Interconnection Network Design

Based on Packaging Considerations

Mandayam Thondanur Raghunath

Report No. UCB/CSD 93/782
December 1993

Computer Science Division (EECS)

University of California

Berkeley, California 94720

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
DEC 1993 2. REPORT TYPE 00-00-1993 to 00-00-1993
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

I nterconnection Network Design Based on Packaging Considerations £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Berkeley,Department of Electrical REPORT NUMBER
Engineering and Computer Sciences,Berkeley,CA,94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

An important problem in building lar ge scale parallel computersisthe design of the inter connection
network. The network affects the performance, cost, scalability, and availability of the parallel computer.
I'n this dissertation, we examinein detail the problem of inter connection network design for alarge scale
parallel machine. Our objectiveisto design networksthat achieve a high performancefor alow cost. In
general, the cost of a network isa complex function of a wide variety of parametersand is difficult to
compute. Wefirst develop a packaging model to characterize network costs. Our model is based on the fact
that most lar ge scale machines have to be packaged in a hierarchical fashion. We arguefor a hierarchical
design strategy, wher e the design of the network proceedsin levels corresponding to the levels of the
packaging hierarchy. We evaluate several network designs using analysis and detailed smulations of
random traffic. Weidentify families of networ ks (product of complete graphs, high-degree de Bruijn
networks) that we believe to be useful for multi-level packaging technologies. Our results also indicate that
making the networks denser at the lower levels of the packaging hierarchy has a significant positive impact
on the overall performance, even when the higher levelsuse a sparser interconnect. We also characterize
network designsin terms of scalability, dividing network familiesinto three broad categories of scalability
based on the flexibility with which the networ ks can be scaled. Thethree categoriesillustrate the trade-offs
between hardwar e costs and scaling flexibility. We provide quantitative evaluations of these trade-offs.
Many of theinteresting networks, namely those that provide high performance for alow cost, also have the
disadvantage of being vulnerable to faults because they have a single path between any pair of processors.
We devise a schemeto tolerate faultsin such networks. The schemeissimpleto implement and allowsthe
network to tolerate a large number of faults with a slight degradation in performance.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a REPORT
unclassified

b. ABSTRACT
unclassified

c. THISPAGE
unclassified

17. LIMITATION OF
ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

157

19a. NAME OF
RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Interconnection Network Design
Based on Packaging Considerations

by

Mandayam Thondanur Raghunath

B. Tech. (Indian Institute of Technology, Madras) 1987
M. S. (University of California at Berkeley) 1988

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Computer Science
in the
GRADUATE DIVISION
of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Abhiram G. Ranade, Chair
Professor David E. Culler

Professor J. George Shanthikumar

1993

Interconnection Network Design
Based on Packaging Considerations

Copyright (© 1993

by

Mandayam Thondanur Raghunath

Abstract
Interconnection Network Design

Based on Packaging Considerations
by

Mandayam Thondanur Raghunath
Doctor of Philosophy in Computer Science
University of California at Berkeley
Professor Abhiram G. Ranade, Chair

An important problem in building large scale parallel computers is the design of
the interconnection network. The network affects the performance, cost, scalability, and
availability of the parallel computer. In this dissertation, we examine in detail the problem
of interconnection network design for a large scale parallel machine. Our objective is to
design networks that achieve a high performance for a low cost.

In general, the cost of a network is a complex function of a wide variety of parame-
ters and is difficult to compute. We first develop a packaging model to characterize network
costs. Our model is based on the fact that most large scale machines have to be packaged
in a hierarchical fashion. We argue for a hierarchical design strategy, where the design of
the network proceeds in levels corresponding to the levels of the packaging hierarchy. We
evaluate several network designs using analysis and detailed simulations of random traffic.
We identify families of networks (product of complete graphs, high-degree de Bruijn net-
works) that we believe to be useful for multi-level packaging technologies. Our results also
indicate that making the networks denser at the lower levels of the packaging hierarchy has
a significant positive impact on the overall performance, even when the higher levels use a
sparser interconnect.

We also characterize network designs in terms of scalability, dividing network fami-
lies into three broad categories of scalability based on the flexibility with which the networks
can be scaled. The three categories illustrate the trade-offs between hardware costs and

scaling flexibility. We provide quantitative evaluations of these trade-offs.

Many of the interesting networks, namely those that provide high performance for
a low cost, also have the disadvantage of being vulnerable to faults because they have a
single path between any pair of processors. We devise a scheme to tolerate faults in such
networks. The scheme is simple to implement and allows the network to tolerate a large

number of faults with a slight degradation in performance.

Professor Abhiram G. Ranade
Dissertation Committee Chair

iii
Acknowledgements

It is a pleasure to acknowledge the years of guidance, support, and encouragement
that I received from my thesis advisor, Abhiram Ranade. I am extremely grateful to Ab-
hiram for providing my research with a sense of direction and helping me develop a better
understanding of the research issues involved. I am also grateful to him for offering me
sufficient challenge and carefully evaluating my work.

I would also like to express my gratitude to David Culler and George Shantikumar
for reading through this lengthy dissertation. Their detailed comments helped improve the
content and presentation of this thesis.

I am also grateful to all the instructors of the various courses I have attended at
U. C. Berkeley and at I. I. T. Madras, for enabling me to acquire sufficient knowledge to
carry out independent research. U. C. Berkeley, gave me the opportunity to take a wide
range of classes, not just in Computer Science, but also in Sanskrit, Music, etc.

I would also like to thank Howard Ho, and many others at the IBM Almaden
Research Center, for comments and suggestions relating to my research.

Many of my fellow graduate students at Berkeley have helped me academically, and
also in making my stay at Berkeley enjoyable and fun. I would especially like to thank Bob
Boothe, Jeff Rothman, and Brian O’Krafka for many technical discussions relating to my
thesis. Besides helping me develop and evaluate research ideas, and commenting on drafts of
papers, Bob Boothe and Jeff Rothman helped relieve the occasional monotony of work and
moments of depression or cynicism with interesting discussions on a wide variety of topics
such as vegetarianism, US foreign policy, sports, etc. I also wish to thank the numerous
friends I developed while at Berkeley; my senior students who helped me settle down and
get to know Berkeley, my roommates and others who braved my culinary attempts, and
many others who joined me in various activities; games, movies, concerts, etc.

I would also like to thank Kathryn Crabtree and the other members of the admin-
istrative staff of the CS division for making the rather difficult bureaucracy of the university
administration appear friendly and cordial.

Finally, I also wish to thank my parents for bringing me up with love and affection,
for giving me a strong sense of determination and self-esteem, and for providing me with
the best opportunity in education.

This research was supported in part by the Air Force Office of Scientific Re-

iv

search (AFOSR/JSEP) under contract F49620-90-C-0029, National Science Foundation
Grant Number CCR-9005448, and a fellowship from IBM Corp. Computing resources were

provided by NSF Infrastructure Grant number CDA-8722788. Their support is gratefully
acknowledged.

Contents

List of Figures

List of Tables

1 Introduction

1.1 Modeling Network Cost
1.2 Traffic Patterns
1.3 Scalability e
1.4 Fault-Tolerance e
1.5 Related Work
1.5.1 CostModels
1.5.2 Designing Networks
1.6 Contributions,
1.7 Overview of the dissertation
2 Packaging Model
2.1 Model s
2.2 Choosing the model parameters
2.3 Limitations
3 Methodology
3.1 Generic Models
3.2 Design Strategy
3.3 Work-load Model
3.3.1 Evaluation Methodology
3.3.2 Open-Network Model
3.3.3 Multithreading Model
3.4 Routing Algorithm L
4 Model 1: Pin-counts
4.1 Design Strategy
4.2 Inter-Module network
4.2.1 Scalability
4.3 Intra-module networks L.

viii

»

0 3 O =

4.4

4.5

43.1 M=32Modules
432 M=64Modules
433 M=16Modules,
Simulation Results

4.4.1 Open-networkmodel
4.4.2 Multithreading work-load model

....................

4.43 Discussion ofresults
4.4.4 Choosing module size
Summary e e e

Model 2: Pin-counts and bundles

5.1

5.2

5.3

5.4

Inter-module Networks
5.1.1 Fixing all three parameters
5.1.2 Comparing cost for fixed performance
Intra-module Networks
5.2.1 M=32 Modules (2-hop inter-module network)
5.2.2 M=64 Modules (2-hop inter-module network)
5.2.3 M=64 Modules (3-hop inter-module network)
Simulation Results L
5.3.1 Discussion of results L.
Summary e e e

Model 3: Three level hierarchy

6.1 Network choices. e
6.2 Simulation Results
6.2.1 Discussion ofresults
6.3 Summary e e e e e e
Scalability
7.1 What is scalability?
7.2 Design costs vs. Hardwarecosts.,
7.3 Scaling of previous network designs
7.3.1 Scaling by concept
7.3.2 Scaling by level-1 reconfiguration
7.3.3 Scaling by inclusion L L
7.4 Performance Comparison,
7.5 Summary e e e e e e e e
Fault-Tolerance
81 Approach e
8.2 Fault Recovery
8.2.1 Computing the aliveset
8.2.2 Relayselection
83 Related work
8.4 Performance results

...............................

vi

vil

9 Conclusions 131

Bibliography 134

viii

List of Figures

1.1

2.1
2.2

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Butterfly Choices 5
Packaging Hierarchy, 18
Classification of pins, wires and bundles 19
Logical machinemodel 32
Buffers in a routing node Lo L L L 37
Butterfly Network and its partition 46
Intra-Module connections, Butterfly Network 47
Intra-module network: Butterfly.32.8.M-512 50
Intra-Module Network: Shared-Butterfly 52
Intra-Module Network: Butterfly.8.2 53
Connecting 4 processors to each network input 55
Open-Network Model; Butterfly Networks 56
Open-Network Model; Multibutterfly Networks 57
Open-Network Model; Fewer Memories 57
Open-Network Model; Sharing/Dilating Inter-module Channels 58
Open-Network Model; Cross-bar Networks 58
Open-Network Model; 64 Module Networks 59
Open-Network Model; 16 Module Networks 59
Periodic Access Model, access interval = 16 cycles 61
Geometric Access Model, mean access interval = 16 cycles 62
Periodic Access Model, access interval = 32 cycles 63
Geometric Access Model, mean access interval = 32 cycles 64
Ky x Kg2-hop Network 77
Kgx Kg 2-hop Network 79
Ky x Ky x Kg3-hop Network 80
Intra-Module Network: 2-hop network, M =32 Modules 81
Intra-Module Network: 2-hop network, M =64 Modules 82
Intra-Module Network: 3-hop network, M =64 Modules 83
Open-Network Model; M =32 Modules, 2-hop intermodule network 84
Open-Network Model; M =64 Modules, 2-hop intermodule network 85

5.9

5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

8.1
8.2
8.3
8.4

ix

Open-Network Model; M =64 Modules, 3-hop intermodule network 85
Periodic Access Model, access interval = 16 cycles 86
Geometric Access Model, access interval = 16 cycles 87
Periodic Access Model, access interval = 32 cycles 88
Geometric Access Model, access interval = 32 cycles 89
Complete graph between modules 95
2-hop network K4 X Kg between modules 96
Clustered Network 98
Partitioning a butterfly to yield a Clustered network 99
Open-Network Model; M =32 modules, C=4 modules per cluster 101
Periodic Access Model, access interval = 16 cycles 101
Geometric Access Model, access interval = 16 cycles 102
Periodic Access Model, access interval = 32 cycles 102
Geometric Access Model, access interval = 32 cycles 103
Ranges of Scalability L 107
Scalability space L 108
Classifying networks in terms of scalability 111
Scaling by concept: 32 processor module for a 256 processor network 113
Benes network 116
Scaling a benes network L L L 117
Periodic Access Model, access interval = 16 cycles 119
Geometric Access Model, mean access interval = 16 cycles 120
Cost of limiting paths totwopasses 128
Performance of the relay selection algorithm 129
Peak throughput under saturationload 129

Latency versus messagerate 130

List of Tables

4.1

5.1
5.2

6.1

Characteristics of topologies used to connect M packaging modules 41
Characteristics of topologies used to connect M packaging modules 75
Pin-counts and number of bundles required 78
Pin and bundle requirements 100

Chapter 1

Introduction

Rapid technological advances and increasing demands for computer power have
ushered in large scale parallelism. Several machines consisting of large numbers of proces-
sors have been built, either commercially or as research vehicles [GGK*83, Hil85, PBG*85,
BBN86, H*86, Int86, LT88, A*90, R*t90, Nic90, ND90, L+91, TMC91, Ken92, FIR93,
DKN93, KS93]. Large scale parallelism has the potential for providing quantum jumps
in computing power; complex computational problems that were once thought to be in-
tractable, now seem feasible. However, there are a number of open research issues that
need to be solved before the power of large scale parallelism can be conveniently applied to
solve general problems.

One central issue is the design of the interconnection network that handles the com-
munication between processors. Since parallel programs typically exchange large amounts
of data between processors during the course of their execution, substantial design effort is
usually directed towards the design of the interconnection network. The network takes up
a significant fraction of the total cost; is often the hardest part of the system to engineer
and for many applications determines the final performance.

The design of the interconnection network is also important from the point of view
of making parallel machines easy to program. Parallel machines are generally regarded as
being difficult to program and this difficulty stems from a variety of factors, one of which
is the time spent in communication. When communication is slow, the programmer has to
expend a great deal of effort in carefully partitioning the data among processors so as to
reduce the amount of data movement. By designing a fast communication network that re-

duces the time spent in communication, we can simplify this aspect of parallel programming.

Fast interconnection networks also permit the programmer to use higher level programming
models which provide programming simplicity at the cost of increased communication.

Since the network is a key aspect of a parallel machine, the problem of designing
efficient interconnection networks has received much attention from researchers. However
there is no apparent consensus: each of the different parallel machines currently on the
market has a completely different interconnection mechanism. For instance, while the CM -
5 uses a fat-tree topology, the Intel Paragon uses a two dimensional mesh and the KSR -
1 uses a ring-of-rings interconnect. Further, the machines recently announced by both
Thinking Machines and Intel have an entirely different network organization compared to
their previous models. In both cases, they have abandoned the hypercube network topology
in favor of the above mentioned topologies.

The lack of consensus clearly indicates that designing efficient networks is still an

open problem. Some of the reasons for this lack of consensus are as follows:

1. Modeling network cost: In general, modeling the cost of a network is a difficult prob-
lem. Existing models of network cost (discussed in section 1.5) are often inadequate to
model the complex costs associated with multi-level packaging hierarchies that most
large scale network designs are forced to contend with. In the absence of a good way
to model network costs, it is difficult to evaluate the cost-performance trade-offs of
different network designs. While one design may promise greater performance than
another (on the basis of simulation studies, for example), it is difficult to determine
their relative costs until they are actually built. As a result, it is difficult to arrive at

a consensus on whether one network is better than another.

2. Traffic patterns: We do not yet have a clear understanding of the characteristics of
the communication traffic seen in parallel machines. Some applications (e.g. matrix
multiplication) have communication traffic patterns that are extremely regular, while
others (e.g. graph algorithms) have patterns that display no such regularity and may
also vary with time. There is some disagreement on whether network designs should
be optimized for regular traffic patterns. While some may argue that regularity in
communication traffic is indeed the common case, and should be speeded up, others
argue in favor of presenting the programmer with a uniform view of the network where

any processor can send data to any other processor, with equal ease.

3. Scalability: Parallel machine manufacturers usually want to be able to supply ma-
chines of different sizes, because customers have different computing requirements. It
is common for manufacturers to target a wide range of systems, starting from low-cost
entry-level systems, all the way to a high-end system consisting of thousands of proces-
sors. It is also desirable to provide customers with the ability to incrementally upgrade
their machines. Therefore, networks must be designed for scalability. However, there
is no consensus on a formal definition of scalability, and there is no definitive method
of characterizing network designs in terms of scalability. While some manufacturers
may abandon a design because they consider it to be unscalable, others may regard

it as being scalable.

4. Fault-Tolerance: Large scale networks typically consist of thousands of components
and it is useful to build networks that are resilient to faults in at least a small fraction
of their components. The extent of fault-tolerance required, depends on the reliability
of the individual components, the time required to service faulty components, and
the desired reliability of the entire machine. In many cases, neither of these three
aspects is easy to quantify. There are also several different approaches to achieving
fault-tolerance. One approach to providing fault-tolerance is to augment the network
with extra components that are brought into use when faults occur. In a scheme of
this type, the stand-by components are used to replace the faulty-ones, effectively
retaining the structure and performance of a fault-free network. Another approach is
to re-route messages around faulty components instead of replacing them. While the
first approach usually implies an increase in cost without degradation in performance,
the second approach might be cheaper but suffers performance degradation when
faults occur. It is not clear as to which of these two approaches is better because the

trade-offs between fault-tolerance, cost, and performance are not well understood.

In this dissertation we attempt to clarify some of the above issues and seek to
design efficient networks for large scale parallel machines. By “large scale” we mean a
machine size of around 1000 uniprocessors, with each processor as powerful as a state-of-
the-art work-station.

The set of questions that come up while designing networks range from the very
high-level to the very mundane, but many of these questions can make or break a network

design. One of the important high-level questions we are faced with is: “What topology

should we use?”. For example, we may have a choice between a two dimensional mesh and
a butterfly. We may consider the butterfly to be better because the worst case distance
between the processors is shorter in the butterfly. However, the mesh has multiple paths
between any pair of processors and may have better fault-tolerance properties. It is not
clear which of the two topologies should be chosen. It is also conceivable that there may
exist other topologies that have the advantages of both the mesh and the butterfly, and
therefore, are better than both of them.

Even after we resolve the high level questions, we are still left with a number of
lower level details. For example, let us consider the case where we have decided to build a
network with processors on one side connected to memory units on the other using a log-
depth multi-stage switching network with some specific communication bandwidth. Even
now, there are a number of unresolved questions. Should we use a simple butterfly as shown
in figure 1.1(a) or a dilated butterfly as shown in figure 1.1(b)? Since both networks are
required to have the same communication bandwidth, the widths of channels in the dilated
butterfly should be half the widths of the channels of the simple butterfly. Both networks
have nominally the same bandwidth and very similar costs since both networks have the
same number of wires going between any pair of nodes. How do we discriminate between
the two networks? Another possibility is shown in figure 1.1(c). In this network we have
a butterfly with half the number of rows, and we have connected two processors to each
input of the butterfly using a tree of height 1. In order for this network to have the same
bandwidth as the two previous networks, the channel widths in this network have to be
double that of the simple butterfly. How does this network compare with the ones shown in
figure 1.1(a) and (b)? How do these three compare with the network shown in figure 1.1(d), a
butterfly of higher radix, and fewer stages of switching? We may also consider yet another
possibility shown in figure 1.1(e). Here we use fewer memory units than processors. To
achieve the same bandwidth as the other networks, we have to increase the channel widths
to the memory. How does this network compare with the others?

The answers to many of these questions are more complex than they appear su-
perficially because networks must be packaged in a hierarchical fashion, and we may be
faced with a similar set of questions at each level of the packaging hierarchy. We are also
faced with the question of whether it is advantageous to use different network architectures
at different levels of the packaging hierarchy. In other words, are hybrid network architec-

tures better than uniform ones? For example, is there any benefit to using different channel

Processors
Memory units

(a) Butterfly

XX/,
ZOANNA)

AV VAN

(>
\Ya Ve \

(d) Radix-4 Butterfly (e) Fewer Memory Units

Figure 1.1: Butterfly Choices

widths at different levels of the hierarchy?

The objective of this dissertation is to develop a systematic method for dealing
with questions of the type raised above. We believe that many of these decisions are
currently made in a somewhat ad-hoc manner. Instead, we would like to formalize the
decision process. We would like develop a systematic way of exploring the search space of
design choices to enable us to pick out the promising ones while discarding the uninteresting
choices. In order to motivate the exploration of the search space, we shall pursue the goal
of designing the best network. We define the best network to be one that achieves the
maximum performance for a fixed cost, or equivalently one that achieves a fixed performance
at minimum cost. It is also important for the best network to possess good scalability and
fault-tolerance properties.

Although trying to design the best network is a good way to drive the design
process, we shall see that it is not always possible to obtain a design that can be proved to
be the best. In some cases, we shall be able to prove that a particular design is optimal,
but in many other cases we shall only be able to demonstrate that one set of designs is
better than all other designs, thereby implying that the best network belongs to this set.
Determining which element of the set is the best, will require knowing more details of the
packaging technology than we are willing to consider as part of this thesis.

In this chapter we consider the above issues in greater detail (Sections 1.1, 1.2, 1.3
and 1.4), survey some of the related work (Section 1.5), list the main contributions of this
dissertation(Section 1.6), and finally conclude with an overview of the remaining chapters.

Part of the work described in this thesis has already been presented in [RR90] and
[RR93].

1.1 Modeling Network Cost

Modeling the cost of a large scale network is a difficult problem. The cost of such a
network depends on the amounts of various packaging resources used to build the network.
Since large scale networks are typically packaged in a hierarchical fashion, we have to take
into account a large number of different packaging resources at each level of the packaging
hierarchy in order to accurately model network costs. For example, under current packaging
technology, a typical hierarchy would consist of chips, boards, and racks. The network is

first partitioned so that it fits into some number of racks with wires going between them.

The contents of a rack are further partitioned into smaller units of the packaging hierarchy.
To compute the cost of the network, we have to take into account many resources, such as,
the number of racks, the number of wires that go between racks, number of wires connecting
to a board, the pin-counts of the chips, etc.

Existing cost models deal primarily with the lowest levels of the hierarchy, and
a better model is required to characterize multi-level packaging hierarchies. We develop a
model of packaging technology that uses a number of parameters to explicitly characterize
the constraints and costs associated with multi-level packaging hierarchies. The parameters
of our model can be used to specify limits on pin-counts, bounds on layout areas, cabling
restrictions, etc.

Although the model is general enough to characterize a wide range of current
and future packaging technologies, we choose not to base our network designs on a specific
packaging technology, because packaging technology continues to evolve with time; with
new packaging methods being discovered, costs of existing technologies being driven down
by economies of scale, etc. Instead we define three generic models, that capture fundamental
technology trends that are likely to be valid even in the future, and study various network
designs based on these generic models.

The purpose of defining generic models, is to obtain results that are likely to apply
to a wide range of packaging technologies instead of being specific to just one technology.
In our generic models, we leave some of the parameters unspecified; by appropriately fixing
these parameters, the generic model can be used to characterize a variety of real technologies.
Under each generic model, we broadly classify networks into interesting and uninteresting
ones. A network is considered interesting if it is better than all other networks for some
instantiation of the unspecified parameters. A network is uninteresting if there are other
networks that are better, for all instantiations of the unspecified parameters. We provide

detailed evaluations of the interesting networks.

1.2 Traffic Patterns

As mentioned earlier, applications can be broadly classified into two categories:
those that have regular communication patterns and those that do not. When the com-
munication patterns of an application are regular, it may be possible to transform this

regularity into network locality, where the messages predominantly travel between proces-

sors that are proximal in the network topology. Assuming that all the communication traffic
in the network has network locality can usually simplify the task of designing efficient net-
works. However, there are a number of reasons why assuming network locality may not
always be justified.

First, a large number of applications have communication patterns that are either
irregular or keep changing with time, and for such applications achieving network locality
is either impossible or overwhelmingly difficult. Second, for many applications, algorithmic
optimizations that reduce the running time, generally destroy any regularity in communi-
cation patterns that was present before the optimizations were performed. Third, when
parallel machines are used to solve problems that are much larger than the number of pro-
cessors (as is usually the case), it is difficult to achieve network locality. Fourth, exploiting
network locality usually requires either the programmer or the compiler to know the precise
manner in which the processors are interconnected, and this may not always be desired.
Fifth, many high-level programming constructs attempt to hide the details of the intercon-
nection network and usually rely on the ability to communicate data from any processor
to any other processor. Finally, the presence of network faults generally implies that the
physical interconnect of a machine changes with time, making it difficult to write programs
that exploit network locality.

For all of these reasons, we shall assume that the communication traffic pattern is
not characterized by network locality. It is common practice to model such traffic using ran-
domly distributed communication traffic. In this dissertation, we make a similar assumption
in our evaluations of network performance. We evaluate networks using simulation, and for
the purposes of simulation, we assume a shared-memory model, but we believe that our
results are equally applicable to other models of inter-processor communication where the

messages are evenly distributed over the entire network.

1.3 Scalability

Scalability is a property that is often used to characterize interconnection networks,
but is not very well understood [Hil90, NA91]. There is considerable disagreement about
which networks are considered scalable and which ones are not. One of the reasons that
prompted some manufacturers to move from the hypercube topology to a two or three

dimensional mesh for interconnecting processors, was the opinion that hypercubes were not

scalable because the degree of each node was not constant. Constant node degree is one of
the desirable properties from the point of view of scalability, because we can easily build
networks of various sizes using the same nodes. On the other hand, it is not clear that
meshes are scalable either, because their bisection bandwidth does not grow linearly in the
number of processors. The bisection bandwidth of a machine is a rough estimator of its
performance and we usually want network performance to scale linearly in the size of the
machine. In the absence of a formal definition of scalability, it is difficult to decide whether
a particular network design is scalable or unscalable.

In this dissertation we provide a formal definition of scalability, in terms of how
the performance and the cost of a network vary as we increase the number of processors.
Briefly, we consider a network to be scalable if its performance meets a certain lower bound,
and its cost is lower than a certain upper bound, over a specified range of machine sizes.

We also classify networks into three broad scalability categories depending on the
fraction of the machine that remains unaltered as the size of the machine is changed. The
larger this fraction, the greater the flexibility in scaling the machine. We analyze some of
the network designs studied in this dissertation in terms of scalability, and demonstrate how
to extend these designs as per each of the three broad scalability categories. We shall see
that greater scaling flexibility is usually accompanied by lower performance or greater cost.
We provide a detailed analysis and quantification of the trade-offs between scalability, cost

and performance in Chapter 7.

