k, m) given by equation (66) (an M x K matrix) and the phase factor <P = 
27rkx(m)f(Nct1) (also M x K) used in equations (64) and (65) are calculated as follows: 

% Calculate Fourier transform and phase matrix for use in the 
% calculation of r: 
k_vt = ka:kb; 
n_vt = O:N-1; 
[k_mx,n_mx] = meshgrid(k_vt,n_vt); 
E = exp((-2*pi*k_mx.•n_mx/N)*i); 
% Fourier transform: sum over n done with matrix product: 
q = (1/N)•pnm.'•E; 
% Phase factor used in argument of exponential 
% in calculation of X and W: 
phi= 2•pi•xarray•k_vt/(N•c•delta); 

The vector xarray is of size M x 1, and the vector k_vt is of size 1 x K. The quantity Wx (2tr k (u1 -u2)/N) 
is calculated using two nested for-loops and stored in an Nux Nv. x K array, while an intermediate array 
Xku stores values of X(k, 27r ku/N) in a K x Nv. array, where u = -1 + cSu[O: (Nu- 1)], 8u = 2/(Nu- 1), 
and Nu is the number of values used to span the range of u: 

Nuspan = 40; 
u_span = linspace(-1,1,Nuspan); 
Xku = zeros(K,Nuspan); 
Wkuu = zeros(Nuspan,Nuspan,K); 
iu2 = 0; 
for this_u2 = u_span 

iu2 = iu2 + 1; 
% Matrix product does sum over m: 
Xku(: ,iu2) = (wx_m•(q.*exp(phi*this_u2•i))).'; 
iu1 = 0; 
for this_u1 = u_span 

iul = iul + 1; 
Emkuu = exp(phi•(this_ul- this_u2)•i); 
Y. Matrix product does sum over m: 
Wkuu(iu2,iu1,:) = wx_m*Emkuu; 

end 
end 

The K x Nu array Xku is now copied into two (three-dimensional) arrays that have the same dimensions 
as Wkuu. These dimensions correspond to u1 varying across the columns and u2 varying down the rows. 
In all cases, k varies along the third dimension. This copying is carried out as follows: 
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Xku1 = permute(repmat(Xku,[1 1 Nuspan]),[3,2,1]); 
Xku2 = permute(repmat(Xku,[1 1 Nuspan]),[2,3,1]); 

The matrices Wkuu, Xku1, and Xku2 are now used to compute the addend in equation (63), with the result 
summed over k, corresponding to dimension number 3: 

top= abs(Xku1).A2 + abs(Xku2).A2 ... 
- 2*real(Wkuu.*conj(Xku1).*Xku2); 

bot= 1- abs(Wkuu).A2; 
ru1u2 = sum(top./bot,3); % sum over the third index, which is k 

The matrix ru1u2 is of size Nu x Nu. The location of the maximum value of this matrix gives an initial 
estimate of '!11 and u2, as follows: 

[dum,jmax] = max(max(ru1u2)); 
[dum,imax] = max(ru1u2(: ,jmax)); 
hatu1 = u_span(jmax); 
hatu2 = u_span(imax); 

Figure 16 shows calculations of the quantity r( u1, u2) for different values of the actual source angles u81 
and u62• Contours are plotted at the set of values shown at the top right of the plots, with the actual source 
angles u51 and tis2 indicated by the white dot in each plot. The function r(u1 ,.u2) is symmetric under 
exchange of ti1 and ti2 , as expected by equation (63) . Equation (63) is undefined at ti1 = ti2; therefore, 
calculating r( u1, u2) for u1 = ti2 has been avoided. (See the appendix for an alternative formulation 
without this singularity.) For the cases where the source angles were equal (plots at the top and right 
edge of the figure), the r{u1, u2) surfaces have no unique maxima and correspond to a single planewave 
source. 

Initial estimates of -&o1 and u02 were obtained by finding the location of the peak of ru1u2; now those 
estimates will be refined using the iterative procedure fminsearch, and the function calcru1u2, which 
returns a scalar r(ul> u2 ) for a given input vector [ut, u2]. 

3.3 EXAMPLE OF NOISE-FREE SIMULATIONS 

The sketch below shows a nois~free simulation that was run for an array of 20 randomly distributed 
sensors placed in a line at the following positions (meters): 0, 2.7149, 6.3877, 8.2533, 9.5938, 12.3172, 
13.2960, 13.9596, 14.6925, 23.4220, 26.1543, 33.2634,37.1476, 40.0923, 44.2354, 44.4607, 45.1650,48.3877, 
49.5603, and 50. 

• . . .. , ... ·, 
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25 
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. . 
30 35 40 45 50 
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Figure 16. Quantity r(u1, uz) for Different Values of Source Angles Us1 and u5z 
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Two sources were simulated, one at u 61 == -0.01, and the other at u.2 = +0.01, i.e., 0.57° either side 
of broadside. Both emitted a set of planewaves at frequencies between 45 and 60 Hz, with a spacing of 
1 Hz. The amplitudes of the planewaves are as shown in figure 17. 

