

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release; distribution is unlimited

SPECTRAL GRAPH THEORY ANALYSIS OF
SOFTWARE-DEFINED NETWORKS TO IMPROVE

PERFORMANCE AND SECURITY

by

Thomas C. Parker

September 2015

Dissertation Co-Supervisors: Murali Tummala
 John McEachen

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2015

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE
SPECTRAL GRAPH THEORY ANALYSIS OF SOFTWARE-DEFINED
NETWORKS TO IMPROVE PERFORMANCE AND SECURITY

5. FUNDING NUMBERS

6. AUTHOR(S) Parker, Thomas C.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this dissertation are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Software-defined networks are revolutionizing networking by providing unprecedented visibility into and control over
data communication networks. The focus of this work is to develop a method to extract network features, develop a
closed-loop control framework for a software-defined network, and build a test bed to validate the proposed scheme.
The method developed to extract the network features is called the dual-basis analysis, which is based on the
eigendecomposition of a weighted graph that accounts for the network topology and traffic load. A software-defined
network closed-loop control scheme is developed; the scheme is modeled after a closed-loop control system that
includes an observer and a controller. A particle filter and phantom node are used to estimate link data rates and
identify the onset of congestion. Based on the outputs of the observer, the controller is able to balance traffic
throughout the network to minimize congestion. A software-defined network test bed is developed to evaluate the
proposed dual-basis representation and the closed-loop control scheme. The test bed is a real-world implementation of
a software-defined network that consists of 13 switches and one controller. The test bed ensures that the proposed
schemes are suitable even when applied in a hardware or software implementation.

14. SUBJECT TERMS
Software-defined network, networking, cybersecurity, eigenvalue, eigenvector, graph theory, spectral
graph theory, control theory

15. NUMBER OF
PAGES

175
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SPECTRAL GRAPH THEORY ANALYSIS OF SOFTWARE-DEFINED

NETWORKS TO IMPROVE PERFORMANCE AND SECURITY

Thomas C. Parker

Lieutenant Commander, United States Navy

B.S., United States Naval Academy, 2003

M.S., Naval Postgraduate School, 2007

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 2015

Author: Thomas C. Parker

Approved by: John McEachen Douglas Fouts

Professor, Electrical and Professor, Electrical and

Computer Engineering Computer Engineering

Dissertation Co-Advisor

James Scrofani James Newman

Associate Professor, Electrical Professor, Space Systems

and Computer Engineering Academic Group

Murali Tummala

Professor, Electrical and Computer Engineering

Dissertation Committee Chair and Dissertation Co-Advisor

Approved by: R. C. Robertson, Chair, Dept. of Electrical and Computer Engineering

Approved by: Douglas Moses, Vice Provost for Academic Affairs

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Software-defined networks are revolutionizing networking by providing

unprecedented visibility into and control over data communication networks. The focus

of this work is to develop a method to extract network features, develop a closed-loop

control framework for a software-defined network, and build a test bed to validate the

proposed scheme. The method developed to extract the network features is called the

dual-basis analysis, which is based on the eigendecomposition of a weighted graph that

accounts for the network topology and traffic load. A software-defined network closed-

loop control scheme is developed; the scheme is modeled after a closed-loop control

system that includes an observer and a controller. A particle filter and phantom node are

used to estimate link data rates and identify the onset of congestion. Based on the outputs

of the observer, the controller is able to balance traffic throughout the network to

minimize congestion. A software-defined network test bed is developed to evaluate the

proposed dual-basis representation and the closed-loop control scheme. The test bed is a

real-world implementation of a software-defined network that consists of 13 switches and

one controller. The test bed ensures that the proposed schemes are suitable even when

applied in a hardware or software implementation.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MOTIVATION ..1
B. OBJECTIVE ..3
C. RELATED WORK ..4

1. Application of Graph Theory to Optimize Network Topology4
2. SDN as a Closed-Loop Control System ..5
3. Optimal SDN Switch Placement ...6
4. Optimal Controller Placement..7
5. Cybersecurity ...8

D. OUTLINE OF DISSERTATION ...9

II. SOFTWARE-DEFINED NETWORKING (SDN) AND ITS
RELATIONSHIP TO GRAPH AND CONTROL THEORY11
A. SOFTWARE-DEFINED NETWORKING ...11

1. General Architecture ...12
2. Operation of the Network ...14

B. APPLICATION OF GRAPH THEORY TO SDN15
1. Graph Theory ...15
2. Spectral Graph Theory..17
3. Network Centrality ..21

C. COMMUNITY FINDING IN GRAPHS AND NETWORKS23
D. CONTROL THEORY ...25

1. State Space Representation ...25
2. Observability and Controllability ..26
3. State Observer ..27

a. Kalman Filter ..27
b. Particle Filter ..28

4. State Controller ..30

III. DUAL-BASIS ANALYSIS AND ITS APPLICATION IN IDENTIFYING
NETWORK BEHAVIOR ...31
A. SPECTRAL GRAPH ANALYSIS TO IDENTIFY NETWORK

FEATURES ..31
1. Optimization of Ratio Cut Using Rayleigh Quotient32
2. Example: Optimal Binary Solution to Ratio Cut34
3. Principal Eigenvectors of the Dual-basis ...35

B. DUAL-BASIS NETWORK REPRESENTATION37
1. Spectral Graph Theory Development of the Dual-basis

Representation with Static Link Weights ..37
2. Eigencentrality Basis ...38
3. Nodal Basis ...41
4. Null and Reachability Space ...43

 viii

C. DYNAMIC LINK WEIGHT ANALYSIS USING THE DUAL-BASIS
REPRESENTATION ..44
1. Closed-Form Solution for Algebraic Connectivity for Mesh

Networks ...44
a. Mesh Network with One Dynamic Link Weight46
b. Mesh Network with Two Dynamic Link Weights46
c. Mesh Network with Dynamic Link Weights to One Node47
d. Mesh Network with a Node Connected by Two Links47
e. Mesh Network with Balanced Traffic to One Node49

2. Closed-Form Solution for the Fiedler Vector49
D. DUAL-BASIS ANALYSIS OF THE 17-NODE NETWORK53
E. PHANTOM NODE ..59

IV. CLOSED-LOOP CONTROL OF SDN ..63
A. PROPOSED CLOSED-LOOP CONTROL SCHEME63
B. LINK DATA RATE ESTIMATION ..66

1. Monitor Nodes in a SDN ..66
2. State Space Model of a SDN ..67
3. Particle Filter Estimator in a SDN ...71
4. Use of Phantom Node for Congestion Detection72

C. CONTROLLER ...73
1. Identification of Control Nodes ..73
2. Load Balancing Traffic via the Control Nodes78

V. METHODS ...81
A. SDN TEST BED DESCRIPTION ..81

1. Implementation of the Proposed Closed-Loop Control Scheme
in Software ..81

2. Topology Modeled after Internet2 ...83
3. Hardware Components ...84

B. DUAL-BASIS ANALYSIS OF TEST BED TOPOLOGY85
1. Identification of Observed Nodes ...85
2. Identification of Control Nodes ..86

VI. RESULTS ...91
A. EXPERIMENTAL RESULTS OF LOAD BALANCING CONTROL

USING CONTROL NODES ...91
1. Particle Filter Results ..93
2. East Coast Results ..95
3. West Coast Results ...100

B. MODIFIED CONTROL NODE SELECTION METHOD105
1. Analysis of Internet2 Topology with Weighted Graph105
2. Analysis of a Two-Server Network ...108

VII. CONCLUSIONS ..115
A. SIGNIFICANT CONTRIBUTIONS ..115

1. Dual-basis Representation ...116
2. Closed-Loop Control Framework ..116

 ix

3. SDN Test Bed..117
B. FUTURE WORK ...117

APPENDIX A. ALGEBRAIC MANIPULATION TO OBTAIN THE LIMIT
IN EQN. (3.34) ..121

APPENDIX B. SAMPLE OF PYTHON SCRIPTS FOR THE CONTROLLER
APPLICATION..123

APPENDIX C. SAMPLE OF PYTHON SCRIPTS FOR MONITOR
APPLICATION..141

LIST OF REFERENCES ..145

INITIAL DISTRIBUTION LIST ...151

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. The three layer SDN protocol architecture includes the infrastructure
layer, the control layer, and the application layer, from [20]. OpenFlow is
the communication protocol between the control layer and the
infrastructure layer. ..12

Figure 2. Typical SDNs are configured with multiple controllers to reduce the
workload of any single controller or to reduce the impact of a loss of a
controller. ...14

Figure 3. The three trailing eigenvectors of the Laplacian matrix are used to
represent each node in the network depicted on the left. By using three
eigenvectors, the network is represented in three dimensions. The red
nodes are connected by the blue links. ...20

Figure 4. A bar plot of the second eigenvector of the graph from Figure 3
demonstrates how the nodes in a graph are separated into two subgraphs
by using the sign of the values of each element in the Fiedler vector.21

Figure 5. The particle filter process is demonstrated contained within the blue box.
The first stage predicts the particle values based on the prior set of
particles and the current input to the system. Next, the particle weights are
updated using the current measurement. Finally, the particles are
resamples and the mean of the new sample is the current estimate.29

Figure 6. The two-dimensional representation of Internet2 in eigenvector space
places the least connected nodes on the edge and the most central nodes in
the center. Each red node is a city on Internet2, and the blue links show
the connectivity between cities. ...35

Figure 7. The three types of nodes above are represented by the green access nodes,
the blue core nodes, and the one red disconnected node.39

Figure 8. Eigencentrality basis plotted using the three eigenvectors associated with
the three smallest, non-zero eigenvalues with nodes 2, 3, and 3 as the least
central nodes in the network. ...39

Figure 9. Eigencentrality basis plotted using the three eigenvectors associated with
the three largest eigenvalues with nodes seven, eight and nine as the most
central nodes in the network ..40

Figure 10. The eigencentrality of node 6 across the eigenspectrum of the static graph
in Figure 7 demonstrates that the eigendecomposition reveals the isolation
of node 6 from all other nodes in terms of the eigenresponse.43

Figure 11. A random network is shown in three dimensions using the trailing three
eigenvectors of the Laplacian matrix. All links in this graph are equal to 1.
The green node is the node of interest, and it is not congested.52

Figure 12. A random network is shown in three dimensions using the trailing three
eigenvectors of the Laplacian matrix. All links in this graph are equal to 1,
except for the links to the green node are reduced to near zero, which is
indicative of congestion. ..52

 xii

Figure 13. As node 6s links are reduced to zero from time 0 to 1 second, the
eigenvalues of the 17-node network demonstrate the behavior from Eqn.
(3.47) as shown by the gray dashed line. ...54

Figure 14. Eqn. (3.47) is demonstrated as three nodes enter the null space by reducing
all their links to 0. ..55

Figure 15. The third, fourth and fifth eigencentrality components are plotted versus
time as all the link weights that attach to nodes 6, 5 and 4 to the core
network are reduced to zero. Node 1 is blue. Node 2 is black. Node 3 is
magenta. Node 4 is cyan. Node 5 is green. Node 6 is red.56

Figure 16. The nodal behavior is demonstrated for first second of the simulation in
two-dimensions. The link weights of the links to node 6 are reduced from
1 to 0. The movement of nodes 1, 2, and 6 can be captured by using vector
magnitudes and angles between vectors. ...58

Figure 17. The 15th, 16th, and 17th eigencentrality components are plotted versus time
as all the link weights that attach to nodes 6, 5 and 4 to the core network
are reduced to zero. Node 14 is magenta. Node 15 is black. Node 16 is
blue. ..59

Figure 18. The phantom node is the dominant node for 2λ until the onset of
congestion in the second figure. Node 3 is congested due to a DDOS
attack, which is indicated by the shift of the phantom node to dominate 3λ
and node 3 dominating 2λ , from [50]. ..60

Figure 19. A SDN modeled as a closed-loop control system has an observer to
estimate the link data rates, and a controller to generate flow modification
messages to change the current link data rates. The dual-basis analysis is
included to provide the controller with additional information in the form
of network features. ...64

Figure 20. The proposed SDN closed-loop control scheme has an observer and a
controller. The observer is the combination of the particle filter to estimate
the link data rates and the phantom node to identify congestion. The
controller uses the information from the observer and from the features
extracted by the dual-basis analysis to generate flow modifications
messages. ...65

Figure 21. A simple four switch network was modeled by a circuit to determine a
linear system to further develop a state space model for the system.68

Figure 22. To model a SDN, voltage on a capacitor was used to model the queue of a
switch and current through resistors was used to model the data rate
between switches. This circuit is used to model the SDN in Figure 21.69

Figure 23. The result of a step input to both the Simulink model of the electrical
circuit from Figure 22 that represents a SDN and state space equations
from Eqns. (4.1) and (4.2). All initial conditions are set to 0. The Simulink
results are the open symbols, and the state space model results are the
solid lines. ..70

Figure 24. The result of a step input to both the Simulink model of the electrical
circuit from Figure 22 that represents a SDN and state space equations
from Eqns. (4.1) and (4.2). The initial conditions are 0, 0, 0.9 on

 xiii

capacitors 1 2 3, , and .C C C The Simulink results are the open symbols, and
the state space model results are the solid lines. ..70

Figure 25. Chicago and Salt Lake are nearly orthogonal when using the first two
eigencentrality vectors. ..75

Figure 26. As more eigencentrality vectors are used, nodes will begin to drift away
from 90° as Sunnyvale does in this case. All other nodes remain near
orthogonal. ...75

Figure 27. The process to identify the control nodes is to iteratively add centrality
vectors such that the nodal vectors with largest norms are no longer
orthogonal. ...76

Figure 28. The control nodes are identified for the Internet2 topology using four
eigencentrality vectors. ..78

Figure 29. The mean minimum link weight increases as the number of control nodes
increases and is maximized when four control nodes are used.80

Figure 30. The implementation of the SDN test bed included 13 hardware switches,
Ryu as the operating system applications written in python that directly
interacted with the switches. MATLAB executed the calculation of link
weights, the dual-basis, and the particle filter. ...82

Figure 31. The reduced Interent2 topology used in the SDN test bed. Each city in the
topology is listed with its associated IP address. ...84

Figure 32. The set of monitor nodes in the test bed is designated by yellow. These
nodes were identified by using the solution to the minimum vertex cover
problem. ...86

Figure 33. The angle between Chicago and Salt Lake City is shown using the leading
two eigenvectors of the dual-basis representation. ..87

Figure 34. The angle between Chicago and Salt Lake City and between Chicago and
Houston is shown using the leading three eigenvectors of the dual-basis
representation. ..88

Figure 35. The angles between Sunnyvale and Chicago, Salt Lake City and Houston
are shown using the leading four eigenvectors of the dual-basis
representation. ..89

Figure 36. The pyramid traffic profile was generated by 48 hosts transmitting at 1
Mbps. ...92

Figure 37. To generate this profile 48 hosts were used, but the transmitting order of
the 48 hosts was different for each experiment. ..92

Figure 38. To generate this profile 48 hosts were used, but the transmitting order,
length of transmission, and the length of time between transmitting was
different. ...93

Figure 39. To estimate the data rate for each link surrounding the servers 500
particles were used, and the particle filter was successful at eliminating
outlying measurements. The inset demonstrates the performance of the
filter at a level that one can see the particle filter’s performance.94

Figure 40. The particle filter was an effective means to limit the impact of outlier
measurements on the routing algorithm. The inset demonstrates the

 xiv

performance of the filter at a level that one can see the particle filter’s
performance. ..95

Figure 41. The link weights for the three links connected to the server node in
Nashville are shown for the pyramid profile with zero control nodes. Static
routes were used by all nodes in the network. ...96

Figure 42. The plot of link weights over time is shown using Chicago alone and using
Chicago and Salt Lake City as the control nodes based on an unweighted
analysis. The results for the one and two control node case are identical.97

Figure 43. The plot of link weights over time is shown using Chicago, Houston, and
Salt Lake City and also Chicago and Houston as the control nodes based
on an unweighted analysis. The results for the two and three control node
case are identical. ...98

Figure 44. The plot of link weights over time is shown using zero control nodes with
the mountain traffic profile. ...99

Figure 45. The plot of link weights over time is shown using Chicago, Houston, and
Salt Lake City as the control nodes based on an unweighted analysis for
the mountain profile. ..99

Figure 46. The plot of link weights over time is shown using zero control nodes with
a non-deterministic traffic profile. ...100

Figure 47. The plot of link weights over time is shown using Chicago, Houston, and
Salt Lake City as the control nodes based on an unweighted analysis.100

Figure 48. The plot of link weights over time is shown using zero control nodes with
the pyramid traffic profile. ...101

Figure 49. The plot of link weights over time is shown using Chicago, Houston, and
Salt Lake City as the control nodes based on an unweighted analysis.102

Figure 50. The plot of link weights over time is shown using zero control nodes with
the mountain traffic profile. ...102

Figure 51. The plot of link weights over time is shown using Chicago, Houston, and
Salt Lake City as the control nodes based on an unweighted analysis.103

Figure 52. The plot of link weights over time is shown using zero control nodes with
the non-deterministic traffic profile. ..104

Figure 53. The plot of link weights over time is shown using Chicago, Houston, and
Salt Lake City as the control nodes based on an unweighted analysis.104

Figure 54. As in a real-world network, computers and traffic are not evenly
distributed throughout the network, which is the case in the SDN test bed. .105

Figure 55. The plot of link weights over time is shown using Houston as a single
control node based on a weighted analysis and pyramid traffic profile.106

Figure 56. The plot of link weights over time is shown using Seattle, Salt Lake City,
and Los Angeles as the control nodes based on a weighted analysis and
pyramid traffic profile. ...107

Figure 57. The plot of link weights over time is shown using Seattle, Salt Lake City,
and Los Angeles as the control nodes based on a weighted analysis and
mountain traffic profile. ...107

 xv

Figure 58. The plot of link weights over time is shown using Seattle, Salt Lake City,
and Los Angeles as the control nodes based on a weighted analysis and
non-deterministic traffic profile. ..108

Figure 59. The plot of link weights over time is shown using Chicago, Los Angeles,
Houston, and Salt Lake City as the control nodes based on a two-server,
weighted analysis and pyramid traffic profile. ..109

Figure 60. The plot of link weights over time is shown using Chicago, Los Angeles,
Houston, and Salt Lake City as the control nodes based on a two-server,
weighted analysis and mountain traffic profile ..110

Figure 61. The plot of link weights over time is shown using Chicago, Los Angeles,
Houston, and Salt Lake City as the control nodes based on a two-server,
weighted analysis and non-deterministic traffic profile.110

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

LIST OF TABLES

Table 1. The angle between the three candidate control nodes shows the degree to
which the candidates are decoupled. ..87

Table 2. The angle between the four candidate control nodes shows the degree to
which the candidates are decoupled. ..88

Table 3. The change in the minimum link weight is presented when using the three
control nodes identified by the unweighted analysis and one server
location at a time. ...112

Table 4. The change in the minimum link weight is presented when using the three
control nodes identified by the weighted analysis and one server location
at a time. ...112

Table 5. The change in the minimum link weight is presented when using the four
control nodes identified by the weighted analysis and both servers
simultaneously. ..112

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

LIST OF ACRONYMS

SDN Software-Defined Network

ONF Open Networking Foundation

ARPANET Advanced Research Projects Agency Network

DMZ Demilitarized Zone

AMQ Automated Malware Quarantine

SNR Signal-to-Noise Ratio

LTI Linear, Time Invariant

bps Bits per Second

DDOS Distributed Denial of Service

NIC Network Interface Card

NTT Nippon Telegraph and Telephone

C2 Command and Control

SSH Secure Shell

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

ACKNOWLEDGMENTS

I would like to thank my wife, Leah, for supporting me as I worked to complete

this research. I would also like to thank all of the Center for Cyber Warfare interns that

worked on the SDN test bed over the last two summers. Their grunt work on the test bed

allowed me to accomplish more hardware experiments that I had expected. Finally, I

would like to thank Professors Murali Tummala and John McEachen for their patient

guidance and advice. Finally, I would like to thank Michelle Pagnani from the Graduate

Writing Center for helping me edit all of my writing, from my proposal through all of my

conference papers and this dissertation. She was not only an outstanding editor, but also a

wonderful teacher.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Current data communication networks have become too complex and too costly to

continue operating and administrating them in the same basic manner as standardized by

Advanced Research Projects Agency Network (ARPANET) in the late 1970s. The

designers of ARPANET decided that a distributed architecture would be better because it

is more resilient to failures [1]. They could not have envisioned how important networks

would become to modern life, how widespread cyber espionage and cyber crime would

become, and how complex these systems would turn out to be. The cost to manage and

defend these complex systems needs to be reduced, while simultaneously increasing

network performance to meet future demands.

A. MOTIVATION

Software-defined networking (SDN) has stepped in with the goal of reducing cost

and increasing performance. This goal is achieved by simplifying the network hardware,

reducing the complexity created by distributed algorithms, providing insight into the

network behavior, and allowing control of all network functions from a centralized

location. The simplified hardware is less expensive and consumes less power. By

centralizing control, the network controller manages the network as a whole. Current

networks are not able to provide the insight into the network’s behavior or the flexibility

to modify the network’s behavior as needed.

Compare the automobile traffic on an interstate, which has no centralized

monitoring or control, with airline traffic, which does have centralized monitoring and

control. With automobile traffic, there is no method to prevent congestion through

prioritizing certain types of traffic, rerouting traffic, or implementing any other

congestion control methods throughout a city. However, air traffic is centrally controlled

by air traffic controllers who can manage their local air traffic based on the needs and

conditions of the system as a whole. Each air traffic controllers shares the same global

traffic and weather picture. From this global picture, they are able to make decisions to

proactively prevent congestion, ensure safety, and increase throughput.

 2

Google, Facebook, AT&T, and Verizon have all decided to implement SDN as

part of their core networks for some of the same reasons that air traffic is centrally

controlled. They have made this choice because SDN reduces costs, boosts performance

and increases flexibility [2]. Google has achieved 95% utilization in their SDN

implementation [3], [4]. Facebook has automated many of its network functions by

disaggregating the forwarding hardware from the control software [5]. AT&T and

Verizon are in need of greater flexibility to route phone calls, texts, and data over their

core networks [6]. One of their goals is to increase network throughput without adding

additional hardware.

SDNs are poised to change the way networks are managed, but the transition from

distributed networks will be successful only if they are built around established

engineering principals. SDNs can make network measurements, decide how to route

packets, and then implement those actions. The process of measurement, decisions and

action is known as the observe, orient, decide, and act (OODA) loop in military strategy

and tactics [7]. When applied to autonomous systems in the private sector, the OODA

loop steps are renamed monitor, analyze, plan and execute [8]. Whether the OODA terms

or the autonomic terms are used, the closed loop of measuring the environment,

processing those measurements, making decisions based on the processed data, and

acting on the decisions is a closed-loop control system [9].

Closed-loop control systems are the technical implementations of OODA loops,

and SDNs are fundamentally closed-loop control systems, with the network as the object

to be controlled. The main benefit of a closed-loop control system is responsiveness to

the current state of the system. Open-loop control systems do not receive feedback from

the system being controlled and are unable to respond to anomalies in the system. In

closed-loop control systems, the controller provides feedback by changing the input to

the system to improve the performance of the system.

 3

B. OBJECTIVE

The objective of this research is to develop spectral graph theory methods to

extract SDN network features and then develop a scheme that utilizes these features to

influence the network behavior to improve the performance and the security of the

network. These features are extracted from graphs that are derived from both the current

network topology and current measured traffic; the topology may change and traffic load

may fluctuate over time. These dynamics describe the behavior of the network. Because

the extracted features describe the overall status of the network, they are considered to

represent the state of the network.

One of the goals of developing a network state for SDNs is to monitor the

network’s behavior. If the proper features can be extracted from the network topology

and traffic, the SDN controller can monitor these features to track network behavior, such

as onset of congestion and malicious activity. The controller can respond at network

speeds to anomalous behavior and proactively mitigate congestion. The objective here is

different from the implementation of past anomaly-detection algorithms because the

controller can use global information to determine the occurrence of an anomaly as

opposed to attempting to determine an anomaly based only on local information or local

traffic analysis. Because the controller can monitor the network-wide behavior and

determine global features for the network, it may be better suited to find anomalies and

detection congestion.

For the controller to effectively use these features to influence the behavior of the

network, the SDN may be considered a closed-loop control system. This work adopts

many control theory concepts and terminology, such as state, feedback, observer, and

controller. Control theory techniques cannot be directly applied to a SDN; however, these

concepts can be applied to develop a closed-loop control framework for SDN that

provides a basis for future development of applications and networks.

To experimentally validate these objectives, the proposed methods must be

implemented on a SDN test bed. Mathematical analysis and simulation are insufficient to

fully validate methods to monitor and control networks because of the complexity of the

 4

systems being validated. Analysis and simulation typically require the researcher to make

assumptions about the network operation. It is difficult to model all of the interactions

and timing issues that are present in a real-world system. For these reasons, the proposed

schemes in this research are implemented on a SDN test bed to validate the effectiveness

of the proposed methods.

C. RELATED WORK

SDN researchers have acknowledged that these networks are closed-loop control

systems; however, specific solutions to manage the SDN as a closed-loop control system

have not been proposed. The development of applications that implement the OODA

loop in a SDN can benefit from the wealth of knowledge that has been developed for

other closed-loop control systems, such as non-linear state estimators and optimal

controllers. If these concepts can be extended to SDNs, greater confidence can be placed

in the applications developed to control the network.

1. Application of Graph Theory to Optimize Network Topology

In [10], SDN was evaluated as the communication infrastructure for a smart grid

implementation. It was shown that the topology to distribute power over large areas is not

the same topology that is best for the communication network. This result was

determined analytically using graph theory based solutions that showed which

communicating nodes should be connected to reduce congestion and increase throughput.

These results were experimentally validated using simulation of a real-world network and

real-world traffic. The traffic was redirected based on the new communication network

derived from the graph theory solution.

This solution works well in an industrial control system (ICS) like the smart grid

because most ICSs have structured traffic profiles, which means that the traffic between

sources and destinations in the network is known and fixed [11]. Extending this solution

to arbitrary networks is ineffective because the solution is not dynamic, which does not

allow it to account for changing traffic patterns, failed devices and cyber-attacks. General

network traffic does have a typical profile, but it can change over time and can be

 5

dramatically different from day to day. A more generic solution must account for the

dynamic traffic profiles and network behavior.

The specific solution proposed in [10] rewired the network by keeping the number

of links in a network constant and changing the directly connected nodes. This was

accomplished by using an unweighted graph, which has the implicit assumption that all

links are equally important to the function of the network. This assumption may not be

true in all cases. Consider a graph theoretic solution that moves a link that carries no

traffic from one location to a new location where it, again, does not carry any traffic. In

this case, the performance of the network is unchanged after using the unweighted

analysis. On the other hand, by including the traffic profiles and network behaviors in the

analysis in the form of a weighted graph, better solutions may be determined.

