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ABSTRACT 

Software-defined networks are revolutionizing networking by providing 

unprecedented visibility into and control over data communication networks. The focus 

of this work is to develop a method to extract network features, develop a closed-loop 

control framework for a software-defined network, and build a test bed to validate the 

proposed scheme. The method developed to extract the network features is called the 

dual-basis analysis, which is based on the eigendecomposition of a weighted graph that 

accounts for the network topology and traffic load. A software-defined network closed-

loop control scheme is developed; the scheme is modeled after a closed-loop control 

system that includes an observer and a controller. A particle filter and phantom node are 

used to estimate link data rates and identify the onset of congestion. Based on the outputs 

of the observer, the controller is able to balance traffic throughout the network to 

minimize congestion. A software-defined network test bed is developed to evaluate the 

proposed dual-basis representation and the closed-loop control scheme. The test bed is a 

real-world implementation of a software-defined network that consists of 13 switches and 

one controller. The test bed ensures that the proposed schemes are suitable even when 

applied in a hardware or software implementation. 
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I. INTRODUCTION 

Current data communication networks have become too complex and too costly to 

continue operating and administrating them in the same basic manner as standardized by 

Advanced Research Projects Agency Network (ARPANET) in the late 1970s. The 

designers of ARPANET decided that a distributed architecture would be better because it 

is more resilient to failures [1]. They could not have envisioned how important networks 

would become to modern life, how widespread cyber espionage and cyber crime would 

become, and how complex these systems would turn out to be. The cost to manage and 

defend these complex systems needs to be reduced, while simultaneously increasing 

network performance to meet future demands.  

A. MOTIVATION 

Software-defined networking (SDN) has stepped in with the goal of reducing cost 

and increasing performance. This goal is achieved by simplifying the network hardware, 

reducing the complexity created by distributed algorithms, providing insight into the 

network behavior, and allowing control of all network functions from a centralized 

location. The simplified hardware is less expensive and consumes less power. By 

centralizing control, the network controller manages the network as a whole. Current 

networks are not able to provide the insight into the network’s behavior or the flexibility 

to modify the network’s behavior as needed.  

Compare the automobile traffic on an interstate, which has no centralized 

monitoring or control, with airline traffic, which does have centralized monitoring and 

control. With automobile traffic, there is no method to prevent congestion through 

prioritizing certain types of traffic, rerouting traffic, or implementing any other 

congestion control methods throughout a city. However, air traffic is centrally controlled 

by air traffic controllers who can manage their local air traffic based on the needs and 

conditions of the system as a whole. Each air traffic controllers shares the same global 

traffic and weather picture. From this global picture, they are able to make decisions to 

proactively prevent congestion, ensure safety, and increase throughput.  
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Google, Facebook, AT&T, and Verizon have all decided to implement SDN as 

part of their core networks for some of the same reasons that air traffic is centrally 

controlled. They have made this choice because SDN reduces costs, boosts performance 

and increases flexibility [2]. Google has achieved 95% utilization in their SDN 

implementation [3], [4]. Facebook has automated many of its network functions by 

disaggregating the forwarding hardware from the control software [5]. AT&T and 

Verizon are in need of greater flexibility to route phone calls, texts, and data over their 

core networks [6]. One of their goals is to increase network throughput without adding 

additional hardware. 

SDNs are poised to change the way networks are managed, but the transition from 

distributed networks will be successful only if they are built around established 

engineering principals. SDNs can make network measurements, decide how to route 

packets, and then implement those actions. The process of measurement, decisions and 

action is known as the observe, orient, decide, and act (OODA) loop in military strategy 

and tactics [7]. When applied to autonomous systems in the private sector, the OODA 

loop steps are renamed monitor, analyze, plan and execute [8]. Whether the OODA terms 

or the autonomic terms are used, the closed loop of measuring the environment, 

processing those measurements, making decisions based on the processed data, and 

acting on the decisions is a closed-loop control system [9].  

Closed-loop control systems are the technical implementations of OODA loops, 

and SDNs are fundamentally closed-loop control systems, with the network as the object 

to be controlled. The main benefit of a closed-loop control system is responsiveness to 

the current state of the system. Open-loop control systems do not receive feedback from 

the system being controlled and are unable to respond to anomalies in the system. In 

closed-loop control systems, the controller provides feedback by changing the input to 

the system to improve the performance of the system.  
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B. OBJECTIVE 

The objective of this research is to develop spectral graph theory methods to 

extract SDN network features and then develop a scheme that utilizes these features to 

influence the network behavior to improve the performance and the security of the 

network. These features are extracted from graphs that are derived from both the current 

network topology and current measured traffic; the topology may change and traffic load 

may fluctuate over time. These dynamics describe the behavior of the network. Because 

the extracted features describe the overall status of the network, they are considered to 

represent the state of the network. 

One of the goals of developing a network state for SDNs is to monitor the 

network’s behavior. If the proper features can be extracted from the network topology 

and traffic, the SDN controller can monitor these features to track network behavior, such 

as onset of congestion and malicious activity. The controller can respond at network 

speeds to anomalous behavior and proactively mitigate congestion. The objective here is 

different from the implementation of past anomaly-detection algorithms because the 

controller can use global information to determine the occurrence of an anomaly as 

opposed to attempting to determine an anomaly based only on local information or local 

traffic analysis. Because the controller can monitor the network-wide behavior and 

determine global features for the network, it may be better suited to find anomalies and 

detection congestion. 

For the controller to effectively use these features to influence the behavior of the 

network, the SDN may be considered a closed-loop control system. This work adopts 

many control theory concepts and terminology, such as state, feedback, observer, and 

controller. Control theory techniques cannot be directly applied to a SDN; however, these 

concepts can be applied to develop a closed-loop control framework for SDN that 

provides a basis for future development of applications and networks. 

To experimentally validate these objectives, the proposed methods must be 

implemented on a SDN test bed. Mathematical analysis and simulation are insufficient to 

fully validate methods to monitor and control networks because of the complexity of the 
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systems being validated. Analysis and simulation typically require the researcher to make 

assumptions about the network operation. It is difficult to model all of the interactions 

and timing issues that are present in a real-world system. For these reasons, the proposed 

schemes in this research are implemented on a SDN test bed to validate the effectiveness 

of the proposed methods. 

C. RELATED WORK 

SDN researchers have acknowledged that these networks are closed-loop control 

systems; however, specific solutions to manage the SDN as a closed-loop control system 

have not been proposed. The development of applications that implement the OODA 

loop in a SDN can benefit from the wealth of knowledge that has been developed for 

other closed-loop control systems, such as non-linear state estimators and optimal 

controllers. If these concepts can be extended to SDNs, greater confidence can be placed 

in the applications developed to control the network. 

1. Application of Graph Theory to Optimize Network Topology 

In [10], SDN was evaluated as the communication infrastructure for a smart grid 

implementation. It was shown that the topology to distribute power over large areas is not 

the same topology that is best for the communication network. This result was 

determined analytically using graph theory based solutions that showed which 

communicating nodes should be connected to reduce congestion and increase throughput. 

These results were experimentally validated using simulation of a real-world network and 

real-world traffic. The traffic was redirected based on the new communication network 

derived from the graph theory solution. 

This solution works well in an industrial control system (ICS) like the smart grid 

because most ICSs have structured traffic profiles, which means that the traffic between 

sources and destinations in the network is known and fixed [11]. Extending this solution 

to arbitrary networks is ineffective because the solution is not dynamic, which does not 

allow it to account for changing traffic patterns, failed devices and cyber-attacks. General 

network traffic does have a typical profile, but it can change over time and can be 
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dramatically different from day to day. A more generic solution must account for the 

dynamic traffic profiles and network behavior. 

The specific solution proposed in [10] rewired the network by keeping the number 

of links in a network constant and changing the directly connected nodes. This was 

accomplished by using an unweighted graph, which has the implicit assumption that all 

links are equally important to the function of the network. This assumption may not be 

true in all cases. Consider a graph theoretic solution that moves a link that carries no 

traffic from one location to a new location where it, again, does not carry any traffic. In 

this case, the performance of the network is unchanged after using the unweighted 

analysis. On the other hand, by including the traffic profiles and network behaviors in the 

analysis in the form of a weighted graph, better solutions may be determined.  

2. SDN as a Closed-Loop Control System 

In Google’s B4 network [3], they demonstrated how performance can be 

improved in a dynamic traffic environment. They managed traffic over links that carry 

exceptionally large amounts of data. Link utilization was raised to nearly 100% in their 

test cases. Google’s solution incorporated network traffic measurements locally, which 

were passed to the global traffic engineering server to determine the optimal path to route 

traffic through the network based on priority and quality-of-service (QoS) required by 

that specific data type. The decisions made by the global traffic engineering algorithm 

were passed down to the local site controllers that implemented the decisions made by the 

next higher level of the architecture.  

Google’s solution maximized throughput, but they were also able to control all 

aspects of their network to include when servers were able to transmit. Their solution was 

dynamic and achieved levels of performance that are infeasible with a distributed 

algorithm. They did not reveal the performance of the control network and the 

performance required by the centralized controller and the site controllers. Reducing the 

workload on these machines reduces cost and improves performance by requiring either 

fewer or less expensive machines. Again, a more general solution is needed that is able to 
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account for traffic when the network hosts are not directly controlled by the SDN 

controller. 

By controlling the end hosts directly, a network controller has complete control 

over all aspects of a network, but this is not feasible in many real-world networks. A 

more generic solution does not include the assumption that all end hosts are controlled. 

The controller must accommodate the offered traffic as well as it can. Methods need to be 

developed that determine the network behavior as a function of the current offered traffic 

and then change how the traffic is routed in the network to improve the overall network 

performance. In many cases, this requires a load-balancing algorithm to reduce the 

possibility of congestion throughout the network. This research develops a method to 

include near real-time offered traffic in the determination of the graph theoretic 

representation. 

3. Optimal SDN Switch Placement 

In the Google B4 network, the deployment of SDN was accomplished all at once, 

which may not be feasible for all networks or organizations looking to transition to SDN. 

Many of them may end up with a hybrid of SDN and legacy routers in their networks. In 

[2], Agarwal, Kodialam and Lakshman examined how one would implement centralized 

control in a hybrid network of SDN and non-SDN devices. Again, they used network 

measurement techniques to measure the network data rates and make decisions based on 

these data rates. They developed a linear programming solution to the problem of 

network control and showed that even a modest number of SDN switches in a network 

increases performance.  

They did not develop an algorithm to find the specific locations in the topology 

that provide the largest return on investment. Their method to determine these optimal 

locations was through an exhaustive search. After trying all possible locations and 

various traffic matrices, they were able to find the switch that provided the greatest return 

on investment. This location is static because their solution depended on physically 

replacing the forwarding device. They did not explore how one would choose which 
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switches to control if all switches were SDN devices. Their work, however, implies that 

not all switches need to be controlled to reach required levels of performance. 

The research in this dissertation examines methods to find the SDN nodes that 

must be controlled in order to obtain the gains demonstrated in [2] and [3]; these are 

called control nodes in this work. The control node locations are determined dynamically 

in a full SDN deployment in this work. Because each node in the network is an SDN 

switch, they can all act as legacy routers or as SDN forwarding devices. The results in [2] 

demonstrate that not all of the switches need to be controlled. By taking into account 

current traffic patterns, network behavior, and network features, the controller can 

dynamically update the control node locations to improve performance and reduce the 

workload of the controller. 

4. Optimal Controller Placement 

The controller placement issue is similar to the control node placement issue. In 

large networks, the round-trip time from an SDN switch to the controller and back can 

become quite large and needs to be minimized. Two methods to minimize the round-trip 

time from all SDN switches to the controller and back are proposed in [12]. The topology 

chosen was that of a simplified Internet2 [13], which is the topology adopted for this 

research. Internet2 was chosen in [12] because researchers were actively debating how 

many and where the controllers should be placed. The analysis and results in this research 

are based on the Internet2 topology because there is published work with which to 

compare these results. 

Nevertheless, no algorithm was proposed in [12] to find the optimal locations, but 

instead a trial-and-error approach was used. This is a simple task when there is one 

controller, but networks spread over large physical areas may require multiple controllers 

to achieve the desired performance. As the number of controllers increased, they noted 

that the solution required “days” of computation to determine the location. Since [12] was 

published, other methods, such as those proposed in [14] and [15], have been developed 

to determine controller locations, but almost all of them assume a one-time design choice 
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of controller locations. Greater performance may be achieved if this analysis is conducted 

periodically and the controller locations are reassigned dynamically.  

5. Cybersecurity 

SDNs are poised to not only increase performance but also have created a new 

paradigm for cybersecurity. With centralized monitoring and control, the controller is 

able to better monitor the network as compared to network perimeter defenses, such as 

firewalls and web server demilitarized zones (DMZs). The Open Network Foundation 

(ONF) proposed the idea of a security application called Automated Malware Quarantine 

(AMQ) in a white paper discussing security issues associated with SDNs [16]. The 

proposed application includes a method to monitor the network, detect anomalous 

behavior, and quarantine a portion of the network, a set of end hosts or a specific infected 

host to prevent the spread of the malware throughout the network. 

The ONF proposed architecture of a security application stopped short of 

providing any specifics of the network monitoring, anomaly detection or network control 

features. Specific analysis and software tools developed in this research are adopted from 

the framework proposed by ONF. This research focuses on developing a method to 

determine a graph theoretic network representation, which can be used by security 

applications to constantly monitor the network. Because the controller can develop this 

representation based on global network information, the controller may be able to more 

accurately assess the likelihood that the network behavior is anomalous. 

The objective of this work is to provide a SDN framework, which is modeled 

after closed-loop control systems, and to provide a method to describe a representation of 

the network that reveals key features of the network. To achieve this goal, a SDN needs a 

state estimator and a state controller. For these two to be effective, network behavior 

needs to be dynamically calculated based on the current offered traffic. As shown in the 

previous sections, many of the solutions proposed for SDNs do not account for the 

network behavior or offered traffic and do not account for the dynamic nature of the 

network. This work adds the dynamic analysis that was missing from previous research to 

develop better methods to monitor and control SDNs. 
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D. OUTLINE OF DISSERTATION 

The outline of the dissertation is as follows. The background on SDNs, graph 

theory, spectral graph theory and closed-loop control are provided in Chapter II. The 

dual-basis and its role in defining the state of the network is developed in Chapter III. 

The closed-loop control framework around which SDN controllers can be built is 

discussed in Chapter IV. The methods used to validate the work from Chapters III and IV 

are shown in Chapter V. The results obtained from the SDN test bed that was built based 

on the Internet2 topology are shown in Chapter VI. The conclusions drawn from this 

research and areas of future work to be considered are provided in Chapter VII. The 

details of the limit from Eqn. (3.34) are contained in Appendix A. A sample of the 

Python code for the state controller application, which implemented the state control 

function, is contained in Appendix B. A sample of the Python code for the monitor 

application, which implemented the state estimation function, is contained in Appendix 

C. 
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II. SOFTWARE-DEFINED NETWORKING (SDN) AND ITS 
RELATIONSHIP TO GRAPH AND CONTROL THEORY 

Most convectional networks today is accomplished through a litany of distributed 

algorithms and protocols, which take years to be approved. Once they go into widespread 

use, it is difficult and time consuming to change or improve them or even to close 

security vulnerabilities. This difficulty results in workarounds that reduce interoperability 

and security.  

Software-defined networking is poised to change the way large, complex data 

communication networks are managed and controlled. The goal of SDN is to logically 

centralize network management at a device called the network controller [17]. From that 

centralized location, the controller provides unprecedented control over packet routes and 

collection of network statistics. Managing the network in a centralized manner allows for 

more effective traffic engineering and security. In this chapter, the background required 

for the remaining chapters of the dissertation is provided. First, the SDN architecture and 

operation are described. Next, graph theory and spectral graph theory are introduced, and 

then applied to the community finding problem. Finally, the basic concepts and 

techniques used in control theory are reviewed.  

A. SOFTWARE-DEFINED NETWORKING 

A software-defined network improves the network management and operation by 

physically separating the control of the network from the data path of the network [18]. 

This concept is radically different from the way networks currently operate. Networks 

today are distributed systems in which the devices share information to determine the 

best possible routes. These distributed systems can be slow to react to changes in network 

traffic, and routes may be sub-optimal because each router typically does not know the 

full topology; even protocols that share network-wide link state may not have knowledge 

of the full topology because of route aggregation [19]. The controller must be able to 

determine the current, global state. Using the current state, the controller can find 

globally optimal solutions to improve performance. 
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1. General Architecture 

The Open Networking Foundation defines a three-layer SDN model as depicted in 

Figure 1 [20]. The infrastructure layer is the physical topology, which is composed of 

SDN-enabled switches and the links between them. The switches take flow rules as input 

from the controller and provide statistics about network traffic to the controller as an 

output. They are also the data forwarding devices that receive individual packets and then 

transmit these packets toward the intended destination.  

 
Figure 1.  The three layer SDN protocol architecture includes the infrastructure 

layer, the control layer, and the application layer, from [20]. OpenFlow 
is the communication protocol between the control layer and the 

infrastructure layer. 

The control layer develops the rules that are sent to the switches. The controller is 

programmable and uses the network traffic measurements to determine new routes. The 

controller is software that runs on a computer and communicates with the switches. The 

controller must be able to communicate with the switches using the OpenFlow 

communications protocol [21]. Examples of network services that are implemented by 

the controller include route determination, load-balancing, and topology discovery.  
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The control packets that are passed between the switches and the controller are 

separated from the data traffic. Typically, they are sent over a physically separate 

network called the control network. By having a physically separate control network 

potentially leads to a more secure implementation.   

Network control is implemented via flow rules, which are sent to the switches 

from the controllers. Flow rules have two basics parts. The first part of the rule is the 

match, which defines which packets are processed by the rule. The second part of the rule 

is the action, which defines what action is taken. The flow rule matches various portions 

of the headers of packets that are received at the switches. The action portion of the rule 

tells the switch whether to change the header, drop the packet, route it out a specific port, 

flood the packet out all of the ports, or take some other action [20]. This ability to treat 

each device in a network individually provides a granularity of control that is 

unprecedented in traditional networks. 

The interface from the application layer to the control layer, the northbound 

interface, has not been standardized. However, ONF has a working group actively 

exploring options to standardize this interface [22]. Examples of business applications are 

distributed denial of service (DDOS) protection, intrusion detection, and usage tracking 

for billing. Business applications allow an enterprise to choose which applications are 

required and to purchase those that are required. 

In a typical SDN implementation, a single controller is communicating with 

multiple switches and possibly with other controllers of other domains, as shown in 

Figure 2. One of the drawbacks of centralization is the potential for a single point of 

failure for the network. Traditional networks detect a failed device and are able to recover 

due to the distributed nature of the system. To prevent a network failure due to a single 

device failure, multiple controllers must be implemented in the network. These 

controllers need to share information to ensure that there is a logically centralized 

network representation even though the controllers may be physically separated.  
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Figure 2.  Typical SDNs are configured with multiple controllers to reduce the 

workload of any single controller or to reduce the impact of a loss of a 
controller. 

2. Operation of the Network 

When a packet arrives at the SDN switch, the packet headers are checked against 

the match portion of the rules that the switch already installed in a flow table. If no match 

is found, the switch sends the packet to the controller via the OpenFlow interface. Next, 

the controller determines whether or not a new flow rule needs to be sent to the switch. 

Typically, the controller will create a new rule. The controller then determines the correct 

match and the correct action. The controller then sends a flow rule to the switch, which in 

turn installs this rule in the flow table as a flow entry. Subsequent packets, which match 

this flow entry, are acted upon correctly based on the newly installed rule. The controller 

is free to create, modify, and delete flow entries proactively and reactively.  

A method to aid the controller in determining flow rules is to develop a graph 

theoretic model of the network and extract features based on that model. A network is 

modeled by graph theory as a single entity composed of a set of devices and the 

connections between these devices. Based on that model, matrix representations of the 

network can be developed and used for feature extraction. One of the goals of this work 

is to develop a scheme to extract network features and to control those features.  
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B. APPLICATION OF GRAPH THEORY TO SDN 

Graph theory provides methods to model networks as a set of nodes connected by 

links. These techniques can be used to model all layers of the SDN stack. The physical 

topology can be represented by graphs that describe which nodes communicate directly 

with other nodes, and the networking topology can be described by similar graphs that 

account for network traffic. Once this model has been developed, it can be analyzed to 

determine features of the network, such as nodal centrality and severity of congestion 

[23]. This analysis will aid the controller in the development of flow rules to maximize 

performance and minimize congestion. 

1. Graph Theory  

Graph theory is used to model interconnected objects. These interconnected 

objects can range from neurons in the brain to computers on a network. One of the main 

strengths, but also a drawback, of graph theory is that the model generated using standard 

graph techniques is much more abstract than the network being modeled. For instance, 

the communication between a client and server on the Internet is accomplished by many 

machines that run numerous algorithms to ensure that the web page requested by the 

client is properly displayed in the client’s web browser. In graph theory, these 

complexities are reduced to nodes and links. The benefit of this analysis is that it is 

simpler; the drawback is that assumptions made when reducing complexity may be 

incorrect. These incorrect assumptions can lead to poor results. 

Modeling interconnected devices requires three types of objects:  nodes, links, 

and link weights. Nodes are the objects that are being connected by links. Link weights 

describe a feature of the link between nodes. The definition of link weight will vary from 

implementation to implementation. The robustness of a communication channel can be 

modeled by defining the link weights as a function of a measurable quantity. An example 

is the signal-to-noise ratio (SNR) of a wireless link or the utilization of a wired link [24]. 

For an undirected graph G , where ( , , )G N L W= , N  is the set of nodes that are 

connected by the set L  of links with weights W . Undirected graphs are graphs in which 
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the links do not indicate a direction but simply indicate a connection. Directed graphs 

have links that indicate direction and each direction can have independent link weights.  

In this work, undirected graphs are used and composed of nodes represented by 

SDN switches and links that represent the communication paths between them, which in 

this case are Ethernet cables. The link weights are determined by the data rate between 

the switches. The controller is able to maintain knowledge about the links between 

switches by querying the switches for this information. It is also able to maintain 

information about the data rate by periodically requesting this information from the 

switches.  

To maintain and analyze the topology of the SDN, a matrix representation of the 

network is required. In graph theory, a network topology can be represented by an 

adjacency matrix A  [25]. The adjacency matrix is a n n×  matrix where n  is the total 

number of nodes in the graph G . For an unweighted, undirected graph, each element in 

the thi  row and thj  column ije  in A  is set to one as given by [25] 

 
1 if 
0   otherwise

ij
ij

e L∈
= 


A .  (2.1) 

For a weighted, undirected graph, the adjacency matrix is obtained by assigning link 

weights ijw  according to [25] 

 
 if 

0 otherwise 
ij ij

ij

w e L∈
= 


A . (2.2) 

The degree of a node is defined as the sum of the link weights of the links attached to a 

node. The degree matrix is defined as [25] 

 1
 if 

0    otherwise

n

ik
kij

w i j
D =

 == 


∑ . (2.3) 

If the graph is unweighted, the diagonal of the degree matrix equals the degree of each 

node in the graph. The degree matrix and adjacency matrix can be combined to define the 

Laplacian matrix Q D= − A , equivalently the Laplacian matrix is given by  
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0 otherwise

ij ij
n

ij ik
k

w e L

Q w i j
=

− ∈
= =



∑ . (2.4) 

The formation of the Laplacian matrix is not unique. An n n×  permutation matrix 

P  can be used to transform one graph representation to another without changing the 

underlying structure [25]. For example, given a graph 1G , a new graph can be generated 

through permutation: 2 1
TG P G P= . The Laplacian matrix of the new graph 2G  has the 

same eigendecomposition as the original graph. In other words, the permutation matrix 

simply maps a set of nodes to another set of nodes, but does not change the topology of 

the graph. As a result, the first row and column of Q  could be any node in graph and not 

necessarily a node labeled 1 [25]. 

