AWARD NUMBER:

DAMD17-03-2-0017

TITLE:

Integrated Medical Information Technology System (IMITS): Information and Clinical Technologies for the Advancement of Healthcare

PRINCIPAL INVESTIGATOR:

Megan Marks, PhD

CONTRACTING ORGANIZATION:

University of Pittsburgh Pittsburgh, PA 15219

REPORT DATE:

August 2010

TYPE OF REPORT:

Addendum to final

PREPARED FOR:

U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: (Check one)

☑ Approved for public release; distribution unlimited

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

REPORT DOCUM	ENTATION PAGE		Form Approved OMB No. 074-0188			
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other asp						
collection of information, including suggestions Davis Highway, Suite 1204, Arlington, VA 2220	for reducing this burden to Washington Headqu	arters Services, Directorate for Information	ation Operations ar	d Reports, 1215 Jefferson		
1. Agency Use Only (Leave blank		3. Report Type and Pe				
	31-AUG-2010	Add to Final:2	20 SEP 20	08-30 JUL 2010		
4. Title and Subtitle		5. Award Number				
Integrated Medical Informatio			-			
(IMITS): Information and Clir	lical lechnologies for the	DAMD17-03-2-001	1			
Advancement of Healthcare 6. Author(s)						
Megan Marks, PhD						
E-Mail: marksmg@upmc.ed	lu					
7. Performing Organization Name		8. Performing Organiz	ation Report	Number (Leave		
Code and Email for Principal Inve	stigator)	Blank)				
University of Pittsburgh						
Pittsburgh, PA 15219						
E-Mail: marksmg@upmc.ee	du					
		40.0		Demost Number		
9. Sponsoring/Monitoring Agency U.S. Army Medical Research		10. Sponsoring/Monit (Leave Blank)	oring Agency	Report Number		
Fort Detrick, Maryland 2170						
11. Supplementary Notes (i.e., rej		t contains appendix in non-	print form, et	c.)		
12a. Distribution/Availability State	ement (check one)			12b. Distribution		
	release; distribution unlimited	d		Code		
	o U.S. Government agencies		;	(Leave Blank)		
proprietary information						
13. Abstract (Maximum 200 Word	s) (abstract should contain no prop	rietary or confidential informa	tion)			
UPMC and the United States Ai	r Force Medical Service (AFMS) created a strategic partn	ership called			
Medical Information Technology						
technology solutions that elimin Since the initiation of the progra						
telemedicine projects. Based or						
additional congressional funding in FY04 and FY05 to continue advanced clinical and technology initiatives. These						
applications and processes wer civilian health care delivery syst	e identified as areas of interest	required to meet specific r	needs within	the military and		
individually from a research per		a sub-project of the overa	ili proposal a	nu was auuresseu		
14. Subject Terms (keywords pre	•	tract or terms which	15 Number	r of Pages (count		
apply to this award)		all pages in				
Telemedicine, information te		appendices	5)			
Telepathology, Teleaudiolog	y, Teleophthalmology, Simul	ation	16. Price C	ode (Leave Blank)		
17. Security Classification of	18. Security Classification of	19. Security	20. Limitati	on of Abstract		
Report	this Page	Classification of		Inlimited		
Unclassified	Unclassified	Abstract				
NSN 7540-01-280-5500		Unclassified		orm 298 (Rev. 2-89)		
				ribed by ANSI Std. Z39-18 298-102		

Table of Contents

Introduction Body	
History of Project Closures IMITS Award Supported Outcomes Patents and Licenses	.4 .5
Degrees Obtained	.5
Development of Repositories	.5
Informatics Databases	5
Funding Applications	.5
Employment/Research Opportunities Based on Award Experience/Training	7
Personnel with Salary Support	7
IMITS Award Conclusions1	10
FY05 IMITS: Distributed Radiology Dynamic Workload Allocation Final Project Report 1 DRDWA Introduction 1 DRDWA Body 1 DRDWA Barriers to Completion 2 DRDWA Key Accomplishments 2 DRDWA Reportable Outcomes 2 DRDWA References 2 DRDWA Appendices 2 Appendix 1: DRDWA Statement of Work 2	12 19 20 21 22 24 24
Appendix 2: DRDWA Diagram	30
Appendix 3: 2008 ATA Abstract and Presentation: IMITS and DWA within the	
AFMS	31
Appendix 4: 2008 ATA Abstract and Presentation: Programming – DWA Routing	
Engine and Intelligent Algorithms4	11
Appendix 5: 2008 ATA Abstract and Presentation: Evaluating Feasibility of DWA for	or
AFMS4	15

Introduction

The Integrated Medical Information Technology System (IMITS): Information and Clinical Technologies for the Advancement of Healthcare program focused on implementation of advanced technology solutions that eliminate inefficiencies, increase utilization, and improve quality of care for active duty forces. The work on this project covered the development and implementation of prototype telemedicine systems and advanced technology applications at United States Air Force (USAF) locations. Emphasis was placed on the development of sound evaluation methodologies for the sub-projects with special attention to areas of effectiveness and end-user satisfaction within the Air Force Medical Service (AFMS).

Body

Since the initiation of the IMITS program in December 2002, UPMC and the AFMS successfully implemented several pilot telemedicine initiatives. FY02 IMITS selected areas of interest were regarded as sub-projects of the overall program and were addressed individually from a research and development perspective. Based on the success of the FY02 IMITS program, UPMC and the AFMS received additional congressional funding in FY04 and FY05 to continue to advance and expand their initiatives.

All IMITS research has been completed and, with the exception of FY05 IMITS: Distributed Radiology Dynamic Workload Allocation (DRDWA) project, final project reports were submitted to and approved by AF/SGRM. Table 1 provides FY02, 04, and 05 projects with final report submission dates to AF/SGRM.

This document covers remaining award reporting requirements followed by a full final report for the FY05 IMITS DRDWA project.

History of Project Closures

Table 1: FY02, 04, and 05 IMITS final project report submissions to AF/SGRM

IMITS Project*	Final Report to AF/SGRM
FY02 Emergency Medical Services	Mar 2005
FY02 Pediatric Tele-echocardiography	Jan 2006
FY02 and 04 Telepathology	Jul 2006
FY02 and 04 Teleradiology	Nov 2006
FY04 Simulation and Training:	
Simulation at Wilford Hall Medical Center	May 2006
Patient Transfer Simulation Training	Apr 2007

IMITS Project*	Final Report to AF/SGRM
Advanced Medical Education	May 2007
FY04 Teleophthalmology	Jul 2007
FY04 Extra-Corporeal Membrane Oxygenation (ECMO)	Oct 2007
FY04 Teleaudiology	May 2008
FY04 Platelet Gel	May 2008
FY 05 Telepathology	May 2009

*Copies of final reports are available upon request.

IMITS Award Supported Outcomes

Patents and Licenses

No patents or licenses were applied for or issued as part of the IMITS award.

Degrees Obtained

Dr. Jonhan Ho received education/salary support while serving as a Pathology Informatics Fellow with the University of Pittsburgh. He became a board certified dermatopathologist with certifications in anatomic pathology, clinical pathology, and dermatopathology.

Development of Repositories

 PathEd online repository of digital whole slide pathology images (https://pathed.upmc.com)

Informatics Databases

- Distributed Radiology Dynamic Workload Association Application
- Static Image Application
- Ophthalmology Retinal Imaging Application
- PathEd Application

Funding Applications

- Teleradiology/Enterprise Imaging
 - FY06: Continued development of a multi-disciplinary image archive
 - FY07: Distributed Radiology Dynamic Workflow Allocation
 - FY08: USAF Enterprise Imagining Inter-operability

- FY08: Teleradiology/ Enterprise Imagining Prototype Implementation Enterprise Bus Architecture (EBA) and Dynamic Workload Allocation (DWA)
- FY09: Dynamic Workload Allocation (DWA) and Enterprise Imaging Exchange System
- FY10: Production Distributed Workflow Allocation Implementation/Certification
- Telepathology
 - FY05: Imaging in Telepathology
 - FY05: Virtual TelePathology Distance Education and Monitoring Initiative (VTDEM))

