
ABSTRACT

Title of dissertation: PROFILE- AND INSTRUMENTATION-
DRIVEN METHODS FOR EMBEDDED
SIGNAL PROCESSING

Ilya Chukhman, Doctor of Philosophy, 2015

Directed by: Professor Shuvra S. Bhattacharyya (Chair/Advisor),
Dr. Peter Petrov (Co-advisor),
Department of Electrical and Computer Engineering,
and Institute of Advanced Computer Studies

Modern embedded systems for digital signal processing (DSP) run increasingly so-

phisticated applications that require expansive performance resources, while simultane-

ously requiring better power utilization to prolong battery-life. Achieving such conflict-

ing objectives requires innovative software/hardware design space exploration spanning a

wide-array of techniques and technologies that offer trade-offs among performance, cost,

power utilization, and overall system design complexity. To save on non-recurring engi-

neering (NRE) costs and in order to meet shorter time-to-market requirements, designers

are increasingly using an iterative design cycle and adopting model-based computer-aided

design (CAD) tools to facilitate analysis, debugging, profiling, and design optimization.

In this dissertation, we present several profile- and instrumentation-based tech-

niques that facilitate design and maintenance of embedded signal processing systems:

1. We propose and develop a novel, translation lookaside buffer (TLB) preloading

technique. This technique, called context-aware TLB preloading (CTP), uses a

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2015 2. REPORT TYPE

3. DATES COVERED
 00-00-2015 to 00-00-2015

4. TITLE AND SUBTITLE
Profile- and Instrumentation- Driven Methods for Embedded Signal
Processing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland, College Park,College Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Modern embedded systems for digital signal processing (DSP) run increasingly sophisticated applications
that require expansive performance resources, while simultaneously requiring better power utilization to
prolong battery-life. Achieving such conflicting objectives requires innovative software/hardware design
space exploration spanning a wide-array of techniques and technologies that offer trade-offs among
performance, cost power utilization, and overall system design complexity. To save on non-recurring
engineering (NRE) costs and in order to meet shorter time-to-market requirements, designers are
increasingly using an iterative design cycle and adopting model-based computer-aided design (CAD) tools
to facilitate analysis, debugging, profiling, and design optimization. In this dissertation, we present several
profile- and instrumentation-based techniques that facilitate design and maintenance of embedded signal
processing systems 1. We propose and develop a novel, translation lookaside buffer (TLB) preloading
technique. This technique, called context-aware TLB preloading (CTP), uses a synergistic relationship
between the (1) compiler for application specific analysis of a task???s context, and (2) operating system
(OS), for run-time introspection of the context and efficient identification of TLB entries for current and
future usage. CTP works by (1) identifying application hotspots using compiler-enabled (or manual)
profiling, and (2) exploiting well-understood memory access patterns, typical in signal processing
applications, to preload the TLB at context switch time. The benefits of CTP in eliminating inter-task TLB
interference and preemptively allocating TLB entries during context-switch are demonstrated through
extensive experimental results with signal processing kernels. 2. We develop an instrumentation-driven
approach to facilitate the conversion of legacy systems, not designed as dataflow-based applications, to
dataflow semantics by automatically identifying the behavior of the core actors as instances of well-known
dataflow models. This enables the application of powerful dataflow-based analysis and optimization
methods to systems to which these methods have previously been unavailable. We introduce a generic
method for instrumenting dataflow graphs that can be used to profile and analyze actors, and we use this
instrumentation facility to instrument legacy designs being converted and then automatically detect the
dataflow models of the core functions. We also present an iterative actor partitioning process that can be
used to partition complex actors into simpler entities that are more prone to analysis. We demonstrate the
utility of our proposed new instrumentation-driven dataflow approach with several DSP-based case
studies. 3. We extend the instrumentation technique discussed in (2) to introduce a novel tool for
model-based design

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

146

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

synergistic relationship between the (1) compiler for application specific analysis

of a task’s context, and (2) operating system (OS), for run-time introspection of

the context and efficient identification of TLB entries for current and future us-

age. CTP works by (1) identifying application hotspots using compiler-enabled (or

manual) profiling, and (2) exploiting well-understood memory access patterns, typ-

ical in signal processing applications, to preload the TLB at context switch time.