1.4 Fault-Tolerance

Designing networks with the ability to tolerate faulty components is becoming
increasingly important as the networks increase in size and complexity. There is an extensive
amount of work in the area of fault-tolerant network design. A large fraction of this work
is concerned with augmenting the network by adding extra components that are basically
idle until failures occur. We believe that this approach is wasteful of resources, primarily
because failures are usually rare (but not non-existent). Hardware components generally
tend to be fairly reliable after the initial developmental errors are fixed and the common
case is for networks to be either fault-free or have a small number of faults.

We believe that a better approach to fault-tolerance is to devise mechanisms to use

the existing network to route messages around faulty components. This approach results

10

in a reduction in performance when faults occur, since messages share fewer pathways in
the network. However, if the number of faults is small, and the fault-tolerance scheme is
efficient, the performance impact can be maintained at a minimal level. We present one
such fault-tolerance scheme in this dissertation.

Most of the networks considered in this thesis have a single path from any input
to any output. When a path is affected by a fault, we send messages using two passes over
the network. In the first pass, the message travels from the source processor to a relay
processor and in the second pass the relay processor sends the message to its appropriate
destination. We select the relay processors in a manner that minimizes the performance

impact of the faults.

1.5 Related Work

A major portion of this dissertation is concerned with modeling the cost of net-
works and designing efficient networks under our models of network cost. Accordingly, we
classify the existing related research into two broad areas: cost modeling and network de-
sign. Related work on fault-tolerance is presented in Chapter 8, along with our proposed

fault-tolerance scheme.

1.5.1 Cost Models

The two cost models that have been formally defined and theoretically explored
in detail are the VLSI grid model and the Pin-requirements model. In the VLSI grid
model, the layout area of a network is used as the metric of the network cost. This model
was developed by Thompson [Tho80] primarily for circuit layouts in VLSI. In this model,
layouts are assumed to conform to a regular grid consisting of unit squares. Each unit
square contains either a node (defined as a transistor or a small cluster of transistors),
or a single wire, or a wire crossing. Since the model deals with VLSI layouts, a natural
cost metric under this model is the number of unit squares (= area) required by a layout
of the network. As opposed to the grid model, the Pin-requirements model focuses on
I/0 limitations rather than on area. In the Pin-requirements model [Cyp90], the network
is assumed to be partitioned into some number of chips. In this model, the maximum

pin-count per chip is used as the cost metric.

11

We define three generic models (Chapter 2) that explicitly characterize packaging
hierarchies to different levels of detail using cost functions that are more comprehensive.
The first of our generic models is similar to the Pin-requirements model, but is applied at
the top level of the packaging hierarchy. The other two generic models are more detailed,
and account for other packaging resources. Since our models are more representative of
the costs in the presence of packaging hierarchies, we believe that results have a greater

applicability than the results under the two previous models.

1.5.2 Designing Networks

In this thesis, we design networks that achieve high performance for a low cost
as specified by our cost model. There have been similar design studies under the two cost
models mentioned above. In many of the existing design studies, performance is measured
under the assumption of randomly distributed communication traffic. A similar assumption

is made in this thesis.

Lower bounds

One way of tackling the problem of designing efficient networks is to prove theo-
retical lower bounds on the cost or the ratio of cost to performance. Then, if we are able
to demonstrate that a network is close to the lower bound, we can claim that this network
is one of the better networks.

Some of the initial work under the VLSI model and the Pin-requirements model
consisted of proving such lower bounds. For example, under the VLSI grid model, Thomp-
son [Tho80] showed that the area of a network is lower bounded by the square of its bisection
width!. Other researchers have proved tighter lower bounds on the area of various network
topologies [Lei82, BL84, Lei84, Ull84]. Since the cost of a network and its area are syn-
onymous in this model, these lower bounds are essentially lower bounds on network cost.
In addition, Thompson also proved lower bounds of the form AT?, where A is the area of
the chip, and T is the time taken to solve a specific problem (e.g. sorting). These bounds
represent a trade-off between the cost of the chip and its performance (represented by 1/T).

Similarly, in the Pin-requirements model, Cypher [Cyp90] proved lower bounds on @, the

!The bisection width of a network is the minimum number of wires that need to be cut in order to divide
the network into two equal parts.

12

maximum number of pins per chip (= cost) for a number of commonly used network topolo-
gies. He also proved lower bounds on the product @ xC' * T, where C is the number of chips

and T is the time taken to solve a specific problem.

Universal Networks

Another approach to designing efficient interconnection networks is to demonstrate
the existence of universal networks. A universal network is one that can emulate any other
network of the same cost with minimal difference in performance. Based on the VLSI
grid model, Leiserson demonstrated that a class of topologies called fat-trees [Lei85] are
universal, in that they can simulate (off-line) any other network with the same area with only
a polylogarithmic slowdown. Greenberg [Gre90] later extended Leiserson’s work and proved
the universality of a similar class of networks called fat-pyramids. The fat-pyramid network
has the additional property that any network occupying the same area, can be mapped onto
the fat-pyramid in a manner which ensures that the path lengths in the fat-pyramid are not
much greater than the path lengths of the original network. This property makes the fat-
pyramid applicable under many different assumptions with respect to wire delays. While
universal networks are interesting from a theoretical point of view, we approach the network
design problem from an engineering viewpoint where even constant factors of difference in
performance are important, and polylogarithmic slowdowns are unacceptable. We are also
interested in designing networks under cost models that are more detailed than the VLSI

grid model.

Network comparisons

A third approach to designing efficient networks is to explicitly define several
interconnections and compare them in terms of cost and performance. In this thesis we
primarily take this approach, but we shall also prove that some of our networks satisfy
theoretical bounds on performance and cost.

A large number of different interconnection topologies have been proposed for par-
allel machines [Fen81, AG89], but only a few classes of topologies have received substantial
attention with respect to comparative evaluations of performance. One such class of topolo-
gies is the family of k-ary n-cubes. Rings, multi-dimensional meshes and hypercubes belong

to this class of networks. William Dally [Dal86] analyzed the cost-performance trade-offs

13

of this class of networks under Thompson’s VLST grid model, where the cost of a network
is its layout area. Different network topologies can be made to occupy the same area by
suitably varying the channel widths so that all the networks have the same bisection width.
Dally’s analysis shows that when bisection width is held constant, all networks have the
same bandwidth for delivering messages with random destinations. However, he argues that
low dimensional networks are better since they have lower latencies [Dal87].

Abraham and Padmanabhan [AP90] analyzed the k-ary n-cube family of networks
under the Pin-requirements model, where the cost metric is the pin-count per node. They
compared various networks of this family under the assumption that the pin-count per
node was held constant. In contrast to Dally’s results, their results indicate that high
dimensional networks are better because they can provide higher bandwidths for random
communication.

Agarwal [Aga91] conducted a similar analysis of the same class of networks under
three different constraints: constant bisection width, constant channel width and constant
pin-count. The first two constraints correspond to the VLSI model and the Pin-requirements
model respectively, but Agarwal’s analysis is based on a more comprehensive model of node
and wire delays. His results indicate that the relative ranking of networks is highly sensitive
to which cost model is used.

Another class of networks that has been considered by many researchers are multi-
stage switching networks such as butterflies, omega networks, delta networks, etc. We can
show that most of these networks are isomorphic to one another and are therefore equiva-
lent [WF80]. One interesting variant of the butterfly network that was proposed recently is
the multibutterfly network [Upf89, LM89, LLM90]. Konstantinidou and Upfal [KU91] com-
pared the performance of the butterfly network to the multibutterfly network. Their results
indicate that the performance of the multibutterfly network is comparable to the butterfly.
However, the multibutterfly has far superior fault-tolerance properties in comparison to the
butterfly network.

Dandamudi [Dan88] compares networks under a cost model that is different from
the two cost models mentioned above. He uses the number of channels in the network as the
cost metric. He compares the performance of several hierarchical networks, where different
topologies are used at different levels of the packaging hierarchy. His work is similar to ours
to the extent that the packaging hierarchy is explicitly considered in the design process.

However, his cost model is different from ours; under his model, each channel costs the

14

same, irrespective of which level in the hierarchy it belongs to. We believe that in most
current packaging hierarchies the cost per channel is usually lower at the lower levels of the

packaging hierarchy. Our cost models reflect this variation in costs.

1.6 Contributions

The main contributions of this thesis are:

1. A model for computing network cost: We develop a detailed model to characterize
packaging costs and provide a method to compute the cost of a network in the presence

of a complex hierarchy with a large number of cost factors.

2. A systematic method for exploring the design space: We develop a systematic method
for exploring the search space of network designs. We argue for a top-down hierarchi-
cal network design strategy and use this design strategy to identify several network
organizations that offer high performance for relatively low cost. Some of these net-
work organizations (e.g. products of complete graphs, high degree de Bruijn networks)
have not received much attention in the literature, even though they are better than

many of the popular networks in terms of cost and performance.

3. General principles for network design: From extensive simulation studies of networks
we arrive at the following general principles for network design: 1) Making the net-
works denser at the lower levels of the packaging hierarchy has a significant posi-
tive impact on global communication performance, 2) It is better to organize a fixed
amount of communication bandwidth as a smaller number of high bandwidth chan-
nels, 3) For shared memory based communication primitives it is better to make the
number of memory modules smaller than the number of processors and 4) Providing
the processors with the ability to tolerate latencies (by using multithreading) is very

useful in improving performance.

4. A definition and categorization of scalability: We provide a formal definition of scala-
bility and give a method to compare two network designs in terms of scalability. We
categorize scalability based on the level of flexibility in scaling networks. As examples
of these categories, we describe extensions to some of the networks discussed in this

dissertation. By comparing networks from these categories in terms of performance,

15

we demonstrate the trade-offs between the level of scaling flexibility and network

performance.

5. A simple fault-tolerance mechanism: We present a simple and efficient scheme to
tolerate faults in single path networks and evaluate this scheme in the presence of a

large number of faults.

1.7 Overview of the dissertation

In Chapter 2 we develop a model of packaging technology. The model characterizes
multi-level packaging hierarchies and provides a method to compute the cost of a network.
In Chapter 3 we describe the strategy that we adopt in our network design process. We
first define three generic models of packaging that deal with the costs of packaging at
progressively increasing levels of detail. Chapter 3 also describes the methodology we use
to evaluate network performance. In Chapters 4, 5, and 6 we consider networks designed
under each of the three generic models. For each model, we compare several networks in
terms of cost and performance. We shall see that the interconnect at the top level of the
hierarchy has the greatest impact on network performance. For each model, we identify top-
level networks that offer high performance at low cost, and then consider the lower levels of
the hierarchy. The lower level interconnects also affect network performance, but not to the
same extent as the top level network. The lower level interconnects affect the utilization
of the top level network. We explore various alternatives for the lower level networks that
include varying channel widths, channel dilation, etc., and draw quantitative comparisons
between them. In Chapter 7, we provide a formal definition of scalability, and classify
networks into three scalability categories depending on the flexibility that the networks
provide, in going from one size to the other. In Chapter 8 we design a fault-tolerance
scheme for the networks presented in this thesis. Finally in Chapter 9 we summarize the

main results of this thesis and conclude.

16

Chapter 2

Packaging Model

Neither the VLSI model nor the Pin-requirements model, described in the previous
chapter, is adequate for large machines, since both models deal only with the lowest levels
of the packaging hierarchy, where as large parallel machines typically employ several levels
of packaging [Nic92, McM92]. There are inherent technological constraints that limit VLSI
die sizes, board areas, number of boards per card-cage, number of card-cages per cabinet,
etc. As a result, if a system does not fit on a chip, it will first have to be partitioned into
multiple chips; if all the chips do not fit on a board, we need multiple boards, and so on.
Multi-level hierarchies become inevitable for packaging large parallel systems consisting of
thousands of processors.

In the presence of a multi-level packaging hierarchy, it becomes harder to compare
the cost of different designs. Cost is a function of a large number of parameters, such as
the number of wires at each level of the hierarchy, the size of the printed circuit boards, the
number of boards, number of connectors, etc. In order to get accurate cost estimates, we
need a better model of packaging technology that explicitly deals with the costs associated
with the various parameters. In addition to the costs, the model should also characterize
technology-specific constraints such as limits on pin-counts and areas of chips, boards, etc.

In this chapter we define a model of packaging technology that characterizes multi-
level packaging hierarchies (Section 2.1). Our model has a number of parameters to explic-
itly deal with the various constraints and costs associated with each level of the packaging
hierarchy. By appropriately specifying these parameters we can model a wide range of pack-
aging technologies (Section 2.2). Nevertheless, our model is an approximation and cannot

model all the details of packaging technologies. We discuss the approximations made by

17

the model and its limitations in Section 2.3.

2.1 Model

We model packaging technology as conmsisting of ! levels (numbered from 0 to
[—1). We call the ith level of the hierarchy as a level-i module. Fach level-i module
contains some number of level-(+ — 1) modules and these, in turn contain level-(i — 2)
modules and so on. Level-0 modules are processing elements, memory units and routing
nodes. Figure 2.1 illustrates the hierarchy of modules. Pins are used to communicate across
module boundaries. Pins are also classified into levels; a level-i pin is a connection that
crosses a level-: module boundary. A connection between any two pins is called a wire.
Wires do not cross module boundaries. A wire within a level-(z + 1) module, but outside a
level-2 module, is called a level-i wire. A level-i wire is used to make a connection between
two level-: pins, or between a level-i pin and level-(¢ + 1) pin (figure 2.2). If we wish to
make a connection between two level-i modules in different level-(7 + 1) modules, but the
same level-(i 4+ 2) module, the connection has to cross level-(i + 1) module boundaries. This
connection would be considered as 3 wires; two level-i wires and one level-(i + 1) wire. A
bundle is a group of wires, all of which connect the same pair of modules. A bundle of
level-7 wires is called a level-i bundle.

Our packaging model is defined using two sets of parameters: constraint param-
eters and cost parameters. Packaging constraints are specified using a set of vectors,

(Smaz> Pmazs Omaz, Wmaz, t) of length [, which are defined as follows:

e Module sizes (Smqaz): Smaz[?] is the maximum number of level-i modules that can be
contained in a level-(7 + 1) module. $p,q.[l — 1] is the maximum number of modules

at the top of the hierarchy.
e Pin counts (Pmaz): Pmaz[?] is the maximum level-i pin-count per level-i module.

e Bundle counts (byaz): bmaz[?] is the maximum number of level-i bundles per level-i

module.

o Bisection widths (wpmaz): Wmaez[?] is the maximum bisection width of the network

connecting the level-i modules within a level-(¢ + 1) module. The bisection width of

18

| — module i — module i — module
(i-1) = module (i-1) — module — module
/2-_rn0du'e\
1-module /Odule\ 1—module
O-module O-module O—-module

Figure 2.1: Packaging Hierarchy

19

/

level i bundles

A

level (i+1) pins

AN

level i wires

(i+1) module
i-module i-module \
L1 .
- | D
Q - —
1/\\ i-module i-module
| 1 |[
\Vi

level i pins

Figure 2.2: Classification of pins, wires and bundles

20

a network is the minimum number of wires that are cut when the network is divided

into two equal parts.

o Clock rates (t): t[¢] is the rate at which bits are transmitted over level-i wires.

A valid network design under our model is one that satisfies all the constraint
parameters. Such a design is described using the set of vectors (Stor, Prot, Dtots Wiot)- Stot[l—1],
where 5404l — 1] < Spmaz[l —1], is the number of level-({ — 1) modules (top level modules) used
by the design. Each level-(I — 1) module could contain different numbers of level-(I — 2)
modules, provided each level-(I — 1) module contains no more than s,,,,[l — 2] modules.
St0t[l — 2] is the total number of level-(I — 2) modules used by the design (sl — 2] <
Stot[l = 1] * Spmaz[l — 2]). In general s;y[7] is the total number of level-i modules used by the
network!. psoi[i], biot[i] and wyy[i] are similarly defined to be the total level-i pin-count,
the total number of level-i bundles and the total level-: bisection respectively. We treat
the clock rates as being fixed by the packaging technology, so they are not part of the
description of the network.

The cost parameters of the model are the vectors (¢, ¢p, 3, ¢y,) and are the relative
weights of the corresponding quantities sto1, Ptot, D10t and wyy; Tespectively. The cost of a

network is computed using the function:

-1

Cost = Z(cs[z] * Sy01(t] + Cple] * Prot[i] + €b[E] * bror[t] + cu[t] * wior[t])
1=0

2.2 Choosing the model parameters

Both the VLSI grid model and the Pin-requirements model are special cases of
our model. The VLSI grid model is based on a single level hierarchy and uses layout area
as the cost function. To convert our model to the VLSI grid model, we choose [= 1,
cw[0] = 1, and set all other cost parameters to zero. Since the bisection width of a network
is proportional to the square root of its area, if one network is more expensive than another
under the grid model, it will also more expensive under our model. However, the cost ratios
will not be the same since our cost function is linear in the bisection width, while the cost

function of the grid model is quadratic in the bisection width. To convert our model to the

!Note that a network design need not use all the [levels of the packaging hierarchy. Small networks may
use fewer than ! levels. The values of s;0¢[i] for unused levels is taken to be 0.

21

Pin-requirements model, we choose I = 1, ¢,[0] = 1, and set all other cost parameters to
zero.

Our packaging model is general enough to characterize a wide range of packaging
technologies. By appropriately chosing the parameters, we can model most packaging tech-
nologies to reasonable accuracy. For example, consider a conventional packaging technology
consisting of printed circuit boards in a card-cage, with the boards connected over a back
plane. Each processor or routing node is a separate VLSI chip, and several VLSI chips are
placed on a board and connected to each other using copper wires etched on the board. A
natural representation of this technology in the model will consist of a two level hierarchy
(I = 2) where the boards are considered to be level-1 modules and the chips are level-0
modules. The values of $,,4,[0] and $,,4,[1] will depend on the number of chips per board
and the number of slots in the back plane respectively. The values of p,q.[0] and ppaz[1]
correspond to pins per chip and pins per board respectively. In this technology there is no
real limitation on the number of bundles, so b,,q.[i] = co. However, since the number of
pins is a natural limit on the number of bundles, it is equivalent to say b,q2[t] = Pmaz[t]- In
this technology, we usually have a tight restriction on the number of wires in the backplane,
and this is modeled using an appropriate value for wy,,;[1]. The value of w;,,,[0] would
depend on the area of the printed circuit board and number of layers of wiring. Choos-
ing tpmqz[0] and t,4.[1] is straight-forward. However, choosing the cost parameters is more
difficult since our cost function is linear, while realistic cost functions will usually be non-
linear. For example, the incremental cost of a wire on a printed circuit board will be small
unless it requires increasing the number of layers, at which point the cost will increase by
a step function. The cost parameters have to be chosen in a manner that provides a good
approximation to the actual cost function.

If we have multiple card-cages within a rack, we may consider connecting boards
in different card-cages using cables, while the boards within a card-cage are connected
using the back-plane. To model this technology, we would require an additional level of the
hierarchy, where the card-cages are considered to be level-2 modules. Since the connections
between different card-cages (level-2 modules) are actually made between boards (level-1
modules), there are no physical level-2 pins. However, each board has two types of pins:
those that connect to the back plane and those that connect to cables. We define the
level-2 pin-count as the total number of pins connecting to cables, over all the boards in a

card-cage.

22

We can also model technologies that use direct die mounting [Mey89, Ath90],
multichip modules [Bak90] or wafer-scale integration, by using more levels in the abstract
hierarchy. In such technologies, the number of pins per chip can be significantly higher than
technologies which place single dies on a chip carrier. This can be modeled using lower per-
pin costs and less stringent pin constraints. There may also be stricter limitations on
bisection width, since there may be constraints on layout area. The number of bundles is
not an important cost metric at this level.

When the machine is too large to fit within a rack, and we need to partition
it among multiple racks, the bundling criteria becomes important. Racks are typically
interconnected using cables and each cable corresponds to a bundle in our model. Each
bundle contributes to the cost of the network in the form of connectors at either end. The
number of bundles is also important from the point of view of the complexity involved in
wiring the network.

Free-space optical interconnection technologies are being proposed for future paral-
lel machines [TG92, Nef92]. In such technologies, laser beams are used to make connections,
instead of pins and wires. Some of these technology proposals also include diffractive or
reflective holograms to steer the laser beams. Since laser beams can cross each other in
free space without interference, it appears that restrictions on bisection width and bundling
may be irrelevant under such technologies. However, the laser sources and receivers may be
expensive. In order to fit our model to such a technology, we could model each light beam
as a wire and use high pin costs to model the costs of the laser sources and receivers.

In our model of the packaging hierarchy, the processors, routing nodes, and mem-
ory units form the leaf nodes (or level-0) modules. It is straightforward to extend our
hierarchy further, so that the leaf nodes are smaller units, perhaps individual gates. How-
ever, since the primary focus of this dissertation is the interconnection network between

processors, this extension is not required.

2.3 Limitations

Our model places no restrictions on the interconnection between modules at a level
of the hierarchy, except for pin counts, bundling and bisection width constraints. Pins on
any two modules can be connected by a wire, provided the constraints are satisfied. This

flexibility may not be permitted in some packaging technologies. For instance the packaging

23

technology proposed for the NuMesh project at M.I.T. uses modules which are connected
by abutting each other in a lego block fashion [War92]. Each pin of a module can connect
only to a physically adjacent module. The modules are assembled in a three dimensional
lattice structure and the geometrical positioning of the pins on a module determines the
kinds of structures that can be built using these modules. It is not possible to use the
parameters of our model to restrict network designs to such lattice structures. However,
we can overcome this problem to a certain extent by using additional levels of hierarchy in
the model. We can recursively partition the lattice structure into sub-units and treat each
sub-unit as a separate level of the hierarchy.

Another limitation of our model is that, at a given level of the hierarchy, all wires
are assumed to cost the same. In reality, the wires may have different costs depending on
how long they are. For example, wires that go between adjacent boards in a back-plane
may be cheaper than wires that traverse the entire length of the back-plane, because longer
wires need more powerful drivers. We can use a similar technique of using additional levels
of hierarchy to overcome the problem of modeling the difference in costs. We can get a
better cost approximation by sub-dividing the card-cage into two or more levels and use
different cost parameters for the different levels.

Our model treats the clock rate (rate of bit transmission over wires) as being
independent of network topology, but, clock rates may depend on wire length. In general,
longer wires have larger capacitances and it takes longer to charge and discharge them,
resulting in higher signal propagation delays and lower clock rates. However, in order to
overcome the problem of propagation delays on long wires, many current systems treat wires
as transmission lines and send bits along them in a pipelined fashion. When pipelined data
transmission is used, the assumption made by our model is justified since the clock rates
become independent of wire length.

There are many reasons to believe that pipelined data transmission will be the
norm in future large scale systems. Technological advances have decreased processor cycle
times by a much larger factor than the physical size of parallel computers, resulting in a
substantial mismatch between processor speeds and wire delays. This makes it essential to
use pipelined data transmission to achieve good performance. Some of the currently avail-
able commercial parallel machines and research machines, such as the CM5 [TMC91, L*92],
the MIT Alewife [A*91], and the Monsoon [Joe90] use pipelined data transmission. The
IEEE Standard, Scalable Coherent Interface (SCI) [IEE], that is currently under develop-

24

ment, also includes pipelined data transmission. If machines use optical fiber interconnects
instead of wires, pipelining is easier and usually the default method of data transmission.
Our model permits different clock rates at different levels of the hierarchy, but
for the remaining part of the thesis we assume that the clock rates are the same over all
the levels of the hierarchy. The clock rates at the lower levels of the hierarchy are usually
higher. We model this using wider channels at the lower levels while keeping the clock rate
constant over the entire hierarchy. Both higher clock rates and wider channels essentially
have the same effect; namely increasing channel bandwidth. Since we find that network
evaluation is simplified under the assumption of constant clock rate, and does not make
a difference as far as our results are concerned, henceforth we will assume constant clock

rates.

25

Chapter 3

Methodology

The main goal we pursue in this dissertation is to design the best possible network
for a large scale parallel machine. We define the best network to be the one that achieves
the maximum performance for a fixed cost or equivalently one that achieves a fixed perfor-
mance for a minimum cost. In the preceding chapter, we defined a packaging model using
which we can compute network cost. It is possible to use the model to characterize many
packaging technologies and design the best network for that technology. However, packag-
ing technologies change with time; a technology that is popular today may be superseded
by a different one that becomes feasible in the future. When the technology changes, we
would have to repeat the entire design process.

However, instead of basing our designs on a specific technology, we would like to
obtain qualitative results with respect network design for packaging hierarchies in general.
Therefore, instead of choosing the model parameters specific to a packaging technology, we
wish to choose them in a manner that reflects the generic characteristics of packaging hier-
archies. We would like choose parameters in a manner that represents general technological
trends and omits details particular to a specific technology. The objective of choosing pa-
rameters in this manner, is to make our results more general and applicable over a wide
range of packaging technologies, both current and future.

In order to choose the parameters in this fashion, we model the fundamental
properties that are true of all packaging hierarchies. One such property exhibited by all
current packaging hierarchies is packaging locality, i.e., there is a progressive increase in
costs and decrease in density as we go up the levels of the hierarchy. It is clear that as

we proceed up the hierarchy, wire length and pitch (spacing between wires) increase. For

26

instance, metal wires on VLSI chips may be a few millimeters long and spaced a few microns
apart, whereas wires connecting different boards may be as long as a 1 meter, and spacing
between wires on a cable connector may be as much as 1 mm. This results in a higher
cost per wire at the higher levels of the hierarchy, and the higher cost translates into a
reduction in number of wires available at the higher levels. Packaging locality is also seen
when we consider memory hierarchies [ACF90], where the bandwidth at lower levels (e.g.
registers) is higher than the bandwidth at the upper levels (e.g. DRAM). We believe that
packaging locality is a fundamental property that will be applicable to all future packaging
technologies as well.

A consequence of packaging locality is that the costs at the higher levels of the
packaging hierarchy dominate the total cost of the network. Accordingly, we define three
generic models that emphasize the costs at the higher levels of the hierarchy. These models
are briefly described in Section 3.1. The three models progressively characterize costs at
increasing levels of detail. Each model is the topic of a subsequent chapter, where we
evaluate different network designs under that model.