Figure 18 shows contours of the quantity r(ut, uz). The plot on the left shows r for all possible values 
of u1 and u2 , and the plot on the right presents a magnified view of a small region around the true angles 
of the sources. The angles found by the search procedure are indicated on the magnified plot, with the 
point corresponding to these angles laying on a very shallow hyperbolically (banana-) shaped ridge that 
asymptotically approaches the lines u1 == 0 and u 2 == 0. The entire surface is symmetric under exchange 
of u1 and u2 , as expected. 
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The previous result is compared with conventional beamforming results in figure 19. The top plot 
provides contours of the same two-planewave fit that was shown in the previous plot, together with the 
zoomed-in region to the right, close to the true source values. The conventionally beamformed result is 
shown in the lower-left plot, with a zoomed-in version to the right, surrounding the true source angles 
-0.01 and +0.01. The conventional beamformer output was found for a frequency of 50 Hz, which was 
one of the frequencies corresponding to the largest amplitude emitted by the sources (see the source 
amplitude plot in figure 17). There is no evidence at all of the angles corresponding to the two sources in 
the conventionally beamformed result. 
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Figure 20 shows the same comparison, but this time, the sources have been more widely separated in 
angle, corresponding to Usi. u8 2 = ±0.1715. These values were found by adjusting the angular separation 
until a double peak began to be observed in the conventional beamformer output. The lower-right plot 
shows that even though the conventional beamformer was able to produce a double peak in this instance, 
the peaks did not occur at the correct values of u, which are indicated by the broken lines. 
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Figure 21 shows the results for very v.idely separated sources and for a single source. Case (a) illustrates 
the presence of two sources (at u81 ,u82 = ±0.75) and case (b) illustrates the presence of only one 
source (at u81 = -0.75). The top plots are the two two-planewave fits, and the bottom plots are the 
conventionally beamfonned results. The two-planewave fit ((a) top) was able to accurately determine the 
angles corresponding to the two planewaves. Although the conventional beamformer ((a) bottom) shows 
two distinct peaks, the mutual interference between the two planewaves gave rise to peaks that were 
closer together in angle than the true sources. The same conventional bea.mformer was able to accurately 
determine the direction of the single planewave ((b) bottom). 
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4. TWO-PLANEWAVE FIT TO MULTIPATH ARRIVALS 
FOR UNEQUALLY SPACED LINE ARRAYS 

The discrete data available are {p( n, m)} for n = 0: N -1 and m = 0: M- 1. Here, p( n, m) = 
p(nA,x(m)), where p(t,x) is the continuous received pressure field at time t and location x, while A 
is the time-sampling increment and { x( m)} are the sensor positions. 

A planewave arriving from angle u1 = sin 91 is modeled according to the following summation: 

kb 

Pl(t,x) = L a1(k) exp [i27r~(t -7u1)]. (71) 
k=ko 

A multipath arrival with relative gain G and delay r from arrival angle u2 is modeled as 

kb 

ih(t,x) = G L a1(k)exp [i27r~(t-r- ~u2)], {72) 
k=k,. 

where the same set of complex amplitudes {a1(k)} is utilized. Gain G is real and independent offrequency 
in the band of interest. As a result, the modeled samples at times {nA} and locations {x(m)} comprise 
a two-planewave fit: 

The dimensionless parameters are defined as 

R( ) = x(m) 
/J m - cA ' 

r 
A: A' 

The modeled data samples can then be written as 

(73) 

{74) 

(75) 

fi2(nA, x(m)) = L a1 (k) exp(io:~cn){ exp [-io:~c.B(m)ul] + G exp [-io:~cA- io:~c/3{m)u2]}. (76) 
k 

An average squared error between the data and the fit (equation (76)) is defined as 

e= ~Lwz(m)I.P(nA,x(m)) -fi2(nA,x(m))l
2
, (77) 

n,m 

where the temporal weighting is flat, and {wz(m)} are real positive spatial error weights, which sum to 1. 
The error can be expressed as 

e = ~ Ewz(m) lp(n,m)- Ea1{k) exp(io:~cn) b{k,m;u~,u2,G, A)I
2

, 
n,m k 

(78) 

where b(k,m) = b(k,m;u1,uz,G,A) is given by 

b(k, m; UI. u2, G, A) = exp [ -io:~c/3(m)ui] + G exp[ -io:~cA- io:~c/3(m)u2]. (79) 
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Defining difference 

d(n,m) =p(n,m)- :La1(k) exp(iaA:n) b(k,m) 
k 

then yields, from equations (78) and (51), 

1 1 
e = :Lw:~:(m) N Lld(n,m)l

2 = 2:w:~:(m) N 2 2:ID(l,m)l
2
. 

m n m I 

Now, from equations (80) and (50), 

1 1 .27Tnl N-1 ( ) 
ND(l, m) = N ~ exp -'I.N d(n, m) 

1 "" ( . 27Tnl) [ "" ( . 27Tkn) l = N~exp -zN p(n,m)- 7 a1(k)exp 2~ b(k,m) 