The benefits of CTP in eliminating inter-task TLB interference and preemptively

allocating TLB entries during context-switch are demonstrated through extensive

experimental results with signal processing kernels.

2. We develop an instrumentation-driven approach to facilitate the conversion of legacy

systems, not designed as dataflow-based applications, to dataflow semantics by au-

tomatically identifying the behavior of the core actors as instances of well-known

dataflow models. This enables the application of powerful dataflow-based analy-

sis and optimization methods to systems to which these methods have previously

been unavailable. We introduce a generic method for instrumenting dataflow graphs

that can be used to profile and analyze actors, and we use this instrumentation fa-

cility to instrument legacy designs being converted and then automatically detect

the dataflow models of the core functions. We also present an iterative actor par-

titioning process that can be used to partition complex actors into simpler entities

that are more prone to analysis. We demonstrate the utility of our proposed new

instrumentation-driven dataflow approach with several DSP-based case studies.

3. We extend the instrumentation technique discussed in (2) to introduce a novel tool

for model-based design validation called dataflow validation framework (DVF).

DVF addresses the problem of ensuring consistency between (1) dataflow prop-

erties that are declared or otherwise assumed as part of dataflow-based application

models, and (2) the dataflow behavior that is exhibited by implementations that are

derived from the models. The ability of DVF to identify disparities between an ap-

plication’s formal dataflow representation and its implementation is demonstrated

through several signal processing application development case studies.

PROFILE- AND INSTRUMENTATION- DRIVEN METHODS FOR
EMBEDDED SIGNAL PROCESSING

by

Ilya Chukhman

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Shuvra S. Bhattacharyya, Chair/Advisor
Dr. Peter Petrov, Co-Advisor
Professor Gang Qu
Professor Steven Tretter
Professor Rance Cleaveland, Dean’s Representative

c© Copyright by
Ilya Chukhman

2015

Dedication

To my friend Samarth Gupta

ii

Acknowledgments

I would like to express my sincere gratitude to Prof. Shuvra Bhattacharyya, my

advisor for the last 4 years, for his mentoring, guidance, and encouragement. I am es-

pecially grateful to him for introducing me to the interesting signal processing problems

being pursued in the DSPCAD group, sponsoring my travels to conferences, and enabling

me to become a better writer through his rigorous review of my writing and helpful sug-

gestions. He gave me the freedom to develop and pursue my own ideas while providing

insights and direction to shape those ideas into useful research. Through all of this and

much more, Prof. Bhattacharyya has shown me how to be an exemplary advisor to PhD

students.

I also want to thank my co-advisor, Dr. Peter Petrov, who guided my research for

the first 3 years in the PhD program. He introduced me to interesting research problems

in embedded systems, worked very closely with me in generating and analyzing results,

and gave me first exposure to the art of writing scientific papers. I will look back fondly

on my Friday evenings spent in Dr. Petrov’s office discussing research results late into

the evening.

I am also very thankful to the members of my PhD dissertation committee – Prof.

Gang Qu, Prof. Steven Tretter, and Prof. Rance Cleaveland for agreeing to serve on the

committee, reviewing this thesis, and providing valuable feedback.

I further wish to express appreciation to Dr. William Plishker and Dr. Chung-Ching

for helping me get started in the DSPCAD group and introducing me to the concepts,

tools, and methodologies used in the group.

iii

It has been a pleasure working with many excellent members of the DSPCAD

group, including Dr. Hsiang-Huang Wu, Dr. Inkeun Cho, Dr. Lai-Huei Wang, Dr. George

Zaki, Dr. Zheng Zhou, Kishan Sudusinghe, Shuoxin Lin, Scott Kim, Yang Jiao, Haifa

Ben Salem, Yanzhou Liu, Lin Li, and Kyunghun Lee. Thank you for the many fruitful

discussions and collaborations that you have made possible.