Section 3.2 outlines our network design strategy. We design networks in a hierar-
chical fashion starting at the top, proceeding down the levels of the hierarchy. In Section 3.3
we describe the work-load model and the types of messages we expect the network to han-
dle. We approximate this work-load using synthetic work-loads and evaluate the networks
by simulating these work-loads. Our synthetic work-loads assume that the messages in the
network are sent to randomly chosen destinations. Section 3.3.1, describes our network
evaluation methodology. Sections 3.3.2 and 3.3.3 describe the synthetic work-loads in de-
tail. Finally in Section 3.4, we provide details regarding the routing algorithm, messages

queueing mechanism, message lengths, etc.

3.1 Generic Models

We start with a very simple model and gradually move on to more complicated
models. Since we expect the costs at the higher levels of the packaging hierarchy to dominate
the cost of the network, for our first generic model, model 1, we shall limit ourselves to the
costs at the top level of the hierarchy. Note that the actual hierarchy may consist of several
levels of packaging, but since model 1 only deals with the costs at the top, it is sufficient

to consider a two level hierarchy: level 0 and level 1. Everything below the top level of the

27

hierarchy is modeled as being internal to a level-1 module, and the costs internal to a level-
1 module are ignored. The parameters describing the interconnection between the level-1
modules are used to compute cost. In our model described in Section 2.1, we used four
parameters to characterize the cost at each level: the number of modules, the pin-count,
the number of bundles and the bisection width. To keep model 1 simple, we model the cost
of the network using only two of these four parameters: the number of level-1 modules,
and the level-1 pin-count. Although under model 1, the level-1 bisection width does not
contribute to the cost of the network, we shall see that when two networks have different
bisection widths, it is possible to show that the one with the lower bisection width will have
lower performance. Therefore, we shall see that for the networks we compare under model
I (Chapter 4), the level-1 bisection width is held constant. However, model 1, ignores any
restrictions on the number of level-1 bundles. The costs at level-0 are also ignored.

In order to fully define model 1, we also need to define the cost function. Since
we have decided to compute the cost of the network using the number of level-1 modules,
and the level-1 pin-count, we need to specify the relative weights of these two parameters
to define the cost function.

However, these relative weights are likely to be specific to a particular technology,
and the weights are likely to change significantly when the underlying technology changes.
Therefore, any results obtained under a particular choice of weights are likely to be applica-
ble only to the specific technology that the weights correspond to. Since we are interested
in obtaining results that are applicable under a wide range of packaging technologies, we
seek a technology independent way of computing the network cost.

The approach we take in this thesis is to retain the cost of a network as a multi-
dimensional quantity. Cost, then becomes a vector rather than a simple number. Under
model 1, the two components of the cost vector are the number of modules and the pin-
count. When cost is a multi-dimensional quantity, it becomes more difficult to compare the
costs of networks. If we have networks with different costs, we can only specify a partial
order on the costs of the networks, because the cost of one network is greater than the cost
of another only if all the components of the cost vector of the first network are greater than
the corresponding components of the second. When we only have a partial order, the set
of cost comparisons we can make is limited. However, we shall see that even with just a
partial order available to us, we can still draw qualitative conclusions regarding the design

of networks.

28

The second generic model, model 2 is more detailed than model 1; but it is also
based on a two level hierarchy. In going from model 1 to model 2 we add one more dimension
to the cost vector; namely the number of level-1 bundles. Therefore, the cost vector has
three dimensions: the number of level-1 modules, the level-1 pin-count, and the number
of level-1 bundles. As in model 1, we shall see that the bisection width of the network is
held constant, even though it does not form part of the cost vector. Therefore, model 2
takes into account all the parameters of the top level of the packaging hierarchy. Similar to
model 1, we ignore the costs at level-0. We shall see that when we use a more complex cost
vector, the search space of interesting network designs widens. For example, the each of
the dimensions of the cost vector of one network might have been lower the corresponding
dimensions of another under the simpler cost vector of model 1, but when we make the cost
vector more complex, we may not have a similar domination in terms of the dimensions
of the new cost vector. We shall see that comparing the costs of networks under model
2 is more difficult than under model 1, for this reason. Detailed descriptions of network
evaluations under model 2 are presented in Chapter 5.

In model 3, we increase the level of detail in the modeling of costs by extending
the number of levels in the hierarchy. In model 3, we consider the costs at the top two
levels of the hierarchy. Therefore, it is sufficient to think of the hierarchy as consisting
of 3 levels. The cost vector under model 3 is more complex than the cost vectors of the
other two models. In model 3 the cost vector has five components: the number of level-2
modules, the number of level-1 modules, the level-2 pin-count, the number of level-2 bundles
and the level-1 pin-count. The top-level bisection width (level-2 bisection width), is held
constant as in the other two models. Since we have a large number of dimensions in the cost
vector, we shall fix some of the dimensions and explore the trade-offs between the others.
Specifically we shall fix the number of top level modules, the number of level-1 modules
and the level-2 pin-count and explore the trade-offs between the level-1 pin-count and the
number of bundles. Details of the networks that exhibit these trade-offs are presented in

Chapter 6.

3.2 Design Strategy

We wish to design the best network under each of the three models described

above. We pose this design problem as a search problem, where we compare the performance

29

different networks of fixed cost. A network is defined by specifying the interconnections at
each level of the hierarchy. There are several choices at each level and we are confronted with
the cross-product of the design choices. Evaluating each of the designs in this cross-product
can be time consuming because the set of possible designs can be very large. Therefore, we
seek a better strategy of exploring this search space.

We adopt a hierarchical design strategy where we start at the top and go down
the levels of the hierarchy sequentially. For instance, in the case of our first generic model,
model 1, we design the level-1 network first and then consider the level-0 network. When we
design the top level network, we ignore the costs at level-0, and design it so as to maximize
the performance for a fixed cost. Then we proceed to level-0 and consider the design of
the network at that level. Let us assume that the level-0 network costs a fraction z of the
cost of the top level network, for a total cost of (1 4+ z). It is conceivable that we might
have been able to design a better network for the same cost of (1 4 z), had we considered
the cross-product of possible designs at both levels. As we shall see later, the design of
the level-1 network has a greater impact on overall performance than the level-0 network.
Therefore, a network that is better than the one our strategy yields, is expected to have a
higher cost allocated to the top level network. However, we expect that the fraction z is
likely to be small to begin with, since we believe that for most technologies, the costs at
the higher levels tend to dominate the total network cost. Besides, we also expect that the
amount of cost reallocation possible is also likely to be small. Therefore, we believe that
our strategy is justified.

While designing the top level network we do not have a design for the lower level
network, so we can only estimate the performance of the top level network, instead of
measuring it. We estimate the performance of the network using its peak throughput. The
peak throughput of a network is the maximum amount of data that it can deliver in steady
state, in unit time when the communication traffic is randomly distributed. We compare
several alternatives for the top level network and choose those that have the highest peak
throughput for the least cost.

We then proceed to the next lower level of the hierarchy and consider design
alternatives at that level. We prune the number of design choices using a strategy similar to
the one applied to the top level network, namely choosing networks that offer high estimated
performance for low cost. Since the top-level network fixes the maximum performance that

can be achieved, when we design the lower level networks, our objective is to maximize the

30

utilization of the top-level network, and we attempt to achieve a level of performance that
is as close as possible to the peak. After we have designed a network for each level, we
evaluate the entire network using detailed simulation.

The level-by-level design strategy simplifies the network design process, and is
justified from the point of view of packaging costs, but we may potentially run the risk of
eliminating good networks from consideration apriori. For instance, we eliminate a top-
level network that has a lower peak performance. Consider a situation where we have a
choice between two top-level networks A and B. Let the peak performance of B be 0.8
that of A. Further let there exist lower level networks for B that achieve 0.8 of its peak
performance. Unless we can design lower level networks for A that achieve greater than
0.64 of its peak, we would have skipped over a better network design since we would have
eliminated B because it had a lower peak performance. However, we shall see that for most
of the networks we evaluate, we are able to design lower level networks that achieve close
to the peak performance of the top-level network reducing the risk of eliminating better

networks without evaluating them.

3.3 Work-load Model

All of our network evaluations are based on randomly distributed inter-processor
communication traffic. While some applications, such as those based on dense matrix com-
putations, have extremely regular communication traffic, there is a large class of problems
for which the communication traffic tends to be highly irregular and varying with time.
Sparse matrix computations and graph algorithms belong to this latter class. Further,
many programs that initially had regular communication patterns tend to lose this prop-
erty when algorithmic optimizations are performed. For instance, the O(n?) version of the
N-body program can be written so that processor ¢ only has to communicate with proces-
sors (i + 1) and (i — 1). However, when a better algorithm such as the O(nlogn) Barnes
and Hut algorithm [BH86] or the O(n) Greengard and Rokhlin algorithm [GR87] is used,
the communication traffic ceases to be as regular as in the O(n?) case. Further, for many
programs, the regularity in communication patterns is lost when the size of the problem
is much larger than the number of processors available. For instance, an FFT computa-
tion where the number of processors is equal to the number of elements in the FFT, has a

communication pattern that maps well onto a hypercube, but if the number of elements in

31

the FFT is substantially greater than the number of processors, an efficient implementation
generally requires communication traffic that is no longer hypercube-like. For all of the
above reasons, it is essential to design networks that are capable of supporting global com-
munication traffic efficiently. In this thesis we model global communication using randomly
distributed communication requests (the communication requests issued by each processor
are assumed to be distributed uniformly across the entire machine).

For simplicity, we assume that the communication primitives are based on a shared-
memory model, but we believe that our results do not rely heavily on this assumption. The
logical view of the machine is shown in figure 3.1. The machine consists of N, processors
connected to N, inemory units using an interconnection network. The processors commu-
nicate with each other by reading or writing locations in the shared address space. The
shared address space is distributed among the memory units. When a processor needs to
access a location in the shared address space, it sends a message to the corresponding mem-
ory unit. The message travels from the processor the memory unit, performs the access
and returns to the processor. Each access corresponds to a short message that typically
deals with a small amount of data, such as a single word or a cache line. In addition to
the memory units shown in the figure, the processors may have private local memory and
caches which are not shown.

The logical view of the machine encompasses a variety of different architectures.
It includes machines like the IBM RP3 where all the memories are equidistant from all the
processors, and machines where the latency associated with different accesses are different
because the path lengths to the corresponding memory units are different. It also includes
bus-based shared-memory machines with a single memory unit sitting on a bus (N, = 1)
and machines which consist of processor memory pairs. In the latter case, N, = N,, and
each processor may have a single memory system which is partitioned into private and
shared memory. For most of the machine architectures evaluated in this dissertation N,
will be equal to N,,, but we also consider a few cases where N,,, < N,,.

We assume that each time a processor wishes to make an access to shared-memory,
it directs the access to a randomly chosen memory address. Access non-uniformities and
hot-spots [PN85] due to repeated accesses to synchronization variables were topics of active
research in the recent past. Message combining was proposed as a means of dealing with hot-
spots and was implemented in a few research machines [GGK*83, PBG185]. See [LKKS6]

for an evaluation of message combining techniques. However, combining-networks tend to

32

Interconnection Network

Figure 3.1: Logical machine model

be expensive to build and are sometimes not justified since software techniques such as the
ones proposed in [YTL86] and [MCS91] can be used to prevent hot-spots. Nevertheless,
combining-networks may be justified for certain specialized functions such as barrier syn-
chronization [L192]. If the hot-spot accesses are handled either using software techniques
or by the use of special purpose networks, the remaining accesses will tend to be uniformly
distributed. Therefore, in the remaining part of this thesis we will not deal with hot-spots

explicitly.

3.3.1 Evaluation Methodology

We use simulation of synthetic work-loads to evaluate network performance. We
prefer simulation to other options such as prototyping and analytical modeling for a variety
of reasons. Prototyping is both expensive and time consuming. It is also unfeasible when a
large number of networks need to be evaluated. Solving analytical models can be intractable
unless simplifying assumptions are made, and it may not always be possible to make such
assumptions without sacrificing the accuracy of the results. Under these conditions, the

only available option is simulation. Simulation models can be much closer to the actual

33

network since the only real limitation of model complexity is simulation time.

We use synthetic work-loads to drive the simulation instead of real parallel pro-
grams or execution traces. We evaluate systems consisting of a thousand processors, and
since only a small number of such systems have been built, it is difficult to get a good
collection of real programs. Besides, many parallel programs that have been written, tend
to be proprietary and therefore unavailable. It might be possible to get traces of these
proprietary programs, but it is not clear whether a trace obtained on one machine can
be used to evaluate another with a different network architecture and timing. Even if we
were able to configure the trace to take differences in network architecture and timing into
account, simulation of the trace will only tell us how the architecture performs on that
particular program. By using a synthetic work-load and varying its parameters, we can
exercise the network under a wide range of conditions leading to a better evaluation of

network performance.

3.3.2 Open-Network Model

The first work-load model we use is the well-known Open-Network [Lee89] model
and has been used by many researchers. Under this model, each processor makes an access
in each cycle with probability A and performs a local operation with probability 1 —\. Each
access is directed to a random address that is chosen uniformly over the address space.
The activity of any two different processors are independent of one another. Processors
continue execution without waiting for their previous accesses to complete; hence the name
open-network model.

The interval between successive accesses made by a processor is a geometrically
distributed random variable with a mean of 1/A. The accesses form a discrete time version
of a poisson process that is commonly used in queueing theory. The message generation
process is memory-less, i.e., the probability of generating a message in a given cycle is
independent of the history of the system.

We simulate each network under the open-network work-load for different values
of A and measure the average latency at steady state. Results are reported as graphs of
latency versus the offered load A\. We compute the average latency at 1000 cycle intervals
and when the last 10 observations (corresponding to 10,000 cycles) lie within 2% of each

other, we conclude that the network has reached steady state and record the latency. If

34

the offered load A is greater than the bandwidth that the network can provide, the latency
does not stabilize and therefore there is no data point for the corresponding value of A\. The
interesting metrics under this work-load model are the maximum sustainable value of A and

latency.

3.3.3 Multithreading Model

In the open-network model, network latency has no influence on message gen-
eration. It is unreasonable to expect that a processor can have an unbounded number
of outstanding messages waiting in the network. Therefore, it is desirable to incorporate
feedback in the message generation process to make the work-load model more realistic.

Incorporating this feedback using an execution model based on a simple unipro-
cessor can lead to poor performance. In the case of a simple uniprocessor, the processor
has to wait for each memory access to complete before it can continue executing. This is
inappropriate for large scale parallel machines because each access can typically take a large
number of cycles to complete. Our measurements indicate that it is reasonable to expect
access latencies of approximately 100 processor cycles for a 1000 processor machine. If a
processor has to wait for each access, the processors will spend most of their time idling.
For example if the memory access takes 100 cycles and the processors make a shared access
every 20 cycles, processor utilization can never be more than 16%. Further the network
will be significantly under-utilized because each processor can have only one access in the
network at any given time.

It is essential for the processors used in large scale parallel machines to have a
mechanism to tolerate long access latencies. We shall first assume that remote accesses
are split-phase operations. Each remote access consists of two instructions: an initiate in-
struction and a use instruction. When a processor needs to make an access, it executes the
initiate instruction which creates a message and sends it over the network. Later, the pro-
cessor executes a use instruction, which causes the processor to stall for the corresponding
access to complete. We assume that both read and write accesses are acknowledged. In
response to a use instruction, the processor waits for the corresponding acknowledgement
to be received. By breaking up a remote memory access into initiate and use instructions,
we may be able to overlap the memory access latency with useful computation. Typically

a compiler would first split a remote memory access into initiate and use instructions and

35

then attempt to move the initiate instructions backward so that the memory access is initi-
ated many cycles before the result is required. It may also be possible to pipeline multiple
memory accesses by executing successive initiate instructions before the corresponding use
instructions.

In addition to split-phase accesses, we assume that each processor has the capabil-
ity to run multiple threads of execution and the ability to switch between execution contexts
rapidly [Kow85, At90]. If the processor has multiple register sets, (one per thread) and
we use a simple round-robin thread scheduling mechanism, it is possible to context-switch
in a single processor cycle [Boo93]. We assume that the processor has a context-switch
instruction which causes the processor to suspend the current thread and start executing
the next thread (in round-robin order). The task of the compiler is to insert context-switch
instructions before any use instruction that can be expected to stall the processor. By
using such a multithreading mechanism, the processors can tolerate much longer latencies
than possible by merely using split-phase instructions. It is also possible for each proces-
sor to have multiple outstanding accesses in the network, thereby running the network at
reasonable load.

The multithreading work-load model is defined based on the above view of proces-
sor execution where each processor runs multiple threads that perform split-phase accesses.
Each processor is assumed to be running ¢ threads using a round-robin thread scheduling
policy. When a thread starts executing, it first executes a use instruction which stalls the
processor till its previous accesses to completes. In the next cycle, the thread initiates a
remote access. Then the thread executes a sequence of local instructions followed by a
context-switch instruction. The context-switch instruction suspends the thread until the
processor has stepped through the other threads. Each thread repeatedly executes the
following sequence of instructions: Initiate, local, local, local, ..., Context-switch, Use.
The accesses are tagged so that each use instruction waits for the access issued by the
corresponding initiate instruction.

We can control the interval between accesses by varying the number of local in-
structions executed between the initiate and context-switch instructions. We use two inter-
access interval distributions: geometric and periodic. In the geometric model, in each cycle
following the initiate instruction, the processor either executes a contert-switch instruction
with probability p or a local instruction with probability 1 — p. In the periodic model the

number of local instructions is constant. If the processor is executing a tight inner loop, the

36

interval between accesses is likely to be constant. The periodic model attempts to capture
this effect. In reality the distribution of access intervals is likely to be somewhere in between
the two models.

In both the periodic and the geometric models, the accesses generated by a pro-
cessor were assumed to be distributed randomly across the entire memory address space, as
in the previous open-network work-load model. Note that even though the access intervals
are constant in the periodic model, the accesses typically take different paths in the net-
work depending on their destinations, and contention for message paths leads to queueing
of messages at routing nodes.

We simulate the networks under both the periodic and geometric models for differ-
ent numbers of threads per processor and for different values of the mean interval between
accesses. The performance metric of interest, is the average processor utilization rather
than the latency or the bandwidth of the network. As in the previous case, we measure
average processor utilization at 1000 cycle intervals and when 10 consecutive observations
(corresponding to 10,000 cycles) fall within 2% of each other, we conclude that the network
has reached steady state and record the value. We note that we will always have a steady
state value for the processor utilization since the network can never become unstable. Be-
cause of the feedback in the message generation process, an increase in network latency
results in a decrease in processor utilization which results in a decrease in the network load.

Eventually the processor utilization stabilizes, at which point, we record its value.

3.4 Routing Algorithm

We assume that all networks use virtual cut-through routing [KK79] to forward
messages. Cut-through routing achieves high bandwidth that is a characteristic of packet
switched routing while simultaneously providing low latency similar to circuit switched
routing. In cut-through routing, each message is divided into multiple flits that are sent in
a pipelined fashion, one behind the other. The head flit of a message contains the routing
information needed by a node to decide where the message is to be sent. When a routing
node receives the head flit of a message, it immediately attempts to forward the head flit
without waiting for the entire message to come in. If a message cannot be forwarded because
the output channel requested by the message is busy, or there are other messages queued

in front of it, the node buffers the flits of the message.

37

Figure 3.2: Buffers in a routing node

Virtual cut-through routing is different from worm-hole routing in that when the
head flit of a message is blocked at a node, that node accepts the subsequent flits of the
message and buffers the flits. In worm-hole routing a blocked message occupies buffer space
on various nodes along its path. The primary difference between worm-hole routing and cut-
through routing is the amount of buffer space available at the routing nodes. In cut-through
routing each node is required to have sufficient buffer space to buffer entire messages and
when a message is accepted for routing, buffer space is allocated for the entire message.

The allocation of buffer space does not pose a significant problem since our net-
works need to handle only short messages. Since we assume a shared memory model,
messages sent over the network are typically accesses to shared memory — single or double
word fetches or stores. All messages are round-trip messages, meaning that all write ac-
cesses are acknowledged. For the sake of simplicity, we assume that both access requests and
replies are 128 bits long. This message length includes data, memory/network addressing
information, and control information.

The queuing mechanism within the nodes is as follows: Each node that has I
inputs and O outputs, has O sets of I message queues. The I queues of each set are
connected to an output link using a I to 1 multiplexer. Any message arriving on input link

© which needs to go out along output link o, enters the ith queue of the oth set of queues.

38

Figure 3.2 shows the buffers in a 2 input, 2 output routing node. Each output link services
its queues in a simple round-robin fashion. A single flit buffer is assumed to be present at
each input port to simplify the problem of allocating queue space to the messages. If the
message whose head flit is in the input buffer cannot be accepted because of unavailability
of queue space, it is forced to wait there until space becomes available. If this happens, the
corresponding link remains idle until queue space is available and the message is accepted.
In all the simulations, each message queue was assumed to be capable of holding 8 messages.
Therefore, a 2 input, 2 output node has 4 queues, each of size 8 messages for a total of 512
bytes of buffer memory.

We also assume that all the wires in the network can transfer one bit per clock
cycle and that each routing node imposes a single cycle pipeline delay on any message that
does not suffer link or queue space contention. Recall that we model differences in clock
rates using increased wiring densities at the lower levels of the packaging hierarchy.

In many networks evaluated in this dissertation, the channel widths at different
parts of the network are different. However, all input channels (respectively output chan-
nels) of a routing node have the same channel width. If the output channels are wider than
the input channels, the routing node cannot forward the flits as they come in. We assume
that these nodes use store-and-forward routing, i.e., they wait for the entire message to
come in before sending out anything. For example, consider a routing node that has 16 bit
wide input channels and 32 bit wide output channels. If the first flit of a message comes
in at cycle ¢, the node waits until cycle ¢ + 7 to get the entire 128 bit message. Output
transmission begins at cycle ¢t + 8 and the last flit of the message leaves the node at cycle
t + 11. Waiting for the entire message is a bit conservative, because it would be possible
to start transmitting the message in cycle ¢ + 5 and the last incoming flit would be able to
leave the node in cycle ¢t 4+ 8. Hence our assumptions are pessimistic for networks that have

non-uniform channel widths.

39

Chapter 4

Model 1: Pin-counts

In this chapter, we consider the first of our generic models, as defined in Section 3.1.
Recall that this model consisted of a two-level packaging hierarchy where the machine is
partitioned into some number of level-1 modules at the top-level. In this chapter, we shall
simply refer to the level-1 modules as packaging modules or just modules. There are two
levels of wiring: connections between modules (inter-module) and connections within a
module (intra-module). Cost is a two dimensional vector, with the number of modules and
the pin-count being the two components.

To avoid degenerate designs where we put all the processors in one module, and
essentially have a pin-count of zero, we shall assume that there is a limit on the maximum

number of processors that we can put in a module.

4.1 Design Strategy

We would like to design the best network under this model. Recall that we defined
the best network to be one that achieves the maximum performance for a fixed cost, or
equivalently one that achieves a fixed performance at a minimum cost. The strategy we
adopt in this chapter is to fix the cost and compare the performance of networks.

Since the cost is a two dimensional quantity, we fix the cost by fixing both the
dimensions. We fix the number of modules at M and the pin-count per module at P. Also
let N be the total number of processors in the machine and s be the maximum number of
processors per module.

We have some flexibility in choosing the value of M. The minimum value for M is

40

N/s, since each module cannot contain more than s processors. We are also likely to have
some maximum limit on M; if we have a large value of M, we may have to organize these
M modules themselves in a hierarchical fashion, but we assumed the modules formed the
top level of the hierarchy. If we choose M = N/s, we minimize one of the dimensions of the
cost vector, and we shall choose M thus. We note that other choices are equally valid, but
they represent different points in the cost space. By choosing M = N/s, we are restricting
our attention to a smaller portion of the cost space. We believe that this portion of the
cost space is interesting because this portion of the cost space corresponds to minimizing
one of the dimensions of the cost vector, and also because it corresponds to partitioning the
machine into symmetric modules, with each module consisting of an equal fraction of the
machine. A machine in which all modules are identical, is easier to build than a machine
which uses different types of modules.

We also have some flexibility in choosing a value for P. Technology may dictate an
upper bound on the value for P, but any choice of P that is less than the upper bound is a
valid one. As we shall see later, the performance of any network will be directly proportional
to P, so we shall defer the selection of a value for P until later.

As mentioned in Section 3.2, we shall adopt a hierarchical design strategy; first we
design the top-level network (the inter-module network) and then consider the lower level
network (the intra-module network). For the top level design we shall estimate the perfor-
mance of the network using its peak throughput for randomly distributed communication
traffic. Recall that the peak throughput of a network is defined as the maximum amount of
data that a network can deliver in steady state in unit time. The design objective for the
top-level network is finding a network of M modules and P pins per module, that has the
maximum peak throughput.

After we select the network for the top level we shall consider several alternatives
for the lower level network and simulate the entire (top level + lower level network) to

determine the fraction of the peak throughput that is achieved by the network.

4.2 Inter-Module network

For randomly distributed communication traffic, the bisection width of a network
is a good estimator of its peak throughput. Under random traffic, half of the messages sent

by each processor cross the bisection of the network. The amount of time required to deliver

41

Inter-Module Pins per | Bisection
Topology Module | Width

Complete graph (M2/4)ML_1 =O0(PM)
Butterfly (M/ logM)%;i = O(PM/log M)
Cccc (M/2log M)E = O(PM/log M)
Hypercube (M/Q)E—éjv = O(PM/log M)

d-dim Toroid
3-dim Toroid
2-dim Toroid
Ring

@MUNINHE = 0(PM/VM)
2MPE = o(PM?/?)
(2VAD)E = O(PV/H)

P = O(P)

ia T - B -H vHe - Ba v B o i

Table 4.1: Characteristics of topologies used to connect M packaging modules

these messages is inversely proportional to the bisection width of the network!. Therefore,
we can argue that the peak throughput of a network is proportional to its bisection width.

Table 4.1 shows a comparison of a few standard topologies for M modules, with
P pins per module?. We can see that among the different topologies, the complete graph
has the maximum bisection width for a constant pin-count. Therefore, we expect that the
complete graph has the maximum peak throughput.