2. SDN as a Closed-Loop Control System

In Google’s B4 network [3], they demonstrated how performance can be

improved in a dynamic traffic environment. They managed traffic over links that carry

exceptionally large amounts of data. Link utilization was raised to nearly 100% in their

test cases. Google’s solution incorporated network traffic measurements locally, which

were passed to the global traffic engineering server to determine the optimal path to route

traffic through the network based on priority and quality-of-service (QoS) required by

that specific data type. The decisions made by the global traffic engineering algorithm

were passed down to the local site controllers that implemented the decisions made by the

next higher level of the architecture.

Google’s solution maximized throughput, but they were also able to control all

aspects of their network to include when servers were able to transmit. Their solution was

dynamic and achieved levels of performance that are infeasible with a distributed

algorithm. They did not reveal the performance of the control network and the

performance required by the centralized controller and the site controllers. Reducing the

workload on these machines reduces cost and improves performance by requiring either

fewer or less expensive machines. Again, a more general solution is needed that is able to

 6

account for traffic when the network hosts are not directly controlled by the SDN

controller.

By controlling the end hosts directly, a network controller has complete control

over all aspects of a network, but this is not feasible in many real-world networks. A

more generic solution does not include the assumption that all end hosts are controlled.

The controller must accommodate the offered traffic as well as it can. Methods need to be

developed that determine the network behavior as a function of the current offered traffic

and then change how the traffic is routed in the network to improve the overall network

performance. In many cases, this requires a load-balancing algorithm to reduce the

possibility of congestion throughout the network. This research develops a method to

include near real-time offered traffic in the determination of the graph theoretic

representation.

3. Optimal SDN Switch Placement

In the Google B4 network, the deployment of SDN was accomplished all at once,

which may not be feasible for all networks or organizations looking to transition to SDN.

Many of them may end up with a hybrid of SDN and legacy routers in their networks. In

[2], Agarwal, Kodialam and Lakshman examined how one would implement centralized

control in a hybrid network of SDN and non-SDN devices. Again, they used network

measurement techniques to measure the network data rates and make decisions based on

these data rates. They developed a linear programming solution to the problem of

network control and showed that even a modest number of SDN switches in a network

increases performance.

They did not develop an algorithm to find the specific locations in the topology

that provide the largest return on investment. Their method to determine these optimal

locations was through an exhaustive search. After trying all possible locations and

various traffic matrices, they were able to find the switch that provided the greatest return

on investment. This location is static because their solution depended on physically

replacing the forwarding device. They did not explore how one would choose which

 7

switches to control if all switches were SDN devices. Their work, however, implies that

not all switches need to be controlled to reach required levels of performance.

The research in this dissertation examines methods to find the SDN nodes that

must be controlled in order to obtain the gains demonstrated in [2] and [3]; these are

called control nodes in this work. The control node locations are determined dynamically

in a full SDN deployment in this work. Because each node in the network is an SDN

switch, they can all act as legacy routers or as SDN forwarding devices. The results in [2]

demonstrate that not all of the switches need to be controlled. By taking into account

current traffic patterns, network behavior, and network features, the controller can

dynamically update the control node locations to improve performance and reduce the

workload of the controller.

4. Optimal Controller Placement

The controller placement issue is similar to the control node placement issue. In

large networks, the round-trip time from an SDN switch to the controller and back can

become quite large and needs to be minimized. Two methods to minimize the round-trip

time from all SDN switches to the controller and back are proposed in [12]. The topology

chosen was that of a simplified Internet2 [13], which is the topology adopted for this

research. Internet2 was chosen in [12] because researchers were actively debating how

many and where the controllers should be placed. The analysis and results in this research

are based on the Internet2 topology because there is published work with which to

compare these results.

Nevertheless, no algorithm was proposed in [12] to find the optimal locations, but

instead a trial-and-error approach was used. This is a simple task when there is one

controller, but networks spread over large physical areas may require multiple controllers

to achieve the desired performance. As the number of controllers increased, they noted

that the solution required “days” of computation to determine the location. Since [12] was

published, other methods, such as those proposed in [14] and [15], have been developed

to determine controller locations, but almost all of them assume a one-time design choice

 8

of controller locations. Greater performance may be achieved if this analysis is conducted

periodically and the controller locations are reassigned dynamically.

5. Cybersecurity

SDNs are poised to not only increase performance but also have created a new

paradigm for cybersecurity. With centralized monitoring and control, the controller is

able to better monitor the network as compared to network perimeter defenses, such as

firewalls and web server demilitarized zones (DMZs). The Open Network Foundation

(ONF) proposed the idea of a security application called Automated Malware Quarantine

(AMQ) in a white paper discussing security issues associated with SDNs [16]. The

proposed application includes a method to monitor the network, detect anomalous

behavior, and quarantine a portion of the network, a set of end hosts or a specific infected

host to prevent the spread of the malware throughout the network.

The ONF proposed architecture of a security application stopped short of

providing any specifics of the network monitoring, anomaly detection or network control

features. Specific analysis and software tools developed in this research are adopted from

the framework proposed by ONF. This research focuses on developing a method to

determine a graph theoretic network representation, which can be used by security

applications to constantly monitor the network. Because the controller can develop this

representation based on global network information, the controller may be able to more

accurately assess the likelihood that the network behavior is anomalous.

The objective of this work is to provide a SDN framework, which is modeled

after closed-loop control systems, and to provide a method to describe a representation of

the network that reveals key features of the network. To achieve this goal, a SDN needs a

state estimator and a state controller. For these two to be effective, network behavior

needs to be dynamically calculated based on the current offered traffic. As shown in the

previous sections, many of the solutions proposed for SDNs do not account for the

network behavior or offered traffic and do not account for the dynamic nature of the

network. This work adds the dynamic analysis that was missing from previous research to

develop better methods to monitor and control SDNs.

 9

D. OUTLINE OF DISSERTATION

The outline of the dissertation is as follows. The background on SDNs, graph

theory, spectral graph theory and closed-loop control are provided in Chapter II. The

dual-basis and its role in defining the state of the network is developed in Chapter III.

The closed-loop control framework around which SDN controllers can be built is

discussed in Chapter IV. The methods used to validate the work from Chapters III and IV

are shown in Chapter V. The results obtained from the SDN test bed that was built based

on the Internet2 topology are shown in Chapter VI. The conclusions drawn from this

research and areas of future work to be considered are provided in Chapter VII. The

details of the limit from Eqn. (3.34) are contained in Appendix A. A sample of the

Python code for the state controller application, which implemented the state control

function, is contained in Appendix B. A sample of the Python code for the monitor

application, which implemented the state estimation function, is contained in Appendix

C.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

II. SOFTWARE-DEFINED NETWORKING (SDN) AND ITS
RELATIONSHIP TO GRAPH AND CONTROL THEORY

Most convectional networks today is accomplished through a litany of distributed

algorithms and protocols, which take years to be approved. Once they go into widespread

use, it is difficult and time consuming to change or improve them or even to close

security vulnerabilities. This difficulty results in workarounds that reduce interoperability

and security.

Software-defined networking is poised to change the way large, complex data

communication networks are managed and controlled. The goal of SDN is to logically

centralize network management at a device called the network controller [17]. From that

centralized location, the controller provides unprecedented control over packet routes and

collection of network statistics. Managing the network in a centralized manner allows for

more effective traffic engineering and security. In this chapter, the background required

for the remaining chapters of the dissertation is provided. First, the SDN architecture and

operation are described. Next, graph theory and spectral graph theory are introduced, and

then applied to the community finding problem. Finally, the basic concepts and

techniques used in control theory are reviewed.

A. SOFTWARE-DEFINED NETWORKING

A software-defined network improves the network management and operation by

physically separating the control of the network from the data path of the network [18].

This concept is radically different from the way networks currently operate. Networks

today are distributed systems in which the devices share information to determine the

best possible routes. These distributed systems can be slow to react to changes in network

traffic, and routes may be sub-optimal because each router typically does not know the

full topology; even protocols that share network-wide link state may not have knowledge

of the full topology because of route aggregation [19]. The controller must be able to

determine the current, global state. Using the current state, the controller can find

globally optimal solutions to improve performance.

 12

1. General Architecture

The Open Networking Foundation defines a three-layer SDN model as depicted in

Figure 1 [20]. The infrastructure layer is the physical topology, which is composed of

SDN-enabled switches and the links between them. The switches take flow rules as input

from the controller and provide statistics about network traffic to the controller as an

output. They are also the data forwarding devices that receive individual packets and then

transmit these packets toward the intended destination.

Figure 1. The three layer SDN protocol architecture includes the infrastructure

layer, the control layer, and the application layer, from [20]. OpenFlow
is the communication protocol between the control layer and the

infrastructure layer.

The control layer develops the rules that are sent to the switches. The controller is

programmable and uses the network traffic measurements to determine new routes. The

controller is software that runs on a computer and communicates with the switches. The

controller must be able to communicate with the switches using the OpenFlow

communications protocol [21]. Examples of network services that are implemented by

the controller include route determination, load-balancing, and topology discovery.

 13

The control packets that are passed between the switches and the controller are

separated from the data traffic. Typically, they are sent over a physically separate

network called the control network. By having a physically separate control network

potentially leads to a more secure implementation.

Network control is implemented via flow rules, which are sent to the switches

from the controllers. Flow rules have two basics parts. The first part of the rule is the

match, which defines which packets are processed by the rule. The second part of the rule

is the action, which defines what action is taken. The flow rule matches various portions

of the headers of packets that are received at the switches. The action portion of the rule

tells the switch whether to change the header, drop the packet, route it out a specific port,

flood the packet out all of the ports, or take some other action [20]. This ability to treat

each device in a network individually provides a granularity of control that is

unprecedented in traditional networks.

The interface from the application layer to the control layer, the northbound

interface, has not been standardized. However, ONF has a working group actively

exploring options to standardize this interface [22]. Examples of business applications are

distributed denial of service (DDOS) protection, intrusion detection, and usage tracking

for billing. Business applications allow an enterprise to choose which applications are

required and to purchase those that are required.

In a typical SDN implementation, a single controller is communicating with

multiple switches and possibly with other controllers of other domains, as shown in

Figure 2. One of the drawbacks of centralization is the potential for a single point of

failure for the network. Traditional networks detect a failed device and are able to recover

due to the distributed nature of the system. To prevent a network failure due to a single

device failure, multiple controllers must be implemented in the network. These

controllers need to share information to ensure that there is a logically centralized

network representation even though the controllers may be physically separated.

 14

Figure 2. Typical SDNs are configured with multiple controllers to reduce the

workload of any single controller or to reduce the impact of a loss of a
controller.

2. Operation of the Network

When a packet arrives at the SDN switch, the packet headers are checked against

the match portion of the rules that the switch already installed in a flow table. If no match

is found, the switch sends the packet to the controller via the OpenFlow interface. Next,

the controller determines whether or not a new flow rule needs to be sent to the switch.

Typically, the controller will create a new rule. The controller then determines the correct

match and the correct action. The controller then sends a flow rule to the switch, which in

turn installs this rule in the flow table as a flow entry. Subsequent packets, which match

this flow entry, are acted upon correctly based on the newly installed rule. The controller

is free to create, modify, and delete flow entries proactively and reactively.

A method to aid the controller in determining flow rules is to develop a graph

theoretic model of the network and extract features based on that model. A network is

modeled by graph theory as a single entity composed of a set of devices and the

connections between these devices. Based on that model, matrix representations of the

network can be developed and used for feature extraction. One of the goals of this work

is to develop a scheme to extract network features and to control those features.

 15

B. APPLICATION OF GRAPH THEORY TO SDN

Graph theory provides methods to model networks as a set of nodes connected by

links. These techniques can be used to model all layers of the SDN stack. The physical

topology can be represented by graphs that describe which nodes communicate directly

with other nodes, and the networking topology can be described by similar graphs that

account for network traffic. Once this model has been developed, it can be analyzed to

determine features of the network, such as nodal centrality and severity of congestion

[23]. This analysis will aid the controller in the development of flow rules to maximize

performance and minimize congestion.

1. Graph Theory

Graph theory is used to model interconnected objects. These interconnected

objects can range from neurons in the brain to computers on a network. One of the main

strengths, but also a drawback, of graph theory is that the model generated using standard

graph techniques is much more abstract than the network being modeled. For instance,

the communication between a client and server on the Internet is accomplished by many

machines that run numerous algorithms to ensure that the web page requested by the

client is properly displayed in the client’s web browser. In graph theory, these

complexities are reduced to nodes and links. The benefit of this analysis is that it is

simpler; the drawback is that assumptions made when reducing complexity may be

incorrect. These incorrect assumptions can lead to poor results.

Modeling interconnected devices requires three types of objects: nodes, links,

and link weights. Nodes are the objects that are being connected by links. Link weights

describe a feature of the link between nodes. The definition of link weight will vary from

implementation to implementation. The robustness of a communication channel can be

modeled by defining the link weights as a function of a measurable quantity. An example

is the signal-to-noise ratio (SNR) of a wireless link or the utilization of a wired link [24].

For an undirected graph G , where (, ,)G N L W= , N is the set of nodes that are

connected by the set L of links with weights W . Undirected graphs are graphs in which

 16

the links do not indicate a direction but simply indicate a connection. Directed graphs

have links that indicate direction and each direction can have independent link weights.

In this work, undirected graphs are used and composed of nodes represented by

SDN switches and links that represent the communication paths between them, which in

this case are Ethernet cables. The link weights are determined by the data rate between

the switches. The controller is able to maintain knowledge about the links between

switches by querying the switches for this information. It is also able to maintain

information about the data rate by periodically requesting this information from the

switches.

To maintain and analyze the topology of the SDN, a matrix representation of the

network is required. In graph theory, a network topology can be represented by an

adjacency matrix A [25]. The adjacency matrix is a n n× matrix where n is the total

number of nodes in the graph G . For an unweighted, undirected graph, each element in

the thi row and thj column ije in A is set to one as given by [25]

1 if
0 otherwise

ij
ij

e L∈
= 


A . (2.1)

For a weighted, undirected graph, the adjacency matrix is obtained by assigning link

weights ijw according to [25]

 if

0 otherwise
ij ij

ij

w e L∈
= 


A . (2.2)

The degree of a node is defined as the sum of the link weights of the links attached to a

node. The degree matrix is defined as [25]

 1
 if

0 otherwise

n

ik
kij

w i j
D =

 == 


∑ . (2.3)

If the graph is unweighted, the diagonal of the degree matrix equals the degree of each

node in the graph. The degree matrix and adjacency matrix can be combined to define the

Laplacian matrix Q D= − A , equivalently the Laplacian matrix is given by

 17

1

 if

 if

0 otherwise

ij ij
n

ij ik
k

w e L

Q w i j
=

− ∈
= =



∑ . (2.4)

The formation of the Laplacian matrix is not unique. An n n× permutation matrix

P can be used to transform one graph representation to another without changing the

underlying structure [25]. For example, given a graph 1G , a new graph can be generated

through permutation: 2 1
TG P G P= . The Laplacian matrix of the new graph 2G has the

same eigendecomposition as the original graph. In other words, the permutation matrix

simply maps a set of nodes to another set of nodes, but does not change the topology of

the graph. As a result, the first row and column of Q could be any node in graph and not

necessarily a node labeled 1 [25].

Normalization is important to make a fair comparison of graphs with different

numbers of links and nodes. The Laplacian matrix needs to be normalized in order to

compare various graph metrics among different topologies [26]. The normalized

Laplacian matrix is defined [27] as

 1/2 1/2 1/2 1/2normQ I D D D QD− − − −= − =A (2.5)

 1/2
,

1 i i
i

D diag
d

−
 

=   
 

. (2.6)

The off diagonal terms of 1/2D− remain zero.

Using the above matrices, a model of a SDN can be obtained using a series of

nodes, links and link weights. Once a model is developed, it can be analyzed to determine

useful characteristics of the network. The characteristics include congestion,

underutilization, nodal centrality, and general health of the network. These are all

important features that the controller must have to increase the performance of the

network.

2. Spectral Graph Theory

Spectral graph theory is a subfield of graph theory that utilizes the

eigendecomposition technique to derive characteristics of the modeled network.

 18

Eigendecomposition yields two matrices: the eigenvector matrix and eigenvalue matrix.

Eigenvector analysis, which is a part of principal component analysis, is often used for

dimensionality reduction [28]. It is also used to find the fundamental frequencies and

shapes of vibrating structures. Spectral graph theory uses the concepts of frequencies and

shapes to analyze Laplacian matrices [25]. Spectral graph theory attempts to find

meaning in the eigenvalues and eigenvectors of adjacency and Laplacian matrices.

Eigenanalysis consists of solving i iv vλ=A where A is an n n× matrix, iv is an

1n× eigenvector of A , and iλ is a scalar eigenvalue of A for 1, ,i n=  . The first step

is to obtain the eigenvalues iλ by solving the equation det() 0Iλ− =A where I is an

n n× identity matrix. The eigenvectors iv can then be determined by solving

det() 0i iI vλ− =A [29].

The eigendecomposition can be applied to both the adjacency matrix and the

Laplacian matrix. The focus, however, is on the Laplacian because the

eigendecomposition provides information from both the degree matrix and adjacency

matrix. By adding the degree matrix to the analysis, it makes it possible to quickly order

the nodes based on their degree, and this order is reflected in the eigenvalues. It will be

shown in the following chapters how the degree of a node is an important factor when

determining its proximity to the center of the network, which is used to develop

automated methods for the controller to locate the most central nodes. The

eigendecomposition of the Laplacian matrix can be rewritten in matrix form as
TQ V V= Λ where V is an n n× matrix of eigenvectors as columns and Λ is a diagonal

matrix of eigenvalues. The eigenspace is the vector space spanned by the eigenvectors,

and it has been shown to capture many of the characteristics of a graph [30].

The eigenvalues derived for the Laplacian matrix can be used to better understand

how the network is constructed and its current health. Any Laplacian matrix will always

have at least one eigenvalue that is zero, and all the others are positive because it is

positive semi-definite, i.e., the Laplacian matrix is a square, symmetric matrix, 0TxQx ≥

 19

for any 1n× non-zero vector [25]. The n eigenvalues are can be ordered from zero to

largest by

 1 2 10 n nλ λ λ λ−= ≤ ≤ ≤ ≤ . (2.7)

By using this ordering, the eigenvectors may be referred to as leading or trailing, which

are the eigenvectors associated with the largest eigenvalues and the eigenvectors

associated with the smallest eigenvalues, respectively.

The number of zero eigenvalues is equal to the number of non-connected

subgraphs described by a single Laplacian matrix. Physically, a single network can be

divided into two networks that are unable to communicate due to a failed link or node. In

the case of a failed device, a single Laplacian matrix can model two separate networks,

and this Laplacian matrix will have two eigenvalues that are zero. Specifically, rank()Q

will be no greater than 1n − , and rank(Q)n − equals the number of disconnected

subgraphs [25]. The sum of the eigenvalues is the trace of Q [25],

 ,
1 1

n n

k k k
k k

Qλ
= =

=∑ ∑ . (2.8)

After normalization, all eigenvalues of normQ are bounded by 0 2kλ≤ ≤ , which provides

a fair comparison of graphs of different sizes [25].

The algebraic connectivity is defined as 2λ , the second smallest eigenvalue of the

Laplacian matrix, and the eigenvector associated with the algebraic connectivity is called

the Fiedler vector [31]. Algebraic connectivity provides an important measure of network

robustness. The algebraic connectivity and the Fiedler vector have been used to

determine the robustness of a network, and methods to improve robustness by

maximizing algebraic connectivity have been widely documented in the literature. Large

algebraic connectivity has been shown to be correlated with well-connected graphs [25],

better performance when using distributed algorithms [32], and reduced bottlenecks in

computer networks [33]. As the algebraic connectivity approaches zero, the graph splits

into two subgraphs, which are sparsely connected. The work reflected in the literature has

mainly focused on algebraic connectivity, but not on all of the other eigenvalues, which

contain important information.

 20

The eigenvectors are equally important to the analysis of graph theoretic matrices

and the underlying real-world networks. The eigenvectors of Q are mutually orthogonal.

The sum of the elements of any eigenvector is zero except for the eigenvector associated

with the zero eigenvalue [25]. In spectral graph theory, the eigenvector associated with

the zero eigenvalue is typically denoted by a vector with elements

0 1 for 1:iv n i nλ= = = .

The Fiedler vector along with the eigenvectors associated with the third and

fourth eigenvalues can be used to create a three-dimensional view of the network [34]. In

Figure 3, a simple graph that is undirected and unweighted is shown in which the x, y,

and z coordinates are the second, third, and fourth eigenvectors, respectively. The three

dimensional shape will change as the link weights change.

Figure 3. The three trailing eigenvectors of the Laplacian matrix are used to

represent each node in the network depicted on the left. By using three
eigenvectors, the network is represented in three dimensions. The red

nodes are connected by the blue links.

Notice in Figure 3 the graph is divided equally between the two halves by the

Fiedler vector about zero. The three links that connect the two halves are the links that

cross zero on the second eigenvector’s axis. The Fiedler vector has been shown to

partition graphs into two separate subgraphs [35] by minimizing the number of links that

 21

connect the two halves. This same bisection with more clarity is shown in Figure 4 by

showing only the elements of the second eigenvector. The nodes that have more

connections have lower eigenvector values, which are a measure of centrality [35].

Figure 4. A bar plot of the second eigenvector of the graph from Figure 3

demonstrates how the nodes in a graph are separated into two subgraphs
by using the sign of the values of each element in the Fiedler vector.

3. Network Centrality

In social networks, the goal of centrality metrics is to find the person or persons

that are most influential within a given community [36], [37]. Researchers in fields

outside of social networks have attempted to use these same definitions of centrality to

identify characteristics that are important to their research. For example, the simplest

definition of centrality is degree centrality Dc , which counts the number of links

connected to each node and assigns a node a centrality value based on that count.

Eigenvector centrality is a spectral graph theory metric that is used to determine

the most central node in a network. This metric takes into account not only local

 22

information about how well a node is connected, but also how well its neighbors are

connected. The eigenvector centrality of node i i
ec is defined as [38]

1

1 n
i j
e ij e

jn

c c
λ =

= ∑ A (2.9)

where nλ is the largest eigenvalue of A . Node 'i s centrality is now a function of the

sum of its neighbors’ centrality divided by the largest eigenvalue of the adjacency matrix.

In matrix form, the above equation is

 e n ec cλ=A . (2.10)

The 1n× vector of centrality values is the leading eigenvector of the adjacency matrix

corresponding to the largest eigenvalue, which can be seen based on Eqn. (2.10). This

metric is used with undirected graphs because it provides a simple method to determine

centrality based on network wide information. The drawback to this metric is that it is not

tied to a specific cost function that is minimized or maximized. It simply adds the values

calculated and assigns that value to the node being analyzed [23]. Eigenvector centrality

is used by the Google PageRank algorithm to provide the most relevant pages during web

searches [39].

Betweenness centrality Bc is another metric used to quantify the importance of a

node to the overall graph [23]. This centrality metric is a measure of the number of times

node i is on the shortest path from a source node s to destination node d . The

betweenness centrality i
Bc can be calculated using

i

i sd
B

s i d N sd

c ρ
ρ≠ ≠ ∈

= ∑ (2.11)

where i
sdρ is the number of shortest paths that pass through node i form node s to node

d , and sdρ is the total number of shortest paths form node s to node d . In short,

betweenness centrality counts the number of times a node is on the shortest path divided

by the total number of paths. The result is a measure that quantifies how central a node is

in terms of shortest path routing, but this metric may not be significant in terms of load

balancing or other routing techniques.

 23

C. COMMUNITY FINDING IN GRAPHS AND NETWORKS

Community finding [35] or cluster finding is a significant research area within

graph theory. Its applications range from finding groups within social networks [35] to

finding clusters within wireless sensor networks. SDNs require similar algorithms to find

communities or clusters within the network to assign switches to controllers and to find

the most central nodes, which have the most influence over flows in the network.

Community finding involves dividing a graph into two or more sets of nodes [23],

[31], [40], [41], [42]. The graph cut (,)A BC is the number of links that are cut or

removed when the set of nodes in graph A and the set of nodes in graph B are separated

from one another. The ratio cut or the average cut is defined as [25]

 (,) (,)(,) A B B AA B
A B

= +
C C

R (2.12)

where A and B is the number of nodes in the set A and B , respectively.

In image segmentation, it has been show that the eigenvectors of the normalized

Laplacian matrix are an effective means to divide an image into meaningful segments

[41]. The normalized cut can be shown to be related to the normalized Laplacian. The

key to the normalized cut is the normalized association (,)N A BA defined as

 (,) (,)(,)
(,) (,)N

A A B BA B
A N B N

A A
A = +

A A
 (2.13)

where (,)A NA is the association defined as the total number of links between the nodes

in A and the nodes in N . From the normalized association, the normalized cut, cutN , can

be defined as

 (,) (,)(,)
(,) (,)cut
A B A BN A B
A N B N

= +
A A
C C . (2.14)

The normalized association and normalized cut can be related to each other by

 (,) 2 (,)cut NN A B A B= −A . (2.15)

The normalized cut is related to the Laplacian as follows [41]

 min () min
T

x cut y T

y QyN x
y Dy

= (2.16)

 24

where y is a vector of binary values that divide the network into two subgraphs. The key

insight is that Eqn. (2.16) is now in the Rayleigh quotient form [30]. The Rayleigh

quotient form allows for the calculation of the minimum and maximum normalized cut

based on the eigenvectors and eigenvalues of the matrices in the numerator and

denominator. The vector that minimizes or maximizes the normalized cut is the

eigenvector, and the bounds on the minimum and maximum are the eigenvalues

associated with the eigenvectors [30].

If y is an eigenvector of the generalized eigenvector problem

 Qy Dyλ= (2.17)

and the requirement for y to be a binary value is relaxed to include real values, the

minimum is found when y is the second smallest eigenvector of the solution to the

generalized eigensystem. Further, it can be shown that the generalized eigenvector

problem in Eqn. (2.17) can be converted to the standard eigenvector problem as follows

1 1

2 2 normD QD y Q y yλ
− −

= = . (2.18)

The second smallest eigenvector of the normalized Laplacian matrix is the real valued

solution to minimize the normalized cut, which is shown in Eqn. (2.18).

The normalized Laplacian matrix and the normalized cut work well in

segmentation of images. The definition of the normalized cut and normalized association

were defined to ensure that the eigenvectors associated with the smallest eigenvalues

provided the segmentation needed. It did not consider the opposite end of the spectrum of

larger eigenvalues and associated eigenvectors. The normalized cut attempts to balance

the number of links in subgraph A with the number of links cut between A and B . In

the case where one is attempting to find the most central node, the correct answer will not

be found using the normalized cut because it is attempting to balance two separate

variables: the cut links between subgraphs and the links within a subgraph. The most

influential node or the most central node will not balance these two measures.

In this research, the ratio cut is used as a cost function, and it is shown that the

eigenvectors of the Laplacian matrix can be used to maximize or minimize the ratio cut.

Combining this fact with the benefits of the eigenvector centrality from Eqn. (2.9), a

 25

method was developed to represent the network in a form that reveals the network

structure and features.