= q(l,m)- a1(l) b(l,m), 

where the {q(l,m)} are the temporal discrete Fourier transforms 

1 
N-1 

q(l,m) = N L exp (-i27TnlfN)p(n,m), for l = O:N -1, m = O:M -1. 
n=O 

Therefore, equation (81) for the average error becomes 

m 

To minimize e, consider the partial derivative 

fork= ka :kb. The conditionally optimal coefficients are explicitly 

LWz(m) q(k,m) b*(k,m) 

g1(k)= m fork=ka :kb. L Wz(m) lb(k, m)l2 

m 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

These solutions are decoupled in k because of the flat temporal weighting and 1/T frequency separation. 
Substituting equation (86) into equation (84) yields the conditionally minimal error 
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~ = L w:~:(m) L[q(k,m)- g1 (k) b(k,m)]q*(k,m) 
m k 

= L w:~:(m) L lq(k,m)l2 - Lfh(k) L w:~:(m) b(k,m) q*(k,m) 
m k k m 

lz:: w. (m) q(k, m) b• (k, m) I' 
= ~ W:~:(m) ~ lq(k,m)l2 - ~ m Lwx(m)ib(k,m)i2 

m 

(87) 



Recall (from equations (75) and (79)) that 

b(k,m) = b(k,m;ti~,uz,G,A) 
= exp[-ia~c.B(m)til] + G exp[-ia~cA- ia~c.B(m)ti2]. (88) 

The leading term in equation ( 8 7) is independent of hypothesized values ti1 , u2 , G, and A. To further 
minimize~. the quantity 

'• ~ w.(m) q(k,m) b•(k,m>l' 

L .:...c.;..:_~M:-:-_-:-1--------'-- (89) 

L W:.:(m) lb(k,mW 
m=O 

must be maximized by choice of ti1, ti2, G, and A. The sum over k (frequency bin number) reflects an 
incoherent addition, because no phase relationships are assumed between individual frequency components 
in the received data. The numerator sum over m (spatial element number) is a coherent addition when 
the latter four parameters of b(k,m;ti1 ,u2,G,A) line up with the actual parameter values in FFT data 
{q(k, m)}. The denominator sum over min equation (89) is a normalization factor, which depends on k, 
the frequency bin number, in addition to ti1 , ti2 , G, and A. 

Letting 

F(k) = I:w:.:(m) jq(k,m)l2 fork= ko.:kb, 
m 

allows equation (87) to be written as 

~ = L F(k) (1 - Pk), 
k 

where 
2 

LWz(m) b*(k,m) q(k,m) 

Pic= m · L W:.:(m) lb(k, mW L W:.:(m) jq(k, m)l2 

m m 

By Schwartz's inequality, 0 :::; Pk :::; 1 for all k. 

(90) 

(91) 

(92) 

Form (92) is an interesting one, but equation (89) is the preferred form to maximize. The "probe" 
function b(k,m;u1,u2,G,A) in equation (88) is a function of the four real parameters ti1 , u2 , G, and .X; 
therefore, a four-dimensional search for the maximum of r in equation (89) is required. More generally, G 
could be complex, if desired; then a five-dimensional real search on r in equation (89) would be needed. 

Once the optimal parameter values (ih, iLz, G, 5.) that maximizer in equation (89) have been deter
mined, the optimum amplitudes follow from equations (85) and (78) as 

LW:.:(m) q(k,m) b*(k,m) 

al(k) = m ~ 
LW:.:(m) lb(k,m)l2 

(93) 

m 

where 

b(k, m) = exp[-ia~c.B(m)ih] + G exp[-ia~c5.- ia~c.B(m)u2] . (94) 

The minimal residual in the frequency-space domain can be obtained from equation (84) in the form 

q(k,m) = q(k,m)- al(k) b(k,m). (95) 

35 (36 blank) 



5. BEAMFORMING FOR A SINGLE MOVING SOURCE 
NEAR AN ARBITRARY PLANAR ARRAY 

5.1 THEORY 

It is assumed that a source moves from (x1 ,y1) to (x2,Y2) during an observation timeT, with constant 
speed in a straight line (see figure 22). The range from the source to the receiving array is arbitrary; also, 

y 

~ .. • • . ~ {x(m),y(m)} form= O:M -1 

~----------------------x 

Figure 22. Sensor and Target Moti~n 

the range and angle of the source can vary during the observation timeT. Samples are taken at times 
nll, where n = 0: N -1 and .!l is the time-sampling increment. The source location at time t = nll is 

x8 (n) 

Ys(n) 

X2- X1 
= Xl +n N -1' 

Y2- Y1 
= Yl +n N -1. 

(96) 

(97) 

It is also assumed that there are M receivers placed at coordinates {x(m),y(m)}, with m = O:M -1. The 
separation distance between the single source and the m-th receiving element at time nll is 

{ 2 2}! s(n,m) = [x8 (n)- x(m)] + [y8 (n)- y(m)] . (98) 

The separation distance s(n,m) is a function of x11 y1,x2 , and y2 , as well as a function of nand m. 

Modeling the source as transmitting a waveform composed of a sum of single frequencies yields the 
corresponding received waveform as: 

k& 

L a(k) exp(i 21!' f~e t), {99) 
k=k .. 

where the {a(k)} are complex strength coefficients. The fitting frequencies selected will be 

(100) 
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although no simplification results from this choice. Thus, the received waveform samples are modeled at 
time nil and element m as 

kb 
Pl(nil,x(m)) = L a(k)exp{i27Tfk[nil- ~s(n,m)J} 

k=k., 

~ ~k 
= L a(k)exp{iak[n-h(n,m)J}, ak = N' 

k=k. 
(101) 

where the dimensionless quantity 

h( ) 
_ s(n,m) 

n,m - eLl ' (102) 

and c is the propagation speed. 