In fact, we can formally prove the following claim:

Claim 4.1 When we have M modules with P pins each, and each module has an equal
number of processors, the inter-module network that achieves the mazimum peak throughput
is a complete graph in which each edge of the complete graph corresponds to % wires.

This network provides a peak throughput of 2(1‘]([,[—2131) bits per clock cycle.

For the proof, we pose the problem of finding the network with highest peak
throughput as a graph problem and show that the solution to the problem has the topology
of a complete graph.

We model the inter-module network as a digraph G = (V, F), with edge weights.

We call G the network graph. Each node in the graph corresponds to a module, and each

'Note that our model of packaging technology assumes that the clock rate is independent of network
topology(Section 2.3).
2 All logarithms are to base 2.

42

edge corresponds to a connection between modules. The capacity of an edge e, denoted by

w(e) is the number of wires that correspond to that edge. Since we have M modules,
V=M
and since each module has a pin-count of P, for every module z

> w(z,y)+w(y,z) =P
yeV

The communication traffic in the network is modeled as a complete digraph G’ =
(V', E"), with edge weights. We call G’ the communication graph. Each node in G’ corre-
sponds to a processor, and each edge corresponds to the communication between a pair of
processors. The weight of an edge ¢’ € E’, denoted by p(€’) is the probability that there is
a message between the corresponding pair of processors. We use the communication graph
to model one communication step, in which each processor sends exactly one message. In

general, for each processor z

> plzy)=1

yev’

Let the mappings ¢ : V! — V and ¢ : E' — E define an embedding of G’ in G.
The mapping ¢ is a many-to-one function, and specifies a partitioning of the processors into
modules. A symmetric partitioning implies that exactly 7\]% nodes of G’ are mapped to each
node of G. 1 is a one-to-many mapping since each edge in G’ gets mapped onto some path
in G, and 9 specifies the (multi)set of edges which form this path. Let ¢»~! be the inverse
mapping of ¥; 1~ 1(e) specifies the set of edges in G’ that are mapped onto the edge e in G.

The total traffic through an edge e of G’ in one communication step, is denoted by
t(e) where

tley=m Y ple)
e'ey=1(e)

where m is the message length in bits. Since the edge e corresponds to w(e) wires, the time
taken to send the data across e is 5}% clock cycles. The time T taken to finish a single

communication step is
t(e) ek t(e)
T > max >
2 () T Toep w(e)
_ ZeEE(m Ze'ew"l (e) p(el))
- (MP[2)

43

because)~ . w(e) is the total number of wires in the inter-module network.

_ Teen(m/N)e(e)
(MP/2)

because p(e’) = 3 for random traffic. Note that ", [~ 1(e)| = Yerep |¥(€')|. Define the
average path length to be h = 3",/ wﬁﬁﬂ = 2 Lerer [¥(€')]. Thus

(m/N)N?h _ 2Nmh
MPJ/2 ~ MP

In each communication step, all the N processors send one message of m bits.

T>

Therefore for any graph the peak throughput is given by
Nm < MP
T — 2h

The smallest value for h is —M—A}—l because the maximum number of edges in ¢’ € E’

for which |¢(e’)] = 0is M (%)2 This is because there are M modules with N/M processors
each, and for any pair of processors that map onto the same module, |¢(e’)] = 0. This
implies that A > %(N 2 Nﬁz = % Therefore, for any graph, the peak throughput
cannot exceed
M?p
2(M -1)

In steady state the complete graph network with w(e) = 2(—MP—T) achieves this

upper bound. In the complete graph all edges of E’ that are not local to a module, are

mapped onto only one edge in E, giving h = M—N;—I Further, t(e) is the same for all edges,
Ze gt

een W(e)
we have proved that the best inter-module network to connect M modules with P pins

and making w(e) the same for all edges ensures that max.cg %(% = . Therefore

each, is a complete graph. a

Since the complete graph provides the best performance for a fixed cost, we choose
the complete graph topology to interconnect the modules. We consider several intra-module
network organizations for N=1024 processors. We also consider different module sizes, by
choosing different values for s, the number of processors per module. We consider s = 16,
32 and 64, corresponding to M = 64, 32 and 16 respectively. For the sake of fairness, when
we make comparisons between networks with different M, we hold the peak throughput
constant. Note that holding the peak throughput constant, is equivalent to holding the
bisection width constant, since the bisection width is equal to half of the peak throughput.
For concreteness, we fix the bisection width at 8192, corresponding to a peak throughput

of 16384 bits per cycle, or 16 bits per processor per cycle.

44

4.2.1 Scalability

It is somewhat surprising that we chose the complete graph to interconnect mod-
ules; complete graphs are considered not to be scalable as an interprocessor network. The
rationale for this belief, is that they have a very large number O(M?) edges, with O(M)
degree per node. We note however, that we wish the network design to be scalable for large
values of N rather than M. The number of modules is not directly related to the number of
processors: as we build larger machines, we will have to build them using a taller hierarchy,
involving larger modules at the top level. If we are building a network for a 100,000 pro-
cessors, it is unlikely that the top level of the packaging hierarchy will consist of modules
that contain 10 processors each. The number of modules M at any level will depend upon
the technology, but not substantially on the number N of processors.

We consider the issue of scalability at length in Chapter 7.

4.3 Intra-module networks

The only standard N processor network known to us that has a partitioning into
M modules such that the interconnection between the modules is a complete graph is a
Butterfly network. This requires M and N to be powers of 2 and M = v/N. Figure 4.1(a)
shows a butterfly network connecting 16 processors to 16 memories and figure 4.1(b) shows
how this network can be partitioned into 4 modules, such that each module has 4 processors
and 4 memories. Also note that the nodes in columns 2 and 3 have been reordered to make
the connections between these columns local to the module. The numbers on the processors
and memories are shown primarily to illustrate the reordering and do not carry any special
significance.

Since we need to route access requests from the processors to the memories and
the corresponding replies back from the memories to the processors, we need two separate
butterfly networks. Therefore, each link in the figure should be interpreted as a pair of
directed links. Note that the bundle of wires going between any two modules, A and B,
actually consists of 4 different channels, two in each direction. One channel carries access
requests from the processors in module A to memories in module B, another carries requests
from B to A. Similarly two channels carry responses from A to B and B to A respectively.

Although we started with a dance-hall type network, it is useful to associate each

45

memory with a processor from a practical point of view. This simplifies building the machine
since each processor can use a a single memory that is partitioned into private memory and
shared memory. While the private memory is accessed directly by the processor, the shared
memory is accessible to all the processors via the network. We represent this in figure 4.1(c)
by drawing the processors and their associated memories adjacent to each other.

Since the partitioning shown above is applicable when M = v/N, we first consider
the case M = 32. Later we will examine the cases M = 64, and M = 16.

4.3.1 M=32 Modules
Basic butterfly network

We consider a butterfly connecting 1024 processors to 1024 memories; partitioned
into 32 modules in the manner of figure 4.1(b).

A bisection width of B = 8192 implies that pin-count per module is equal to
4B(M —1)/M? = 992, for a total of 32 x 992 = 31744 level-1 pins. Each pair of modules is
connected by a bundle of 32 wires. Since each bundle has 4 channels, each channel is 8 bits
wide. Since the inter-module channels are 8 bits wide, we get a uniform network if we make
the intra-module channels also 8 bits wide. We call this network Butterfly.8.8. The first
suffix stands for the intra-module channel width and the second suffix for the inter-module
channel width.

The interconnections within a module are are shown in figure 4.2

Widening channels

The previous network used a uniform topology that did not take advantage of
packaging locality. In general, at the lower levels of the packaging hierarchy we can have
more wires and also transfer bits across these wires at greater speeds. Both these character-
istics permit us to increase the capacity of the networks at the lower levels of the hierarchy.
Instead of separately modeling increased wire density and clock rates, we consider net-
works that keep the clock rate constant and just use higher wire densities. Accordingly,
we consider networks with wider intra-module channels: Butterfly.16.8 and Butterfly.32.8.
Both networks have the same topology as Butterfly.8.8, but they have 16 and 32 bit wide

intra-module channels respectively.

Column
0 1 2 3
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15

Processors Memories

(a) 16 processor Butterfly

//0/

-—
—
—

Module 0 TT——_

/ —~——

Module 2

e el e e L
N W= OV 0 O Kl N~

Module 3

(b) Partitioning into 4 modules (c) Intra—Module connections

Figure 4.1: Butterfly Network and its partition

/

Module 1 / Xﬁ \
T~ {
\\\\ \

~<_ /

46

O 0O

N /N X

\// XX

N\XX/ " SXK,

N\\////XXXX

NNX// /XN X
NN AN
XX NN

pIALOTOToTaTe X

\VV
AYA a

HOCNNIANZS e
LN/ XX
L//XANNNXX/ N\ X

L1INNNEEEX

VXXX

XN\ /N .
XN\ /]
XN/ ///

47

0O O

XXX\ ///

XS RN/
DO V/ANNNN W/
DXZANVARNY (A

A\

. KXXXXXXX

XN\ 7N

SN /1IN

RZANN U

XXXX////AN,

SN LN N\

/RIS G0 G IANY
VAR VERNANS 1 V- VANVAREEER.

Figure 4.2: Intra-Module connections, Butterfly Network

48

It is important to point out that the costs of the these networks are different
because they use different amounts of resources within a module. However, all of them have
the same inter-module network, and if we assume that network cost is dominated by the

cost of the top-level network, the difference in the costs of these networks will be small.

Dilation

Another method for utilizing more local wires is dilation. We consider networks
Butterfly.8-2dil.8, Butterfly.8-4dil.8, and Butterfly.16-2dil.8. The first network has 2 8-bit
wide channels between nodes, the second has 4 8-bit wide channels and the third has 2
16-bit wide channels. If there is more than one message that needs to go out in the same
direction, they can be simultaneously sent along the dilated channels. The first network
requires the same number of wires per routing node as Butterfly.16.8 while the second and
the third use the same as Butterfly.32.8.

In the case of network dilation, we do not dilate the channels connecting into the
memories or the processors. If we dilate the channels connecting to the memories, we may
have to use multi-ported memories or add some complicated circuitry to prevent multiple

accesses from being made simultaneously.

Multibutterfly

A 2-way dilated butterfly can be thought of as a pair of identical butterflies that
are merged together. In the case of a multibutterfly [Upf89, LLM90] (or more precisely a
twin-butterfly), the nodes within each column of one of the two butterflies are permuted
in a special fashion before the two butterflies are merged. To generate a multibutterfly
with [inputs, we take a collection of random permutations Il = (7o, 71, . .., Tiog1—1), Where
7z : [0, 2,% -1] - [0,§;I:FT — 1], and merge the node in row 2_311_1 + ¢ and column z in the
first butterfly with node in row 5}{—,— + 75(7) and column z of the second butterfly, for all
0<i<fr-1all0<j<2** — 1, andall 0 < 2 < (log I — 1).

A multibutterfly requires the same number of wires per routing node as a 2-dilated
network, but the connections between the adjacent stages are more complex. Using random
permutations in the wiring of these networks helps to avoid problems with non-uniformities
in load distribution.

Note that the multibutterfly network described above is used only within the

49

modules. Other network evaluation studies [LLM90, KU91] have considered connecting all
the processors using a multibutterfly network. We do not consider such a network since we
believe that the multibutterfly cannot be partitioned as well as a butterfly. Partitioning the
multibutterfly into modules in a manner similar to a butterfly, necessitates a much larger

pin-count per module. We suspect that any other type of partitioning of the multibutterfly

also has the same problem.

Fewer memory units

When we increase the channel widths within the packaging modules, we increase
the channel widths into the memory units, effectively increasing the service rate for memory
access requests made over the network. In such networks, the effective memory bandwidth
is greater than the network bandwidth. We observe that it might be possible to use fewer
memory units when we have wider intra-module channels without appreciable degradation
in performance. Reducing the number of memory units can potentially reduce the cost of
the system, although it does not affect cost as per our coarse packaging model. A system
with fewer memory units than processors corresponds to building a network using small
shared memory multiprocessors as building blocks, instead of single processors.

We accordingly consider Butterfly.32.8.M-512 and Butterfly.32.8.M-256. Both net-
works have 32 bit wide intra-module channels and 8 bit wide inter-module channels, but
the former has only 512 memory units and the latter has 256 memory units. Both networks
have 1024 processors, implying that the former uses building blocks which are 2-processor
shared-memory multiprocessors, whereas the latter uses 4-processor multiprocessors. Fig-
ure 4.3 shows the intra-module network for Butterfly.32.8.M-256. Since there are fewer than
32 memory units per module, there are fewer stages of switching connecting the memory

units to the inter-module channels.

Dilating the inter-module network

We consider the network Butterfly.32.4-2dil which has 32 bit wide intra-module
channels similar to Butterfly.32.8, but the channels of the inter-module network are 2-way
dilated. When we dilate the inter-module network, we reduce the width of each channel
by a factor of 2 to keep the pin-count per module the same. Therefore the inter-module

channels in this network are 4 bits wide.

>‘\A

JXX
\\'IIA\NI \"
i o
MR
RVAH

W“W -

AV
57}:(%\».& AV, o
IIIA\\\ MA

51

Sharing inter-module channels

We note that in all the networks described above, there are two networks: a request
network that routes access requests from the processors to the memories, and a response
network that routes replies from the memories to the processors. We can merge these two
networks so that there is only one pair of channels going between any two modules. We
can think of this network as being complementary to the previous network that dilated the
inter-module channels.

In order to share the inter-module channels, we need an additional set of routing
nodes that reduce the 64 channels of the Butterfly topology to 32 channels. We put these
2x1 merger nodes just before the out-going channels we get the network organization shown
in figure 4.4. We call this network Shared-Butterfly. The inter-module channels are 16
bits wide, therefore we only consider topologies Shared-Butterfly.16.16, Shared-Butterfly.16-
2dil.16 and Shared-Butterfly.32.16.

In this network the sharing of channels between access requests and responses
makes this network susceptible to message deadlock. It is possible to have situations where
message buffers get filled up and a circular wait situation gets created. In order to eliminate
the possibility of deadlock, we assume that there are very large buffers at the memory units
and at the processors. These large buffers guarantee that messages will be drained out of
the network either at the processors or the memories. This eliminates the possibility of
deadlock. The MIT Alewife machine uses a similar network architecture in which channels
are shared between requests and replies. The technique to avoid deadlocks is also simi-
lar; when the buffers fill up, messages are emptied from the network into local memory,

effectively simulating infinite buffers [A191].

Cross-bar

To establish an upper bound on the best performance achievable, we also consider
the networks Xbar.8.8, and Xbar.32.8. Both networks connect the processors and memories
to the inter-module channels using 32 by 32 cross-bars. In the first case both the input and
output channels of the cross-bar are 8 bits wide. In the latter case the channels that connect
to the processors and memories are 32 bits wide. The inter-module channels remain 8 bits

wide as before.

52

B\ > /N X
N/ XX
sl\\?‘sraw@<
WA
?/I\s»//w. A\\\P AN X
/NN
NN/ MRV
??/«\\\\\\\». XX XXX (X

?/é A\\\\\s.u:ubf"b
?é:éﬁx\\»..?’ff‘\‘NO{ -
NN X
SN /717 77/ ANNNKXX &
SN /7777 \\N/ X n% X

N AR\VAN 4
...::::::.Q VNN X

QOOOUO00CO00K
»:::::.:.o/ > ")
IR /AN// X
s...........a?‘\?wm@w} %
IO 77X
I NN AN
AN AN
NN AN
VINNNNKIEKIERe
RN NNEANZS S
/RN NNVISZ
I \WANRX .h\’d
///ARNNY///ANNV 6
WS ZX

V/AR\V/ANV=04
A < VARNV2AN 4

Figure 4.4: Intra-Module Network: Shared-Butterfly

64 Modules

432 M

We now consider the case where the packaging modules are smaller. We assume

that each packaging module is capable of holding 16 processors, with a total of 64 modules

for a 1024 processor system. The interconnection between the modules is a complete graph.

To make the comparisons fair, we keep the bisection width the same as before.

Since there are 64 packaging modules, a bisection width of B = 8192 implies that pin-count

per module is equal to 4B(M — 1)/M? = 504, for a total of 64 x 504 = 32256 pins. Each

pair of modules is connected by a bundle of 8 wires. Each bundle has 4 channels and each

channel will be 2 bits wide.

The first intra-module network we consider is Butterfly.8.2 and is shown in fig-

ure 4.5. We build a butterfly on 16 inputs but with a degree 8 fan-out in the last column

instead of degree 2. The degree 8 fan-out is required to generate enough channels to connect

To balance the bandwidth at the last column of switching nodes, we

to all the modules.

have to provide 8-bit wide intra-module channels.

We also consider the network Butterfly.32.2, which has 32 bit wide intra-module

channels.

To establish an upper bound, we also consider the network Xbar.32.2 in which a

cross-bar is used to connect 16 processors to 64 inter-module channels.

M) N O 'Y

AWAVE.S+9.QVANVA
WAL ERHD S\
VN X 3w X /NN

AKE A

. W
TR TS0
T am SO
1 AV,

\J J . \J

Figure 4.5: Intra-Module Network: Butterfly.8.2

54

4.3.3 M=16 Modules

Next, we consider the case where the packaging modules are larger. We assume
that each packaging module is capable of holding 64 processors, requiring 16 modules for
a 1024 processor system. The interconnection between the modules is a complete graph as
before.

We derive this network by partitioning a butterfly with 256 inputs in a manner
similar to the earlier case Section 4.3.1. Since we have to build a network on 1024 processors,
we connect 4 processors to each input of the 256 input butterfly, using a 2 level tree, as
shown in figure 4.6.

As before, we hold the bisection width constant at 8192. Since there are 16 pack-
aging modules, a bisection width of B = 8192 implies that pin-count per module is equal
to 4B(M — 1)/M? = 1920, for a total of 16 * 1920 = 30720 pins. Each pair of modules is
connected by a bundle of 128 wires. Each bundle has 4 channels and each channel is 32 bits
wide.

Since the inter-module channels are 32 bits wide, we get a uniform network if we
make the intra-module channels also 32 bits wide. This is the first network we evaluate and
as per our naming conventions, we call this network Butterfly.32.32. We also consider the
network Butterfly.128.32, with 4 times wider intra-module channels.

To establish an upper bound, we also consider the network Xbar.32.32 in which a

cross-bar is used to connect 64 processors to 16 inter-module channels.

4.4 Simulation Results

4.4.1 Open-network model

Figures 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, and 4.13 show the results for the different
networks. The latencies are round-trip latencies, i.e., the time taken for the access request
to go from the processor to the memory, make the access and return to the processor. The
x-axis is the normalized load expressed as a percentage of the peak load.

We see that in all the open-network graphs, as the applied load increase, the latency
initially increases gradually and as the network nears saturation, the latency increases
rapidly. The curves extend along the x-axis until the point at which the corresponding

generation rate no longer yielded a stable latency. We defer detailed discussion of these

56

500 — L L L Butterfly.8.8
o— — —o Butterfly.8-2dil.8

*=———==x Butterfly.8-4dil.8
Queeieanens - Butterfly.16.8

- a—-—-— Butterfly.16-2dil.8
| @=—-—-—aButterfly.32.8

Latency

Normalized load

Figure 4.7: Open-Network Model; Butterfly Networks
results to section 4.4.3.

4.4.2 Multithreading work-load model

The performance metric under this work-load model is the average processor uti-
lization, as a function of number of threads and of the rate at which threads make memory
accesses. Based on the bisection width of the networks we can see that the peak bandwidth
that each network can support is 8 bits per processor per cycle in each direction. This
corresponds to a mean access rate of one every 16 cycles, since each access is 128 bits long.
We consider mean access intervals of both 16 and 32 cycles.

A mean access interval of 16 cycles can potentially saturate the bisection and
corresponds to running the network at 100% load. Since message insertion is linked with the
delivery of responses, injecting messages with the mean access interval = 16 does not pose
a problem. The processors themselves merely slow down until the injection rate matches
the response rate. As the number of threads per processor increases, the processors become
increasingly latency tolerant and are able to get more out of the network.

A mean access interval of 32 cycles corresponds to running the network at about

50% load. In this case, since the network is lightly loaded, the processors should be able

Latency

Latency

L | . L ' Butterfly.8.8

500

400 —

300 —

200 —

o— — —o Butterfly.8-2dil.8
*=—===x Butterfly.16-2dil.8
LAEERERITEEE o Butterfly.32.8

[~ a=—-—-—= Multibutterfly.8.8
| @—-—-—0 Multibutterfly.16.8
e———o Multibutterfly.32.8

20 40 60 80 100
Normalized load

Figure 4.8: Open-Network Model; Multibutterfly Networks

L ! | L | Butterfly.8.8

500

400 —

300 —

o—— —o Butterfly.16.8
»—————x Butterfly.32.8
LIIEEERIRREE > Butterfly.32.8.M-512
- a—-—-— Butterfly.32.8. M-256

20 40 60 80 100
Normalized load

Figure 4.9: Open-Network Model; Fewer Memories

57

Latency

500

400 —

300 —

200 —

' Butterfly.8.8

o— — —o Butterfly.32.8

»——=—=x Butterfly.8.4-2dil

Qureesenans - Butterfly.32.4-2dil

[~ a—:—-— Shared-butterfly.16.16

| ®=-—-—a Shared-butterfly.16-2dil.16
e—————= Shared-butterfly.32.16

20 40 60 80 100
Normalized load

Figure 4.10: Open-Network Model; Sharing/Dilating Inter-module Channels

Latency

500

400 —

300 —

: : : ' ' Butterfly.8.8
o— — —o Butterfly.8-2dil.8
M < Butterfly.32.8

- a—-—-—sXbar.32.8

20 40 60 80 100
Normalized load

Figure 4.11: Open-Network Model; Cross-bar Networks

58

Latency

Latency

500] ‘ | I Butterfly.8.8
| | e—-——o Butterfly.32.8
(PR x Butterfly.8.2
400 — B
Qeeeencnnnn B Butterﬂy322
i [a——.—aXbar.32.2
300 — B
200 — B
100 — B
0 T | T I ' | I I I
o 20 40 60 80 100
Normalized load
Figure 4.12: Open-Network Model; 64 Module Networks
6o | | | | I Butterfly.8.8
| | e———o Butterfly.32.8
o —— < Butterfly.32.32
400 —| B
PO - Butterfly.128.32
] ~ A=—.—.—a Xbar.32.32
300 — B
200 — B
100 — B
0 T I T | T | T | T

Normalized load

100

Figure 4.13: Open-Network Model; 16 Module Networks

59

60

to achieve almost 100% utilization if they can successfully hide the network latency using
multithreading.

Figure 4.14 and 4.15 show the processor utilizations for the different networks
when the mean access interval is 16 cycles. The graphs shows five lines corresponding to
multithreading factors of 1, 2, 4, 8 and 16.

Figures 4.16 and 4.17 show similar curves for a mean access interval is 32 cycles.

The graphs for both geometric and periodic access patterns are similar to each
other, except that the utilizations for the periodic model are higher. This is to be expected
because, under the geometric model, there is a greater variance in inter-access times, and if
many short inter-access intervals occur together, the instantaneous load increases and the

processor utilization gets reduced.

4.4.3 Discussion of results
Dilation versus wider channels

The data corresponding to Butterfly.8.8, Butterfly.8-2dil.8 and Butterfly.8-4dil.8 in
figures 4.7, 4.14 and 4.15 indicate that dilation of channels helps in improving performance.
This improvement results from the reduced contention for the intra-module channels. In-
creasing the dilation from 2 to 4 does not seem to have much of an effect, indicating that a
dilation factor of 2 is sufficient to eliminate most of the intra-module contention.

As opposed to dilation, widening the channels within a module affects the network
performance in three different ways. First, it reduces the contention for intra-module chan-
nels. Secondly, it increases the effective memory service rate. Dilation does not increase
the effective memory service rate because we do not dilate the channels to the memory
units(Section “Dilation” in 4.3.1). Thirdly it increases message latency because of the non-
uniformity in channel widths3. It is clear that the first effect has a positive influence on
network performance. The second effect also helps improve performance because conflicts
between accesses at the memories have less of an effect. The third effect hurts network
performance because it increases the latency.

When the load is small (in the open-network case) or there are few threads (mul-

tithreading), the performance of the networks with wider channels is slightly worse than

®*When a message transits through a node whose output channel is wider than its input channel, the
message suffers a larger delay because it must be entirely buffered before it can be forwarded(Section 3.4).