Normalization is important to make a fair comparison of graphs with different 

numbers of links and nodes. The Laplacian matrix needs to be normalized in order to 

compare various graph metrics among different topologies [26]. The normalized 

Laplacian matrix is defined [27] as 

 1/2 1/2 1/2 1/2normQ I D D D QD− − − −= − =A   (2.5) 

 1/2
,

1  i i
i

D diag
d

−
 

=   
 

. (2.6) 

The off diagonal terms of 1/2D−  remain zero.  

Using the above matrices, a model of a SDN can be obtained using a series of 

nodes, links and link weights. Once a model is developed, it can be analyzed to determine 

useful characteristics of the network. The characteristics include congestion, 

underutilization, nodal centrality, and general health of the network. These are all 

important features that the controller must have to increase the performance of the 

network.  

2. Spectral Graph Theory 

Spectral graph theory is a subfield of graph theory that utilizes the 

eigendecomposition technique to derive characteristics of the modeled network. 
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Eigendecomposition yields two matrices:  the eigenvector matrix and eigenvalue matrix. 

Eigenvector analysis, which is a part of principal component analysis, is often used for 

dimensionality reduction [28]. It is also used to find the fundamental frequencies and 

shapes of vibrating structures. Spectral graph theory uses the concepts of frequencies and 

shapes to analyze Laplacian matrices [25]. Spectral graph theory attempts to find 

meaning in the eigenvalues and eigenvectors of adjacency and Laplacian matrices.  

Eigenanalysis consists of solving i iv vλ=A  where A  is an n n×  matrix, iv  is an 

1n×  eigenvector of A , and iλ  is a scalar eigenvalue of A  for 1, ,i n=  . The first step 

is to obtain the eigenvalues iλ  by solving the equation det( ) 0Iλ− =A  where I  is an 

n n×  identity matrix. The eigenvectors iv  can then be determined by solving 

det( ) 0i iI vλ− =A  [29].  

The eigendecomposition can be applied to both the adjacency matrix and the 

Laplacian matrix. The focus, however, is on the Laplacian because the 

eigendecomposition provides information from both the degree matrix and adjacency 

matrix. By adding the degree matrix to the analysis, it makes it possible to quickly order 

the nodes based on their degree, and this order is reflected in the eigenvalues. It will be 

shown in the following chapters how the degree of a node is an important factor when 

determining its proximity to the center of the network, which is used to develop 

automated methods for the controller to locate the most central nodes. The 

eigendecomposition of the Laplacian matrix can be rewritten in matrix form as 
TQ V V= Λ  where V  is an n n×  matrix of eigenvectors as columns and Λ  is a diagonal 

matrix of eigenvalues. The eigenspace is the vector space spanned by the eigenvectors, 

and it has been shown to capture many of the characteristics of a graph [30]. 

The eigenvalues derived for the Laplacian matrix can be used to better understand 

how the network is constructed and its current health. Any Laplacian matrix will always 

have at least one eigenvalue that is zero, and all the others are positive because it is 

positive semi-definite, i.e., the Laplacian matrix is a square, symmetric matrix, 0TxQx ≥  
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for any 1n×  non-zero vector [25]. The n  eigenvalues are can be ordered from zero to 

largest by  

 1 2 10 n nλ λ λ λ−= ≤ ≤ ≤ ≤ . (2.7) 

By using this ordering, the eigenvectors may be referred to as leading or trailing, which 

are the eigenvectors associated with the largest eigenvalues and the eigenvectors 

associated with the smallest eigenvalues, respectively. 

The number of zero eigenvalues is equal to the number of non-connected 

subgraphs described by a single Laplacian matrix. Physically, a single network can be 

divided into two networks that are unable to communicate due to a failed link or node. In 

the case of a failed device, a single Laplacian matrix can model two separate networks, 

and this Laplacian matrix will have two eigenvalues that are zero. Specifically, rank( )Q  

will be no greater than 1n − , and rank(Q)n −  equals the number of disconnected 

subgraphs [25]. The sum of the eigenvalues is the trace of Q  [25], 

 ,
1 1

n n

k k k
k k

Qλ
= =

=∑ ∑ . (2.8) 

After normalization, all eigenvalues of normQ  are bounded by 0 2kλ≤ ≤ , which provides 

a fair comparison of graphs of different sizes [25]. 

The algebraic connectivity is defined as 2λ , the second smallest eigenvalue of the 

Laplacian matrix, and the eigenvector associated with the algebraic connectivity is called 

the Fiedler vector [31]. Algebraic connectivity provides an important measure of network 

robustness. The algebraic connectivity and the Fiedler vector have been used to 

determine the robustness of a network, and methods to improve robustness by 

maximizing algebraic connectivity have been widely documented in the literature. Large 

algebraic connectivity has been shown to be correlated with well-connected graphs [25], 

better performance when using distributed algorithms [32], and reduced bottlenecks in 

computer networks [33]. As the algebraic connectivity approaches zero, the graph splits 

into two subgraphs, which are sparsely connected. The work reflected in the literature has 

mainly focused on algebraic connectivity, but not on all of the other eigenvalues, which 

contain important information. 
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The eigenvectors are equally important to the analysis of graph theoretic matrices 

and the underlying real-world networks. The eigenvectors of Q  are mutually orthogonal. 

The sum of the elements of any eigenvector is zero except for the eigenvector associated 

with the zero eigenvalue [25]. In spectral graph theory, the eigenvector associated with 

the zero eigenvalue is typically denoted by a vector with elements 

0 1  for 1:iv n i nλ= = = .  

The Fiedler vector along with the eigenvectors associated with the third and 

fourth eigenvalues can be used to create a three-dimensional view of the network [34]. In 

Figure 3, a simple graph that is undirected and unweighted is shown in which the x, y, 

and z coordinates are the second, third, and fourth eigenvectors, respectively. The three 

dimensional shape will change as the link weights change.  

 
Figure 3.  The three trailing eigenvectors of the Laplacian matrix are used to 

represent each node in the network depicted on the left. By using three 
eigenvectors, the network is represented in three dimensions. The red 

nodes are connected by the blue links. 

Notice in Figure 3 the graph is divided equally between the two halves by the 

Fiedler vector about zero. The three links that connect the two halves are the links that 

cross zero on the second eigenvector’s axis. The Fiedler vector has been shown to 

partition graphs into two separate subgraphs [35] by minimizing the number of links that 
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connect the two halves. This same bisection with more clarity is shown in Figure 4 by 

showing only the elements of the second eigenvector. The nodes that have more 

connections have lower eigenvector values, which are a measure of centrality [35].  

 
Figure 4.  A bar plot of the second eigenvector of the graph from Figure 3 

demonstrates how the nodes in a graph are separated into two subgraphs 
by using the sign of the values of each element in the Fiedler vector. 

3. Network Centrality 

In social networks, the goal of centrality metrics is to find the person or persons 

that are most influential within a given community [36], [37]. Researchers in fields 

outside of social networks have attempted to use these same definitions of centrality to 

identify characteristics that are important to their research. For example, the simplest 

definition of centrality is degree centrality Dc , which counts the number of links 

connected to each node and assigns a node a centrality value based on that count. 

Eigenvector centrality is a spectral graph theory metric that is used to determine 

the most central node in a network. This metric takes into account not only local 
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information about how well a node is connected, but also how well its neighbors are 

connected. The eigenvector centrality of node i  i
ec  is defined as [38] 

 
1

1 n
i j
e ij e

jn

c c
λ =

= ∑ A  (2.9) 

where nλ  is the largest eigenvalue of A . Node 'i s  centrality is now a function of the 

sum of its neighbors’ centrality divided by the largest eigenvalue of the adjacency matrix. 

In matrix form, the above equation is 

 e n ec cλ=A . (2.10) 

The 1n×  vector of centrality values is the leading eigenvector of the adjacency matrix 

corresponding to the largest eigenvalue, which can be seen based on Eqn. (2.10). This 

metric is used with undirected graphs because it provides a simple method to determine 

centrality based on network wide information. The drawback to this metric is that it is not 

tied to a specific cost function that is minimized or maximized. It simply adds the values 

calculated and assigns that value to the node being analyzed [23]. Eigenvector centrality 

is used by the Google PageRank algorithm to provide the most relevant pages during web 

searches [39].  

Betweenness centrality Bc  is another metric used to quantify the importance of a 

node to the overall graph [23]. This centrality metric is a measure of the number of times 

node i  is on the shortest path from a source node s  to destination node d . The 

betweenness centrality i
Bc  can be calculated using 

 
i

i sd
B

s i d N sd

c ρ
ρ≠ ≠ ∈

= ∑  (2.11) 

where i
sdρ  is the number of shortest paths that pass through node i  form node s  to node 

d , and sdρ  is the total number of shortest paths form node s  to node d . In short, 

betweenness centrality counts the number of times a node is on the shortest path divided 

by the total number of paths. The result is a measure that quantifies how central a node is 

in terms of shortest path routing, but this metric may not be significant in terms of load 

balancing or other routing techniques. 
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C. COMMUNITY FINDING IN GRAPHS AND NETWORKS 

Community finding [35] or cluster finding is a significant research area within 

graph theory. Its applications range from finding groups within social networks [35] to 

finding clusters within wireless sensor networks. SDNs require similar algorithms to find 

communities or clusters within the network to assign switches to controllers and to find 

the most central nodes, which have the most influence over flows in the network. 

Community finding involves dividing a graph into two or more sets of nodes [23], 

[31], [40], [41], [42]. The graph cut ( , )A BC  is the number of links that are cut or 

removed when the set of nodes in graph A  and the set of nodes in graph B  are separated 

from one another. The ratio cut or the average cut is defined as [25] 

 ( , ) ( , )( , )  A B B AA B
A B

= +
C C

R   (2.12) 

where A  and B  is the number of nodes in the set A  and B , respectively.  

In image segmentation, it has been show that the eigenvectors of the normalized 

Laplacian matrix are an effective means to divide an image into meaningful segments 

[41]. The normalized cut can be shown to be related to the normalized Laplacian. The 

key to the normalized cut is the normalized association ( , )N A BA  defined as 

 ( , ) ( , )( , )
( , ) ( , )N

A A B BA B
A N B N

A A
A = +

A A
  (2.13) 

where ( , )A NA  is the association defined as the total number of links between the nodes 

in A  and the nodes in N . From the normalized association, the normalized cut, cutN , can 

be defined as  

 ( , ) ( , )( , )
( , ) ( , )cut
A B A BN A B
A N B N

= +
A A
C C . (2.14) 

The normalized association and normalized cut can be related to each other by 

 ( , ) 2 ( , )cut NN A B A B= −A . (2.15) 

The normalized cut is related to the Laplacian as follows [41] 

 min ( ) min
T

x cut y T

y QyN x
y Dy

=   (2.16) 
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where y  is a vector of binary values that divide the network into two subgraphs. The key 

insight is that Eqn. (2.16) is now in the Rayleigh quotient form [30]. The Rayleigh 

quotient form allows for the calculation of the minimum and maximum normalized cut 

based on the eigenvectors and eigenvalues of the matrices in the numerator and 

denominator. The vector that minimizes or maximizes the normalized cut is the 

eigenvector, and the bounds on the minimum and maximum are the eigenvalues 

associated with the eigenvectors [30].  

If y  is an eigenvector of the generalized eigenvector problem 

 Qy Dyλ=   (2.17) 

and the requirement for y  to be a binary value is relaxed to include real values, the 

minimum is found when y  is the second smallest eigenvector of the solution to the 

generalized eigensystem. Further, it can be shown that the generalized eigenvector 

problem in Eqn. (2.17) can be converted to the standard eigenvector problem as follows 

 
1 1

2 2 normD QD y Q y yλ
− −

= = . (2.18) 

The second smallest eigenvector of the normalized Laplacian matrix is the real valued 

solution to minimize the normalized cut, which is shown in Eqn. (2.18). 

The normalized Laplacian matrix and the normalized cut work well in 

segmentation of images. The definition of the normalized cut and normalized association 

were defined to ensure that the eigenvectors associated with the smallest eigenvalues 

provided the segmentation needed. It did not consider the opposite end of the spectrum of 

larger eigenvalues and associated eigenvectors. The normalized cut attempts to balance 

the number of links in subgraph A  with the number of links cut between A  and B . In 

the case where one is attempting to find the most central node, the correct answer will not 

be found using the normalized cut because it is attempting to balance two separate 

variables:  the cut links between subgraphs and the links within a subgraph. The most 

influential node or the most central node will not balance these two measures. 

In this research, the ratio cut is used as a cost function, and it is shown that the 

eigenvectors of the Laplacian matrix can be used to maximize or minimize the ratio cut. 

Combining this fact with the benefits of the eigenvector centrality from Eqn. (2.9), a 
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method was developed to represent the network in a form that reveals the network 

structure and features.  

D. CONTROL THEORY 

Control theory has been developed to solve the challenges presented by dynamic 

systems that required feedback to achieve performance goals. SDNs are a multiple-input, 

multiple-output (MIMO) closed-loop control system. MIMO systems can be difficult to 

model and control. However, by selecting a small number of inputs and outputs, a 

simplified model may be developed that can be used to determine observability, 

controllability, and stability [43]. This foundational modeling and analysis may be used 

as a framework to build a SDN control scheme. 

In traditional control theory optimization problems, two properties must be shown 

to be present before a controller can be designed. First, the system must be observable; 

observability requires that the system’s states must be determinable from the 

measurement of outputs [43], [44]. Second, the system must be controllable; 

controllability requires a controller to be able to drive any state to an arbitrary value [43].  

1. State Space Representation 

State space representation is one of a number of ways to model a dynamic system. 

It describes the dynamic system in terms of a set of vectors and matrices. The benefit of 

the state space representation is that there are proven methods to determine observability, 

and controllability. A drawback is that many of the proven methods only apply to linear 

or linearized non-linear systems.  

The state space representation is a method to describe how a system will behave 

based on the system dynamics and given input. The concept of the state of a system is  

the basis of modern control theory. For a causal system, the state is the vector of initial 

conditions such that the response of the system at any time t  can be uniquely determined 

from the state at any time 0t t≥  based on the input between 0t  and t . For most physical 

systems the state is associated with energy storage, such as current in inductors, voltage 

in capacitors and position or velocity in mechanical systems.  
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The state space representation is a system of equations, given by [43] 

 
( ) ( ) ( )
( ) ( ) ( )

x t x t u t
y t x t u t

= +
= +

A B
C D


  (2.19) 

where A  is the state matrix, B  is the input matrix, C  is the output matrix, and D  is the 

feedforward matrix; the state vector is ( )x t , and the derivative of the state vector is ( )x t . 

The output vector is ( )y t , and the input vector is ( )u t . 

The development of the state space representation is based on a set of first order 

differential equations. Clearly, this is not possible for a packet switched network. A 

packet switched network is non-linear, and it is difficult to formulate differential 

equations for a switched network without significant assumptions.  

2. Observability and Controllability 

For a linear time-invariant (LTI) dynamic system as described in Eqn. (2.19), 

observability is the feature of the state space representation that indicates whether it is 

possible to determine the state vector based on the output vector. Simply put, if all the 

state variables are directly measured, the system is always observable. Specifically, the 

Jacobian matrix is used to determine observability [43], [44]. In LTI dynamic systems, 

the Jacobian matrix reduces to the observability matrix, defined as 

 T T 1 T T[  ( )   (C ) ]nO C CA A −=    (2.20) 

If O  has full rank, the LTI system is observable. For systems with a large number 

of nodes, the observability matrix can become quite large, and it can become 

computationally hard to determine the rank of the matrix. In addition, the state matrix and 

the output matrix can change over time. The solution is particularly hard in this case 

because two equations may be independent at one point, but then become dependent as 

the system changes [44]. All SDNs are able to calculate all link data rates because they 

make measurements at all switches, but requesting measurements from all switches is 

results in redundancy. Observability in a SDN is determined by finding the minimum 

number of measurements required to fully describe the state. 
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Controllability is the second of the two requirements, and controllability is 

assured if the controllability matrix has full rank [43]. Controllability is a feature of the 

state space model that indicates whether it is possible to drive all states to an arbitrary 

value based on the input ( )u t  [43]. In the terms of the matrices in Eqn. (2.19), the 

controllability matrix C  is defined as 

 2 1[     ]nC B AB A B A B−=    (2.21) 

Similar to the observability matrix, the controllability matrix can become quite 

large as the number of nodes in the network grows. Again, the state and input matrices 

can be a function of time. Finding the correct input is a key problem in most control 

theory research. For a SDN, the input is the amount of traffic that is generated by the 

connected hosts, and this traffic is not controlled by the SDN controller. The result is that 

the problem is not based around controlling the input, but given an input how does the 

SDN controller route the traffic to maximize performance and minimize congestion. 

3. State Observer 

The state space formulation from Eqn. (2.19) can be used to develop the state 

observer, which is used in dynamic system control to estimate the state of the network in 

a noisy environment. The noise could come from the system or from the measuring 

device or, as in most cases, both. By discretizing Eqn. (2.19) a more general set of 

equations can be obtained as 

 1 1 1k k k k

k k k k

x Ax Bu
y Cx Du

µ
η

− − −= + +
= + +

 (2.22) 

where 1kµ −  is the system process noise at time step 1k − , and kη  is the measurement 

noise at time step k  [45]. This updated model now includes noise, which will prevent the 

calculation of the state deterministically. The state must be estimated to provide the state 

controller with the best possible information with which to determine input required. 

a. Kalman Filter 

A Kalman filter is an optimal algorithm to estimate the current state based on the 

previous state and the current measurement. It is provably optimal in the case where the 
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state can be modeled with a set of linear equations, and the noise can be modeled with a 

Gaussian probability density function (PDF). The goal is to recursively estimate kx  using 

the current measurement kz  which is defined as 

 ( ),k k k kz f x η= . (2.23) 

Specifically, an accurate estimate of kx  should be based on all the previous 

measurements up to time k , { }1: , 1, ,k iz z i k= =   [45]. 

This problem can be reduced to determining the probability density function 

(PDF) that provides the probability ( )1:|k kp x z  that the state vector is a specific value 

given all of the measurements. At each time step k , this PDF is updated to include the 

next measurement. Both the optimal and sub-optimal algorithms both use a recursive 

process to calculate ( )1:|k kp x z . The first step is to predict kx  based on the state space 

model in Eqn. (2.22), and then update the prediction based on the current measurement. 

The Kalman filter provides a process to optimally estimate the state of a dynamic 

system given that the system can be modeled with a linear set of equations and the noise 

is modeled as a Gaussian random variable. However, in many cases these two 

assumptions cannot be made simultaneously. In these cases, a suboptimal algorithm must 

be selected; the most common suboptimal algorithms are the extended Kalman filter 

(EKF), approximate grid-based methods, and particle filters [45]. EKF and approximate 

grid-based methods are not good fits for a SDN state estimator because too many 

assumptions are required to effectively use those. Particle filters provide the greatest 

flexibility in dealing with the non-linear state equations and non-Gaussian noise.  

b. Particle Filter 

Particle filters are a specific type of state estimators that are based on a Monte 

Carlo simulation [46]. Particle filters follow the same estimate and update process as the 

Kalman filter, but the method they use is based on the selection of particles from a 

random population and then each particle is given a weight to determine the most likely 

state given the current measurement. Particle filters were developed specifically for 
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systems that cannot be linearized, have non-Gaussian noise, and must be calculated in 

real-time [45]. 

The scheme starts with the previous set of particles that were used to estimate 

1kx −  [45]. New particles are generated by updating each of these particles using the non-

linear state model. This process results in an updated set of particles kx  and updated 

observations ky . Next, each particle is assigned a weight based on a given PDF. In many 

cases a Gaussian distribution is acceptable. If that is the case, the weight for particle i  at 

time k  is assigned by  

 
2( )

22
2

1
2

iz yk k
i
kw e σ

πσ

− −

=   (2.24) 

where σ  is the standard deviation of the system noise. These particle filter weights are 

then normalized to ensure that a PDF is obtained for all of the particles. The scheme is 

depicted in Figure 5. 

 
Figure 5.  The particle filter process is demonstrated contained within the blue 

box. The first stage predicts the particle values based on the prior set of 
particles and the current input to the system. Next, the particle weights 
are updated using the current measurement. Finally, the particles are 
resamples and the mean of the new sample is the current estimate. 
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From this new PDF, a new set of particles is selected based on the weights 

assigned in Eqn. (2.24). By randomly sampling from this new PDF, the particles with 

larger weights are more likely to be chosen. Based on this new set of particles, one can 

estimate the state, which is typically done by finding the mean of the new set of particles. 

The process will start over using this set of particles and a new measurement [45]. 

4. State Controller 

The state controller is responsible for taking the state estimate from the observer 

and determining the necessary control inputs to move the state towards the desired value. 

In a SDN, the controller is unable to control the input to the network, which is the offered 

traffic. It is able to control the flow of traffic that is generated by the hosts. In the Google 

B4 network [3], the controllers were able to control both end hosts and the network 

flows. That is not the scenario in this work. The problem is more difficult and more 

general if the controller is unable to control the end hosts’ offered traffic.  

In summary, SDN is a new networking technology that provides network 

administrators with greater visibility into the behavior of the network and control over 

those behaviors than in the past. There is a great deal of flexibility given to the network 

administrator to operate the network. Graph theory and spectral graph theory are two 

tools that may help identify network features. Community finding is an application of 

graph theory and spectral graph theory, which allows for the determination of natural 

partitions in the network. Finally, control theory provides many concepts and 

terminology that can be adopted by SDN applications to develop a closed-loop control 

framework.  
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III. DUAL-BASIS ANALYSIS AND ITS APPLICATION IN 
IDENTIFYING NETWORK BEHAVIOR 

To maintain control over any network, one must be able to describe the behavior 

of the network in both a static topological sense and a dynamic traffic-aware sense. The 

goal of this chapter is to describe the preliminary analytical work that allows network 

controllers to more efficiently control these networks. 

Spectral graph theory is used to develop the dual-basis representation to help 

determine nodal centrality and connectivity based on current network conditions. 

Following the dual-basis analysis, the development of a state observer and state controller 

for a SDN will be presented. The observer implements a state estimator that uses a non-

linear state model with a non-Gaussian noise model. The SDN controller may implement 

any network routing algorithm, but not all nodes must implement this algorithm. As 

shown in [2], updating routes at a small number of nodes may be sufficient to improve 

performance. The dual-basis analysis is proposed to be the method to identify these nodes 

that provide the maximum increase in performance. 

A. SPECTRAL GRAPH ANALYSIS TO IDENTIFY NETWORK FEATURES 

Given an n n×  matrix Q , it can decomposed as  

 TQ V V= Λ  (3.1) 

where V  is an n n×  matrix containing the right eigenvectors as columns, TV  is an n n×  

matrix containing the left eigenvectors as columns, and Λ  is an n n×  matrix with the 

eigenvalues along the main diagonal [25]. Together the bases formed by the column 

vectors of V  and TV  are known as the dual-basis representation [47]. The following 

derivation shows how the dual-basis representation of the Laplacian can be used to 

optimize the ratio cut from Eqn. (2.12). 

The ratio cut is a standard metric used in graph theory to find communities or 

partitions in a graph [41]. The dual-basis analysis of the Laplacian matrix is a method to 

find the optimal ratio cut of a graph. This optimization leads to the observation that one 
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can use this approach to obtain a set of metrics based on the dual-basis analysis to find 

the principal nodes in the network. 