I would like to thank Chacha (Rajeev), Chachi (Renu), and Eena Gupta, my Indian

family. They were there to share the joy and celebrate my happiest moments, and their

unequivocal love and support enabled me to persevere through the most difficult times

during my PhD studies.

My two sisters, Yuliya and Inessa, were always there to support me. Their love and

understanding made the trials and tribulations of the long path much more tolerable. For

that, I am very grateful.

I would like to thank my parents for demonstrating the necessity of hard work,

entrenching the value of education, and instilling the confidence needed to pursue my

goals. Their love and support continues to drive me to achieve things I never thought

would be possible.

Lastly, but most importantly, I would like to thank my wife, Zhanna. She has sup-

ported me throughout my studies, made numerous sacrifices to allow me to achieve my

goals, and exhibited incredible patience in allowing me to explain my research. Her un-

wavering love and confidence served as the bedrock during my PhD studies.

The research underlying this thesis was supported in part by the U.S. Air Force

Office of Scientific Research, and U.S. National Science Foundation.

iv

Table of Contents

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1
1.1 Overview . 1
1.2 Contribution . 4

1.2.1 TLB Interference Reduction in Multi-tasked Systems 4
1.2.2 Model Detection and Actor Partitioning 6
1.2.3 Validation of Dataflow Applications 7

1.3 Dissertation Organization . 7

2 Background 9
2.1 Instrumentation and Profiling . 9
2.2 Embedded System Design Strategies . 12
2.3 Dataflow Modeling . 14

2.3.1 Formal Description . 15
2.3.2 Dataflow Model Comparison . 16
2.3.3 Tools . 22

2.4 Formal Specification . 23
2.5 Virtual Address Translation and TLB . 25
2.6 Summary . 28

3 Context-aware TLB Preloading for Interference Reduction in Embedded Multi-
tasked Systems 29
3.1 Introduction . 29
3.2 Related Work . 33
3.3 CTP Overview . 34
3.4 TLB Contention . 35
3.5 Context-Aware TLB Preloading . 41

v

3.5.1 Identifying the Extended Live Set 42
3.5.2 Compiler and Operating System Support 43
3.5.3 CTP Example – Matrix Multiplication 46

3.6 Evaluation . 50
3.6.1 Experimental Setup . 50
3.6.2 Analysis of Extended Live Set Results 51

3.7 Summary . 54

4 Instrumentation-driven Model Detection and Actor Partitioning for Dataflow Graphs 55
4.1 Introduction . 55
4.2 Related Work . 60
4.3 Dataflow Graph Instrumentation . 62
4.4 Comparison to Ptolemy’s Prefire and Postfire 65
4.5 Model Detection Notation . 66
4.6 Model Detection Process . 68

4.6.1 Transformation of Legacy Code to LIDE-compatible Format . . . 69
4.6.2 Reappropriation of Units Tests for Model Detection 70
4.6.3 Model Detection Algorithm . 71
4.6.4 Partitioning of an Actor . 76

4.7 Model Detection Evaluation . 78
4.8 Summary . 83

5 Instrumentation-driven Validation of Dataflow Applications 85
5.1 Introduction . 85
5.2 Related Work . 87
5.3 Validation Framework . 90

5.3.1 Dataflow Validation Notation 90
5.3.2 Behavior Specification . 93

5.4 Application Setup Phase . 94
5.4.1 Specification Processing . 95
5.4.2 Instrumentation . 96

5.5 Application Execution Phase . 97
5.5.1 Statistics Collection . 97
5.5.2 Behavior Validation . 100

5.6 Evaluation . 101
5.6.1 Experimental Setup . 101
5.6.2 Validation of Automatic Speech Recognition Application 102

5.6.2.1 ASR: Description . 102
5.6.2.2 ASR: Results . 105

5.6.3 Validation of Acoustic Tracking Application 108
5.6.3.1 Acoustic Tracking: Description 108
5.6.3.2 Acoustic Tracking: Results 111

