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Background: Traditional vital signs
often fail to identify critically injured pa-
tients soon enough to permit timely inter-
vention. To improve our ability to forecast
the need for prehospital lifesaving interven-
tions (LSIs), we applied heart-rate complex-
ity (HRC) analysis to the electrocardiogram
(ECG) of patients en route to trauma centers.

Methods: Analysis of ECG and clin-
ical data from 374 patients en route by
helicopter to three urban Level I trauma
centers was conducted. Waveforms from
182 patients were excluded (because of
ectopy, noise, or inadequate length). Of
the remaining 192 patients, 54 received
66 LSIs in the field (LSI group): intuba-

tion (n � 52), cardiopulmonary resusci-
tation (n � 5), cricothyroidotomy (n �
2), and pneumothorax decompression
(n � 7); 138 patients did not (non-LSI
group). In the field, heart rate, blood
pressure, and the Glasgow Coma Scale
score (GCSTOTAL) and its motor compo-
nent (GCSMOTOR) were recorded. ECG
was recorded during flight. Ectopy-free,
800-beat sections of ECG were identified
off-line and analyzed by HRC methods
including Sample Entropy (SampEn) and
Detrended Fluctuations Analysis (DFA).

Results: There was no difference be-
tween LSI and non-LSI patients in heart
rate or blood pressure. SampEn was

lower in LSI than in non-LSI (0.88 � 0.03
vs. 1.11 � 0.03), as was DFA (1.09 � 0.05 vs.
1.33 � 0.03) and GCSMOTOR (3.4 � 0.4 vs.
5.7 � 0.1) (all p < 0.0001). By logistic re-
gression, SampEn, DFA, and GCSMOTOR

were independently associated with LSIs
(area under the receiver operating char-
acteristic curve, 0.897).

Conclusions: Decreased HRC is as-
sociated with LSIs in prehospital trauma
patients. HRC may be useful as a new
vital sign for identification of the severely
injured.
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Compensatory mechanisms tend to prevent early changes
in traditional vital signs such as the blood pressure (BP)
in trauma patients, and may camouflage the true sever-

ity of injury until those mechanisms are exhausted. Heart rate
(HR), commonly assumed to increase in severely injured
patients, often decreases. This may lead to under-triage, and
thereby to increased mortality.1 In one study, fully 23% of
prehospital trauma patients with normal vital signs required a
lifesaving intervention (LSI).2 To address this problem, new

vital signs that are more accurate than the traditional ones will
be needed.2,3

The problem of accurate triage is most acutely felt on the
battlefield. Errors in triage during combat may place not only
the patient, but also the medic, other members of the unit,
and the aeromedical evacuation crew at risk. Combat medics
need the ability to identify those patients who require LSIs,
such as endotracheal intubation, hemorrhage control, and
decompression of tension pneumothorax. Holcomb et al.4

showed that manually obtained vital signs like radial pulse
character and motor examination can be used to triage pre-
hospital trauma patients, and that standard electronic moni-
tors add little to the physical examination. But in the combat
environment, and in mass-casualty homeland defense situa-
tions, it may not be possible for medics to perform hands-on
assessment of casualties without risking exposure to hostile
fire or other hazards. The concept of “remote triage” has
therefore been proposed for the battlefield and other austere
environments as a method of performing casualty assessment
via telemetry, using worn electrocardiographic (ECG) or
other sensors.5 Assuming that earlier intervention will lead to
improved outcomes, a primary purpose of remote triage is to
determine whether the casualty needs an LSI.

In pursuit of this goal of improved field diagnosis and
triage, several methods have been used to extract additional
information from the beat-to-beat variability present in the
HR. One such heart-rate variability (HRV) method, frequency-
domain analysis, quantifies the strength of the HR’s periodic
oscillations.6 Several authors have found that this approach
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permits identification of critically ill or injured patients.7,8 In
particular, Cooke et al.5,9 found that abnormal HRV charac-
terized the prehospital HRs of lethally injured patients.