FY05: Telepathology - Mississippi

- o FY08: Enhanced Diagnosis and Workflow Process using Digital Pathology
- FY08: OpenDiamond: A Powerful Software Platform for Creating Content-Based Search Applications
- FY08: IMITS Telepathology
- FY09: Advancing the Practice of Digital Pathology within the AFMS: Regional Telepathology
- FY10: Continuation: Advancing the Practice of Digital Pathology within the AFMS: Regional Telepathology
- FY11: Continuation: Advancing the Practice of Digital Pathology within the AFMS: Regional Telepathology
- Teleaudiology
 - FY08: Remote access of cochlear implants Teleaudiology DIACAP / FDA certification
 - FY08: Teleaudiology DIACAP and FDA certification to conduct remote access, monitor, and adjust cochlear implants
- ECMO
 - FY05: Extra Corporeal Membrane Oxygenation (ECMO)
 - FY07 Pacific Rim ECMO/VAD
- Simulation and Training
 - FY05 DURIP: University of Pittsburgh Medical Center Medical Simulation Learning Environment Tool
 - FY05 DURIP: Virtual Reality Medical Training to support Head/Neck or Shock Trauma Educational Research
 - FY05: Nursing Simulation Training Initiative (NSTI)
 - FY06: Central Texas Medical Simulation Center of Excellence
 - FY07: WHMC Simulation Center
 - FY08: Gulf Coast Nursing Leadership and Simulation Training Center
 - FY09: Casualty Care Simulation Training (CCST) Center
- Platelet Gel
 - FY10 DMRDP: Improved Healing of Abdominal Trauma/Acute Surgical Wounds with AGP/AT

- FY10 BAA: Improved Healing of Abdominal Trauma and Acute Surgical Wounds with Autologous Platelet Gel Therapy Activated by Autologous Thrombin
- Teleophthalmology
 - FY05 DURIP: Virtual Reality Medical Training to support Ophthalmic Surgery Training and Research
 - FY08: Sub-Acute Ophthalmic Emergency Care
 - FY08: Virtual Reality Ophthalmic Surgery Training
 - FY09: Sub-Acute Ophthalmic Emergency Care
 - FY09: Spectral Optical Coherence Tomography (SOCT) for Laser Eye Injury
 - FY10 DMRDP: Spectral Optical Coherence Tomography (SOCT) for Laser Eye Injury
 - FY10 DMRDP: Sub-Acute Ophthalmic Emergency Care

Employment/Research Opportunities Based on Award Experience/Training

- Telepathology and Teleradiology initiatives facilitated formation of Omnyx, a shared business initiative between UPMC and GE
- UPMC employment and consultation opportunities accepted by multiple Telepathology and Teleradiology staff
- Three new FTE positions created in UPMC Pathology Informatics for staff who began their work with UPMC through Telepathology
- UPMC pathology position accepted by pathology informatics student
- USAF intern for Telepathology offered position with Telehealth Branch of the AFMS/SGRM following her internship with IMITS and the Telepathology project
- Several administrative management staff promoted to lead positions within ISD at UPMC
- Teleradiology developer offered positions with other UPMC initiatives/departments following Stentor and DRDWA development

Personnel with Salary Support

Name	Title	PMO	TRAD	TPATH	CARD	EMS	AUD	ECMO	SIM	PG	OPH	EVAL
Bees, Jeffrey	Financial Advisor/Consultant	Х										
Begg, Bryann	Administrative Coordinator	Х										
Bell, Timothy	Staff Associate	Х										
Campbell, Matt	Associate Director	Х										
Carroll, Paige	Business Development	Х										
Carter, Tera Y	Intern	Х		Х								
Celender, Patience	Administrative	Х										

Table 2: List of Personnel with Salary Support from the award

	Coordinator										
Gilstrap, Scott	Principal Investigator/VP	х									
Good, Janet	Project Mgmt Spec I	X									
Hardie, Bob	VP-Bu	X									
Houser, Jessica L	Intern	X									
Kamenar, Joseph M	Financial Analyst	X									
Krugh, Deanne	VP Operations	X									
Landman, Nancy	Dir. Tech. Bus. Dev.	X									
Love, Kim	Business Development	X									
McClelland, Sandra	Program Director	X									
Nicholls, Jeananne	Associate Director	X									
Panza, Rebecca	Administrative										
Deale Cathu	Coordinator	Х									
Poole, Cathy	Clinical Systems Analyst	Х									
Turner, Tiffany	Financial Analyst	Х									
Vollero, Jason	Business Development	Х									
Yanuzo, Aaron	Program Director	Х	Х			Х	Х	Х	Х		
Yates, Anthony	Clinical Advisor	Х									
Amesur, Nikil M.D.	Domain Expert		Х								
Avril, Norbert M.D.	Domain Expert		Х								
Betancourt, Carlos	Software Architect		Х								
Bowen, A'Delbert M.D.	Domain Expert		Х								
Branstetter, Barton	Domain Expert		Х								
M.D. Britton, Cynthia M.D.	Domain Expert		Х								
Chang, Paul	Principal Investigator		X							Х	
Coast, Tom	Project Manager		X							X	
Crane, Ken	Programmer IV		X								
Dexter, Douglas	Programmer		X								
Ferris, James, M.D.	Domain Expert		Х								
Grube, Audrey	Programmer IV		х								
Lionetti, Dave	Software Architect		х								
Momironski, Goran	Software Architect		Х								
Moroney, Shawn	Programmer		Х								
Oh, Kook Sang M.D.	Domain Expert		Х								
Roberts, Jeffrey	Project Manager		Х								
Rothfus, William M.D.	Domain Expert		Х								
Sammon, John K. M.D.	Domain Expert		Х								
Shah, Victor M.D.	Domain Expert		Х								
Shrestha, Rasu	Principal Investigator		Х								
Solomon, Edward M.D.	Domain Expert		Х								
Thaete, F. Leland M.D.	Domain Expert		Х								
Tublin, Mitchell	Domain Expert		Х								
Wallace, Luisa M.D.	Domain Expert		Х								
Warfel, Tom	Investigator		Х								
Wilkins, Will	Programmer		Х								
Anthony, Leslie	Project Manager			Х	Х		Х			Х	Х
Henderson, Christine	IT consultation			Х						Х	
Kistler, Michael	Project Manager			Х						Х	
Yagi, Yukako	PI/Domain Expert			Х							
Krills, Sandra	Researcher			Х							Х

Abdul-Kareem, Othman	Programmer IV	Х						
Cecil, Roberta Ann	Programmer	Х						
Danowski, Roni	Prjct Mngmnt Spec	Х						
Drogowski, Laura	Researcher	Х						
Duboy, John	PC Consultant I	Х						
Gilbertson, John, M.D.	Principal Investigator	Х						
Ho, Jonhan	Investigator	Х						
Hoffman, Matthew	Web Developer	Х						
Hrzic, Mark	Java Programmer	Х						
Hudson, William	Senior Web Developer	Х						
Jobe, Joyce	Sr. Help Desk Specialist	Х						
Jukic, Drazen	Principal Investigator	Х						
Kelly, Michael	Java Programmer	Х						
Kepner, Joyce	Sr. QA Specialist	Х						
Lawson, Alan	Chief Technical Officer	Х						
Marraccini, Kevin	Application Support	Х						
Nalesnik, Michael, M.D.	Domain Expert	Х						
Petronik, Everett	Application Support	Х						
Polatas, Holly	Training Specialist	Х						
Roll, Marion	Project Manager	Х						
Salava, Debra	Operations Manager	Х						
Sharma, Anurag	Systems Analyst I	Х						
Simko, Patricia	Certification Specialist	Х						
Smith, Jeffrey	Data Security Specialist	Х						
Teacher, Stephen	Sr. Database Developer	Х						
Vaia, Patricia	Project Manager	Х						
Wright, JoAnn	Sr. QA Specialist	Х						
Yarzab, Richard	Senior Developer	Х						
Handrahan, Jerry	Systems Analyst II		Х					
Neches, William	Principal Investigator		Х					
Delbridge, Ted	Principal Investigator			Х				
Jarret, Patricia	Principal Investigator							
Roth, Claudia	Principal Investigator							
Palmer, Catherine MD	Principal Investigator				Х			
Burgess, Lawrence MD	Principal Investigator					Х	Х	
Caputo, Ralph	Domain Expert					Х		
Berg, Benjamin	Domain Expert						Х	
Bradle, Judy	Domain Expert						Х	
Briggs-Foster, Cathy	Project Manager						Х	
Dongilli, Tom	Domain Expert						Х	
Garshnek, Victoria	Program Development						Х	
Hara, Kris	Researcher						Х	
Hudson, Don	Programmer						Х	
John Schaefer	Principal Investigator						Х	
Mechtel John	Project Manager						Х	
Palumbo, Stephen	Project Manager						X	
Wolf, Gail	Principal Investigator						X	
Dave Steed MD	Principal Investigator							Х
Dyga, Robert	Domain Expert							Х
Thomas Serena MD	Principal Investgator							Х