The total weighted squared error between this model and the actual received data {p(n, m)} is 

N-1 M-1 kb 2 

e = 2: L Wt(n)w:~:(m) p(n,m)- L a(k)exp{iak[n-h(n,m)J} 
n=O m=O k=k., 

(103) 

where a set of (positive real) temporal weights {wt(n)} and (positive real) spatial weights {w:~:(m)} are 
allowed. For fixed hypothesized x1, Y1, x2, and y2, the set of amplitude coefficients {a(k)} that minimizes 
error e is to be found. Finding these coefficients requires differentiation of error e with respect to each of 
the amplitude strengths, indexed by Js.: 

8e 
- ~ Wt(n) w:~:(m) [p(n, m)-~ a(k) exp{ i ak [n- h(n, m)]}] 

8a-(!s.) = 

x exp{ -i a!.[n- h(n,m)J} 

= - L Wt(n) W:~:(m) p(n,m)exp { -i 2~/s. [n- h(n,m)]} 
n,m 

+ L a(k) L Wt(n) w:~:(m)exp { -i~ (!s.- k) [n- h(n, m)]} 
k n,m 

kb 

= -P(!s.) + L a(k) W(Js.- k) for Is.= ka: kb, (104) 
k=k., 

where 

P(k) = L Wt(n) W:~:(m) p(n,m)exp { -i 2~k [n- h(n,m)]}, 
n,m 

(105) 

W(k) = L Wt(n) W:~:(m) exp { -i 2~k [n- h(n,m)]}. 
n,m 

(106) 

The last quantity is defined only for lkl $ kb- ka. W(k) possesses no 6-function properties, regardless of 
the choices of weights {wt(n)} and {w:~:(m)}, due to the nonlinear function h(n, m). 
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The conditionally optimal coefficients {g_(k)} are found by setting all the derivatives in equation (104) 
equal to zero: 

kb 

L W(k- k) g,(k) = P(k) fork= ka :kb. (107) 
k=k" 

Equation (107) comprises K simultaneous linear equations, where K = kb- ko. + 1. The matrix [W(k-k)] 
is Hermitian Toeplitz and is of size K x K. The corresponding conditionally minimal error~ is calculated 
from equations (103) and (105): 

~ = Lwt(n)w.,(m) [p(n,m)- L.!!(k)exp{iak[n-h(n,m)J}]If(n,m) 
n,m k 

= L Wt(n) wz(m)ip(n,m)i
2

- L.G(k) P*(k). 
~m k 

To further minimize !l requires maximization of 

k. 

r(x1,y1,x2,y2) = L g(k) P*(k) . 
k=km 

Letting 

W = [W(k- k)], ~ = [g_(ko.) · · · g_(kb)f, P = [P(ko.) · · · P(kb)]T, 
KxK Kx1 Kx1 

results in equations (107) and (109) yielding 

W !! = P, l! = w-1 P, r = P' l! = P' w-1 P , 

(108) 

(109) 

(110) 

(111) 

where the prime denotes conjugate transpose. Vector P and square matrix W are functions of x1. y1 , x2, 
and Y2· The required procedure is now to search for a maximum of equations (109) or (111) in X1, Y1, x2, 
and Y2 space, where {g(k)} are the solutions to equation (107) . The Hermitian Toeplitz character of W 
can be used to facilitate solving equation (107), rather than explicitly calculating its inverse. 

Explicitly, for n = O:N -1 and m = O:M -1, 

1 { [ x 2 - x1 ] 
2 

[ y2 - y1 ] 
2}! h(n, m) = c~ xi+ n N _

1 
- x(m) + YI + n N _ 

1 
- y(m) (112) 

For each hypothesized xi, YI, x2, and y2, calculation of equation (112) requires evaluation of N M terms. 
Next, equations (105) and (106) each require K summations of size NM. Then, equation (107) requires 
the solution of K simultaneous linear equations with a Hermitian Toeplitz kernel. Finally, equation (109) 
is a sum of K complex terms, resulting in a real quantity. 

The quantity r(xl,YI.X2,Y2) in equation (109) is maximized at position estimates .i:1, f)l, x2, and Y2· 
First, these best position estimates are substituted into equation (110), and matrix Wand vector P are 
evaluated. Then, Wa = P is solved for optimum amplitudes {a(k)}. Finally, the minimal time-space 
residual can be deduced from equation (108) in the form 

p(n,m) =p(n,m)- ~a(k) exp{ia:k [n- h(n,m)]} , (113) 

where h(n, m) follows obviously from equation (112). There is no simple relation for the minimal frequency
space residual q(k, m) because of the nonlinear dependence of h(n, m) on n. 
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5.2 IMPLEMENTATION 

The theory outlined in the last section was implemented in a MATLAB program and tested on simulated 
data for a variety of scenarios. 