D. CONTROL THEORY

Control theory has been developed to solve the challenges presented by dynamic

systems that required feedback to achieve performance goals. SDNs are a multiple-input,

multiple-output (MIMO) closed-loop control system. MIMO systems can be difficult to

model and control. However, by selecting a small number of inputs and outputs, a

simplified model may be developed that can be used to determine observability,

controllability, and stability [43]. This foundational modeling and analysis may be used

as a framework to build a SDN control scheme.

In traditional control theory optimization problems, two properties must be shown

to be present before a controller can be designed. First, the system must be observable;

observability requires that the system’s states must be determinable from the

measurement of outputs [43], [44]. Second, the system must be controllable;

controllability requires a controller to be able to drive any state to an arbitrary value [43].

1. State Space Representation

State space representation is one of a number of ways to model a dynamic system.

It describes the dynamic system in terms of a set of vectors and matrices. The benefit of

the state space representation is that there are proven methods to determine observability,

and controllability. A drawback is that many of the proven methods only apply to linear

or linearized non-linear systems.

The state space representation is a method to describe how a system will behave

based on the system dynamics and given input. The concept of the state of a system is

the basis of modern control theory. For a causal system, the state is the vector of initial

conditions such that the response of the system at any time t can be uniquely determined

from the state at any time 0t t≥ based on the input between 0t and t . For most physical

systems the state is associated with energy storage, such as current in inductors, voltage

in capacitors and position or velocity in mechanical systems.

 26

The state space representation is a system of equations, given by [43]

() () ()
() () ()

x t x t u t
y t x t u t

= +
= +

A B
C D


 (2.19)

where A is the state matrix, B is the input matrix, C is the output matrix, and D is the

feedforward matrix; the state vector is ()x t , and the derivative of the state vector is ()x t .

The output vector is ()y t , and the input vector is ()u t .

The development of the state space representation is based on a set of first order

differential equations. Clearly, this is not possible for a packet switched network. A

packet switched network is non-linear, and it is difficult to formulate differential

equations for a switched network without significant assumptions.

2. Observability and Controllability

For a linear time-invariant (LTI) dynamic system as described in Eqn. (2.19),

observability is the feature of the state space representation that indicates whether it is

possible to determine the state vector based on the output vector. Simply put, if all the

state variables are directly measured, the system is always observable. Specifically, the

Jacobian matrix is used to determine observability [43], [44]. In LTI dynamic systems,

the Jacobian matrix reduces to the observability matrix, defined as

 T T 1 T T[() (C)]nO C CA A −=  (2.20)

If O has full rank, the LTI system is observable. For systems with a large number

of nodes, the observability matrix can become quite large, and it can become

computationally hard to determine the rank of the matrix. In addition, the state matrix and

the output matrix can change over time. The solution is particularly hard in this case

because two equations may be independent at one point, but then become dependent as

the system changes [44]. All SDNs are able to calculate all link data rates because they

make measurements at all switches, but requesting measurements from all switches is

results in redundancy. Observability in a SDN is determined by finding the minimum

number of measurements required to fully describe the state.

 27

Controllability is the second of the two requirements, and controllability is

assured if the controllability matrix has full rank [43]. Controllability is a feature of the

state space model that indicates whether it is possible to drive all states to an arbitrary

value based on the input ()u t [43]. In the terms of the matrices in Eqn. (2.19), the

controllability matrix C is defined as

 2 1[]nC B AB A B A B−=  (2.21)

Similar to the observability matrix, the controllability matrix can become quite

large as the number of nodes in the network grows. Again, the state and input matrices

can be a function of time. Finding the correct input is a key problem in most control

theory research. For a SDN, the input is the amount of traffic that is generated by the

connected hosts, and this traffic is not controlled by the SDN controller. The result is that

the problem is not based around controlling the input, but given an input how does the

SDN controller route the traffic to maximize performance and minimize congestion.

3. State Observer

The state space formulation from Eqn. (2.19) can be used to develop the state

observer, which is used in dynamic system control to estimate the state of the network in

a noisy environment. The noise could come from the system or from the measuring

device or, as in most cases, both. By discretizing Eqn. (2.19) a more general set of

equations can be obtained as

 1 1 1k k k k

k k k k

x Ax Bu
y Cx Du

µ
η

− − −= + +
= + +

 (2.22)

where 1kµ − is the system process noise at time step 1k − , and kη is the measurement

noise at time step k [45]. This updated model now includes noise, which will prevent the

calculation of the state deterministically. The state must be estimated to provide the state

controller with the best possible information with which to determine input required.

a. Kalman Filter

A Kalman filter is an optimal algorithm to estimate the current state based on the

previous state and the current measurement. It is provably optimal in the case where the

 28

state can be modeled with a set of linear equations, and the noise can be modeled with a

Gaussian probability density function (PDF). The goal is to recursively estimate kx using

the current measurement kz which is defined as

 (),k k k kz f x η= . (2.23)

Specifically, an accurate estimate of kx should be based on all the previous

measurements up to time k , { }1: , 1, ,k iz z i k= =  [45].

This problem can be reduced to determining the probability density function

(PDF) that provides the probability ()1:|k kp x z that the state vector is a specific value

given all of the measurements. At each time step k , this PDF is updated to include the

next measurement. Both the optimal and sub-optimal algorithms both use a recursive

process to calculate ()1:|k kp x z . The first step is to predict kx based on the state space

model in Eqn. (2.22), and then update the prediction based on the current measurement.

The Kalman filter provides a process to optimally estimate the state of a dynamic

system given that the system can be modeled with a linear set of equations and the noise

is modeled as a Gaussian random variable. However, in many cases these two

assumptions cannot be made simultaneously. In these cases, a suboptimal algorithm must

be selected; the most common suboptimal algorithms are the extended Kalman filter

(EKF), approximate grid-based methods, and particle filters [45]. EKF and approximate

grid-based methods are not good fits for a SDN state estimator because too many

assumptions are required to effectively use those. Particle filters provide the greatest

flexibility in dealing with the non-linear state equations and non-Gaussian noise.

b. Particle Filter

Particle filters are a specific type of state estimators that are based on a Monte

Carlo simulation [46]. Particle filters follow the same estimate and update process as the

Kalman filter, but the method they use is based on the selection of particles from a

random population and then each particle is given a weight to determine the most likely

state given the current measurement. Particle filters were developed specifically for

 29

systems that cannot be linearized, have non-Gaussian noise, and must be calculated in

real-time [45].

The scheme starts with the previous set of particles that were used to estimate

1kx − [45]. New particles are generated by updating each of these particles using the non-

linear state model. This process results in an updated set of particles kx and updated

observations ky . Next, each particle is assigned a weight based on a given PDF. In many

cases a Gaussian distribution is acceptable. If that is the case, the weight for particle i at

time k is assigned by

2()

22
2

1
2

iz yk k
i
kw e σ

πσ

− −

= (2.24)

where σ is the standard deviation of the system noise. These particle filter weights are

then normalized to ensure that a PDF is obtained for all of the particles. The scheme is

depicted in Figure 5.

Figure 5. The particle filter process is demonstrated contained within the blue

box. The first stage predicts the particle values based on the prior set of
particles and the current input to the system. Next, the particle weights
are updated using the current measurement. Finally, the particles are
resamples and the mean of the new sample is the current estimate.

 30

From this new PDF, a new set of particles is selected based on the weights

assigned in Eqn. (2.24). By randomly sampling from this new PDF, the particles with

larger weights are more likely to be chosen. Based on this new set of particles, one can

estimate the state, which is typically done by finding the mean of the new set of particles.

The process will start over using this set of particles and a new measurement [45].

4. State Controller

The state controller is responsible for taking the state estimate from the observer

and determining the necessary control inputs to move the state towards the desired value.

In a SDN, the controller is unable to control the input to the network, which is the offered

traffic. It is able to control the flow of traffic that is generated by the hosts. In the Google

B4 network [3], the controllers were able to control both end hosts and the network

flows. That is not the scenario in this work. The problem is more difficult and more

general if the controller is unable to control the end hosts’ offered traffic.

In summary, SDN is a new networking technology that provides network

administrators with greater visibility into the behavior of the network and control over

those behaviors than in the past. There is a great deal of flexibility given to the network

administrator to operate the network. Graph theory and spectral graph theory are two

tools that may help identify network features. Community finding is an application of

graph theory and spectral graph theory, which allows for the determination of natural

partitions in the network. Finally, control theory provides many concepts and

terminology that can be adopted by SDN applications to develop a closed-loop control

framework.

 31

III. DUAL-BASIS ANALYSIS AND ITS APPLICATION IN
IDENTIFYING NETWORK BEHAVIOR

To maintain control over any network, one must be able to describe the behavior

of the network in both a static topological sense and a dynamic traffic-aware sense. The

goal of this chapter is to describe the preliminary analytical work that allows network

controllers to more efficiently control these networks.

Spectral graph theory is used to develop the dual-basis representation to help

determine nodal centrality and connectivity based on current network conditions.

Following the dual-basis analysis, the development of a state observer and state controller

for a SDN will be presented. The observer implements a state estimator that uses a non-

linear state model with a non-Gaussian noise model. The SDN controller may implement

any network routing algorithm, but not all nodes must implement this algorithm. As

shown in [2], updating routes at a small number of nodes may be sufficient to improve

performance. The dual-basis analysis is proposed to be the method to identify these nodes

that provide the maximum increase in performance.

A. SPECTRAL GRAPH ANALYSIS TO IDENTIFY NETWORK FEATURES

Given an n n× matrix Q , it can decomposed as

 TQ V V= Λ (3.1)

where V is an n n× matrix containing the right eigenvectors as columns, TV is an n n×

matrix containing the left eigenvectors as columns, and Λ is an n n× matrix with the

eigenvalues along the main diagonal [25]. Together the bases formed by the column

vectors of V and TV are known as the dual-basis representation [47]. The following

derivation shows how the dual-basis representation of the Laplacian can be used to

optimize the ratio cut from Eqn. (2.12).

The ratio cut is a standard metric used in graph theory to find communities or

partitions in a graph [41]. The dual-basis analysis of the Laplacian matrix is a method to

find the optimal ratio cut of a graph. This optimization leads to the observation that one

 32

can use this approach to obtain a set of metrics based on the dual-basis analysis to find

the principal nodes in the network.

1. Optimization of Ratio Cut Using Rayleigh Quotient

The ratio cut is minimized by minimizing the cut between two subgraphs and

maximizing the number of nodes in each subgraph. The opposite is true to maximize the

ratio cut. From Eqn. (2.16) and based on the derivation in [41], the ratio cut can be put

into Rayleigh quotient form; the eigenvectors of the Laplacian matrix can then be used to

determine the optimal solution to the ratio cut problem.

 By letting and 1k A N k B N= − = , the ratio cut can be rewritten as

()

(,) (,) (,) (,)
1

A B A B A B A B
A B k N k NN N
N N

= + = +
−

C C C C
R . (3.2)

The cut can now be expressed as a function of the Laplacian matrix Q

 () () () ()
()

1

T Tx Q x x Q x
k N k N

+ + − −
= +

−
1 1 1 1

R (3.3)

where x is an 1n× vector with elements of 1± and 1 is an 1n× vector of 1’s.

By combining the terms, Eqn. (3.3) becomes

()() ()1 1 1

(1)

T T T T T T T TQ x Q Qx x Qx k Q x Q Qx x Qx k
k k N

+ + + − + − − +
=

−

1 1 1 1 1 1
R . (3.4)

By expanding further, grouping like terms and simplifying, one obtains

 (1 2)
(1)

T T Tx Qx Q k Qx
k k N

+ + −
=

−
1 1 1

R . (3.5)

Substituting , = , and T T Tx Qx Qx Qa β γ= =1 1 1 into Eqn. (3.5) results in

()

() 2(1 2)
1

k
k k N

α γ β+ + −
=

−
R . (3.6)

Adding and simplifying leads to

 33

() ()
()

() () ()()
()

()() ()
()

2

22(1 2) 2 2
1 1

2 1 2 2 1 2
1

1 2 2 2 1 2 2
1

k
k k N k k N N N N

k k k
k k N N

k k k
k k N N

α γα γ β α γ

α γ β α γ α

α γ β α

++ −
= + − + +

− −

+ + − − − +
= +

−

− + + + −
= +

−

R

 (3.7)

Further algebraic manipulation of Eqn. (3.7) yields

()

()

()() ()
()

()
()

()
()

()

2 2

2

22 2

2 2

1
1 2 2 2 1 21 2

1 1
1

1
2 1

1 1 2 .

1

k k kk
k k N N

k

k k k
k k

k NN
k

α γ β α

α γ β
α

− + + + −−
= +

−
−

   + −
+ + −      − −   = +

−

R

 (3.8)

For 1b k k= − and 0γ = , Eqn (3.8) can be rearranged to obtain

()() ()

()() ()()

2 2

2 2

1 2 1 2 2

1 2 1 2 2 .
T T T T T

b b b b
b N b N b N b N

b x Qx Q b Qx bx Qx b Q
b N b N b N b N

α γ b α γ+ + −
= + + −

+ + −
= + + −

1 1 1 1 1

R

 (3.9)

This result can be simplified by expanding and grouping like terms as follows

() () () () () ()

() () () ()

2 2

.

T T T

T

x Q x b x Q x b x Q x
b N b N b N

x b x Q x b x
b N

+ + − − − +
= + −

+ − − + − −      =

1 1 1 1 1 1

1 1 1 1

R

 (3.10)

By setting () ()y x b x= + − −  1 1 , the ratio cut simplifies to

 = yQy
b N

R . (3.11)

To finally present in the Rayleigh quotient form, the denominator of Eqn (3.11) must be

shown to be equal to Ty y . Since b A B= , it can be shown that:

 34

 ()b N b A B A b A= + = + , (3.12)

 2A A
b A B b B

B B
= = , (3.13)

and

 () () () ()2 2T T TA b B x x b x x y y+ = + + + − − =1 1 1 1 . (3.14)

From Eqn. (3.11) and Eqn. (3.14), the result is

 (,) (,)
T

T

A B B A y Qy
A B y y

= + =
C C

R . (3.15)

This result is similar to that from [41] except matrix D is not included in the

denominator; see Eqn. (2.16). With the ratio cut in Rayleigh quotient form, the optimal

binary solution is determined by using the leading and trailing eigenvectors of the

Laplacian matrix.

2. Example: Optimal Binary Solution to Ratio Cut

To further develop this idea, one must examine how to use the real valued

eigenvectors to obtain the maximum or minimum ratio cut. As an example, consider the

graph of Internet2 shown in Figure 6 [12], [13]. The ratio cut is minimized when nodes 1

through 17 are assigned to one subgraph and all others are placed in the other. In this

case, four links are cut, and the ratio cut is equal to 0.47. This solution is found by

assigning all nodes with values less than 0.005 in the second eigenvector to one subgraph

and all others to another subgraph. Notice that one could exchange nodes 18 and 17

between the two subgraphs and the ratio cut does not change. There is more than one

correct answer to the binary minimization.

When considering the maximization, a similar observation is made. There are four

correct answers. In Figure 6, nodes 2, 7, 13, and 16 all have four links, and all will

produce the same ratio cut maximization, which is equal to 4.12. All of these nodes are

identified in the leading three eigenvectors. Identifying the four correct answers using

fewer than four eigenvectors supports the assertion that one must use more than a single

eigenvector to achieve a full representation of the most central nodes in the network.

 35

Figure 6. The two-dimensional representation of Internet2 in eigenvector

space places the least connected nodes on the edge and the most central
nodes in the center. Each red node is a city on Internet2, and the blue

links show the connectivity between cities.

For the binary solution, the ratio cut is optimized if the y vector is constrained to

include two values because networks are discrete entities. In the development of the dual-

basis representation, this constraint is relaxed and the real values are used. The use of the

real-valued vectors is consistent with network science research, image processing, and

graph theory [23], [25], [41]. The use of real values allows the use of the full range of

values, which provides greater specificity when attempting to determine which

eigenvectors can be used to identify the most central nodes.

3. Principal Eigenvectors of the Dual-basis

The eigenvector centrality as defined by Eqn. (2.9) does not only take the

connectivity of a node into account, but also the connectivity of its neighbors and the

neighbors of neighbors. This allowed the analysis of the network as a whole as opposed

to focusing too narrowly on a given node or portion of the graph.

 36

The concept of principal eigenvectors is the idea that one can use multiple leading

or trailing eigenvectors of the Laplacian matrix to describe network features. An example

is Figure 6 in which the two trailing eigenvectors of the Laplacian matrix are used to

represent the network. Using these two eigenvectors presents the network in a way that

the most central nodes are in the center of the image and the least connected nodes are on

the edges of the image. The principal eigenvector approach uses this concept to determine

a suitable number of eigenvectors to use to extract the features needed for the users’

specific application.

Using the principal eigenvectors of the dual-basis representation leverages all of

the benefits of the eigenvector centrality except for the fact that the leading eigenvector

of the adjacency matrix will always only contain positive values [23]. The major

difference between the eigenvector centrality assignments and the use of the dual-basis

analysis is the use of multiple eigenvectors to determine the principal vectors. As defined

in Eqn. (2.10), centrality values are assigned based on the leading eigenvector of the

adjacency matrix. This definition of centrality is too simplistic to fully capture the

centrality of a large network. The image segmentation community recognized that

multiple eigenvectors provided a more accurate segmentation of the image over the use

of a single eigenvector [41]. By treating the centrality value for each node as a vector, a

more complete description of centrality is provided.

Using multiple eigenvectors solves the problem presented by the eigenvector

centrality that weights neighbors of the most central node more heavily than others. The

result of this weighting skews the centrality of the network to be localized to one section

of the graph. In large real-world networks, there is not a single node or section of a graph

that can control the entire network. That is why a localized definition of centrality is not

sufficient to describe the most central nodes.

The number of principal eigenvectors required to fully describe the centrality of

the network is determined by calculating the angles between nodes. The centrality of the

network has been fully described when all of the nodes that are near orthogonal to each

other are located. This notion of nodal orthogonality will be discussed in future chapters.

 37

Based on the use of multiple eigenvectors and eigencentrality, the dual-basis network

representation can be explained and understood.

B. DUAL-BASIS NETWORK REPRESENTATION

In light of multiple correct answers to the maximization of the ratio cut problem

provided by the eigenvectors of the Laplacian, one could use all of the eigenvectors of the

Laplacian to build an n -dimensional space to characterize the network. The eigenvectors

can be ordered according to their associated eigenvalues; the eigenvectors provide n

orthogonal vectors that contain one value for each node in the network. The first

eigenvalue is always zero and therefore, its eigenvector does not provide any information.

The second eigenvalue, algebraic connectivity, is associated with the Fiedler vector,

which is a good approximation of the minimum cut or, as shown previously, a means to

estimate the minimum ratio cut. As the eigenvalues increase, the associated eigenvectors

span a set of vectors that vary between highlighting the most connected nodes and the

least connected nodes.

This set of orthogonal vectors is a self-dual basis that is orthogonal with itself.

One set provides a range of centrality vectors while the other provides a set of nodal

vectors [25]. Each is an important component when considering the static design phase

and dynamic monitoring phase of the dual-basis analysis. First, the analysis is developed

for a static network and then extended for a dynamic network.

1. Spectral Graph Theory Development of the Dual-basis
Representation with Static Link Weights

Simply put, the dual-basis representation is the eigenvector matrix of the

Laplacian matrix. Spectral graph theory provides a method to decompose the modeled

network into its constituent pieces. The graph cut minimizations and maximizations are

examples of a network’s constituent pieces. The dual-basis analysis is based on a set of

eigenvectors that form two orthogonal bases for the network where the centrality vectors

are the columns of V as

 38

1 1
1

1

n

n n
n

v v
V

v v

 
 =  
  



  



 (3.16)

and TV contains the nodal vectors as

1
1 1

1

n

T

n
n n

v v
V

v v

 
 =  
  



  



. (3.17)

Additionally, the null space and reachability space are formed by these same

matrices. The reachability and null spaces define which nodes are reachable in a routing

sense within the network and which are not [48]. The size of the null space nulln is

determined by the number of zero eigenvalues of the Laplacian matrix, and once sorted

according to Eqn. (2.7), the eigenvectors of TV indicate which nodes are in the null

space. The eigenvectors corresponding to the null space are

 []... 1 0 ... 0 T
iv =

where the indices of the value 1 are the indices of the nodes in the null space; each

eigenvector contains 1n − zeros, and one 1. The remaining nodes are contained in the

reachability space.

2. Eigencentrality Basis

The eigencentrality basis defines how influential a specific node is at a given

eigenvalue. Consider the network shown in Figure 7. Nodes 1 through 6 are

representative of an access network. Nodes 7 through 16 are representative of a core

network. Node 17 is disconnected from the larger network to demonstrate how a

disconnected node behaves in the dual-basis. A three-dimensional representation of the

eigencentrality basis of the network from Figure 7 is shown in Figure 8. The third, fourth

and fifth eigenvectors are used in the three-dimensional representation because they are

the three eigenvectors associated with the three smallest, nonzero eigenvalues.

Each eigencentrality vector is an n -dimensional vector. In this example, the

eigencentrality vectors are 17 1× ; one value is associated with each network node.

Plotting the three trailing eigencentrality vectors typically produces a good visual

 39

representation of the network because they place the least connected nodes at the edge

and the most connected nodes at the center of the plot [48]. Networks are typically drawn

this way; the core of the network is in the center of the diagram, and the access network

is at the edge. Any disconnected nodes are placed at the origin, which in Figure 8 is

denoted in red.

Figure 7. The three types of nodes above are represented by the green access

nodes, the blue core nodes, and the one red disconnected node.

Figure 8. Eigencentrality basis plotted using the three eigenvectors associated

with the three smallest, non-zero eigenvalues with nodes 2, 3, and 3 as
the least central nodes in the network.

 40

The network graph could be as easily plotted using the three leading

eigencentrality vectors associated with the three largest eigenvalues. This representation

places the most connected nodes at the edge of the graph and the least connected in the

center as shown in Figure 9.

Figure 9. Eigencentrality basis plotted using the three eigenvectors associated

with the three largest eigenvalues with nodes seven, eight and nine as
the most central nodes in the network

The dual-basis representation reveals how coupled or isolated nodes are from one

another. Notice in Figure 8 and Figure 9 that the nodes on the x, y, and z-axes are

separated by 90°, which means they are isolated from each other. The result of this dual-

basis analysis is that many nodes are orthogonal or near-orthogonal to the others without

the use of all n eigenvectors. This means that there is a subset of the total number of

eigenvectors that may be used to represent the node’s centrality relative to all other

nodes.

 41

Laplacian eigencentrality provides a measure of the importance of a node to the

network and the impact of its removal. The Laplacian eigencentrality is defined as

2j j j j

k k k kE v v v∗= = (3.18)

where j
kv is the thj element of the thk eigenvector of the matrix V in Eqn. (3.16) [25].

This value indicates how influential each node is at each eigenvalue. This definition must

be extended to include multiple eigencentrality vectors so that each node may be treated

as a multi-dimensional vector in the nodal space.

By expanding Eqn. (3.18) to include multiple eigenvectors, the Laplacian

eigencentrality is

H

: : :

: 1[, , ,]

j j j
k n k n k n

j j j j
k n k k n

E v v

v v v v+

=

= 
. (3.19)

Eigencentrality of node j is now defined as the 2L norm of the leading n k− values of

the 'j s nodal vector. In addition to the 2L norm, the angle between node i and j can be

calculated by using the dot product

 : : : : :cosi j i j ij
k n k n k n k n k nv v E E θ• = (3.20)

where :
ij
k nθ is the angle between node i and node j . Using the Laplacian

eigencentrality and angles between nodes, the most central nodes can be located.

3. Nodal Basis

The nodal basis is a set of eigenvectors that describe how influential a specific

node is across the entire eigenspectrum. The eigenvectors as columns in Eqn. (3.17) are

associated with a single node in the network [25]. To demonstrate the nodal basis more

clearly, the Laplacian matrix can be calculated using the eigenvectors and eigenvalues.

When the matrix TV is decomposed into individual vectors and related back to Q , the

vector form of the degree matrix is

 () () ()2 2 21 2
, , 1 2

n
i i i i i i i nD Q v v vλ λ λ= = + + + (3.21)

 42

where ,i iD is the thi node in the degree matrix, which corresponds to the thi value along

the diagonal of Q , and j
iv is the thj node’s value associated with the thi eigenvalue as

shown in Eqn. (3.17). Any node’s degree is a function of one eigenvector and all

eigenvalues as shown in Eqn. (3.21), which demonstrates the reason for the definition of

eigencentrality in Eqns. (3.18) and (3.19). The eigencentrality norms disregard the sign of

the eigenvalue element and simply use the square of the magnitude when using multiple

eigenvectors. This same formulation is seen in Eqn. (3.21) in which the square of the

eigenvalue is used, which disregards the sign of the eigenvector element.

For the network in Figure 7, the nodal basis of node 6 has 15 values because there

are 15 non-zero eigenvalues; the eigenspectrum of nodes 6 is shown in Figure 10. The

nodal basis of node 6 clearly indicates that it has the most influence over 8λ . The

response shown in Figure 10 is an example of how the eigendecomposition is a tool to

reveal the structure of the network. In this case, node 6 is well isolated from the other

nodes, which is demonstrated by the strong response at 8λ and small responses at all

other eigenvalues. This is considered the node decoupling effect demonstrated by the

eigendecomposition.

All of the nodes in the example network have similar eigenspectra to the one

shown in Figure 10. The shape of the eigenspectrum is unique for each node due to the

requirement that the basis vectors are mutually orthogonal. In addition, the eigenspectrum

provides information about the number of connected graphs included in a single

Laplacian matrix. One can extend the ideas of the eigencentrality and nodal bases to

include two spaces that indicate which nodes can be used in legitimate routes in the

network and which cannot be included.

 43

Figure 10. The eigencentrality of node 6 across the eigenspectrum of the static

graph in Figure 7 demonstrates that the eigendecomposition reveals the
isolation of node 6 from all other nodes in terms of the eigenresponse.

4. Null and Reachability Space

The null space is mathematically and physically interpreted as a part of the

solution space or network that is unreachable. There will always be one or more zero

eigenvalues of the Laplacian. The eigenvectors corresponding to the zero eigenvalues

define the null space of the Laplacian matrix. By examining the elements of the null

space eigenvectors, the nodes j
iv that are unreachable by the rest of the network are

indicated by the thj node’s value being equal to 1 in Eqn. (3.17). All other values in the

null space eigenvectors are zero.

The reachability space contains the remaining eigenvectors that are not in the null

space. Once the null space nodes have been identified, the remaining network is

guaranteed to have a route from all nodes to all other nodes. The number of non-zero

eigenvalues and the size of the reachability space is equal to ()rank Q [25]. The size of

the null space is equal to ()rankn Q− . The size of the null space determines the length of

 44

the vectors in the nodal space; the nodal space eigenvectors will have dimensionality

equal to ()rank Q . The eigencentrality basis vectors will always have a length equal to n .