Adams Datas	IT a survey that the se		
Adams, Brian	IT consultation	Х	
Caywood, LouAnn	Project Manager	Х	
Eller, Andrew	Principal Investigator	Х	
Smail, John	Programmer	Х	
Uttecht, Steve	Programmer	Х	
Waller, Stephen MD	Principal Investigator	Х	
Ward, Jane	Project Manager	Х	
Warnicki, Joseph	Domain Expert	Х	
Barnes, Barbara	Principal Investigator		
Silowash, Russ	Programmer		
Chang, Joyce	Statitician		Х
Friedman, Chuck	Principal Investigator		Х
Gadd, Cynthia	Principal Investigator		Х
Gatti, Guido	Statitician		Х
Grzybicki, Dana	Principal Investigator		Х
Porterfield, Toni	Researcher		Х
Roberts, Mark	Principal Investigator		Х
Wilson, Robb	Project Manager		Х

IMITS Award Conclusions

IMITS activities focused on the implementation of medical technology solutions that increase efficiency and improve quality of care for active duty forces. Since the initiation of the program in late December 2002, UPMC and the AFMS successfully implemented several pilot telemedicine projects that serve to advanced AFMS clinical and technology resourcefulness. Project applications and processes were targeted by AFMS as essential to meeting specific needs within their military healthcare delivery system. Both the AFMS and UPMC benefited from the joint development and implementation of the multi-disciplinary IMITS initiatives and will continue to build upon the accomplishments.

For applications to serve their purpose, they must be available when needed. By and large, availability of IMITS applications has required rigorous, justified DoD security certifications followed by a complex and ever changing amalgamation of Air Force Communications Agency, Major Command and base-level approvals. The challenges innate to obtaining Air Force approvals have been further complicated by transient staffing, including leadership reassignments with subsequent shifts in awareness of and support for ongoing initiatives.

To realize the benefit of advanced technology applications, future initiatives must engage and maintain the support of military leadership, providing them with the knowledge needed to help all team members understand how their jobs relate to the goals of the project and to compel a shared commitment to its success.

FY05 IMITS: Distributed Radiology Dynamic Workload Allocation Final Project Report

AWARD NUMBER: DAMD17-03-2-0017

TITLE: IMITS: Distributed Radiology Dynamic Workload Allocation (DRDWA)

CONTRACTING ORGANIZATION:

UPMC 600 Grant Street, 58th Floor Pittsburgh, PA 15219

PERIOD OF PERFORMANCE:

09/06/2006 - 08/31/2010

REPORT DATE: 08/31/2010

PREPARED BY:

Thomas Coast Goran Momiroski Shawn Moroney William Wilkins

TYPE OF REPORT:

Final IMITS DRDWA Project Report

DRDWA Introduction

A symmetrical workload-balanced distributed radiology workflow prototype will support present and future radiology workload and workflow requirements across the AFMS as well as provide increased performance and scalability. Synchronous and asynchronous collaboration tools, as part of the developed symmetrical workflow model, will significantly improve radiologist productivity irrespective of geographical location.

DRDWA Body

The FY05 IMITS DRDWA project was commissioned to develop a prototype solution for current Air Force Medical Services (AFMS) radiology workflow processing deficiencies. The Statement of Work (SOW) for the project is included here as Appendix 1. Phases I and II of the project were completed with summary reports submitted to AF/SGRM (Table 1 repeated below for reference). During Phases III – V of this project, it became apparent that the DRDWA prototype solution would have to be incorporated into a future enterprising imaging initiative, rather than continue as a stand-alone imaging solution.

IMITS Project*	Final Report to AF/SGRM
FY02 Emergency Medical Services	Mar 2005
FY02 Pediatric Tele-echocardiography	Jan 2006
FY02 and 04 Telepathology	Jul 2006
FY02 and 04 Teleradiology	Nov 2006
FY04 Simulation and Training:	
Simulation at Wilford Hall Medical Center	May 2006
Patient Transfer Simulation Training	Apr 2007
Advanced Medical Education	May 2007
FY04 Teleophthalmology	Jul 2007
FY04 Extra-Corporeal Membrane Oxygenation (ECMO)	Oct 2007
FY04 Teleaudiology	May 2008
FY04 Platelet Gel	May 2008
FY 05 Telepathology	May 2009

Table 1: FY02, 04, and 05 IMITS final project report submissions to AF/SGRM

*Copies of final reports are available upon request.

Current AFMS staffing constraints, limited system capabilities, and a mobile physician and patient population require a sophisticated load-balanced distributed radiology/ imaging workflow model and supporting infrastructure. These continually changing circumstances within the military healthcare community identified the need for a

sophisticated workflow model that supports an enterprise view. The DRDWA prototype solution aims to provide increased productivity and enhanced patient care across the AFMS regardless of physician staffing constraints, systems capabilities, and patient location. The infrastructure is capable of supporting a load-balanced distributed workflow model across multiple Major Commands (MAJCOMS) and within a multiple AFMS Picture Archiving Communication Systems (PACS) environment. The prototype solution allows for dynamic bi-directional transmission of clinical studies and optimal workflow load-balancing to effectively leverage resources irrespective of location, PACS vendor, or particular local workload demands. With a mobile patient population, this prototype provides relevant patient history to the radiologist/physician in order to render an accurate diagnosis. With regard to workload distribution, the prototype capabilities allow maximum workload flexibility during AFMS radiologist deployments, temporary duty (TDY), on-call support, and the development and availability of subspecialty expertise.

An AFMS-wide, sophisticated, load-balanced, and distributed radiology workflow model and supporting infrastructure will result in increased productivity, cost savings, and, above all, enhanced patient care across the AFMS regardless of medical staffing constraints or patient location. In addition, the prototype infrastructure could be the baseline architecture for enterprise imaging exchange throughout the AFMS regardless of medical discipline, and the intra/inter-base communication infrastructure for efficient clinical data exchange for all future AFMS healthcare information technology providers.

DRDWA Phase I (Complete)

The DRDWA project team conducted a six-month evaluation to identify the requirements and concerns of the AFMS radiology community. Findings and recommendations are contained within the DRDWA Phase I Report submitted to AF/SGRM on (available upon request).

During the evaluation phase, UPMC/UPMC IMITs Center project team ensured that a requirement for DRDWA/Enterprise Radiology existed. By engaging the appropriate AFMS partners, the IMITS project team was able to confirm the need for a distributed workflow solution and began to accurately define an acceptable DRDWA prototype. In order to accurately define a prototype solution, it was necessary for the project team to define business rule requirements in order to effectively determine how to traffic radiology images throughout the AFMS.

DRDWA Phase II (Complete)

The primary objective of Phase II was to develop and demonstrate the core supporting infrastructure (DRDWA). The development included the core concept design for the DRDWA system between two Air Force bases. Findings and recommendations are contained within the DRDWA Phase II Report (available upon request).

DRDWA Phase III

The primary objective of Phase III was to finalize DRDWA development and demonstrate the final iteration of dynamic transfer of images between multiple Air Force bases. Development included the completion of the master command dashboard and local command interfaces. In addition, the DRDWA was designed to meet all clinical requirements set forth in Phase I of the project. Phase III objectives also involved developing referential interfacing requirements with existing military systems without performance degradation. The DRDWA development staff also created a combat trauma imaging simulator system to serve as a training repository for radiologists within the AFMS. In order to install and test on site with participating Air Force bases, the DRDWA had to initiate the Department of Defense Information Assurance Certification and Accreditation Process (DIACAP) process to obtain an Interim Authority to Test (IATT) certification. Phase III concluded with the hardware/software installation, testing, and final demonstration of the DRDWA between multiple Air Force bases.