Heart-rate complexity (HRC) is a different approach to
the analysis of the heart-rate time series. HRC is a family of
methods that quantify the amount of irregularity or random-
ness in the signal; the degree of self-similarity or fractality of
the signal; and the presence of short- and long-range corre-
lations in the data. A variety of conditions, to include normal
ageing, congestive heart failure, myocardial infarction, and
hypovolemia have all been shown to result in a decrease in
HRC of the HR signal.10–13 Decreased HRC, as quantified by
irregularity metrics Approximate Entropy (ApEn)11 and Sam-
ple Entropy (SampEn),14 has correlated well with severity of
hypovolemia in several animal and human studies.15–18 In
prehospital trauma patients, Batchinsky et al.15 showed those
with lethal injuries are characterized by decreased ApEn and
SampEn and, thus, a state of low HRC.

Despite these observations, no study to date has exam-
ined the utility of HRV and HRC, either individually or in
combination, for assessment of the need to perform LSIs in
trauma patients. In this study, we therefore sought to deter-
mine whether changes in multiple metrics from HRC and
HRV are independently associated with the need to perform
LSIs. We hypothesized that new vital signs derived from
HRV and HRC analysis will separate patients who undergo
LSIs from those who do not.

METHODS
This study consisted of waveform analysis and retrospec-

tive review of clinical data from prehospital trauma patients.
Patients were identified for this study using the Trauma Vitals
database developed by the U.S. Army Institute of Surgical
Research (Fort Sam Houston, TX).2 The database stores pre-
hospital patient data from point of injury until arrival via the
Houston Life Flight helicopter service at a Level I trauma
center in Houston, TX (Memorial Hermann Hospital); or via
the San Antonio Air Life Service at one of two Level I trauma
centers in San Antonio, TX (University Hospital or Brooke
Army Medical Center). A Pic 50 vital sign monitor (Welch
Allyn, Skaneateles Falls, NY) as well as a standard run sheet
were used for ECG and patient data collection, respectively.
The study was approved by the Institutional Review Boards
of all three institutions. Conventional vital signs, mechanism
of injury (blunt or penetrating), field Glasgow Coma Scale
score (GCS), Abbreviated Injury Scores, Injury Severity
Score, age, sex, conventional vital signs, and in-hospital mor-
tality were recorded. BPs were measured automatically by
cuff using the vital signs monitor. The list of lifesaving
interventions (LSIs) included the following: cardiopulmonary
resuscitation, cricothyroidotomy, endotracheal intubation,
needle decompression of the chest, pericardiocentesis, and
cardioversion.2 Only LSIs performed in the field were in-
cluded in this study.

Continuous ECG waveforms were recorded at a sam-
pling frequency of 375 Hz to a PMCIA card on the Pic 50
monitor. ECGs collected from 374 patients were screened for
the study. Patients were excluded from the study if: (1) ECG
of 800 R-to-R intervals (RRIs) in length was not available for
analysis; (2) ectopic beats were present within the analyzed
data segments; or (3) ECG quality was inadequate due to
electromechanical noise or disruption of the signal or both.
The earliest available 800-beat data sets were imported into
WinCPRS software (Absolute Aliens Oy, Turku, Finland)
and were analyzed as previously described.16,19 The software
automatically identified R waves, and generated the instan-
taneous RRI time series. Accurate R-wave identification was
manually verified for all data sets.

Frequency-domain and complexity analyses were per-
formed as previously described.16 The frequency-domain
variables included those derived by Fast-Fourier transform:
the total power (TP, calculated over 0.003–0.4 Hz), low-
frequency power (LF, 0.04–0.15 Hz), high-frequency power
(HF, 0.15–0.4 Hz), and LF/HF and HF/LF ratios of the
signal. They also included those provided by complex de-
modulation (CDM): the low-frequency (CDM LF) and high-
frequency (CDM HF) amplitudes of signal oscillations. The
complexity variables included measures of the irregularity of
the signal (ApEn and SampEn), its self-similarity (Fractal
Dimension by Dispersion Analysis, [FDDA]), its Similarity
of Distribution (SOD), and short-term correlations in the
signal by Detrended Fluctuation Analysis (DFA).

SAS version 9.1 (SAS Institute, Cary, NC) was used for
statistical analysis. Normality of continuous variables was
assessed with the Shapiro-Wilk test. Univariate analysis was
performed using two-samples Student’s t test or Mann-Whitney
U test as appropriate for continuous variables, the Mann-
Whitney U test for score variables, and �2 or Fisher’s exact
test for categorical variables. In addition, Pearson and Spear-
man correlation coefficients were calculated to determine
relationships between variables.