5.2.1 Data Simulation 

The first step was to generate the data that an array of sensors would produce in the presence of a 
moving source. The starting positions and ending positions were defined as x1, y1, x2, and y2. 

%starting position: 
x1 = 110; 
y1 = 110; 
%ending position: 
x2 100; 
y2 = 120; 

The basic parameters were set as follows: 

c = 1500; % wavespeed (m/s) 
T = 20; % total duration of data (s) 
speed = 5; % speed of source (m/s) 
dt = .1; %sampling increment (s) 
ka = 100; % starting frequency index 
kb = 110; % ending frequency index 
M = 8; % total number of sensors 
dx = 3.75; %spacing of hydrophones (m) 
xarray = dx*(O:M-1); 
yarray = zeros(size(xarray)); 
N = T/dt; % total number of time samples 
a= ones(size(ka:kb));% Frequency components: 
d = speed*T; % distance traveled by source (m) 

Some variation in the y positions of the receiving array elements was added to break the linearity of the 
array and the resulting left-right ambiguity. The array elements were shifted in a random way. The 
random number generator was reset to its initial value so that the same array would be used each time 
the program was run. 

randn('state' ,0) 
sigmay = 1 % (m) 
yarray = yarray + sigmay*randn(size(yarray)); 

Various matrices are now set up in which the columns correspond to the different elements of the receiving 
array, and the rows correspond to the different time samples. First, "matrix" versions of the element 
locations are set up, as follows: 
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xm = ones(N,l)*xarray; 
ym = ones(N,1)*yarray; 

Then, matrices of indices, which will be used later, are set up. These matrices, m and n, are arranged such 
that the elements of m vary only across its columns and the elements of n vary only down its rows: 

[m,n] = meshgrid(O:(M- 1),0:(N- 1)); 

For example, the first few elements of m a.nd n are 

>> m(1:3,1:3) 
ans= 

0 1 
0 1 
0 1 

>> n(1:3,1:3) 
ans 

0 0 
1 1 
2 2 

2 
2 
2 

0 
1 
2 

These matrices can then be used in a "vectorized" sense to calculate quantities such as the source location 
at each timestep: 

xsn = x1 + n*(X2- x1)/(N- 1); 
ysn = yl + n*(y2- y1)/(N- 1); 

The dimensionless separation distance between the source and the m-th receiving element at timestep n 
can be calculated according to: 

hnm = sqrt((xsn- xm) .~2 + (ysn- ym).-2)/(c*dt); 

This calculation corresponds to equation (112). A for-loop is used to add the frequency components to 
obtain the signal received by each element at each time step: 

pnm = 0; 
k = ka:kb; 
i = sqrt(-1); 
twopioverN = 2*pi/N; 
for this_k = 1:1ength(k) 

alphak = twopioverN*k(this_k); 
pnm = pnm + a(this_k)*exp(alphak*(n - hnm)*i) ; 

end 
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The matrix pnm is the data matrix, in which time runs down the rows and the hydrophone number runs 
across the columns. 

Next, the option of adding some complex normally-distributed random noise using the randn function 
is available: 

snr = 0; % dB 
Noise= randn(size(pnm)) + i*randn(size(pnm)); 
As= mean(std(pnm)); 
An= mean(std(Noise)); 
NoiseScaleFactor =As I (An*lO~(snr/20)); 

pnm = pnm + Noise * NoiseScaleFactor; 

5.2.2 Example 

An example of the output produced by the simulation coding is shown in figure 23, where a linear 
receiving array of M = 10 sensors is seen in the top plot. The source emitted a single frequency tone, and 
moved from the beginning of the arrow to the end of the arrow during the acquisition time. The lower 
two plots show the signal received at each of the elements during a short period at the beginning of the 
acquisition time (left) and at the end (right). The light and dark strips represent the peaks and troughs 
of the received waveform. At the beginning of the acquisition time, the curved wavefronts arrive at the 
elements near the middle of the array first. The wavefronts can be imagined as a series of concentric circles 
emanating from the tail of the arrow. At the end of the acquisition time, the curved wavefronts arrive 
at element 10 first and then propagate dmvn the array towards element 1. In this case, the wavefronts 
can be imagined as a series of concentric circles emanating from the head of the arrow. An animation 
of the strip display would show, at the start of the acquisition, the wavefronts meeting the array first at 
the middle of the array (plot at left). Then, as time elapsed, the wavefronts would meet the array at 
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points progressively closer to element 10 (plot at right). The optimization algorithm amounts to fitting a 
modeled sum of frequencies to these data by choosing the best start and end points for the arrow (x1 , y1, 

X2, and Y2)· 

5.3 OPTIMIZATION ALGORITHM 

The driver code for the optimization used the MATLAB function fminsearch to do the minimization. 
This function employed the Nelder-Mead simplex (direct search) method for multidimensional, uncon
strained nonlinear minimization. 7 The algorithm returns a vector that is a local minimizer of the function 
movingsourceerror near the starting vector guess: 

guess= [xguess1 yguess1 xguess2 yguess2]; 
opts= optimset('Maxiter' ,2000,'MaxFunEvals' ,2000); 
x = fminsearch('movingsourceerror',guess,opts); 

The variable opts controls the maximum allowable number of iterations and function evaluations. 