The DRDWA Phase III objectives and outcomes are defined as follows:

- The UPMC IMITS project team created a master command dashboard and local command interface to control the functionality of the DRDWA. These dashboards were developed for use by appointed AFMS radiologists to monitor the flow and statistics of teleradiology. The dashboards are web based to provide ease of access from multiple Air Force locations. The dashboards are capable of compiling aggregate and historical statistics to assist radiology representatives in making strategic, enterprise wide decisions. The dashboard preferences include the ability to assess local reads, desired types of reads for each Air Force base, and rules for the export of radiological data. These dashboards represent the graphical user interface used in the ultimate control of the DRDWA.
- The IMITS project team established the clinical requirements for the operation of the DRDWA system. The DRDWA is able to dynamically allocated workflow among Air Force radiologists to maximize available manpower. The system is able to send images configured by radiology experts through the local command panel, while crediting interpreting radiologist for their work. This process remains transparent to the radiologists at all times, so that no priority is given to images according to the originating location. All DoD security guidelines and Health Insurance Portability and Accountability Act (HIPAA) standards have been maintained in the development of the DWDWA (DIACAP and security documentation is available for the DRDWA system). Patient care remains at the forefront of the DRDWA with the accurate and immediate transfer of diagnostic information.
- The IMITS project development team established the interfacing requirements of the DRDWA system with other AFMS initiatives. The Digital Imaging and Communications in Medicine (DICOM) standard interfaces allow communication between the DRDWA and various PACS vendors throughout the Air Force. This

DICOM standardization ensures interoperability with all existing DICOM capable imaging repositories and future additions to the Air Force medical imaging initiative. The Air Force maintains a high level standard in adhering to DICOM accepted practices and interfacing. The development team had no issues in communicating with the established PACS vendors utilized by the Air Force.

 The DRDWA software delivery includes a Combat Trauma Imaging Simulator. Primary functionality centered on the use of digital images, regardless of the source used to scan, and the organization of the images into easily searchable, useful categories. Secondary functionality was concerned with testing the physician's diagnostic ability; the tool was designed to support both administered and self-tests. As developed, the application boasts a constantly growing, customizable, digital image repository of history-enriched, common, interesting, and unique pathology cases that can be viewed and annotated by users who range in experience and level of training. User and case parameters can be channeled for targeted users and applications.

To meet the needs of the radiology community, the application can be used to create a repository of HIPAA-compliant combat trauma images for both reference and training purposes. AFMS radiologists lacking recent experience with trauma cases would have an accessible method to refresh and expand their education. This would provide a significant opportunity for those being deployed with little or no time available for specialized training. A robust repository of de-identified radiology images and patient data can further aid in the dissemination of knowledge across a variety of special interest areas. Radiologists can query cases or diagnoses of interest, conduct self-tests, and increase their knowledge of medicine based on their circumstances. Course instructors can use the application to supplement their training by choosing materials from the repository or by appending their own materials to the repository. Radiologists may be invited to join a group in which they are assigned specific cases and tests. Tests and user statistics can be made available to instructors for user and course analysis.

The IMITS project team established a strategic partnership with the Integrated Clinical Database (ICDB) iDIS project. This project allowed the DRDWA to operate on security accredited servers and transport images on an established Enterprise Server Bus, iDIS. However, changes in ICDB command dissolved this collaborative effort in July 2009. The project team had to drastically modify its development plans to recreate the functionality that ICDB previously provided. The first and most challenging effect of this decision required the team to build independent servers to host the DRDWA services. The second issue required that the team create a network image transmission protocol to facilitate image sharing between existing PACS vendors. To complete testing and the subsequent demonstration, these independently developed solutions required DIACAP and IATT certification. The project team began the DIACAP certification process necessary to obtain an IATT certification. Once the IATT certification

was approved, the team installed local servers at the participating Air Force bases. The IATT for the DRDWA was granted on June 8, 2010 and remained effective until August 31, 2010.

- The implementation portion of the DRDWA project involved the installation of four servers on three Air Force bases, and the installation of all software services. A global server and a satellite server were installed at Wright-Patterson Air Force Base, Fairborn, OH. Satellite servers were installed at Dover Air Force Base, Dover, DE and MacDill Air Force Base, Tampa, FL. Each server was configured to communicate with the respective PACS on each Air Force base. Basic software and service installation was completed prior to shipping the servers to the Air Force bases. All the DRDWA servers were given IATT approval prior to base installation.
- After the servers were delivered to the assigned Air Force bases, the project team began an evaluation and testing period. All testing had to be completed in the assigned timeframe (June 8, 2010 to August 31, 2010). The IATT certification only allows for 2 hours of DRDWA testing on any weekday. During this evaluation period, several configuration and benchmarking stages needed to occur to enable a complete demonstration. Remote connectivity to each server had to be established though the DoD approved software, DCO Connect. Once remote connectivity was established, the IMITs development team could control each server from the UPMC offices and begin the configuration process. Local configuration from each DRDWA server to its corresponding PACS server was completed with no significant issues.

Connectivity between the DRDWA satellite servers on separate bases was problematic at times. The connection between Dover AFB and Wright-Patterson AFB was established without issues. However, the connection between MacDill AFB and Wright-Patterson AFB showed dropped information packets and other general delays. Subsequent testing revealed that the MacDill AFB network had increased latency when compared with the other bases: information was slow to traverse the network, and often packets of image data were lost during transmission to the final destination. Regardless of these testing issues, IMITs and the Air Force decided to proceed with the demonstration scheduled August 27, 2010.

• A live demonstration with the three participating Air Force bases was performed on August 27, 2010 at Wright-Patterson AFB. This demonstration was used as a prototype benchmark; highlighting the developmental efforts undertaken by the IMITs team throughout the DRDWA project. The three sites, Wright-Patterson AFB (Fuji), Dover AFB (Agfa), and MacDill AFB (AGFA), allowed three separate PACS to be represented. Remote viewing was available for participants who were unable to attend the presentation at Wright-Patterson AFB. The DRDWA project team and participants from the Air Force were aware that network issues at MacDill AFB could prevent successful image transfer to the Wright-Patterson DRDWA servers. However, these network issues were nonexistent during the final demonstration, and images were transferred between all participating bases.

 The final deliverable for the DRDWA project included system and user documentation for the DRDWA infrastructure. This documentation will assist with future efforts to implements the DRDWA if needed. This documentation will also include training manuals for the basic operation of the DRDWA services and policies. At the conclusion of the project, all DRDWA software code and purchased hardware were delivered to the Office of the Air Force Surgeon General in a format deemed appropriate for future consideration.

DRDWA Phase IV

The IMITS project team identified several areas within the DRDWA for enhancement/ improvement. The following key functionality additions were recognized through the course of the project: Resource Scheduling Module, Graphical User Interface (GUI) enhancements, 3D/4D Image Post-Processing, Dictation and Transcription Integration, and Image Compression (Hardware/Software). Several companies have been identified for potential partnerships within these improvement areas. The Phase IV objectives were interrupted due the removal of ICDB/iDIS, however, a brief investigation was still conducted into several areas of improvement.

The FY05 – DRDWA Phase IV objectives and outcomes are defined as follows:

- The research and evaluation of a Resource Scheduling module was the first initiative in Phase IV. Resource scheduling for available AFMS radiologists and staff would greatly improve the capabilities of the master and local command panels. DRDWA routing algorithms would benefit immensely by having each radiologists schedule programmed into the system. This availability, matched with modality and sub-specialty information, would allow the DRDWA system to automatically route exams more accurately. Numerous Radiology Information Systems (RIS) currently utilize this scheduling capacity to enhance patient care and maximize exam resources. The DRDWA development team completed a scheduling module that is included in the final code delivery.
- The IMITS project team worked to identify potential technology partnerships for module and GUI enhancements. By adding partnerships with imaging specialty companies the DRDWA would provide a more comprehensive imaging management system. UPMC Radiology Informatics developed Single View to connect the RIS and PACS across multiple UPMC hospitals in the greater Pittsburgh, PA area. By utilizing a single work list, an efficient web-based client can access patient data in one consistent format. Sub-specialization focus delivers information to appropriate physician, in real time regardless of location, which allows full leveraging of physician subspecialty and expertise. Connecting multiple RIS and PACS solutions through one information bus optimizes existing systems by connecting all sources that store and display imaging studies and

associated patient information. Immediate access to patient data across multiple systems provides the ability to read studies faster, thereby increasing radiology process throughput.

- The investigation for 3D/4D Image Post-Processing was initiated after viewing several presentations at the Radiological Society of North America (RSNA) conference 2008. Healthcare equipment vendors have been seeking to provide an integrated diagnostic model facilitating patient-centric, evidence-based healthcare. The major features of post-processing include workflow tasks such as image processing, image reconstruction, computer-aided detection, three-dimensional (3D) view generation, and quality control. Innovations in radiological diagnostic imaging step into the next generation of technology, offering 3D/4D imaging views of the diagnostic images taken from standard equipment.
- The DRDWA should be integrated with current dictation and transcription solutions to provide a more robust platform for radiologists. Dictation and transcription are core modules within radiology overall workflow. Integration with these modules would provide a higher level of data management within the DRDWA. However, the USAF iterations of dictation and transcription have a wider range than current PACS implementations. This widespread array of applications creates a project on a much larger scale than even the DRDWA. Under the current and foreseeable scope of the DRDWA, dictation and transcription integration was just not a feasible option.
- Hardware and Software Image compression is a constant concern for enterprise imaging solutions where network bandwidth is limited. The development of PACS and the increasing use of large digital sets from various imaging modalities present challenges in image management, distribution, storage and interpretation. Teleradiology enables remote interpretation but is encumbered by bandwidth restrictions. Image compression is a means by which Teleradiology access may be improved, and storage costs reduced. Currently, all digital image interpretation, transmission and storage practiced within the DoD facilities are done without irreversible data loss. This limits transmission and storage to lossless compression technology with 2:1 being the most typical compression ratio in any given PACS environment. The result is long transmission times for large data sets and high image storage costs. This will only get worse with increasingly large data sets and additional demand for image resources.