Multiple logistic regressions with stepwise selection and
likelihood ratio tests were performed to identify independent
predictors of LSIs. We considered this to represent a diag-
nostic problem with two overlapping phases. In the first
phase (“remote triage”), only data derived from the RRI time
series and, thus, potentially available by remote telemetry,
were considered. Under this hypothetical scenario a subject
would be evaluated from a telemetrically acquired section of
his or her ECG waveform. In the second phase (“prehospital
care”), additional data available to the field medic, to include
the GCSMOTOR and the BP, were also considered. The Hosmer-
Lemeshow goodness-of-fit test was used to estimate the re-
gression model fit. Receiver operating characteristic curves
were constructed to assess the diagnostic performance of
predictive equations. Estimated odds ratios (ORs) and their
95% confidence intervals (CIs) were determined by the max-
imum likelihood method.
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RESULTS
Data from 401 patients were screened for this study.

Twenty-seven patients were excluded because of incomplete
clinical records. Clinical data and ECG waveforms from 374
patients were present and were manually reviewed for this
study. Waveforms from 182 patients were excluded from the
study (104 due to multiple ectopic beats, 19 due to electro-
mechanical noise, and 59 due to inadequate data set length).
This resulted in a total of 192 patients available for analysis.

Of these 192 patients, 54 (28.1%) underwent a total of 66
LSIs (of the 209 patients who were excluded, 54 [25.8%]
patients also had LSIs). LSIs in the 54 included patients were
intubation (n � 52), cardiopulmonary resuscitation (n � 5),
cricothyroidotomy (n � 2), and decompression of tension
pneumothorax (n � 7). Patients in the LSI group were
younger but did not differ from the non-LSI group with
respect to other demographics, systolic arterial pressure,
pulse pressure, shock index, HR, incident-to-hospital time,
and amount of fluids infused (Table 1). Patients requiring
LSIs had decreased mental status (lower GCSTOTAL and
GCSMOTOR scores), and were more severely injured (higher
Injury Severity Score). However, Abbreviated Injury
ScoreHEAD was not different. There was a significant dif-
ference in mortality between the groups: 14.8% in the LSI
group (8 of 54 died) and 2.2% in the non-LSI group (3 of
138 died), p � 0.0020 (Table 1).

As measured by frequency-domain methods (Table 2),
LSI patients were significantly different from non-LSI pa-
tients on several measures. These included decreased power
(TP, LF, HF) and amplitude (CDM LF, CDM HF) of the RRI
time series (Table 2).

Complexity measures, to include ApEn, SampEn,
FDDA, and DFA, were all lower in the LSI group than in the
non-LSI group. SOD was higher in LSI patients, which is also
consistent with decreased complexity (Table 3).

Independent Predictors of the Need for Lifesaving
Intervention

As explained above, construction of logistic regression
models for prediction of LSIs progressed through two phases.
For the remote triage phase, only RRI-derived variables were
considered. This model (model 1) is described by the follow-
ing equation:

p(LSI) � ek/(1 � ek), where k � 3.616 – 2.510 * (SampEn)
�1.679 * (DFA).

This model indicates that a higher SampEn, or a higher
DFA, each independently predict a decreased likelihood of
undergoing an LSI. ORs and their 95% CI for this model
were as follows: OR (SampEn) � 0.081 (CI � 0.026, 0.251);
OR (DFA) � 0.186 (CI � 0.081, 0.428). The area under the
receiver operating characteristic curve (AUC) was 0.760
(CI � 0.682, 0.838); see Figure 1.

For the second or “prehospital care” phase, the following
model (model 2) was generated based on GCSMOTOR alone:

Table 1 Demographics, Conventional Vital Signs,
and Injury Scores

Variable Non-LSI
(n � 138)

LSI
(n � 54) p

Age (yr) 38.0 � 1.1 33.9 � 14.7 0.0252
Sex (male) 95 (68.8%) 42 (77.8%)* 0.1684
MOI (blunt) 116 (84.1%)† 48 (88.9%) 0.8791
HR 99.17 � 2.11 108.32 � 4.88 0.0827
SAP 124.60 � 2.16 119.48 � 4.68 0.2871
PP 40.0 � 1.3 41.3 � 2.0 0.332
SI 0.84 � 0.03 0.92 � 0.05 0.119
GCSTOTAL 13.97 � 0.22 8.10 � 0.80 �0.0001
GCSMOTOR 5.73 � 0.08 3.41 � 0.35 �0.0001
AISHEAD 2.88 � 0.20 3.41 � 0.21 0.1213
ISS 13.22 � 0.77 18.54 � 1.44 0.0005
Incident to hospital