To this point in the chapter, the focus has been on networks that have static links

with weights equal to 1. This analysis is valid when considering the topology of the

network. When striving to model real-world networks, the interaction between network

traffic and network topology must be considered. To add the network traffic to the above

analysis, the link weight will be allowed to vary, which allows the model to account for

network traffic. Large network models that include varying link weights do not lend

themselves to analysis with closed-form solutions. In a few specific cases, closed-form

solutions for the eigenvalues and eigenvectors can be found. These closed-from solutions

provide a transition from a static dual-basis analysis to simulating large, dynamic

networks.

C. DYNAMIC LINK WEIGHT ANALYSIS USING THE DUAL-BASIS
REPRESENTATION

The following analysis demonstrates the dynamics of mesh networks when the

link weights are allowed to change. A mesh network is one in which all nodes are

connected to all other nodes—similar to the core network from Figure 7. The objective is

to demonstrate that dynamic, time-varying link weights are reflected in the eigenvectors

and eigenvalues. Increasingly complex networks are analyzed in the following sections.

The complexity quickly outweighs the usefulness of this approach because the closed-

form solutions are too long to show here. Even though these are simple network graphs,

the equations show patterns that can be useful in understanding more complex systems.

1. Closed-Form Solution for Algebraic Connectivity for Mesh Networks

The first step to find the closed-form solution of dynamic graphs is to find the

eigenvalues of a static mesh network, which in the context of graph theory is called a

complete graph. The Laplacian matrix of a mesh is constructed as

 45

1, 1 1
1

1 2,
1

, 1 1

1 ,
1

1 1 1

1 1
(, , ,)

1 1

n

k n
k
i k

n

k
k

i j n i k

n

n n k
k
i k

w u u

u w
Q u u n

u w

−
=
≠

=
− ≠

−
=
≠

 
− × − + − + 
 
 
 − + − × =  
 
 
 
− + − × 

  

∑

∑

∑



 
2

   

 

 (3.22)

where iu is the link utilization, and ,i kw is the link weight of node 'si thk link. The link

utilization ju is related to the weights ,i kw by

 , ,1 , 1 0.i k j i kw u w= − + − ≤ ≤ . (3.23)

The weights ijw are defined as

 () ()RTT RTT

max max max max

() ()() ()1 1 1 1
ij jiij ji

ij ij ji ji
ij ij ji

t k t kR k R kw
R t R t

ψ ψ ψ ψ
  

= − − − − − −  
  

 (3.24)

where RTT ()ijt k is the round-trip time from node i to node j at time k , maxt is the

maximum allowable round-trip time before that link is considered unusable, ()ijR k is the

measured data rate from node i to node j at time k , max
ijR is the link bandwidth in bits

per second (bps) of the link from node i to node j and ijω is a weighting factor to bias

towards one metric or the other.

For a mesh network, the characteristic equation is [25]

 1(1) () 0n nnλ λ −− − = . (3.25)

The eigenvalues of this equation are: 1 0, i nλ λ= = for 2, ,i n= 2 . For any complete

graph, the algebraic connectivity will always be n [25]. From this foundation, the next

step is to determine the effect of dynamic link weights on the eigenvalues.

 46

a. Mesh Network with One Dynamic Link Weight

To begin examining changes in how link weights affect the results of the dual-

basis analysis, a single link was assigned a varying link weight. By varying 1u between 0

and 1 and setting 2 1, , 0nu u − =2 , the characteristic equation was determined to be

 2
1(1) () (2) 0n nn n uλ λ λ−− − − + = . (3.26)

The solution to the above equation results in three distinct eigenvalues:

1 2 10, 2 , and in u nλ λ λ= = − = for 3, ,i n=  . In this case, the algebraic connectivity is

always 2 12n uλ = − and is bound by 22n nλ− ≤ ≤ .

This result indicates that the eigenvalues and the corresponding eigenvectors

provide a method to reveal the dynamics in such a way that specific features can be

isolated. Dynamic link weight behavior can be isolated to a small number of eigenvectors

by using the dual-basis representation. This is not a proof, but it does provide confidence

that one can decouple nodal interaction using the eigendecomposition approach. If the

link weight behavior can be decoupled from node to node, then the centrality basis and

nodal basis are relevant in both static and dynamic graphs.

b. Mesh Network with Two Dynamic Link Weights

The next examined was a mesh network with two links with dynamic link

weights. Each link weight is not necessarily equal. When

1 2 3 1 1 20 1, 0 1, , 0, and nu u u u u u−≤ ≤ ≤ ≤ = ≠2 , the characteristic equation is

 3 2 2
1 2 1 2 1 2(1) () (2() 2) 3 2 () 0n nn u u n u u n u u nλ λ λ λ−  − − + + − + − + + =  . (3.27)

There are four distinct eigenvalues:

1

2 2
2 1 2 1 2 1 2

2 2
3 1 2 1 2 1 2

0,

,

,
 for 4, , .i

n u u u u u u

n u u u u u u
n i n

λ

λ

λ
λ

=

= − − + + −

= − − − + −

= = 2

 (3.28)

The algebraic connectivity is always 2 2
2 1 2 1 2 1 2n u u u u u uλ = − − − + − . This means that

the algebraic connectivity is bound by 23n nλ− ≤ ≤ . At this point in the analysis, adding

 47

additional dynamic links resulted in equations that are too long to show here, but closed-

form solutions do exist.

There is some interaction between the second and third eigenvalues as shown in

Eqn. (3.28) because the second and third eigenvalues are a function of the two weighted

links. This result is expected because there are now two links that are allowed to vary and

these links are connected to the same node. Hence, nodal centrality should be coupled to

both weighted links. The isolation still holds for all of the other eigenvalues. They are not

affected by these varying link weights. This pattern holds as larger numbers of links are

allowed to vary. The number of varying eigenvalues is equal to the number of links that

vary.

c. Mesh Network with Dynamic Link Weights to One Node

In this scenario, all the links to one node are allowed to vary, but two link weights

are unequal while the remaining are all equal. When

3 1 2 10 1, 0 1, and 0 1nu u u u−≤ = = ≤ ≤ ≤ ≤ ≤2 , the characteristic equation is

4 3
3

2
1 2 3 3

2
3 3 1 2 3 1 2 3 1 2 1 2

3
3

(1) () [

 (2() (3)

 ((3 2) 4 () () () 3

 (1)

n nn u
u u u n u

n u n u u u u n u u u u u u u
n u

λ λ λ

λ

λ

−− − +

+ + − + −

+ − + − − + + − + +

+ − 2
1 2 3 1 3 2 3 1 2 1 3 1 2 3 1 2(2 2 2) (3)] 0n u u u u u u u n u u u u u u u u u+ + − − − + + + − =

. (3.29)

In this case, there are five distinct eigenvalues, and they are 0, n u− and the

solutions to Eqn. (3.29). There are three algebraic solutions to the third order Eqn. (3.29),

but the solution is too long to include here. This demonstrates that there are closed-form

solutions for the algebraic connectivity for arbitrarily large networks. Again, the pattern

of varying link weights and eigenvalues continues. The eigenvalues clearly indicate that

there are varying link weights in the network.

d. Mesh Network with a Node Connected by Two Links

The next set of results determines the closed-form solution of the algebraic

connectivity for a mesh network with an additional node connected by two links. If

1 2 3 10 1, 0 1, and 1nu u u u −≤ ≤ ≤ ≤ = = =2 , the model is a mesh network with two links

 48

to a single node with unbalanced traffic—similar to the network in Figure 7, but using

only the core network and node 2. The characteristic equation is

4 3

2
1 2

2
1 2 1 2 1 2 1 2

2
1 2 1 2 1 2

(1) (1) [
 (2(1) 2)

 (4 (1) () 3)

 (2 2 2) (2

n nn
u u n

n n u u n u u u u u u
n u u u u n u u u

λ λ λ

λ

λ

−− − +

+ + − −

+ + − − + + + − −

+ + − − − + + − 1 2)] 0u =

 . (3.30)

Again, the eigenvalues are 0, 1n − , and the solutions to the third order Eqn. (3.30).

If the two links are traffic balanced, i.e. 1 20 1u u≤ = ≤ , the characteristic equation

becomes

 4 2(1) (1) ()[(3 2) 2 2] 0n nn n u u n n unλ λ λ λ λ−− − + − + + − − + − = . (3.31)

This case provides five distinct eigenvalues:

1

2 2
2

2 2
3

4

0,
3 11 ((2 4) 9 12 4,

2 2 2
3 11 ((2 4) 9 12 4,

2 2 2

1 for 5, , .i

n u n n u u u

n u n n u u u

n u
n i n

λ

λ

λ

λ
λ

=

= − + − + − + − +

= − + + + − + − +

= −
= − = 2

 (3.32)

Therefore, the algebraic connectivity will always be

 2 2
2

3 11 ((2 4) 9 12 4
2 2 2
n u n n u u uλ = − + − + − + − + , (3.33)

and

 2lim 2 2
n

ul
→∞

= − . (3.34)

The details of the algebraic manipulation to obtain the limit in Eqn. (3.34) are shown in

Appendix A.

This result suggests that eigendecomposition is an effective way to examine

network behavior because it reveals the structure of the network is such a way that the

nodal behavior is isolated to the extent possible, and it has a natural transition from graph

representation to matrix representation to dual-basis representation.

 49

e. Mesh Network with Balanced Traffic to One Node

Finally, if all traffic is balanced to a single node in the mesh network,

10 1u u≤ = = ≤ , the characteristic equation simplifies significantly:

 2(1) () () 0n nn u n unλ λ λ−− − + − + = . (3.35)

From this result, the eigenvalues are: 1 2 30, , and =n nu n uλ λ λ= = − − ; n u− is repeated

2n − times, and the algebraic connectivity is 2 (1)n nu n uλ = − = − . Therefore, if n is

large and u approaches 1, the algebraic connectivity approaches 1,1Q because

 1,1 1,1 1(1)(1) (1)(1)
n

k
k j
j k

Q w n u n u
=
≠

= − × = − − − + = − −∑ . (3.36)

From these equations, one can begin to understand how the dynamic link weights

affect the eigenvalues. However, the eigenvectors are the second half of the story. The

combination of the two is key to understanding the network as a whole. If the SDN

controller is to control the network as a whole, it must use a representation to track

network behavior that isolates the network behavior to the extent possible. As shown in

the previous sections, the eigenvalues can be used to isolate the dynamic link behavior

because the change in link weight on a link can be isolated to a single eigenvalue. That

means that the behavior that is modeled by the link weight can be tracked using the

eigenvalues. This is important in a graph because the controller needs a method to isolate

and locate behavior in the network, such as congestion and underutilization. The network

behavior represented by the eigenvalues can be considered to be the state of the network.

2. Closed-Form Solution for the Fiedler Vector

Once the eigenvalues are known, the eigenvectors can be determined. The closed-

form solution is provided for a simple case, but it can be extended to more complex cases

as well. The goal here was to provide a closed-form solution for a single, simple case and

illustrate more complex cases through simulation. These simulation results are shown in

the next section. The simple case is one in which all of the links to a node are allowed to

vary, but all of the weights are the same value.

 50

In this case, one eigenvector is different from the rest—the Fiedler vector 2v . To

solve for the elements of 2v , a set of n linear equations must be solved based on the

eigenvalues determined in Eqn. (3.35). The first equation is in the form

 1 2
2 2 2(1) (1) (1) 0nv u v u v u− + − + + − =2 , (3.37)

which reduces to 2
1

0
n

k

k
v

=

=∑ . The remaining equations are of the form

 1 2
2 2 2 2(1) [(n 1)(1)] 0i nv u v v u v− − − − − − − − =22 (3.38)

for 3,...,i n= . The solution of these n equations is

1
2
2
2 2

(1 (1))
n

v n
v v

χ

χ

= − × −

=
 (3.39)

where χ is an arbitrary constant. How well the Fiedler vector partitions node 1 from the

remaining nodes in the network is evident in Eqn. (3.39). The first value 1
2v has not only a

different sign, as indicated by the 1− , from the rest of the values, but it is also a much

larger value.

To solve for the elements of 2v from a slightly different approach,

 2 2() 0Q I vλ− = (3.40)

must be solved for 2v . One can rearrange and expand Eqn. (3.40) to show the first linear

equation in vector form, the result is

1
2
2

12
1,1 1,2 1,n 2 2

2

0

n

v
v

Q e e v

v

λ

 
 
   − =   
 
  




. (3.41)

where 1,2 1,, , 1ne e u= − . Rearranging Eqn. (3.41), one can isolate 1
2v as a function of link

weights, algebraic connectivity, and the remaining components of the Fiedler vector, as

follows

2
2

1
2 1,2 1,n

2 1,1
2

1

n

v
v e e

Q
v

λ

  
   =     −     

  . (3.42)

 51

Then, one can determine 1,1Q as shown in

 1,1 1,
1

1 (1)(1)
n

k
k
i k

Q w n u
=
≠

= − × = − −∑ . (3.43)

Substituting Eqn. (3.43) back into Eqn. (3.42), the result is

 []
2
2

1
2

2

1 1 1
(1) n

v
v u u

u
v

  
 −  = − −  −     

  . (3.44)

Eqn (3.44) reduces to

 []
2
2

1
2

2

1 1 1
n

v
v

v

  
  = −   
    

  (3.45)

and finally

 1
2 2

2
1

n
k

k
v v

=

= − ×∑ . (3.46)

Eqn (3.46) demonstrates that 1
2v will have a different sign than the sum of the remaining

components of the Fiedler vector. The remaining components can be shown to be all

equal, which is the same as Eqn. (3.39).

To graphically demonstrate the results of Eqn. (3.39) and Eqn. (3.46), a full mesh

network without and with congestion are shown in Figure 12 and Figure 13. The

congested case is simulated by reducing the link weights to near zero for a node of

interest. The congested node in green in Figure 13 is separated from the others as solved

for in Eqn. (3.46). The congested state can be easily identified by the controller, which

can monitor for the condition shown in Figure 13. Because the SDN controller is

constantly updating the current network link weights, it will be able to identify that there

is a congested node in the network from the eigenvalues and then it will use the

eigenvectors to determine where that congestion is occurring. By knowing both that it has

occurred and where it has occurred, the controller can take corrective action to relieve the

congestion.

 52

Figure 11. A random network is shown in three dimensions using the trailing

three eigenvectors of the Laplacian matrix. All links in this graph are
equal to 1. The green node is the node of interest, and it is not

congested.

Figure 12. A random network is shown in three dimensions using the trailing

three eigenvectors of the Laplacian matrix. All links in this graph are
equal to 1, except for the links to the green node are reduced to near

zero, which is indicative of congestion.

 53

D. DUAL-BASIS ANALYSIS OF THE 17-NODE NETWORK

In the previous sections, simple graphs were analyzed because symmetry could be

exploited to determine the closed-form solutions. The following simulations are based on

the 17-node network from Figure 7.

Similar to the previous closed-form equations in Section C, large gaps between

eigenvalues are indicative of distinct sets of nodes. The eigenvalues belonging to the

mesh core in Figure 7 are associated with the larger eigenvalues, and the smaller

eigenvalues are associated with the access network. From this perspective, the 17-node

network consists of two distinct networks, but both could be managed by a single,

logically centralized controller [17].

To simulate the dynamic performance of the network, all of the link weights of

the links connected to node 6 are reduced from 1 to 0. The eigenvalues reflect the

reduction of the link weights as shown in Figure 13. Eigenvalues 3 through 8 are all

affected by this reduction, but the link behavior is isolated to a small number of

eigenvalues as indicated by the small number of eigenvalues that change at any particular

time in the simulation. As the eigenvalues shift down, only one eigenvalue is changing

for most of the transition except right at the knee in the curves. As the node transitions

between eigenvalues, it cannot be isolated from the next closest node as represented by

the next lowest eigenvalue. Eigenvalues 9 through 17 also change due to the relationship

between the access and core networks. They have a constant decrease because they are all

connected similarly to node 6. The physical interpretation of this is that the core

network’s available network bandwidth capacity to the access network is constantly

decreasing. In this case, the decrease in available capacity is solely related to the reduced

link weights to node 6.

At the end of the simulation, all of the affected eigenvalues have shifted down by

one. The number of zero eigenvalues has increased from two to three because there are

now three separate networks: nodes 6, node 17, and the remaining connected nodes. The

slope of the line that connects all of the transition phases of each eigenvalue can be

approximated by observation as

 54

 k
d d
dw
λ
≈ − (3.47)

where k is the node of interest, which in this case is node 6.

Figure 13. As node 6s links are reduced to zero from time 0 to 1 second, the

eigenvalues of the 17-node network demonstrate the behavior from
Eqn. (3.47) as shown by the gray dashed line.

The degree of node k kd determines the approximate slope of each eigenvalue as

it shifts from its current value to the next value down, and the starting value 0λ

determines the y-intercept. In this case, node 6 has a degree 6kd = , which means that the

slope is 6d dwλ = − and the starting value is 0 6λ = . In Figure 13, the dashed gray line’s

slope is based on Eqn. (3.47).

To determine if Eqn. (3.47) still holds when the links to other nodes are reduced

to zero, the simulation was continued. The links of nodes 5 and 4 were reduced to zero.

The result is shown in Figure 14. The pattern holds, as does Eqn. (3.47). By the end of

 55

this simulation, the null space has increased to five; nodes 4, 5, 6, and 17 are all in the

null space. This is reflected by the five zero eigenvalues.

The controller can use this information to route packets and create flow rules that

avoid these links and switches. In this case, the nodes were removed from the network

due to simulated congestion. The congestion could have been created by normal traffic

that exceeded the capacity of the affected links, or it could be due to a failed switch. On

the other hand, the congestion may also have been created by a targeted denial-of-service

attack or some other cyber attack. The eigenvalues and eigenvectors do not provide the

controller with sufficient information to discriminate between the two types of

congestion. Nevertheless, when a node enters the null space, it could be a flag for another

SDN application to determine the reason.

Figure 14. Eqn. (3.47) is demonstrated as three nodes enter the null space by

reducing all their links to 0.

 56

The network was simulated with complete control over which links were reduced

to zero. In a real-world situation, one would not have this knowledge. The controller must

know which node entered the null space or which node is congested. The eigenvectors

provide the information about where in the network these dynamics are occurring. Figure

15 demonstrates the behavior of the nodes in the eigencentrality basis and is the same

simulation that produced Figure 14. The third, fourth, and fifth eigenvectors are plotted as

a function of time.

Figure 15. The third, fourth and fifth eigencentrality components are plotted

versus time as all the link weights that attach to nodes 6, 5 and 4 to the
core network are reduced to zero. Node 1 is blue. Node 2 is black. Node

3 is magenta. Node 4 is cyan. Node 5 is green. Node 6 is red.

The first major observation from Figure 15 is how well the nodes are isolated at

the start of the simulation. Nodes 1, 2, and 3 are the dominate nodes in these three

eigenvectors as they are the least central nodes as reflected in Figure 7. The first node to

 57

have its links reduced to zero is 6. As the links are reduced, node 6 becomes less central

and transitions through each of the eigenvectors until it finally becomes disconnected

from the network at approximately 1 second. Similar transitions occur for node 5 and

node 4.

One should notice how the isolation that is evident when the simulation starts is

not present as the nodes transition. For instance, notice how node 6 transitions with node

3 at approximately 0.5 seconds into the simulation. At that point they have the same

influence in the network from a centrality perspective. The eigenvectors show that these

nodes are node isolated from one another. As this transition continues, the nodes are

again isolated. This concept of nodal isolation and coupling will resurface in later

chapters to determine how many nodes are required to control the network.

Returning to the idea that the nodes may be represented as a point in n -

dimensional space, one can replot Figure 15 as a two-dimensional graph representation.

The result is the transitions between eigenvectors are now a change in magnitude of the

nodes and angle among nodes. For this network, there are up to 17 dimensions that can be

displayed. Two of those are shown in Figure 16. The behavior of the third and fourth

eigenvectors is demonstrated in Figure 16 for the first second of the simulation. The

result clearly shows that as the links of node 6 are reduced to zero, the two-dimensional

representation of the node 6 changes in magnitude and angle. At the beginning of the

simulation, nodes 1 and 2 are orthogonal to each other. As the simulation continues, node

2 and 6 exchange places in terms of magnitude, but they are separated by 180°. Both

nodes 2 and 6 remain orthogonal to node 1. Once node 6 has become the dominate node

in the fourth eigenvector, it begins to rotate through the two-dimensional space to replace

node 1 on the third eigenvector axis. Notice that at all times node 6 is orthogonal to node

1. This is due to the fact that the eigenvectors reveal the orthogonality between nodes to

the extent possible. In this case, the nodes maintain their orthogonality throughout the

simulation.

 58

Figure 16. The nodal behavior is demonstrated for first second of the simulation

in two-dimensions. The link weights of the links to node 6 are reduced
from 1 to 0. The movement of nodes 1, 2, and 6 can be captured by

using vector magnitudes and angles between vectors.

To complete the analysis of this 17-node network, one must observe how the

leading eigenvectors behave during the transitions observed in the trailing eigenvectors.

The behavior of the leading eigenvectors is demonstrated in Figure 17. Throughout the

three second simulation, the leading eigenvectors remain the same. They are unaffected

by the transitions in the other eigenvectors. Again, this is because the dual-basis method

effectively reveals the network behavior. The leading eigenvectors are indicative of the

behavior of the core network; the centrality of the core is unaffected by congestion in the

access network. They are separate networks and one would expect that the centrality of

these nodes to be separate from each other.

 59

Figure 17. The 15th, 16th, and 17th eigencentrality components are plotted versus

time as all the link weights that attach to nodes 6, 5 and 4 to the core
network are reduced to zero. Node 14 is magenta. Node 15 is black.

Node 16 is blue.

E. PHANTOM NODE

The behavior of the eigenvalues in Figures 13 and 14 and approximated by Eqn.

(3.47) can be exploited by adding a virtual node or phantom node to the graph that does

not exist in the physical network. This additional node is placed in such a way that it is

the dominant node in the Fiedler vector. In [49], it was shown that 2λ is bound by the

node with the minimum link weight, which is the reason that the phantom node can be

used as an indicator of onset of congestion. The phantom node is attached to the most

central node in the network as determined by the dual-basis analysis because it will have

the least effect on the dual-basis. The link weight of the phantom node can be changed to

vary when congestion is indicated; smaller link weights result in a smaller algebraic

connectivity, which will delay the indication of congestion because the threshold crossing

will occur at smaller link weights. The opposite is true of larger link weights. The shift of

the phantom node’s dominance to larger eigenvalues indicates the onset of congestion,

 60

but not where in the network congestion is beginning. The eigenvectors will indicate

where in the network the congestion is occurring.

The development of the phantom node and simulations to support this hypothesis

are contained in [49]. The phantom node was tested on a preliminary, six node hardware

SDN to show that the hypothesis holds up when applied to a real-world network [50].

The simulations and the hardware experiments validated the development of the phantom

node. A result from [50] is shown in Figure 18. Node 3 is under a DDOS attack and the

congestion is indicated by node 3’s nodal influence shifting to 2λ . The drawback to this

approach is that it does not indicate maliciousness; by simply analyzing the phantom

node behavior, the reason for the congestion cannot be determined. Deeper inspection of

the packets, flows, and timing of congestion needs to be conducted to determine the root

cause of the congestion.

Figure 18. The phantom node is the dominant node for 2λ until the onset of

congestion in the second figure. Node 3 is congested due to a DDOS
attack, which is indicated by the shift of the phantom node to dominate

3λ and node 3 dominating 2λ , from [50].

Phantom Node Phantom Node

Congested Node

 61

Up to this point, the dual-basis representation has been analyzed to help determine

the network behavior with both static link weights and dynamic link weights. The

combination of the ratio cut optimization solution, the closed-form solutions, and the

simulations provide the foundational work to demonstrate that the dual-basis analysis is

an effective means to reveal the structure and behavior of the network. The link weights

in the simulation were controlled directly and were not allowed to vary randomly. This

will not be true in real-world networks. The SDN controller polls the switches for

network traffic measurements, which will be noisy. The controller must have an effective

method to estimate the link weights to ensure that the subsequent link weights used in the

dual-basis analysis accurately reflect the true data rates in the network. In most control

systems, a state space observer is used. In the following chapter, a state space

representation of the network is explored to develop a network observer that will

accurately estimate the network’s link weights.

 62

THIS PAGE INTENTIONALLY LEFT BLANK

 63

IV. CLOSED-LOOP CONTROL OF SDN

Software-defined networks have opened the door for researchers to model and

control data communication networks in a whole new way. Many real-world systems are

assumed to be LTI or can be linearized. SDNs are by design non-linear because of the

discrete event nature of the packets being transmitted and switching among nodes in the

network. Intervals between traffic generation, the data rate of a flow, and the total amount

of data transferred per flow may not be accurately characterized by a random variable

with a Gaussian distribution. Both the nature of the system and the traffic force

researchers to find new ways to model the network, estimate the link weights, and control

the overall network.

In order to evaluate the performance of a SDN as a closed-loop control system,

the model must be able to handle the non-linear behavior and non-Gaussian noise, which

are inherent to large, complex data communication networks. The non-linear and non-

Gaussian nature of a SDN can be modeled, estimated and controlled by using a closed-

loop control system framework. The first requirement of a closed-loop control system is

an observer to estimate the state of the network given system measurements and given

controller feedback. Once the state is estimated, the controller then generates a feedback

signal to achieve the goal set by the cost function of the overall system.

A. PROPOSED CLOSED-LOOP CONTROL SCHEME

A generalized closed-loop control system is shown in Figure 19. It includes the

components that make up the SDN model: the dual-basis analysis, new packet message,

and flow modification messages. SDNs are fundamentally different from traditional

control systems. In a traditional control system, the entity being controlled is directly

measured. For instance, many circuits have control loops that maintain voltage or current

within a specification. To control the voltage or current, a direct measurement of that

current or voltage is made and compared to a set point. The resulting error is passed to

the controller for correction.

 64

Figure 19. A SDN modeled as a closed-loop control system has an observer to

estimate the link data rates, and a controller to generate flow
modification messages to change the current link data rates. The dual-

basis analysis is included to provide the controller with additional
information in the form of network features.

In a SDN, the controller is not controlling the number of packets that enter the

network or the routing of those packets but instead, directs flows through the network.

The measurement y is a vector of the current, measured data rates. The SDN controller

requests information about the total flow of traffic in each direction through the physical

Ethernet wires from the monitor nodes. The data rate estimates ŷ are calculated based on

the current number of flows, the posterior probability, and the current measurement. The

data rate estimate is provided to the controller to determine network flows, which is

accomplished by sending flow modification messages to the designated network

switches. The specific method used by the controller to determine the optimal route is not

considered in this research; the focus here is on estimating and analyzing the network

state.

The proposed closed-loop control scheme has four main parts as shown in Figure

20: the plant, the observer, the controller, and the dual-basis analysis. The observer has

two significant parts: the particle filter [45] and the phantom node. The particle filter is

used as described in Chapter II, but the specific inputs to the filter will be discussed in the

next section. The phantom node is a method to estimate congestion in the network and to

 65

inform the controller about the intensity and location of congestion [49], [50]. The

observer provides the controller with all of the information necessary to control flows

both reactively and proactively.