The function movingsourceerror contains the code that first finds the optimal coefficients Q.\: by 
solving the simultaneous equation (107), and then uses these coefficients to calculate the quantity 
r(x1,y11 x2,y2) given by equation (109). The code begins by defining the time and space weighting 
functions as: 

wt = ones(1,N)/N; 
wx = ones(1,M)/M; 

It then computes the quantity h(n,m) based on the parameters x11 y1, x2, and y2, which are given as 
input arguments to the function: 

hnm = sqrt((x1 + n•(x2- x1)/(N- 1)- xm) .-2 + ... 
(y1 + n•(y2- y1)/(N- 1)- ym).-2)/(c•dt); 

The matrix W is a function of (If - k), with a sum over m and n required to calculate each element. 
Because all the dimensions for standard MATLAB two-dimensional matrices have been used, one must 
index over n and m and use a matrix to represent (If- k). Two for-loops can then be used to perform 
the summation over n and m: 

kbar = k; 
[K,Kbar] = meshgrid(k,kbar); 
w = 0; 
p = 0; 
KbarminusK = Kbar - K; 

Since there is no zero index in M ATLAB, loops going from nn = 1: N, etc., are used as matrix indices, 
whereas nn- 1 etc., are used in the calculations: 
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for mm = 1:M 
for nn = 1:N 

fact = -2•pi*((nn- 1) - hnm(nn,mm))/N; 
weight= wt(nn)*wx(mm); 
W = W + weight*exp(fact*KbarminusK*i); 
P = P + weight*exp(fact*k*i)*pnm(nn,mm); 

end 
end 

The theory above has P as a column vector; therefore, the transpose 

p = P.'; 

is chosen. Now the equation W A= Pis solved to obtain the least-squares coefficients, {.g(k)}, which will 
be returned in the vector A: 

A= W\P; 

Having found the conditionally optimal {g(k)}, r must be maximized to minimize the error~· However, 
because a minimizer is being used, the sign must be changed: 

r = -real(P'*A); 

(The imaginary part of r in equation (109) should be zero; therefore, the smallness of the magnitude of 
the imaginary part of r forms a partial check on the accuracy of the final solution.) 

5.4 RESULTS 

5.4.1 Ezamination of the Error Function 

The minimal error ~ given in equation (108) can be considered as a scalar function of (x1, Yl, x2, Y2) · 
To understand the behavior of this (four-dimensional) function, ~is calculated as a function of either the 
start-point coordinates with the end point fixed, or as a function of the end-point coordinates with the 
start point fixed, both of which are two-dimensional "slices" through the four-dimensional function. Two 
cases are considered: in one, the source moves in the nearfield of the array, and in the other, the source 
moves in the farfield of the array. 
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5.,4.1.1 Nearfield Scenario. Figure 24 shows the variation in the conditionally minimal error~ 
with changes in the modeled start and end points of the trajectory. The upper plots show contours of 
the error quantity ~· The lower plots show the same quantity plotted as surfaces. Two scenarios are 
illustrated. The plots on the left (top and bottom) show~ as a function of (x1,y1) with x2 and y2 held 
fixed at their true values, and the plots on the right (top and bottom) show~ as a function of (x2 , y2) with 
x 1 and y1 held fixed at their true values. Contours are drawn at the same levels in both contour plots. 
The dots show the positions of the sensor array, and the arrow shows the true trajectory of the source 
during the observation period. In both scenarios, there is a deep minimum in the region within roughly 
a wavelength of the true value. (These runs simulated a noise-free, single planewave, with k = 400, and 
T=5s, yielding a wavelength of 18.75m.) Although a line array receiver was used, the resulting~ is not 
expected to be left-right symmetric because the other end of the trajectory was held fixed; therefore, the 
left-right symmetric point would represent a completely different source trajectory that is easily 'rejected' 
by the fitting process. The error function would be left-right symmetric if either end of the trajectory lay 
along the axis of the array. Outside the region within a wavelength of the true solution, the error function 
is relatively flat and appears to contain many shallow local minima. This kind of function may present a 
challenge to the minimization algorithm chosen, especially in the presence of noise. 

100 

so 

5 
..,:.. 0 

-so 

-so 0 so 
x

1
,m 

60 

4() 

20 
E 
....... 0 

4() 

30 

20 

10 

0 
-SO 

-20 

-40 

0 so 
7m 

Figure 24. Error for N earfield Scenario 

100 

5,4.1.2 Farfield Scenario. Figure 25 shows the same type of results as figure 24, except this time 
the source is at a greater distance from the array. The error function has a narrow valley that follows an 
arc centered near the location of the array. Again, this kind of function may present a challenge to the 
minimization algorithm chosen, especially in the presence of noise. 
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5.4.2 Fitted Trajectories with Noisy Data 