Butterfly.8.8

Butterfly.8-2dil.8
Butterfly.8—4dil.8
Butterfly.16-2dil.8

Butterfly.16.8
Butterfly.32.8

Multibutterfly.8.8
Multibutterfly.16.8
Multibutterfly.32.8

Butterfly.32.8. M-512
Butterfly.32.8.M-256

Butterfly.8.4-2dil
Butterfly.32.4-2dil

Shared-butterfly.16.16
Shared—butterfly.32.16
Shared-butterfly. 16-2dil. 16

Xbar.8.8
Xbar.32.8

Butterfly.8.2
Butterfly.32.2
Xbar.32.2

Butterfly.32.32
Butterfly.128.32
Xbar.32.32

Figure 4.14: Periodic Access Model, access interval = 16 cycles

| T

60.00

Processor Utilization

61

#Threads = 1

#Threads = 8
#Threads = 16

Butterfly.8.8

Butterfly.8-2dil.8
Butterfly.8—4dil.8
Butterfly.16-2dil.8

Butterfly.16.8
Butterfly.32.8

Multibutterfly.8.8
Multibutterfly.16.8
Multibutterfly.32.8

Butterfly.32.8.M-512
Butterfly.32.8.M—256

Butterfly.8.4-2dil
Butterfly.32.4-2dil

Shared—butterfly.16.16
Shared-butterfly.32.16
Shared—butterfly. 16-2dil. 16

Xbar.8.8
Xbar.32.8

Butterfly.8.2
Butterfly.32.2
Xbar.32.2

Butterfly.32.32
Butterfly.128.32
Xbar.32.32

) : \
!
ya
[/ /
N \
!
!
:l'
\\ \
| |
]
'
)
/ . \
\/ \ /
) /
RN A\
0.00 20.00 40.00 60.00 80.00 100.00
Processor Utilization

62

#Threads =1

#Threads =8
#Threads = 16

Figure 4.15: Geometric Access Model, mean access interval = 16 cycles

Butterfly.8.8

Butterfly.8-2dil.8
Butterfly.8-4dil.8
Butterfly.16-2dil.8

Butterfly.16.8
Butterfly.32.8

Multibutterfly.8.8
Multibutterfly.16.8
Multibutterfly.32.8

Butterfly.32.8.M-512
Butterfly.32.8. M-256

Butterfly.8.4-2dil
Butterfly.32.4-2dil

Shared-butterfly.16.16
Shared-butterfly.32.16
Shared—butterfly. 16-2dil. 16

Xbar.8.8
Xbar.32.8

Butterfly.8.2
Butterfly.32.2
Xbar.32.2

Butterfly.32.32
Butterfly.128.32
Xbar.32.32

Figure 4.16: Periodic Access Model, access interval = 32 cycles

Processor Utilization

63

#Threads = 1

#Threads =8
#Threads = 16

Butterfly.8.8

Butterfly.8-2dil.8
Butterfly.8—4dil.8
Butterfly.16-2dil.8

Butterfly.16.8
Butterfly.32.8

Multibutterfly.8.8
Multibutterfly.16.8
Multibutterfly.32.8

Butterfly.32.8. M—512
Butterfly.32.8.M-256

Butterfly.8.4-2dil
Butterfly.32.4-2dil

Shared-butterfly.16.16
Shared-butterfly.32.16
Shared—butterfly. 16-2dil. 16

Xbar.8.8
Xbar.32.8

Butterfly.8.2
Butterfly.32.2
Xbar.32.2

Butterfly.32.32
Butterfly.128.32
Xbar.32.32

0.00

20.00

40.00 60.00

Processor Utilization

80.00

64

#Threads = 1

#Threads =8
#Threads = 16

Figure 4.17: Geometric Access Model, mean access interval = 32 cycles

65

Butterfly.8.8. This is because of the third effect mentioned above. But, when the load on
the network is increased, the effects of reduced contention and the higher memory service
rate become more predominant. In the long run we can expect all memories to receive
approximately the same number of requests because the access distribution is random, but
in the short run the access distribution can be uneven. A higher memory service rate helps
to reduce the effect of this non-uniformity.

Combining dilation and widening of channels does not seem to help much either,
versus simply widening the channels as seen by comparing Butterfly.16-2dil.8 and Butter-
fly.32.8.

We can also try to compare the effects of dilation versus widening channels analyt-
ically using queueing theory. Dilation corresponds to using multiple servers with the same
service rate, while widening channels corresponds to increasing the service rate of a single
server. If we model the traffic between a pair of routing nodes using a simplistic queueing
model consisting of poisson arrival streams and exponential service times, we can show
that both dilation and wider channels have comparable performance when the load factor
is high, but wider channels are better at lower loads. It is difficult to extend the analysis
from a single pair of nodes to the entire network. Further, we need to take into account a
variety of factors such as constant service times, bounded queues, packet-switched routing
in some nodes due to non-uniform channel widths, contention at the memory units, stalling

of processors when all threads have outstanding accesses, etc.

Multibutterfly versus Dilation

The multibutterfly networks require the same number of wires as the 2-dilated net-
works. The difference between them is the randomized wiring between stages in the multi-
butterfly. Figure 4.8 and the graphs corresponding to the multithreading workload indicate
that the multibutterfly has approximately the same performance as a 2-dilated butter-
fly. Specifically, Multibutterfly.8.8 has approximately the same performance as Butterfly.8-
2dil.8, and Multibutterfly.16.8 has the same performance as Butterfly.16-2dil.8. Simula-
tions of large multibutterflies have shown that they perform better than dilated butter-
flies [LLM90, KU91], but the multibutterflies in our networks are too small to display any
noticeable difference in performance. Since we use multibutterflies only for the intra-module

network, they only have 32 inputs and five stages. For networks of this size, there is hardly

66
any benefit from using randomized connections between stages.

Fewer memories

Butterfly.32.8.M-256 has the same amount of memory bandwidth as Butterfly.8.8,
since the channel width to memory is 4 times as wide and there are 4 times as fewer memory
units. Similarly Butterfly.32.8.M-512 has the same memory bandwidth as Butterfly.16.8.
Comparing these pairs of networks illustrates that using fewer memory units with wider
channels, results in a significant improvement in performance. The reason for this improve-
ment in performance is the increased memory service rate at each memory unit. Even
though a reduction in the number of memory units increases the load on each unit, tempo-
rary non-uniformities in the load distribution have less of an effect due to the higher service
rate.

Instead of comparing networks based on equal memory bandwidth, we can also
compare them based on identical memory channel width. We see that the performance of
Butterfly.32.8 is indistinguishable from that of Butterfly.32.8.M-512 and Butterfly.32.8.M-
256. The effect of the lower memory bandwidth is not felt since network bandwidth is the
main limiting factor. Figure 4.9 indicates a slight increase in latency as the load increases
because of increased contention for the fewer memory units, but this increase in latency
is small and does not appear to affect the processor utilizations under the multithreading

workload model.

Dilating versus sharing inter-module channels

The graphs indicate that dilating the inter-module channels causes a significant
drop in performance, while sharing the inter-module channels improves performance over the
base network. The inter-module channels are the bottlenecks as far as network throughput
is concerned. A network that achieves a higher utilization of the inter-module channels
will, therefore, achieve higher throughput. When we configure the available inter-module
bandwidth as a pair of narrower channels (Butterfly.32.4-2dil), it is more difficult to achieve
high channel utilization because we need twice as many independent messages to keep all
the wires busy. In contrast, when we share the channels we need only half as many messages.
This explains the difference in performance. However, sharing the inter-module channels

between the forward and the return networks makes the network susceptible to deadlock

67

and we need to devise some mechanism to avoid deadlock (We assumed that large buffers

were available at the processors and the memory units).

Cross-bar

The intra-module cross-bar network completely eliminates the possible contention
for links within a module. It also has a lower minimum latency because we assume that it
imposes only a single cycle pipeline delay as opposed to one cycle per stage in a multi-stage
network.

In figure 4.11 we see that the graph for Xbar.8.8 is approximately parallel to that
of Butterfly.8-2dil.8 indicating that both networks have similar performance with respect
to contention. The graph for the cross-bar network is lower because of its lower minimum
latency. This difference does not show up under the multithreading workload (figures 4.14
and 4.15) indicating that the effect of this difference in latency is small. The comparison
between Xbar.32.8 and Butterfly.32.8 is similar. This indicates that providing extra local
bandwidth either through dilation or wider channels is successful in eliminating almost all

the contention for the intra-module channels.

Multithreading

It can be seen that all networks achieve significant improvement in processor uti-
lization as the number of threads is increased. This demonstrates that multithreading is
successful in masking the access latencies. Increasing the number of threads per processor
corresponds to operating the network farther down the x-axis on the load-latency graphs of
the open-network model. Though this increases the latency experienced by the messages,
the processor is able to better overlap the latency with useful computation. It is important
to note that even when the number of threads is small(2-4), there is a significant improve-
ment in processor utilization in relation to the utilization corresponding to a single thread.
As we increase the number of threads further, the processor utilizations improve, but the
marginal increase per added thread diminishes because increasing the number of threads

also increases the loading of the network which increases latency.

68

Performance at low network loads

The graphs corresponding to an inter access time of 32 cycles (figure 4.16 and 4.17)
show that at high levels of multithreading, it is possible to get processor utilizations of almost
100%. Since the load never gets so high as to make the latencies increase dramatically,
multithreading can completely hide the network latency. For most of the networks we
evaluated we can see that about 4 threads can achieve this (The networks corresponding
to M = 64 needed about 16 threads to achieve 100% utilization since their latencies were
high). Naturally, as we scale the machine to more processors we expect that we will need
more threads, but we expect that the number of threads will not grow faster than log N
since the network latencies under cut-through routing will grow slower than log N.

We also see that at low levels of multithreading, the effects due to non-uniform
channel widths are more pronounced. Since the network load is small, the increase in
latency due to non-uniform channel widths dominates the effects due to reduced contention

and increased memory service rates.

4.4.4 Choosing module size

We can also compare the results of the cases M = 16 and M = 64 with M = 32,
but in doing so we should keep in mind that the costs of these networks are not the same,
because they use different numbers of modules and different pin-counts per module. Since
all the networks have the same peak throughput, the difference in cost vectors illustrates
a trade-off between the number of modules and the pin-count per module. Reducing the
number of modules by a factor of 2 requires increasing the pin-count per module by the
same factor of 2, in order to maintain the same peak throughput.

Our results in comparing the performance across different module sizes are similar
to the results of Cypher [Cyp90] in that the performance of the network is proportional
to the product of the number of modules and the pin-count per module. This is to be
expected since the cost model used in this chapter is similar to Cypher’s pin-requirements
model. However, the network design problem we consider here is substantially different
from the one considered by Cypher.

Although the costs are different for different module sizes, since the peak through-
put is the same, we can compare the fraction of peak throughput that each of these networks

achieves. We see that using larger modules leads to better performance than using smaller

69

modules. When we increase the module size by a factor of 2, we have a complete graph on
half as many modules. This means that number of channels leaving a module drops by a fac-
tor of 2. Also the pin-count per module increases by a factor of 2, making the inter-module
channels 4 times as wide. We already observed that we were able to improve performance
when we organized the same number of inter-module wires as fewer wider channels. The
same effect is observed in a more pronounced manner when we vary the module size. This

explains the difference in performance between M = 64, M = 32, and M = 16.

4.5 Summary

We started with a simple model of the packaging hierarchy that consisted of only
two levels and used a simple network cost model that had only two parameters; the number
of top-level modules and the top-level pin-count. We fixed the network cost by fixing both
the parameters and compared different networks in terms of their performance. We showed
that for a fixed pin-count, the best network at the top level of wiring was a complete graph
interconnect where each module was connected to every other module. At the lower level
the packaging hierarchy, we examined several alternatives. We did not exhaustively examine
all the possible choices at the lower level. However, we demonstrated that simple butterfly
networks with wider channels at the lower level were able to match the performance of the
best possible network (cross-bar), indicating that exploiting packaging locality can lead to
better networks. Our results, therefore, argue in favor of designing networks on the basis of
the availability of packaging resources, rather than designing networks first and packaging

them later.

70

Chapter 5

Model 2: Pin-counts and bundles

In this chapter, we consider a model that is slightly more complex than model
1. In the previous chapter, we saw that the complete graph topology had the maximum
performance for a fixed pin-count per module. However, the complete graph also had the
maximum number of bundles per module of all the topologies considered in the previous
chapter. In many packaging technologies, a complete graph interconnect may be considered
expensive because it uses many bundles. For example, if the technology used in the inter-
connection of modules is cables with connectors at each end, we may have fixed per-cable
and per-connector costs, independent of the total number of wires in the cables and con-
nectors. Under such a packaging technology a network in which the wires leaving a module
are organized into a smaller number of thicker bundles, will be cheaper than one in which
the same number of wires are organized as a larger number of thinner bundles. In order
to model this difference in costs, we include the number of bundles per module in the cost
vector of Model 2.

Recall that model 2 is based on the same two level hierarchy as model 1 (inter-
module and intra-module connections), but the cost vector has three dimensions: the num-
ber of modules, pin-count and number of bundles per module. As in model 1, we ignore the

costs of the intra-module network.

5.1 Inter-module Networks

Under model 1, we compared the performance of different inter-module networks

after fixing the cost vector. Similarly, under model 2, we first compare networks for a fixed

71

cost vector (Section 5.1.1). However, this approach does not illustrate the trade-offs between
the different components of the cost vector. To examine these trade-offs, we compare the
cost vectors of different networks of the same estimated performance (peak throughput).
For this comparison we shall hold the number of modules constant and compare networks
in terms of pin-count and number of bundles. We shall see that reducing the number of

bundles per module requires each module to have a larger pin-count (Section 5.1.2).

5.1.1 Fixing all three parameters

We showed in Chapter 4 that for a fixed pin-count per module, the peak throughput
of a network is inversely proportional to h, the average number of hops made by a message
over the inter-module network. This result is valid even under model 2, but under model
2 we also fix the number of bundles per module. Therefore, to maximize the performance,
we have to minimize the number of hops subject to the bundling restriction. Clearly, if the
number of bundles per module is greater than or equal to M — 1, we can minimize h by
building a complete graph interconnect between the modules, as we did in Chapter 4. The
problem we consider in this section is: How do we minimize h, given a tighter restriction
on the number of bundles?

A related problem that has received much attention in graph theory is the (A, D)
graph problem [BDQ86]. The (A, D) graph problem consists of finding the largest graph in
which the node degree is A and the diameter is D!. In the graph theoretic sense, the number
of bundles per node is the same as its degree, and the diameter of a graph is usually an
upper bound on h. While the (A, D) problem is concerned with finding the graph with the
largest number of vertices for a fixed D, we are interested in the complementary problem,
namely finding the smallest h for a fixed number of modules. For most of the interesting
graphs (graphs that have small D for fixed A and a given number of nodes), h is usually
quite close to D. Therefore, a solution to the (A, D) problem and a solution to the problem
we are interested in, are closely related.

However, it is well known that the (A, D) problem is difficult [BDQ86]. For many
values of A and D, the (A, D) problem is still open. We can show by means of a simple
counting argument that the number of nodes in a graph with degree A and diameter D,
cannot exceed 1+ A + A(A - 1)+ A(A - 1)2 + .-+ A(A - 1)P-1 = —L!AT_%E-—E. This

!The diameter of a graph is the maximum distance over all pairs of vertices, where distance between two
vertices is defined as the shortest path between them.

72

bound is due to E. F. Moore (circa 1958). For some small values of A and D there exist
graphs that achieve the Moore bound, but for other values, the largest known graphs are
much smaller than the Moore bound. In some of these cases, researchers have been able to
prove that the largest known graphs are optimal, but for a large number of other cases, we
do not know if larger graphs exist.

The apparent complexity of the (A, D) problem suggests that the problem we are
interested in is also complex. Therefore, instead of trying to find a network that achieves
the mazimum performance, we shall try to find a network that is close to the optimal.

One possibility is to search for a network whose performance is off by a small
constant factor from the optimal. Consider a network on M nodes with diameter D and
degree A. Let the optimal degree be A,.;,, when the diameter is D, and the optimal
diameter be D,,;, when the degree is A. In other words, (M, D, Ain) and (M, Dpyin, A)
satisfy the Moore equation. Further, let us assume that A = ¢A,,;, where ¢ is a small
constant. For a fixed pin-count and number of bundles, we have already argued that, to a
first approximation, the performance is inversely proportional to the diameter. Therefore,
the network with parameters (M, Dpn,A) is optimal, because any other network on M
nodes and degree A has a greater diameter. Further, the performance of the optimal
network is greater than the performance of the network with parameters (M, D,A) by a
factor of D/ Dy, the inverse ratio of the diameters.

Since (M, Dyin,A) and (M, D, Ap;y,) satisfy the Moore equation, M = ADPmin
and M =~ AD. . Therefore, D/Dpin ~ log A/log Apin. But we assumed that A = cApin.

min*

Therefore, ng ~1+ l"chka_sf;Z' This implies that so long as A is within a small constant
factor of A,in, the performance of the network will be very close to the optimal network
with the same pin-count and number of bundles (Network with parameters (M, Din, A)).

One family of networks for which A = ¢A,,;, is the family of products of complete
graphs. A product graph is defined as follows: Let Gy = (Vi, Eq1) and Gy = (V3, E3) be
two graphs. The product of G; and G2, denoted by Gy x Gy = (V, F) where V =V} x V;
and £ = {((u1,u2), (v1,v2))|((u1 = v1) A (uz,v2) € Eq) V ((u2 = v2) A (ug,v1) € Eq)}. We
call a product of two complete graphs a 2-hop network. In general an n-hop network is a
product G7 X G X - -+ X G, where each G; is a complete graph. For a fixed total number
of nodes, the number of bundles needed by an n-hop network is minimized when each of
the Gjs is of the same size, i.e., a complete graph on /M nodes. We use the term n-hop

network to refer to a product graph of complete graphs because the diameter of the graph

73

is n. We can think of the nodes in an n-hop network as being labeled using a vector of

length n; (mg, mq,...,m,—1). Any pair of nodes whose labels differ in exactly one of the
m;s are connected by an edge. Therefore, we can go from source node (sg,s1,...,8,-1)
to destination node (do,dy,...,d,—1) via the node: (so,81,...,8n—-1), (doyS1,--+5Sn_1),

(do,d1y...y80-1), - - (do,di,...,dn_1). When the number of hops is equal to 1, we have
a complete graph, and when the number of hops is log M, the resulting topology is a
hypercube.

In an n-hop network, the degree of each node is n(M — 1), which can be shown
to be approximately n times the degree of the optimal network as specified by the Moore
equation. Therefore, the performance of the n-hop intermodule network is close to the
optimal for small values of n. In fact, we can prove that when n = 2, an n-hop network is
optimal, based on the value of h rather than the network diameter.

Formally we have the following claim:

Claim 5.1 When we have M modules with P pins each, the pins being organized as no
more than 2(v/M — 1) bundles, and each module contains an equal number of processors,
the inter-module network that achieves the mazimum peak throughput is a 2-hop network in

which each edge corresponds to P/2(v/M — 1) wires. The peak throughput of this network

g — MP ___
4(1-1/vVM)

i

For a fixed M and P, we have already proved that the peak throughput is bounded
by M P/2h. The average number of hopsis h = Y2, ip;, and in the case of a 2-hop network,
po=1/M, py = 2(\/M —1)/M, and p; = 1 — pg — p1. Therefore, for a 2-hop network
h = 2(1—1/v/M). Further, the load on each edge of a 2-hop network is the same implying

that making all the edges have an equal number of wires implies that the network achieves

t. MP _ __MP __
T2h T 4(1-1/VM)’

We shall now show that it is not possible to build a network with the same number

the upper bound on the peak throughpu

of modules, pins and bundles such that it has a larger peak throughput. Assume that such
a network is possible. Clearly this network should have a smaller average number of hops.
We cannot reduce the average number of hops by increasing po, since po is fixed at 1 —1/M.
We cannot increase p; above 2(v/M —1)/M, because this would require increasing the node
degree beyond 2(v/M —1). Therefore, we cannot reduce h below that of the 2-hop network,
implying that we cannot build a network with greater peak throughput than the 2-hop

network for the above set of parameters. a

74

Other networks that have node degree to within a constant factor of the optimal
are de Bruijn graph and Kautz graphs [BP89]. A de Bruijn network with diameter n, on
M nodes has node degree 2%/M, which is closer to the optimal than an n-hop network for
n > 3 and large M. Kautz graphs are even closer to the optimal than de Bruijn graphs.
However, the difference in pefformance between the n-hop network and the other graphs
is unlikely to be significant, since all networks are already extremely close to the optimal.
In this chapter, we primarily consider the 2-hop and the 3-hop networks for purposes of
evaluation. Some of the advantages of n-hop networks over de Bruijn and Kautz networks
are symmetry and regularity. Besides, for the sizes of networks we are concerned with in this
chapter, the differences in pin-counts and number of bundles, between the n-hop networks

and de Bruijn and Kautz graphs are minimal.

5.1.2 Comparing cost for fixed performance

We note that the peak throughput of a 2-hop network on M modules and P pins
per module is M;‘E(l — 1/+/M), while that of a complete graph with the same number of
modules and pins, is %(1—1/M). This means that the 2-hop network has approximately
half the performance of a complete graph when we keep the pins per module constant. If
we wish to design a 2-hop network with the same performance, we have to approximately
double the pin-count. Therefore, we see that there is a trade-off between the pin-count
and the number of bundles. We have obtained a reduction in the number of bundles from
M —1to 2(vM - 1) by doubling the pin-count per module. This trade-off is illustrated
by table 5.1. Since the bisection width is a good approximator of network performance, the
table holds the bisection width constant across the different topologies.

We can clearly see from the table that as the number of bundles decreases, the
pin-counts increase. Intuitively we can see the reason behind this trade-off. As we reduce
the number of bundles we also increase the number of hops that messages need to make.
As the number of hops increases, we need more wires in order to achieve the same network
capacity resulting in an increase in pin-counts.

In this chapter we consider two different values for M, the number of modules;
M =32 and M =64, corresponding to a limit on the number of processors per module at 32
and 16 respectively. For detailed analysis, we choose the complete graph, 2-hop and 3-hop

intermodule networks. We choose these networks because we believe that at the higher

Inter-Module Bisection | Module Bundles Total

Topology Width Pin-count Per Module | #Bundles
Complete graph | B (4B/M)% M-1 M(M-1)/2
2-hop Network | B (SB/M)lﬂj\;—1 20VM - 1) | M(vVM — 1)
3-hop Network | B (12B/M) =L | 3(Y/M - 1) | 3M(Y/M - 1)/2
n-hop Network | B (anB/M) Y=L | n(I/M — 1) | nM(YM - 1)/2
2-hop de Bruijn | B 8B/M 2vM MvVM

3-hop de Bruijn | B 12B/M 2V M MYM

n-hop de Bruijn | B 4nB/M 2V M MM
Butterfly B 4Blog M /M 4 2M

CCC B 6Blog M/M 3 3M/2
Hypercube B 2Blog M /M log M M log M /2
d-dim Toroid B dBvV/M|M 2d Md

3-dim Toroid B 3B/M?/3 3M

2-dim Toroid B 2B/VM oM

Ring B B M

Table 5.1: Characteristics of topologies used to connect M packaging modules

5

76

levels of the packaging hierarchy, the number of pins per module is a more important factor
than the number of bundles. We have already evaluated the networks for a complete graph
inter-module network in the previous chapter, and here we consider a 2-hop network for
M = 32, and 2-hop and 3-hop networks for M = 64.

Interestingly, it turns out that any n-hop inter-module network can be generated
by appropriately partitioning a butterfly. A butterfly network of size N = 2(*+1)% can be
partitioned into 2"* modules so that the interconnection between the modules is a n-hop
network. A 2("+1)% butterfly has (n+ 1)z columns. We separate these columns into (n+ 1)
groups of z columns each and shuffle the rows such that the connections within each group
form butterflies of size 2%. Next we partition the network into 2" modules such that each
module has 2% rows and (n+1)z columns. The edges that connect between the modules form
a n-hop network. Note that this construction only applies when the number of processors
is of the form 2("*+1)7 and the number of modules is 2°¢. This construction can be easily
extended to the case where the number of processors is not of the form 2(*+1z by building a
network of size 2("*1)%_partitioning it into 2" modules and connecting multiple processors
to each network input.

We can also build an n-hop network when the number of modules M is not of the
form 2™*, but the numbers in table 5.1 will not apply directly. The table assumes that the
n-hop network topology is a n-fold product of complete graphs of size /M. If the nth root
of M is not an integer, the sizes of the complete graphs that form the product will not be
equal. The number of bundles and the pin-count will be slightly larger than that shown in
the table.

Since 32 is not a perfect square, we use the topology K4 x Kg, where K; denotes
a complete graph on ¢ nodes and z denotes graph product. Figure 5.1 shows this graph.
For the sake of simplicity, the figure only shows one of the 4 Kgs. The actual topology, will
have 3 more Kgs, one on each node of the K4s. In this topology, there are 10 edges per
node, for a total of 160 bundles (in comparison to 31 bundles per node or a total of 496
bundles in a complete graph on 32 modules).

When M =64, we use the 2-hop network Kg x Kg, and the 3-hop network K, X
K4 x K4. Figure 5.2 shows the 2-hop network. The figure shows only one of 8 complete
graphs. The number of bundles per module is 14, or a total of 448 (in comparison to 63
bundles per module, or a total of 2016 in a complete graph). Figure 5.3 shows the 3-hop
network. For the sake of simplicity, the figure does not show all the edges. This network

78

Inter-Module Module #Bundles Total
Topology Pin-count | per Module | #Bundles
M=32
Complete graph 992 31 496
K4 x Kg 1664 10 160

M=64
Complete graph 504 63 2016
Kg X Kg 896 14 448
Ky x K4 x K4 1152 9 288

Table 5.2: Pin-counts and number of bundles required

requires 9 bundles per module, or a total of 288 bundles. Table 5.2 shows the pin-counts
and number of bundles required by the inter-module topologies considered in this chapter.
All networks have a bisection width of 8192 as before. The complete-graph topologies are

presented for comparison.

5.2 Intra-module Networks

5.2.1 M=32 Modules (2-hop inter-module network)

As in the previous chapter, we consider two separate networks, one for access
requests and one for the responses, and each edge in the inter-module topology corresponds
to 4 different channels, two in each direction. As before we fix the bisection width B at
8192. In order to achieve this bisection width, the edges of the K4 will have to be 256 bits
wide (4 64-bit wide channels), and the edges of the Kg will be 128 bits wide (4 32 bit wide
channels). This inter-module network requires 1664 pins per module as opposed to 992 for

a complete graph.

Basic 2-hop network

The intra-module network of the basic 2-hop network is shown in figure 5.4. The
processors are connected to the nodes on the left. The inter-module network is a K4 X Kg
and is generated by partitioning a 256-input butterfly as described in section 5.1. A 256-
input butterfly leaves us with 8 inputs per module. Since there are 32 processors per module

and only 8 inputs, we have to connect 4 processors to each input. This is done by building a

79

Eo

Figure 5.2: Kgx Kg 2-hop Network (Only one of the 8 complete graphs on 8 nodes is shown)

81

64 32
Figure 5.4: Intra-Module Network: 2-hop network, M =32 Modules

2 level tree as shown on the top node. The memories are also connected in a similar fashion.
Processors and memories are paired as in the network topologies of the earlier chapter, but
this is not illustrated pictorially.

The channels between the column 2 and 3 correspond to K4. They connect between
modules that differ in their least significant 2 bits. The channels between column 5 and 6
correspond to Kg and connect between modules that differ in their most significant 3 bits.
All channels are 32 bits wide except those between columns 2 and 3, which are 64 bits wide.