(min)
69.5 � 2.4 72.4 � 2.9 0.2341

Fluids (mL) 668.09 � 64.11 744.63 � 137.11 0.6585
Mortality 3 (2.2%) 8 (14.8%) 0.0020

* Sex of one patient not recorded.
† Mechanism not recorded in six patients. Data are means � SEM.
MOI, mechanism of injury (number and percentage of blunt

injuries); SAP, systolic arterial pressure; PP, pulse pressure (SAP—
diastolic blood pressure); SI, shock index (HR/SAP); GCSTOTAL, field
Glasgow Coma Score total; GCSMOTOR, field Glasgow Coma Score
motor; AISHEAD, Abbreviated Injury Score for the head; ISS, Injury
Severity Score.

Table 2 Heart-Rate Variability (Frequency-Domain)
Results

Variable Non-LSI
(n � 138)

LSI
(n � 54) p

TP 873.74 � 107.25 244.44 � 49.43 �0.0001
LF 233.56 � 27.29 49.27 � 17.07 �0.0001
HF 66.16 � 14.12 17.85 � 7.39 �0.0001
LF/HF 5.59 � 0.42 5.80 � 7.66 0.0077
HF/LF 0.25 � 0.03 0.41 � 0.07 0.1351
CDM LF 14.49 � 0.91 5.19 � 0.88 �0.0001
CDM HF 6.64 � 0.57 2.93 � 0.53 �0.0001
CDM LF/HF 2.46 � 0.10 1.92 � 0.20 �0.0001

TP, total R-to-R interval spectral power (0.003–0.4 Hz); LF, RRI
spectral power at the low frequency (0.04–0.15 Hz); HF, RRI spectral
power at the high frequency (0.15–0.4); LF/HF, the ratio of LF to HF;
HF/LF, the ratio of the HF to LF; CDM LF, amplitude of the LF
oscillations by complex demodulation; CDM HF, amplitude of the HF
oscillations. Data are means � SEM.

Table 3 Heart-Rate Complexity Results

Variable Non-LSI
(n � 138)

LSI
(n � 54) p

ApEn 1.09 � 0.02 0.91 � 0.04 0.0001
SampEn 1.11 � 0.03 0.88 � 0.03 �0.0001
FDDA 1.12 � 0.01 1.07 � 0.01 �0.0001
DFA 1.33 � 0.03 1.09 � 0.05 �0.0001
SOD 0.15 � 0.00 0.20 � 0.01 �0.0001

ApEn, approximate entropy; SampEn, sample entropy; FDDA,
fractal dimension by dispersion analysis; DFA, short-term correlations
within the RRI by Detrended Fluctuations Analysis; SOD, similarity of
distribution. Data are means � SEM.
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p(LSI) � ek/(1�ek), where k�3.021 – 0.823 * (GCSMOTOR).
This model indicates that a higher GCSMOTOR is associ-

ated with a decreased likelihood of an LSI. OR (GCSMOTOR) �
0.439 (CI � 0.330, 0.585); AUC � 0.800 (CI � 0.708, 0.892);
see Figure 2.

Finally, the RRI- and physical-examination-based vari-
ables were considered together, and the following model
(model 3) was generated based on SampEn, DFA, and
GCSMOTOR:

p(LSI) � ek/(1 � ek), where k � 7.751 – 2.569 * (SampEn)
�1.952 * (DFA)�0.801 * (GCSMOTOR).

OR (SampEn) � 0.077 (CI � 0.016, 0.362); OR
(DFA) � 0.142 (CI � 0.045, 0.445); OR(GCSMOTOR) �
0.449 (CI � 0.332, 0.607). AUC � 0.897 (CI � 0.839,
0.956); Figure 3. For all the above models, the Hosmer and
Lemeshow goodness-of-fit test revealed no significant depar-
ture from good fit (p � 0.2).