600 650 

Simulations in this section were carried out using the scenario shown in figure 26. An array of eight 
elements was located along the x-axis, with each element equally spaced at a separation distance of 
3. 75 m. The first element of the array was located at the origin. A source moving in the nea.rfield of 
the array (as shown by the thick arrow indicated on the plot) emitted frequencies J,, = k/T, where 
k = ka.: kb, ka. = 100, kb = 110, and T = 20 s. The speed of the source was such that it moved from 
(x1, yl) = (60, 60) to (x2, Y2) = (50, 70) during the time interval T = 20 s. The propagation speed was 
taken to be 1500 mjs. The time between samples was A == 0.1 s, resulting in N = 200 samples per 
element. Noise was added to the pressure data at various SNR.s; the SNR is defined in the same way as on 
page 42. A search was carried out for the values of x1, y1 , x2, and Y2 that minimized g, as described above. 
Five realizations of the random noise field were used at each SNR. The values used to initialize the search, 
which remained constant throughout these runs, consisted of motion beginning at a range of 500 mat a 
bearing equal to tan-1 { [(y1 + 112)/2] f [(x1 + x2)/2]} and finishing at the position reached after traveling 
for time T at 10 knots towards the origin. The numerical values were x1 = 323.0, y1 = 382.0, x2 = 257.0, 
and Y2 = 303.0. The results of the minimizations are shown by the thin arrows, with the size of the 
arrowheads being inversely proportional to the SNR, as indicated on the legend. 

The data of figure 26 are presented as individual coordinate errors and as functions of SNR in figure 27. 
The four plots show the magnitude of the difference, in meters, between the coordinates obtained from 
the search and the true coordinates, as a function of SNR. The results show that, even for this close-range 
case (85 m), an error on the order of 10m remains for SNRs less than about 40 dB. 
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5.4. 3 Comparison with Conventional Beamformer 

The new algorithm has the potential to outperform beamformers because it yields tracking information 
directly; in conventional sonar systems, tracking is performed only after a set of peaks in the beamformed 
data has been obtained. But, for a moving source, such peaks may never be detected because the beam
former ''peak" will be smeared out over the range of angles swept out by the moving source during the 
integration time of the beamformer. An example of this can be seen in figure 28. The plots at the top 
are for a stationary source, and the plots at the bottom are for a moving source. The bea.mformed output 
for the stationary source shows a single peak at the correct bearing, but the beamformed output for the 
moving source shows energy spread out over the angles swept out by the source as it moves during the 
time over which the data were acquired (depicted by the gray areas). The output in this case could be 
mistaken for a pair of stationary sources. It is also possible that an automatic detector would not yield a 
detection for the moving case because of its high sidelobe level. 
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6. CONCLUSIONS 

A new array processing technique has been presented that allows optimal source amplitudes and arrival 
angles to be determined from data produced by arbitrary arrays. Used to fit either one or two planewaves 
to arbitrarily spaced linear array data, the technique has shown superior performance to conventional 
beamforming when more than one source is within the beamwidth of an array. With such situations 
becoming more likely as operating frequencies are driven to lower values, in an effort to increase detection 
ranges, the approach can be used to coherently subtract strong arrivals from received data, allowing the 
detection of additional weak arrivals in close angular proximity. 

When a planewave arrives at an arbitrary two-dimensional array from a moving source, a similar 
technique yields optimal values of the source amplitudes of the planewave, as well as the starting and 
ending positions of the moving source. The new processing thus performs the functions of a combined 
beamformer and tracker in such a way that the total error over the array and the observation interval is 
minimized. 

The results presented here are for simulated data. Future work will involve the application of these 
methods to measured at-sea data. A further issue to be addressed is the adequacy of the four-dimensional 
iterative minimization procedures. 
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APPENDIX 

ALTERNATIVE FORMULATION 
OF TWO-PLANEWAVE FIT 

There is an alternative formulation to the two-planewavefitting waveform in equation (46) that is exact 
for all u1, u2 and does not develop any singulaxities as u1 -+ u2. Letting central angle uc and difference 
angle e be defined as 

(A-1) 

in terms of the original arrival angles u 1 and u2 (difference angle e need not be small), then, by using 
u1 = 'Uc + e/2, u2 = Uc- e/2, the k-th frequency component of the original model (equation (46)) can be 
expressed as 

where 

ak = 271'k' fJm = x(m), 
N c~ 

. ( ) sin(x) smxx =--, 
X 

B1(k,m) = cos(akfJme/2) exp( -iakfJmuc), 

B2(k, m) = f3m sinx( O'.kfJme/2) exp( -i O'.kf3muc), 
b1(k) = a1 (k) + a2(k), 

b2(k) = -i[a1(k)- az(k)]o:ke/2. 

(A-2) 

(A-3) 

For the best fit of sum waveform Ek tk to a given data set {p( n, m)}, the optimal coefficients { b1 ( k)} and 
{b2(k)} in equation (A-2) will all be finite, regardless of the size of e, including e = 0. However, because 

(A-4) 

then a1 ( k) -+ oo and a2 ( k) -+ oo as e -+ 0 in the original model (equation ( 46)). (This effect has 
been observed before and has been explained by Nuttall.8 ) On the other hand, the model formulation of 
equation (A-2) does not undergo this singular behavior for any e. 