As per our naming convention we call this network Butterfly(2-hop).32.64-32 since
the intra-module channels are 32 bits wide and there are two kinds of inter-module channels,

which are 64 and 32 bits wide.

Widening channels and dilation

Similar to the networks defined for the complete graph inter-module topology, we
define the network Butterfly(2-hop).64.64-32. This network is the same as the previous
network except that all the intra-module channels are 64 bits wide, including those that
connect to the processors and memories.

We also define the network Butterfly(2-hop).32-2dil.64-32 with a degree 2 dilation

of the intra-module network.

Fewer memory units

In the basic 2-hop network we used a 2 level tree to connect 4 memories to each

network input. Since the required memory throughput is only 8 bits per cycle, we can

82

0 1 2 3 4 5 6 7 8
W

Figure 5.5: Intra-Module Network: 2-hop network, M =64 Modules

replace the 2 level tree by a single memory unit when the channels are 32 bits wide. We call
this network Butterfly(2-hop).32.64-32.M-256. We also evaluate Butterfly(2-hop).64.64-
32.M-256 where the intra-module channels are 64 bits wide.

5.2.2 M=64 Modules (2-hop inter-module network)

To achieve a bisection width of 8192, the bundles of the 2-hop network have to be

64 wires wide. Since each bundle corresponds to 4 channels the inter-module channels will

be 16 bits wide.

Basic 2-hop network

We derive the basic 2-hop network by partitioning a butterfly as described earlier.
Since we need to construct a Kg X Kg inter-module network, we start with a butterfly
network with 8 * 8 x 8 = 512 inputs. We connect two processors to each input of the
butterfly network to get a 1024 processor machine. Since the inter-module channels are 16
bits wide, we get a uniform network if we make the intra-module channels also 16 bits wide.

We call this network Butterfly(2-hop).16.16 and is shown in figure 5.5.

Widening channels

We consider using wider intra-module channels of 32 bits instead of 16 and we call

this network Butterfly(2-hop).32.16.

83

0 1 2 3 4 5 6 7
M)) M O) O

Figure 5.6: Intra-Module Network: 3-hop network, M =64 Modules

5.2.3 M=64 Modules (3-hop inter-module network)

To achieve a bisection width of 8192, the bundles of the 3-hop network have to be

128 wires wide. Since each bundle corresponds to 4 channels the inter-module channels will
be 32 bits wide.

Basic 3-hop network

Since we need a 3-hop network on 64 modules, we start with a butterfly network
on 4x4x4x4 = 256 inputs and partition it to get a K4 x K4 X K4. We connect 4 processors
to each network input. This network is shown in figure 5.6. The inter-module channels are
32 bits wide. We get the network Butterfly(3-hop).32.32 when the intra-module channels

are also 32 bits wide.

Widening channels

We consider using wider intra-module channels of 64 bits instead of 32 and we call

this network Butterfly(3-hop).64.16.

5.3 Simulation Results

The results corresponding to the open-network work-load model are presented in
figures 5.7, 5.8 and 5.9. Figure 5.7 compares the different networks which use a 2-hop
inter-module network, with M=32. The data corresponding to Butterfly.8.8 and Butter-
fly.32.8, from the previous chapter are included for comparison. In the latter two networks
the inter-module network is a complete graph. Although all the networks have the same
bisection width, the latter two networks use fewer pins per module, and more bundles.

Therefore, their costs are not directly comparable. Figures 5.8 and 5.9 compare networks

84

250] L e ' Butterfly(2-hop).32.64-32
/ o———o Butterfly(2-hop).32-2dil.64-32
E('I *—==—==x Butterfly(2-hop).64.64-32
200 —| / —
Fi Oruneneen < Butterfly(2-hop).32.64-32.M-256
7 a—-—-—= Butterfly(2-hop).64.64-32.M-256
150 | /-J | @—-—-—o Butterfly.8.8
) /./a o—— < Butterfly.32.8
5
100 — —
s L
L L L
0 20 40 60 80 100

Normalized load

Figure 5.7: Open-Network Model; M =32 Modules, 2-hop intermodule network

where M=64. The data corresponding to Butterfly.8.2 and Butterfly.32.2 (inter-module
network = complete graph) are included for comparison.

Figures 5.10 and 5.11 show the results for the multithreading work-load when the
mean access interval is 16 cycles, and figures 5.12 and 5.13 correspond to a mean access

interval of 32 cycles.

5.3.1 Discussion of results

The results indicate the same general trends as seen in the previous chapter. We
can improve performance by making the intra-module networks richer either using dilation
or wider channels. We do not see much difference between dilation and widening channels
since the channels are already quite wide to begin with. Increasing the channel widths
further does not make much of an impact with respect memory service rate. Dilation and
widening channels have similar effects with respect to reducing contention. As before, we
see that reducing the number of memory units does not degrade performance. Actually it
improves the performance by a small amount since we reduce the number of switching stages
that the messages have to pass through, by eliminating the fan-out trees at the memory

end.

Latency

Figure 5.8: Open-Network Model; M =64 Modules, 2-hop intermodule network

Latency

Figure 5.9: Open-Network Model; M =64 Modules, 3-hop intermodule network

Butterfly(2-hop).16.16

300

250 —

200 —

150 —

100 —

50 —

o— — —o Butterfly(2-hop).32.16
*—————x Butterfly.8.2
Gerrenreannn 3 Butterﬂy322

I ' I ' l '
20 40 60 80
Normalized load

100

Butterfly(3-hop).32.32

300

250 —

200 —

150 —

100 —

50 —

o———o Butterfly(3-hop).64.32
*—=—=-x Butterfly.8.2
LSRREEIEREIE o Butterfly.32.2

20 40 60 80
Normalized load

100

85

86

Butterfly.8.8 \ N

Butterfly.32.8 < = “.‘ = #Threads = 8
k 1 #Threads = 16

Butterfly(2-hop).32.64-32

Butterfly(2-hop).64.64-32

Butterfly(2-hop).32-2dil.64-32 \\ T

Butterfly(2-hop).32.64-32.M-256 N

Butterfly(2-hop).64.64—-32.M-256

Butterfly.8.2 \ v
\

\

\

Butterfly.32.2 S

Butterfly(2-hop).16.16 /

Butterfly(2-hop).32.16 - - : /

Butterfly(3-hop).32.32 , kS \
1 “\
1] N, .

Butterfly(3—hop).64.32

0.00 20.00 40.00 60.00 80.00 100.00

Processor Utilization

Figure 5.10: Periodic Access Model, access interval = 16 cycles

87

#Threads = 1

Butterfly.8.8 \ N S #Threads = 2

puery2E ‘ T Fitveais 2
; #Threads = 16

Butterfly(2-hop).32.64-32

Butterfly(2-hop).64.64-32

Butterfly(2-hop).32-2dil.64-32 \\ | \
\ i :

Butterfly(2-hop).32.64-32.M~256 z

Butterfly(2-hop).64.64-32.M-256

Butterfly.8.2 T

Butterfly.32.2 \ : <. =
Butterfly(2-hop).16.16 el -
Butterfly(2-hop).32.16 / : -
Butterfly(3-hop).32.32 b s /
Butterfly(3-hop).64.32 / / \

0.00 20.00 40.00 60.00 80.00 100.00
Processor Utilization

Figure 5.11: Geometric Access Model, access interval = 16 cycles

88

#Threads = 1

Butierlly.8.8 \ < <[#hreads =2
Butterfly.32.8 BN - , T
Butterfly(2-hop).32.64-32 b - #Threads = 16

Butterfly(2-hop).32-2dil.64-32

Butterfly(2-hop).64.64-32 ;

Butterfly(2-hop).32.64-32.M-256 -

Butterfly(2-hop).64.64-32.M-256

Butterfly.8.2

Butterfly.32.2 ===

Butterfly(2—hop).16.16 e

Butterfly(2-hop).32.16 <

Butterfly(3-hop).32.32

Butterfly(3-hop).64.32

0.00 20.00 40.00 60.00 80.00 100.00

Processor Utilization

Figure 5.12: Periodic Access Model, access interval = 32 cycles

89

Butterfly.8.8 \ N
Butterfly.32.8 N > T S
Bautterfly(2-hop).32.64-32 . i | | #Threads =16

Butterfly(2-hop).32—2dil.64-32 :

Butterfly(2-hop).64.64-32

~

Butterfly(2-hop).32.64-32.M-256 <

Butterfly(2-hop).64.64-32.M-256

Butterfly.8.2 N - \

Butterfly.32.2 e

Butterfly(2-hop).16.16 =

Butterfly(2-hop).32.16 S

Butterfly(3-hop).32.32 , i

Butterfly(3-hop).64.32

0.00 20.00 40.00 60.00 80.00 100.00

Processor Utilization

Figure 5.13: Geometric Access Model, access interval = 32 cycles

90

While comparing 1-hop, 2-hop, and 3-hop networks, we must keep in mind that
their cost vectors are different, although they have the same peak throughput. However, if
we ignore the differences in the cost vector, and just compare networks with the same peak
throughput, we see that the 1-hop networks are worse than 2-hop and 3-hop networks. The
reason for this difference in performance is the wider channels in the latter networks. When

the channels are wider, it is easier to achieve higher channel utilizations.

5.4 Summary

In this chapter, we considered a cost vector that was slightly more complex than
that of the previous chapter. We included the number of bundles in the list of cost param-
eters. When we expanded our list of cost parameters to include the number of bundles, we
saw that our set of interesting top-level was no longer limited to a complete graph network,
as in the previous model, where we ignored the number of bundles.

In this chapter, we first compared the performance of networks of fixed cost, where
we fixed the cost by fixing all the three cost parameters; namely the number of modules,
the pin-count per module and the number of bundles per module. We saw that it was
difficult to find the network with maximum performance for any arbitrary set of parameters.
Instead, we were able to find networks that had performance close to the maximum possible
performance. We showed that the n-hop networks and de Bruijn networks were close to
optimal.

When we examined the network design problem from the point of view of fixing
performance and comparing costs, we discovered a trade-off between pin-count and number
of bundles. In going from a complete graph to a 2-hop network we reduced the number of
bundles per module from O(M) to O(v/M), but doubled the pin-count. In general, reducing
the number of bundles implied that the pin-count had to increase to maintain the same level
of performance. We also showed that the trade-offs offered by n-hop and de Bruijn networks
were close to optimal, in the sense it was not possible to reduce the pin-count and number
of bundles by more than small constant factors and still achieve the same performance.

A question that we might ask is, “Which of the n-hop or de Bruijn networks should
we use?”. In order answer this question, we need to compare the costs of the different n-hop
and de Bruijn networks. To compare their costs, we need to know the relative weights of

the cost dimensions, but we chose not to specify these weights because they were technology

91

dependent. Therefore, the answer to the above question is technology dependent, and we
can answer it by first determining the relative weights of the cost dimensions based on the
technology of interest. Then, we would use these weights to compute the actual monetary
costs of the different networks and select the network that has the lowest cost.

Similar to the previous chapter, we evaluated several alternative network organi-
zations for the lower level of the hierarchy, and found that the general results were similar.

The results in this chapter also reinforce a result we obtained in the previous
chapter. In the previous chapter, we did not include the number of bundles in the cost
vector, and under the previous model we saw that the complete graph was the best inter-
module network. Comparing networks evaluated under model 2 on the basis of equal pin-
counts illustrates this result. If we permit the complete graph network to use the same
number of pins as a 2-hop network, the bisection width of the complete graph becomes
twice that of the 2-hop network. Although we did not explicitly simulate a complete graph
with twice the bisection width, we can get a good approximation of the performance of
such a network by looking at the performance of the complete graph network under 50%
load, because doubling the bisection width also doubles the peak throughput. When we
compare the performance of the complete graph with a mean access of 32 cycles with the
performance of the 2-hop network with a mean access interval of 16 cycles, we see that the
complete graph network achieves significantly greater processor utilizations. In fact, most
of the networks in which the inter-module network is a complete graph, achieve almost
100% processor utilization. Therefore, we can clearly see that comparing networks based

on equal pin-counts favors the complete graph.

92

Chapter 6

Model 3: Three level hierarchy

This model is motivated by the fact that the cost of the different wires that go
between modules may not all be identical. Wires that connect modules which are physically
close to each other will be short and therefore, likely to be less expensive than wires that
connect long distances. For instance, in a packaging hierarchy where modules correspond to
card-cages, wires that go between card-cages within a cabinet are likely to be cheaper than
wires that go between cabinets. In this model, we use an additional level of packaging to
characterize this difference in costs. In general, we can increase the number of levels in the
packaging model, to characterize the technology to a greater level of detail. In this chapter,
we assume that the machine is packaged using a 3 level hierarchy. At the top level the
machine consists of level-2 modules which we call clusters. Each level-2 module consists of
level-1 modules which we simply call modules as before. The connections between modules
in the same cluster correspond to the short connections and the connections that go between
modules in different clusters correspond to the long distance connections.

As before we have intra-module and inter-module connections, but now, the inter-
module connections are divided into two categories: intra-cluster connections and inter-
cluster connections. Each module has two kinds of pin-count: intra-cluster pin-count and
inter-cluster pin-count. The intra-cluster pins are used to make connections between mod-
ules within the same cluster and the inter-cluster pins are used to make connections between
modules in distinct clusters.

The cost vector under this model is more complicated than the ones used in the
previous chapters. In this model, the cost vector has five dimensions: the number of clusters,

number of modules per cluster, the level-2 pin-count, number of level-2 bundles, and the

93

level-1 pin-count. The level 2 pin-count is the number of long-distance wires connecting to
each cluster or the total number of inter-cluster pins used by the modules within a cluster.
As before, we shall assume that there is a limit on the maximum number of processors that
we can put in a module. We shall also assume that a similar limit exists on the number of
modules in a cluster. |

Since the cost vector has many more dimensions than the earlier models, an ap-
proach we took in the earlier chapters, namely one of fixing the cost by fixing all the
parameters, is overly restrictive. Instead, in this chapter, we shall fix the performance and
explore the trade-offs between the dimensions of the cost vector. Similar to the previous
models, we shall fix some of the dimensions of the cost vector and examine the trade-offs
between the other dimensions. In this chapter, we fix the number of clusters, the number of
modules per cluster and the level-2 pin-count. In fixing the first two parameters, we mini-
mize both the number of clusters and total number of modules based on the limits on the
maximum number of modules per cluster and maximum number of processors per module
respectively. Since the previous models have already analyzed the relationship between the
top-level pin-count and performance, in this chapter we also fix the top-level (or level-2)
pin-count. We are now left with two dimensions of the cost vector: the number of level-2
bundles and the level-1 pin-count. We explore the trade-off between these two parameters
by considering different values for the level-1 pin-count. We shall see that we if we have
more intra-cluster pins, we can reduce the number of bundles, while maintaining the same
level of performance. As before, we use fix the performance of the network by fixing its

bisection width.

6.1 Network choices

Let the total number of modules be M, and the number of modules per cluster be
C, for a total of M/C clusters. We have already seen that the best top-level network when
the number of top-level pins is fixed, is a complete graph. Since there are (M/C) clusters,
fixing the bisection width at B, implies that each edge in the complete graph topology must
correspond to m%f wires. Since each cluster is connected to (M/C)—1 other clusters, the

number of level-2 pins required per cluster is 419’(%/8;1) = 4B (AA{IZC)C. In this chapter we

consider the case M=32, and C'=4 and as before, we fix B=8192. For this particular case,

each pair of clusters is connected using 512 wires, and the number of level-2 pins required

94

per cluster is 3584.

However, we still consider the connections to be between modules, since clusters
are conceptual units of the hierarchy that mainly help us distinguish between short and long-
distance connections. We observe that we can have many different inter-module topologies
that lead to a complete graph between clusters.

For example, if we use a complete graph between modules, the interconnection
between the clusters is also a complete graph. Each inter-cluster edge corresponds to C? =
16 inter-module bundles, since each module within a cluster has a connection to each module
in the other cluster. Since the inter-cluster edges correspond to % = 512 wires, each
inter-module bundle consists of 1‘:/[—% = 32 wires. There are a total of M@ = 496 inter-
module bundles, of which (M/C) x Q(%l = 48 are short-distance bundles and 3(¥)(¥ -
1)*C? = 448 are long-distance bundles. Each module requires]‘tI—BQ(C’ —1) = 96 intra-cluster
pins and]‘t,[—%(M — C) = 896 inter-cluster pins. Figure 6.1 shows this network.

Another inter-module topology that leads to a complete graph between clusters
is the 2-hop network K¢ X Kpp/c. In this network, messages make 2 hops, one hop over
the intra-cluster connections and the other hop over the inter-cluster connections. Between
any pair of modules, there are C' = 4 inter-module bundles, because each module is only
connected to its corresponding module in the other cluster. Therefore, the long-distance
bundles consist of %% = 128 wires. This network has a total of ()« (4 - 1)xC =
112 long-distance bundles. The number of short-distance bundles is the same as before:
(M/C)* g%’—ll = 48, but each bundle is wider, in order to support the larger bandwidth
that is required by the 2-hop network. Each of these short-distance bundles is 256 wires
wide and the number of intra-cluster pins per module is be 768. This topology trades-off
a larger number of intra-cluster pins for a reduction in the number of bundles. Figure 6.2
shows this network.

The complete graph and the 2-hop network topologies discussed above are the
fundamentally the same as the inter-module topologies that we used in Chapters 4 and
5. The only difference between them is the way the pins and bundles are accounted for.
For the complete graph inter-module network, all the networks with M = 32 considered in
Chapter 4, are valid candidates under this packaging model. We only consider the networks
Butterfly.8.8 and Butterfly.32.8 for the purposes of comparison in this chapter. Similarly
all the networks for M =32, considered in Chapter 5, are valid candidates, and we consider

the networks Butterfly(2-hop).32.64-32 and Butterfly(2-hop).64.64-32 in this chapter.

Figure 6.1: Complete graph between modules

95

96

Cluster

Figure 6.2: 2-hop network K4 X Kg between modules

97

The 2-hop network described above requires 112 long-distance bundles and 768
intra-cluster pins per module. If we have an even larger number of intra-cluster pins, we
can reduce this number of bundles further. In going from the complete graph to the 2-hop
network we reduced the number of long-distance bundles by a factor of C. The number of
bundles between any pair of clusters was C? in the case of the complete graph, and C in the
case of the 2-hop network. We can build a network which we call a Clustered network, in
which we reduce the number of inter-cluster bundles by another factor of C, down to exactly
one bundle between any pair of clusters. Figure 6.3 shows this network. The total number
of inter-cluster bundles required by this network is %(%) * (% — 1) = 28 and the number
of intra-cluster bundles remains (M/C) * ﬂ%l = 48. In this network, all the wires that
go between any pair of clusters are connected between some pair of modules, one in each
cluster. Messages in this network make a maximum of 3 hops to get from one module to
another. First the message goes from the source module to the appropriate module within
its cluster. The second hop is made between clusters, taking the message to the correct
destination cluster. The third hop then moves the message within the destination cluster
to the correct destination module. Of the 3 hops, two hops are within clusters and one
hop is between clusters. Therefore, the short-distance bundles have to be twice as wide
as the bundles in the 2-hop network, namely 512 wires each. Each module requires 1536
intra-cluster pins. As in the two earlier cases, the total number of inter-cluster pins per
cluster is 3584, but since there are 7 inter-cluster channels and 4 modules per cluster, three
of the modules have 2 channels each, and one module only has a single channel. Since each
channel is 512 bits wide, three of the 4 modules require 1024 inter-cluster pins while one
module requires 512 inter-cluster pins.

We can use a strategy similar to the one used in Chapter 5 to reduce the number
of intra-cluster bundles, by using a multi-hop network that requires more intra-cluster pins.
But for the case that we consider in this chapter, C = 4 modules per cluster, it does
not make much sense to make the intra-cluster network sparser since the complete graph
interconnect is only on 4 modules. For larger cluster sizes, we could consider using a 2-hop
or a 3-hop network between the modules within a cluster.

We can generate a clustered network by suitably partitioning a butterfly network
as shown in figure 6.4. The figure shows the connections within a single cluster. Based on
the bisection width and the total number of pins used for inter-cluster, and intra-cluster

connections, the inter-cluster channels are 128 bits wide and the intra-cluster channels are

Figure 6.3: Clustered Network

98

- Intra—cluster connections -

~
~
~— —
~ ——
~———— —

Figure 6.4: Partitioning a butterfly to yield a Clustered network

\

\

\

i

)

I

I

I
J
j

/

99

100

Network Inter-cluster | Inter-cluster | Intra-cluster | Intra-cluster
Pins/module | Bundles Pins/module | Bundles
Butterfly.8.8 896 448 96 48
Butterfly.32.8 896 448 96 48
Butterfly(2-hop).32.64-32 896 112 768 48
Butterfly(2-hop).64.64-32 896 112 768 48
Butterfly(Clus).64.64.128 512, 1024 28 1536 48
Butterfly(Clus).128.128.128 | 512, 1024 28 3072 48

Table 6.1: Pin and bundle requirements

64 bits wide. To balance the bandwidths, intra-module channels of 64 bits are sufficient.
As per our convention, we call this network, with the above channel width specifications,
Butterfly(Clus).64.64.128. If we have more intra-cluster pins than the number required
by Butterfly(Clus).64.64.128, we can make the intra-cluster connections wider. We also
consider the network Butterfly(Clus).128.128.128 in which all the channels are 128 bits
wide. This network uses twice the number of intra-cluster pins per module as Butter-

fly(Clus).64.64.128. Table 6.1 summarizes the characteristics of the different networks.

6.2 Simulation Results

Figure 6.5 shows the results of the open-network workload simulations. Figures 6.6,

6.7, 6.8 and 6.9 show the results for the multithreading workload model.

6.2.1 Discussion of results

Again, the results this model follow the same general trends as seen in the previous
chapters, i.e., network performance can be improved by improving the local communication
bandwidth (even when the top level bandwidth is the same), and it is better to organize a
fixed amount of communication bandwidth as fewer wider channels. This is evident from
the improvement in performance resulting from using denser networks at the intra-cluster
and intra-module levels. All the networks shown in the graphs have the same number
long-distance pins per cluster, but they use different numbers of bundles and intra-cluster
pins. The 2-hop and Clustered networks have fewer bundles that are wider, and they achieve

better network performance than the networks based on a complete graph between modules.

101

250 ' ' Butterfly.8.8
e—— —o Butterfly.32.8
»—~———x Butterfly(2-hop).32.64-32
200 — —
LERLERREEED -o Butterfly(2-hop).64.64-32
a—-—-—a Butterfly(Clus).64.64.128
150 — | @—-——o Butterfly(Clus)128.128.128
g
c
[
®
-
100 — —
50 — —
0 | B R B
0 20 40 60 80 100
Normalized load
Figure 6.5: Open-Network Model; M =32 modules, C'=4 modules per cluster
Butterfly.8.8 \ N #Threads = 1
Butterfly.32.8 \‘\ -
\ }] / #Threads =8
Butterfly(2—hop).32.64—32 \ - - #Threads = 16
Butterfly(2-hop).64.64-32 BN
‘l
!
Butterfly(Clus).64.64.128 =T
Butterfly(Clus)128.128.128 1=

0.00 20.00 40.00 60.00 80.00 100.00

Processor Utilization

Figure 6.6: Periodic Access Model, access interval = 16 cycles

Butterfly.8.8

102

Butterfly.32.8

Butterfly(2-hop).32.64-32

Butterfly(2-hop).64.64-32

Butterfly(Clus).64.64.128

Butterfly(Clus)128.128.128

0.00

Figure 6.7: Geometric Access Model, access interval = 16 cycles

Butterfly.8.8

20.00

40.00

60.00

Processor Utilization

80.00

Butterfly.32.8

#Threads = 1

#Threads =8
#Threads = 16

#Threads = 1

Butterfly(2-hop).32.64-32

Butterfly(2-hop).64.64-32

Butterfly(Clus).64.64.128

Butterfly(Clus)128.128.128

0.00

20.00

40.00

60.00

Processor Utilization

80.00

Figure 6.8: Periodic Access Model, access interval = 32 cycles

#Threads = 8
#Threads = 16

103

Butterfly.8.8 N = - #Threads = 1
\ S N s
Butterfly.32.8 R - - k #Threads=4
AN 4 #Threads = 8
Butterfly(2-hop).32.64-32 > I':‘ #Threads = 16

Butterfly(2—hop).64.64-32

o

Butterfly(Clus).64.64.128

\\

AY
\
Butterfly(Clus)128.128.128 \ :
0.00 20.00 40.00 60.00 80.00 100.00

Processor Utilization

Figure 6.9: Geometric Access Model, access interval = 32 cycles

Another interesting factor seen from the open-network results, is that Butterfly(2-
hop).64.64.32 and Butterfly(Clus).128.128.128 have almost flat latency curves even up to
the point where the load is as high as 75 to 80% of the peak. This indicates that the high
bandwidth available at the lower levels of the packaging hierarchy eliminates almost all the

network contention for the channels at the lower levels of the hierarchy.

6.3 Summary

In this chapter, we considered a packaging model that was more complex than
the ones considered in the two previous chapters. The model was based on a three level
hierarchy and was motivated by the need to model short and long-distance connections.
Under this model, we compared the cost of several networks with equal peak performance.
Since the cost vector under this model was more complex than the two previous models, we
only examined the trade-off between two of the dimensions of the cost vector, namely the
short-distance pin-count and the number of long-distance bundles. We saw that we could
reduce the number of long-distance bundles by using a larger number of short-distance wires.
We illustrated this using three different interconnection networks that represented three
separate positions in this trade-off. When we looked at the performance on a finer scale,
we saw that as we reduce the number of long-distance bundles, we got better performance
because reducing the number of long-distance connections increased the widths of the long-

distance channels, which, in turn, improved their utilization.

104

Chapter 7

Scalability

Computer manufacturers usually want to build machines over a wide range in
price and performance to cater to the needs of different customers with varying budgets and
computing requirements. Such a design goal was proposed as early as the 1960s for the IBM
System/360 [SBN82]. The IBM System/360 achieved a performance range of fifty to one
by employing a wide choice of components, engineering techniques and technologies. The
designers of the 360 family invested considerable effort in the design of separate machines
for each point on the price-performance curve.