DISCUSSION
This report is the first to employ comprehensive analysis

of HRV by both complexity and frequency-domain methods
for prediction of LSIs in prehospital trauma patients. The
major findings of this study are that patients who received
LSIs had (1) lower HRC by multiple metrics, including
SampEn, Detrended Fluctuations Analysis (DFA), and SOD;
(2) abnormal frequency-domain measures of HRV; (3) lower
GCSMOTOR at the scene; and (4) more severe injuries and
higher mortality. SampEn, DFA, and GCSMOTOR were inde-

pendent predictors of LSI in a final model with an AUC of
0.897, whereas conventional vital signs such as the HR and
BP were not associated with performance of LSIs.

The complexity of a signal like the HR can be measured
by a variety of methods, and our finding of decreased HRC in
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Fig. 2. ROC curve for model derived by logistic regression for
prediction of LSIs using the motor component of the Glasgow Coma
Scale score (GCSMOTOR) alone. AUC � 0.80.
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Fig. 3. ROC curve for model derived by logistic regression for
prediction of LSIs using ECG-derived variables (SampEn and DFA)
and GCSMOTOR together. AUC � 0.897.
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Fig. 1. Receiver operating characteristic (ROC) curve for model
derived by logistic regression for prediction of lifesaving inter-
ventions (LSIs) using ECG variables alone. SampEn and DFA
were independently associated with LSIs. Area under the curve
(AUC) � 0.76.
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LSI patients is solidified by the fact that several computa-
tionally distinct methods produced similar results. The
entropy methods (ApEn11,20 and SampEn14) quantify the
probability of a repetitive pattern in the RRI. If the next
pattern can be predicted from the previous section of the
signal, the signal is deemed regular, low in entropy, and less
complex. Conditions in which the amount of regulatory feed-
back is reduced may cause a decrease in RRI entropy.20 In the
present study, patients in need of LSI were characterized by
lower levels of both ApEn and SampEn. This finding is
similar to our previous work in which nonsurviving trauma
patients showed lower ApEn and SampEn than survivors.15

Low ApEn and SampEn values were also identified in se-
verely burned patients shortly after arrival to the burn center;
resuscitation increased entropy in those patients.21 The latter
study suggests that assessment of HRC via entropy methods
can be used not only to identify more severely injured pa-
tients that are more likely to need an LSI but also to monitor
the response to such interventions such as, for example,
resuscitation. Others have noted decreased entropy in patients
who develop atrial fibrillation after coronary artery bypass
grafting,22 and in patients with myocardial ischemia.23 Taken
together, these reports suggest that decreased HRC may be a
common feature seen in many types of critical illness and
may be a suitable new vital sign for identification of the
severely injured.

SampEn and ApEn are very similar computationally, but
SampEn has the advantage of being relatively unaffected by
a decrease in the number of beats (RRIs) in the data set, down
to a data set size of about 100 beats.14,21 ApEn, on the other
hand, is preferably computed on data sets of 800 beats or
more.19 Thus, SampEn may be more useful than ApEn for
emergency triage situations when only short segments of
ECG data are available and trending of data are not feasible.

Another method of HRC analysis quantifies the degree to
which the RRI time series resembles a fractal, i.e., possesses
self-similarity at multiple scales. This fractal characteristic is
a normal property of the RRI in healthy individuals.12 The
traditional approach to fractal analysis is represented by the
FDDA. FDDA has values between 1 (constant signal) and 1.5
(maximally fractal or random signal). Our results show that
the subjects with LSIs had a more pronounced breakdown in
fractal properties of their RRI time series than the injured
patients that did not undergo LSIs. These findings are in line
with our previous work that identified decreased FDDA val-
ues in lethally injured trauma patients.15

DFA is another method of measuring fractal processes
that quantifies correlations within the data over time.24 The
DFA concept means that fluctuations in HR in normal people
are affected not only by the most recent value but also by
more remote events—a type of “memory effect.”25 In this
study, we used DFA to assess the short-term correlations in
the RRI signal, and found it to be significantly lower in the
LSI group. This is consistent with our previous study in
prehospital trauma patients, in which nonsurvivors had a

lower short-term exponent by DFA than less injured
nonsurvivors.15 Other authors have found decreased DFA in
patients with myocardial infarction and in patients who go on
to develop atrial fibrillation.26–28 Our findings are, therefore,
consistent with the literature indicating an association be-
tween decreased short-term RRI fractal scaling and critical
illness.