The controller implements any one of a number of routing algorithms from widely

used algorithms like open shortest path first (OSPF) [19] to more application specific

algorithms like equal cost multi-path routing (ECMP) [51]. Again, the goal of this

research is not to develop new routing algorithms, but to provide a framework that can

use any routing algorithm. This work seeks to demonstrate a method to minimize the

number of nodes where the selected routing algorithm must be implemented, which are

called the control nodes in this dissertation. Reducing the number of control nodes

reduces the complexity of the overall system and reduces the computational load on the

controller. Both of these reductions can be achieved without sacrificing performance in

terms of the cost function used by the routing algorithm, as will be demonstrated in the

next two chapters.

Figure 20. The proposed SDN closed-loop control scheme has an observer and

a controller. The observer is the combination of the particle filter to
estimate the link data rates and the phantom node to identify

congestion. The controller uses the information from the observer and
from the features extracted by the dual-basis analysis to generate flow

modifications messages.

 66

The following sections describe each part of the closed-loop control scheme in

detail. The process to estimate the link data rates is first described. To estimate these data

rates, the number of monitor nodes needs to be determined; these are the nodes that are

polled to obtain the information required to calculate all link data rates and in turn the

link weights. The process to identify the monitor nodes is described. The controller is

described next. The method to identify the control nodes is described, which is a specific

application of the dual-basis analysis. The controller’s routing problem is described in

terms of load balancing the network traffic.

B. LINK DATA RATE ESTIMATION

The link data rate estimate is one of the two outputs of the observer. The other is

the congestion flag from the phantom node. The typical approach when designing a state

estimator is to start by modeling the system with a set of linear equations. If that does not

work, the system designer will try to linearize a non-linear model around an operating

point. If that approach fails, a more general solution that allows non-linear models is

used. The most widely used estimator is the Kalman filter [45]. It can be shown that the

Kalman filter is an optimal estimator for a linear system with Gaussian noise. A SDN is

not a LTI system and does not have Gaussian noise, but neither do many of the real-

world systems that are modeled as linear systems. If a SDN can be modeled as an

electrical circuit using linear components, then a Kalman filter can be used as an

estimator. If that is unsuccessful and non-linear components must be used, it may be

possible to use an EKF to achieve the link data rate estimates. If both of those paths fail, a

particle filter may be used as a final option. The following sections will demonstrate the

attempt to linearize a SDN to finally adopting a particle filter [45].

1. Monitor Nodes in a SDN

Monitoring network traffic in a SDN is inherent to the OpenFlow protocol. The

controller can request the number of packets and bytes that have been transmitted and

received on each physical port on the polled switch. The controller can also request the

number of packets and bytes that have been matched to an individual flow [21]. The

problem is determining the minimum number of switches that need to be polled to

 67

calculate all link data rates throughout the network. Minimizing the number of monitor

nodes reduces the workload of the controller and reduces the number of packets that are

sent on the control network.

The solution of the vertex cover problem determines the minimum number of

nodes required to calculate all link data rates. The vertex cover problem seeks to

determine the minimum set of nodes that are required to ensure each link is incident to at

least one node in the graph [52]. Various solutions to this problem have been suggested,

and this work does not seek to find a new solution. Using standard techniques, the

controller solves the problem to determine which switches it will transmit requests to in

order to determine all data rates on all links. This solution will be updated periodically to

adapt to changes in network conditions.

2. State Space Model of a SDN

Many non-electrical systems have been modeled as electric circuits, such as

spring, mass, damper systems [43]. To use the Kalman filter to estimate all link data

rates, a linear state space model of a SDN must be developed in a manner similar to the

process used when building linear models of mechanical systems. The electrical circuit

model of a simple SDN is shown in Figure 21. The equivalent electrical circuit of this

SDN is shown in Figure 22. All of the components of the circuit except for the switches

1S and 2S are linear components. The voltage on the capacitors represents the queue size

of the switches. The behavior of the energy storage in a capacitor is similar to the

behavior of switches as their buffers are filled with incoming packets. The current

through the resistors was used to model the data rate between switches. The resistors

were used to limit the amount of current between the capacitors. The voltage source is the

source node producing traffic in the network. The resistor 4R in parallel with the

capacitor 2C represents the sink node. Traffic is being transmitted from the source to the

sink via the intermediate switches.

To maintain the linearized nature of the system, each side of the circuit was

analyzed separately. The right side was analyzed with 1S closed and 2S open. The left

 68

side was then analyzed with 1S open and 2S closed. The state matrix of the right hand

side of the circuit is

1 1 2 3 1 3

3 5 6 3 5

1 3 2 5 2 3 4 5

1 1 1 1 10

1 1 1 10

1 1 1 1 1 1

C R R R C R

A
C R R C R

C R C R C R R R

  −
+ +  

  
  − − = +   
 

 − − + +  
  

 (4.1)

and the input matrix is

1 1

1

0
0

C R
B

− 
 
 

=  
 
 
  

. (4.2)

The C matrix is an 3 3× identity matrix, and the D matrix is a 3 1× vector of

zeros. The left hand side equations are similar to the matrices in Eqns. (4.1) and (4.2).

Figure 21. A simple four switch network was modeled by a circuit to determine

a linear system to further develop a state space model for the system.

 69

Figure 22. To model a SDN, voltage on a capacitor was used to model the

queue of a switch and current through resistors was used to model the
data rate between switches. This circuit is used to model the SDN in

Figure 21.

After developing the state space model analytically, MATLAB scripts determined

the validity of this model. Another model of the same system was created using Simulink,

which was used to ensure that the state space model was correct. Two sets of simulations

were run. The first set of results is based on all initial conditions being equal to 0. The

second set of results is based on the initial conditions set to 0, 0, and 0.9 volts on

capacitors 1 2 3, , and .C C C These results are shown in Figures 23 and 24. As shown, the

results based on the state space model and the Simulink model are exactly the same.

The next step is to combine the two sets of state space equations. Using initial

voltages on the capacitors, as in Figure 24, one can model the instant after a switching

event, which is when one switch closes and the other opens. The voltage on each

capacitor represents packets in the queue of a switch that need to be transmitted to the

destination. The charge on each capacitor will generate a current that represents the

continued data rate from source to sink even though the switch has redirected traffic

down the other path. This is a reasonable model of how a SDN works. The controller

makes decisions about which switches are open in order to allow traffic to transit to the

sink.

 70

Figure 23. The result of a step input to both the Simulink model of the electrical

circuit from Figure 22 that represents a SDN and state space equations
from Eqns. (4.1) and (4.2). All initial conditions are set to 0. The

Simulink results are the open symbols, and the state space model results
are the solid lines.

Figure 24. The result of a step input to both the Simulink model of the electrical

circuit from Figure 22 that represents a SDN and state space equations
from Eqns. (4.1) and (4.2). The initial conditions are 0, 0, 0.9 on

capacitors 1 2 3, , and .C C C The Simulink results are the open symbols,
and the state space model results are the solid lines.

 71

However, this model includes a single source node and a single sink node. State

space averaging was attempted to generalize the state space model with limited success

[53]. Using a separate set of linear equations for each scenario was also considered. This

approach was discarded because the controller and observer would need to know which

set was being used when, and more importantly, a large number of these sets would need

to be implemented for every possible case. Additionally, current in the circuit only flows

in one direction at any given time, but in a SDN, data is being transmitted in both

directions simultaneously. It was determined that a linear or linearized model of a SDN

was not the best approach. Consequently, the particle filter method was considered [45].

Even though the particle filter does not produce an optimal solution to the link data rate

estimation problem, the model it uses is often a more accurate representation of the

dynamics of the network.

3. Particle Filter Estimator in a SDN

As described in Chapter II, a particle filter is an estimator that uses the same basic

structure as a Kalman filter, but instead of an optimal estimation, the method uses a

Monte Carlo simulation to estimate the link data rates, which were used to calculate the

link weights as shown in Eqn. (3.24) [45]. The implementation of the particle filter in a

SDN is a straightforward process. The particle filter runs in two steps: predict and

update. The particle filter’s first stage is to predict the link data rate of the next step using

a non-linear model of the system. The update step uses the current measurement to

update the prior PDF using the Bayes’ approach. This process is the same as that shown

in Figure 5, but the control input ku is now the number of flows on each link, which is

used as the input to the system.

The non-linear model implemented is [45]

 () () () () max

max max

0 if (1) 0
1 if 0 (1)

if (1)

x k
x k Ax k BU k k x k x

x x k x
m η

+ <
+ = + + Ν < + <
 + >

 (4.3)

where x is the state vector, A is the state matrix, B is the input matrix, U is the control

matrix, µ is the input vector, V is noise matrix, and v is the system noise. The state

 72

vector in this case is a 1l× vector where l is the number of links in the network. The

state vector contains the current estimate of all of the link data rates. If the data rate limit

has not been reached, the current state ()x k , the input and the noise are all summed to

calculate the updated state (1)x k + . If the link is operating at maximum data rate, the

model limits the traffic on that link to that value. This maximum limit is the maximum

data rate of the link and is typically measured in bits per second (bps). The l l× state

matrix A and the l l× input matrix B are identity matrices because the link data rate

equations are not coupled. The updated and predicted state are estimated to be the same

as the previous state when there is no input to the system.

The input vector µ is an 1f × vector where f is the number of types of flows

that are used with the non-linear model and is equal to the mean data rate of the flow. In

this case, only one type of flow was modeled because UDP was the only type of traffic

used. The control matrix U is an l f× matrix that is updated to add the mean data rate to

the correct link estimate based on new flows in the network. The observer is notified of

these new flows by the controller. The product of B , U and µ is equivalent to the

multiplication of B and u from Eqn. (2.19).

The noise matrix Ν is an l l× diagonal matrix because the noise in the system is

considered to be independent among the links. The noise vector η is an 1l× vector that

is a set of realizations selected from the random variable used to model the system noise.

The random variable used was a zero-mean Gaussian random variable. The system noise

can be generated in two ways. The first process that generates noise is flows that have a

small number of packets associated with them, such as address resolution protocol (ARP)

packets and domain name service (DNS) packets. These flows are short-lived and do not

generate large amounts of traffic. The second source of noise is the variation in traffic

associated with large flows, such as the large UDP flows that are used in this research.

4. Use of Phantom Node for Congestion Detection

Every control system has a dynamic range for the control input. In a SDN, the

dynamic range of control is the data rate in bps of each link. When the maximum data

 73

rate has been reached on any link and the buffer of a switch has been filled to capacity,

the switch will start to drop packets because it is unable to process new incoming packets.

A goal of the controller should be to prevent this condition. A goal of the observer should

be to notify the controller of this condition and where it is occurring. The phantom node

is a solution to this problem [49], [50].

The phantom node is added to the graph representation of the network, but it does

not physically exist. The observer uses the phantom node’s position in the eigenspectrum

and the associated eigenvector to locate the congestion. Once the congestion is located,

that congested node’s location is passed to the controller. The controller then must decide

how to take action to reduce the congestion. The controller can stop routing new packets

to or from the affected destination. It can also remove low priority flows that are

currently active in the congested area.

C. CONTROLLER

The SDN controller is an application at the heart of the closed-loop control

system. No packets are transferred anywhere within the network without the direct

intervention of the SDN controller. With that in mind, as the number of switches in the

network increase, the workload of the controller increases. Identifying the most

influential nodes or control nodes in the network using the dual-basis analysis allows the

controller to reduce its workload by calculating routes from these influential nodes to all

destinations. These influential nodes are known as the control nodes. These are the nodes

at which the controller is able to manage the network state. The goal is to accomplish this

reduction without impacting performance. The results in the coming chapters will

demonstrate that this decrease in workload can be accomplished without sacrificing

performance.

1. Identification of Control Nodes

In designing the controller application, one must take into account the number of

switches that are going to be controlled. The hardware on which the application is

running is another design criterion. The application needs to be as efficient as possible to

prevent overloading. If the switches are sending too much traffic to the controller, it can

 74

be overwhelmed and a backup of packet_in messages will occur [21], which results in

long round-trip times between source and destination within the network, and it could

result in dropped packets.

One method to reduce the workload of the controller is to reduce the number of

switches that generate packet_in messages. The control node selection allows the network

designer to focus on a subset of control node switches in the network and optimize flows

for those packets that transit through the control nodes. All other nodes in the network

will use static routes, which can be installed proactively or reactively. By limiting the

number of nodes that determine routes dynamically, the workload of the controller is

reduced.

The identification of the control nodes is a process based on the principal

eigenvector analysis. Each node is represented by an n -dimensional vector as

demonstrated in Eqn. (3.17). Each nodal vector is orthogonal to all other nodal vectors if,

and only if all n values are used. The thj 1n× nodal vector is represented by

1
j

j

j
n

v
v

v

 
 =  
  

 . (4.4)

If less than n values are used, the angle between each nodal vector shifts away from

exactly 90°. The thj nodal vector using less than n values is represented by

 :

j
k

j
k n

j
n

v
v

v

 
 =  
  

 . (4.5)

This shift indicates how isolated each node is from the other nodes. Smaller rotations

away from 90° are indicative of isolated nodes. Larger rotations away from 90° are

indicative of coupled nodes. For instance, a shift of 3° is a small shift and is indicative of

isolation. A shift of 35° is a large shift and is indicative of nodal coupling. From Figure 7

and using the leading two of 34 eigencentrality vectors, 7
33:34v and 16

33:34v , the angle

between nodes 7 and 16 is shown in Figure 25. The angle is nearly 90°. The angles

between the first five nodes using the leading five eigencentrality vectors are shown in

 75

Figure 26. These five are the control nodes used in the simulation in the next section.

Notice how the angle between node 5 and node 7 is 112° and is clearly no longer

orthogonal to the other nodes.

Figure 25. Chicago and Salt Lake are nearly orthogonal when using the first

two eigencentrality vectors.

Figure 26. As more eigencentrality vectors are used, nodes will begin to drift

away from 90° as Sunnyvale does in this case. All other nodes remain
near orthogonal.

 76

The control nodes are those nodes that are isolated from one another and have the

largest eigencentrality :
j

k nE as defined in Eqn. (3.19). The process of identifying these

nodes starts with the leading eigenvector. The node with the largest eigencentrality :
j

k nE

value in the leading eigencentrality vector nv is the first candidate, but it only provides a

one-dimensional representation and has no angular component. The next eigencentrality

vector is added so that each node has a two-dimensional representation 1:n nv − . The norm

of each nodal vector and the angle between each of the nodes will indicate which two

have the largest eigencentrality value and the angle closest to 90°. These two nodes are

the next two control node candidates. The process continues until the nodes with the

largest eigencentrality norms are no longer orthogonal. The flow chart of this process is

shown in Figure 27.

Figure 27. The process to identify the control nodes is to iteratively add

centrality vectors such that the nodal vectors with largest norms are no
longer orthogonal.

 77

To combine the angles and the Laplacian eigencentrality for each node into a

single metric for comparison of their centrality, the eigencentrality metric was divided by

the difference between 90° and the angles. This control centrality metric cc is given by

 :

90

n c n
c c

k
k n c

E

c
c

θ

−

= −

=
− ∑

 (4.6)

where c is the number of control nodes being considered, and θ is the angle between the

control node of interest and node k .

The process identified in Figure 27 was applied to the Internet2 topology. The

results are shown in Figure 28. The colors in Figure 28 represent the relative rank of the

nodes when using cc . Of the 34 nodes shown, four are selected as control nodes. All

other nodes in the network will use static routes. At these four nodes, the controller will

implement the routing algorithm to maximize the performance, which in this case the

controller attempts to balance the offered load amongst all the links.

Notice that Seattle’s color is light blue, which indicates it is not a control node,

but its degree is four. Eigenvector centrality as defined in Eqn. (2.9) gives this node a

large centrality value. In the control node identification process, this node’s centrality

value is diminished because its nodal vector 2
31:34v is nearly parallel to Salt Lake City’s

nodal vector 7
31:34v . Salt Lake City’s Laplacian eigencentrality, as given by Eqn. (3.19), is

also much larger than Seattle’s. The combination of these two effects diminishes Seattle

and indicates that it is not a control node.

Also notice that Atlanta is identified as a control node. There are a large number

of nodes with three links in this topology. If a simple degree centrality metric Dc was

used, all three link nodes are given the same centrality value. Betweeness centrality and

eigenvector centrality give Atlanta low values. The dual-basis analysis indicates that

Atlanta is the next most influential node.

 78

Figure 28. The control nodes are identified for the Internet2 topology using four

eigencentrality vectors.

Graphs and networks are not geometric objects that can be measured to find their

center. Large, complex networks can have multiple centers or control nodes and many

times these nodes are not easily identified through intuition or standard centrality metrics.

Once these control nodes have been found using the above analysis, the controller is able

to use that information to implement the routing algorithm.

2. Load Balancing Traffic via the Control Nodes

A load-balancing algorithm was developed to demonstrate the effectiveness of the

control nodes. The goal of the load-balancing algorithm is to minimize the maximum link

utilization. The optimization problem the controller is attempting to solve is [2]

 79

1: minimize
subject to
 c

 0
 0

l

static dynamic k l

static dynamic sd

static

dynamic

u

f f u
f f I
f
f

+ ≤

+ ≤

≥
≥

. (4.7)

The first inequality ensures that the total routed traffic in the static and dynamic flows

static dynamicf f+ is less than or equal to the maximum link utilization ku times the link

capacity lc . The second inequality states that the total traffic in the network is less than

or equal the injected traffic sdI between nodes s and d . The third and fourth inequalities

ensures that all flows are positive [2].

The controller application implements a discrete solution to the problem posed in

Eqn. (4.7) by measuring each link data rate and determining the correct path through the

network that minimizes the maximum link utilization. There is no penalty for longer

paths through the network.

The results of simulations of random traffic using the Internet2 topology from

Figure 27 are shown in Figure 28. Each data point in Figure 28 is the mean link weight of

a Monte Carlo simulation of traffic generated by all 34 nodes directed towards node 20,

Nashville. As more control nodes are added, the mean minimum link weight increases

with decreasing returns after four control nodes. The zero control node case is the result

of using only static routes. The order of the nodes used is based on the results of the dual-

basis analysis as demonstrated in Figure 27. The control nodes in order of control

centrality are: Chicago, Houston, Salt Lake City, Atlanta, El Paso, and Sunnyvale.

The load-balancing inequalities in Eqn. (4.7) are solved and that solution is

implemented by the controller application using only the control nodes as source nodes.

The controller is dynamically assigning flows for the packets that pass through control

nodes. All other packets are routed using static flows. The simulation was conducted

under a static control node analysis. A dynamic control node analysis could be

implemented, and the control nodes can be updated dynamically by the controller

 80

application. These dynamics could change which nodes are the most influential and

should be assigned as the control nodes.

Figure 29. The mean minimum link weight increases as the number of control

nodes increases and is maximized when four control nodes are used.

In summary, the development of the SDN control scheme used the closed-loop

control system as a framework. Using the concepts of observability and controllability,

methods were identified that can reduce the number of nodes that must be observed and

controlled. Additionally, methods were identified that can be used to estimate link data

rates and attempt to balance those data rates using flow control. Load balancing was

selected as the objective of the routing algorithm because an objective of this dissertation

is cybersecurity and preventing successful DDOS attacks. The implementation of these

concepts in a SDN test bed is demonstrated in the next chapter. The experimental results

obtained from the SDN test bed are shown in Chapter VI.

 81

V. METHODS

Simulation and analysis alone are not sufficient to show the effectiveness of the

dual-basis methodology in real-world situations. To move the research forward, a SDN

test bed was needed. The hardware and software running in real-time with real-world

inputs were required to determine the effectiveness of the proposed closed-loop control

scheme. The closed-loop control scheme has been described for a generic network, but in

this chapter, a specific description of the SDN test bed used to acquire the results in the

next chapter is described. First, the SDN test bed is described and then the dual-basis

analysis of the test bed is presented.

A. SDN TEST BED DESCRIPTION

A SDN test bed was built to add realistic complexity that was lacking in the

analysis and simulations from the previous two chapters. To demonstrate that the dual-

basis methodology and closed-loop control scheme would work in a real deployment of a

SDN required building a SDN in hardware and software with real hosts on the network.

Virtual network and virtual machines (VMs) were considered, but there were too many

drawbacks. Emulation with a virtual environment is not an effective means to test

implementations because all of the traffic passes through a single network interface card

(NIC) on the computer being used. This feature makes it difficult to ensure repeatable

data rates between experiments. Accurate data rate measurements are a requirement for

the dual-basis implementation. Without repeatable experiments and accurate

measurements, the results presented would not be relevant.

1. Implementation of the Proposed Closed-Loop Control Scheme in
Software

To achieve closed-loop control, the controller and observer from Figure 19 were

written as individual applications to be run simultaneously and interact with the SDN-

enabled switches. The SDN operating system chosen was Ryu [54], an open source

software package developed by Nippon Telegraph and Telephone, NTT. It was chosen

because Ryu is well documented and easy to use. The applications are written in Python

 82

2.7 [55]. Ryu is the network operating system that manages the interface between the

Python applications and the hardware. It uses the OpenFlow protocol to communicate

with the hardware switches. The two Python applications and the MATLAB script

implement the observer and controller functions as previously described and pictured in

Figure 20. The overall architecture is shown in Figure 30.

Figure 30. The implementation of the SDN test bed included 13 hardware

switches, Ryu as the operating system applications written in python
that directly interacted with the switches. MATLAB executed the
calculation of link weights, the dual-basis, and the particle filter.

The foundation of the SDN is Ryu because it facilitates communication between

the software and the hardware. The protocol running between Ryu and the switches is

OpenFlow 1.0. When executed, Ryu instantiates both the controller application and the

monitoring application as separate threads to run on a single machine. The monitoring

application sends StatsRequest messages at fixed, one second intervals [21], [54]. The

replies are parsed and sent to a MATLAB script, which uses this information as the

current measurement input to the particle filter function. Once the data rates are

estimated, they are passed to the controller to be used when routing packets in the

network. The controller application receives packet_in messages from the switches and

 83

generates packet_out and flow_mod messages for the switches to forward packets to the

destination and to build the flow tables in the switches, respectively [21], [54].

The controller application also tracks the number and type of flows on each link.

To accomplish this task, cookies were used to track each flow as it was created and

removed. When a flow was created, it was assigned a cookie by using the MD5 message-

digest algorithm to hash together the current time, switch datapath identification number,

and destination IP address. When a flow times out due to a hard timeout or an idle

timeout, a FlowRemoved message is sent from a switch [21]. The message contains the

cookie that was assigned when the flow was created. This allows the controller to keep

track of how many flows are assigned to each link [21], [54]. The flow count information

is passed to MATLAB, which uses it as the current input in Eqn. (4.3) for the particle

filter.

The observer updated the link state estimates approximately every second. The

network monitoring app sent a statistics request to each monitored switch in the network

once a second. The link state updates were event driven. When the network monitoring

application receives a statistics reply, the application updated the link state matrix, which

was passed to a MATLAB script to update the dual-basis representation. When making

routing decisions, the network controller application would wait for all of the monitor

nodes to reply prior to updating the routing tables for each control node.

2. Topology Modeled after Internet2

The software-defined piece of the SDN can be segregated from the underlying

topology. The applications are able to learn and adapt to any given topology. The 13 node

topology that was chosen was a subset of the full Internet2 topology as shown in Figure

31. The selection of these 13 nodes was based on the degree of each node. All nodes with

a degree of one were removed. The next set of nodes removed were those with a degree

of two. Additionally, the dual-basis analysis was compared between the 13 node topology

and the 34 node topology to ensure that the eigenvalues and eigenvectors of the reduced

topology were as similar as possible to the full topology. As shown in Figure 28, the most

central nodes were Chicago, Houston, Salt Lake City, and Atlanta. A design choice for

 84

the reduced topology was to ensure that the most central nodes were as similar as

possible to the full topology. As will be shown, the most central nodes of the reduced

topology are Chicago, Houston, and Salt Lake City. Atlanta is not included, but that is to

be expected because there should be fewer control nodes in a 13 node network than in a

34 node network.

Figure 31. The reduced Interent2 topology used in the SDN test bed. Each city

in the topology is listed with its associated IP address.

3. Hardware Components

The hardware in the test bed included HP switches and Raspberry Pis. Two types

of switches were used in the network: HP 2920 and HP 3800 [56], [57]. The 3800 model

is more capable than the HP 2920, but in the SDN test bed, there was no discernible

difference between the two types. The hosts in the network are Raspberry Pis [58], which

are small, inexpensive computers with 10/100 Mbps Ethernet connections. They are used

to generate enough traffic to conduct DDOS attacks and more realistic day-in-the-life

traffic. The Raspberry Pis ran one of four operating systems: Raspbian, ArchLinux, Kali,

 85

and Windows 10. All of the Raspberry Pis were configured with Iperf [59], which was

the program used to generate traffic between the host and server. One or more Raspberry

Pis run the server side of Iperf, and the remaining Raspberry Pis are hosts sending traffic.

Iperf was used in UDP mode because this provided the most control over data

rates, and it does not implement any congestion control algorithms. For this reason, UDP

was used to produce the traffic profiles that are shown in the next chapter. TCP was not

used because the congestion control algorithms would have been a component of the

experiment that could not be controlled. The goal was to have the controller mitigate

congestion by load balancing traffic as opposed to having the transport protocol mitigate

the onset of congestion.

B. DUAL-BASIS ANALYSIS OF TEST BED TOPOLOGY

A full dual-basis analysis was conducted as the first step in the application

development process. This research did not implement a dynamic application to update

the monitor nodes and control nodes. It did, however, track congestion dynamically and

attempt to maximize the minimum link weight, as described in Eqn. (4.7). The first step

of the analysis was to determine the minimum number of nodes to ensure that all link

data rates can be calculated.

1. Identification of Observed Nodes

For the network in Figure 31, the minimum number of monitor nodes required to

calculate all data rates is eight. This result was obtained using the minimum vertex cover

algorithm proposed in [60]; see Chapter IV Section B. In Figure 32, the nodes determined

by the minimum vertex cover solution are highlighted in yellow. After determining the

monitor nodes, the network controller must identify the control nodes.

 86

Figure 32. The set of monitor nodes in the test bed is designated by yellow.

These nodes were identified by using the solution to the minimum
vertex cover problem.

2. Identification of Control Nodes

The identification of the control nodes follows the process outlined in Figure 27.

The first step is to determine which nodes have the largest :
j

c nE in the leading

eigenvectors. The first set of calculations uses the first two eigenvectors. The nodes with

the largest :
j

c nE in the first two eigenvectors are the first two candidate control nodes, and

they are Chicago and Salt Lake City. It is worth noting the difference in the :
j

c nE between

Salt Lake City and Houston was 0.0576. This small difference is indicative that Houston

may be added to the set of control nodes. However, the angle between Chicago and Salt

Lake City is 61.57°, which is not near orthogonal as seen in Figure 33. The angle

between Chicago and Salt Lake City and the small difference of the norm between Salt

Lake City and Houston indicates that all of the necessary control nodes have not been

found. Since they have not been found, the process was repeated with three eigenvectors.