A similar design goal of providing a wide range in price and performance be-
comes even more important in the case of parallel machines, since it seems natural to buy
more processors when a more powerful machine is needed. Further, in the case of parallel
machines achieving this design goal seems easier (than in the case of System/360), since
performance can be increased by increasing the number of processors. Therefore, parallel
machine manufacturers wish to design machines that can be built for a wide range of sizes
to enable customers to purchase a machine appropriate to their needs. Besides, customers
also frequently discover that their computing needs outgrow the capacity of the machine
they currently have [Bel92], and often desire to upgrade their machine by increasing the
number of processors. Therefore, manufacturers often want the ability to incrementally
upgrade parallel machines to larger sizes.

Since designing parallel machines usually requires substantial investment in time,
effort, and money, it is desirable to reduce the complexity associated with the design process.
While designing machines over a range of sizes, manufacturers prefer that many aspects of

the design carry over from one machine size to another. It is often preferable to build

105

the entire range of machines from some small set of building blocks. The effort invested
in designing the building blocks, then is amortized over the whole family of machines.
In contrast, designing each machine of the family separately, in a manner similar to the
System/360 would imply substantially higher design costs and time.

However, it is conceivable that when each member of the family is designed indi-
vidually, each member may provide better performance because we may be able to perform
many design optimizations that would not be possible in the building block approach. Since
the building blocks have to be usable all the machines of the family, we may be faced with
more stringent constraints in the design of the building blocks themselves. It is also con-
ceivable that the additional constraints on the building blocks may lead to an increased
usage of packaging resources such as pins, wires etc. In other words, cutting design costs
may result in an increase in hardware (or packaging) costs or a reduction in performance.
In this chapter we explore this trade-off in greater detail.

The ability to build parallel machines over a wide range of sizes is usually re-
ferred to as scalability. However scalability is currently an intuitive notion that has no
formal definition [Hil90]. First, in Section 7.1 we formalize the general intuition regarding
scalability and provide a definition of the term. Our definition permits us to distinguish
machine families as being scalable or unscalable. We then classify scalable machine fam-
ilies into a number of broad categories based on the relative design costs associated with
them(Section 7.2). This classification is based on the size of the building blocks that are
common across the members of the family. We illustrate this classification by extending a
few of our earlier 1024 processor designs to families corresponding to each of the scalability
categories (Section 7.3). A comparison across the families illustrates the trade-off mentioned

earlier(Section 7.4).

7.1 What is scalability?

The main reason for building a family of machines over a range of sizes is to provide
a range in cost and performance. Larger machines should provide correspondingly higher

performance for higher cost. Therefore we define scalability as follows:

Definition 7.1 A network family is (P, C)-scalable in the range [No, N1], if for each ma-
chine of size No < N < Ny, the performance of the machine exceeds P(N) and the hardware

106

cost is less than C(N).

Note that the definition is qualified by the functions P(N), C(N), and the con-
stants No and N;. The functions P(N) and C(N) are the desired performance and cost
respectively. Ideally, network performance should increase linearly in network size'. There-
fore, we define P(N) = constant+N. We would also like the cost to be linear in the size of
the network, however a linear increase in performance usually implies a super-linear increase
in cost.

The reason for the super-linear increase in cost is as follows. As the network size
increases, the average distance traveled by a message usually increases. In order to maintain
alinear increase in peak throughput, as the network size increases, the total number of wires
in the network should increase in proportion to the product of the network size and the
average distance traveled by messages. This implies that, in order to provide a linear
increase in peak throughput, the number of wires in the network must increase in a super-
linear fashion. Therefore, unless C(N) is a super-linear function, we will end up classifying
all networks as unscalable. Typically we might choose C(N) = constant+N log N.

Given P(N) and C(N), each network family will have a (possibly null) range of
scalability — [No, N;]. Figure 7.1 shows the ranges for a few common network topologies?.
The networks have different ranges of scalability depending on where their performance and
cost curves cross the bounding functions P(N) and C(NV). Rings have a constant bisection
bandwidth and a cost that is linear in network size. 2D meshes also have linear cost, but
their bisection bandwidth is proportional to v/N. For both these networks, the range of
scalability is limited by performance. On the other hand, both the bisection bandwidth and
cost of the complete graphs are proportional to N2, and the range of scalability is limited
by cost.

If a network family has a range of scalability [Ng, 0], we call it asymptotically
scalable. Most practical networks are not asymptotically scalable; instead networks have
a bounded range of scalability. Although asymptotic scalability is interesting from a the-
oretical point of view, practical considerations limit the range of machine sizes that are

interesting. It is unnecessary to consider building machines that cost so much, or consume

'In this dissertation, we measure performance in terms of the bandwidth of the network under randomly
distributed communication traffic and we estimate the network performance using its peak throughput. We
saw that for such traffic the bisection bandwidth is a good estimator of network performance

Zassuming a fixed channel width

107

=i Complete Graph
ke P(N)
3
c
3]
a
e 2D Mesh
2
2]
£
8
@
1
Ring

-

| Size (# Processors)

e >
| Range for Ring

: Range for 2D Mesh

| Range for Comple}e Graph
L————»

A

C(N)

Comp. Graph

o

Hardware Cost

2D Mesh

Ring

Size (# Processors)

Figure 7.1: Ranges of Scalability

108

\

C(N)

Hardware Cost

Size

Y

max

?9 P(N)

Figure 7.2: Scalability space

so much power, or occupy so much space, that nobody would be able to afford them. For
parallel computers built using state-of-the-art microprocessors, we believe that the upper
limit is in the neighborhood of 1000-2000 processors®. Accordingly, we are mainly in-
terested in networks with a range of scalability [No, Nnaz], where Nyq, is defined based
on technological and economic considerations. Ng can be taken to be 0 without loss of
generality.

To summarize, we define a network family to be scalable if all the members of the

family fall within the shaded region shown in figure 7.2.

3The largest available configurations of many of the current parallel machines that use reasonably powerful
32-bit processors, such as the CM5, KSR, Intel Delta, etc, are of the order of a 1000 processors [CKP*92].
The reason for this limit is primarily cost; the average cost these machines is in the range of $10,000 to
$30,000 per processor [BBDS92], and not many customers are willing to spend more than $30-50 Million on
a parallel machine.

109

7.2 Design costs vs. Hardware costs

Our definition of scalability does not specifically exclude families in which each
member of the family has a completely different architecture design. For example, it is
possible to define a family of machines which use busses for up to, say, 32 processors, 2D
mesh from 32 to 128 processors, and maybe a butterfly for sizes larger than 128 processors.
This artificial family illustrates a deficiency in our definition, namely that it ignores design
costs.

While it is relatively easy to compare the performance of two network families, and
it is possible to use models developed in this thesis to characterize hardware (or packaging)
costs, modeling design costs is an extremely complex task. While it is possible to associate
physical resources such as pins and area with hardware costs, design costs tend to be
intangible and hard to quantify. Instead of trying to develop a model to characterize design
costs we will characterize design costs in terms of the fraction of the machine that remains
common across the members of the family. An artificial family such as the one described
above will have a high design cost since there is very little in common between all the
members of the family.

Recall that we model packaging technology as consisting of a hierarchy of [levels
of packaging modules, where each level-i module consists of some number of level-(z — 1)
modules which in turn consist of level-(¢ — 2) modules and so on. The packaging hierarchy
gives us a natural way of classifying network families according to design costs. We consider
a network family which uses the same level-¢ modules in all members of the family to have
lower design costs than one in which only level-(i — 1) modules are common to all members,
but the level-i modules are different. In the latter family the building blocks are smaller, and
the design of all the levels above level-(¢ — 1) have to be done separately for each member.

When all the members of a network family use the same level-: modules, we say
that the family is scalable by level-i reconfiguration since changing the machine size requires
reconfiguring the interconnections between level-: modules. If a customer wants to upgrade
a machine, the machine is dismantled down to its level-: modules, additional level-: modules
(which include the additional processors) are brought in and all the level-i modules are then
interconnected to obtain the new machine.

Scalability by level-0 reconfiguration means that all machines in a family use the

same level-0 modules, which we earlier defined to be processors, memory units or routing

110

nodes. We can consider networks in which even the level-0 modules change from one member
to another. Such families have nothing in common across their members, except perhaps,
some high level design concept. We call such families scalable by concept. Each member of
the family uses distinct building blocks that may all be designed based on the same concept.
Upgrading such machines to larger sizes essentially means the customer replaces a smaller
machine by a larger one. This form of upgrade is similar to upgrading work-stations or
other uniprocessor machines.

At the other extreme are families in which the larger networks actually contain the
smaller networks as a sub-portion. We say that such families are scalable by inclusion. Note
that scalability by inclusion is not the same as scalability by level-(I — 1) reconfiguration
though the top level of the hierarchy is level-(I — 1). In scalability by level-(I — 1) recon-
figuration, the connections between the top level modules can be changed from one family
to another, but this is not permitted by scalability by inclusion. Upgrading machines that
are scalable by inclusion is extremely simple. The customer purchases additional processors
and network hardware, and simply connects them to the existing machine.

Clearly a machine that is scalable by inclusion is also trivially scalable by level-
(I = 1) reconfiguration, which in turn is trivially scalable by level-(I — 2) reconfiguration and
so on. Therefore these categories classify interconnection networks into mutually inclusive
categories as shown in figure 7.3. As we go towards the center of the figure, design costs
decrease owing to the additional constraints on network design. However, as we pointed
out earlier, these constraints may increase packaging costs or reduce performance. We shall

examine these trade-offs in the following sections.

7.3 Scaling of previous network designs

In Chapters 4, 5 and 6, we considered network designs for 1024 processor machines
under different models of packaging costs. The designs that we evaluated were specific to
a machine size of 1024. We now consider extending the designs to a family of networks of
different sizes and analyze the variation in packaging costs as the network designs conform
to the various categories of scalability described above. Here, we consider networks under
packaging model 1, but a similar analysis can be performed for the other packaging mod-
els. We consider a range of scalability of 1-1024 processors, and a peak communication

bandwidth of 8 bits per processor, per cycle, under randomly distributed communication.

111

Scalability by concept

calability by level (i-1)
reconfiguration

Scalability by level i
reconfiguration

Scalability
by
inclusion

Figure 7.3: Classifying networks in terms of scalability

112

The packaging technology used under model 1 consisted of a two level hierarchy
where processors were placed within modules, and were interconnected using two levels of
wiring, namely inter-module connections and intra-module connections. The cost function
under this model had two components, the number of modules and the pin-count per mod-
ule. We also had a restriction on the maximum number of processors we could place within
a module. In Chapter 4, we considered modules which could hold 16, 32 or 64 processors,
but in this chapter we restrict ourselves to 32 processors per module. In this section we
show how we can build families of networks for the following network sizes: N=32, 64, 128,
256, 512 and 1024. We shall illustrate three separate families, corresponding to the three

categories described above.

7.3.1 Scaling by concept

Under scaling by concept, we permit each member of a network family to be
designed independent of the others. This approach permits us to design each member of
the family so that it achieves the maximum performance for a given cost. Recall that under
model] 1, we showed that maximizing the performance for a fixed cost required the inter-
module network to be a complete graph. We also saw that we could partition a butterfly
network on N inputs into v/N modules, to get a complete graph between modules.

We could take the same approach to designing each member of the family of
networks, but in this approach, since each module has /N processors, networks smaller
than 1024 processors use fewer processors per module than permitted. This results in a
larger number of modules than necessary and increases the cost. So we fix the number of
modules M = N/32 and build a complete graph over these modules.

A natural way of building a complete graph on M modules, is to partition a
butterfly network on M? inputs. However, the resulting network will only have M inputs
per module, but N/M processors per module. Therefore, we connect N/M? processors to
each input using a binary tree. Memory units are connected in a similar manner. Since the
per processor network bandwidth remains constant, all the networks will have approximately
the same number of pins per module. However, these pins will be partitioned among fewer
channels in the smaller machines, resulting in wider inter-module channels in the smaller
machines. Figure 7.4 shows the internals of a module for a network with N = 256.

In this family of networks, the channel widths and the amount of routing hardware

113

4 processor |

Figure 7.4: Scaling by concept: 32 processor module for a 256 processor network

114

per module change as we scale the machine. Hence this mode of scaling is considered to be
scaling by concept. We can also extend this construction to machine sizes larger than 1024
until the point where we have sufficient pins per module to build a complete graph between

modules. Machine sizes beyond that are not feasible in this family.

7.3.2 Scaling by level-1 reconfiguration

For scaling by level-1 reconfiguration, we fix the network within a level-1 module,
and use the same module to build machines of different sizes. Fixing the contents of a
module also fixes the total number of wires leaving the module, and the way the wires are
partitioned into channels. We can divide the total number of wires leaving a module into
32 channels corresponding to a machine size of 1024 processors. Machine sizes smaller than
1024 processors, require wider channels between the modules. Since we cannot change the
widths of the channels, as we did in the previous family, we use channel dilation to achieve
the required number of wires between any pair of modules. If there are N processors, we
need M = N/32 modules. The connection between any pair of modules consists of 32/M
channels. This gives us the required peak bandwidth needed to meet the performance
specification. In this network, when we double the number of processors, we have to re-
organize connections between modules by reducing the dilation of the inter-module channels
by a factor of 2 to accommodate the new modules that are to be included.

Each network in this family requires approximately the same number of pins as
the previous family. Since packaging cost was assumed to be equal to the pin-count under
model 1, this network family has approximately the same packaging cost as the previous one.
However, this family requires more routing hardware per module. The additional hardware

contributes to higher packaging costs, but this difference is ignored by our packaging model.

7.3.3 Scaling by inclusion

In the two previous families, we used a butterfly network to interconnect the
processors. This network consisted of log N switching stages and connected the processors
at one end to the memories at the other end. Since processors and memories are logically
paired with each other, we can think of this network as folding a butterfly over itself so
that each input is paired with an output. If we have to double the number of processors,

we have to double the number of rows of the butterfly and increase the number of columns

115

by 1 and then fold the network over itself. Since the additional column of switching nodes
falls between the processors and memories, this network does not lend itself to scaling by
inclusion.

One way of achieving scaling by inclusion, is to double the number of routing stages
to 2log N to generate a Benes network which is shown in figure 7.5. The network is shown
with processors on the left and memories on the right, but it is actually folded over itself
so that the processors and memories are placed adjacent to each other. A Benes network
is equivalent to a fat-tree network in which the total bandwidth at each level remains
constant. Scaling the network in this design requires adding additional modules consisting
of only routing nodes. An example of scaling the network from 16 to 32 processors is shown
in figure 7.6.

Two of the currently available commercial machines, the Meiko CS2 and the CM5*
use the folded Benes network. Another network seen in commercial machines that exhibits
the property of scaling by inclusion is the Hypercube. In both networks, the average number
of hops made a message grows logarithmically in N, the machine size, and in both networks
the total number of wires grows as N log N. We already noted that we need a super-linear
increase in the number of wires to achieve a linear increase in throughput. The folded
benes achieves this super-linear increase in wires by adding routing nodes, where as the
hypercube increases the number of wires per node. For scaling by inclusion, we can not
actually increase the number of wires per node, so each node in the hypercube should
already have enough wires for the largest machine we plan to build. The hypercube, then,
wastes these wires in the smaller configurations since they remain unused.

In the family of folded benes networks, the average number of hops that messages
have to make, to get from their sources to destinations, is twice the number of hops in the
butterfly network. To meet the same peak bandwidth specification, networks in this family
require approximately twice the number of routing nodes and twice the number of wires as
the butterfly network. We also have restrictions in partitioning this network because we
do not want to modify the existing network when we scale the network to a larger size.
We can put 32 processors per module as before, and include five columns switching stages
within each module for each of the two butterfly networks. For larger machines we need

more routing stages and these have to be placed in additional modules which are connected

*In the case of the CM5 the bandwidth does not remain constant, but reduces by factor of 4 in the first
two levels

116

.) O)))
SN A —

SR
.x.A‘.\;;;,\\\'llA\\'llA\vm.-.

o o Q ANN\VIZ42060
,x«,\v,01010\\\\'0VIIA\\\IOI(IIIAXOXWA:'
POV IANNSNN AN IO
AN AN AN AN
S 2NN L XXXIKXNA KXXXKXIN N <
s XX \VI/I)I“'OK\VI)IOMA\\\VI < ', A
.x«.' “ SIS NN SN ® A,X,
oo 0'0'0‘«/1[[NN\ ZZ7AN \\\\:XX}, o0
,I,WA IIA\\VIIA\\V’A‘W,I,

Memories

.A XA ol o o‘ OO0
O N7 7 NZA N
\J \J W A J

Figure 7.5: Benes network

to the modules that contain processors.

Since the partitioning of the network into modules is different from that of the two
previous families, it is difficult to compare the packaging costs of this family with that of the
two previous families. However, since we can see that this family uses approximately twice
as many wires and routing nodes as the two previous families, we can expect the packaging

costs of this family to be around twice that of the previous families.

7.4 Performance Comparison

In this section, we compare the performance of the three families of networks
described above. For fairness, we hold the packaging costs of the three families the same
while comparing the performance. The differences in performance illustrate the trade-offs
between network performance and design cost.

The family of networks that are scalable by concept and the family of networks
that are scalable by level-1 reconfiguration have the same packaging cost as per our packag-

ing model. Therefore a direct performance comparison between the two families is justified.

117

Routing nodes added

N |

|

|

1

fa) V/‘\\ |
/ I

) |
|

|

|

|

|

1

N\NZAN\NI/4
AN/
NN N4

16 Processor network 16 Processor network

I Nodes added |

Figure 7.6: Scaling a benes network

118

However, the packaging cost of the third family (fat-trees or benes networks) is approx-
imately twice that of the other two families. To normalize packaging costs to the same
level as the other two families, we have to reduce the bisection width of this network by a
factor of two. This will lead to a drop in the performance by approximately a factor of two,
making the latter family substantially worse in comparison to the other two families. This
suggests that we lose approximately a factor of two in performance for the lower design cost
and higher scaling flexibility provided by scaling by inclusion.

Figures 7.7 and 7.8 compares the performance of the networks that are scalable by
concept to the networks that are scalable by level-1 reconfiguration. All the networks have
the same peak performance (on a per processor basis), but they differ in the fraction of peak
performance that is achieved under simulation. When the number of threads is small, we
see that the networks that are scalable by concept provide better performance. The main
reason for this difference in performance is the difference in the organization of the inter-
module wires. In the first family, the wires that go between modules are organized as wide
channels, while in the latter the same number of wires is organized as many narrow channels.
At low levels of multithreading, the number of messages in the network is insufficient to
utilize all the wires in the latter family. As the number of threads increases, the difference
in performance reduces, since increasing the number threads results in a larger number of
independent messages in the network. In other words, the higher design cost of scaling by
concept does not buy much in terms of performance when the number of threads is high,

but does so when the number of threads is low.

7.5 Summary

Scalability of parallel machines has long been an intuitive notion without a formal
definition. In this chapter we first provided a formal definition of the term which gave us
a means for classifying network families as being scalable or unscalable. Our definition of
scalability was based on the manner in which the performance and cost increased as we
increased the size of the machine. We argued for a linear increase in performance and that
a linear increase in performance usually implied a super-linear increase in hardware cost.

We considered two aspects of the cost of a machine, namely hardware (or pack-
aging) costs and design costs. Although design costs were difficult to quantify, we were

able to classify scalable networks into three broad categories based on the relative design

64-redes

64—recon

128-redes

128-recon

256~-redes

256-recon

512—-redes

512-recon

0.00

20.00

40.00

60.00

Processor Utilization

80.00

100.00

Figure 7.7: Periodic Access Model, access interval = 16 cycles

119

#Threads = 1
#Threads = 2
#Threads = 4
#Threads = 8
#Threads = 16

64-redes

64—recon

128—redes

128-recon

256-redes

256—recon

512-redes

512-recon

0.00

20.00

40.00 60.00

Processor Utilization

80.00

100.00

120

#Threads = 1

#Threads =8
#Threads = 16

Figure 7.8: Geometric Access Model, mean access interval = 16 cycles

121

costs associated with them. At one extreme there were families of networks which had high
design costs, but low hardware costs for a given performance, and at the other extreme were
networks that had low design costs but high hardware costs. We demonstrated extensions
to some of our previous designs according to each of the three categories. We compared
these three families on the basis of equal hardware costs to illustrate the trade-off between

performance and design costs.

122

Chapter 8

Fault-Tolerance

Most of the networks that we evaluated in this thesis, and found to provide the
highest performance for a fixed cost, also had the property that there was a single path from
any input port to any output port. While the single path property simplifies the design of
the routing nodes, it also poses difficulties in the presence of faults. Even a single faulty
routing node or faulty channel in the network can affect many different paths.

In this chapter we present a simple and practical fault-tolerance scheme to over-
come the problems caused by network faults. Our approach to dealing with faults is to send
messages using two passes over the network when the direct path is faulty. OQur approach is
an extension to the work by Varma and Raghavendra [VR89] and Leighton et al. [LMS92].

Our fault-tolerance scheme has the following properties:

1. It requires no modification to the underlying network. We do not add additional links
or extra stages to the butterfly. The design of the routing hardware remains the same

as a network that does not have any fault-tolerance properties.

2. When new faults are discovered, the machine is halted and it enters a recovery phase.
During the recovery phase, we compute two pass routes for messages whose paths
are affected due to faults. At the end of the recovery phase, each processor will
have a routing table that specifies these routes. Since we wish to maintain complete
communication capability between all the alive processors, we may need to disable
some processors to ensure this property. Our experimental results show that the

number of processors lost is minimal.

3. The performance of the network suffers some degradation. The extent to which this

123

happens is quantified in Section 8.4.

In Section 8.1 we give a brief description of our fault-tolerance scheme and in
Section 8.2 we describe the operations that are carried out during the fault-recovery phase.
Section 8.3 discusses related work. Finally Section 8.4 presents a simulation based evaluation

of our fault-tolerance scheme.

8.1 Approach

We model network faults as faults in the routing nodes. No messages may be
routed through faulty nodes. We assume that faults are placed randomly and that the
locations of the faulty nodes are globally known.

We denote the fact that the direct path from processing element (PE) p to ¢ is
fault-free by p — ¢. p # ¢ implies that at least one node along the path is faulty. If p 4 ¢,
then we attempt to find an alternate path for messages from p to q. This path consists of
two passes through the network. The message first goes from p to some other PE, say r.
The message is then sent from r to ¢. We call » the relay for messages from p to g. The
selection of relays is done off-line during the recovery phase and stored in tables at each
PE. Each PE maintains a table of size N which tells if the direct path to the corresponding
destination is faulty, and if so, the address of the chosen relay. Since the selection of relays
is done during recovery, all messages from p to ¢ pass through the same relay r.

The routing nodes in the network route the messages based on routing tags that
specify the destination of a message. In order to use the two pass scheme for sending
messages, each message carries two addresses; the address of the relay and that of the final
destination. During the first pass, the address of the relay forms the routing tag. When the
message reaches a PE, it checks the destination address of the message. If the destination
address is different from its address, it replaces the routing tag with the destination address

and sends the message along.

8.2 Fault Recovery

During the recovery phase, we compute the routing tables for all the PEs. The

computation of these tables is done in two parts. First we compute the set of alive PEs

124

subject to the constraint that all of them can communicate with each other. Then, we select
the relays in a manner that maximizes the throughput of the network.

We describe the computation of the routing tables for the network Butterfly.32.8
that was discussed in Chapter 4 under model 1, but the computation readily extends to

other networks as well.

8.2.1 Computing the alive set

We first compute the N by N direct connectivity matrix D. Matrix D is a boolean
matrix with entry D(p,¢) = 1if p — ¢, otherwise D(p,q) = 0. Each row of the matrix can
be easily computed using a breadth first search from the corresponding source to figure out
which destinations are reachable. Note that D(p, ¢) need not be equal to D(g, p) in general.
This is because the path from p to ¢ is different from the path from ¢ to p and it is possible
that only one of the two paths is faulty.

Next we compute the boolean matrix T = D? Vv D. T(p,q) = 1 if D(p,q) = 1 or
there is a two pass route from p to g. Since we require complete communication capability
for all the PEs in the alive set, we will disable PEs until the sub-matrix of T’ corresponding to
the alive set is all 1s. Disabling a PE corresponds to deleting the row and column associated
with that PE from the matrix T. Obviously, we would like to disable the minimum number
of PEs, but finding the minimum set is a difficult problem. T represents a directed graph
on N vertices as an adjacency matrix. In order to compute a maximum alive set, we need
to find the maximum clique in the directed graph represented by 7. In general, finding the
maximum clique in a graph is an NP-complete problem, but we find that when the number
of faults is small, the following greedy algorithm yields large cliques and is acceptable in
practice.

We first transform this directed graph into an undirected graph by replacing each
pair of back-to-back edges by a single undirected edge. Unpaired edges get deleted. We sort
the vertices of this undirected graph by vertex degree and eliminate vertices in increasing
order of vertex degree until we are left with a complete graph. The first vertices to get
eliminated are the isolated vertices. The isolated vertices correspond to the processing
elements that are connected to faulty switches in the first or last columns. When the
number of faults is small, we find that we are usually left with a complete graph after the

isolated vertices are eliminated. When the elimination of isolated vertices does not result

125

in a complete graph, the number of additional vertices that need to be eliminated is usually
very small. It may be possible to retain these vertices in the alive set if we allow messages
to make more than 2 passes through the network, but increasing the number of passes
degrades network throughput. Our results indicate that the increase in the size of the alive

set does not offset the throughput degradation nor the added complexity.

8.2.2 Relay selection

After computing the alive set we select relays for all PE pairs that cannot commu-
nicate directly. Let the set R, = {r | p — r Ar — ¢}. Any element of R, , can serve as a
relay for the messages from p to ¢. However, the selection of relays affects the throughput
of the network. For example, we do not want our relay selection algorithm to send a large
number of messages through a single channel or a single PE. Our objective is to select relays
so that network throughput is maximized under random communication.