1. Optimization of Ratio Cut Using Rayleigh Quotient 

The ratio cut is minimized by minimizing the cut between two subgraphs and 

maximizing the number of nodes in each subgraph. The opposite is true to maximize the 

ratio cut. From Eqn. (2.16) and based on the derivation in [41], the ratio cut can be put 

into Rayleigh quotient form; the eigenvectors of the Laplacian matrix can then be used to 

determine the optimal solution to the ratio cut problem. 

 By letting  and 1k A N k B N= − = , the ratio cut can be rewritten as  

 
( )

( , ) ( , ) ( , ) ( , )  
1

A B A B A B A B
A B k N k NN N
N N

= + = +
−

C C C C
R .  (3.2) 

The cut can now be expressed as a function of the Laplacian matrix Q  

 ( ) ( ) ( ) ( )
( )

  
1

T Tx Q x x Q x
k N k N

+ + − −
= +

−
1 1 1 1

R   (3.3) 

where x  is an 1n×  vector with elements of 1±  and 1  is an 1n×  vector of 1’s.  

By combining the terms, Eqn. (3.3) becomes 

 
( )( ) ( )1 1 1

(1 )

T T T T T T T TQ x Q Qx x Qx k Q x Q Qx x Qx k
k k N

+ + + − + − − +
=

−

1 1 1 1 1 1
R .  (3.4) 

By expanding further, grouping like terms and simplifying, one obtains 

 (1 2 )
(1 )

T T Tx Qx Q k Qx
k k N

+ + −
=

−
1 1 1

R . (3.5) 

Substituting ,  = ,  and T T Tx Qx Qx Qa β γ= =1 1 1  into Eqn. (3.5) results in 
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( ) 2(1 2 )
1

k
k k N

α γ β+ + −
=

−
R . (3.6) 

Adding and simplifying leads to   
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  (3.7) 

  

Further algebraic manipulation of Eqn. (3.7) yields 
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  (3.8) 

For 1b k k= −  and 0γ = , Eqn (3.8) can be rearranged to obtain 
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  (3.9) 

This result can be simplified by expanding and grouping like terms as follows 
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( ) ( ) ( ) ( )
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  (3.10) 

By setting ( ) ( )y x b x= + − −  1 1 , the ratio cut simplifies to 

 = yQy
b N

R . (3.11) 

To finally present in the Rayleigh quotient form, the denominator of Eqn (3.11) must be 

shown to be equal to Ty y . Since b A B= , it can be shown that: 
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 ( )b N b A B A b A= + = + ,  (3.12) 

 2A A
b A B b B

B B
= = ,  (3.13) 

and 

 ( ) ( ) ( ) ( )2 2T T TA b B x x b x x y y+ = + + + − − =1 1 1 1 .  (3.14) 

From Eqn. (3.11) and Eqn. (3.14), the result is  

 ( , ) ( , ) 
T

T

A B B A y Qy
A B y y

= + =
C C

R . (3.15) 

This result is similar to that from [41] except matrix D  is not included in the 

denominator; see Eqn. (2.16). With the ratio cut in Rayleigh quotient form, the optimal 

binary solution is determined by using the leading and trailing eigenvectors of the 

Laplacian matrix.  

2. Example: Optimal Binary Solution to Ratio Cut 

To further develop this idea, one must examine how to use the real valued 

eigenvectors to obtain the maximum or minimum ratio cut. As an example, consider the 

graph of Internet2 shown in Figure 6 [12], [13]. The ratio cut is minimized when nodes 1 

through 17 are assigned to one subgraph and all others are placed in the other. In this 

case, four links are cut, and the ratio cut is equal to 0.47. This solution is found by 

assigning all nodes with values less than 0.005 in the second eigenvector to one subgraph 

and all others to another subgraph. Notice that one could exchange nodes 18 and 17 

between the two subgraphs and the ratio cut does not change. There is more than one 

correct answer to the binary minimization.  

When considering the maximization, a similar observation is made. There are four 

correct answers. In Figure 6, nodes 2, 7, 13, and 16 all have four links, and all will 

produce the same ratio cut maximization, which is equal to 4.12. All of these nodes are 

identified in the leading three eigenvectors. Identifying the four correct answers using 

fewer than four eigenvectors supports the assertion that one must use more than a single 

eigenvector to achieve a full representation of the most central nodes in the network.  
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Figure 6.  The two-dimensional representation of Internet2 in eigenvector 

space places the least connected nodes on the edge and the most central 
nodes in the center. Each red node is a city on Internet2, and the blue 

links show the connectivity between cities. 

For the binary solution, the ratio cut is optimized if the y  vector is constrained to 

include two values because networks are discrete entities. In the development of the dual-

basis representation, this constraint is relaxed and the real values are used. The use of the 

real-valued vectors is consistent with network science research, image processing, and 

graph theory [23], [25], [41]. The use of real values allows the use of the full range of 

values, which provides greater specificity when attempting to determine which 

eigenvectors can be used to identify the most central nodes. 

3. Principal Eigenvectors of the Dual-basis 

The eigenvector centrality as defined by Eqn. (2.9) does not only take the 

connectivity of a node into account, but also the connectivity of its neighbors and the 

neighbors of neighbors. This allowed the analysis of the network as a whole as opposed 

to focusing too narrowly on a given node or portion of the graph.  
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The concept of principal eigenvectors is the idea that one can use multiple leading 

or trailing eigenvectors of the Laplacian matrix to describe network features. An example 

is Figure 6 in which the two trailing eigenvectors of the Laplacian matrix are used to 

represent the network. Using these two eigenvectors presents the network in a way that 

the most central nodes are in the center of the image and the least connected nodes are on 

the edges of the image. The principal eigenvector approach uses this concept to determine 

a suitable number of eigenvectors to use to extract the features needed for the users’ 

specific application.  

Using the principal eigenvectors of the dual-basis representation leverages all of 

the benefits of the eigenvector centrality except for the fact that the leading eigenvector 

of the adjacency matrix will always only contain positive values [23]. The major 

difference between the eigenvector centrality assignments and the use of the dual-basis 

analysis is the use of multiple eigenvectors to determine the principal vectors. As defined 

in Eqn. (2.10), centrality values are assigned based on the leading eigenvector of the 

adjacency matrix. This definition of centrality is too simplistic to fully capture the 

centrality of a large network. The image segmentation community recognized that 

multiple eigenvectors provided a more accurate segmentation of the image over the use 

of a single eigenvector [41]. By treating the centrality value for each node as a vector, a 

more complete description of centrality is provided. 

Using multiple eigenvectors solves the problem presented by the eigenvector 

centrality that weights neighbors of the most central node more heavily than others. The 

result of this weighting skews the centrality of the network to be localized to one section 

of the graph. In large real-world networks, there is not a single node or section of a graph 

that can control the entire network. That is why a localized definition of centrality is not 

sufficient to describe the most central nodes.  

The number of principal eigenvectors required to fully describe the centrality of 

the network is determined by calculating the angles between nodes. The centrality of the 

network has been fully described when all of the nodes that are near orthogonal to each 

other are located. This notion of nodal orthogonality will be discussed in future chapters. 
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Based on the use of multiple eigenvectors and eigencentrality, the dual-basis network 

representation can be explained and understood. 

B. DUAL-BASIS NETWORK REPRESENTATION 

In light of multiple correct answers to the maximization of the ratio cut problem 

provided by the eigenvectors of the Laplacian, one could use all of the eigenvectors of the 

Laplacian to build an n -dimensional space to characterize the network. The eigenvectors 

can be ordered according to their associated eigenvalues; the eigenvectors provide n  

orthogonal vectors that contain one value for each node in the network. The first 

eigenvalue is always zero and therefore, its eigenvector does not provide any information. 

The second eigenvalue, algebraic connectivity, is associated with the Fiedler vector, 

which is a good approximation of the minimum cut or, as shown previously, a means to 

estimate the minimum ratio cut. As the eigenvalues increase, the associated eigenvectors 

span a set of vectors that vary between highlighting the most connected nodes and the 

least connected nodes.  

This set of orthogonal vectors is a self-dual basis that is orthogonal with itself. 

One set provides a range of centrality vectors while the other provides a set of nodal 

vectors [25]. Each is an important component when considering the static design phase 

and dynamic monitoring phase of the dual-basis analysis. First, the analysis is developed 

for a static network and then extended for a dynamic network. 

1. Spectral Graph Theory Development of the Dual-basis 
Representation with Static Link Weights 

Simply put, the dual-basis representation is the eigenvector matrix of the 

Laplacian matrix. Spectral graph theory provides a method to decompose the modeled 

network into its constituent pieces. The graph cut minimizations and maximizations are 

examples of a network’s constituent pieces. The dual-basis analysis is based on a set of 

eigenvectors that form two orthogonal bases for the network where the centrality vectors 

are the columns of V  as 
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and TV contains the nodal vectors as 
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Additionally, the null space and reachability space are formed by these same 

matrices. The reachability and null spaces define which nodes are reachable in a routing 

sense within the network and which are not [48]. The size of the null space nulln  is 

determined by the number of zero eigenvalues of the Laplacian matrix, and once sorted 

according to Eqn. (2.7), the eigenvectors of TV  indicate which nodes are in the null 

space. The eigenvectors corresponding to the null space are  

 [ ]... 1 0 ... 0 T
iv =  

where the indices of the value 1 are the indices of the nodes in the null space; each 

eigenvector contains 1n −  zeros, and one 1. The remaining nodes are contained in the 

reachability space.  

2. Eigencentrality Basis 

The eigencentrality basis defines how influential a specific node is at a given 

eigenvalue. Consider the network shown in Figure 7. Nodes 1 through 6 are 

representative of an access network. Nodes 7 through 16 are representative of a core 

network. Node 17 is disconnected from the larger network to demonstrate how a 

disconnected node behaves in the dual-basis. A three-dimensional representation of the 

eigencentrality basis of the network from Figure 7 is shown in Figure 8. The third, fourth 

and fifth eigenvectors are used in the three-dimensional representation because they are 

the three eigenvectors associated with the three smallest, nonzero eigenvalues. 

Each eigencentrality vector is an n -dimensional vector. In this example, the 

eigencentrality vectors are 17 1× ; one value is associated with each network node. 

Plotting the three trailing eigencentrality vectors typically produces a good visual 
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representation of the network because they place the least connected nodes at the edge 

and the most connected nodes at the center of the plot [48]. Networks are typically drawn 

this way; the core of the network is in the center of the diagram, and the access network 

is at the edge. Any disconnected nodes are placed at the origin, which in Figure 8 is 

denoted in red.  

 
Figure 7.  The three types of nodes above are represented by the green access 

nodes, the blue core nodes, and the one red disconnected node. 

 
Figure 8.  Eigencentrality basis plotted using the three eigenvectors associated 

with the three smallest, non-zero eigenvalues with nodes 2, 3, and 3 as 
the least central nodes in the network. 
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The network graph could be as easily plotted using the three leading 

eigencentrality vectors associated with the three largest eigenvalues. This representation 

places the most connected nodes at the edge of the graph and the least connected in the 

center as shown in Figure 9.  

 
Figure 9.  Eigencentrality basis plotted using the three eigenvectors associated 

with the three largest eigenvalues with nodes seven, eight and nine as 
the most central nodes in the network 

The dual-basis representation reveals how coupled or isolated nodes are from one 

another. Notice in Figure 8 and Figure 9 that the nodes on the x, y, and z-axes are 

separated by 90°, which means they are isolated from each other. The result of this dual-

basis analysis is that many nodes are orthogonal or near-orthogonal to the others without 

the use of all n  eigenvectors. This means that there is a subset of the total number of 

eigenvectors that may be used to represent the node’s centrality relative to all other 

nodes. 
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Laplacian eigencentrality provides a measure of the importance of a node to the 

network and the impact of its removal. The Laplacian eigencentrality is defined as  

 
2j j j j

k k k kE v v v∗= =   (3.18) 

where j
kv  is the thj  element of the thk  eigenvector of the matrix V  in Eqn. (3.16) [25]. 

This value indicates how influential each node is at each eigenvalue. This definition must 

be extended to include multiple eigencentrality vectors so that each node may be treated 

as a multi-dimensional vector in the nodal space. 

By expanding Eqn. (3.18) to include multiple eigenvectors, the Laplacian 

eigencentrality is 

 
H

: : :

: 1[ , , , ]

j j j
k n k n k n

j j j j
k n k k n

E v v

v v v v+

=

= 
. (3.19) 

Eigencentrality of node j  is now defined as the 2L  norm of the leading n k−  values of 

the 'j s  nodal vector. In addition to the 2L  norm, the angle between node i  and j  can be 

calculated by using the dot product  

 : : : : :cosi j i j ij
k n k n k n k n k nv v E E θ• =  (3.20) 

where :
ij
k nθ  is the angle between node i  and node j . Using the Laplacian 

eigencentrality and angles between nodes, the most central nodes can be located.  

3. Nodal Basis 

The nodal basis is a set of eigenvectors that describe how influential a specific 

node is across the entire eigenspectrum. The eigenvectors as columns in Eqn. (3.17) are 

associated with a single node in the network [25]. To demonstrate the nodal basis more 

clearly, the Laplacian matrix can be calculated using the eigenvectors and eigenvalues. 

When the matrix TV  is decomposed into individual vectors and related back to Q , the 

vector form of the degree matrix is 

 ( ) ( ) ( )2 2 21 2
, , 1 2

n
i i i i i i i nD Q v v vλ λ λ= = + + +   (3.21) 
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where ,i iD  is the thi  node in the degree matrix, which corresponds to the thi  value along 

the diagonal of Q , and j
iv  is the thj  node’s value associated with the thi  eigenvalue as 

shown in Eqn. (3.17). Any node’s degree is a function of one eigenvector and all 

eigenvalues as shown in Eqn. (3.21), which demonstrates the reason for the definition of 

eigencentrality in Eqns. (3.18) and (3.19). The eigencentrality norms disregard the sign of 

the eigenvalue element and simply use the square of the magnitude when using multiple 

eigenvectors. This same formulation is seen in Eqn. (3.21) in which the square of the 

eigenvalue is used, which disregards the sign of the eigenvector element.  

For the network in Figure 7, the nodal basis of node 6 has 15 values because there 

are 15 non-zero eigenvalues; the eigenspectrum of nodes 6 is shown in Figure 10. The 

nodal basis of node 6 clearly indicates that it has the most influence over 8λ . The 

response shown in Figure 10 is an example of how the eigendecomposition is a tool to 

reveal the structure of the network. In this case, node 6 is well isolated from the other 

nodes, which is demonstrated by the strong response at 8λ  and small responses at all 

other eigenvalues. This is considered the node decoupling effect demonstrated by the 

eigendecomposition. 

All of the nodes in the example network have similar eigenspectra to the one 

shown in Figure 10. The shape of the eigenspectrum is unique for each node due to the 

requirement that the basis vectors are mutually orthogonal. In addition, the eigenspectrum 

provides information about the number of connected graphs included in a single 

Laplacian matrix. One can extend the ideas of the eigencentrality and nodal bases to 

include two spaces that indicate which nodes can be used in legitimate routes in the 

network and which cannot be included. 
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Figure 10.  The eigencentrality of node 6 across the eigenspectrum of the static 

graph in Figure 7 demonstrates that the eigendecomposition reveals the 
isolation of node 6 from all other nodes in terms of the eigenresponse. 

4. Null and Reachability Space 

The null space is mathematically and physically interpreted as a part of the 

solution space or network that is unreachable. There will always be one or more zero 

eigenvalues of the Laplacian. The eigenvectors corresponding to the zero eigenvalues 

define the null space of the Laplacian matrix. By examining the elements of the null 

space eigenvectors, the nodes j
iv  that are unreachable by the rest of the network are 

indicated by the thj  node’s value being equal to 1 in Eqn. (3.17). All other values in the 

null space eigenvectors are zero.  

The reachability space contains the remaining eigenvectors that are not in the null 

space. Once the null space nodes have been identified, the remaining network is 

guaranteed to have a route from all nodes to all other nodes. The number of non-zero 

eigenvalues and the size of the reachability space is equal to ( )rank Q  [25]. The size of 

the null space is equal to ( )rankn Q− . The size of the null space determines the length of 
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the vectors in the nodal space; the nodal space eigenvectors will have dimensionality 

equal to ( )rank Q . The eigencentrality basis vectors will always have a length equal to n . 

To this point in the chapter, the focus has been on networks that have static links 

with weights equal to 1. This analysis is valid when considering the topology of the 

network. When striving to model real-world networks, the interaction between network 

traffic and network topology must be considered. To add the network traffic to the above 

analysis, the link weight will be allowed to vary, which allows the model to account for 

network traffic. Large network models that include varying link weights do not lend 

themselves to analysis with closed-form solutions. In a few specific cases, closed-form 

solutions for the eigenvalues and eigenvectors can be found. These closed-from solutions 

provide a transition from a static dual-basis analysis to simulating large, dynamic 

networks.  

C. DYNAMIC LINK WEIGHT ANALYSIS USING THE DUAL-BASIS 
REPRESENTATION 

The following analysis demonstrates the dynamics of mesh networks when the 

link weights are allowed to change. A mesh network is one in which all nodes are 

connected to all other nodes—similar to the core network from Figure 7. The objective is 

to demonstrate that dynamic, time-varying link weights are reflected in the eigenvectors 

and eigenvalues. Increasingly complex networks are analyzed in the following sections. 

The complexity quickly outweighs the usefulness of this approach because the closed-

form solutions are too long to show here. Even though these are simple network graphs, 

the equations show patterns that can be useful in understanding more complex systems. 

1. Closed-Form Solution for Algebraic Connectivity for Mesh Networks 

The first step to find the closed-form solution of dynamic graphs is to find the 

eigenvalues of a static mesh network, which in the context of graph theory is called a 

complete graph. The Laplacian matrix of a mesh is constructed as 
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where iu  is the link utilization, and ,i kw  is the link weight of node 'si  thk  link. The link 

utilization ju is related to the weights ,i kw  by  

 , ,1 ,  1 0.i k j i kw u w= − + − ≤ ≤ . (3.23) 

The weights ijw  are defined as 

 ( ) ( )RTT RTT

max max max max

( ) ( )( ) ( )1 1 1 1
ij jiij ji

ij ij ji ji
ij ij ji

t k t kR k R kw
R t R t

ψ ψ ψ ψ
  

= − − − − − −  
  

  (3.24) 

where RTT ( )ijt k  is the round-trip time from node i  to node j  at time k , maxt  is the 

maximum allowable round-trip time before that link is considered unusable, ( )ijR k  is the 

measured data rate from node i  to node j  at time k , max
ijR  is the link bandwidth in bits 

per second (bps) of the link from node i  to node j  and ijω  is a weighting factor to bias 

towards one metric or the other. 

For a mesh network, the characteristic equation is [25] 

 1( 1) ( ) 0n nnλ λ −− − = . (3.25) 

The eigenvalues of this equation are: 1 0,  i nλ λ= =  for 2, ,i n= 2 . For any complete 

graph, the algebraic connectivity will always be n  [25]. From this foundation, the next 

step is to determine the effect of dynamic link weights on the eigenvalues. 
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a. Mesh Network with One Dynamic Link Weight 

To begin examining changes in how link weights affect the results of the dual-

basis analysis, a single link was assigned a varying link weight. By varying 1u  between 0 

and 1 and setting 2 1, , 0nu u − =2 , the characteristic equation was determined to be 

 2
1( 1) ( ) ( 2 ) 0n nn n uλ λ λ−− − − + = . (3.26) 

The solution to the above equation results in three distinct eigenvalues:  

1 2 10,  2 ,  and in u nλ λ λ= = − =  for 3, ,i n=  . In this case, the algebraic connectivity is 

always 2 12n uλ = −  and is bound by 22n nλ− ≤ ≤ .  

This result indicates that the eigenvalues and the corresponding eigenvectors 

provide a method to reveal the dynamics in such a way that specific features can be 

isolated. Dynamic link weight behavior can be isolated to a small number of eigenvectors 

by using the dual-basis representation. This is not a proof, but it does provide confidence 

that one can decouple nodal interaction using the eigendecomposition approach. If the 

link weight behavior can be decoupled from node to node, then the centrality basis and 

nodal basis are relevant in both static and dynamic graphs.  

b. Mesh Network with Two Dynamic Link Weights 

The next examined was a mesh network with two links with dynamic link 

weights. Each link weight is not necessarily equal. When 

1 2 3 1 1 20 1,  0 1,  , 0,  and nu u u u u u−≤ ≤ ≤ ≤ = ≠2 , the characteristic equation is 

 3 2 2
1 2 1 2 1 2( 1) ( ) (2( ) 2 ) 3 2 ( ) 0n nn u u n u u n u u nλ λ λ λ−  − − + + − + − + + =  . (3.27) 

There are four distinct eigenvalues:  
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 (3.28) 

The algebraic connectivity is always 2 2
2 1 2 1 2 1 2n u u u u u uλ = − − − + − . This means that 

the algebraic connectivity is bound by 23n nλ− ≤ ≤ . At this point in the analysis, adding 
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additional dynamic links resulted in equations that are too long to show here, but closed-

form solutions do exist.   

There is some interaction between the second and third eigenvalues as shown in 

Eqn. (3.28) because the second and third eigenvalues are a function of the two weighted 

links. This result is expected because there are now two links that are allowed to vary and 

these links are connected to the same node. Hence, nodal centrality should be coupled to 

both weighted links. The isolation still holds for all of the other eigenvalues. They are not 

affected by these varying link weights. This pattern holds as larger numbers of links are 

allowed to vary. The number of varying eigenvalues is equal to the number of links that 

vary. 

c. Mesh Network with Dynamic Link Weights to One Node 

In this scenario, all the links to one node are allowed to vary, but two link weights 

are unequal while the remaining are all equal. When 

3 1 2 10 1,  0 1,  and 0 1nu u u u−≤ = = ≤ ≤ ≤ ≤ ≤2 , the characteristic equation is 

4 3
3

2
1 2 3 3

2
3 3 1 2 3 1 2 3 1 2 1 2

3
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                                (2( ) ( 3)

                                ( (3 2 ) 4 ( ) ( ) ( ) 3

                                ( 1)
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λ λ λ

λ

λ

−− − +

+ + − + −

+ − + − − + + − + +

+ − 2
1 2 3 1 3 2 3 1 2 1 3 1 2 3 1 2(2 2 2 ) ( 3 )] 0n u u u u u u u n u u u u u u u u u+ + − − − + + + − =

. (3.29) 

In this case, there are five distinct eigenvalues, and they are 0,  n u−  and the 

solutions to Eqn. (3.29). There are three algebraic solutions to the third order Eqn. (3.29), 

but the solution is too long to include here. This demonstrates that there are closed-form 

solutions for the algebraic connectivity for arbitrarily large networks. Again, the pattern 

of varying link weights and eigenvalues continues. The eigenvalues clearly indicate that 

there are varying link weights in the network.  

d. Mesh Network with a Node Connected by Two Links 

The next set of results determines the closed-form solution of the algebraic 

connectivity for a mesh network with an additional node connected by two links. If 

1 2 3 10 1,  0 1,  and 1nu u u u −≤ ≤ ≤ ≤ = = =2 , the model is a mesh network with two links 
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to a single node with unbalanced traffic—similar to the network in Figure 7, but using 

only the core network and node 2. The characteristic equation is 
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Again, the eigenvalues are 0, 1n − , and the solutions to the third order Eqn. (3.30). 

If the two links are traffic balanced, i.e. 1 20 1u u≤ = ≤ , the characteristic equation 

becomes 

 4 2( 1) ( 1) ( )[ (3 2) 2 2 ] 0n nn n u u n n unλ λ λ λ λ−− − + − + + − − + − = . (3.31) 

This case provides five distinct eigenvalues: 
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 (3.32) 

Therefore, the algebraic connectivity will always be  

 2 2
2

3 11 ( (2 4) 9 12 4
2 2 2
n u n n u u uλ = − + − + − + − + , (3.33) 

and 

 2lim  2 2
n

ul
→∞

= − . (3.34) 

The details of the algebraic manipulation to obtain the limit in Eqn. (3.34) are shown in 

Appendix A. 