DRDWA Phase V

The IMITS project team intended to use Phase V of the project for additional development based on the Phase IV enhancements/improvement. This phase, however, was contingent on having remaining funds in the DRDWA project. When the ICDB iDIS solution was removed from the project, remaining funds had to be diverted to create a core DRDWA infrastructure. This new infrastructure included the purchase of four server class computers, and the development of an image transmission protocol for use on the AFMS network. The IMITS project team was successful in replacing the

basic functionality initially provided by ICDB iDIS, but the time and funding required for this endeavor effectively eliminated the possibility of Phase V development.

DRDWA Barriers to Completion

During the development and testing of the DRDWA prototype solution, numerous barriers to completion were noted by members of the project team in order to increase efficiency in future solutions for the AFMS. The continuing evaluation of existing AFMS protocols will allow for more effective project planning, should future projects be considered for AFMS integration. The IMITS project team identified three areas illustrating the barriers to completion for the DRDWA.

 The IMITS project team established a strategic partnership with ICDB iDIS project within the Air Force infrastructure. This partnership allowed IMITS project team to drastically reduce costs and developmental efforts. This collaborative effort with ICDB provided the DRDWA project with a proven network backbone for data transmission within the Air Force for image acquisition, transfer, and data sharing. ICDB iDIS effectively eliminated the need for remote point-to-point services in the DRDWA between individual Air Force bases. Not only did this reduce costs in the network structure schema, but it also diminishes the need for independent certification for each additional base.

In July 2009, the ICDB Program Management Office (PMO) decided to no longer support any DRDWA initiatives. This vast change to the project scope was due changing leadership within the PMO and staff changes. The IMITS project team engaged the new ICDB management in an attempt to resolve project sustainability issues; however, ICDB no longer had the manpower or interest to support the DRDWA project. This single decision caused a series of events that delayed the project at least eighteen months.

- DIACAP and IATT certification processes were required complete the DRDWA Phase III deliverables. Standard DIACAP procedures can take up to 18 months for complete system certification, hardware and software. The documentation and compulsory specifications for the DRDWA DIACAP took approximately 6 months to complete. After the initial artifacts were complete, the IMITS project team could then begin actual testing with the Information Assurance (IA) department. The IA live testing requirements used another 6 months to complete. Once all the documentation and test results were reviewed by IA, another month was required to award the IATT for an effective 90 days. The IA process is an laborious effort that future projects must be aware of when assigning project timeframes and deliverables.
- The Composite Health Care System (CHCS) is a medical informatics system designed by Science Applications International Corporation (SAIC) and used by all United States military health care centers. A core component to successful

production operation of the DRDWA is CHCS interfacing. The IMITS project team was never able to locate a champion for bi-directional interfacing with CHCS. The DRDWA was never able to properly integrate these bi-directional interfaces in the core functionality. Orders placed in the CHCS system serve as triggers for the initiation of DRDWA servers, eliminating the need for manual interaction with the system. SAIC provides neither testing facilities nor adequate interface specifications to simplify a prototype or development initiative. Future projects requiring CHCS integration must properly engage SAIC to encourage expanded interfacing capabilities.

DRDWA Key Accomplishments

- Analyzed and documented the MTFs existing Information Systems and infrastructure to determine the feasibility of a DRDWA solution.
- Defined business rules requirements to determine the traffic of images.
- Provided an Initial Conc ept Design Document to SGR, outlining networ k traffic requirements, security requirements, and limitations of a new load balancing system.
- Provided DRDWA Phase I report/initial concept documents to AF/SGRM.
- Completed development of the core DRDWA components for select AFMS MTFs:
 - o DICOM Concentrator
 - PACS Web Services
 - \circ RAD $\,$ Web Services $\,$
- Established a strategic partnership with the ICDB PMO and the iDIS initiative.
- Completed a functional demonstration (June 12, 2008) of core components between Wright-Patterson and Dover Air Force Bases.
- Provided DRDWA Phase II report documents to AF/SGRM.
- Completed a local DRDWA demonstration (March 11, 2009) for AF/SGRM.
- Identified five additional areas for improvement within the DRDWA solution.
- Developed the DRDWA image transport mechanism to replace the ICDB/iDIS solution.
- Began the DoD DIACAP process, and received an IATT certification for 90 days of testing prior to a final demonstration.
- Installed 4 DRDWA servers on Wright-Patterson, Dover, and MacDill Air Force Bases.
- Established remote connectivity to the DRDWA servers located at Wright-Patterson, Dover, and MacDill Air Force Bases.
- Completed a full demonstration (August 27, 2010) of the final DRDWA solution between Wright-Patterson, Dover, and MacDill Air Force Bases.
- Provided DRDWA Phase III-V report documents to AF/SGRM.
- Delivered Final DRDWA solution code and instruction documentation to AF/SGRM.

DRDWA Reportable Outcomes

Abstracts and Presentations

- Rasu B. Shrestha, MD, MBA; Aaron C. Yanuzo, BS, MBA; Carlos Betancourt, BS; Goran Momiroski, BS, MS; Thomas H. Coast, BS; Shawn Moroney, BS; James Mason, BS; Steve Livingston (4/2009). *IMITS Program Overview with Implementation of Dynamic Workload Allocation within the Air Force Medical Service.* 2008 American Telemedicine Association Annual Conference, Seattle, WA
- Rasu B. Shrestha, MD, MBA; Aaron C. Yanuzo, BS, MBA; Carlos Betancourt, BS; Goran Momiroski, BS, MS; Thomas H. Coast, BS; Shawn Moroney, BS; James Mason, BS; Steve Livingston (4/2008). *Programming - Dynamic Workload Allocation Routing Engine and Intelligent Algorithms*. 2008 American Telemedicine Association Annual Conference, Seattle, WA
- Russell Silowash, Robert A Wilson, Dana Grzybicki, MD, PhD. (4/2008). Evaluation – Distributed Radiology Dynamic Workload Association System for AFMS. 2008 American Telemedicine Association Annual Conference, Seattle, WA

DRDWA Conclusions

The FY05 congressional research project: IMITS DRDWA evaluated the utility of a loadbalanced distributed radiology/imaging dynamic workload allocation infrastructure. The DRDWA project was divided into five phases. Phase I and II focused on investigation of requirements and design. Phase III completion demonstrated success in connecting and transmitting images and data between different PACS within the AFMS. The entire IMITS project team – consisting of several members of UPMC, UPMC IMITs Center (DoD Program Management Office), the SGR Congressional project manager, and with input from the AF Radiology Consultant, completed the prototype demonstration, and provided recommendations for future integration with enterprise imaging solutions with the AFMS. After the Phase III demonstration, the AFMS PACS office expressed direct interest in implementing the DRDWA to production as soon as possible.

The DRDWA prototype promises to increase productivity, cost savings, and above all enhanced patient care regardless of physician staffing constraints or patient location. The proposed solution and infrastructure support a symmetrical load-balanced distributed workflow model across MAJCOMS and in multiple PACS environments. The prototype solution allows dynamic bi-directional transmission of clinical studies and optimal workflow load-balancing to effectively leverage resources irrespective of location, PACS vendor or particular local workload demands. This prototype solution also provides to the physician relevant patient history required for an accurate diagnosis in a continually moving patient population throughout the AFMS. The proposed infrastructure can be incorporated with the baseline architecture for enterprise imaging exchange through the AFMS. This will allow for more flexibility with regards to workload distribution during AFMS radiologist deployments, TDY, on-call support and the development and availability of subspecialty expertise.