Recall that the best network architectures had wider channels at the lower levels
of the packaging hierarchy and narrower channels at the higher levels of the hierarchy.
Therefore, the channels at the upper levels of the hierarchy are critical as far as network
throughput is concerned and maximizing throughput requires balancing the load on these
critical channels. For the network Butterfly.32.8 the critical channels are those that go
between the modules. The load on a critical channel z, L., is the expected number of
messages that pass through the channel when each PE sends a message to a randomly
chosen destination. Let I = max,(L;). L is the worst case load and we use the function
1/ L as an estimator of network throughput.

In a fault-free network, since there are N PEs, the probability that any given pair
of PEs will communicate is 1/N. Each direct path between any two PEs (in Butterfly.32.8)
will contain exactly one critical channel and the number of message paths that pass through
any critical channel will be equal to N. The load on each critical channel will be 1. In the
presence of faults, some messages require 2 passes through the network. These messages will
contribute to the load on two critical channels, one for each pass. Also the number of alive
PEs (denoted by N4) will typically be less than N, therefore the individual communication
probabilities will be 1/N4. Given an assignment of relays we first determine the number of
message paths that pass through each critical channel . The number of paths divided by
N4 gives L.

126

Finding an optimum assignment of relays that minimizes the function L is difficult
and expensive in terms of computation time!. Instead of an algorithm that finds an optimum
assignment, we use an algorithm that sequentially selects relays in a greedy manner. We
first compute the loads for the direct fault-free paths as follows. Let C(p,q) denote the
critical channel on the path from p to ¢. For all pairs (p, q) such that p — ¢, we increment
the load Lg(p,q) by 1/Na. Next we pick pairs of PEs (p,q) such that p / ¢ one at a time
and assign relays for them. For each r € R, 4, we evaluate max(Lcp -y, Le(r,q)) based on
the current loads on the critical channels. We choose that r for which this function is the
smallest. If many PEs have the same minimum value, we choose one out them at random.
We assign this PE as the relay for pair (p, ¢) and increment the load on the corresponding
two critical channels by 1/N 4. We repeat this until all relays have been selected.

Our relay selection algorithm has a time complexity of O(N?®) and a space com-
plexity of O(N?). Despite the high asymptotic time complexity, computing the tables for
a machine of size 1024, and 200 faults, requires ohly about 10 Megabytes of memory and

takes less than 15 minutes on a 16 Mhz RISC work-station.

8.3 Related work

A large amount of work has been done on the topic of fault-tolerance of butterfly
networks. A significant fraction of this work consists of techniques that augment the network
by adding extra links or additional stages. See [IAS87] for a survey.

Varma and Raghavendra [VR89] have studied a problem similar to the one dis-
cussed in this chapter. They provide a characterization of fault patterns in a butterfly
network based on how many passes are required to guarantee full connectivity between
PEs. They base their analysis on the absence of faults in the first and last columns of
routing nodes and show that under certain conditions 3 passes are sufficient to establish
full connectivity. If a set of weaker conditions is satisfied, they show that a maximum of
log N — 2 passes is sufficient. Their main concern is connectivity; balancing the load on
the channels and maximizing network throughput is not considered. We limit ourselves to
2 passes through the network since increasing the number of passes can cause significant
degradation in throughput. In practice, network throughput is probably as important as

connectivity. If all messages require log N passes, the network throughput will degrade by

!We suspect that this problem is also NP-complete.

127

at least a factor of log N, and if all the processors are active, it is likely they will run at
1/log N of their normal speed.

In a recent paper [LMS92] Leighton et al. analyze the fault-tolerance properties
of butterflies from a theoretical viewpoint. They consider a network that has a PE at each
node of the butterfly. They prove that even when a large number of nodes are faulty, the
network can emulate a fault-free butterfly with O(1) slowdown. Their routing algorithm is
similar to ours in the sense that messages essentially make two passes over the butterfly.
They select relays at random and show that the congestion in the network is O(log V) with
high probability. They then use Ranade’s scheduling algorithm [Ran88] to route messages
in O(log N) steps. Their results are not directly comparable to ours since our network
architecture is different, but the underlying ideas are similar.

In [LLM90], Leighton et al. evaluate a network called the multibutterfly [Upf89]
which has excellent fault-tolerance properties. A multibutterfly consists of a pair of su-
perimposed butterfly networks, where the nodes of one of the networks are randomly per-
muted within each column. The random wiring between the stages helps in ensuring a
high degree of fault tolerance, but it also destroys the partitionability of the network. The
pin-requirements of a partitioned multibutterfly are significantly greater than a partitioned

butterfly.

8.4 Performance results

The fault-tolerance scheme presented earlier can be applied to any of the networks
presented earlier in this dissertation. In this chapter, we evaluate this scheme for the
network Butterfly.32.8. This network has 1024 processors, divided among 32 modules, with
32 processors and memory units (processing elements) in each module. The intra-module
channels are 32 bits wide and the inter-module channels are 8 bits wide. The network has
a total of 5120 routing nodes, organized as 10 columns of 512 nodes each. Faults are placed
on the routing nodes at random.

We first measured the cost of limiting the message paths to a maximum of two
passes. If we permitted messages to make more than two passes we might potentially be
able to include more PEs in the alive set. Figure 8.1 shows the fraction of PEs that remain
alive in the presence of faults. The line labeled Alive is the actual fraction of PEs that

remained alive under our scheme and the line labeled Max aliveis the fraction of PEs that

128

1.0 . L : . Alive

o—— —o Max alive

0.6 — —

0.4 — —

Size of Alive set

0.2 — —

0 100 200 300 400 500
Number of faults

Figure 8.1: Cost of limiting paths to two passes

would remain alive if we had permitted an unlimited number of passes through the network.
We can clearly see that when the number of faults is small (less than 200), two passes are
sufficient. Almost all the PEs that are lost are those that are connected to faulty routing
nodes in the first or the last column. Even when there are 500 faults, the discrepancy
between the two lines is only 6% indicating that, in practice, two passes are sufficient.

In figure 8.2 the line labeled Greedy shows the value of the worst case load (L)
that was obtained by the relay selection algorithm described in the previous section. The
line labeled Random shows the value of I for an algorithm that assigns relays at random
from among the set of valid relays. The line labeled Average is the average load over all
the critical channels. We can see that our algorithm performs much better than Random,
and that the peak load is within 30% of the average when the number of faults is less than
200.

We first simulated the network under a saturating load where each alive PE sent a
message to a random destination whenever the network was capable of accepting a message.
We measured the peak throughput as the average number of messages delivered per unit
time in steady state. Messages were routed using virtual cut-through routing (see section 3.4

for a description of the routing nodes, buffering, etc). Figure 8.3 shows the observed peak

Load

Peak throughput

5 L . ' I L ' Random

o— — —o Greedy

*————=x Average
4] —
3 N e
2 — _ -
————
- i
- e o e — e e —
.---x———')("""“"
1 —
0 T T T l T I I n
0 100 200 300 400 500
Number of faults

Figure 8.2: Performance of the relay selection algorithm

Observed
e———o 1/ Load
\\
06 — TR
0.4 — —
0.2 — —
0 T | T I T | T
0 50 100 150 200

Number of faults

Figure 8.3: Peak throughput under saturation load

129

#faults = 0

150 I | 1 1 1

125 — —

100 —

75 —

Latency

50 — —

0 20 40 60 80 100
Normalized load

o———o #faults = 25
*————=x#faults = 50
Gererennras -o #faults = 100
A #faults = 200

Figure 8.4: Latency versus message rate

130

throughput (on a per processor basis as a fraction of the capacity of a fault-free network)

versus the number of faults. It also shows the throughput estimated as 1/L. We can see

that 1/ L is a reasonable estimator of peak throughput and that the throughput degrades

by about 20% with 100 faults and about 30% with 200 faults.

We also simulated the network under the open-network workload model. Figure 8.4

shows the results of the simulation. The message rate is shown as a fraction of the capacity of

a fault-free network. We can see that as the number of faults increases, the average latency

increases because more messages need two passes. As the number of faults increases we

also see that the knee of the curve shifts to the left indicating that the peak throughput

decreases. When there are 100 faults, there is approximately a 20% increase in latency and

a 20% decrease in throughput.

131

Chapter 9

Conclusions

In this dissertation , we addressed the probiem of designing efficient interconnection
networks for large scale parallel machines. The main objective was to design networks which
provided high performance for low cost.

We developed a model of packaging technology to characterize the network costs
in the context of a multi-level packaging hierarchy. In order to model the general character-
istics of a wide range of packaging technologies we defined a few generic packaging models
that relied heavily on the property of packaging locality. The generic models based the
computation of network cost on the usage of resources the higher levels of the hierarchy
while ignoring the lower levels.

For each of the generic models, we evaluated different networks using detailed
simulation. The simplest of our generic models used the number of top-level modules and
the pin-count per module as metrics of network cost. Under this model, we found that the
best interconnection network at the top level was a complete graph. A complete graph at
the top level corresponded to a butterfly network between the processors, and we found
that using wider channels at the lower levels of the packaging hierarchy helped in improving
the utilization of the networks at the top level of the hierarchy.

In the second generic model, the computation of network cost was more complex,
and included a third parameter, namely the number of top-level bundles. Under this model,
we were unable to prove the optimality of any particular topology, but we were able to
demonstrate that some classes of topologies were close to optimal. We evaluated in detail
one such class of topologies called n-hop networks. This class of topologies has not received

much attention in literature, even though they provide a good trade-off between pin-counts

132

and number of bundles.

The third generic model dealt with costs at the top two levels of the hierarchy and
illustrated an interesting trade-off between the number of bundles at the top level and the
pin-counts at the next lower level. We found that by using a denser network at the lower
level, we could reduce the number of bundles at the top level.

The results from the three generic models illustrate that although the top level
network determines the performance of the network to a first approximation, we can get
significant improvements in performance by making the lower level networks richer. We also
found that, as a general rule, it was better to use fewer wider channels than many narrow
channels. Wider channels were able to achieve higher utilization than narrow channels
because more independent messages are needed to keep all the narrow channels busy. The
results from the three models also illustrate that for shared memory based communication
primitives, we can get better performance by using fewer memory units with wider ports
to the network. This is due to a reason similar to the benefits provided by wider channels;
it is easier to keep the memory units busy when there are fewer memory units with wider
channels. This result suggests that it might be better to build networks out of small
shared-memory multiprocessing units rather than single processor-memory pairs. Many of
our network evaluations were based on multithreaded processors, and our results indicate
that multithreading provides the processors with the ability to tolerate network latencies;
latency tolerance translates to higher network performance.

We did not exhaustively compare all the network architectures at the lowest level
of the packaging hierarchy, but we were able to demonstrate that some simple architectures
achieved performance close to the upper bound. There may be other network architectures
which have similar performance; for example it may be possible to build a 2D mesh at
the lowest level, with sufficiently wide channels, so that it achieves performance close to
the upper bound. When we consider the lowest level network in isolation, it is conceivable
that many different networks achieve the same performance for different costs, and it may
seem desirable to pick the one with the lowest cost. However, we believe that the cost of
the lowest level network is only a small part of the overall network cost, and therefore,
were ignored by our packaging models. If these costs did indeed matter, we could extend
our model to include these costs, and analyze the cost-performance trade-offs at the lowest

levell.

'However, due to pin-count and bisection width considerations, similar to those considered in Chapter 4,

133

We formally defined scalability and divided networks into three broad categories
based on the difficulty involved in scaling them. At the one end were networks in which
the smaller networks were sub-portions of the larger networks. These networks can be
easily scaled at the customer’s site by simply adding on the additional parts required by
a larger machine. At the other extreme were networks in which the larger networks had
components that were different from the smaller ones. Scaling such networks essentially
meant replacing the smaller network by a larger one. The other category of scalability
represented networks that fell in between these two extremes. We evaluated the performance
differences between the three categories of scalability and found that achieving greater
scaling flexibility implied either an increase in cost or a reduction in performance. We
provided a quantitative evaluation of the implications of designing networks with different
levels of scaling flexibility.

We also presented a mechanism to tolerate faults in butterfly networks. The idea
behind the fault-tolerance scheme was simple; any message that could not be sent directly
was sent in two passes over the butterfly network. The difficult aspect of this fault-tolerance
scheme, was the selection of paths for messages that were sent in two passes. These paths
had to be chosen in a manner that minimized the performance degradation due to load
imbalances in the network. In general, finding optimum paths for these messages was a
difficult problem. We presented a few heuristics that selected paths in a manner that
yielded a good balance in the load distribution in the network. We demonstrated that the
network was able to provide good performance even in the presence of a large number of

faults.

we expect that the 2D mesh is unlikely to be a contender for the network at the lowest level.

134

Bibliography

[A+90]

[A+91]

[ACF90]

[AG89]

[Aga91]

[AP90)

[Ath90]

[Bak90]

R. Alverson et al. The TERA Computer System. In 1990 International Con-
ference on Supercomputing, pages 1-6, 1990.

Anant Agarwal et al. The MIT Alewife Machine: A Large-Scale Distributed-
Memory Multiprocessor. Technical Report MIT/LCS Memo TM-454, Mas-
sachusetts Institute of Technology, 1991.

Bowen Alpern, Larry Carter, and Ephraim Feig. Uniform Memory Hierarchies.
In Proceedings of the IEEE Annual Symposium on The Foundations of Computer
Science, pages 600-608, 1990.

George S. Almasi and Allan Gottlieb. Highly Parallel Computing. The Ben-
jamin/Cummings Publishing Company, 1989. Chapter 8.

Anant Agarwal. Limits on Interconnection Network Performance. IEFEFE Trans-

actions on Parallel and Distributed Systems, 2(4):398-412, October 1991.

S. Abraham and K. Padmanabhan. Constraint based evaluation of multicom-
puter networks. In Proceedings of the International Conference on Parallel Pro-

cessing, 1990.

William C. Athas. Physically Compact, High-Performance Multicomputers. In
6th International MIT VLSI Conference, pages 302-313, 1990.

H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-
Wesley Publishing Company, 1990.

[BBDS92]

[BBNS6]

[BDQS6]

[Bel92]

[BHS6)

[BL84]

[Boo93]

[BP89)

[CKP+92]

[Cyp90]

[Dal8g6]

135

David H. Bailey, Eric Barszcz, Leonardo Dagum, and Horst D. Simon. NAS Par-
allel Benchmark Results. Technical Report RNR-92-002, NASA Ames Research
Center, Moffett Field, CA 94035, December 1992.

BBN Laboratories Inc. Butterfly-TM Parallel Processor Overview, 1986.

J.-C. Bermond, C. Delorme, and J.-J. Quisquater. Strategies for Interconnec-
tion Networks: Some Methods from Graph Theory. Journal of Parallel and
Distributed Computing, 3:433-449, 1986.

Gordon Bell. Ultracomputers: A Teraflop before its time. Communications of

the ACM, 35(8):26-47, August 1992.

Joshua E. Barnes and Piet Hut. A Hierarchical O(nlogn) Force Calulation
Algorithm. Nature, 324(4):446-449, 1986.

Sandeep N. Bhatt and Frank Thomson Leighton. A Framework for Solving VLSI
Graph Layout Problems. Journal fo Computer and System Sciences, 28(2):300—
343, April 1984.

Robert Francis Boothe. Fuvaluation of Multithreading and Caching in Large
Shared Memory Parallel Computers. PhD thesis, University of California, Berke-
ley, 1993. Computer Science Division, UCB//CSD-93-766.

J.-C. Bermond and C. Peyrat. de Bruijn and Kautz Networks: A Competitor for
the Hypercube? In F. André and J. P. Verjus, editors, Hypercube and Distributed
Computers, pages 279-293. Elsevier Science Publishers B. V. (North Holland),
1989.

David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramoniam, and Thorsten von Eicken.

LogP: Towards a Realistic Model of Parallel Computation. Technical Report
UCB/CSD 92/713, University of California, Berkeley, 1992.

R. Cypher. Theoretical aspects of VLSI pin limitations. In 6th International
MIT VLSI Conference, pages 314-327, 1990.

William Dally. A VLSI Architecture for concurrent data structures. PhD thesis,
California Institute of Technology, 1986. Tech Report: 5209:TR:86.

[Dal87]

[Dan88]

[DKN93]

[Fen81]

[FIR93]

[GGK*83]

[GRST]

[Gre90]

[H+86]

[Hil85]

[Hil90]

[1AS87]

136

W. J. Dally. Wire-Efficient VLSI Multiprocessor Communication Networks. In
Advanced Research in VLSI, pages 391-415, 1987.

Sivarama Dandamudi. Hierarchical Interconnection Networks for Multicomputer
Systems. PhD thesis, University of Saskatchewan, Canada, 1988. Department

of Computational Science 88-18.

William J. Dally, John S. Keen, and Michael D. Noakes. The J-Machine Ar-
chitecture and Evaluation. In IEEFE Computer Society International Computer
Conference, COMPCON, pages 183-188, 1993.

T. Feng. A survey of interconnection networks. IEEE Computer, 14(12):12-27,
Dec 1981.

Steve J. Frank, Henry Burkhardt III, and James Rothnie. The KSR1: Bridging
the Gap Between Shared Memory and MPPSs. In IFEE Computer Society
International Computer Conference, COMPCON, pages 285-294, 1993.

A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph, and M. Snir.
The NYU Ultracomputer - designing an MIMD shared memory parallel com-
puter. IEEFE Transactions on Computers, C-32:175-189, February 1983.

Leslie Greengard and Vladimir Rokhlin. A Fast Algorithm for Particle Simula-
tion. Journal of Computational Physics, 73(325), 1987.

Ronald I. Greenberg. The Fat-Pyramid: A Robust Network for Parallel Com-
putation. In 6th International MIT VLSI Conference, pages 195-213, 1990.

J. P. Hayes et al. Architecture of a hypercube supercomputer. In Proceedings

of the International Conference on Parallel Processing, pages 653-660, 1986.
W. Daniel Hillis. The Connection Machine. The MIT Press, 1985.

Mark D. Hill. What is Scalability? Computer Architecture News, 18(4):18-21,
December 1990.

George B. Adams III, Dharma P. Agarwal, and Howard Jay Siegel. A Survey
and Comparison of Fault-Tolerant Multistage Interconnection Networks. IEFF

Computer, 20(6):14-27, June 1987.

(IEE]

[Int86]

[Joe90]

[Ken92]

[KK79]

[Kow85]

[KS93)]

[KU91]

[L+91]

[L+92]

[Lee89]

[Lei82]

137

IEEE. IEEE Std 1596-1992 (Scalable Coherent Interface). Currently under

development.
Intel Corp. Intel iPSC System Querview, January 1986.

Christopher Frank Joerg. Design and implementation of a packet switched rout-

ing chip. Master’s thesis, MIT, December 1990.

Kendall Square Research Corporation. Kendall Square Research Technical Sum-
mary, 1992.

P. Kermani and L. Kleinrock. Virtual Cut-Through: A New Computer Com-
munication Switching Technique. Computer Networks, 3:267-286, 1979.

Janusz S. Kowalik, editor. Parallel MIMD computation : the HEP supercom-
puter and its applications. The MIT Press, 1985.

R. E. Kessler and J. L. Schwarzmeier. Cray T3D: A New Dimension for Cray Re-
search. In IEFFE Computer Society International Computer Conference, COM-
PCON, pages 176-182, 1993.

Smaragda Konstantinidou and Eli Upfal. Experimental Comparison of Mul-
tistage Interconnection Networks. Technical report, IBM Research Division,

Yorktown Heights, New York, 1991. Report No. RJ 8451 (76459).

Daniel Lenoski et al. Overview and Status of the Stanford DASH Multiprocessor.

In International Symposium on Shared-Memory Multiprocessing, pages 102-108,
1991.

Charles E. Leiserson et al. The Network Architecture of the Connection Ma-
chine CM-5. In Proc. of the 1992 ACM Symposium on Parallel Algorithms and
Architectures, pages 272-285, 1992.

Gyungho Lee. A performance bound of multistage combining networks. IEEFE
Transactions on Computers, C-38(10):1387-1395, October 1989.

Charles E. Leiserson. Area-Efficient VLSI Computation. PhD thesis, Carnegie-
Mellon University, 1982. Also available as the ACM Doctoral Dissertation Award
1982, MIT Press.

[Lei84]

[Lei85)

[LKKS86]

[LLMO90]

[LM89]

[LMS92]

[LTS8)

[McM92]

[MCS91]

138

F. T. Leighton. New Lower Bound Techniques for VLSI. Mathematical Systems
Theory, 17(1):47-70, April 1984.

Charles E. Leiserson. Fat trees: Universal Networks for Hardware-Efficient
Supercomputing. In Proceedings of the International Conference on Parallel
Processing, pages 393-402, 1985.

Gyungho Lee, Clyde P. Kruskal, and David J. Kuck. The effectiveness of com-
bining in shared memory parallel computers in the presence of ‘hot spots’. In

Proceedings of the International Conference on Parallel Processing, pages 35-41,
1986.

Tom Leighton, Derek Lisinski, and Bruce Maggs. Empirical evaluation of
randomly-wired multistage networks. In International Conference on Computer

Design, 1990.

Tom Leighton and Bruce Maggs. Expanders might be practical: fast algorithms
for routing around faults in multibutterflies. In Proceedings of the 30th Annual

Symposium on Foundations of Computer Science, pages 384-389, 1989.

T. Leighton, B. Maggs, and R. Sitaraman. On the Fault Tolerance of Some Pop-
ular Bounded-Degree Networks. Technical Report CS-TR-385-92, Department
of Computer Science, Princeton University, Princeton, NJ, September 1992.
Short version: Proceedings of the IEEE Annual Symposium on the Foundations

of Computer Science, 1992, pp 542-552.

Tom Lovett and Shreekant Thakkar. The Symmetry Multiprocessor System.

In Proceedings of the International Conference on Parallel Processing, pages

303-310, 1988.

R.J. McMillen. The Influence of Packaging Issues on the Design of the Massively
Parallel NCR 3700 Computer. In Workshop Report: Packaging, Interconnects
and Optoelectornics for the Design of Parallel Computers Workshop, 1992.

John M Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Syn-
chronization on Shared-Memory Multiprocessors. ACM Transactions on Com-

puter Systems, 9(1):21-65, Feb 1991.

[Mey89]

[NA91]

[ND90]

[Nef92]

[Nic90]

[Nic92]

[PBG*85]

[PN85]

[R*90]

[Rans88)

139

Ernest Meyer. Fine-pitch technology shrinks system size, boosts performance.

Computer Design, pages 71-76, November 1989.

Daniel Nussbaum and Anant Agarwal. Scalability of Parallel Machines. Com-
munications of the ACM, 34(3):56-61, March 1991.

Michael Noakes and William J. Dally. System Design of the J-Machine. In 6th
International MIT VLSI Conference, pages 179-194, 1990.

John A. Neff. Holographic Optical Interconnections in the 3-D Computer. In
Workshop Report: Packaging, Interconnects and Optoelectornics for the Design
of Parallel Computers Workshop, pages 61-65, 1992.

John R. Nickolls. The Design of MasPar MP-1: A Cost Effective Massively Par-
allel Computer. In IFEE Computer Society International Computer Conference,
COMPCON, 1990.

John R. Nickolls. Interconnection Architecture and Packaging in Massively Par-
allel Computers. In Workshop Report: Packaging, Interconnects and Optoelec-
tornics for the Design of Parallel Computers Workshop, pages 4-8, 1992.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder,
K. P. McAuliffe E. A. Melton, V. A. Norton, and J. Weiss. The IBM Research
Parallel Processor Prototype (RP3): Introduction and Architecture. In Pro-

ceedings of the International Conference on Parallel Processing, pages 764-771,
1985.

G.F. Pfister and V. A. Norton. Hot-spot contention and combining in multistage
interconnection networks. In Proceedings of the International Conference on

Parallel Processing, pages 790-797, 1985.

R. D. Rettberg et al. The Monarch Parallel Processor Hardware Design. IEEE
Computer, pages 18-30, April 1990.

Abhiram G. Ranade. Fluent Parallel Computation. PhD thesis, Yale University,
1988. Department of Computer Science TR-663.

[RR90]

[RR93]

[SBNS82

[TG92]

[Tho80]

[TMC91]

[UL184]

[Upf89]

[VRS9)

[War92]

[WF80]

140

M. T. Raghunath and Abhiram Ranade. A Simulation-Based Comparison of
Interconnection Networks. In Proceedings of the Second IEEE Symposium on

Parallel and Distributed Processing, pages 98-103. IEEE, December 1990.

M. T. Raghunath and Abhiram Ranade. Designing Interconnection Networks
For Multi-level Packaging. In Supercomputing ’93, Portland, Oregon, November
1993. To appear.

Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell. Computer Structures:
Principles and FEzamples. McGraw Hill International Book Company, 1982.
Chapter 41.

D.Z. Tsang and T. J. Goblick. Free Space Optical Interconnections for Parallel
Computers. In Workshop Report: Packaging, Interconnects and Optoelectornics

for the Design of Parallel Computers Workshop, pages 56—60, 1992.

C. D. Thompson. A Complexity Theory for VLSI. PhD thesis, Carnegie-Mellon
University, 1980.

TMC. CM5 Reference Manual. Technical report, Thinking Machines Inc, 1991.

Jeffrey D Ullman. Computational aspects of VLSI. Computer Science Press,
1984.

Eli Upfal. An O(log N) deterministic packet routing scheme. In Proceedings of
the ACM Annual Symposium on Theory of Computing, pages 241-250, 1989.

Anujan Varma and C. S. Raghavendra. Fault-Tolerant Routing in Multistage
Interconnection Networks. IEEE Transactions on Computers, 38(3):385-393,
March 1989.

Steve Ward. Toward Legoflops: A Scalable 3D Interconnect. In Workshop
Report: Packaging, Interconnects and Optoelectornics for the Design of Parallel

Computers Workshop, pages 9-14, 1992.

C. Wu and T. Feng. On a class of multistage interconnection networks. IFEFE

Transactions on Computers, C-29:694-702, August 1980.

141

[YTL86] P.Yew, N. Tzeng, and D. H. Lawrie. Distributing hot-spot addressing in large-
scale multiprocessors. In Proceedings of the International Conference on Parallel

Processing, pages 51-58, 1986.