This result suggests that eigendecomposition is an effective way to examine 

network behavior because it reveals the structure of the network is such a way that the 

nodal behavior is isolated to the extent possible, and it has a natural transition from graph 

representation to matrix representation to dual-basis representation.   
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e. Mesh Network with Balanced Traffic to One Node 

Finally, if all traffic is balanced to a single node in the mesh network, 

10 1u u≤ = = ≤ , the characteristic equation simplifies significantly:  

 2( 1) ( ) ( ) 0n nn u n unλ λ λ−− − + − + = . (3.35) 

From this result, the eigenvalues are:  1 2 30,  ,  and =n nu n uλ λ λ= = − − ; n u−  is repeated 

2n −  times, and the algebraic connectivity is 2 (1 )n nu n uλ = − = − . Therefore, if n  is 

large and u  approaches 1, the algebraic connectivity approaches 1,1Q  because  

 1,1 1,1 1( 1)( 1 ) ( 1)(1 )
n

k
k j
j k

Q w n u n u
=
≠

= − × = − − − + = − −∑ . (3.36) 

From these equations, one can begin to understand how the dynamic link weights 

affect the eigenvalues. However, the eigenvectors are the second half of the story. The 

combination of the two is key to understanding the network as a whole. If the SDN 

controller is to control the network as a whole, it must use a representation to track 

network behavior that isolates the network behavior to the extent possible. As shown in 

the previous sections, the eigenvalues can be used to isolate the dynamic link behavior 

because the change in link weight on a link can be isolated to a single eigenvalue. That 

means that the behavior that is modeled by the link weight can be tracked using the 

eigenvalues. This is important in a graph because the controller needs a method to isolate 

and locate behavior in the network, such as congestion and underutilization. The network 

behavior represented by the eigenvalues can be considered to be the state of the network. 

2. Closed-Form Solution for the Fiedler Vector 

Once the eigenvalues are known, the eigenvectors can be determined. The closed-

form solution is provided for a simple case, but it can be extended to more complex cases 

as well. The goal here was to provide a closed-form solution for a single, simple case and 

illustrate more complex cases through simulation. These simulation results are shown in 

the next section. The simple case is one in which all of the links to a node are allowed to 

vary, but all of the weights are the same value.  



 50 

In this case, one eigenvector is different from the rest—the Fiedler vector 2v . To 

solve for the elements of 2v , a set of n  linear equations must be solved based on the 

eigenvalues determined in Eqn. (3.35). The first equation is in the form 

 1 2
2 2 2( 1) ( 1) ( 1) 0nv u v u v u− + − + + − =2 , (3.37) 

which reduces to 2
1

0
n

k

k
v

=

=∑ . The remaining equations are of the form 

 1 2
2 2 2 2( 1) [(n 1)( 1)] 0i nv u v v u v− − − − − − − − =22   (3.38) 

for 3,...,i n= . The solution of these n  equations is  
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 (3.39) 

where χ  is an arbitrary constant. How well the Fiedler vector partitions node 1 from the 

remaining nodes in the network is evident in Eqn. (3.39). The first value 1
2v  has not only a 

different sign, as indicated by the 1− , from the rest of the values, but it is also a much 

larger value.  

To solve for the elements of 2v  from a slightly different approach,  

 2 2( ) 0Q I vλ− =   (3.40) 

must be solved for 2v . One can rearrange and expand Eqn. (3.40) to show the first linear 

equation in vector form, the result is 

 

1
2
2

12
1,1 1,2 1,n 2 2

2

0

n

v
v

Q e e v

v

λ

 
 
   − =   
 
  




. (3.41) 

where 1,2 1,, , 1ne e u= − . Rearranging Eqn. (3.41), one can isolate 1
2v  as a function of link 

weights, algebraic connectivity, and the remaining components of the Fiedler vector, as 

follows 

 

2
2

1
2 1,2 1,n

2 1,1
2

1

n

v
v e e

Q
v

λ

  
   =     −     

  . (3.42) 



 51 

Then, one can determine 1,1Q  as shown in 
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Substituting Eqn. (3.43) back into Eqn. (3.42), the result is 
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Eqn (3.44) reduces to 
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and finally 
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Eqn (3.46) demonstrates that 1
2v  will have a different sign than the sum of the remaining 

components of the Fiedler vector. The remaining components can be shown to be all 

equal, which is the same as Eqn. (3.39).  

To graphically demonstrate the results of Eqn. (3.39) and Eqn. (3.46), a full mesh 

network without and with congestion are shown in Figure 12 and Figure 13. The 

congested case is simulated by reducing the link weights to near zero for a node of 

interest. The congested node in green in Figure 13 is separated from the others as solved 

for in Eqn. (3.46). The congested state can be easily identified by the controller, which 

can monitor for the condition shown in Figure 13. Because the SDN controller is 

constantly updating the current network link weights, it will be able to identify that there 

is a congested node in the network from the eigenvalues and then it will use the 

eigenvectors to determine where that congestion is occurring. By knowing both that it has 

occurred and where it has occurred, the controller can take corrective action to relieve the 

congestion. 
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Figure 11.  A random network is shown in three dimensions using the trailing 

three eigenvectors of the Laplacian matrix. All links in this graph are 
equal to 1. The green node is the node of interest, and it is not 

congested. 

 
Figure 12.  A random network is shown in three dimensions using the trailing 

three eigenvectors of the Laplacian matrix. All links in this graph are 
equal to 1, except for the links to the green node are reduced to near 

zero, which is indicative of congestion.  
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D. DUAL-BASIS ANALYSIS OF THE 17-NODE NETWORK 

In the previous sections, simple graphs were analyzed because symmetry could be 

exploited to determine the closed-form solutions. The following simulations are based on 

the 17-node network from Figure 7. 

Similar to the previous closed-form equations in Section C, large gaps between 

eigenvalues are indicative of distinct sets of nodes. The eigenvalues belonging to the 

mesh core in Figure 7 are associated with the larger eigenvalues, and the smaller 

eigenvalues are associated with the access network. From this perspective, the 17-node 

network consists of two distinct networks, but both could be managed by a single, 

logically centralized controller [17]. 

To simulate the dynamic performance of the network, all of the link weights of 

the links connected to node 6 are reduced from 1 to 0. The eigenvalues reflect the 

reduction of the link weights as shown in Figure 13. Eigenvalues 3 through 8 are all 

affected by this reduction, but the link behavior is isolated to a small number of 

eigenvalues as indicated by the small number of eigenvalues that change at any particular 

time in the simulation. As the eigenvalues shift down, only one eigenvalue is changing 

for most of the transition except right at the knee in the curves. As the node transitions 

between eigenvalues, it cannot be isolated from the next closest node as represented by 

the next lowest eigenvalue. Eigenvalues 9 through 17 also change due to the relationship 

between the access and core networks. They have a constant decrease because they are all 

connected similarly to node 6. The physical interpretation of this is that the core 

network’s available network bandwidth capacity to the access network is constantly 

decreasing. In this case, the decrease in available capacity is solely related to the reduced 

link weights to node 6. 

At the end of the simulation, all of the affected eigenvalues have shifted down by 

one. The number of zero eigenvalues has increased from two to three because there are 

now three separate networks:  nodes 6, node 17, and the remaining connected nodes. The 

slope of the line that connects all of the transition phases of each eigenvalue can be 

approximated by observation as  
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 k
d d
dw
λ
≈ −  (3.47) 

where k  is the node of interest, which in this case is node 6. 

 
Figure 13.  As node 6s links are reduced to zero from time 0 to 1 second, the 

eigenvalues of the 17-node network demonstrate the behavior from 
Eqn. (3.47) as shown by the gray dashed line. 

The degree of node k  kd  determines the approximate slope of each eigenvalue as 

it shifts from its current value to the next value down, and the starting value 0λ  

determines the y-intercept. In this case, node 6 has a degree 6kd = , which means that the 

slope is 6d dwλ = −  and the starting value is 0 6λ = . In Figure 13, the dashed gray line’s 

slope is based on Eqn. (3.47). 

To determine if Eqn. (3.47) still holds when the links to other nodes are reduced 

to zero, the simulation was continued. The links of nodes 5 and 4 were reduced to zero. 

The result is shown in Figure 14. The pattern holds, as does Eqn. (3.47). By the end of 
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this simulation, the null space has increased to five; nodes 4, 5, 6, and 17 are all in the 

null space. This is reflected by the five zero eigenvalues.  

The controller can use this information to route packets and create flow rules that 

avoid these links and switches. In this case, the nodes were removed from the network 

due to simulated congestion. The congestion could have been created by normal traffic 

that exceeded the capacity of the affected links, or it could be due to a failed switch. On 

the other hand, the congestion may also have been created by a targeted denial-of-service 

attack or some other cyber attack. The eigenvalues and eigenvectors do not provide the 

controller with sufficient information to discriminate between the two types of 

congestion. Nevertheless, when a node enters the null space, it could be a flag for another 

SDN application to determine the reason.  

 
Figure 14.  Eqn. (3.47) is demonstrated as three nodes enter the null space by 

reducing all their links to 0. 
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The network was simulated with complete control over which links were reduced 

to zero. In a real-world situation, one would not have this knowledge. The controller must 

know which node entered the null space or which node is congested. The eigenvectors 

provide the information about where in the network these dynamics are occurring. Figure 

15 demonstrates the behavior of the nodes in the eigencentrality basis and is the same 

simulation that produced Figure 14. The third, fourth, and fifth eigenvectors are plotted as 

a function of time.  

 
Figure 15.  The third, fourth and fifth eigencentrality components are plotted 

versus time as all the link weights that attach to nodes 6, 5 and 4 to the 
core network are reduced to zero. Node 1 is blue. Node 2 is black. Node 

3 is magenta. Node 4 is cyan. Node 5 is green. Node 6 is red. 

The first major observation from Figure 15 is how well the nodes are isolated at 

the start of the simulation. Nodes 1, 2, and 3 are the dominate nodes in these three 

eigenvectors as they are the least central nodes as reflected in Figure 7. The first node to 
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have its links reduced to zero is 6. As the links are reduced, node 6 becomes less central 

and transitions through each of the eigenvectors until it finally becomes disconnected 

from the network at approximately 1 second. Similar transitions occur for node 5 and 

node 4.  

One should notice how the isolation that is evident when the simulation starts is 

not present as the nodes transition. For instance, notice how node 6 transitions with node 

3 at approximately 0.5 seconds into the simulation. At that point they have the same 

influence in the network from a centrality perspective. The eigenvectors show that these 

nodes are node isolated from one another. As this transition continues, the nodes are 

again isolated. This concept of nodal isolation and coupling will resurface in later 

chapters to determine how many nodes are required to control the network.   

Returning to the idea that the nodes may be represented as a point in n -

dimensional space, one can replot Figure 15 as a two-dimensional graph representation. 

The result is the transitions between eigenvectors are now a change in magnitude of the 

nodes and angle among nodes. For this network, there are up to 17 dimensions that can be 

displayed. Two of those are shown in Figure 16. The behavior of the third and fourth 

eigenvectors is demonstrated in Figure 16 for the first second of the simulation. The 

result clearly shows that as the links of node 6 are reduced to zero, the two-dimensional 

representation of the node 6 changes in magnitude and angle. At the beginning of the 

simulation, nodes 1 and 2 are orthogonal to each other. As the simulation continues, node 

2 and 6 exchange places in terms of magnitude, but they are separated by 180°. Both 

nodes 2 and 6 remain orthogonal to node 1. Once node 6 has become the dominate node 

in the fourth eigenvector, it begins to rotate through the two-dimensional space to replace 

node 1 on the third eigenvector axis. Notice that at all times node 6 is orthogonal to node 

1. This is due to the fact that the eigenvectors reveal the orthogonality between nodes to 

the extent possible. In this case, the nodes maintain their orthogonality throughout the 

simulation. 
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Figure 16.  The nodal behavior is demonstrated for first second of the simulation 

in two-dimensions. The link weights of the links to node 6 are reduced 
from 1 to 0. The movement of nodes 1, 2, and 6 can be captured by 

using vector magnitudes and angles between vectors. 

To complete the analysis of this 17-node network, one must observe how the 

leading eigenvectors behave during the transitions observed in the trailing eigenvectors. 

The behavior of the leading eigenvectors is demonstrated in Figure 17. Throughout the 

three second simulation, the leading eigenvectors remain the same. They are unaffected 

by the transitions in the other eigenvectors. Again, this is because the dual-basis method 

effectively reveals the network behavior. The leading eigenvectors are indicative of the 

behavior of the core network; the centrality of the core is unaffected by congestion in the 

access network. They are separate networks and one would expect that the centrality of 

these nodes to be separate from each other.  
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Figure 17.  The 15th, 16th, and 17th eigencentrality components are plotted versus 

time as all the link weights that attach to nodes 6, 5 and 4 to the core 
network are reduced to zero. Node 14 is magenta. Node 15 is black. 

Node 16 is blue.  

E. PHANTOM NODE 

The behavior of the eigenvalues in Figures 13 and 14 and approximated by Eqn. 

(3.47) can be exploited by adding a virtual node or phantom node to the graph that does 

not exist in the physical network. This additional node is placed in such a way that it is 

the dominant node in the Fiedler vector. In [49], it was shown that 2λ  is bound by the 

node with the minimum link weight, which is the reason that the phantom node can be 

used as an indicator of onset of congestion. The phantom node is attached to the most 

central node in the network as determined by the dual-basis analysis because it will have 

the least effect on the dual-basis. The link weight of the phantom node can be changed to 

vary when congestion is indicated; smaller link weights result in a smaller algebraic 

connectivity, which will delay the indication of congestion because the threshold crossing 

will occur at smaller link weights. The opposite is true of larger link weights. The shift of 

the phantom node’s dominance to larger eigenvalues indicates the onset of congestion, 
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but not where in the network congestion is beginning. The eigenvectors will indicate 

where in the network the congestion is occurring.  

The development of the phantom node and simulations to support this hypothesis 

are contained in [49]. The phantom node was tested on a preliminary, six node hardware 

SDN to show that the hypothesis holds up when applied to a real-world network [50]. 

The simulations and the hardware experiments validated the development of the phantom 

node. A result from [50] is shown in Figure 18. Node 3 is under a DDOS attack and the 

congestion is indicated by node 3’s nodal influence shifting to 2λ . The drawback to this 

approach is that it does not indicate maliciousness; by simply analyzing the phantom 

node behavior, the reason for the congestion cannot be determined. Deeper inspection of 

the packets, flows, and timing of congestion needs to be conducted to determine the root 

cause of the congestion. 

 
Figure 18.  The phantom node is the dominant node for 2λ  until the onset of 

congestion in the second figure. Node 3 is congested due to a DDOS 
attack, which is indicated by the shift of the phantom node to dominate 

3λ  and node 3 dominating 2λ , from [50].   

 

Phantom Node Phantom Node 

Congested Node 
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Up to this point, the dual-basis representation has been analyzed to help determine 

the network behavior with both static link weights and dynamic link weights. The 

combination of the ratio cut optimization solution, the closed-form solutions, and the 

simulations provide the foundational work to demonstrate that the dual-basis analysis is 

an effective means to reveal the structure and behavior of the network. The link weights 

in the simulation were controlled directly and were not allowed to vary randomly. This 

will not be true in real-world networks. The SDN controller polls the switches for 

network traffic measurements, which will be noisy. The controller must have an effective 

method to estimate the link weights to ensure that the subsequent link weights used in the 

dual-basis analysis accurately reflect the true data rates in the network. In most control 

systems, a state space observer is used. In the following chapter, a state space 

representation of the network is explored to develop a network observer that will 

accurately estimate the network’s link weights.  
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IV. CLOSED-LOOP CONTROL OF SDN 

Software-defined networks have opened the door for researchers to model and 

control data communication networks in a whole new way. Many real-world systems are 

assumed to be LTI or can be linearized. SDNs are by design non-linear because of the 

discrete event nature of the packets being transmitted and switching among nodes in the 

network. Intervals between traffic generation, the data rate of a flow, and the total amount 

of data transferred per flow may not be accurately characterized by a random variable 

with a Gaussian distribution. Both the nature of the system and the traffic force 

researchers to find new ways to model the network, estimate the link weights, and control 

the overall network. 

In order to evaluate the performance of a SDN as a closed-loop control system, 

the model must be able to handle the non-linear behavior and non-Gaussian noise, which 

are inherent to large, complex data communication networks. The non-linear and non-

Gaussian nature of a SDN can be modeled, estimated and controlled by using a closed-

loop control system framework. The first requirement of a closed-loop control system is 

an observer to estimate the state of the network given system measurements and given 

controller feedback. Once the state is estimated, the controller then generates a feedback 

signal to achieve the goal set by the cost function of the overall system. 

A. PROPOSED CLOSED-LOOP CONTROL SCHEME 

A generalized closed-loop control system is shown in Figure 19. It includes the 

components that make up the SDN model:  the dual-basis analysis, new packet message, 

and flow modification messages. SDNs are fundamentally different from traditional 

control systems. In a traditional control system, the entity being controlled is directly 

measured. For instance, many circuits have control loops that maintain voltage or current 

within a specification. To control the voltage or current, a direct measurement of that 

current or voltage is made and compared to a set point. The resulting error is passed to 

the controller for correction.  
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Figure 19.  A SDN modeled as a closed-loop control system has an observer to 

estimate the link data rates, and a controller to generate flow 
modification messages to change the current link data rates. The dual-

basis analysis is included to provide the controller with additional 
information in the form of network features. 

In a SDN, the controller is not controlling the number of packets that enter the 

network or the routing of those packets but instead, directs flows through the network. 

The measurement y  is a vector of the current, measured data rates. The SDN controller 

requests information about the total flow of traffic in each direction through the physical 

Ethernet wires from the monitor nodes. The data rate estimates ŷ  are calculated based on 

the current number of flows, the posterior probability, and the current measurement. The 

data rate estimate is provided to the controller to determine network flows, which is 

accomplished by sending flow modification messages to the designated network 

switches. The specific method used by the controller to determine the optimal route is not 

considered in this research; the focus here is on estimating and analyzing the network 

state.  

The proposed closed-loop control scheme has four main parts as shown in Figure 

20:  the plant, the observer, the controller, and the dual-basis analysis. The observer has 

two significant parts:  the particle filter [45] and the phantom node. The particle filter is 

used as described in Chapter II, but the specific inputs to the filter will be discussed in the 

next section. The phantom node is a method to estimate congestion in the network and to 
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inform the controller about the intensity and location of congestion [49], [50]. The 

observer provides the controller with all of the information necessary to control flows 

both reactively and proactively.  

The controller implements any one of a number of routing algorithms from widely 

used algorithms like open shortest path first (OSPF) [19] to more application specific 

algorithms like equal cost multi-path routing (ECMP) [51]. Again, the goal of this 

research is not to develop new routing algorithms, but to provide a framework that can 

use any routing algorithm. This work seeks to demonstrate a method to minimize the 

number of nodes where the selected routing algorithm must be implemented, which are 

called the control nodes in this dissertation. Reducing the number of control nodes 

reduces the complexity of the overall system and reduces the computational load on the 

controller. Both of these reductions can be achieved without sacrificing performance in 

terms of the cost function used by the routing algorithm, as will be demonstrated in the 

next two chapters. 

 
Figure 20.  The proposed SDN closed-loop control scheme has an observer and 

a controller. The observer is the combination of the particle filter to 
estimate the link data rates and the phantom node to identify 

congestion. The controller uses the information from the observer and 
from the features extracted by the dual-basis analysis to generate flow 

modifications messages. 
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The following sections describe each part of the closed-loop control scheme in 

detail. The process to estimate the link data rates is first described. To estimate these data 

rates, the number of monitor nodes needs to be determined; these are the nodes that are 

polled to obtain the information required to calculate all link data rates and in turn the 

link weights. The process to identify the monitor nodes is described. The controller is 

described next. The method to identify the control nodes is described, which is a specific 

application of the dual-basis analysis. The controller’s routing problem is described in 

terms of load balancing the network traffic. 

B. LINK DATA RATE ESTIMATION 

The link data rate estimate is one of the two outputs of the observer. The other is 

the congestion flag from the phantom node. The typical approach when designing a state 

estimator is to start by modeling the system with a set of linear equations. If that does not 

work, the system designer will try to linearize a non-linear model around an operating 

point. If that approach fails, a more general solution that allows non-linear models is 

used. The most widely used estimator is the Kalman filter [45]. It can be shown that the 

Kalman filter is an optimal estimator for a linear system with Gaussian noise. A SDN is 

not a LTI system and does not have Gaussian noise, but neither do many of the real-

world systems that are modeled as linear systems. If a SDN can be modeled as an 

electrical circuit using linear components, then a Kalman filter can be used as an 

estimator. If that is unsuccessful and non-linear components must be used, it may be 

possible to use an EKF to achieve the link data rate estimates. If both of those paths fail, a 

particle filter may be used as a final option. The following sections will demonstrate the 

attempt to linearize a SDN to finally adopting a particle filter [45].  

1. Monitor Nodes in a SDN 

Monitoring network traffic in a SDN is inherent to the OpenFlow protocol. The 

controller can request the number of packets and bytes that have been transmitted and 

received on each physical port on the polled switch. The controller can also request the 

number of packets and bytes that have been matched to an individual flow [21]. The 

problem is determining the minimum number of switches that need to be polled to 
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calculate all link data rates throughout the network. Minimizing the number of monitor 

nodes reduces the workload of the controller and reduces the number of packets that are 

sent on the control network. 

The solution of the vertex cover problem determines the minimum number of 

nodes required to calculate all link data rates. The vertex cover problem seeks to 

determine the minimum set of nodes that are required to ensure each link is incident to at 

least one node in the graph [52]. Various solutions to this problem have been suggested, 

and this work does not seek to find a new solution. Using standard techniques, the 

controller solves the problem to determine which switches it will transmit requests to in 

order to determine all data rates on all links. This solution will be updated periodically to 

adapt to changes in network conditions.  

2. State Space Model of a SDN 

Many non-electrical systems have been modeled as electric circuits, such as 

spring, mass, damper systems [43]. To use the Kalman filter to estimate all link data 

rates, a linear state space model of a SDN must be developed in a manner similar to the 

process used when building linear models of mechanical systems. The electrical circuit 

model of a simple SDN is shown in Figure 21. The equivalent electrical circuit of this 

SDN is shown in Figure 22. All of the components of the circuit except for the switches 

1S  and 2S  are linear components. The voltage on the capacitors represents the queue size 

of the switches. The behavior of the energy storage in a capacitor is similar to the 

behavior of switches as their buffers are filled with incoming packets. The current 

through the resistors was used to model the data rate between switches. The resistors 

were used to limit the amount of current between the capacitors. The voltage source is the 

source node producing traffic in the network. The resistor 4R  in parallel with the 

capacitor 2C  represents the sink node. Traffic is being transmitted from the source to the 

sink via the intermediate switches.  

To maintain the linearized nature of the system, each side of the circuit was 

analyzed separately. The right side was analyzed with 1S  closed and 2S  open. The left 
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side was then analyzed with 1S  open and 2S  closed. The state matrix of the right hand 

side of the circuit is 

 

1 1 2 3 1 3

3 5 6 3 5

1 3 2 5 2 3 4 5

1 1 1 1 10

1 1 1 10

1 1 1 1 1 1

C R R R C R

A
C R R C R

C R C R C R R R

  −
+ +  

  
  − − = +   
 

 − − + +  
  

 (4.1) 

  
and the input matrix is 

 
1 1

1

0
0

C R
B

− 
 
 

=  
 
 
  

. (4.2) 

The C matrix is an 3 3×  identity matrix, and the D matrix is a 3 1×  vector of 

zeros. The left hand side equations are similar to the matrices in Eqns. (4.1) and (4.2). 