 87

Figure 33. The angle between Chicago and Salt Lake City is shown using the

leading two eigenvectors of the dual-basis representation.

When using the leading three eigenvectors, the candidate control nodes in order

are Salt Lake City, Houston, and Chicago. The difference between Chicago’s :
j

c nE and

the next largest :
j

c nE is 0.2809. This large difference is a good indicator that a sufficient

number of control nodes have been found. From Table 1 and Figure 34, it is clear that

there Chicago is near orthogonal to Houston and Salt Lake City. The angle between

Houston and Salt Lake City is not as clear. The next step is to add a fourth eigenvector

and continue the process.

Table 1. The angle between the three candidate control nodes shows the
degree to which the candidates are decoupled.

 Salt Lake City Houston Chicago
Salt Lake City 0° 76.22° 89.32°
Houston 76.22° 0° 86.23°
Chicago 89.32° 86.23° 0°

 88

Figure 34. The angle between Chicago and Salt Lake City and between Chicago

and Houston is shown using the leading three eigenvectors of the dual-
basis representation.

By adding a fourth eigenvector to the analysis, four candidate control nodes are

obtained: Salt Lake City, Houston, Chicago, and Sunnyvale. From Table 2 and Figure

35, it is clear that Sunnyvale is the least orthogonal node to the others. An angle of

118.08° is the farthest from 90° of all the nodes. The process stops here because

Houston’s angle has become closer to orthogonal with four eigenvectors, and

Sunnyvale’s angle is much greater than all the others in the four vector case and the three

vector case.

Table 2. The angle between the four candidate control nodes shows the
degree to which the candidates are decoupled.

 Salt Lake City Houston Chicago Sunnyvale
Salt Lake City 0° 78.44° 87.61° 118.08°
Houston 78.44° 0° 86.99° 100.71°
Chicago 87.61° 86.99° 0° 77.31°
Sunnyvale 118.08° 100.71° 77.31° 0°

 89

Figure 35. The angles between Sunnyvale and Chicago, Salt Lake City and

Houston are shown using the leading four eigenvectors of the dual-basis
representation.

The three candidate nodes are Salt Lake City, Houston, and Chicago. In this

analysis, the results of Eqn. (4.6) order the nodes from most influential to least as

Chicago, Salt Lake City, and Houston. The control centrality of Chicago is 0.1630, Salt

Lake City’s is 0.0536, and Houston’s is 0.0422. The static, unweighted analysis stops

here, but this control node assignment needs to be tested in the test bed to ensure that they

are sufficient.

The design work that must be conducted prior to implementing any of the

applications is based on the analytical work presented in Chapters III and IV. In this

particular case, the monitor and control nodes were not updated dynamically; an offline

analysis was done and then implemented online, in real-time. There is no reason the

monitor and control nodes cannot be identified in real-time. The goal of the next chapter

is to demonstrate that the assignment of monitor and control nodes as laid out in this

chapter provide enough information to calculate all link weights and enough control to

properly balance the offered traffic.

 90

THIS PAGE INTENTIONALLY LEFT BLANK

 91

VI. RESULTS

Once the monitor nodes and the control nodes have been identified, the next step

is to experimentally verify the unweighted analysis. The goal of these experiments is to

determine the accuracy of identification of the correct control nodes. The method to find

control nodes was based on the assumption that an analysis of an unweighted graph was

sufficient. However, these results challenge that assumption and suggest that a more

detailed, dynamic analysis is required. Results using a static, unweighted analysis will be

shown for a case with a server on the East Coast and then on the West Coast. These same

cases are revisited based on a weighted, dynamic analysis to show the improvement in

performance over the unweighted analysis.

A. EXPERIMENTAL RESULTS OF LOAD BALANCING CONTROL USING
CONTROL NODES

In accordance with Eqn. (4.7), the network controller was programmed to

maximize the minimum link weights surrounding the server node located at one location

in the network and all other nodes transmitting to that node. Two server locations were

chosen to show two different traffic patterns; they were Nashville and Sunnyvale. The

network consisted of 50 hosts: one server, one command and control (C2) host, and 48

transmitting hosts. The server was a Raspberry Pi running Iperf as the server [59]. The

C2 host logged into each transmitting host via a secure shell (SSH) and instructed them

when to start transmitting to the server, for how long and at what data rate. The

transmitting hosts used the client feature of Iperf.

Three traffic profiles were used to verify the behavior of the network under

various traffic loads. The pyramid profile is shown in Figure 36. All of the Raspberry Pis

attached to a given node were instructed to begin transmitting before the next node was

initiated. This simple profile was used to ensure that the applications were working

correctly and to provide a repeatable profile for each experiment. The second profile is

the mountain profile as shown in Figure 37. This profile randomized the order in which

the hosts were instructed to start transmitting. This profile was used to remove the bias

 92

that was present in the first profile; the bias is evident in some of the results because

multiple uncontrollable flows were initiated consecutively. The final profile was a non-

deterministic profile that randomized the order in which hosts transmitted, the length of

time that the hosts transmitted, and the amount of time between initiating transmissions.

A single realization of the non-deterministic profile is shown in Figure 38.

Figure 36. The pyramid traffic profile was generated by 48 hosts transmitting at

1 Mbps.

Figure 37. To generate this profile 48 hosts were used, but the transmitting

order of the 48 hosts was different for each experiment.

 93

Figure 38. To generate this profile 48 hosts were used, but the transmitting

order, length of transmission, and the length of time between
transmitting was different.

1. Particle Filter Results

The particle filter was implemented in real-time, and the estimated data rates were

used to determine the link weights of the links surrounding Nashville and Sunnyvale.

Measurements were made every second, and the weighted graph was updated given the

measurements. The data rate estimates for each link surrounding the server node was

used to calculate the link weights, which were then used in the controller’s decision to

route traffic to each server location. The results of data rate estimates and data rate

measurements are shown in Figures 39 and 40. The detailed performance of the particle

filter is shown in the inlay. Because the noise variance used was small in both the predict

and update phases, the estimates are biased towards the predict phase that uses non-linear

model from Eqn. (4.3). The update phase uses the variance to determine the probability

that a given realization of the Monte Carlo simulation is the actual link data rate. By

using a small variance, measurements that were far from the predicted data rate were

assigned a low probability of being the actual data rate. The data rate for each of the three

 94

links surrounding the server nodes was estimated using 500 particles per iteration. This

choice was made to limit the time it took the SDN controller to calculate the data rates

and decide on the next set of routes, which was completed every second. Additional links

could have been added in a similar manner if the SDN controller was run on a more

capable computer.

The particle filter required the controller to keep track of the number of flows on

each link to use Eqn. (4.3). In addition, the controller needed each switch to notify the

controller when a flow had been removed. The switches and firmware that were used did

not reliably transmit a flow removed message to the controller. The flow idle timeout

feature did not appear to function properly and as such, it did not provide reliable

feedback to the controller when flows had ended due to idling. To overcome this, the

length of the transmissions was fixed, except for the non-deterministic profile. For this

profile, a moving average was used instead of the particle filters to estimate the link data

rate and link weights.

Figure 39. To estimate the data rate for each link surrounding the servers 500

particles were used, and the particle filter was successful at eliminating
outlying measurements. The inset demonstrates the performance of the

filter at a level that one can see the particle filter’s performance.

 95

Figure 40. The particle filter was an effective means to limit the impact of

outlier measurements on the routing algorithm. The inset demonstrates
the performance of the filter at a level that one can see the particle

filter’s performance.

2. East Coast Results

The first experiment was run with the server in Nashville. The first set of results

was obtained using the pyramid profile. Experiments were run using zero, one, two and

then three control nodes. The results for all static flows are shown in Figure 41. with the

link weights calculated using Eqn. (3.24). Larger link weight values are associated with

lower link utilization and higher available capacity. The three links closest to the server

are shown because those are the links which are most important to ensure the minimum

link weight is maximized.

When Chicago is assigned as a control node, any traffic transiting through

Chicago will be rerouted to minimize the maximum link weight. The route is instantiated

using proactive routing to ensure the full path from control node to the server is

established. The results are shown in Figure 42. Notice that the minimum link weight

 96

decreases when a single control node is added. The reason for this decrease in

performance is because early in the build-up of traffic the controller attempts to balance

the traffic and adds traffic to the link from Houston. The controller does not have enough

control input throughout the rest of the experiment to effectively minimize the link

weights. This result clearly indicates that a single control node is insufficient to obtain the

desired balancing of the offered traffic and missed placed control nodes can decrease

performance.

Figure 41. The link weights for the three links connected to the server node in

Nashville are shown for the pyramid profile with zero control nodes.
Static routes were used by all nodes in the network.

When Salt Lake City is added as the second control node, the results in Figure 42

are unchanged. Adding Salt Lake City only controls those few hosts that are directly

connected to Salt Lake City; however, those same hosts were already being controlled by

Chicago. The static route from Salt Lake City to Nashville transited through Chicago.

Increasing the number of control nodes from one to two did not increase the ability of the

controller to load balance the traffic.

 97

Figure 42. The plot of link weights over time is shown using Chicago alone and

using Chicago and Salt Lake City as the control nodes based on an
unweighted analysis. The results for the one and two control node case

are identical.

For this server location, the result in Figure 42 suggests that the correct ordering

of the nodes is not Chicago, Salt Lake City, and then Houston; the best ordering for this

server location is Houston, Chicago, and then Salt Lake City. The results when Chicago

and Houston are the control nodes are shown in Figure 43. A significant increase in

performance is shown over the previous results. Because all traffic from west of Chicago

and Houston must go through Chicago and Houston, all of that traffic can be used by the

controller to balance the links, and the traffic from Washington, DC and Atlanta is not.

Even though some traffic is not available for balancing the load, the controller is able to

balance the traffic quickly because there are enough controllable flows to achieve a

minimum, and the minimum link weight is increased by 13% over the static routes as

shown in Figure 41.

 98

Figure 43. The plot of link weights over time is shown using Chicago, Houston,

and Salt Lake City and also Chicago and Houston as the control nodes
based on an unweighted analysis. The results for the two and three

control node case are identical.

The second set of results was obtained using the mountain profile. The zero

control node case is shown in Figure 44. The three control node case is shown in Figure

45. with Chicago, Houston, and Salt Lake City as the control nodes. Again, the addition

of Salt Lake City did not add any control in terms of balancing the link weights. Because

the order in which hosts begin transmitting is random, there is no bias as seen in Figure

43 where all of the uncontrollable flows are initiated in order. The traffic is well balanced

throughout the profile, and the minimum link weight is increased by 11% over the static

routes as shown in Figure 44.

The third set of results was obtained using the non-deterministic profile. The

results when using zero control nodes are shown in Figure 46. The results when using

Chicago, Salt Lake City and Houston as the three control nodes are shown in Figure 47.

The traffic from Atlanta that cannot be used when balancing the load, which is routed at

 99

approximately 700 seconds, resulted in smaller link weights than the optimal solution.

However, the minimum link weight in Figure 47 is 8.5% greater than the link weight in

Figure 46.

Figure 44. The plot of link weights over time is shown using zero control nodes

with the mountain traffic profile.

Figure 45. The plot of link weights over time is shown using Chicago, Houston,

and Salt Lake City as the control nodes based on an unweighted
analysis for the mountain profile.

 100

Figure 46. The plot of link weights over time is shown using zero control nodes

with a non-deterministic traffic profile.

Figure 47. The plot of link weights over time is shown using Chicago, Houston,

and Salt Lake City as the control nodes based on an unweighted
analysis.

3. West Coast Results

Similar results were obtained for the West Coast server. The same ordering of

control nodes was used as suggested by the static, unweighted analysis. The first set of

results is shown in Figure 48 for the pyramid traffic profile. The results using the same

three control nodes as the East Coast scenario are shown in Figure 49. Again, there is

 101

good balancing of the link weights early in the experiment when using three control

nodes, but it does not maximize the minimum link weight throughout the experiment.

The links from Seattle and Salt Lake City are evenly balanced, but the link from Los

Angeles ends up carrying more traffic because of the added traffic early in the

experiment. This is a similar problem to that observed in the one control node experiment

when the server was located in Nashville. The amount of traffic that is produced by the

nodes in the southwest is a large portion of the total traffic and is not available to the

controller to balance the load, and it does not enter the experiment until after much of the

controllable traffic has been routed.

Figure 48. The plot of link weights over time is shown using zero control nodes

with the pyramid traffic profile.

The second set of results for the West Coast is obtained using the mountain

profile. Between the zero control node case and the three control node case, there is an

increase of 8.3% in the minimum link weight. The zero control node case is shown in

Figure 50, and the three control node case is shown in Figure 51.

 102

Figure 49. The plot of link weights over time is shown using Chicago, Houston,

and Salt Lake City as the control nodes based on an unweighted
analysis.

Figure 50. The plot of link weights over time is shown using zero control nodes

with the mountain traffic profile.

 103

Figure 51. The plot of link weights over time is shown using Chicago, Houston,

and Salt Lake City as the control nodes based on an unweighted
analysis.

The next set of results for the server location in Sunnyvale is based on the non-

deterministic profile. Again, the traffic from Los Angeles produces the minimum link

weight as shown in Figure 52. When the three control nodes are added, the minimum link

weight is increased by 8%. The balancing of the link weights in Figure 52 is not perfect.

The traffic from Los Angeles is the limiting factor. All of these results suggest that Los

Angeles should be added as another control node. However, the unweighted analysis did

not indicate that Los Angeles should be included.

These results suggest that a better method is needed to select the control nodes

based on both the topology and a traffic matrix. The locations of Chicago, Salt Lake City

and Houston are near optimal choice for Nashville but not for Sunnyvale. Adding

knowledge of traffic patterns as link weights to the principal eigenvector analysis will

provide a more optimal solution. Additionally, if the network is able to recalculate the

 104

principal eigenvectors and control nodes periodically based on the current traffic patterns,

the controller can select the best nodes based on the current state of the network.

Figure 52. The plot of link weights over time is shown using zero control nodes

with the non-deterministic traffic profile.

Figure 53. The plot of link weights over time is shown using Chicago, Houston,

and Salt Lake City as the control nodes based on an unweighted
analysis.

 105

B. MODIFIED CONTROL NODE SELECTION METHOD

Based on the previous results, the assumption that a static, unweighted analysis is

sufficient is challenged. A dynamic, weighted analysis may be more effective when

attempting to identify control nodes. The procedure in Figure 27 is used to implement the

weighted analysis, but this time the analysis includes information similar to that used to

calculate the betweenness centrality [23].

1. Analysis of Internet2 Topology with Weighted Graph

The topology from Figure 31 does not provide any information about the location

of subnets or hosts. The number of hosts at each location in the test bed topology is

shown in Figure 54. Combining the location of the hosts and the location of the server, a

weighted graph is developed. Each link is given a weight between 0 and 1 based on the

number of flows that are transmitted over that link. Links that appear in the physical

topology, but do not carry any flows are given a nominal link weight of 0.05 because by

the definition of the adjacency matrix, a 0 indicates that there is no link. In any network,

some small amount of traffic is carried over all links and a weight of 0.05 accounts for

this.

Figure 54. As in a real-world network, computers and traffic are not evenly

distributed throughout the network, which is the case in the SDN test
bed.

 106

Once the traffic matrix has been developed and link weights assigned, the method

to locate the control nodes can be run again. The results of the analysis indicate that the

order of the control nodes when the server location is Nashville is Houston and then

Chicago. This result was already observed in Figures 43, 45, and 47. Because Houston is

listed first, the Nashville experiment was run again using Houston as a control node and

those results are shown in Figure 55. The results show improved performance as opposed

to using just Chicago, which resulted in decreased performance. The results of the

weighted analysis indicate that the order of the control nodes when the server location is

Sunnyvale is Salt Lake City, Los Angeles, and then Seattle. The resulting link weights

when the new control nodes from the weighted analysis are used for the West Coast

location are shown in Figures 56, 57 and 58. All three show much improved performance

over the control nodes that are located using the unweighted analysis.

Figure 55. The plot of link weights over time is shown using Houston as a

single control node based on a weighted analysis and pyramid traffic
profile.

 107

Figure 56. The plot of link weights over time is shown using Seattle, Salt Lake

City, and Los Angeles as the control nodes based on a weighted
analysis and pyramid traffic profile.

Figure 57. The plot of link weights over time is shown using Seattle, Salt Lake

City, and Los Angeles as the control nodes based on a weighted
analysis and mountain traffic profile.

 108

Figure 58. The plot of link weights over time is shown using Seattle, Salt Lake

City, and Los Angeles as the control nodes based on a weighted
analysis and non-deterministic traffic profile.

By allowing the SDN controller to recalculate the dual-basis representation and

the control nodes, the network can adjust for changing and unexpected traffic conditions.

The dynamic, weighted analysis is a much better solution to the control node assignment

problem than the static, unweighted method.

2. Analysis of a Two-Server Network

A weighted, dynamic analysis is a more effective solution for the one server case,

but in a real-world network, there are multiple destinations. In order to evaluate this

weighted analysis with a more realistic scenario, the method to determine the control

nodes was revisited for the two-server case. The two server locations are Nashville and

Sunnyvale, but this time they will both receive traffic simultaneously. The weighted

graph will take into account the flows transiting in both directions. After conducting this

analysis, the resulting control nodes, in order, are Chicago, Los Angeles, Houston, and

Salt Lake City.

The new list of control nodes includes a fourth control node, which is not an

unexpected result in light of the previous West Coast results. Chicago, Houston, and Salt

Lake City all have a degree of four and are hubs for the network. Los Angeles does not

 109

have a degree of four, but it does have a large amount of traffic flowing through it to both

Sunnyvale and Nashville, which increases its ability to control the offered traffic. The

control node identification method eliminates the guess work from network design by

reducing a complex network to the analysis of a small number of principal eigenvectors.

The determination of the principal eigenvectors and the resulting control nodes can and

should be automated in a real-world implementation.

The results were collected by running the experiments again, but this time the four

control nodes were used and each profile was applied to each server location. The results

show that the weighted case can work for more than one server location. There is

significant increase in the link weights for each case shown, as compared to the static

case. The East Coast results are not reiterated here; they are contained in Figures 43, 45,

and 47. Adding control nodes to the West of Chicago and Houston does not increase the

performance of the balancing of traffic to Nashville. The West Coast results are shown in

Figures 59, 60, and 61. The performance here is not that much better than the one server

case, but there is significant improvement over the static case.

Figure 59. The plot of link weights over time is shown using Chicago, Los

Angeles, Houston, and Salt Lake City as the control nodes based on a
two-server, weighted analysis and pyramid traffic profile.

 110

Figure 60. The plot of link weights over time is shown using Chicago, Los

Angeles, Houston, and Salt Lake City as the control nodes based on a
two-server, weighted analysis and mountain traffic profile

Figure 61. The plot of link weights over time is shown using Chicago, Los

Angeles, Houston, and Salt Lake City as the control nodes based on a
two-server, weighted analysis and non-deterministic traffic profile.

 111

The results shown for both weighted cases were developed based on a known

traffic matrix. In real-world applications, this traffic matrix may be difficult to obtain.

However, the weighted graph that the controller develops for each time step to determine

the phantom node’s location in the eigenspectrum may be used as a substitute for the

known traffic matrix. If this is true, no additional information is required in order to

determine the control nodes.

The previous results are summarized in the following tables. Table 3 shows a

scenario where adding control nodes did not increase performance. This is mainly

because offered traffic needs to be available to the controller for it to balance the traffic.

If the controller does not have traffic available to balance the link weights, it will not be

able to accomplish its objective.

Two methods could be used to prevent this scenario. First, the assignment of

control nodes could be dynamically updated during the experiment. This was not

implemented in these experiments. Second, flows could be deleted from the switches and

re-routed. This option was not implemented in these results. If the controller is too slow

to re-route the flows, this option could result in dropped packets as new flow rules are

sent to the switches.

In Tables 3, 4, and 5, the largest increase is 13%. The reason that the pyramid

profile produces the largest increase is because it had the worst performance in terms of

load balancing when using static routes. The smallest increase is in Table 5, an increase

of 4.2% for the random profile. The random profile also has the smallest increase on

average. The random profile is one of the many possible realizations and as such will

have different performance results for each realization. The random profile also had

smaller offered loads than the other profiles. This could account for the smaller

performance increases.

 112

Table 3. The change in the minimum link weight is presented when using
the three control nodes identified by the unweighted analysis and one

server location at a time.

 Pyramid Mountain Random

Nashville 13% 11% 8.5%

Sunnyvale -2.1% 8.3% 8%

Table 4. The change in the minimum link weight is presented when using
the three control nodes identified by the weighted analysis and one

server location at a time.

 Pyramid Mountain Random

Nashville 13% 11% 8.5%

Sunnyvale 10.3% 12.4% 8.2%

Table 5. The change in the minimum link weight is presented when using
the four control nodes identified by the weighted analysis and both

servers simultaneously.

 Pyramid Mountain Random

Nashville 13% 11% 8.5%

Sunnyvale 10.3% 10.5% 4.2%

In summary, two server locations and three traffic profiles were used to validate

the control nodes selection. The particle filter was used to effectively estimate link data

rates. The first set of experiments showed that control nodes selected based on an

unweighted graph did not produce the desired results. In a few cases, the performance

degraded with the addition of control nodes. The second set of experiments used a

weighted graph based on the traffic matrix. The control nodes that were identified using

the weighted analysis performed better in terms of balancing the traffic load.

 113

Additionally, it was shown that when using two server locations the control nodes based

on the weighted graph provided comparable performance to the one server scenario.

 114

THIS PAGE INTENTIONALLY LEFT BLANK

 115

VII. CONCLUSIONS

The goal of this work was to determine a framework to model a SDN after a

closed-loop control system. It was demonstrated that the standard definition of a closed-

loop control system can be used as a model around which to build SDN applications.

Spectral graph theory was used to develop the dual-basis representation, which is a tool

to reveal the underlying structure of the graph. The observer was implemented as a non-

linear state estimator. The controller was built around a cost function that would be found

in any optimal controller. The dual-basis representation is also used to dynamically

determine the minimum number of nodes required to monitor and control the network.

These contributions can be applied to any SDN implementation and should be considered

when developing new applications for SDNs. The effectiveness of the proposed ideas

was demonstrated in simulation and experimentation on a test bed.

The objectives of this dissertation were accomplished through the development of

the dual-basis analysis, a closed-loop control framework for a SDN, and a test bed to

validate the proposed scheme. The dual-basis analysis is a new method to reveal the

underlying structure of the network and dynamic network features. The closed-loop

control framework includes the particle filter, the phantom node, and the load-balancing

controller. Numerous experiments were run on the test bed to validate the control node

selection, data rate estimation via the particle filter, and the load-balancing controller

scheme.

A. SIGNIFICANT CONTRIBUTIONS

The work reported in this dissertation led to significant contribution to software-

defined networking research. Specifically, three contributions are detailed in this section.

The first contribution is the development of the dual-basis representation as a means to

extract features from the network. The second contribution is the development of a

scheme based on a closed-loop control system. The third contribution is a SDN test bed

on which the dual-basis representation and closed-loop control scheme were validated.

 116

1. Dual-basis Representation

The dual-basis representation orients the controller to current network behavior

and conditions. The dual-basis representation is the real-valued solution to the ratio cut

optimization problem [41]. By determining this optimal solution, the SDN controller is

able to determine which node or nodes are congested, which nodes have the most control

over network behavior, and which nodes have become disconnected. By extending this

idea to time-varying link weights, we see that the controller is able to use the eigenvalues

to determine that an event is occurring and then use the eigenvectors to determine where

in the network that event is occurring. The phantom node is the implementation of the

eigenvalue and eigenvector monitoring for congestion detection.

By applying concepts from image segmentation [41] and principal component

analysis [28] to the dual-basis analysis, we recognize that the leading eigenvectors of the

eigencentrality matrix can be used to determine the Laplacian eigencentrality and nodal

angles. The controller can dynamically locate the control nodes by utilizing the Laplacian

eigencentrality and nodal angles. Due to the dynamic nature of the traffic in any network,

the control of the network needs to be applied in a dynamic fashion, and the network

conditions need to be updated dynamically.

2. Closed-Loop Control Framework

SDNs allow for much more complex interactions between the network traffic and

the network infrastructure, which is now embodied in the switches and network

controller. This interaction is well-suited for modeling it after a closed-loop control

system that makes observations of network parameters and topology, estimates the link

data rates, and control network flows to improve performance. To accomplish the tasks of

estimation and control, the SDN needs a network observer and a network controller. The

link data rate estimation is the first half of the proposed closed-loop control scheme [2]

[61]. Data rates can vary rapidly in any network and routing decisions should not be

made using these fluctuations. The particle filter was used to estimate the link data rates

to more accurately describe the weighted network graph.

 117

Once the link weights have been estimated and passed to the controller, it can

determine how to update network flows to balance the offered load. Using the dual-basis

analysis, we developed a method to locate the control nodes to reduce the workload on

the controller. Any traffic that was incident on a control node was used to balance the

traffic load throughout the network.

3. SDN Test Bed

The analysis and simulations presented in the previous chapters are a required part

of the development of any new concept, but simulations cannot fully validate the

proposed scheme. The third contribution of this research is the development of a

hardware test bed to validate the concepts developed analytically and in simulation. All

of the concepts proposed in this research were put into practice using Python applications

and MATLAB scripts that were run on a real-world SDN controller and were executed in

a hardware SDN. This network was used to test and evaluate the dual-basis

representation, control node assignment, and congestion detection. The fidelity provided

by the test bed proved to be an indispensable component of this research. Without the test

bed, the concepts and scheme proposed in this dissertation would not have been exposed

to the realities of non-deterministic time delays and the issues that arise when software

interacts with hardware.

B. FUTURE WORK

One goal of this work was to provide a basis on which to build future SDN

research. The results presented here based on the dual-basis representation are a small

subset of the information that can be extracted from the matrices and TV V . From the

results of the dual-basis analysis, the angle between nodes in the n -dimensional space

can be used to determine which nodes are isolated from each other. It was observed that

nodes with angles that were less than 90° were directly connected, and nodes with angles

that were greater than 90° were one hop away. This nodal isolation was used to select

specific switches as control nodes. Future work could include an in-depth investigation

into why certain nodes are isolated and what the angles between nodes represent

physically.

 118

The SDN controller placement problem could be solved with a slight change to

the control node placement solution presented here. Most SDN implementations have

more than one SDN controller to provide redundancy and reduce the workload of a single

SDN controller. The SDN controller placement problem is determining where the

controller should be physically located. Intuition suggests that the control node locations

could be similar to those of SDN controller nodes. The next step is to determine which

nodes are assigned to which controllers’ domain. The angle between nodes should

provide a method to indicate which nodes are isolated from each other, which will help

determine which nodes should be assigned to which community. Coupled nodes should

be assigned to the same community, and the controller node is assigned as the most

central node within the community. A scheme must be developed to use the angles to find

these communities and assign controller nodes.