In conducting the FY05 IMITS DRDWA project, the IMITS project team became aware of a strong level of interest by the AFMS PACS office. The PACS administration team expressed a strong need for immediate investigation into a multiple site DRDWA implementation. This type of implementation would require several steps to complete. Full bi-directional interfacing with CHCS must be achieved to realize the intended automation of the DRDWA services. The DRDWA would also have to complete the entire DIACAP process to become a production enabled system. At the conclusion of the project, the DRDWA services and hardware had only been granted an IATT approval. Additional IA processes would have to be finalized to certify the DRDWA as an Air Force approved application. A certification and implementation, even on a small scale, would require an approximate minimum of 18 months to accomplish.

In contrast to installing the DRDWA as a stand-alone solution in the AFMS, the DRDWA code can be used to assist development of alternate enterprise imaging initiatives. The DRDWA infrastructure can serve as the baseline framework for inter-operability architecture for future Military Health Service (MHS) Telehealth initiatives as well as the baseline for all enterprise imaging exchange throughout the MHS regardless of medical discipline. The expansion of this project could be the initial integration of the DRDWA with additional digital imaging formats as well as other multimedia medical record files. This will initiate the expansion of the prototype solution throughout the MHS. Production acceptance integration could effectively cover several MHS Medical Centers, and potentially the Veteran's Health Services. UPMC provided the foundation for digital imaging inter-operability to the AFMS by creating an integration platform that would allow communication and transportation of data from site to site. Continual enhancements to the DRDWA prototype solution will provide the mechanism for other digital images such as: pathology, cardiology, and ophthalmology to be transported from one Medical Treatment Facility (MTF) within the AFMS or MHS to another for either or both diagnostic or referential usage by a physician.

This report is the final project report/deliverable for the FY05 Congressional project: IMITS DRDWA (Cooperative Agreement DAMD1703-2-0017).

DRDWA References

Acronyms

3D Three	Dimensional
4D Four	Dimensional
AFB	Air Force Base
AFMS	Air Force Medical Services

CHCS	Composite Health Care System
DIACAP	Department of Defense Information Assurance Certification and Accreditation Process
DICOM	Digital Imaging and Communications in Medicine
DoD	Department of Defense
DRDWA	Distributed Radiology Dynamic Workload Allocation
GUI	Graphical User Interface
HIPAA	Health Insurance Portability and Accountability Act
IATT	Interim Authority To Test
ICDB Integra	ated Clinical Database
iDIS	Intelligent Data Integration Service
IMITs	Innovative Medical Information Technology Systems
MAJCOMS	Major Commands
MTF	Medical Treatment Facility
MHS	Military Health Services
PACS Pictur	e Archiving Communication System
RIS Radiolo	gy Information System
RSNA	Radiology Society of North America
SOW Stater	nent of Work
TDY Tempo	rary Duty

DRDWA Appendices

Appendix 1: DRDWA Statement of Work

Develop and implement a Distributed Radiology Dynamic Workload Allocation Infrastructure Prototype at select Air Force Medical Treatment Facilities (MTF).

Phase 1 - Analyze and document select MTFs existing Information Systems and Infrastructure to determine Distributed Radiology Dynamic Workload Allocation Systems Feasibility: (7 Months)

2007

USAF Principal Investigator:	Col. Grant Tibbets
UPMC Principal Investigator:	Dr. Rasu B. Shrestha
Timeframe:	October 2006 – May 2
Completed:	May 2007

Timeframe	Task
Weeks 1-12	Assess Base, MAJCOM and Headquarters level staff for participation and
	support of proposed project.
Weeks 1-12	Establish a baseline of information systems, technology and infrastructure at
	participating MTFs.
	Document current systems' distribution and capture capabilities
Weeks 1-16	Assess information assurance and workload crediting policy and procedures.
	Discuss and coordinate with Information Assurance departments at Base,
	MAJCOM and Headquarters level to obtain information and input.
	Assessment of DoD system security policies and procedures (i.e. IATO,
	ICTO, CoN, DIACAP).
	Document and obtain policy and approval for bidirectional interface to
	participating MTFs local systems (i.e. Composite Health Care Systems/II
	(CHCS/CHCSII/AHLTA).
	Coordinate and discuss project at each level.
Weeks 12-24	Define business rules requirements to determine traffic of images.
	Ensure that documented business rules incorporate radiologist, availability,
	desired study type, historical site performance and professional currency
	requirements to determine traffic of images.
	Investigate and document healthcare workload policies and procedures
	between sites within a distributed environment. E.g Relative Value Unit
	(RVUs) allocation between sites/providers performing the work.
	Capture existing practice processes and rules relating to radiology.
Weeks 12-24	Assess, document and measure existing diagnostic imaging system
	performance (e.g image transmission requirements, repository/central cache
	requirements)

Timeframe	Task
Weeks 20-24	Provide SGR with a report which will serve as an Initial Concept Document
	(ICD). The ICD will include network requirements (bandwidth availability,
	saturation point/base), business rules (expected turnaround time), and
	MAJCOM Security Requirements. ICD will support a concept decision
	regarding USAF and/or DoD limitations that may alter the
	outcome/deliverables of the research project.

Phase 2 - Develop Distributed Radiology Dynamic Workload Allocation System prototypefor select USAF MTFs (12 Months) (Phase 2 to begin upon completion, by SGR, of NDAACertification):Timeframe:May 2007 – May 2008Completed:May 2008

Timeframe	Task
Weeks 24-72	Establish system administrator privileges.
	1) Create a web-based system command panel to monitor system
	maintenance events.
	2) Incorporate common issues found during testing into the
	maintenance panel.
Weeks 24-72	Establish a workload accounting process in system:
	Workload crediting available by site of acquisition (technical
	component).
	Workload crediting available by site of interpretation (professional
	component).
	System accurately credits the correct number of relative value units.
	Coordinate with Composite Health Care System (CHCS) and radiology
	personnel at each base to determine acceptable methods for adding
	shared work credit Relative Value Unit (RVU)/Current Procedure
	Terminology (CPT) codes to the Composite Health Care System
	(CHCS).
	System will auto register patients into the remote Composite Health
	Care System (CHCS) system.
Weeks 24-72	Create a central repository storage and system infrastructure
Weeks 24-72	Create a central image routing engine that includes the following
	features:
	The image routing engine will contain the necessary algorithms to
	efficiently route images.
	Algorithms may be adjusted from the Master Control Panel.
	The image routing engine will use radiologist availability, desired study
	type, and historical site performance to determine quantity and type of
	images to forward.
	The image routing engine will follow a 'round robin' pattern in
	distribution.

Timeframe	Task
	The image routing engine will have safeguards so that it does not overwhelm a site.
	The image routing engine will have logic to retransmit images to an alternate location if a remote site is unexpectedly not conducting reads. Final read location for failed reads will be Wilford Hall Medical Center radiology department.
Weeks 24-72	 Establish imaging and image transmission technical processes: Ensure ability to utilize network compression for transmission purposes without data loss (lossless or clinical compression). Ensure ability to present current images along with all relevant prior images and reports from acquisition site is provided. Ensure exams are identified by site of original acquisition for command and control purposes. Create notification of study availability via local Picture Archive and Communication System (PACS) work list, independent of site of image acquisition.
	 Image delivery will be transparent to the radiologist. 6) System will meet Air Force firewall requirements. 7) Establish bidirectional communication through Virtual Private Network to sites.
Weeks 24-72	 Ensure system meets all integration requirements: Product shall have a Digital Imaging and Communications in Medicine (DICOM) transmitter available for local integration with other applications. Compose and submit to SGR a thorough document detailing the minimum Input/Output (I/O) & processing capabilities of any local stores to prevent queuing when the pilot is scaled up to the enterprise.
Weeks 24-72	 Build a DICOM transmitter to relay images to secondary source: The transmitter will have the option to be turned off and will be deployed in the 'off 'setting. 3) Before deploying the product, the transmitter will be tested in a developmental environment to gauge theoretical throughput. This will assist personnel interfacing with the system in knowing what throughput could be expected. Complete and review all Phase 2 development. Complete the Functional Demonstration between Wright-Patterson and Dover. 6) Submit the Phase 2 Report to SGR.