 
Figure 21.  A simple four switch network was modeled by a circuit to determine 

a linear system to further develop a state space model for the system. 
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Figure 22.  To model a SDN, voltage on a capacitor was used to model the 

queue of a switch and current through resistors was used to model the 
data rate between switches. This circuit is used to model the SDN in 

Figure 21. 

After developing the state space model analytically, MATLAB scripts determined 

the validity of this model. Another model of the same system was created using Simulink, 

which was used to ensure that the state space model was correct. Two sets of simulations 

were run. The first set of results is based on all initial conditions being equal to 0. The 

second set of results is based on the initial conditions set to 0, 0, and 0.9 volts on 

capacitors 1 2 3,  ,  and .C C C  These results are shown in Figures 23 and 24. As shown, the 

results based on the state space model and the Simulink model are exactly the same.  

The next step is to combine the two sets of state space equations. Using initial 

voltages on the capacitors, as in Figure 24, one can model the instant after a switching 

event, which is when one switch closes and the other opens. The voltage on each 

capacitor represents packets in the queue of a switch that need to be transmitted to the 

destination. The charge on each capacitor will generate a current that represents the 

continued data rate from source to sink even though the switch has redirected traffic 

down the other path. This is a reasonable model of how a SDN works. The controller 

makes decisions about which switches are open in order to allow traffic to transit to the 

sink.  
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Figure 23.  The result of a step input to both the Simulink model of the electrical 

circuit from Figure 22 that represents a SDN and state space equations 
from Eqns. (4.1) and (4.2). All initial conditions are set to 0. The 

Simulink results are the open symbols, and the state space model results 
are the solid lines. 

 
Figure 24.  The result of a step input to both the Simulink model of the electrical 

circuit from Figure 22 that represents a SDN and state space equations 
from Eqns. (4.1) and (4.2). The initial conditions are 0, 0, 0.9 on 

capacitors 1 2 3,  ,  and .C C C  The Simulink results are the open symbols, 
and the state space model results are the solid lines. 
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However, this model includes a single source node and a single sink node. State 

space averaging was attempted to generalize the state space model with limited success 

[53]. Using a separate set of linear equations for each scenario was also considered. This 

approach was discarded because the controller and observer would need to know which 

set was being used when, and more importantly, a large number of these sets would need 

to be implemented for every possible case. Additionally, current in the circuit only flows 

in one direction at any given time, but in a SDN, data is being transmitted in both 

directions simultaneously. It was determined that a linear or linearized model of a SDN 

was not the best approach. Consequently, the particle filter method was considered [45]. 

Even though the particle filter does not produce an optimal solution to the link data rate 

estimation problem, the model it uses is often a more accurate representation of the 

dynamics of the network.  

3. Particle Filter Estimator in a SDN 

As described in Chapter II, a particle filter is an estimator that uses the same basic 

structure as a Kalman filter, but instead of an optimal estimation, the method uses a 

Monte Carlo simulation to estimate the link data rates, which were used to calculate the 

link weights as shown in Eqn. (3.24) [45]. The implementation of the particle filter in a 

SDN is a straightforward process. The particle filter runs in two steps:  predict and 

update. The particle filter’s first stage is to predict the link data rate of the next step using 

a non-linear model of the system. The update step uses the current measurement to 

update the prior PDF using the Bayes’ approach. This process is the same as that shown 

in Figure 5, but the control input ku  is now the number of flows on each link, which is 

used as the input to the system.  

The non-linear model implemented is [45]  

 ( ) ( ) ( ) ( ) max

max max

0 if ( 1) 0
1 if 0 ( 1)

if ( 1)

x k
x k Ax k BU k k x k x

x x k x
m η

+ <
+ = + + Ν < + <
 + >

  (4.3) 

where x  is the state vector, A  is the state matrix, B  is the input matrix, U  is the control 

matrix, µ  is the input vector, V  is noise matrix, and v  is the system noise. The state 
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vector in this case is a 1l×  vector where l  is the number of links in the network. The 

state vector contains the current estimate of all of the link data rates. If the data rate limit 

has not been reached, the current state ( )x k , the input and the noise are all summed to 

calculate the updated state ( 1)x k + . If the link is operating at maximum data rate, the 

model limits the traffic on that link to that value. This maximum limit is the maximum 

data rate of the link and is typically measured in bits per second (bps). The l l×  state 

matrix A  and the l l×  input matrix B  are identity matrices because the link data rate 

equations are not coupled. The updated and predicted state are estimated to be the same 

as the previous state when there is no input to the system.  

The input vector µ  is an 1f ×  vector where f  is the number of types of flows 

that are used with the non-linear model and is equal to the mean data rate of the flow. In 

this case, only one type of flow was modeled because UDP was the only type of traffic 

used. The control matrix U  is an l f×  matrix that is updated to add the mean data rate to 

the correct link estimate based on new flows in the network. The observer is notified of 

these new flows by the controller. The product of B , U  and µ  is equivalent to the 

multiplication of B  and u  from Eqn. (2.19).  

The noise matrix Ν  is an l l×  diagonal matrix because the noise in the system is 

considered to be independent among the links. The noise vector η  is an 1l×  vector that 

is a set of realizations selected from the random variable used to model the system noise. 

The random variable used was a zero-mean Gaussian random variable. The system noise 

can be generated in two ways. The first process that generates noise is flows that have a 

small number of packets associated with them, such as address resolution protocol (ARP) 

packets and domain name service (DNS) packets. These flows are short-lived and do not 

generate large amounts of traffic. The second source of noise is the variation in traffic 

associated with large flows, such as the large UDP flows that are used in this research.  

4. Use of Phantom Node for Congestion Detection 

Every control system has a dynamic range for the control input. In a SDN, the 

dynamic range of control is the data rate in bps of each link. When the maximum data 
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rate has been reached on any link and the buffer of a switch has been filled to capacity, 

the switch will start to drop packets because it is unable to process new incoming packets. 

A goal of the controller should be to prevent this condition. A goal of the observer should 

be to notify the controller of this condition and where it is occurring. The phantom node 

is a solution to this problem [49], [50]. 

The phantom node is added to the graph representation of the network, but it does 

not physically exist. The observer uses the phantom node’s position in the eigenspectrum 

and the associated eigenvector to locate the congestion. Once the congestion is located, 

that congested node’s location is passed to the controller. The controller then must decide 

how to take action to reduce the congestion. The controller can stop routing new packets 

to or from the affected destination. It can also remove low priority flows that are 

currently active in the congested area.  

C. CONTROLLER 

The SDN controller is an application at the heart of the closed-loop control 

system. No packets are transferred anywhere within the network without the direct 

intervention of the SDN controller. With that in mind, as the number of switches in the 

network increase, the workload of the controller increases. Identifying the most 

influential nodes or control nodes in the network using the dual-basis analysis allows the 

controller to reduce its workload by calculating routes from these influential nodes to all 

destinations. These influential nodes are known as the control nodes. These are the nodes 

at which the controller is able to manage the network state. The goal is to accomplish this 

reduction without impacting performance. The results in the coming chapters will 

demonstrate that this decrease in workload can be accomplished without sacrificing 

performance. 

1. Identification of Control Nodes 

In designing the controller application, one must take into account the number of 

switches that are going to be controlled. The hardware on which the application is 

running is another design criterion. The application needs to be as efficient as possible to 

prevent overloading. If the switches are sending too much traffic to the controller, it can 
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be overwhelmed and a backup of packet_in messages will occur [21], which results in 

long round-trip times between source and destination within the network, and it could 

result in dropped packets.  

One method to reduce the workload of the controller is to reduce the number of 

switches that generate packet_in messages. The control node selection allows the network 

designer to focus on a subset of control node switches in the network and optimize flows 

for those packets that transit through the control nodes. All other nodes in the network 

will use static routes, which can be installed proactively or reactively. By limiting the 

number of nodes that determine routes dynamically, the workload of the controller is 

reduced. 

The identification of the control nodes is a process based on the principal 

eigenvector analysis. Each node is represented by an n -dimensional vector as 

demonstrated in Eqn. (3.17). Each nodal vector is orthogonal to all other nodal vectors if, 

and only if all n  values are used. The thj  1n×  nodal vector is represented by 
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If less than n  values are used, the angle between each nodal vector shifts away from 

exactly 90°. The thj  nodal vector using less than n  values is represented by  
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This shift indicates how isolated each node is from the other nodes. Smaller rotations 

away from 90° are indicative of isolated nodes. Larger rotations away from 90° are 

indicative of coupled nodes. For instance, a shift of 3° is a small shift and is indicative of 

isolation. A shift of 35° is a large shift and is indicative of nodal coupling. From Figure 7 

and using the leading two of 34 eigencentrality vectors, 7
33:34v  and 16

33:34v , the angle 

between nodes 7 and 16 is shown in Figure 25. The angle is nearly 90°. The angles 

between the first five nodes using the leading five eigencentrality vectors are shown in 
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Figure 26. These five are the control nodes used in the simulation in the next section. 

Notice how the angle between node 5 and node 7 is 112° and is clearly no longer 

orthogonal to the other nodes.  

 
Figure 25.  Chicago and Salt Lake are nearly orthogonal when using the first 

two eigencentrality vectors. 

 
Figure 26.  As more eigencentrality vectors are used, nodes will begin to drift 

away from 90° as Sunnyvale does in this case. All other nodes remain 
near orthogonal. 
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The control nodes are those nodes that are isolated from one another and have the 

largest eigencentrality :
j

k nE  as defined in Eqn. (3.19). The process of identifying these 

nodes starts with the leading eigenvector. The node with the largest eigencentrality :
j

k nE

value in the leading eigencentrality vector nv  is the first candidate, but it only provides a 

one-dimensional representation and has no angular component. The next eigencentrality 

vector is added so that each node has a two-dimensional representation 1:n nv − . The norm 

of each nodal vector and the angle between each of the nodes will indicate which two 

have the largest eigencentrality value and the angle closest to 90°. These two nodes are 

the next two control node candidates. The process continues until the nodes with the 

largest eigencentrality norms are no longer orthogonal. The flow chart of this process is 

shown in Figure 27. 

 
Figure 27.  The process to identify the control nodes is to iteratively add 

centrality vectors such that the nodal vectors with largest norms are no 
longer orthogonal. 
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To combine the angles and the Laplacian eigencentrality for each node into a 

single metric for comparison of their centrality, the eigencentrality metric was divided by 

the difference between 90° and the angles. This control centrality metric cc  is given by  

 :
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n c n
c c
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k n c
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c

θ

−

= −

=
− ∑

  (4.6) 

where c  is the number of control nodes being considered, and θ  is the angle between the 

control node of interest and node k . 

The process identified in Figure 27 was applied to the Internet2 topology. The 

results are shown in Figure 28. The colors in Figure 28 represent the relative rank of the 

nodes when using cc . Of the 34 nodes shown, four are selected as control nodes. All 

other nodes in the network will use static routes. At these four nodes, the controller will 

implement the routing algorithm to maximize the performance, which in this case the 

controller attempts to balance the offered load amongst all the links. 

Notice that Seattle’s color is light blue, which indicates it is not a control node, 

but its degree is four. Eigenvector centrality as defined in Eqn. (2.9) gives this node a 

large centrality value. In the control node identification process, this node’s centrality 

value is diminished because its nodal vector 2
31:34v is nearly parallel to Salt Lake City’s 

nodal vector 7
31:34v . Salt Lake City’s Laplacian eigencentrality, as given by Eqn. (3.19), is 

also much larger than Seattle’s. The combination of these two effects diminishes Seattle 

and indicates that it is not a control node. 

Also notice that Atlanta is identified as a control node. There are a large number 

of nodes with three links in this topology. If a simple degree centrality metric Dc  was 

used, all three link nodes are given the same centrality value. Betweeness centrality and 

eigenvector centrality give Atlanta low values. The dual-basis analysis indicates that 

Atlanta is the next most influential node.  
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Figure 28.  The control nodes are identified for the Internet2 topology using four 

eigencentrality vectors. 

Graphs and networks are not geometric objects that can be measured to find their 

center. Large, complex networks can have multiple centers or control nodes and many 

times these nodes are not easily identified through intuition or standard centrality metrics. 

Once these control nodes have been found using the above analysis, the controller is able 

to use that information to implement the routing algorithm. 

2. Load Balancing Traffic via the Control Nodes 

A load-balancing algorithm was developed to demonstrate the effectiveness of the 

control nodes. The goal of the load-balancing algorithm is to minimize the maximum link 

utilization. The optimization problem the controller is attempting to solve is [2] 
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The first inequality ensures that the total routed traffic in the static and dynamic flows 

static dynamicf f+  is less than or equal to the maximum link utilization ku  times the link 

capacity lc  . The second inequality states that the total traffic in the network is less than 

or equal the injected traffic sdI  between nodes s  and d . The third and fourth inequalities 

ensures that all flows are positive [2].  

The controller application implements a discrete solution to the problem posed in 

Eqn. (4.7) by measuring each link data rate and determining the correct path through the 

network that minimizes the maximum link utilization. There is no penalty for longer 

paths through the network.  

The results of simulations of random traffic using the Internet2 topology from 

Figure 27 are shown in Figure 28. Each data point in Figure 28 is the mean link weight of 

a Monte Carlo simulation of traffic generated by all 34 nodes directed towards node 20, 

Nashville. As more control nodes are added, the mean minimum link weight increases 

with decreasing returns after four control nodes. The zero control node case is the result 

of using only static routes. The order of the nodes used is based on the results of the dual-

basis analysis as demonstrated in Figure 27. The control nodes in order of control 

centrality are:  Chicago, Houston, Salt Lake City, Atlanta, El Paso, and Sunnyvale.  

The load-balancing inequalities in Eqn. (4.7) are solved and that solution is 

implemented by the controller application using only the control nodes as source nodes. 

The controller is dynamically assigning flows for the packets that pass through control 

nodes. All other packets are routed using static flows. The simulation was conducted 

under a static control node analysis. A dynamic control node analysis could be 

implemented, and the control nodes can be updated dynamically by the controller 
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application. These dynamics could change which nodes are the most influential and 

should be assigned as the control nodes.  

 
Figure 29.  The mean minimum link weight increases as the number of control 

nodes increases and is maximized when four control nodes are used. 

In summary, the development of the SDN control scheme used the closed-loop 

control system as a framework. Using the concepts of observability and controllability, 

methods were identified that can reduce the number of nodes that must be observed and 

controlled. Additionally, methods were identified that can be used to estimate link data 

rates and attempt to balance those data rates using flow control. Load balancing was 

selected as the objective of the routing algorithm because an objective of this dissertation 

is cybersecurity and preventing successful DDOS attacks. The implementation of these 

concepts in a SDN test bed is demonstrated in the next chapter. The experimental results 

obtained from the SDN test bed are shown in Chapter VI. 
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V. METHODS 

Simulation and analysis alone are not sufficient to show the effectiveness of the 

dual-basis methodology in real-world situations. To move the research forward, a SDN 

test bed was needed. The hardware and software running in real-time with real-world 

inputs were required to determine the effectiveness of the proposed closed-loop control 

scheme. The closed-loop control scheme has been described for a generic network, but in 

this chapter, a specific description of the SDN test bed used to acquire the results in the 

next chapter is described. First, the SDN test bed is described and then the dual-basis 

analysis of the test bed is presented.  

A. SDN TEST BED DESCRIPTION 

A SDN test bed was built to add realistic complexity that was lacking in the 

analysis and simulations from the previous two chapters. To demonstrate that the dual-

basis methodology and closed-loop control scheme would work in a real deployment of a 

SDN required building a SDN in hardware and software with real hosts on the network. 

Virtual network and virtual machines (VMs) were considered, but there were too many 

drawbacks. Emulation with a virtual environment is not an effective means to test 

implementations because all of the traffic passes through a single network interface card 

(NIC) on the computer being used. This feature makes it difficult to ensure repeatable 

data rates between experiments. Accurate data rate measurements are a requirement for 

the dual-basis implementation. Without repeatable experiments and accurate 

measurements, the results presented would not be relevant. 

1. Implementation of the Proposed Closed-Loop Control Scheme in 
Software 

To achieve closed-loop control, the controller and observer from Figure 19 were 

written as individual applications to be run simultaneously and interact with the SDN-

enabled switches. The SDN operating system chosen was Ryu [54], an open source 

software package developed by Nippon Telegraph and Telephone, NTT. It was chosen 

because Ryu is well documented and easy to use. The applications are written in Python 
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2.7 [55]. Ryu is the network operating system that manages the interface between the 

Python applications and the hardware. It uses the OpenFlow protocol to communicate 

with the hardware switches. The two Python applications and the MATLAB script 

implement the observer and controller functions as previously described and pictured in 

Figure 20. The overall architecture is shown in Figure 30.  

 
Figure 30.  The implementation of the SDN test bed included 13 hardware 

switches, Ryu as the operating system applications written in python 
that directly interacted with the switches. MATLAB executed the 
calculation of link weights, the dual-basis, and the particle filter.  

The foundation of the SDN is Ryu because it facilitates communication between 

the software and the hardware. The protocol running between Ryu and the switches is 

OpenFlow 1.0. When executed, Ryu instantiates both the controller application and the 

monitoring application as separate threads to run on a single machine. The monitoring 

application sends StatsRequest messages at fixed, one second intervals [21], [54]. The 

replies are parsed and sent to a MATLAB script, which uses this information as the 

current measurement input to the particle filter function. Once the data rates are 

estimated, they are passed to the controller to be used when routing packets in the 

network. The controller application receives packet_in messages from the switches and 
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generates packet_out and flow_mod messages for the switches to forward packets to the 

destination and to build the flow tables in the switches, respectively [21], [54].  

The controller application also tracks the number and type of flows on each link. 

To accomplish this task, cookies were used to track each flow as it was created and 

removed. When a flow was created, it was assigned a cookie by using the MD5 message-

digest algorithm to hash together the current time, switch datapath identification number, 

and destination IP address. When a flow times out due to a hard timeout or an idle 

timeout, a FlowRemoved message is sent from a switch [21]. The message contains the 

cookie that was assigned when the flow was created. This allows the controller to keep 

track of how many flows are assigned to each link [21], [54]. The flow count information 

is passed to MATLAB, which uses it as the current input in Eqn. (4.3) for the particle 

filter.  

The observer updated the link state estimates approximately every second. The 

network monitoring app sent a statistics request to each monitored switch in the network 

once a second. The link state updates were event driven. When the network monitoring 

application receives a statistics reply, the application updated the link state matrix, which 

was passed to a MATLAB script to update the dual-basis representation. When making 

routing decisions, the network controller application would wait for all of the monitor 

nodes to reply prior to updating the routing tables for each control node.  

2. Topology Modeled after Internet2 

The software-defined piece of the SDN can be segregated from the underlying 

topology. The applications are able to learn and adapt to any given topology. The 13 node 

topology that was chosen was a subset of the full Internet2 topology as shown in Figure 

31. The selection of these 13 nodes was based on the degree of each node. All nodes with 

a degree of one were removed. The next set of nodes removed were those with a degree 

of two. Additionally, the dual-basis analysis was compared between the 13 node topology 

and the 34 node topology to ensure that the eigenvalues and eigenvectors of the reduced 

topology were as similar as possible to the full topology. As shown in Figure 28, the most 

central nodes were Chicago, Houston, Salt Lake City, and Atlanta. A design choice for 
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the reduced topology was to ensure that the most central nodes were as similar as 

possible to the full topology. As will be shown, the most central nodes of the reduced 

topology are Chicago, Houston, and Salt Lake City. Atlanta is not included, but that is to 

be expected because there should be fewer control nodes in a 13 node network than in a 

34 node network. 

 
Figure 31.  The reduced Interent2 topology used in the SDN test bed. Each city 

in the topology is listed with its associated IP address. 

3. Hardware Components 

The hardware in the test bed included HP switches and Raspberry Pis. Two types 

of switches were used in the network:  HP 2920 and HP 3800 [56], [57]. The 3800 model 

is more capable than the HP 2920, but in the SDN test bed, there was no discernible 

difference between the two types. The hosts in the network are Raspberry Pis [58], which 

are small, inexpensive computers with 10/100 Mbps Ethernet connections. They are used 

to generate enough traffic to conduct DDOS attacks and more realistic day-in-the-life 

traffic. The Raspberry Pis ran one of four operating systems:  Raspbian, ArchLinux, Kali, 
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and Windows 10. All of the Raspberry Pis were configured with Iperf [59], which was 

the program used to generate traffic between the host and server. One or more Raspberry 

Pis run the server side of Iperf, and the remaining Raspberry Pis are hosts sending traffic.  

Iperf was used in UDP mode because this provided the most control over data 

rates, and it does not implement any congestion control algorithms. For this reason, UDP 

was used to produce the traffic profiles that are shown in the next chapter. TCP was not 

used because the congestion control algorithms would have been a component of the 

experiment that could not be controlled. The goal was to have the controller mitigate 

congestion by load balancing traffic as opposed to having the transport protocol mitigate 

the onset of congestion. 

B. DUAL-BASIS ANALYSIS OF TEST BED TOPOLOGY 

A full dual-basis analysis was conducted as the first step in the application 

development process. This research did not implement a dynamic application to update 

the monitor nodes and control nodes. It did, however, track congestion dynamically and 

attempt to maximize the minimum link weight, as described in Eqn. (4.7). The first step 

of the analysis was to determine the minimum number of nodes to ensure that all link 

data rates can be calculated.  

1. Identification of Observed Nodes 

For the network in Figure 31, the minimum number of monitor nodes required to 

calculate all data rates is eight. This result was obtained using the minimum vertex cover 

algorithm proposed in [60]; see Chapter IV Section B. In Figure 32, the nodes determined 

by the minimum vertex cover solution are highlighted in yellow. After determining the 

monitor nodes, the network controller must identify the control nodes. 
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Figure 32.  The set of monitor nodes in the test bed is designated by yellow. 

These nodes were identified by using the solution to the minimum 
vertex cover problem. 

2. Identification of Control Nodes 

The identification of the control nodes follows the process outlined in Figure 27. 

The first step is to determine which nodes have the largest :
j

c nE  in the leading 

eigenvectors. The first set of calculations uses the first two eigenvectors. The nodes with 

the largest :
j

c nE  in the first two eigenvectors are the first two candidate control nodes, and 

they are Chicago and Salt Lake City. It is worth noting the difference in the :
j

c nE  between 

Salt Lake City and Houston was 0.0576. This small difference is indicative that Houston 

may be added to the set of control nodes. However, the angle between Chicago and Salt 

Lake City is 61.57°, which is not near orthogonal as seen in Figure 33. The angle 

between Chicago and Salt Lake City and the small difference of the norm between Salt 

Lake City and Houston indicates that all of the necessary control nodes have not been 

found. Since they have not been found, the process was repeated with three eigenvectors. 
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Figure 33.  The angle between Chicago and Salt Lake City is shown using the 

leading two eigenvectors of the dual-basis representation. 

When using the leading three eigenvectors, the candidate control nodes in order 

are Salt Lake City, Houston, and Chicago. The difference between Chicago’s :
j

c nE  and 

the next largest :
j

c nE  is 0.2809. This large difference is a good indicator that a sufficient 

number of control nodes have been found. From Table 1 and Figure 34, it is clear that 

there Chicago is near orthogonal to Houston and Salt Lake City. The angle between 

Houston and Salt Lake City is not as clear. The next step is to add a fourth eigenvector 

and continue the process. 