The test bed did not include a method to simulate the distance between the

switches within the network and between the controller and the switches. An addition of

the delay into the network would allow for a more faithful representation of the modeled

network. The round-trip times were not considered this work. This delay means that the

closed-loop control will be slower to react to changes in the network. This will have a

negative effect on the ability of the controller to determine the correct routes. New

methods need to be explored to minimize the delay and then work to minimize the impact

of the additional delay.

This work did not include TCP packet traffic in any of the profiles because the

initiation of TCP congestion control algorithms would change the expected results;

however, all UDP traffic would be unusual in most networks. The closed-loop control

model used here was a single loop, but adding TCP traffic would add to control loops.

One of those control loops is controlled by the SDN controller and one is not. The

addition of TCP traffic profiles provides another layer of complexity. The closed-loop

control scheme proposed here may need to be modified to accommodate the addition of

TCP congestion control algorithms.

The test bed was a built using 13 switches, but it could be expanded to 34

switches. The full 34 node network would provide a better emulation of the Internet2

 119

topology. The 34 node network may require additional controllers to manage the larger

number of nodes. Finding the correct number of controllers and determining how to

assign switches to controllers can be solved in light of the dual-basis representation. The

angles between nodes can be used to determine which nodes are coupled to the controller

node. This work would benefit from a larger number of nodes.

SDN implementation on a Navy warship would be an excellent application of this

technology. SDNs are typically implemented as closed, contained networks, such as a

data center. Navy warship networks are typically closed, contained networks. In addition

to the Internet2 topology, the Navy shipboard network needs to be analyzed using the

dual-basis analysis. SDN could provide a new way to approach cybersecurity on a ship.

The methods presented here can be applied to shipboard topologies and then test

cybersecurity applications on the test bed.

 120

THIS PAGE INTENTIONALLY LEFT BLANK

 121

APPENDIX A. ALGEBRAIC MANIPULATION TO OBTAIN THE
LIMIT IN EQN. (3.34)

The following derivation verifies the result in Eqn. (3.34). First, substituting

 23 1, 2 4, and 9 12 4
2
uA B u C u u−

= + = − = − + . (A.1)

into Eqn (3.34) and moving the constants to the outside, the limit simplifies to

 2
2

1lim lim
2n n

A n n Bn Cl
→∞ →∞

= + − + + . (A.2)

By separating the variable B and C , and finding a common denominator, it can be

shown that Eqn. (A.2) simplifies to

 2

2

1lim lim
2

1 1
n n

BA
B C
n n

l
→∞ →∞

−
= +

+ + +
, (A.3)

which further simplifies to

 2
1lim
2 2n

BAl
→∞

− = +  
 

 . (A.4)

By replacing the substituted equations into Eqn. (A.4), the result is

 ()2
3 1lim 1 2 4 2(1)
2 4n

u u ul
→∞

−
= + + − + = − . (A.5)

 122

THIS PAGE INTENTIONALLY LEFT BLANK

 123

APPENDIX B. SAMPLE OF PYTHON SCRIPTS FOR THE
CONTROLLER APPLICATION

Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied.
See the License for the specific language governing permissions and
limitations under the License.
 “““
An OpenFlow 1.0 L2 learning switch implementation.
“““
 #Update to correctly assign flows based on HP2920 ability
 import logging
import struct
import hashlib
from datetime import datetime
from ryu.base import app_manager
from ryu.controller import mac_to_port
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.controller.dpset import DPSet
from ryu.ofproto import ofproto_v1_0
from ryu.ofproto import inet
from ryu.ofproto import ether
from ryu.lib.mac import haddr_to_bin
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ipv4
 class SimpleSwitch(app_manager.RyuApp):
 OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]
 _CONTEXTS = {
 ‘dpset’: DPSet,
 }
 def __init__(self, *args, **kwargs):
 super(SimpleSwitch, self).__init__(*args, **kwargs)

 124

 self.mac_to_port = {} #mac to port dictionary
 self.ip_to_port = {} #ip to port dictionary
 self.cookiejar = [] #cookiejar stores all of the cookies
 self.linklist = [] #link list keeps track of which link has flows on it
 self.dpid_to_port = {} #dpid_to_port keeps track of which links are on
 which port
 self.numflows = [0]*41 #I have 20 links, but they are directional so 40.
 #plus 1 because python counts from 0
 self.DPSet = kwargs[‘dpset’]
 self.a6 = datetime.now()
 self.a13 = datetime.now()
 self.a18 = datetime.now()
 self.b6 = datetime.now()
 self.b13 = datetime.now()
 self.b18 = datetime.now()
 self.c6 = 0
 self.c13 = 0
 self.c18 = 0
 self.lastip = 0
 self.lastdpid = 0
 self.lastdstip = 0
 #add flow for ARP packets
 def add_flow_ARP(self, datapath, in_port, dst, actions, dl_type):
 #get openflow protocol; it could be 1.0 or 1.3
 ofproto = datapath.ofproto
 #define match
 #match on ethernet type, physical incoming port, and mac
 match = datapath.ofproto_parser.OFPMatch(dl_type=dl_type,
 in_port=in_port,
 dl_dst=haddr_to_bin(dst))
 #mod builds the flow mod
 mod = datapath.ofproto_parser.OFPFlowMod(
 datapath=datapath, match=match, cookie=0,
 command=ofproto.OFPFC_ADD, idle_timeout=600, hard_timeout=3600,
 priority=ofproto.OFP_DEFAULT_PRIORITY,
 flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)
 #then send the flow mod to the switch
 datapath.send_msg(mod)
 #add flow for IP packets
 def add_flow_IP(self, out, datapath, in_port, dst, actions, dl_type, src):
 reset = 0
 with open(“/home/ec4715/Documents/MATLAB/TomDissertation/reset.txt”) as
 file: # Use file to refer to the file object
 reset = file.read()
 reset = int(reset)
 if reset == 1:

 125

 self.numflows = [0]*41
 #get openflow protocol; it could be 1.0 or 1.3
 ofproto = datapath.ofproto
 #dpid is datapath id which is a hex number assigned from the factory
 dpid = datapath.id

 #this code turns the dotted decimal ip address into an integer
 o = map(int, dst.split(‘.’))
 res = (16777216 * o[0]) + (65536 * o[1]) + (256 * o[2]) + o[3]
 o = map(int, src.split(‘.’))
 src_res = (16777216 * o[0]) + (65536 * o[1]) + (256 * o[2]) + o[3]
 #build the match
 #match is based on ethernet type, incoming port and network dest
 match = datapath.ofproto_parser.OFPMatch(dl_type=dl_type,
 in_port=in_port,
 nw_src=src_res, nw_dst=res)
 ## Possible parameters to send to OFPMatch()
 ## in_port=None, dl_src=None, dl_dst=None,
 ## dl_vlan=None, dl_vlan_pcp=None, dl_type=None, nw_tos=None,
 ## nw_proto=None, nw_src=None, nw_dst=None,
 ## tp_src=None, tp_dst=None, nw_src_mask=32, nw_dst_mask=32)
 done = 0
 with open(“/home/ec4715/Documents/MATLAB/TomDissertation
 /DoneBuildingTable.txt”) as file: # Use file to refer to the file
 object
 done = file.read()
 done = int(done)
 cookie = 0
 if out < 30 and dst == ‘10.10.2.6’ and done == 1
 and src != ‘10.10.13.1’:
 idletime = 1100
 if dpid == 0x00012c59e5107640:
 if out == 4:
 self.numflows[1]=self.numflows[1]+1
 elif out == 3:
 self.numflows[3]=self.numflows[3]+1
 elif out == 1:
 self.b6 = datetime.now()
 self.c6 = self.b6-self.a6
 if self.c6.seconds > 10:
 self.numflows[6]=self.numflows[6]+1
 self.a6 = self.b6
 hashee = str(src) + str(dpid) +
 str(datetime.now())
 cookie = int(abs(hash(hashee)))
 #I save off the cookie into the cookie jar

 126

 #I save off the link that the cookie is assigned
 if cookie not in self.cookiejar:
 self.cookiejar.append(cookie)
 self.linklist.append(out)
 print “add 1: chicago link is:”
 print self.numflows[6]
 print “add 1: houston link is:”
 print self.numflows[18]
 print “add 1: atlanta link is:”
 print self.numflows[13]
 else:
 cookie = 0
 elif out == 2:
 self.numflows[7]=self.numflows[7]+1
 #node 2
 elif dpid == 0x0001c4346b94a200:
 if out == 1:
 self.numflows[34]=self.numflows[34]+1
 elif out == 2:
 self.numflows[35]=self.numflows[35]+1
 elif out == 3:
 self.numflows[37]=self.numflows[37]+1
 #node 3
 elif dpid == 0x00012c59e51016c0:
 if out == 1:
 self.numflows[31]=self.numflows[31]+1
 elif out == 2:
 self.numflows[30]=self.numflows[30]+1
 elif out == 3:
 self.numflows[33]=self.numflows[33]+1
 #node 4
 elif dpid == 0x0001c4346b99dc00:
 if out == 1:
 self.numflows[27]=self.numflows[27]+1
 elif out == 2:
 self.numflows[29]=self.numflows[29]+1
 elif out == 3:
 self.numflows[36]=self.numflows[36]+1
 elif out == 4:
 self.numflows[39]=self.numflows[39]+1
 #node 5
 elif dpid == 0x0001c4346b946200:
 if out == 1:
 self.numflows[25]=self.numflows[25]+1
 elif out == 2:
 self.numflows[25]=self.numflows[25]+1

 127

 elif out == 3:
 self.numflows[28]=self.numflows[28]+1
 #node 6
 elif dpid == 0x0001c4346b971ec0:
 if out == 1:
 self.numflows[21]=self.numflows[21]+1
 elif out == 2:
 self.numflows[23]=self.numflows[23]+1
 elif out == 3:
 self.numflows[32]=self.numflows[32]+1
 #node 8
 elif dpid == 0x0001f0921c220e80:
 if out == 1:
 self.numflows[8]=self.numflows[8]+1
 elif out == 2:
 self.numflows[9]=self.numflows[9]+1
 #node 9
 elif dpid == 0x0001c4346b98a200:
 if out == 9:
 self.numflows[10]=self.numflows[10]+1
 elif out == 10:
 self.numflows[11]=self.numflows[11]+1
 #node 10
 elif dpid == 0x0001c4346b972a80:
 if out == 9:
 self.numflows[12]=self.numflows[12]+1
 elif out == 10:
 self.numflows[15]=self.numflows[15]+1
 elif out == 11:
 self.b13 = datetime.now()
 self.c13 = self.b13-self.a13
 if self.c13.seconds > 10:
 self.numflows[13]=self.numflows[13]+1
 self.a13 = self.b13
 hashee = str(src) + str(dpid)+ str(datetime.now())
 cookie = int(abs(hash(hashee)))
 #I save off the cookie into the cookie jar
 #I save off the link that the cookie is assigned
 if cookie not in self.cookiejar:
 self.cookiejar.append(cookie)
 self.linklist.append(out)
 print “add 1: chicago link is:”
 print self.numflows[6]
 print “add 1: houston link is:”
 print self.numflows[18]
 print “add 1: atlanta link is:”

 128

 print self.numflows[13]
 else:
 cookie = 0
 #node 11
 elif dpid == 0x0001f0921c226e80:
 if out == 1:
 self.numflows[20]=self.numflows[20]+1
 elif out == 2:
 self.numflows[4]=self.numflows[4]+1
 elif out == 3:
 self.numflows[26]=self.numflows[26]+1
 #node 12
 elif dpid == 0x000140a8f0d12bc0:
 if out ==1:
 self.numflows[2]=self.numflows[2]+1
 elif out == 2:
 self.numflows[40]=self.numflows[40]+1
 elif out == 3:
 self.numflows[38]=self.numflows[38]+1
 #node 13
 elif dpid == 0x0001f0921c219d40:
 if out == 1:
 self.numflows[16]=self.numflows[16]+1
 elif out == 2:
 self.b18 = datetime.now()
 self.c18 = self.b18-self.a18
 if self.c18.seconds > 10:
 self.numflows[18]=self.numflows[18]+1
 self.a18 = self.b18
 hashee = str(src) + str(dpid)+ str(datetime.now())
 cookie = int(abs(hash(hashee)))
 #I save off the cookie into the cookie jar
 #I save off the link that the cookie is assigned
 if cookie not in self.cookiejar:
 self.cookiejar.append(cookie)
 self.linklist.append(out)
 print “add 1: chicago link is:”
 print self.numflows[6]
 print “add 1: houston link is:”
 print self.numflows[18]
 print “add 1: atlanta link is:”
 print self.numflows[13]
 else:
 cookie = 0
 elif out == 3:
 self.numflows[22]=self.numflows[22]+1

 129

 elif out == 4:
 self.numflows[19]=self.numflows[19]+1
 #node 13
 elif dpid == 0x0001f0921c225480:
 if out == 1:
 self.numflows[14]=self.numflows[14]+1
 elif out == 2:
 self.numflows[17]=self.numflows[17]+1
 elif out == 3:
 self.numflows[5]=self.numflows[5]+1
 else:
 print “error updating when adding to numflows”
 else:
 idletime=30
 #I write these values to a text file to be read in by MATLAB
 #Matlab uses it as input to the particle filter
 fh = open(“input_to_filter.txt,”“w”)
 fh.seek(0)
 fh.write(str(self.numflows))
 fh.close()
 #then I generate the flow mod and send it
 mod = datapath.ofproto_parser.OFPFlowMod(
 datapath=datapath, match=match, cookie=cookie,
 command=ofproto.OFPFC_ADD, idle_timeout=idletime,
 hard_timeout=idletime,
 priority=ofproto.OFP_DEFAULT_PRIORITY,
 flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)
 datapath.send_msg(mod)
 #catch all flow.
 def add_flow(self, datapath, in_port, actions, dl_type):
 ofproto = datapath.ofproto
 match = datapath.ofproto_parser.OFPMatch(dl_type=dl_type,
 in_port=in_port)
 mod = datapath.ofproto_parser.OFPFlowMod(
 datapath=datapath, match=match, cookie=0,
 command=ofproto.OFPFC_ADD, idle_timeout=600, hard_timeout=3600,
 priority=ofproto.OFP_DEFAULT_PRIORITY,
 flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)
 datapath.send_msg(mod)
 #This section handles all packet-in events
 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
 def _packet_in_handler(self, ev):
 a = datetime.now() #find current time to time this loop
 #first pull the message (msg) from the event (ev)
 msg = ev.msg
 #pull of the datapath

 130

 datapath = msg.datapath
 #check the openflow protocol
 ofproto = datapath.ofproto
 #parse out the packet from the message
 pkt = packet.Packet(msg.data)
 #parse out the ethernet (MAC) header and the ip header
 eth = pkt.get_protocol(ethernet.ethernet)
 ip = pkt.get_protocol(ipv4.ipv4)
 #the source and destination MACs are parsed out
 dstMAC = eth.dst
 srcMAC = eth.src
 #if it is not an ip packet (i.e., arp) then ip is returned as ‘None’
 #if it is an ip packet parse the source and destination ip address
 if ip != None:
 dstIP = ip.dst
 srcIP = ip.src
 else:
 dstIP = 0xFFFFFFFF
 srcIP = 0xFFFFFFFF

 #dpid is the switch ID
 dpid = datapath.id
 #start building the mac to port and ip to port dictionary for each
 switch
 self.mac_to_port.setdefault(dpid, {})
 self.ip_to_port.setdefault(dpid, {})
 done = 0
 with open(“/home/ec4715/Documents/MATLAB/TomDissertation
 /DoneBuildingTable.txt”) as file: # Use file to refer to the
 file object
 done = file.read()
 done = int(done)

 # learn a Source mac address to avoid FLOOD next time.
 if msg.in_port < 30 and done == 0:
 if srcMAC in self.mac_to_port[dpid]:
 print ‘mac to port already assigned’ + srcMAC
 else:
 self.mac_to_port[dpid][srcMAC] = msg.in_port
 print ‘updating mac_to_port with MAC address ‘ +
 str(srcMAC)
 if msg.in_port < 30 and done == 0:
 if srcIP != 0xFFFFFFFF:
 if srcIP in self.ip_to_port[dpid]:
 print ‘ip to port already assigned’ + srcIP
 else:

 131

 self.ip_to_port[dpid][srcIP] = msg.in_port
 #define my control nodes by their dpid (switch ID)
 controlnodes = []
 controlnodes = [0x00012c59e5107640]
 controlon = 0
 with open(“/home/ec4715/Documents/MATLAB/TomDissertation/control.txt”)
 as file: # Use file to refer to the file object
 controlon = file.read()
 controlon = int(controlon)

 #determine what to do with each packet based on current learned
 locations or flood
 if dstMAC in self.mac_to_port[dpid]:
 out_port = self.mac_to_port[dpid][dstMAC]

 elif dstIP in self.ip_to_port[dpid]:
 out_port = self.ip_to_port[dpid][dstIP]
 else:
 out_port = ofproto.OFPP_FLOOD

 #here I assign the action that the flow should take
 actions = [datapath.ofproto_parser.OFPActionOutput(out_port)]
 #Flood ARP packets
 if dstMAC == “ff:ff:ff:ff:ff:ff” and eth.ethertype != 0x002c:
 out_port = ofproto.OFPP_FLOOD
 actions = [datapath.ofproto_parser.OFPActionOutput(out_port)]
 #call add_flow_ARP function
 self.add_flow_ARP(datapath, msg.in_port, dstMAC, actions=actions,
 dl_type=eth.ethertype)
 #Because the switches do not buffer the packet once it sends a
 packet_in
 #message, I must send that packet out using OFPPacketOut function
 call
 out = datapath.ofproto_parser.OFPPacketOut(
 datapath=datapath, buffer_id=0xffffffff, in_port=msg.in_port,
 actions=actions, data=msg.data)
 datapath.send_msg(out)
 #If the packet is not an IP or ARP packet, I want to drop it
 elif eth.ethertype != 0x800 and eth.ethertype != 0x806:
 #To drop a packet the action is assigned None
 #the switch reads this as an instruction to drop the packet
 actions=None
 self.add_flow(datapath, msg.in_port, actions=actions,
 dl_type=eth.ethertype)
 #if it is a ip packet I execute this loop

 132

 elif eth.ethertype == 0x800:
 #don’t do anything if the in port and out port are the same
 #This happens when there are loops in the network
 #Spanning tree algorithms help solve this problem
 #if the switch is a control node and the destination is
 10.10.2.6
 if dpid in controlnodes and dstIP == ‘10.10.2.6’ and
 controlon == 1:
 #the file read in below has a row for each
 control switch
 #the router uses that assigned row to route
 the packets
 row = 4
 if dpid == 0x0001c4346b99dc00: #if switch
 is node 4
 row = 0
 elif dpid == 0x0001f0921c219d40: #else
 switch is node 13
 row = 2
 elif dpid == 0x00012c59e5107640:
 row = 1
 #Here I read in the text file that MATLAB
 wrote to determine routes
 with open(‘//home//ec4715//Documents//
 MATLAB//TomDissertation//route.txt’) as f:
 route = []
 for line in f:
 line = line.split()
 if line:
 line = [int(i) for i
 in line]
 route.append(line)
 f.close
 self.dpid_to_port.setdefault(0,{})

 self.dpid_to_port[1]=[0,0,0,0,0,0,0,0,2,0,0,3,4,0,1,0]

 self.dpid_to_port[2]=[0,0,0,1,2,0,0,0,0,0,0,0,3,0,0,0]

 self.dpid_to_port[3]=[0,0,3,0,2,0,1,0,0,0,0,0,0,0,0,0]

 self.dpid_to_port[4]=[0,0,3,2,0,1,0,0,0,0,0,0,4,0,0,0]

 self.dpid_to_port[5]=[0,0,0,0,3,0,2,0,0,0,0,1,0,0,0,0]

 self.dpid_to_port[6]=[0,0,0,3,0,2,0,0,0,0,0,0,0,1,0,0]

 133

 self.dpid_to_port[7]=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

 self.dpid_to_port[8]=[0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0]

 self.dpid_to_port[9]=[0,0,0,0,0,0,0,0,9,0,10,0,0,0,0,0]

 self.dpid_to_port[10]=[0,0,0,0,0,0,0,0,0,9,0,0,0,10,11,0]

 self.dpid_to_port[11]=[0,2,0,0,0,3,0,0,0,0,0,0,0,1,0,0]

 self.dpid_to_port[12]=[0,1,3,0,2,0,0,0,0,0,0,0,0,0,0,0]

 self.dpid_to_port[13]=[0,0,0,0,0,0,3,0,0,0,1,4,0,0,2,0]

 self.dpid_to_port[14]=[0,3,0,0,0,0,0,0,0,0,1,0,0,2,0,8]
 counter = 0
 print route[row]
 for i in range(len(route[row])-1):
 if counter == 0:
 in_portip = msg.in_port
 counter = 1
 else:
 first = route[row][i]
 second = route[row][i-1]
 in_portip =
 self.dpid_to_port[first][second]
 first = route[row][i]
 second = route[row][i+1]
 out_portip =
 self.dpid_to_port[first][second]
 if first == 1:
 dpidflow=0x00012c59e5107640
 elif first ==2:
 dpidflow=0x0001c4346b94a200
 elif first ==3:
 dpidflow=0x00012c59e51016c0
 elif first ==4:
 dpidflow=0x0001c4346b99dc00
 elif first ==5:
 dpidflow=0x0001c4346b946200
 elif first ==6:
 dpidflow=0x0001c4346b971ec0
 elif first ==8:
 dpidflow=0x0001f0921c220e80
 elif first ==9:

 134

 dpidflow=0x0001c4346b98a200
 elif first ==10:
 dpidflow=0x0001c4346b972a80
 elif first ==11:
 dpidflow=0x0001f0921c226e80
 elif first ==12:
 dpidflow=0x000140a8f0d12bc0
 elif first ==13:
 dpidflow=0x0001f0921c219d40
 elif first ==14:
 dpidflow=0x0001f0921c225480
 datapath=self.DPSet.get(dpidflow)
 actionscontrol =
 [datapath.ofproto_parser.
 OFPActionOutput(out_portip)]
 self.add_flow_IP(out_portip,
 datapath, in_portip, dstIP,
 actions=actionscontrol,
 dl_type=eth.ethertype, src=srcIP)

 actionscontrol =
 [datapath.ofproto_parser.
 OFPActionOutput(in_portip)]
 self.add_flow_IP(in_portip,
 datapath, out_portip, srcIP,
 actions=actionscontrol,
 dl_type=eth.ethertype, src=dstIP)

 #after for loop of flows send the message
 back out on the original
 #switch
 first=route[row][0]
 second=route[row][1]
 if first == 1:
 dpidflow=0x00012c59e5107640
 elif first ==2:
 dpidflow=0x0001c4346b94a200
 elif first ==3:
 dpidflow=0x00012c59e51016c0
 elif first ==4:
 dpidflow=0x0001c4346b99dc00
 elif first ==5:
 dpidflow=0x0001c4346b946200
 elif first ==6:
 dpidflow=0x0001c4346b971ec0
 elif first ==8:

 135

 dpidflow=0x0001f0921c220e80
 elif first ==9:
 dpidflow=0x0001c4346b98a200
 elif first ==10:
 dpidflow=0x0001c4346b972a80
 elif first ==11:
 dpidflow=0x0001f0921c226e80
 elif first ==12:
 dpidflow=0x000140a8f0d12bc0
 elif first ==13:
 dpidflow=0x0001f0921c219d40
 elif first ==14:
 dpidflow=0x0001f0921c225480
 datapath=self.DPSet.get(dpidflow)

 out_portip=self.dpid_to_port[first][second]
 actions =
 [datapath.ofproto_parser.OFPActionOutput
 (out_portip)]
 print “packet out”
 print first, second, out_portip, dstIP
 out = datapath.ofproto_parser.OFPPacketOut(
 datapath=datapath,
 buffer_id=0xffffffff,
 in_port=in_portip,
 actions=actions, data=msg.data)
 datapath.send_msg(out)
 #if it isn’t a control node, then I send it down the
 static path
 else:
 self.add_flow_IP(out_port, datapath, msg.in_port,
 dstIP, actions=actions,
 dl_type=eth.ethertype, src=srcIP)
 out = datapath.ofproto_parser.OFPPacketOut(
 datapath=datapath, buffer_id=0xffffffff,
 in_port=msg.in_port,
 actions=actions, data=msg.data)
 datapath.send_msg(out)
 elif eth.ethertype == 0x806:
 if msg.in_port == out_port:
 out_port = ofproto.OFPP_FLOOD

 #here I assign the action that the flow should take
 actions =
 [datapath.ofproto_parser.OFPActionOutput(out_port)]
 print “in port equals out port for IP traffic 0x806”

 136

 self.add_flow_ARP(datapath, msg.in_port, dstMAC,
 actions=actions,
 dl_type=eth.ethertype)
 out = datapath.ofproto_parser.OFPPacketOut(
 datapath=datapath, buffer_id=0xffffffff,
 in_port=msg.in_port,
 actions=actions, data=msg.data)
 datapath.send_msg(out)
 else:
 self.add_flow_ARP(datapath, msg.in_port, dstMAC,
 actions=actions,
 dl_type=eth.ethertype)
 out = datapath.ofproto_parser.OFPPacketOut(
 datapath=datapath, buffer_id=0xffffffff,
 in_port=msg.in_port,
 actions=actions, data=msg.data)
 datapath.send_msg(out)
 b = datetime.now()
 #Here I process the flow removed message
 @set_ev_cls(ofp_event.EventOFPFlowRemoved, MAIN_DISPATCHER)
 def _flow_removed_handler(self, ev):
 #I do similar parsing as above
 msg = ev.msg
 dpid = msg.datapath.id
 match = msg.match
 inport = match.in_port
 #first I check to see if the cookie is zero
 done = 0
 with
open(“/home/ec4715/Documents/MATLAB/TomDissertation/DoneBuildingTable.txt”) as file:
 # Use file to refer to the file object
 done = file.read()
 done = int(done)
 if msg.cookie != 0 and done == 1:
 link_index = self.cookiejar.index(msg.cookie)
 out = self.linklist[link_index]

 #Knowing the link it came in on and the switch
 #I can decrement the correct flow number
 if out < 30:

 #node 1
 if dpid == 0x00012c59e5107640:
 if out == 4:
 self.numflows[1]=self.numflows[1]-1
 elif out == 3:

 137

 self.numflows[3]=self.numflows[3]-1
 elif out == 1:
 self.numflows[6]=self.numflows[6]-1
 print “subtract 1: chicago link is:”
 print self.numflows[6]
 print “subtract 1: houston link is:”
 print self.numflows[18]
 print “subtract 1: atlanta link is:”
 print self.numflows[13]
 elif out == 2:
 self.numflows[7]=self.numflows[7]-1
 #node 2
 elif dpid == 0x0001c4346b94a200:
 if out == 1:
 self.numflows[34]=self.numflows[34]-1
 elif out == 2:
 self.numflows[35]=self.numflows[35]-1
 elif out == 3:
 self.numflows[37]=self.numflows[37]-1
 #node 3
 elif dpid == 0x00012c59e51016c0:
 if out == 1:
 self.numflows[31]=self.numflows[31]-1
 elif out == 2:
 self.numflows[30]=self.numflows[30]-1
 elif out == 3:
 self.numflows[33]=self.numflows[33]-1
 #node 4
 elif dpid == 0x0001c4346b99dc00:
 if out == 1:
 self.numflows[27]=self.numflows[27]-1
 elif out == 2:
 self.numflows[29]=self.numflows[29]-1
 elif out == 3:
 self.numflows[36]=self.numflows[36]-1
 elif out == 4:
 self.numflows[39]=self.numflows[39]-1
 #node 5
 elif dpid == 0x0001c4346b946200:
 if out == 1:
 self.numflows[25]=self.numflows[25]-1
 elif out == 2:
 self.numflows[25]=self.numflows[25]-1
 elif out == 3:
 self.numflows[28]=self.numflows[28]-1
 #node 6