Phase 3 - Complete GUI Development and Implement a USAF and DoD accreditedDistributed Radiology Dynamic Workload Allocation System prototype at select MTFs: (6Months)Timeframe:June 2008 – August 2010

Timeframe:	June 2008 – August 2010
Completed:	August 2010

Timeframe	Task
Weeks 72-96	Create a master command dashboard and local command interface The dashboard will be available for the appointed Air Force Radiologist to monitor the flow and statistics of teleradiology. This command window will produce aggregate statistics of image reads and transfers.
	Master Command Dashboard will be web-based. Dashboard will compile aggregate and historical statistics to aid the SG Radiology representative in making strategic, enterprise radiology decisions.
	The local command interface will be available to the local system administration designee to indicate site preferences. These preferences will include, but are not limited to, availability to perform reads, desired type of reads and rules for export of data. Local Command Interface will be web-based.
Weeks 72-96	Ensure system meets all prescribed clinical requirements: The system must dynamically allocate workflow among Air Force Radiologists such that a balance workload exists that maximizes available manpower. The system must be able to send differentiated types of images
	configured by Radiology representative through the local command panel. The system must reliably credit Radiologists for their work. The system must seamlessly display local and remote images in the same manner so that no prejudice or priority is given to different
	locations. The system shall conform to all AF & DoD Security guidelines, HIPAA standards. Best practices for disaster recovery will be documented for an enterprise deployment. The system must be able to deliver images in an expeditious manner
	such that patient care standards and read times are maintained. Structure of system must allow for it to be the technical substrate for other DICOM format Telehealth initiatives (ophthalmology, pathology, etc.).
Weeks 72-96	Determine referential system interfacing requirements: Create a document that outlines the ideal requirements of a referential imaging system that could interface with the Diagnostic Imaging System without performance degradation. Indicate the robustness of hardware required on the Diagnostic Imaging side to support a secondary Referential Imaging system. Create and submit to SGR a detailed disclaimer outlining the negative effects on the primary Diagnostic Imaging System if proper interfacing
	guidelines are not followed.

Timeframe	Task
Weeks 72-96	Create a Combat Trauma Imaging Simulator:
	System will store HIPAA-compliant, combat radiology images for
	training purposes.
	Images will be available to read for training purposes.
	Practice interpretations will be contrasted against actual archived reads.
Weeks 96-136	Obtain necessary MAJCOM interim approvals to operate for length of
	Distributed Radiology Dynamic Workload Allocation research project.
	Originally placed in Phase VI
Weeks 96-136	Implementation: Install Distributed Radiology Dynamic Workload
	Allocation infrastructure at central location and select MTFs.
Weeks 96-136	Evaluation: Test installed Distributed Radiology Dynamic Workload
	Allocation at central location and select MTFs.
Weeks 96-136	Documentation: Finalize System and User documentation for
	Distributed Radiology Dynamic Workload Allocation infrastructure.
Weeks 96-136	Training: Train all users at select MTFs and central location.
	Provide training documentation and summary report to SGR.
Weeks 96-136	Go-Live and provide Distributed Radiology Dynamic Workload
	Allocation demonstration to USAF, including SGR.
	Turn over Distributed Radiology Dynamic Workload Allocation
	hardware and UPMC/UPMC IMITs Center project team developed
	Distributed Radiology Dynamic Workload Allocation software to USAF
	for support.
	Submit Phase III-V report to SGR.
	NOTE: If Air Force approves Distributed Radiology Dynamic Workload
	Allocation project, full DIACAP certification will be required to replace
	timed approval to operate from participating MAJCOMs.

Phase 4 - Investigation for additional functionality in the Distributed Radiology DynamicWorkload Allocation System prototype: (4 Months)Timeframe:December 2008 – August 2010

	Detember 2000 - August 2010
Completed:	August 2010

Timeframe	Task
Weeks 96-112	Identify potential areas within the DRDWA prototype model for
	enhancement.
	Research an additional Resource Scheduling module.
	Identify potential vendor partnerships for module enhancements.
	3D/4D Image Post-Processing
	Investigate program integration for Dictation and Transcription
	functionality.
	Image compression (Hardware / Software)
Weeks 96-112	Conduct thorough investigation on all identified improvement modules.
	Conduct research to identify best suited vendors for additional modules.
	Develop feasibility categories for each vendor and module.

Timeframe	Task
Weeks 96-112	Develop a feasibility study report based on Phase 4 finding for SGR.
	Document a plan for modification additions to be developed in Phase 5.

Phase 5 - Development on accepted functional additions to the Distributed RadiologyDynamic Workload Allocation System: (6 Months)Timeframe:April 2009 – August 2010Completed:August 2010

Timeframe	Task
Weeks 112-136	Begin new development cycle based on 3 to 5 areas of additional
	functionality for the DRDWA.
	Test new development modules in the original DRDWA code base.
	Install new functional modules at prototype MTFs for testing.
Weeks 112-136	Demonstrate all new modules at prototype MTFs for SGR.
	Provide summary report to SGR on additional functionality
	demonstration.

IMITS/AFMS Partner Collaboration

Appendix 3: 2008 ATA Abstract and Presentation: IMITS and DWA within the AFMS

1 Rasu B. Shrestha, MD, MBA, 2 Aaron C. Yanuzo, BS, MBA,1 Carlos Betancourt, BS,2 Goran Momiroski, BS, MS,1 Thomas H. Coast, BS,1 Shawn Moroney, BS,1 James Mason, BS,3 Steve Livingston, BS4

1UPMC - Innovative Medical and Information Technologies Center (IMITS), Pittsburgh, PA; 2UPMC, Pittsburgh, PA;; 3USAF - Wilford Hall Medical Center, San Antonio, TX; 4SAIC - ICDB, San Antonio, TX

Air Force Medical Service (AFMS) and Military Health Service (MHS) have initiated several programs to address improvements in health care through information technology. One of these initiatives commissioned UPMC Innovative Medical and Information Technology (IMITS) Center to develop a prototype solution for Radiology Dynamic Workload Allocation (DWA) addressing radiology workflow deficiencies. It has become evident that the DWA prototype solution should also include enterprise clinical imaging workflow efficiency capabilities beyond radiology. Current AFMS staffing constraints, limited system capabilities, and a mobile patient population requires a sophisticated load-balanced distributed imaging workflow model and supporting infrastructure. These continually changing circumstances within the military healthcare community have identify the need for a sophisticated workflow model that supports an enterprise view. The prototype solution will result in increased productivity and enhanced patient care across the AFMS regardless of physician staffing constraints, systems capabilities and patient location. The infrastructure will support a loadbalanced distributed workflow model across multiple Major Commands (MAJCOMS) and within a multiple Picture Archiving Communication Systems (PACS) environment. The prototype solution will allow dynamic bi-directional transmission of clinical studies and optimal workflow load-balancing to effectively leverage resources irrespective of location, PACS, or particular local workload demands. The DWA algorithmically distributes radiology cases throughout AFMS equally depending on radiologist availability, modality type, and location. Within a mobile patient population, this prototype solution will provide relevant patient history, to the radiologist, enabling an accurate diagnosis. With regard to workload distribution; these capabilities will allow maximum workload flexibility during radiologist deployments, TDY, on-call support, and the development and availability of subspecialty expertise. When the DWA proves to be an effective workload allocation tool, not only will patient care improve throughout the AFMS, but radiologists will be able to strengthen their practice by increasing their knowledge in subspecialty experiences.

Page 32

Page 33

JPMC IMITS Teleradiology History
2002 - 2004 IMITS 02 – Customized, Deployed and Supported UPMC patented Dynamic Transfer of Syntax (DTS) technology at Wright Patienson APB
2005 - 2006
AFMS Enterprise contribution not MTF-to-MTF solution
Build on SOR/UPMC positive relationship
Build on "DTS" success at Wright Patterson
Enhance patient care
Cost Effective Efficient
AFMS/UPMC (DWA) Enterprise Radiology research
Development strategy (Statement of Work) Confirm need
Identify and build business rules
Identify and build AFMS relationships
2008 - Current
IMITS 05 - DWA - Enterprise contribution plan

Page 34

UPMC

UPMC IMITS FY04 – Nursing Simulation MITs-Center Ċu t Status: Completed Project Completed 10 point protocol for patient Billing Conducted a pilot research study at UPMC //W Published result of the pilot study Presented the results at national conventions ATA 55H al report to SGR for review corporate into the standard UPI Transition curriculum into an UPAC institutional training program. Otheratio all UPAC exploses where patient itilitig is required Otheratio as a estemal medical training oxures to non-UPAC medical professionals (MIGER) westigate ohre potential registrance of Thriang Command (AETCG) / VA / Indian Health westigate ohre potential funding sources Continuation/ expansion of the number of Petaburgh (WISER), and the USAF ND.U

ЛРМС IMITS FY04 - WHMC Simulation MITs-Center Dates IMITS FY04: 10/01/04 - 12/31/07 Project Manager - John Mechtel Inciple Investigator – Dr. Paul Phrianpus UPNC Emergency Medicine Physician and University of Pittaburgh Profi Director of the WISER Institute of Simulation – University of Pittaburgh WC / AFMS - Purpose / Focus: Determine if incorporating a simulation training program into WHMC existing conventional training program would provide the reactness stills required to prepare military staffing for deployment.