Table 1.   The angle between the three candidate control nodes shows the 
degree to which the candidates are decoupled. 

 Salt Lake City Houston Chicago 
Salt Lake City 0° 76.22° 89.32° 
Houston 76.22° 0° 86.23° 
Chicago 89.32° 86.23° 0° 
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Figure 34.  The angle between Chicago and Salt Lake City and between Chicago 

and Houston is shown using the leading three eigenvectors of the dual-
basis representation. 

By adding a fourth eigenvector to the analysis, four candidate control nodes are 

obtained:  Salt Lake City, Houston, Chicago, and Sunnyvale. From Table 2 and Figure 

35, it is clear that Sunnyvale is the least orthogonal node to the others. An angle of 

118.08° is the farthest from 90° of all the nodes. The process stops here because 

Houston’s angle has become closer to orthogonal with four eigenvectors, and 

Sunnyvale’s angle is much greater than all the others in the four vector case and the three 

vector case.  

Table 2.   The angle between the four candidate control nodes shows the 
degree to which the candidates are decoupled. 

 Salt Lake City Houston Chicago Sunnyvale 
Salt Lake City 0° 78.44° 87.61° 118.08° 
Houston 78.44° 0° 86.99° 100.71° 
Chicago 87.61° 86.99° 0° 77.31° 
Sunnyvale 118.08° 100.71° 77.31° 0° 
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Figure 35.  The angles between Sunnyvale and Chicago, Salt Lake City and 

Houston are shown using the leading four eigenvectors of the dual-basis 
representation. 

The three candidate nodes are Salt Lake City, Houston, and Chicago. In this 

analysis, the results of Eqn. (4.6) order the nodes from most influential to least as 

Chicago, Salt Lake City, and Houston. The control centrality of Chicago is 0.1630, Salt 

Lake City’s is 0.0536, and Houston’s is 0.0422. The static, unweighted analysis stops 

here, but this control node assignment needs to be tested in the test bed to ensure that they 

are sufficient.  

The design work that must be conducted prior to implementing any of the 

applications is based on the analytical work presented in Chapters III and IV. In this 

particular case, the monitor and control nodes were not updated dynamically; an offline 

analysis was done and then implemented online, in real-time. There is no reason the 

monitor and control nodes cannot be identified in real-time. The goal of the next chapter 

is to demonstrate that the assignment of monitor and control nodes as laid out in this 

chapter provide enough information to calculate all link weights and enough control to 

properly balance the offered traffic. 
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VI. RESULTS 

Once the monitor nodes and the control nodes have been identified, the next step 

is to experimentally verify the unweighted analysis. The goal of these experiments is to 

determine the accuracy of identification of the correct control nodes. The method to find 

control nodes was based on the assumption that an analysis of an unweighted graph was 

sufficient. However, these results challenge that assumption and suggest that a more 

detailed, dynamic analysis is required. Results using a static, unweighted analysis will be 

shown for a case with a server on the East Coast and then on the West Coast. These same 

cases are revisited based on a weighted, dynamic analysis to show the improvement in 

performance over the unweighted analysis.  

A. EXPERIMENTAL RESULTS OF LOAD BALANCING CONTROL USING 
CONTROL NODES 

In accordance with Eqn. (4.7), the network controller was programmed to 

maximize the minimum link weights surrounding the server node located at one location 

in the network and all other nodes transmitting to that node. Two server locations were 

chosen to show two different traffic patterns; they were Nashville and Sunnyvale. The 

network consisted of 50 hosts:  one server, one command and control (C2) host, and 48 

transmitting hosts. The server was a Raspberry Pi running Iperf as the server [59]. The 

C2 host logged into each transmitting host via a secure shell (SSH) and instructed them 

when to start transmitting to the server, for how long and at what data rate. The 

transmitting hosts used the client feature of Iperf.  

Three traffic profiles were used to verify the behavior of the network under 

various traffic loads. The pyramid profile is shown in Figure 36. All of the Raspberry Pis 

attached to a given node were instructed to begin transmitting before the next node was 

initiated. This simple profile was used to ensure that the applications were working 

correctly and to provide a repeatable profile for each experiment. The second profile is 

the mountain profile as shown in Figure 37. This profile randomized the order in which 

the hosts were instructed to start transmitting. This profile was used to remove the bias 
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that was present in the first profile; the bias is evident in some of the results because 

multiple uncontrollable flows were initiated consecutively. The final profile was a non-

deterministic profile that randomized the order in which hosts transmitted, the length of 

time that the hosts transmitted, and the amount of time between initiating transmissions. 

A single realization of the non-deterministic profile is shown in Figure 38.  

 
Figure 36.  The pyramid traffic profile was generated by 48 hosts transmitting at 

1 Mbps. 

 
Figure 37.  To generate this profile 48 hosts were used, but the transmitting 

order of the 48 hosts was different for each experiment. 
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Figure 38.  To generate this profile 48 hosts were used, but the transmitting 

order, length of transmission, and the length of time between 
transmitting was different. 

1. Particle Filter Results 

The particle filter was implemented in real-time, and the estimated data rates were 

used to determine the link weights of the links surrounding Nashville and Sunnyvale. 

Measurements were made every second, and the weighted graph was updated given the 

measurements. The data rate estimates for each link surrounding the server node was 

used to calculate the link weights, which were then used in the controller’s decision to 

route traffic to each server location. The results of data rate estimates and data rate 

measurements are shown in Figures 39 and 40. The detailed performance of the particle 

filter is shown in the inlay. Because the noise variance used was small in both the predict 

and update phases, the estimates are biased towards the predict phase that uses non-linear 

model from Eqn. (4.3). The update phase uses the variance to determine the probability 

that a given realization of the Monte Carlo simulation is the actual link data rate. By 

using a small variance, measurements that were far from the predicted data rate were 

assigned a low probability of being the actual data rate. The data rate for each of the three 
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links surrounding the server nodes was estimated using 500 particles per iteration. This 

choice was made to limit the time it took the SDN controller to calculate the data rates 

and decide on the next set of routes, which was completed every second. Additional links 

could have been added in a similar manner if the SDN controller was run on a more 

capable computer. 

The particle filter required the controller to keep track of the number of flows on 

each link to use Eqn. (4.3). In addition, the controller needed each switch to notify the 

controller when a flow had been removed. The switches and firmware that were used did 

not reliably transmit a flow removed message to the controller. The flow idle timeout 

feature did not appear to function properly and as such, it did not provide reliable 

feedback to the controller when flows had ended due to idling. To overcome this, the 

length of the transmissions was fixed, except for the non-deterministic profile. For this 

profile, a moving average was used instead of the particle filters to estimate the link data 

rate and link weights. 

 
Figure 39.  To estimate the data rate for each link surrounding the servers 500 

particles were used, and the particle filter was successful at eliminating 
outlying measurements. The inset demonstrates the performance of the 

filter at a level that one can see the particle filter’s performance. 
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Figure 40.  The particle filter was an effective means to limit the impact of 

outlier measurements on the routing algorithm. The inset demonstrates 
the performance of the filter at a level that one can see the particle 

filter’s performance. 

2. East Coast Results 

The first experiment was run with the server in Nashville. The first set of results 

was obtained using the pyramid profile. Experiments were run using zero, one, two and 

then three control nodes. The results for all static flows are shown in Figure 41. with the 

link weights calculated using Eqn. (3.24). Larger link weight values are associated with 

lower link utilization and higher available capacity. The three links closest to the server 

are shown because those are the links which are most important to ensure the minimum 

link weight is maximized. 

When Chicago is assigned as a control node, any traffic transiting through 

Chicago will be rerouted to minimize the maximum link weight. The route is instantiated 

using proactive routing to ensure the full path from control node to the server is 

established. The results are shown in Figure 42. Notice that the minimum link weight 
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decreases when a single control node is added. The reason for this decrease in 

performance is because early in the build-up of traffic the controller attempts to balance 

the traffic and adds traffic to the link from Houston. The controller does not have enough 

control input throughout the rest of the experiment to effectively minimize the link 

weights. This result clearly indicates that a single control node is insufficient to obtain the 

desired balancing of the offered traffic and missed placed control nodes can decrease 

performance.  

 
Figure 41.  The link weights for the three links connected to the server node in 

Nashville are shown for the pyramid profile with zero control nodes. 
Static routes were used by all nodes in the network. 

When Salt Lake City is added as the second control node, the results in Figure 42 

are unchanged. Adding Salt Lake City only controls those few hosts that are directly 

connected to Salt Lake City; however, those same hosts were already being controlled by 

Chicago. The static route from Salt Lake City to Nashville transited through Chicago. 

Increasing the number of control nodes from one to two did not increase the ability of the 

controller to load balance the traffic. 



 97 

 
Figure 42.  The plot of link weights over time is shown using Chicago alone and 

using Chicago and Salt Lake City as the control nodes based on an 
unweighted analysis. The results for the one and two control node case 

are identical. 

For this server location, the result in Figure 42 suggests that the correct ordering 

of the nodes is not Chicago, Salt Lake City, and then Houston; the best ordering for this 

server location is Houston, Chicago, and then Salt Lake City. The results when Chicago 

and Houston are the control nodes are shown in Figure 43. A significant increase in 

performance is shown over the previous results. Because all traffic from west of Chicago 

and Houston must go through Chicago and Houston, all of that traffic can be used by the 

controller to balance the links, and the traffic from Washington, DC and Atlanta is not. 

Even though some traffic is not available for balancing the load, the controller is able to 

balance the traffic quickly because there are enough controllable flows to achieve a 

minimum, and the minimum link weight is increased by 13% over the static routes as 

shown in Figure 41.  
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Figure 43.  The plot of link weights over time is shown using Chicago, Houston, 

and Salt Lake City and also Chicago and Houston as the control nodes 
based on an unweighted analysis. The results for the two and three 

control node case are identical. 

The second set of results was obtained using the mountain profile. The zero 

control node case is shown in Figure 44. The three control node case is shown in Figure 

45. with Chicago, Houston, and Salt Lake City as the control nodes. Again, the addition 

of Salt Lake City did not add any control in terms of balancing the link weights. Because 

the order in which hosts begin transmitting is random, there is no bias as seen in Figure 

43 where all of the uncontrollable flows are initiated in order. The traffic is well balanced 

throughout the profile, and the minimum link weight is increased by 11% over the static 

routes as shown in Figure 44.   

The third set of results was obtained using the non-deterministic profile. The 

results when using zero control nodes are shown in Figure 46. The results when using 

Chicago, Salt Lake City and Houston as the three control nodes are shown in Figure 47.  

The traffic from Atlanta that cannot be used when balancing the load, which is routed at 
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approximately 700 seconds, resulted in smaller link weights than the optimal solution. 

However, the minimum link weight in Figure 47 is 8.5% greater than the link weight in 

Figure 46.  

 
Figure 44.  The plot of link weights over time is shown using zero control nodes 

with the mountain traffic profile.  

 
Figure 45.  The plot of link weights over time is shown using Chicago, Houston, 

and Salt Lake City as the control nodes based on an unweighted 
analysis for the mountain profile.  
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Figure 46.  The plot of link weights over time is shown using zero control nodes 

with a non-deterministic traffic profile. 

 
Figure 47.  The plot of link weights over time is shown using Chicago, Houston, 

and Salt Lake City as the control nodes based on an unweighted 
analysis.  

3. West Coast Results 

Similar results were obtained for the West Coast server. The same ordering of 

control nodes was used as suggested by the static, unweighted analysis. The first set of 

results is shown in Figure 48 for the pyramid traffic profile. The results using the same 

three control nodes as the East Coast scenario are shown in Figure 49. Again, there is 
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good balancing of the link weights early in the experiment when using three control 

nodes, but it does not maximize the minimum link weight throughout the experiment. 

The links from Seattle and Salt Lake City are evenly balanced, but the link from Los 

Angeles ends up carrying more traffic because of the added traffic early in the 

experiment. This is a similar problem to that observed in the one control node experiment 

when the server was located in Nashville. The amount of traffic that is produced by the 

nodes in the southwest is a large portion of the total traffic and is not available to the 

controller to balance the load, and it does not enter the experiment until after much of the 

controllable traffic has been routed.  

 
Figure 48.  The plot of link weights over time is shown using zero control nodes 

with the pyramid traffic profile. 

The second set of results for the West Coast is obtained using the mountain 

profile. Between the zero control node case and the three control node case, there is an 

increase of 8.3% in the minimum link weight. The zero control node case is shown in 

Figure 50, and the three control node case is shown in Figure 51. 
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Figure 49.  The plot of link weights over time is shown using Chicago, Houston, 

and Salt Lake City as the control nodes based on an unweighted 
analysis. 

 
Figure 50.  The plot of link weights over time is shown using zero control nodes 

with the mountain traffic profile. 
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Figure 51.  The plot of link weights over time is shown using Chicago, Houston, 

and Salt Lake City as the control nodes based on an unweighted 
analysis. 

The next set of results for the server location in Sunnyvale is based on the non-

deterministic profile. Again, the traffic from Los Angeles produces the minimum link 

weight as shown in Figure 52. When the three control nodes are added, the minimum link 

weight is increased by 8%. The balancing of the link weights in Figure 52 is not perfect. 

The traffic from Los Angeles is the limiting factor. All of these results suggest that Los 

Angeles should be added as another control node. However, the unweighted analysis did 

not indicate that Los Angeles should be included.  

These results suggest that a better method is needed to select the control nodes 

based on both the topology and a traffic matrix. The locations of Chicago, Salt Lake City 

and Houston are near optimal choice for Nashville but not for Sunnyvale. Adding 

knowledge of traffic patterns as link weights to the principal eigenvector analysis will 

provide a more optimal solution. Additionally, if the network is able to recalculate the 
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principal eigenvectors and control nodes periodically based on the current traffic patterns, 

the controller can select the best nodes based on the current state of the network. 

 
Figure 52.  The plot of link weights over time is shown using zero control nodes 

with the non-deterministic traffic profile.  

 
Figure 53.  The plot of link weights over time is shown using Chicago, Houston, 

and Salt Lake City as the control nodes based on an unweighted 
analysis. 
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B. MODIFIED CONTROL NODE SELECTION METHOD 

Based on the previous results, the assumption that a static, unweighted analysis is 

sufficient is challenged. A dynamic, weighted analysis may be more effective when 

attempting to identify control nodes. The procedure in Figure 27 is used to implement the 

weighted analysis, but this time the analysis includes information similar to that used to 

calculate the betweenness centrality [23]. 

1. Analysis of Internet2 Topology with Weighted Graph 

The topology from Figure 31 does not provide any information about the location 

of subnets or hosts. The number of hosts at each location in the test bed topology is 

shown in Figure 54. Combining the location of the hosts and the location of the server, a 

weighted graph is developed. Each link is given a weight between 0 and 1 based on the 

number of flows that are transmitted over that link. Links that appear in the physical 

topology, but do not carry any flows are given a nominal link weight of 0.05 because by 

the definition of the adjacency matrix, a 0 indicates that there is no link. In any network, 

some small amount of traffic is carried over all links and a weight of 0.05 accounts for 

this.  

 
Figure 54.  As in a real-world network, computers and traffic are not evenly 

distributed throughout the network, which is the case in the SDN test 
bed. 
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Once the traffic matrix has been developed and link weights assigned, the method 

to locate the control nodes can be run again. The results of the analysis indicate that the 

order of the control nodes when the server location is Nashville is Houston and then 

Chicago. This result was already observed in Figures 43, 45, and 47. Because Houston is 

listed first, the Nashville experiment was run again using Houston as a control node and 

those results are shown in Figure 55. The results show improved performance as opposed 

to using just Chicago, which resulted in decreased performance. The results of the 

weighted analysis indicate that the order of the control nodes when the server location is 

Sunnyvale is Salt Lake City, Los Angeles, and then Seattle. The resulting link weights 

when the new control nodes from the weighted analysis are used for the West Coast 

location are shown in Figures 56, 57 and 58. All three show much improved performance 

over the control nodes that are located using the unweighted analysis. 

 
Figure 55.  The plot of link weights over time is shown using Houston as a 

single control node based on a weighted analysis and pyramid traffic 
profile. 
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Figure 56.  The plot of link weights over time is shown using Seattle, Salt Lake 

City, and Los Angeles as the control nodes based on a weighted 
analysis and pyramid traffic profile. 

 
Figure 57.  The plot of link weights over time is shown using Seattle, Salt Lake 

City, and Los Angeles as the control nodes based on a weighted 
analysis and mountain traffic profile. 
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Figure 58.  The plot of link weights over time is shown using Seattle, Salt Lake 

City, and Los Angeles as the control nodes based on a weighted 
analysis and non-deterministic traffic profile. 

By allowing the SDN controller to recalculate the dual-basis representation and 

the control nodes, the network can adjust for changing and unexpected traffic conditions. 

The dynamic, weighted analysis is a much better solution to the control node assignment 

problem than the static, unweighted method.  

2. Analysis of a Two-Server Network 

A weighted, dynamic analysis is a more effective solution for the one server case, 

but in a real-world network, there are multiple destinations. In order to evaluate this 

weighted analysis with a more realistic scenario, the method to determine the control 

nodes was revisited for the two-server case. The two server locations are Nashville and 

Sunnyvale, but this time they will both receive traffic simultaneously. The weighted 

graph will take into account the flows transiting in both directions. After conducting this 

analysis, the resulting control nodes, in order, are Chicago, Los Angeles, Houston, and 

Salt Lake City.  

The new list of control nodes includes a fourth control node, which is not an 

unexpected result in light of the previous West Coast results. Chicago, Houston, and Salt 

Lake City all have a degree of four and are hubs for the network. Los Angeles does not 
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have a degree of four, but it does have a large amount of traffic flowing through it to both 

Sunnyvale and Nashville, which increases its ability to control the offered traffic. The 

control node identification method eliminates the guess work from network design by 

reducing a complex network to the analysis of a small number of principal eigenvectors. 

The determination of the principal eigenvectors and the resulting control nodes can and 

should be automated in a real-world implementation. 

The results were collected by running the experiments again, but this time the four 

control nodes were used and each profile was applied to each server location. The results 

show that the weighted case can work for more than one server location. There is 

significant increase in the link weights for each case shown, as compared to the static 

case. The East Coast results are not reiterated here; they are contained in Figures 43, 45, 

and 47. Adding control nodes to the West of Chicago and Houston does not increase the 

performance of the balancing of traffic to Nashville. The West Coast results are shown in 

Figures 59, 60, and 61. The performance here is not that much better than the one server 

case, but there is significant improvement over the static case.  

 
Figure 59.  The plot of link weights over time is shown using Chicago, Los 

Angeles, Houston, and Salt Lake City as the control nodes based on a 
two-server, weighted analysis and pyramid traffic profile. 
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Figure 60.  The plot of link weights over time is shown using Chicago, Los 

Angeles, Houston, and Salt Lake City as the control nodes based on a 
two-server, weighted analysis and mountain traffic profile  

 
Figure 61.  The plot of link weights over time is shown using Chicago, Los 

Angeles, Houston, and Salt Lake City as the control nodes based on a 
two-server, weighted analysis and non-deterministic traffic profile. 



 111 

The results shown for both weighted cases were developed based on a known 

traffic matrix. In real-world applications, this traffic matrix may be difficult to obtain. 

However, the weighted graph that the controller develops for each time step to determine 

the phantom node’s location in the eigenspectrum may be used as a substitute for the 

known traffic matrix. If this is true, no additional information is required in order to 

determine the control nodes. 

The previous results are summarized in the following tables. Table 3 shows a 

scenario where adding control nodes did not increase performance. This is mainly 

because offered traffic needs to be available to the controller for it to balance the traffic. 

If the controller does not have traffic available to balance the link weights, it will not be 

able to accomplish its objective. 

Two methods could be used to prevent this scenario. First, the assignment of 

control nodes could be dynamically updated during the experiment. This was not 

implemented in these experiments. Second, flows could be deleted from the switches and 

re-routed. This option was not implemented in these results. If the controller is too slow 

to re-route the flows, this option could result in dropped packets as new flow rules are 

sent to the switches. 

In Tables 3, 4, and 5, the largest increase is 13%. The reason that the pyramid 

profile produces the largest increase is because it had the worst performance in terms of 

load balancing when using static routes. The smallest increase is in Table 5, an increase 

of 4.2% for the random profile. The random profile also has the smallest increase on 

average. The random profile is one of the many possible realizations and as such will 

have different performance results for each realization. The random profile also had 

smaller offered loads than the other profiles. This could account for the smaller 

performance increases.  
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Table 3.   The change in the minimum link weight is presented when using 
the three control nodes identified by the unweighted analysis and one 

server location at a time. 

 Pyramid Mountain Random 

Nashville 13% 11% 8.5% 

Sunnyvale -2.1% 8.3% 8% 

Table 4.   The change in the minimum link weight is presented when using 
the three control nodes identified by the weighted analysis and one 

server location at a time. 

 Pyramid Mountain Random 

Nashville 13% 11% 8.5% 

Sunnyvale 10.3% 12.4% 8.2% 

Table 5.   The change in the minimum link weight is presented when using 
the four control nodes identified by the weighted analysis and both 

servers simultaneously. 

 Pyramid Mountain Random 

Nashville 13% 11% 8.5% 

Sunnyvale 10.3% 10.5% 4.2% 

 

In summary, two server locations and three traffic profiles were used to validate 

the control nodes selection. The particle filter was used to effectively estimate link data 

rates. The first set of experiments showed that control nodes selected based on an 

unweighted graph did not produce the desired results. In a few cases, the performance 

degraded with the addition of control nodes. The second set of experiments used a 

weighted graph based on the traffic matrix. The control nodes that were identified using 

the weighted analysis performed better in terms of balancing the traffic load. 
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Additionally, it was shown that when using two server locations the control nodes based 

on the weighted graph provided comparable performance to the one server scenario. 
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VII. CONCLUSIONS 

The goal of this work was to determine a framework to model a SDN after a 

closed-loop control system. It was demonstrated that the standard definition of a closed-

loop control system can be used as a model around which to build SDN applications. 

Spectral graph theory was used to develop the dual-basis representation, which is a tool 

to reveal the underlying structure of the graph. The observer was implemented as a non-

linear state estimator. The controller was built around a cost function that would be found 

in any optimal controller. The dual-basis representation is also used to dynamically 

determine the minimum number of nodes required to monitor and control the network. 

These contributions can be applied to any SDN implementation and should be considered 

when developing new applications for SDNs. The effectiveness of the proposed ideas 

was demonstrated in simulation and experimentation on a test bed. 

The objectives of this dissertation were accomplished through the development of 

the dual-basis analysis, a closed-loop control framework for a SDN, and a test bed to 

validate the proposed scheme. The dual-basis analysis is a new method to reveal the 

underlying structure of the network and dynamic network features. The closed-loop 

control framework includes the particle filter, the phantom node, and the load-balancing 

controller. Numerous experiments were run on the test bed to validate the control node 

selection, data rate estimation via the particle filter, and the load-balancing controller 

scheme.  

A. SIGNIFICANT CONTRIBUTIONS 

The work reported in this dissertation led to significant contribution to software-

defined networking research. Specifically, three contributions are detailed in this section. 

The first contribution is the development of the dual-basis representation as a means to 

extract features from the network. The second contribution is the development of a 

scheme based on a closed-loop control system. The third contribution is a SDN test bed 

on which the dual-basis representation and closed-loop control scheme were validated. 
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1. Dual-basis Representation 

The dual-basis representation orients the controller to current network behavior 

and conditions. The dual-basis representation is the real-valued solution to the ratio cut 

optimization problem [41]. By determining this optimal solution, the SDN controller is 

able to determine which node or nodes are congested, which nodes have the most control 

over network behavior, and which nodes have become disconnected. By extending this 

idea to time-varying link weights, we see that the controller is able to use the eigenvalues 

to determine that an event is occurring and then use the eigenvectors to determine where 

in the network that event is occurring. The phantom node is the implementation of the 

eigenvalue and eigenvector monitoring for congestion detection. 