5.6.4 Validation of JPEG Encoder . 114
5.6.4.1 JPEG Encoder: Description 114
5.6.4.2 JPEG Encoder: Results 115

vi

5.7 Summary . 116

6 Conclusion and Future Work 118
6.1 TLB Interference Reduction in Multi-tasked Systems 118
6.2 Instrumentation-driven Dataflow Analysis 120

Bibliography 123

vii

List of Tables

3.1 Benchmarks used for evaluation . 37
3.2 Number of Misses for 32-entry TLB (in thousands) 41
3.3 Number of Misses for 128-entry TLB (in thousands) 41

4.1 Instrumentation results for a jet reconstruction actor. 79
4.2 Detected dataflow models of various CMS actors. 79
4.3 Model detection other results . 80
4.4 Instrumentation results for a block adder. 81
4.5 Detected dataflow models of JPEG encoder actors. 82

5.1 Dataflow properties of ASR actors. 105
5.2 ASR DVF embedded platform results 107
5.3 ASR DVF laptop platform results . 109
5.4 Dataflow properties of actors in the acoustic tracking application. 111
5.5 AT DVF embedded platform results . 113
5.6 AT DVF laptop platform results . 113
5.7 Dataflow properties of actors in the JPEG encoder. 114
5.8 Inconsistencies detected with DVF for the actors in the JPEG encoder. . . 116
5.9 JPEG encoder DVF embedded platform results 116
5.10 JPEG encoder DVF laptop platform results 116

viii

List of Figures

2.1 A classification of dataflow models supported in the LIDE framework . . 18
2.2 TLB-assisted virtual address translation 26

3.1 High level overview of CTP . 36
3.2 TLB contention breakdown . 39
3.3 Required Operating Systems Modifications 46
3.4 Matrix Multiplication . 47
3.5 Assembly corresponding to inner loop of MMUL 48
3.6 MMUL EPF . 50
3.7 ELS Preloading - Overall Miss Improvement 52
3.8 TLB misses breakdown . 53

4.1 EIDF interface instrumentation . 63
4.2 Iterative model detection process . 69
4.3 Converting legacy code to an LIDE-compatible dataflow actor 70
4.4 Generic and enhanced unit tests . 72
4.5 Model detector . 73
4.6 Pseudocode for the hypothesis generator block. 75
4.7 Pseudocode for the hypothesis tester block. 76

5.1 Dataflow Validation Framework (DVF) 91
5.2 The contents of a DVF behavior specification file for an adder actor. . . . 95
5.3 DVF’s instrumentation shim . 98
5.4 Statistics collection and behavior validation stages. 100
5.5 Automatic speech recognition algorithm 103
5.6 ASR execution time . 108
5.7 Acoustic tracking algorithm . 110
5.8 JPEG Encoder . 114

ix

List of Abbreviations

AADL Analysis & design language
ADEC ADPCM decoder
ADPCM Adaptive differential pulse-code modulation
AENC ADPCM encoder
ASIC Application specific integrated circuit
ASR Automatic speech recognition
AT Acoustic tracking
BDF Boolean dataflow
BMP Bitmap
CAD Computer-aided design
CAM Content-addressable memory
CFDF Core functional dataflow
CMS Compact muon solenoid
CSDF Cyclo-static dataflow
CTP Context-aware TLB preloading
DBD Dataflow-based design
DDD Data dependent dataflow
DFF Dataflow fault-tolerant
DFI Dataflow instrumentation
DFT Discrete fourier transform
DICE Dspcad integrative command line environment
DMCS DVF monitoring code segments
DSP Digital signal processing
DTW Dynamic time warping
DVF Dataflow validation framework
EIDF Enable-invoke dataflow
EJ Extended jacobian
ELS Extended live set
EPF ELS preload function
FDCT Forward discrete cosine transform
FFT Fast fourier transform
FIFO First-in, first-out
FPGA Field programmable gate array
FSM Finite state machine
GPP General purpose processor
GPU Graphics processing unit
GST Generalized schedule tree
HCBP Hardware-counter based profiling
HSDF Homogeneous synchronous dataflow
IAS Instrumentation-augmented scheduler
IBV Instrumentation-based validation
IDCT Inverse discrete-cosine transform
IDF Integer-controlled dataflow
IR Intermediate representation