- Conduct a WHMC simulation training (readiness skills) "Needs Analysis" Increase the competencies of military staffing
- Reduce the time and expense of training milliary staffing Evaluate the effectiveness of exporting this technology to off-site locations. Evaluate providing distance educational training

Appendix 4: 2008 ATA Abstract and Presentation: Programming – DWA Routing Engine and Intelligent Algorithms

1 Rasu B. Shrestha, MD, MBA, 2 Aaron C. Yanuzo, BS, MBA,1 Carlos Betancourt, BS,2 <u>Goran Momiroski</u>, BS, MS,1 Thomas H. Coast, BS,1 Shawn Moroney, BS,1 James Mason, BS,3 Steve Livingston, BS4

1UPMC - Innovative Medical and Information Technologies Center (IMITS), Pittsburgh, PA; 2UPMC, Pittsburgh, PA;; 3USAF - Wilford Hall Medical Center, San Antonio, TX; 4SAIC - ICDB, San Antonio, TX

The Distributed Radiology Dynamic Workload Allocation (DRDWA) system must effectively route radiological exams according to a multitude of criteria. An intelligent rules and routing engine is being developed by the UPMC Innovative Medical and Information Technology Center (IMITS) for dynamic routing of images throughout the Air Force Medical Service (AFMS). Each medical facility contained in the AFMS is ranked according to site availability, Radiologist staff, specialties, and throughput statistics. Each radiological exam contains a specific set of data, which can be interpreted by the rules and routing engine. Through a master command panel, administrators will be able to set preferences for each participating facility on a daily or weekly basis. Each preference will ultimately determine the optimal location for each exam to be diagnostically interpreted. This prototype solution routing algorithms will result in increased productivity and enhanced patient care across the AFMS regardless of AFMS physician staffing constraints, AFMS systems capabilities and patient location.

DOD Programs Overview DoD Programs Overview UPMC Innovative Medical and Information Technologies (IMITs) Center UPMC & DOD Congressional Research Projects USAF, Amy, Navy, and National Quard Multiple UPMC Telemedicine Projects Education Education Education Education Product Telemedicine Crygenation Product Cell Therapy Education Telemedicine and Training Telemental Health

- Teleophthalmology
- Telepatholo

UPMC 2007-Pres IMITs Center Incorporated as Wholly Owned Non-Profit Subsidiary

- Incorporated as wholly Owned Non-Profit Subsidiary
- Continual growth and funding, establishing new research programs
- Researcher and Physician Leaders/Advisors
- Program and Process Management / PMP / Accounting and Finance Expertise
- Experience in Government Contracts, Government Contractors, Software Development, System Architecture, Industrial Engineering, Private, Academic and Non-Profit sectors, Healthcare, medical products, and Military

DRDWA - AFMS Radiology Primary Requirements DRDWA addresses the following

- Workload balance
- Sub-specialty development/consultation
- Workflow deficiencies
- Patient care for mobile patient population
- On-call rotation
- Contract services
 - Traditional Teleradiology

JPMC Principal Investigator ElMUTs:Center

- Rasu B. Shrestha MD MBA
 - Medical Director, Radiology Informatics, University of Pittsburgh Medical Center (2007 - Present)
 - Informatics Director, Department of Radiology, University of Southern California (2001 - 2007)
 - Dr Shrestha has extensive knowledge of medical informatics and the business of healthcare.
 - Dr Shrestha was also Professor of Radiology Research at the Keck School of Medicine and has a unique blend of clinical as well as research skills in Medical Informatics
 - Dr Shrestha has proven expertise in driving leading process Improvement and major enterprise informatics implementations Including PACS (Picture Archiving and Communication Systems), RIS (Radiology informatics System), EMR (Electronic Medical Records), and Voice Recognition.

JPMC DRDWA Project Status : IMITs-Center Phase I – Completed Radiology business rules AFMS Support USAF/SGR Chief of Telehealth collaboration (LtCol. Lacy) RadNet - USAF

- AFM8 partner relationship required
- Multiple AFMS imaging initiatives IMITS DRDWA / Radnet / Wounded Warrior / Etc...
- Clinical Enterprise Imaging
- Developed in Service Oriented Architecture (SOA)
- Business continuity plan / disaster recovery requirements AFMS PACS vendor review
- Integration planning between Agfa, Full, Phillips, & GE

UPMC **DRDWA Project** ElMUTs Center AFMS Enterprise Radiology Business Model RadNet Infrastructure to address AFMS Imaging Initiatives Pathology, Ophthalmology, Cardiology, etc. Pending Congressional Proposal for Enterprise Imaging (CABMED) IMITS – DRDWA Currently Funded thru 12/08 Possible extension to 12/09 Four Phase Project

 Currently in Phase II Four Medical Treatment Facilities (MTFs) Prototype

UPMC **DRDWA Project Status** MITs Center Phase II – In Process Collaboration with AFMS partner, ICDB Program Office · CHCS two way interface management IDIS – (SOA/CIE) Network infrastructure investigation Core Software/Program Development Radiologist collaboration (UPMC / USAF) Interim Prototype Demonstration Two Base Image Exchange – (TBD) Prototype Development DWA software Intelligent Image Routing Engine

- Enterprise radiology business model
 AFMS SOA/CIE infrastructure integration

ЈРМС **DRDWA Next Steps** El Millis-Center Phase III · Collect additional functionality requirements Second iteration development Phase IV ٠ Verify, validate, and test prototype at 4 MTFs 4 MTF DRDWA Routing and image Exchange Witght-Paterson AFB (Ful) Dover AFB (Agfa) MacDII AFB (Agfa) Scott AFB (Agfa)

- Investigate Information Assurance (AI) Accreditations
 MAICOM INTRIATORY Certification for testing and production implementation DIACAP certification

JPMC DRDWA Benefits/Summary IMITs-Center Enterprise Radiology business model development

- AFMS Clinical Image and Information Exchange Foundation
- Financial

 - Reduction in long-term patient care costs
 Minimizes contract services
 Increases reimbursement accurate RVU reporting Leveraging internal AFMS system partners
- Foundation for Wounded Warrior image exchange between active duty MTF and Veterans Affairs (VA)
- Infrastructure for business continuity plan .
- Approval for AFMS Enterprise Radiology Implementation Mechanism for sustainment (Funds/POM)
- Strategic partnership with ICDB and the UPMC IMITs Center

Appendix 5: 2008 ATA Abstract and Presentation: Evaluating Feasibility of DWA for AFMS

Russell A. Silowash, BS, Robb Wilson, MA, Dana Grzybicki, MD, PhD

University of Pittsburgh, Department of Biomedical Informatics, Pittsburgh, PA

Because of the growing need of patient services and the desire to improve radiology practices within the Air Force Medical Service (AFMS), a Distributed Radiology Dynamic Workload Allocation (DRDWA) system has been developed by the UPMC Innovative Medical and Information Technology (IMITS) group. The DRDWA algorithmically distributes radiology cases throughout the AFMS equally – depending on radiologist availability, modality type, and location. In order to determine the feasibility, effectiveness, and utility of the DRDWA, IMITS has contracted the Evaluation Team from the University of Pittsburgh, Department of Biomedical Informatics to conduct rigorous assessments. There are three phases to the evaluation project. The first phase consists of qualitative questionnaires that record the perceptions, attitudes, and experiences of DRDWA programmers, radiologists, and support personnel. The second phase is based on the testing of the DRDWA. Baseline radiology statistics will be collected prior to and after the implementation of the DRDWA and consist of, but are not limited to the following: number of cases read per day per radiologist, preferred modality types, and workload limits and restrictions. Phase three of the project will consist of questionnaires that monitor final perceptions and attitudes of the AFMS users and support personnel. The Evaluation Team has begun to collect data. DRDWA programmers have completed questionnaires, and those results have been analyzed. One of the major goals is to improve workflow and communication between developers and AFMS key personnel. The Evaluation Team can use the feedback from completed questionnaires to obtain this goal. Current results will be reported. If the DRDWA proves to be an effective workload allocation tool, not only will patient care improve throughout the AFMS, but radiologists will be able to strengthen their practice by increasing their knowledge in subspecialty experiences. Results from completed phases will be discussed.

- Observations of radiology workflow patterns

- Includes radiologists, clinicians, technicians,

- Track radiology work-up through seven

and other support personnel

phases

Blank Page