By applying concepts from image segmentation [41] and principal component 

analysis [28] to the dual-basis analysis, we recognize that the leading eigenvectors of the 

eigencentrality matrix can be used to determine the Laplacian eigencentrality and nodal 

angles. The controller can dynamically locate the control nodes by utilizing the Laplacian 

eigencentrality and nodal angles. Due to the dynamic nature of the traffic in any network, 

the control of the network needs to be applied in a dynamic fashion, and the network 

conditions need to be updated dynamically.  

2. Closed-Loop Control Framework 

SDNs allow for much more complex interactions between the network traffic and 

the network infrastructure, which is now embodied in the switches and network 

controller. This interaction is well-suited for modeling it after a closed-loop control 

system that makes observations of network parameters and topology, estimates the link 

data rates, and control network flows to improve performance. To accomplish the tasks of 

estimation and control, the SDN needs a network observer and a network controller. The 

link data rate estimation is the first half of the proposed closed-loop control scheme [2] 

[61]. Data rates can vary rapidly in any network and routing decisions should not be 

made using these fluctuations. The particle filter was used to estimate the link data rates 

to more accurately describe the weighted network graph.  
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Once the link weights have been estimated and passed to the controller, it can 

determine how to update network flows to balance the offered load. Using the dual-basis 

analysis, we developed a method to locate the control nodes to reduce the workload on 

the controller. Any traffic that was incident on a control node was used to balance the 

traffic load throughout the network. 

3. SDN Test Bed 

The analysis and simulations presented in the previous chapters are a required part 

of the development of any new concept, but simulations cannot fully validate the 

proposed scheme. The third contribution of this research is the development of a 

hardware test bed to validate the concepts developed analytically and in simulation. All 

of the concepts proposed in this research were put into practice using Python applications 

and MATLAB scripts that were run on a real-world SDN controller and were executed in 

a hardware SDN. This network was used to test and evaluate the dual-basis 

representation, control node assignment, and congestion detection. The fidelity provided 

by the test bed proved to be an indispensable component of this research. Without the test 

bed, the concepts and scheme proposed in this dissertation would not have been exposed 

to the realities of non-deterministic time delays and the issues that arise when software 

interacts with hardware.  

B. FUTURE WORK 

One goal of this work was to provide a basis on which to build future SDN 

research. The results presented here based on the dual-basis representation are a small 

subset of the information that can be extracted from the matrices  and TV V . From the 

results of the dual-basis analysis, the angle between nodes in the n -dimensional space 

can be used to determine which nodes are isolated from each other. It was observed that 

nodes with angles that were less than 90° were directly connected, and nodes with angles 

that were greater than 90° were one hop away. This nodal isolation was used to select 

specific switches as control nodes. Future work could include an in-depth investigation 

into why certain nodes are isolated and what the angles between nodes represent 

physically.  
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The SDN controller placement problem could be solved with a slight change to 

the control node placement solution presented here. Most SDN implementations have 

more than one SDN controller to provide redundancy and reduce the workload of a single 

SDN controller. The SDN controller placement problem is determining where the 

controller should be physically located. Intuition suggests that the control node locations 

could be similar to those of SDN controller nodes. The next step is to determine which 

nodes are assigned to which controllers’ domain. The angle between nodes should 

provide a method to indicate which nodes are isolated from each other, which will help 

determine which nodes should be assigned to which community. Coupled nodes should 

be assigned to the same community, and the controller node is assigned as the most 

central node within the community. A scheme must be developed to use the angles to find 

these communities and assign controller nodes. 

The test bed did not include a method to simulate the distance between the 

switches within the network and between the controller and the switches. An addition of 

the delay into the network would allow for a more faithful representation of the modeled 

network. The round-trip times were not considered this work. This delay means that the 

closed-loop control will be slower to react to changes in the network. This will have a 

negative effect on the ability of the controller to determine the correct routes. New 

methods need to be explored to minimize the delay and then work to minimize the impact 

of the additional delay. 

This work did not include TCP packet traffic in any of the profiles because the 

initiation of TCP congestion control algorithms would change the expected results; 

however, all UDP traffic would be unusual in most networks. The closed-loop control 

model used here was a single loop, but adding TCP traffic would add to control loops. 

One of those control loops is controlled by the SDN controller and one is not. The 

addition of TCP traffic profiles provides another layer of complexity. The closed-loop 

control scheme proposed here may need to be modified to accommodate the addition of 

TCP congestion control algorithms. 

The test bed was a built using 13 switches, but it could be expanded to 34 

switches. The full 34 node network would provide a better emulation of the Internet2 
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topology. The 34 node network may require additional controllers to manage the larger 

number of nodes. Finding the correct number of controllers and determining how to 

assign switches to controllers can be solved in light of the dual-basis representation. The 

angles between nodes can be used to determine which nodes are coupled to the controller 

node. This work would benefit from a larger number of nodes. 

SDN implementation on a Navy warship would be an excellent application of this 

technology. SDNs are typically implemented as closed, contained networks, such as a 

data center. Navy warship networks are typically closed, contained networks. In addition 

to the Internet2 topology, the Navy shipboard network needs to be analyzed using the 

dual-basis analysis. SDN could provide a new way to approach cybersecurity on a ship. 

The methods presented here can be applied to shipboard topologies and then test 

cybersecurity applications on the test bed. 
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APPENDIX A. ALGEBRAIC MANIPULATION TO OBTAIN THE 
LIMIT IN EQN. (3.34) 

The following derivation verifies the result in Eqn. (3.34). First, substituting  

 23 1,  2 4,  and 9 12 4
2
uA B u C u u−

= + = − = − + . (A.1) 

into Eqn (3.34) and moving the constants to the outside, the limit simplifies to 

 2
2

1lim  lim
2n n

A n n Bn Cl
→∞ →∞

= + − + + . (A.2) 

By separating the variable B  and C , and finding a common denominator, it can be 

shown that Eqn. (A.2) simplifies to  
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which further simplifies to 
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By replacing the substituted equations into Eqn. (A.4), the result is 
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APPENDIX B. SAMPLE OF PYTHON SCRIPTS FOR THE 
CONTROLLER APPLICATION 

# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation. 
# Licensed under the Apache License, Version 2.0 (the “License”); 
# you may not use this file except in compliance with the License. 
# You may obtain a copy of the License at 
# 
#    http://www.apache.org/licenses/LICENSE-2.0 
# 
# Unless required by applicable law or agreed to in writing, software 
# distributed under the License is distributed on an “AS IS” BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 
# implied. 
# See the License for the specific language governing permissions and 
# limitations under the License. 
 “““ 
An OpenFlow 1.0 L2 learning switch implementation. 
“““ 
 #Update to correctly assign flows based on HP2920 ability 
 import logging 
import struct 
import hashlib 
from datetime import datetime 
from ryu.base import app_manager 
from ryu.controller import mac_to_port 
from ryu.controller import ofp_event 
from ryu.controller.handler import MAIN_DISPATCHER 
from ryu.controller.handler import set_ev_cls 
from ryu.controller.dpset import DPSet 
from ryu.ofproto import ofproto_v1_0 
from ryu.ofproto import inet 
from ryu.ofproto import ether 
from ryu.lib.mac import haddr_to_bin 
from ryu.lib.packet import packet 
from ryu.lib.packet import ethernet 
from ryu.lib.packet import ipv4 
  class SimpleSwitch(app_manager.RyuApp): 
 OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION] 
  _CONTEXTS = { 
      ‘dpset’: DPSet, 
  } 
  def __init__(self, *args, **kwargs): 
         super(SimpleSwitch, self).__init__(*args, **kwargs) 



 124 

         self.mac_to_port = {} #mac to port dictionary 
  self.ip_to_port = {} #ip to port dictionary 
  self.cookiejar = [] #cookiejar stores all of the cookies 
  self.linklist = [] #link list keeps track of which link has flows on it 
  self.dpid_to_port = {} #dpid_to_port keeps track of which links are on 
                                      which port 
  self.numflows = [0]*41 #I have 20 links, but they are directional so 40. 
     #plus 1 because python counts from 0 
  self.DPSet = kwargs[‘dpset’]  
  self.a6 = datetime.now() 
  self.a13 = datetime.now() 
  self.a18 = datetime.now() 
  self.b6 = datetime.now() 
  self.b13 = datetime.now() 
  self.b18 = datetime.now() 
  self.c6 = 0 
  self.c13 = 0 
  self.c18 = 0 
  self.lastip = 0 
  self.lastdpid = 0 
  self.lastdstip = 0 
   #add flow for ARP packets 
 def add_flow_ARP(self, datapath, in_port, dst, actions, dl_type): 
         #get openflow protocol; it could be 1.0 or 1.3 
  ofproto = datapath.ofproto 
  #define match          
  #match on ethernet type, physical incoming port, and mac 
  match = datapath.ofproto_parser.OFPMatch(dl_type=dl_type, 
                       in_port=in_port,  
    dl_dst=haddr_to_bin(dst)) 
  #mod builds the flow mod 
         mod = datapath.ofproto_parser.OFPFlowMod( 
             datapath=datapath, match=match, cookie=0, 
             command=ofproto.OFPFC_ADD, idle_timeout=600, hard_timeout=3600, 
             priority=ofproto.OFP_DEFAULT_PRIORITY, 
             flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions) 
  #then send the flow mod to the switch 
         datapath.send_msg(mod) 
  #add flow for IP packets 
     def add_flow_IP(self, out, datapath, in_port, dst, actions, dl_type, src): 
  reset = 0 
  with open(“/home/ec4715/Documents/MATLAB/TomDissertation/reset.txt”) as 
                file: # Use file to refer to the file object 
                 reset = file.read() 
         reset = int(reset) 
  if reset == 1: 
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   self.numflows = [0]*41 
  #get openflow protocol; it could be 1.0 or 1.3          
  ofproto = datapath.ofproto 
  #dpid is datapath id which is a hex number assigned from the factory 
  dpid = datapath.id 
   
  #this code turns the dotted decimal ip address into an integer  
  o = map(int, dst.split(‘.’)) 
      res = (16777216 * o[0]) + (65536 * o[1]) + (256 * o[2]) + o[3] 
   o = map(int, src.split(‘.’)) 
      src_res = (16777216 * o[0]) + (65536 * o[1]) + (256 * o[2]) + o[3] 
      #build the match 
  #match is based on ethernet type, incoming port and network dest 
  match = datapath.ofproto_parser.OFPMatch(dl_type=dl_type,  
               in_port=in_port,  
               nw_src=src_res, nw_dst=res) 
         ## Possible parameters to send to OFPMatch() 
         ## in_port=None, dl_src=None, dl_dst=None, 
         ## dl_vlan=None, dl_vlan_pcp=None, dl_type=None, nw_tos=None, 
         ## nw_proto=None, nw_src=None, nw_dst=None, 
         ## tp_src=None, tp_dst=None, nw_src_mask=32, nw_dst_mask=32) 
  done = 0 
  with open(“/home/ec4715/Documents/MATLAB/TomDissertation 
              /DoneBuildingTable.txt”) as file: # Use file to refer to the file  
                                                    object 
                 done = file.read() 
         done = int(done) 
  cookie = 0 
  if out < 30 and dst == ‘10.10.2.6’ and done == 1  
               and src != ‘10.10.13.1’: 
   idletime = 1100 
   if dpid == 0x00012c59e5107640: 
       if out == 4: 
    self.numflows[1]=self.numflows[1]+1 
       elif out == 3: 
    self.numflows[3]=self.numflows[3]+1 
       elif out == 1: 
    self.b6 = datetime.now() 
    self.c6 = self.b6-self.a6 
    if self.c6.seconds > 10:  
     self.numflows[6]=self.numflows[6]+1 
     self.a6 = self.b6 
     hashee = str(src) + str(dpid) +  
                                     str(datetime.now()) 
     cookie = int(abs(hash(hashee))) 
     #I save off the cookie into the cookie jar 
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     #I save off the link that the cookie is assigned  
     if cookie not in self.cookiejar: 
      self.cookiejar.append(cookie) 
      self.linklist.append(out) 
      print “add 1: chicago link is:” 
      print self.numflows[6] 
      print “add 1: houston link is:” 
      print self.numflows[18] 
      print “add 1: atlanta link is:” 
      print self.numflows[13] 
     else: 
      cookie = 0 
       elif out == 2: 
    self.numflows[7]=self.numflows[7]+1 
   #node 2 
   elif dpid == 0x0001c4346b94a200: 
       if out == 1: 
    self.numflows[34]=self.numflows[34]+1 
       elif out == 2: 
    self.numflows[35]=self.numflows[35]+1 
       elif out == 3: 
    self.numflows[37]=self.numflows[37]+1 
   #node 3 
   elif dpid == 0x00012c59e51016c0: 
       if out == 1: 
    self.numflows[31]=self.numflows[31]+1 
       elif out == 2: 
    self.numflows[30]=self.numflows[30]+1 
       elif out == 3: 
    self.numflows[33]=self.numflows[33]+1 
   #node 4 
   elif dpid == 0x0001c4346b99dc00: 
       if out == 1: 
    self.numflows[27]=self.numflows[27]+1 
       elif out == 2: 
    self.numflows[29]=self.numflows[29]+1 
       elif out == 3: 
    self.numflows[36]=self.numflows[36]+1 
       elif out == 4: 
    self.numflows[39]=self.numflows[39]+1 
   #node 5 
   elif dpid == 0x0001c4346b946200: 
       if out == 1: 
    self.numflows[25]=self.numflows[25]+1 
       elif out == 2: 
    self.numflows[25]=self.numflows[25]+1 
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       elif out == 3: 
    self.numflows[28]=self.numflows[28]+1 
   #node 6 
   elif dpid == 0x0001c4346b971ec0: 
       if out == 1: 
    self.numflows[21]=self.numflows[21]+1 
       elif out == 2: 
    self.numflows[23]=self.numflows[23]+1 
       elif out == 3: 
    self.numflows[32]=self.numflows[32]+1 
   #node 8 
   elif dpid == 0x0001f0921c220e80: 
       if out == 1: 
    self.numflows[8]=self.numflows[8]+1 
       elif out == 2: 
    self.numflows[9]=self.numflows[9]+1 
   #node 9 
   elif dpid == 0x0001c4346b98a200: 
       if out == 9: 
    self.numflows[10]=self.numflows[10]+1 
       elif out == 10: 
    self.numflows[11]=self.numflows[11]+1 
   #node 10 
   elif dpid == 0x0001c4346b972a80: 
       if out == 9: 
    self.numflows[12]=self.numflows[12]+1 
       elif out == 10: 
    self.numflows[15]=self.numflows[15]+1 
       elif out == 11: 
    self.b13 = datetime.now() 
    self.c13 = self.b13-self.a13 
    if self.c13.seconds > 10:  
     self.numflows[13]=self.numflows[13]+1 
     self.a13 = self.b13 
     hashee = str(src) + str(dpid)+ str(datetime.now()) 
     cookie = int(abs(hash(hashee))) 
     #I save off the cookie into the cookie jar 
     #I save off the link that the cookie is assigned  
     if cookie not in self.cookiejar: 
      self.cookiejar.append(cookie) 
      self.linklist.append(out) 
      print “add 1: chicago link is:” 
      print self.numflows[6] 
      print “add 1: houston link is:” 
      print self.numflows[18] 
      print “add 1: atlanta link is:” 
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      print self.numflows[13] 
     else: 
      cookie = 0 
   #node 11 
   elif dpid == 0x0001f0921c226e80: 
       if out == 1: 
    self.numflows[20]=self.numflows[20]+1 
       elif out == 2: 
    self.numflows[4]=self.numflows[4]+1 
       elif out == 3: 
    self.numflows[26]=self.numflows[26]+1 
   #node 12 
   elif dpid == 0x000140a8f0d12bc0: 
       if out ==1: 
    self.numflows[2]=self.numflows[2]+1 
       elif out == 2: 
    self.numflows[40]=self.numflows[40]+1 
       elif out == 3: 
    self.numflows[38]=self.numflows[38]+1 
   #node 13 
   elif dpid == 0x0001f0921c219d40: 
       if out == 1: 
    self.numflows[16]=self.numflows[16]+1 
       elif out == 2: 
    self.b18 = datetime.now() 
    self.c18 = self.b18-self.a18 
    if self.c18.seconds > 10:  
     self.numflows[18]=self.numflows[18]+1 
     self.a18 = self.b18 
     hashee = str(src) + str(dpid)+ str(datetime.now()) 
     cookie = int(abs(hash(hashee))) 
     #I save off the cookie into the cookie jar 
     #I save off the link that the cookie is assigned  
     if cookie not in self.cookiejar: 
      self.cookiejar.append(cookie) 
      self.linklist.append(out) 
      print “add 1: chicago link is:” 
      print self.numflows[6] 
      print “add 1: houston link is:” 
      print self.numflows[18] 
      print “add 1: atlanta link is:” 
      print self.numflows[13] 
     else: 
      cookie = 0 
       elif out == 3: 
    self.numflows[22]=self.numflows[22]+1 
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       elif out == 4: 
    self.numflows[19]=self.numflows[19]+1 
   #node 13 
   elif dpid == 0x0001f0921c225480: 
       if out == 1: 
    self.numflows[14]=self.numflows[14]+1 
       elif out == 2: 
    self.numflows[17]=self.numflows[17]+1 
       elif out == 3: 
    self.numflows[5]=self.numflows[5]+1 
    else: 
       print “error updating when adding to numflows”  
  else: 
   idletime=30 
  #I write these values to a text file to be read in by MATLAB 
  #Matlab uses it as input to the particle filter  
  fh = open(“input_to_filter.txt,”“w”) 
  fh.seek(0) 
  fh.write(str(self.numflows)) 
  fh.close() 
  #then I generate the flow mod and send it 
         mod = datapath.ofproto_parser.OFPFlowMod( 
              datapath=datapath, match=match, cookie=cookie, 
              command=ofproto.OFPFC_ADD, idle_timeout=idletime,  
                      hard_timeout=idletime, 
              priority=ofproto.OFP_DEFAULT_PRIORITY, 
              flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions) 
         datapath.send_msg(mod) 
  #catch all flow.  
     def add_flow(self, datapath, in_port, actions, dl_type): 
  ofproto = datapath.ofproto 
  match = datapath.ofproto_parser.OFPMatch(dl_type=dl_type,  
                      in_port=in_port) 
   mod = datapath.ofproto_parser.OFPFlowMod( 
    datapath=datapath, match=match, cookie=0, 
   command=ofproto.OFPFC_ADD, idle_timeout=600, hard_timeout=3600, 
         priority=ofproto.OFP_DEFAULT_PRIORITY, 
         flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions) 
  datapath.send_msg(mod) 
  #This section handles all packet-in events 
 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) 
 def _packet_in_handler(self, ev): 
  a = datetime.now() #find current time to time this loop 
  #first pull the message (msg) from the event (ev)   
  msg = ev.msg 
  #pull of the datapath 
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         datapath = msg.datapath 
  #check the openflow protocol 
         ofproto = datapath.ofproto 
  #parse out the packet from the message 
         pkt = packet.Packet(msg.data) 
  #parse out the ethernet (MAC) header and the ip header 
         eth = pkt.get_protocol(ethernet.ethernet) 
  ip = pkt.get_protocol(ipv4.ipv4) 
  #the source and destination MACs are parsed out 
  dstMAC = eth.dst 
        srcMAC = eth.src 
  #if it is not an ip packet (i.e., arp) then ip is returned as ‘None’ 
  #if it is an ip packet parse the source and destination ip address 
  if ip != None: 
   dstIP = ip.dst 
   srcIP = ip.src 
  else:  
   dstIP = 0xFFFFFFFF 
   srcIP = 0xFFFFFFFF 
   
  #dpid is the switch ID 
         dpid = datapath.id 
  #start building the mac to port and ip to port dictionary for each  
               switch 
        self.mac_to_port.setdefault(dpid, {}) 
  self.ip_to_port.setdefault(dpid, {}) 
   done = 0 
  with open(“/home/ec4715/Documents/MATLAB/TomDissertation 
                         /DoneBuildingTable.txt”) as file: # Use file to refer to the  
                                                            file object 
                 done = file.read() 
         done = int(done) 
          
  # learn a Source mac address to avoid FLOOD next time. 
  if msg.in_port < 30 and done == 0: 
   if srcMAC in self.mac_to_port[dpid]: 
    print ‘mac to port already assigned’ + srcMAC 
   else: 
    self.mac_to_port[dpid][srcMAC] = msg.in_port 
    print ‘updating mac_to_port with MAC address ‘ +  
                             str(srcMAC) 
  if msg.in_port < 30 and done == 0: 
   if srcIP != 0xFFFFFFFF: 
    if srcIP in self.ip_to_port[dpid]: 
     print ‘ip to port already assigned’ + srcIP 
    else:    
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     self.ip_to_port[dpid][srcIP] = msg.in_port 
  #define my control nodes by their dpid (switch ID) 
  controlnodes = [] 
   controlnodes = [0x00012c59e5107640]  
  controlon = 0 
  with open(“/home/ec4715/Documents/MATLAB/TomDissertation/control.txt”)  
              as file: # Use file to refer to the file object 
                 controlon = file.read() 
         controlon = int(controlon) 
   
   
   #determine what to do with each packet based on current learned  
               locations or flood 
  if dstMAC in self.mac_to_port[dpid]: 
   out_port = self.mac_to_port[dpid][dstMAC] 
   
  elif dstIP in self.ip_to_port[dpid]: 
   out_port = self.ip_to_port[dpid][dstIP] 
  else:   
   out_port = ofproto.OFPP_FLOOD 
  
  #here I assign the action that the flow should take 
         actions = [datapath.ofproto_parser.OFPActionOutput(out_port)] 
          #Flood ARP packets 
         if dstMAC == “ff:ff:ff:ff:ff:ff” and eth.ethertype != 0x002c: 
       out_port = ofproto.OFPP_FLOOD 
       actions = [datapath.ofproto_parser.OFPActionOutput(out_port)] 
   #call add_flow_ARP function 
       self.add_flow_ARP(datapath, msg.in_port, dstMAC, actions=actions,  
    dl_type=eth.ethertype) 
   #Because the switches do not buffer the packet once it sends a  
                      packet_in 
   #message, I must send that packet out using OFPPacketOut function  
                      call 
       out = datapath.ofproto_parser.OFPPacketOut( 
             datapath=datapath, buffer_id=0xffffffff, in_port=msg.in_port, 
               actions=actions, data=msg.data) 
              datapath.send_msg(out) 
   #If the packet is not an IP or ARP packet, I want to drop it 
  elif eth.ethertype != 0x800 and eth.ethertype != 0x806: 
   #To drop a packet the action is assigned None 
   #the switch reads this as an instruction to drop the packet 
               actions=None 
               self.add_flow(datapath, msg.in_port, actions=actions,  
                      dl_type=eth.ethertype) 
   #if it is a ip packet I execute this loop 
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         elif eth.ethertype == 0x800: 
   #don’t do anything if the in port and out port are the same 
   #This happens when there are loops in the network 
   #Spanning tree algorithms help solve this problem 
    #if the switch is a control node and the destination is  
                             10.10.2.6 
    if dpid in controlnodes and dstIP == ‘10.10.2.6’ and  
                             controlon == 1: 
      #the file read in below has a row for each  
                                            control switch 
      #the router uses that assigned row to route  
                                            the packets 
      row = 4      
      if dpid == 0x0001c4346b99dc00: #if switch  
                                                                           is node 4 
       row = 0 
      elif dpid ==  0x0001f0921c219d40: #else  
                                                                    switch is node 13 
       row = 2 
      elif dpid == 0x00012c59e5107640: 
       row = 1 
      #Here I read in the text file that MATLAB  
                                             wrote to determine routes 
      with open(‘//home//ec4715//Documents// 
                                           MATLAB//TomDissertation//route.txt’) as f: 
       route = [] 
       for line in f: 
        line = line.split() 
        if line: 
         line = [int(i) for i  
                                                                   in line] 
         route.append(line) 
      f.close 
      self.dpid_to_port.setdefault(0,{}) 
     
 self.dpid_to_port[1]=[0,0,0,0,0,0,0,0,2,0,0,3,4,0,1,0]  
     
 self.dpid_to_port[2]=[0,0,0,1,2,0,0,0,0,0,0,0,3,0,0,0] 
     
 self.dpid_to_port[3]=[0,0,3,0,2,0,1,0,0,0,0,0,0,0,0,0] 
     
 self.dpid_to_port[4]=[0,0,3,2,0,1,0,0,0,0,0,0,4,0,0,0] 
     
 self.dpid_to_port[5]=[0,0,0,0,3,0,2,0,0,0,0,1,0,0,0,0] 
     
 self.dpid_to_port[6]=[0,0,0,3,0,2,0,0,0,0,0,0,0,1,0,0] 