As e -+ 0, the model waveform Ek tk becomes 

L[bi(k) + b2(k) fJm] exp(io:k(n- .Bmuc)], (A-5) 
k 

upon use of equations (A-2) and {A-3). This dependence of the fit on m is different from the original 
model (equation {46)); such modified behavior has been described in eq. 28 et seq. and eq. 51 et seq. in 
Nuttall.8 

When component form (A-2) is used to approximate the available data, the error to be minimized 
becomes, for flat temporal weighting, 

2 1 kb 

e= NL p(n,m) - L tk 
nm k=k ... 

(A-6) 

A-1 



Holding angles Uc and t: fixed for now, the partial derivatives of e with respect to {b1 (k)} and {~{k)} 
yield decoupled pairs of simultaneous linear equations for the conditionally best coefficients Hh ( k)} and 
{~(k)} as 

where 

Wu(k)Q1(k) + W12(k)Q2(k) = Q1(k) } 
for k = ka : kb, 

W21(k)Q1(k) + W22(k)Q2(k) = Q2(k) 

m m 

m m 

m 

m 

Qj(k) = L:wx(m)q(k,m)Bj(k,m), j = 1,2. 
m 

(A-7) 

(A-8) 

It should be observed that all the {Wij(k)} are real functions oft:, but are independent ofuc and the data 
{p(n, m)} or {q(k, m)}. The quantities {B;(k, m)} are complex functions oft: and uc, but are independent 
of the data. The quantities {Qj(k)} are complex functions oft: and Uc as well as complex functions of the 
data. 

The solutions to equation (A-7) are explicitly 

(A-9) 

In the limit as t: ~ 0, it follows from equation (A-8) that the denominator of equation (A-9) tends to 

(A-10) 

which is always positive by Schwartz's inequality. Thus, equation (A-9) never develops any singularities 
for any value oft:; that is, the denominator of equation (A-9) is never zero for any t:. 

When the conditionally optimal coefficients in equation (A-9) are substituted in error expression (A-6), 
and equations (A-2) and (A-8) are employed, the conditionally optimal error becomes 

~ = ~ L Wx(m) [p(n , m)- L { Q1 (k)B1 (k , m) + Q2(k)B2(k, m) }] p•(n, m) 
nm k 

(A-ll) 

= ~ L Wx(m)jp(n, m)l2 - L { Q1 (k)Qi(k) + Q2(k)Q2(k)} 
nm k 

(A-12) 

= ~ L Wx(m)lp(n,mW- r2(uc, t:), (A-13) 
nm 

A-2 



where function 

(A-14) 

and !R denotes the real part. To further minimize conditional error~' the quantity r2 (u.c, e) must now 
be maximized by choice of central angle tic and difference angle e; see equation (A-1). No singularities 
develop in r2 ( ttc, e) for any value of e, including e = 0. 

Consideration of equation (A-8) reveals that {Wi;(k)} are real functions of e and k; therefore, their 
values could be precalculated and stored, at least for a preliminary coarse search where difference angle e 
could be fixed. Similarly, the quantities {B;(k, m)} in equation (A-3) are complex functions of e and tic, 

but are independent of the data {p(n,m)} or {q(k,m)}. For a fixed e, {B1(k,m)} could also be stored; 
the size of the storage would be K M Me, where K is the number of frequency components in the original 
model (equation {46)), M is the number of array elements, and Me is the number of central angles tic of 
interest. On the other hand, the quantities {Qj(k)} in equation (A-8) are complex functions of e and tic, 

as well as complex functions of the data { q( k, m)}, and cannot be precalculated. 

Once the unconditionally optimal angles Uc and f. are found from the maximization of r2 ( Uc, e) in 
equation (A-14), these angles must be substituted into equation (A-3) to obtain {B1(k, m)}, and then into 
equation (A-8) to obtain {Wi;(k)} and {Q;{k)}. Finally, equation (A-9) yields the best coefficient values 
{b;(k)}, where all the quantities must have their optimal n values. 

The minimal residual in the time-space domain follows from equations {46) and (A-2) as 

p(n, m) = p(n, m)- .P2(n~, x(m)) 

= p(n,m)- L:[bt(k)Bt(k,m,i,uc) + b2(k)B2(k,m,i,uc)] exp(iakn) 
k 

(A-15) 

{A-16) 

for n = 0: N -1, m = 0: M -1. The corresponding minimal residual in the frequency-space domain is 
simply 

(A-17) 

for k = ka: kb, m = 0: M -1. These two forms of coherent subtraction should be employed using coeffi
cients {b1(k)} rather than resorting to the original model (equation {46)) and coefficients {aj(k)} from 
equation {A-4). The latter coefficients will be extremely large for very small e and will cause loss of 
significance in residuals {P{n,m)} and {q{k,m)}. 

H f. is not very small, the optimal amplitudes in the original model (equation ( 46)) can be found from 
equation (A-4) as 

a1(k) = 1ht{k) + i~(~), a2(k) = !b1{k)- ib2 {~). 
2 elk€ 

2 
Olkf 

(A-18) 

This relation is exact and applies for all f. :/: 0. 

This appendix has presented an alternative approach and solution to the two-planewave fitting proce
dure; all quantities are finite for all e, except possibly for equation (A-18), which attempts a return to the 
amplitudes in the original model (equation (46)). 

A-3 (A-4 blank) 
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