SOD is another complexity method that explores the
probability of similar RRI signal-amplitude distributions as a
function of time.29 SOD was higher in the LSI group, reflect-
ing greater regularity of signal distribution. This result is
consistent with our findings in a different cohort of prehos-
pital trauma patients, in which increased SOD was associated
with more severe injuries and death.15

Whereas complexity methods quantify the informational
content in the signal structure, frequency-domain methods
such as fast-Fourier transform measure the strength of regular
oscillations in the signal. Oscillations that occur at the same
frequency as the respiratory rate (respiratory sinus arrhyth-
mia) are quantified by the HF power. Those that occur at a
slower rate (about once every 10 second) are quantified by
the LF power. These variables have been shown (e.g., by
autonomic blockade studies) to be affected by the activity in
the autonomic nervous system. That is, HF relates to vagal
cardiac control and LF to both vagal and sympathetic cardiac
control. The ratio of these numbers (LF/HF) has been pro-
posed as an index of the relative amounts of sympathetic and
vagal nerve inputs to heart-rate control (“sympatho-vagal
balance”). The converse can be expressed as the HF/LF
ratio.6,30,31 The TP is a measure of overall variability.

Hypovolemia has been associated with alterations in
these ratios that have been interpreted as compensatory in-
creases in sympatho-vagal balance, indicative of sympathetic
activation and vagal withdrawal.32–34 On the other hand,
sympathetic failure, manifested by a decrease in sympatho-
vagal balance, was predictive of death in intensive care unit
patients7,35 and in prehospital trauma patients.5,9 In the cur-
rent study, however, we did not find that this relative defi-
ciency in sympathetic activation also relates to the need for
LSIs.

Fast-Fourier transform analysis quantifies the power
(area under the curve of the power spectrum) of the RRI
signal. By contrast, the method of CDM provides continuous
assessment of the amplitude of HF and LF fluctuations in the
RRI.21,36 As measured by CDM, the amplitudes of LF and
HF oscillations were both lower in LSI group, as was the
CDM LF/HF ratio. Thus, severely injured patients who even-
tually received LSIs were characterized by a state of de-
pressed HRV as evident from decreased power and amplitude
of methodologically different HRV metrics.

By multivariate analysis, SampEn, DFA, and GCSMOTOR

were all independently associated with performance of LSIs.
Inclusion of both ECG-derived variables in the model sug-
gests that SampEn and DFA may provide complementary
information about the patient’s condition and could be incor-
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porated into a decision-support device for wear by soldiers
and other personnel operating in austere environments, facil-
itating remote monitoring and triage.

Perspectives
The present study involved manual review of ECGs, a

process which is fairly easily learned, but too time-consuming
for routine clinical use in trauma patients. To address this
limitation, we have developed and are testing algorithms that
automatically calculate several of the variables of interest in
real time. Second, we excluded a large percentage (45%) of
study patients because of excessive noise, ectopy, or inade-
quate length of the ECG. These limitations could be mitigated
by (1) incorporation of automated ECG filtering, R-wave
detection, and quality assessment tools (2) development of
techniques that are not hampered by ectopic beats; and (3) use
of algorithms which provide meaningful information with
smaller data sets. Until these problems are overcome, the
clinical utility of these findings will be somewhat limited.

It is also important to point out that this study took place
in urban U.S. trauma systems, that most of the patients had
blunt trauma, and that the LSIs were primarily related to
airway management. Ongoing studies in combat casualties
will address the applicability of the HRC methods to patients
with severe hemorrhage, who require treatment e.g., with a
blood transfusion, a tourniquet, or a hemostatic dressing.

To understand more fully the utility of these new vital
signs, they should be incorporated into automated algorithms
installed on commercial monitors and evaluated in larger
multicenter trials in diverse cohorts of critically ill patients.
These studies should include validation of the models in data
sets and not used for model development. Also, research
needs to be completed to determine the effect of physical
exertion, heat injury, psychological stress, medications, co-
morbidities, and other potentially confounding but clinically
relevant states on these metrics.

CONCLUSION
In conclusion, 800-beat sections of ECG data from pre-

hospital trauma patients were analyzed by frequency-domain
and complexity methods. We found that decreases in SampEn
and short-term correlations by DFA, along with the motor
component of the GCS score, were independently associated
with the performance of LSIs. These “new vital signs” may
improve clinical care by helping providers to identify those
patients who need an LSI. Further work is needed to automate
the waveform analysis process, and to decrease the number of
ECGs rejected because of ectopy, noise, or short datasets.
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