 133 

     
 self.dpid_to_port[7]=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
     
 self.dpid_to_port[8]=[0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0] 
     
 self.dpid_to_port[9]=[0,0,0,0,0,0,0,0,9,0,10,0,0,0,0,0] 
     
 self.dpid_to_port[10]=[0,0,0,0,0,0,0,0,0,9,0,0,0,10,11,0] 
     
 self.dpid_to_port[11]=[0,2,0,0,0,3,0,0,0,0,0,0,0,1,0,0] 
     
 self.dpid_to_port[12]=[0,1,3,0,2,0,0,0,0,0,0,0,0,0,0,0] 
     
 self.dpid_to_port[13]=[0,0,0,0,0,0,3,0,0,0,1,4,0,0,2,0] 
     
 self.dpid_to_port[14]=[0,3,0,0,0,0,0,0,0,0,1,0,0,2,0,8] 
       counter = 0 
      print route[row] 
      for i in range(len(route[row])-1): 
       if counter == 0: 
        in_portip = msg.in_port 
        counter = 1 
       else: 
        first = route[row][i] 
        second = route[row][i-1] 
        in_portip =  
                                                       self.dpid_to_port[first][second] 
        first = route[row][i] 
       second = route[row][i+1] 
       out_portip =  
                                                       self.dpid_to_port[first][second] 
       if first == 1: 
        dpidflow=0x00012c59e5107640 
       elif first ==2: 
        dpidflow=0x0001c4346b94a200 
       elif first ==3: 
        dpidflow=0x00012c59e51016c0 
       elif first ==4: 
        dpidflow=0x0001c4346b99dc00  
       elif first ==5: 
        dpidflow=0x0001c4346b946200 
       elif first ==6: 
        dpidflow=0x0001c4346b971ec0  
       elif first ==8: 
        dpidflow=0x0001f0921c220e80 
       elif first ==9: 
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        dpidflow=0x0001c4346b98a200 
       elif first ==10: 
        dpidflow=0x0001c4346b972a80 
       elif first ==11: 
        dpidflow=0x0001f0921c226e80 
       elif first ==12: 
        dpidflow=0x000140a8f0d12bc0 
       elif first ==13: 
        dpidflow=0x0001f0921c219d40 
       elif first ==14: 
        dpidflow=0x0001f0921c225480 
        datapath=self.DPSet.get(dpidflow) 
        actionscontrol =  
                                                       [datapath.ofproto_parser. 
                                                       OFPActionOutput(out_portip)] 
           self.add_flow_IP(out_portip,  
                                                      datapath, in_portip, dstIP,  
          actions=actionscontrol,  
                                                      dl_type=eth.ethertype, src=srcIP) 
      
       actionscontrol =  
                                                       [datapath.ofproto_parser.   
                                                      OFPActionOutput(in_portip)] 
        self.add_flow_IP(in_portip,  
                                                      datapath, out_portip, srcIP, 
          actions=actionscontrol,   
                                                      dl_type=eth.ethertype, src=dstIP) 
          
      #after for loop of flows send the message  
                                            back out on the original  
      #switch 
      first=route[row][0] 
      second=route[row][1] 
      if first == 1: 
       dpidflow=0x00012c59e5107640 
      elif first ==2: 
       dpidflow=0x0001c4346b94a200 
      elif first ==3: 
       dpidflow=0x00012c59e51016c0 
      elif first ==4: 
       dpidflow=0x0001c4346b99dc00  
      elif first ==5: 
       dpidflow=0x0001c4346b946200 
      elif first ==6: 
       dpidflow=0x0001c4346b971ec0  
      elif first ==8: 
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       dpidflow=0x0001f0921c220e80 
      elif first ==9: 
       dpidflow=0x0001c4346b98a200 
      elif first ==10: 
       dpidflow=0x0001c4346b972a80 
      elif first ==11: 
       dpidflow=0x0001f0921c226e80 
      elif first ==12: 
       dpidflow=0x000140a8f0d12bc0 
      elif first ==13: 
       dpidflow=0x0001f0921c219d40 
      elif first ==14: 
       dpidflow=0x0001f0921c225480 
      datapath=self.DPSet.get(dpidflow)  
          
      out_portip=self.dpid_to_port[first][second] 
      actions =  
                                            [datapath.ofproto_parser.OFPActionOutput 
       (out_portip)]     
      print “packet out” 
      print first, second, out_portip, dstIP  
      out = datapath.ofproto_parser.OFPPacketOut( 
       datapath=datapath,  
                                                   buffer_id=0xffffffff,  
                                                   in_port=in_portip, 
         actions=actions, data=msg.data) 
      datapath.send_msg(out)  
    #if it isn’t a control node, then I send it down the  
                              static path 
    else: 
     self.add_flow_IP(out_port, datapath, msg.in_port,  
                                            dstIP, actions=actions, 
                                            dl_type=eth.ethertype, src=srcIP) 
            out = datapath.ofproto_parser.OFPPacketOut( 
            datapath=datapath, buffer_id=0xffffffff,  
                                           in_port=msg.in_port, 
      actions=actions, data=msg.data) 
     datapath.send_msg(out) 
          elif eth.ethertype == 0x806: 
   if msg.in_port == out_port: 
    out_port = ofproto.OFPP_FLOOD 
     
    #here I assign the action that the flow should take 
           actions =  
                                [datapath.ofproto_parser.OFPActionOutput(out_port)] 
     print “in port equals out port for IP traffic 0x806” 
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    self.add_flow_ARP(datapath, msg.in_port, dstMAC,  
                                    actions=actions,  
     dl_type=eth.ethertype) 
        out = datapath.ofproto_parser.OFPPacketOut( 
               datapath=datapath, buffer_id=0xffffffff,  
                                    in_port=msg.in_port, 
         actions=actions, data=msg.data) 
        datapath.send_msg(out) 
   else: 
        self.add_flow_ARP(datapath, msg.in_port, dstMAC,  
                                    actions=actions,  
     dl_type=eth.ethertype) 
        out = datapath.ofproto_parser.OFPPacketOut( 
           datapath=datapath, buffer_id=0xffffffff,  
                               in_port=msg.in_port, 
          actions=actions, data=msg.data) 
        datapath.send_msg(out) 
  b = datetime.now() 
 #Here I process the flow removed message 
 @set_ev_cls(ofp_event.EventOFPFlowRemoved, MAIN_DISPATCHER) 
 def _flow_removed_handler(self, ev): 
  #I do similar parsing as above 
  msg = ev.msg 
  dpid = msg.datapath.id 
  match = msg.match  
  inport = match.in_port  
  #first I check to see if the cookie is zero 
   done = 0 
  with 
open(“/home/ec4715/Documents/MATLAB/TomDissertation/DoneBuildingTable.txt”) as file:
 # Use file to refer to the file object 
                 done = file.read() 
         done = int(done) 
  if msg.cookie != 0 and done == 1: 
   link_index = self.cookiejar.index(msg.cookie) 
   out = self.linklist[link_index] 
    
   #Knowing the link it came in on and the switch 
   #I can decrement the correct flow number 
   if out < 30:  
        
   #node 1 
       if dpid == 0x00012c59e5107640: 
        if out == 4: 
     self.numflows[1]=self.numflows[1]-1 
        elif out == 3: 
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     self.numflows[3]=self.numflows[3]-1 
       elif out == 1: 
     self.numflows[6]=self.numflows[6]-1 
     print “subtract 1: chicago link is:” 
     print self.numflows[6] 
     print “subtract 1: houston link is:” 
     print self.numflows[18] 
     print “subtract 1: atlanta link is:” 
     print self.numflows[13] 
        elif out == 2: 
     self.numflows[7]=self.numflows[7]-1 
   #node 2 
       elif dpid == 0x0001c4346b94a200: 
        if out == 1: 
     self.numflows[34]=self.numflows[34]-1 
        elif out == 2: 
     self.numflows[35]=self.numflows[35]-1 
        elif out == 3: 
     self.numflows[37]=self.numflows[37]-1 
   #node 3 
       elif dpid == 0x00012c59e51016c0: 
        if out == 1: 
     self.numflows[31]=self.numflows[31]-1 
        elif out == 2: 
     self.numflows[30]=self.numflows[30]-1 
        elif out == 3: 
     self.numflows[33]=self.numflows[33]-1 
   #node 4 
              elif dpid == 0x0001c4346b99dc00: 
        if out == 1: 
     self.numflows[27]=self.numflows[27]-1 
        elif out == 2: 
     self.numflows[29]=self.numflows[29]-1 
        elif out == 3: 
     self.numflows[36]=self.numflows[36]-1 
        elif out == 4: 
     self.numflows[39]=self.numflows[39]-1 
   #node 5 
       elif dpid == 0x0001c4346b946200: 
        if out == 1: 
     self.numflows[25]=self.numflows[25]-1 
        elif out == 2: 
     self.numflows[25]=self.numflows[25]-1 
        elif out == 3: 
     self.numflows[28]=self.numflows[28]-1 
   #node 6 
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       elif dpid == 0x0001c4346b971ec0: 
        if out == 1: 
     self.numflows[21]=self.numflows[21]-1 
        elif out == 2: 
     self.numflows[23]=self.numflows[23]-1 
        elif out == 3: 
     self.numflows[32]=self.numflows[32]-1 
   #node 8 
       elif dpid == 0x0001f0921c220e80: 
        if out == 1: 
     self.numflows[8]=self.numflows[8]-1 
        elif out == 2: 
     self.numflows[9]=self.numflows[9]-1 
   #node 9 
       elif dpid == 0x0001c4346b98a200: 
        if out == 9: 
     self.numflows[10]=self.numflows[10]-1 
        elif out == 10: 
     self.numflows[11]=self.numflows[11]-1 
   #node 10 
       elif dpid == 0x0001c4346b972a80: 
        if out == 9: 
     self.numflows[12]=self.numflows[12]-1 
        elif out == 10: 
     self.numflows[15]=self.numflows[15]-1 
        elif out == 11: 
     self.numflows[13]=self.numflows[13]-1 
     print “subtract 1: chicago link is:” 
     print self.numflows[6] 
     print “subtract 1: houston link is:” 
     print self.numflows[18] 
     print “subtract 1: atlanta link is:” 
     print self.numflows[13] 
   #node 11 
       elif dpid == 0x0001f0921c226e80: 
        if out == 1: 
     self.numflows[20]=self.numflows[20]-1 
        elif out == 2: 
     self.numflows[4]=self.numflows[4]-1 
        elif out == 3: 
     self.numflows[26]=self.numflows[26]-1 
   #node 12 
       elif dpid == 0x000140a8f0d12bc0: 
        if out ==1: 
     self.numflows[2]=self.numflows[2]-1 
        elif out == 2: 



 139 

     self.numflows[40]=self.numflows[40]-1 
        elif out == 3: 
     self.numflows[38]=self.numflows[38]-1 
   #node 13 
       elif dpid == 0x0001f0921c219d40: 
        if out == 1: 
     self.numflows[16]=self.numflows[16]-1 
        elif out == 2: 
     self.numflows[18]=self.numflows[18]-1 
     print “subtract 1: chicago link is:” 
     print self.numflows[6] 
     print “subtract 1: houston link is:” 
     print self.numflows[18] 
     print “subtract 1: atlanta link is:” 
     print self.numflows[13] 
        elif out == 3: 
     self.numflows[22]=self.numflows[22]-1 
        elif out == 4: 
     self.numflows[19]=self.numflows[19]-1 
   #node 13 
       elif dpid == 0x0001f0921c225480: 
        if out == 1: 
     self.numflows[14]=self.numflows[14]-1 
        elif out == 2: 
     self.numflows[17]=self.numflows[17]-1 
        elif out == 3: 
     self.numflows[5]=self.numflows[5]-1 
    else: 
       print “error updating”  
  #I write this info to a text file for MATLAB to read 
  fh = open(“input_to_filter.txt,”“w”) 
  fh.seek(0) 
  fh.write(str(self.numflows)) 
  fh.close() 
   
      @set_ev_cls(ofp_event.EventOFPPortStatus, MAIN_DISPATCHER) 
     def _port_status_handler(self, ev): 
  msg = ev.msg 
  reason = msg.reason 
         port_no = msg.desc.port_no 
          ofproto = msg.datapath.ofproto 
         if reason == ofproto.OFPPR_ADD: 
             self.logger.info(“port added %s,” port_no) 
         elif reason == ofproto.OFPPR_DELETE: 
             self.logger.info(“port deleted %s,” port_no) 
         elif reason == ofproto.OFPPR_MODIFY: 
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             self.logger.info(“port modified %s,” port_no) 
             
         else: 
             self.logger.info(“Illeagal port state %s %s,” port_no, reason) 
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APPENDIX C. SAMPLE OF PYTHON SCRIPTS FOR MONITOR 
APPLICATION 

 From operator import attrgetter 
from datetime import datetime 
import numpy as np 
import May25routingApp_3ControlNode 
from ryu.controller import ofp_event 
from ryu.controller.handler import MAIN_DISPATCHER, DEAD_DISPATCHER 
from ryu.controller.handler import set_ev_cls 
from ryu.lib import hub 
import sys 
  class SimpleMonitor(May25routingApp_3ControlNode.SimpleSwitch): 
     def __init__(self, *args, **kwargs): 
        super(SimpleMonitor, self).__init__(*args, **kwargs) 
        self.datapaths = {} 
        self.monitor_thread = hub.spawn(self._monitor) 
  
     @set_ev_cls(ofp_event.EventOFPStateChange, 
                [MAIN_DISPATCHER, DEAD_DISPATCHER]) 
    def _state_change_handler(self, ev): 
        datapath = ev.datapath 
        if ev.state == MAIN_DISPATCHER: 
            if not datapath.id in self.datapaths: 
                self.logger.debug(‘register datapath: %016x’, datapath.id) 
                self.datapaths[datapath.id] = datapath 
        elif ev.state == DEAD_DISPATCHER: 
            if datapath.id in self.datapaths: 
                self.logger.debug(‘unregister datapath: %016x’, datapath.id) 
                del self.datapaths[datapath.id] 
     def _monitor(self): 
 while True: 
            for dp in self.datapaths.values(): 
         self._request_stats(dp) 
    
     hub.sleep(1) 
  
    def _request_stats(self, datapath): 
        self.logger.debug(‘send stats request: %016x’, datapath.id) 
        ofproto = datapath.ofproto 
        parser = datapath.ofproto_parser 
         match = datapath.ofproto_parser.OFPMatch(datapath.ofproto.OFPFW_ALL, 
       0, 0, 0, 0, 0, 
       0, 0, 0, 0, 0, 0, 0) 
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 #req = datapath.ofproto_parser.OFPFlowStatsRequest(datapath, 0, match, 
 #     0, datapath.ofproto.OFPP_NONE) 
        #datapath.send_msg(req) 
        req = parser.OFPPortStatsRequest(datapath, 0, ofproto.OFPP_NONE) 
        datapath.send_msg(req) 
    @set_ev_cls(ofp_event.EventOFPFlowStatsReply, MAIN_DISPATCHER) 
    def _flow_stats_reply_handler(self, ev): 
        body = ev.msg.body 
 self.logger.info(‘flows reply from: %016x’, ev.msg.datapath.id) 
        self.logger.info(‘datapath         ‘ 
                         ‘in-port  eth-dst                     ‘ 
                         ‘out-port packets  bytes’) 
        self.logger.info(‘---------------- ‘ 
                         ‘-------- --------------------------- ‘ 
                         ‘-------- -------- --------’) 
        for stat in sorted(body, key=attrgetter(‘packet_count’)): 
 #for stat in sorted([flow for flow in body if flow.cookie != 1],key=lambda): 
  if body.actions: 
      self.logger.info(‘%016x %8x %17s %8x %8d %8d’, 
                    ev.msg.datapath.id, 
                               #stat.match.in_port, stat.actions[0].port, 
                   stat.match.in_port, repr(stat.match.dl_dst), stat.actions[0].port, 
                    stat.packet_count, stat.byte_count)             
 with open(‘FlowStats.txt’,’a’) as file: 
  file.writelines(“%s:  , %s” % str(datetime.now()),ev.msg) 
    @set_ev_cls(ofp_event.EventOFPPortStatsReply, MAIN_DISPATCHER) 
    def _port_stats_reply_handler(self, ev): 
 body = ev.msg.body 
 “““self.logger.info(‘datapath         port     ‘ 
                         ‘rx-pkts  rx-bytes rx-error ‘ 
                         ‘tx-pkts  tx-bytes tx-error’) 
        self.logger.info(‘---------------- -------- ‘ 
                         ‘-------- -------- -------- ‘ 
                         ‘-------- -------- --------’)”““ 
        “““for stat in sorted(body, key=attrgetter(‘port_no’)): 
  self.logger.info(‘%016x %8x %8d %8d %8d %8d %8d %8d’,  
                             ev.msg.datapath.id, stat.port_no, 
                             stat.rx_packets, stat.rx_bytes, stat.rx_errors, 
                             stat.tx_packets, stat.tx_bytes, stat.tx_errors)”““ 
   if ev.msg.datapath.id == 0x0001c4346b946200: 
  with open(‘PortStats5.txt’,’w’) as file: 
  #for item in ev.msg.datapath: 
   file.writelines(“%s \n” % str(datetime.now())) 
   for stat in sorted(body, key=attrgetter(‘port_no’)): 
        did, port, rx_b, tx_b = ev.msg.datapath.id, stat.port_no,  
                           stat.rx_bytes, stat.tx_bytes   
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        file.write(‘port {}, rx_bytes {}, tx_bytes  
                           {}\n’.format(port, rx_b, tx_b))  
 #node 1 
 elif ev.msg.datapath.id == 0x00012c59e5107640: 
                with open(‘PortStats1.txt’,’w’) as file: 
                #for item in ev.msg.datapath: 
                        file.writelines(“%s \n” % str(datetime.now())) 
                        for stat in sorted(body, key=attrgetter(‘port_no’)): 
                             did, port, rx_b, tx_b = ev.msg.datapath.id,  
                             stat.port_no, stat.rx_bytes, stat.tx_bytes 
                             file.write(‘port {}, rx_bytes {}, tx_bytes  
                             {}\n’.format(port, rx_b, tx_b)) 
 #node 2 
 elif ev.msg.datapath.id == 0x0001c4346b94a200: 
                with open(‘PortStats2.txt’,’w’) as file: 
                #for item in ev.msg.datapath: 
                        file.writelines(“%s \n” % str(datetime.now())) 
                        for stat in sorted(body, key=attrgetter(‘port_no’)): 
                             did, port, rx_b, tx_b = ev.msg.datapath.id,  
                             stat.port_no, stat.rx_bytes, stat.tx_bytes 
                             file.write(‘port {}, rx_bytes {}, tx_bytes 
{}\n’.format(port, rx_b, tx_b)) 
 #node 4 
 elif ev.msg.datapath.id == 0x0001c4346b99dc00: 
                with open(‘PortStats4.txt’,’w’) as file: 
                #for item in ev.msg.datapath: 
                        file.writelines(“%s \n” % str(datetime.now())) 
                        for stat in sorted(body, key=attrgetter(‘port_no’)): 
                             did, port, rx_b, tx_b = ev.msg.datapath.id,  
                             stat.port_no, stat.rx_bytes, stat.tx_bytes 
                             file.write(‘port {}, rx_bytes {}, tx_bytes  
                             {}\n’.format(port, rx_b, tx_b)) 
 #node 5 
 elif ev.msg.datapath.id == 0x0001c4346b946200: 
                with open(‘PortStats5.txt’,’w’) as file: 
                #for item in ev.msg.datapath: 
                        file.writelines(“%s \n” % str(datetime.now())) 
                        for stat in sorted(body, key=attrgetter(‘port_no’)): 
                             did, port, rx_b, tx_b = ev.msg.datapath.id,  
                             stat.port_no, stat.rx_bytes, stat.tx_bytes 
                             file.write(‘port {}, rx_bytes {}, tx_bytes  
                             {}\n’.format(port, rx_b, tx_b)) 
 #node 6 
 elif ev.msg.datapath.id == 0x0001c4346b971ec0: 
                with open(‘PortStats6.txt’,’w’) as file: 
                #for item in ev.msg.datapath: 
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                        file.writelines(“%s \n” % str(datetime.now())) 
                        for stat in sorted(body, key=attrgetter(‘port_no’)): 
                             did, port, rx_b, tx_b = ev.msg.datapath.id,  
                             stat.port_no, stat.rx_bytes, stat.tx_bytes 
                             file.write(‘port {}, rx_bytes {}, tx_bytes  
                             {}\n’.format(port, rx_b, tx_b)) 
 #node 9 
 elif ev.msg.datapath.id == 0x0001c4346b98a200: 
                #print ‘node 9 entered’ 
  with open(‘PortStats9.txt’,’w’) as file: 
                #for item in ev.msg.datapath: 
                        file.writelines(“%s \n” % str(datetime.now())) 
                        for stat in sorted(body, key=attrgetter(‘port_no’)): 
                             did, port, rx_b, tx_b = ev.msg.datapath.id,  
                             stat.port_no, stat.rx_bytes, stat.tx_bytes 
                             file.write(‘port {}, rx_bytes {}, tx_bytes  
                             {}\n’.format(port, rx_b, tx_b)) 
 #node 10 
 elif ev.msg.datapath.id == 0x0001c4346b972a80: 
                with open(‘PortStats10.txt’,’w’) as file: 
                #for item in ev.msg.datapath: 
                        file.writelines(“%s \n” % str(datetime.now())) 
                        for stat in sorted(body, key=attrgetter(‘port_no’)): 
                             did, port, rx_b, tx_b = ev.msg.datapath.id,  
                             stat.port_no, stat.rx_bytes, stat.tx_bytes 
                             file.write(‘port {}, rx_bytes {}, tx_bytes  
                             {}\n’.format(port, rx_b, tx_b)) 
 #node 13 
 elif ev.msg.datapath.id == 0x0001f0921c219d40: 
                with open(‘PortStats13.txt’,’w’) as file: 
                #for item in ev.msg.datapath: 
                        file.writelines(“%s \n” % str(datetime.now())) 
                        for stat in sorted(body, key=attrgetter(‘port_no’)): 
                             did, port, rx_b, tx_b = ev.msg.datapath.id,  
                             stat.port_no, stat.rx_bytes, stat.tx_bytes 
                             file.write(‘port {}, rx_bytes {}, tx_bytes  
                             {}\n’.format(port, rx_b, tx_b)) 
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