 138

 elif dpid == 0x0001c4346b971ec0:
 if out == 1:
 self.numflows[21]=self.numflows[21]-1
 elif out == 2:
 self.numflows[23]=self.numflows[23]-1
 elif out == 3:
 self.numflows[32]=self.numflows[32]-1
 #node 8
 elif dpid == 0x0001f0921c220e80:
 if out == 1:
 self.numflows[8]=self.numflows[8]-1
 elif out == 2:
 self.numflows[9]=self.numflows[9]-1
 #node 9
 elif dpid == 0x0001c4346b98a200:
 if out == 9:
 self.numflows[10]=self.numflows[10]-1
 elif out == 10:
 self.numflows[11]=self.numflows[11]-1
 #node 10
 elif dpid == 0x0001c4346b972a80:
 if out == 9:
 self.numflows[12]=self.numflows[12]-1
 elif out == 10:
 self.numflows[15]=self.numflows[15]-1
 elif out == 11:
 self.numflows[13]=self.numflows[13]-1
 print “subtract 1: chicago link is:”
 print self.numflows[6]
 print “subtract 1: houston link is:”
 print self.numflows[18]
 print “subtract 1: atlanta link is:”
 print self.numflows[13]
 #node 11
 elif dpid == 0x0001f0921c226e80:
 if out == 1:
 self.numflows[20]=self.numflows[20]-1
 elif out == 2:
 self.numflows[4]=self.numflows[4]-1
 elif out == 3:
 self.numflows[26]=self.numflows[26]-1
 #node 12
 elif dpid == 0x000140a8f0d12bc0:
 if out ==1:
 self.numflows[2]=self.numflows[2]-1
 elif out == 2:

 139

 self.numflows[40]=self.numflows[40]-1
 elif out == 3:
 self.numflows[38]=self.numflows[38]-1
 #node 13
 elif dpid == 0x0001f0921c219d40:
 if out == 1:
 self.numflows[16]=self.numflows[16]-1
 elif out == 2:
 self.numflows[18]=self.numflows[18]-1
 print “subtract 1: chicago link is:”
 print self.numflows[6]
 print “subtract 1: houston link is:”
 print self.numflows[18]
 print “subtract 1: atlanta link is:”
 print self.numflows[13]
 elif out == 3:
 self.numflows[22]=self.numflows[22]-1
 elif out == 4:
 self.numflows[19]=self.numflows[19]-1
 #node 13
 elif dpid == 0x0001f0921c225480:
 if out == 1:
 self.numflows[14]=self.numflows[14]-1
 elif out == 2:
 self.numflows[17]=self.numflows[17]-1
 elif out == 3:
 self.numflows[5]=self.numflows[5]-1
 else:
 print “error updating”
 #I write this info to a text file for MATLAB to read
 fh = open(“input_to_filter.txt,”“w”)
 fh.seek(0)
 fh.write(str(self.numflows))
 fh.close()

 @set_ev_cls(ofp_event.EventOFPPortStatus, MAIN_DISPATCHER)
 def _port_status_handler(self, ev):
 msg = ev.msg
 reason = msg.reason
 port_no = msg.desc.port_no
 ofproto = msg.datapath.ofproto
 if reason == ofproto.OFPPR_ADD:
 self.logger.info(“port added %s,” port_no)
 elif reason == ofproto.OFPPR_DELETE:
 self.logger.info(“port deleted %s,” port_no)
 elif reason == ofproto.OFPPR_MODIFY:

 140

 self.logger.info(“port modified %s,” port_no)

 else:
 self.logger.info(“Illeagal port state %s %s,” port_no, reason)

 141

APPENDIX C. SAMPLE OF PYTHON SCRIPTS FOR MONITOR
APPLICATION

 From operator import attrgetter
from datetime import datetime
import numpy as np
import May25routingApp_3ControlNode
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER, DEAD_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.lib import hub
import sys
 class SimpleMonitor(May25routingApp_3ControlNode.SimpleSwitch):
 def __init__(self, *args, **kwargs):
 super(SimpleMonitor, self).__init__(*args, **kwargs)
 self.datapaths = {}
 self.monitor_thread = hub.spawn(self._monitor)

 @set_ev_cls(ofp_event.EventOFPStateChange,
 [MAIN_DISPATCHER, DEAD_DISPATCHER])
 def _state_change_handler(self, ev):
 datapath = ev.datapath
 if ev.state == MAIN_DISPATCHER:
 if not datapath.id in self.datapaths:
 self.logger.debug(‘register datapath: %016x’, datapath.id)
 self.datapaths[datapath.id] = datapath
 elif ev.state == DEAD_DISPATCHER:
 if datapath.id in self.datapaths:
 self.logger.debug(‘unregister datapath: %016x’, datapath.id)
 del self.datapaths[datapath.id]
 def _monitor(self):
 while True:
 for dp in self.datapaths.values():
 self._request_stats(dp)

 hub.sleep(1)

 def _request_stats(self, datapath):
 self.logger.debug(‘send stats request: %016x’, datapath.id)
 ofproto = datapath.ofproto
 parser = datapath.ofproto_parser
 match = datapath.ofproto_parser.OFPMatch(datapath.ofproto.OFPFW_ALL,
 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0)

 142

 #req = datapath.ofproto_parser.OFPFlowStatsRequest(datapath, 0, match,
 # 0, datapath.ofproto.OFPP_NONE)
 #datapath.send_msg(req)
 req = parser.OFPPortStatsRequest(datapath, 0, ofproto.OFPP_NONE)
 datapath.send_msg(req)
 @set_ev_cls(ofp_event.EventOFPFlowStatsReply, MAIN_DISPATCHER)
 def _flow_stats_reply_handler(self, ev):
 body = ev.msg.body
 self.logger.info(‘flows reply from: %016x’, ev.msg.datapath.id)
 self.logger.info(‘datapath ‘
 ‘in-port eth-dst ‘
 ‘out-port packets bytes’)
 self.logger.info(‘---------------- ‘
 ‘-------- --------------------------- ‘
 ‘-------- -------- --------’)
 for stat in sorted(body, key=attrgetter(‘packet_count’)):
 #for stat in sorted([flow for flow in body if flow.cookie != 1],key=lambda):
 if body.actions:
 self.logger.info(‘%016x %8x %17s %8x %8d %8d’,
 ev.msg.datapath.id,
 #stat.match.in_port, stat.actions[0].port,
 stat.match.in_port, repr(stat.match.dl_dst), stat.actions[0].port,
 stat.packet_count, stat.byte_count)
 with open(‘FlowStats.txt’,’a’) as file:
 file.writelines(“%s: , %s” % str(datetime.now()),ev.msg)
 @set_ev_cls(ofp_event.EventOFPPortStatsReply, MAIN_DISPATCHER)
 def _port_stats_reply_handler(self, ev):
 body = ev.msg.body
 “““self.logger.info(‘datapath port ‘
 ‘rx-pkts rx-bytes rx-error ‘
 ‘tx-pkts tx-bytes tx-error’)
 self.logger.info(‘---------------- -------- ‘
 ‘-------- -------- -------- ‘
 ‘-------- -------- --------’)”““
 “““for stat in sorted(body, key=attrgetter(‘port_no’)):
 self.logger.info(‘%016x %8x %8d %8d %8d %8d %8d %8d’,
 ev.msg.datapath.id, stat.port_no,
 stat.rx_packets, stat.rx_bytes, stat.rx_errors,
 stat.tx_packets, stat.tx_bytes, stat.tx_errors)”““
 if ev.msg.datapath.id == 0x0001c4346b946200:
 with open(‘PortStats5.txt’,’w’) as file:
 #for item in ev.msg.datapath:
 file.writelines(“%s \n” % str(datetime.now()))
 for stat in sorted(body, key=attrgetter(‘port_no’)):
 did, port, rx_b, tx_b = ev.msg.datapath.id, stat.port_no,
 stat.rx_bytes, stat.tx_bytes

 143

 file.write(‘port {}, rx_bytes {}, tx_bytes
 {}\n’.format(port, rx_b, tx_b))
 #node 1
 elif ev.msg.datapath.id == 0x00012c59e5107640:
 with open(‘PortStats1.txt’,’w’) as file:
 #for item in ev.msg.datapath:
 file.writelines(“%s \n” % str(datetime.now()))
 for stat in sorted(body, key=attrgetter(‘port_no’)):
 did, port, rx_b, tx_b = ev.msg.datapath.id,
 stat.port_no, stat.rx_bytes, stat.tx_bytes
 file.write(‘port {}, rx_bytes {}, tx_bytes
 {}\n’.format(port, rx_b, tx_b))
 #node 2
 elif ev.msg.datapath.id == 0x0001c4346b94a200:
 with open(‘PortStats2.txt’,’w’) as file:
 #for item in ev.msg.datapath:
 file.writelines(“%s \n” % str(datetime.now()))
 for stat in sorted(body, key=attrgetter(‘port_no’)):
 did, port, rx_b, tx_b = ev.msg.datapath.id,
 stat.port_no, stat.rx_bytes, stat.tx_bytes
 file.write(‘port {}, rx_bytes {}, tx_bytes
{}\n’.format(port, rx_b, tx_b))
 #node 4
 elif ev.msg.datapath.id == 0x0001c4346b99dc00:
 with open(‘PortStats4.txt’,’w’) as file:
 #for item in ev.msg.datapath:
 file.writelines(“%s \n” % str(datetime.now()))
 for stat in sorted(body, key=attrgetter(‘port_no’)):
 did, port, rx_b, tx_b = ev.msg.datapath.id,
 stat.port_no, stat.rx_bytes, stat.tx_bytes
 file.write(‘port {}, rx_bytes {}, tx_bytes
 {}\n’.format(port, rx_b, tx_b))
 #node 5
 elif ev.msg.datapath.id == 0x0001c4346b946200:
 with open(‘PortStats5.txt’,’w’) as file:
 #for item in ev.msg.datapath:
 file.writelines(“%s \n” % str(datetime.now()))
 for stat in sorted(body, key=attrgetter(‘port_no’)):
 did, port, rx_b, tx_b = ev.msg.datapath.id,
 stat.port_no, stat.rx_bytes, stat.tx_bytes
 file.write(‘port {}, rx_bytes {}, tx_bytes
 {}\n’.format(port, rx_b, tx_b))
 #node 6
 elif ev.msg.datapath.id == 0x0001c4346b971ec0:
 with open(‘PortStats6.txt’,’w’) as file:
 #for item in ev.msg.datapath:

 144

 file.writelines(“%s \n” % str(datetime.now()))
 for stat in sorted(body, key=attrgetter(‘port_no’)):
 did, port, rx_b, tx_b = ev.msg.datapath.id,
 stat.port_no, stat.rx_bytes, stat.tx_bytes
 file.write(‘port {}, rx_bytes {}, tx_bytes
 {}\n’.format(port, rx_b, tx_b))
 #node 9
 elif ev.msg.datapath.id == 0x0001c4346b98a200:
 #print ‘node 9 entered’
 with open(‘PortStats9.txt’,’w’) as file:
 #for item in ev.msg.datapath:
 file.writelines(“%s \n” % str(datetime.now()))
 for stat in sorted(body, key=attrgetter(‘port_no’)):
 did, port, rx_b, tx_b = ev.msg.datapath.id,
 stat.port_no, stat.rx_bytes, stat.tx_bytes
 file.write(‘port {}, rx_bytes {}, tx_bytes
 {}\n’.format(port, rx_b, tx_b))
 #node 10
 elif ev.msg.datapath.id == 0x0001c4346b972a80:
 with open(‘PortStats10.txt’,’w’) as file:
 #for item in ev.msg.datapath:
 file.writelines(“%s \n” % str(datetime.now()))
 for stat in sorted(body, key=attrgetter(‘port_no’)):
 did, port, rx_b, tx_b = ev.msg.datapath.id,
 stat.port_no, stat.rx_bytes, stat.tx_bytes
 file.write(‘port {}, rx_bytes {}, tx_bytes
 {}\n’.format(port, rx_b, tx_b))
 #node 13
 elif ev.msg.datapath.id == 0x0001f0921c219d40:
 with open(‘PortStats13.txt’,’w’) as file:
 #for item in ev.msg.datapath:
 file.writelines(“%s \n” % str(datetime.now()))
 for stat in sorted(body, key=attrgetter(‘port_no’)):
 did, port, rx_b, tx_b = ev.msg.datapath.id,
 stat.port_no, stat.rx_bytes, stat.tx_bytes
 file.write(‘port {}, rx_bytes {}, tx_bytes
 {}\n’.format(port, rx_b, tx_b))

 145

LIST OF REFERENCES

[1] K. Hafner and M. Lyon, When Wizards Stay Up Late: The Origins of the Internet.
New York: Simon and Schuster, 1998.

[2] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering in software
defined networks,” in Proc. IEEE INFOCOM, Turin, Italy, 2013.

[3] S. Jain, A. Kumar, S. Mandal, J. Org, L. Poutievski, A. Singh, S. Venkata, J.
Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4:
experience with a globally-deployed software defined WAN,” in ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp 3–14, Oct.
2013.

[4] Z. Gross, Revealed: the secret gear connecting Google’s online empire. (n.d.).
Wired. [Online]. Available: http://www.wired.com/2015/06/google-reveals-
secret-gear-connects-online-empire/. Accessed 23 July 2015.

[5] A. Andreyev, Introducing data center fabric, the next-generation Facebook data
center network. (n.d.). Facebook. [Online]. Available:
https://code.facebook.com/posts/360346274145943/introducing-data-center-
fabric-the-next-generation-facebook-data-center-network. Accessed 10 August
2015.

[6] J. Burt, Verizon outlines plan to transform network with SDN. eWeek. [Online].
Available: http://www.eweek.com/networking/verizon-outlines-plan-to-
transform-network-with-sdn.html and AT&T white paper. Accessed 10 August
2015.

[7] R. Coram, Boyd: The Fighter Pilot Who Changed the Art of War, Boston: Little,
Brown, and Company, 2002.

[8] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer,
vol. 36, no. 1, pp. 41–50, Jan. 2003.

[9] T. C. Parker, J. Jones, J. Mayberry, G. Chanman, Z. Staples, J. McEachen, and M.
Tummala, “Defensive cyber operations in a software-defined network,” to appear
in Proc. Hawaii International Conf. System Sciences, Kauai, HI, 2016.

[10] A. Sydney, The evaluation of software defined networking for communication and
control of cyber physical systems, Ph.D. dissertation, Dept. of Electrical and
Computer Engineering, Kansas State University, Manhattan, KS, 2013.

[11] S. Das, K. Kant, and N. Zhang, Handbook on Securing Cyber-Physical Critical
Infrastructure, Waltham, MA: Morgan Kaufmann, 2012.

 146

[12] B. Heller, R. Sherwood, and N. McKeown, “The controller placement problem,”
in the Proc. HotSDN, Helsinki, Finland, 2012.

[13] Advanced Networking. (n.d.). Internet2. [Online]. Available: www.internet2.edu.
Accessed 1 May 2014.

[14] F. Yonghong, B. Jun, W. Jianping, C. Ze, W. Ke, and L. Min, “A dormant multi-
controller model for software defined networking,” in China Communications,
vol. 11, no. 3, pp. 45–55, Mar. 2014.

[15] M. F. Bari, “Dynamic controller provisioning in software defined networks,” in
Proc. 9th International Conf. Network and Service Management, Zurich, 2013.

[16] Solution brief: SDN security considerations in the data center. (n.d.). Open
Networking Foundation. [Online]. Available:
https://www.opennetworking.org/solution-brief-sdn-security-considerations-in-
the-data-center. Accessed 23 July 2015.

[17] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Logically
centralized? State distribution trade-offs in software defined networks,” in Proc.
HotSDN, Helsinki, Finland, 2012.

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus
networks,” in ACM SIGCOMM Computer Communication Review, vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[19] J. T. Moy, OSPF: Anatomy of an Internt Routing Protocol, Boston: Addison-
Wesley Professional, 1998.

[20] Open networking foundation homepage. (n.d.). Open Networking Foundation.
[Online]. Available: https://www.opennetworking.org. Accessed 27 March 2014.

[21] OpenFlow Switch Consortium, “OpenFlow switch specification version 1.3.0,”
Open Networing Foundation, Palo Alto, 2012.

[22] S. Raza and D. Lenrow, Open networking foundation north bound interface
working group charter. (n.d.). [Online]. Available:
https://www.opennetworking.org/working-groups/northbound-interfaces.
Accessed 2 May 2014.

[23] M. Newman, Networks: An Introduction, Oxford: Oxford University Press, 2010.

[25] T. C. Parker, J. Johnson, M. Tummala, J. McEachen, and J. Scrofani, “Analysis of
the robustness dynamics of wireless mobile ad hoc networks via time varying dual
basis representation,” in the Proc. 48th Hawaii International Conf. System
Sciences, Kauai, 2015.

 147

[25] P. V. Mieghem, Graph Spectra for Complex Networks, New York: Cambridge
University Press, 2011.

[26] G. Bounova and O. de Weck, “Overview of metrics and their correlation patterns
for multiple-metric topology analysis on heterogeneous graph ensembles,” in
Physical Review, vol. 85, no. 1, pp. 016117-1, 016117-9, Jan. 2012.

[27] F. Chung, “Spectral graph theory,” in CBMS Regional Conference Series in
Mathematics, Providence, RI, 1997.

[28] M. E. Wall, A. Rechtsteiner, and L. M. Rocha, “Singular value decomposition and
principal Ccomponent analysis,” in A Practical Approach to Microarray Data
Analysis, New York, Springer US, 2003, pp. 91–109.

[29] G. Strang, Linear Algebra and Its Applications, Belmont, CA: Brooks/Cole,
Cengage Learning, 2006.

[30] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, Philadephia: Society
for Industrial and Applied Mathematics, 1997.

[31] M. Fiedler, “Algebraic connectivity of graphs,” in Czechoslovak Mathematical
Journal, vol. 23, no. 98, pp. 298–305, 1973.

[32] R. Olfati-Saber, A. Fax, and R. M. Murray, “Consensus and cooperation in
networked multi-agent systems,” in Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan.
2007.

[33] A. Sydeny, C. Scoglio, and D. Gruenbacher, “The impact of optimizing algebraic
connectivity in hierarchical communication networks for transmission operations
in smart grids,” in the Proc. IEEE PES Innovative Smart Grid Technologies
(ISGT), Washington, DC, 2013.

[34] D. Spielman, “Spectral graph theory and its applications,” in the Proc. 48th
Annual IEEE Symp. Foundations of Computer Science, Providence, RI, 2007.

[35] M. E. J. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” in Physical Review E, vol. 74, no. 3, pp. 036104-1 -
036104-19, Sept. 2006.

[36] J. Scott, Social Network Analysis, Los Angeles: Sage, 2013.

[37] S. Wasserman and K. Faust, Social Network Analysis, Cambridge: Cambridge
University Press, 1994.

[38] P. Bonacich, “Power and centrality: a family of measures,” in American Journal
of Sociology, vol. 92, no. 5, pp. 1170–1182, Mar. 1987.

 148

[39] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation ranking:
bringing order to the web,” Stanford InfoLab Publication, Palo Alto, 1999.

[40] L. Donetti and M. Muñoz, “Detecting network communities: a new systematic
and efficient algorithm,” in Journal of Statistical Mechanics: Theory and
Experiment, vol. 2004, no. 10, pp. P10012 - P10019, Oct. 2004.

[41] J. Shi and J. Malik, “Normalized Cut and Image Segmentation,” in IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, Aug.
2000.

[42] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data clustering:
theory and its application to image segmentation,” in IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 15, no. 11, pp. 1101–1113, Nov. 1993.

[43] N. Nise, Control Systems Engineering, Menlo Park, CA: Addison-Wesley
Publishing Compnay, 1995.

[44] Y. Y. Liu, J. J. Slotine, and A. L. Barabási, “Observability of complex systems,”
in Proc. the Nataional Academy of Science, vol. 110, no. 7, pp. 2460–2465, Feb.
2013.

[45] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking,” in IEEE Trans.
Signal Processing, vol. 50, no. 2, pp. 174–188, Feb. 2002.

[46] N. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation,” in IEE Proc. F (Radar and Signal
Processing), vol. 140, no. 2, pp. 107–113, Apr. 1993.

[47] P. Van Mieghem, Graph eigenvectors, fundamental weights and centrality metrics
for nodes in networks. (n.d.). arXiv. [Online]. Available:
http://arxiv.org/abs/1401.4580. Accessed 11 August 2015.

[48] T. C. Parker, J. Johnson, M. Tummala, J. McEachen, and J. Scrofani, “Dynamic
state determination of a software-defined network via dual basis representation,”
in Proc. of 8th International Conf. Signal Processing and Communication
Systems, Gold Coast, 2014.

[49] J. Johnson, “Software defined network monitoring scheme using spectral graph
theory and phantom nodes,” M.S. thesis, Dept. of Electrical and Computer
Engineering, Naval Postgraduate School, Monterey, CA, 2014.

[50] M. Maxie, “Congestion Analysis in a SDN,” M.S. thesis, Dept. of Electrical and
Computer Engineering, Naval Postgraduate School, Monterey, CA, 2015, in
preparation.

 149

[51] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-hop
forwarding can achieve optimal traffic engineering,” in IEEE/ACM Trans.
Networking , vol. 19, no. 6, pp. 1717–1730, Dec. 2011.

[52] T. Herinckx, “Dynamic and performance driven control of OpenFlow networks,”
M.S. thesis, Dept. of Information Technology, Ghent University, Belgium, 2013.

[53] N. Mohan, T. Undeland, and W. P. Robbins, Power Electronics, Hoboken: John
Wiley & Sons, 2007.

[54] RYU Project Team, RYU SDN Framework. 20 April 2014. [Online]. Available:
http://osrg.github.io/ryu/index.html. Accessed 21 July 2015.

[55] Python homepage. Python Software Foundation. (n.d.). [Online]. Available:
https://www.python.org/. Accessed 21 July 2015.

[56] HP 2920 series switches. (n.d.). Hewlett-Packard Company. [Online]. Available:
http://www8.hp.com/us/en/products/networking-switches/product-
detail.html?oid=5354494. Accessed 21 July 2015.

[57] HP 3800 series switches. (n.d.). Hewlett-Packard Company. [Online]. Available:
http://www8.hp.com/us/en/products/networking-switches/product-
detail.html?oid=5171624. Accessed 21 July 2015.

[58] B. Smith, Raspberry Pi Assembly Language RASPBIAN Beginners: Hands On
Guide, CreateSpace Independent Publishing Platform, 2013.

[59] Iperf homepage. (n.d.). [Online]. Available: http://sourceforge.net/projects/iperf2/.
Accessed 21 July 2015.

[60] O. Ugurlu, “New heuristic algorithm for unweighted minimum vertex cover,” in
Proc. International Conf. Problems of Cybernetics and Informatics, Baku,
Azerbaijan, 2012.

[61] Y. Kim and M. Mesbahi, “On maximizing the second smallest eigenvalue of a
state-dependent graph Laplacian,” in IEEE Trans. Automatic Control, vol. 51, no.
1, pp. 116–120, Jan. 2006.

 150

THIS PAGE INTENTIONALLY LEFT BLANK

 151

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. Motivation
	B. Objective
	C. Related work
	1. Application of Graph Theory to Optimize Network Topology
	2. SDN as a Closed-Loop Control System
	3. Optimal SDN Switch Placement
	4. Optimal Controller Placement
	5. Cybersecurity

	D. Outline of dissertation

	II. Software-defined networking (SDN) and its relationship to graph and Control theory
	A. Software-Defined Networking
	1. General Architecture
	2. Operation of the Network

	B. Application of Graph Theory to SDN
	1. Graph Theory
	2. Spectral Graph Theory
	3. Network Centrality

	C. community finding in graphs and networks
	D. Control Theory
	1. State Space Representation
	2. Observability and Controllability
	3. State Observer
	a. Kalman Filter
	b. Particle Filter

	4. State Controller

	III. Dual-basis Analysis and its application in Identifying network behavior
	A. Spectral graph analysis to identify network Features
	1. Optimization of Ratio Cut Using Rayleigh Quotient
	2. Example: Optimal Binary Solution to Ratio Cut
	3. Principal Eigenvectors of the Dual-basis

	B. Dual-basis Network Representation
	1. Spectral Graph Theory Development of the Dual-basis Representation with Static Link Weights
	2. Eigencentrality Basis
	3. Nodal Basis
	4. Null and Reachability Space

	C. Dynamic link weight analysis using the dual-basis Representation
	1. Closed-Form Solution for Algebraic Connectivity for Mesh Networks
	a. Mesh Network with One Dynamic Link Weight
	b. Mesh Network with Two Dynamic Link Weights
	c. Mesh Network with Dynamic Link Weights to One Node
	d. Mesh Network with a Node Connected by Two Links
	e. Mesh Network with Balanced Traffic to One Node

	2. Closed-Form Solution for the Fiedler Vector

	D. Dual-basis Analysis of the 17-Node Network
	E. Phantom NodE

	IV. Closed-loop control of sdN
	A. proposed Closed-Loop Control Scheme
	B. Link Data Rate Estimation
	1. Monitor Nodes in a SDN
	2. State Space Model of a SDN
	3. Particle Filter Estimator in a SDN
	4. Use of Phantom Node for Congestion Detection

	C. Controller
	1. Identification of Control Nodes
	2. Load Balancing Traffic via the Control Nodes

	V. Methods
	A. sdn test bed description
	1. Implementation of the Proposed Closed-Loop Control Scheme in Software
	2. Topology Modeled after Internet2
	3. Hardware Components

	B. Dual-basis analysis of test bed topology
	1. Identification of Observed Nodes
	2. Identification of Control Nodes

	VI. Results
	A. Experimental results of load balancing control using control nodes
	1. Particle Filter Results
	2. East Coast Results
	3. West Coast Results

	B. Modified control node selection method
	1. Analysis of Internet2 Topology with Weighted Graph
	2. Analysis of a Two-Server Network

	VII. Conclusions
	A. Significant contributions
	1. Dual-basis Representation
	2. Closed-Loop Control Framework
	3. SDN Test Bed

	B. Future work

	Appendix A. algebraic manipulation to obtain the limit in Eqn. (3.34)
	Appendix B. sample of python scripts for the Controller Application
	Appendix c. sample of Python scripts for monitor application
	list of references
	initial distribution list