x

ISA Instruction set architecture
KPN Kahn process network
LDA Linear discriminant analysis
LHC Large hadron collider
LIDE Lightweight dataflow environment
LPC Linear-prediction coding
MAC Multiply-and-add
MARTE Modeling and analysis of real-time and embedded systems
MBD Model based design
MFCC Mel Frequency Cepstral Coefficient
MMUL Matrix multiplication
MMU Memory management unit
MoC Model of Computation
MPPA Multiprocessor profiling architecture
MPSoC Multiprocessor system-on-chip
MSM Most specialized model
MUT Module under test
NRE Non-recurring engineering
OS Operating system
PA Physical address
PDSP Programmable DSP
PE Processing element
PGO Profile guided optimization
PTE Page table entries
RVC Reconfigurable video coding
SDF Synchronous dataflow
SIT Software instrumentation tool
SNR Signal-to-noise
SoCDMMU System-on-a-chip dynamic memory management unit
SOR Successive over-relaxation
TLB Translation lookaside buffer
TRI Lower TRIangular transformation
UML Unified modeling language
VA Virtual address
VLIW Very-large instruction word
VM Virtual memory
V & V Verification and validation
WCET Worst-case execution time

xi

Chapter 1: Introduction

1.1 Overview

Modern embedded systems for digital signal processing (DSP) run increasingly so-

phisticated applications that require expansive performance resources, while simultane-

ously requiring better power utilization to prolong battery-life. Achieving such conflicting

objectives requires innovative design trade-offs across the entire system design space.

Software/hardware design space exploration can span a wide array of techniques

and technologies that offer trade-offs among performance, cost, power utilization, and

overall system design complexity. Performance and correctness evaluation during every

stage of the design process is essential in mitigating possible cascading problems [1].

However, evaluation has become significantly more complex, along with the systems

themselves. As a result, designers have created various tools to facilitate analysis, de-

bugging, and profiling. Although such tools vary in their design, many rely on instrumen-

tation to achieve their objectives.

Instrumentation in this context is frequently achieved by statically or dynamically

adding to a system extra components whose sole purpose is to enable analysis and eval-

uation [2]. The added instrumentation can then be used to monitor the system for the

1

purposes of profiling, performance analysis, and optimization; error detection, and de-

bugging; and quality assurance, and testing.

Intrusiveness is an important metric used to measure the impact of the added in-

strumentation on the original system. For example, extra code can increase the execution

time of the program being evaluated or affect the cache behavior by altering the order of

the memory locations being accessed. Such intrusive behavior may not be appropriate for

certain types of analysis and requires the designer to ensure that the added instrumenta-

tion does not perturb the behavior of the system being evaluated to the extent where the

analysis becomes inaccurate.

Profiling a system’s performance enables the designer to identify performance bot-

tlenecks. A variety of profiling tools have been created that manually (or automatically)

instrument a system by inserting facilities that record and output performance informa-

tion. For example, prof, a popular UNIX profiling tool, inserts extra instructions during

compilation that then extract run-time timing information as the program executes [3].

By identifying computationally intensive portions of code (or hotspots), the designer can

focus on optimizing the parts of the system that will contribute most to the overall system

performance.

The increasing number of components and features being incorporated into current

embedded systems often results in having multiple teams working on different aspects

of the design. Ensuring that the overall system works correctly becomes more difficult

as the number of teams and the size of the system increase. Thus, in addition to perfor-

mance evaluation, designers are increasingly using computer-aided design (CAD) tools

to facilitate verifying and validating (V&V) the final implementation.

2

Existing CAD tools offer numerous opportunities to optimize and configure a sig-

nal processing system to meet the design goals. Most tools, however, are specific to a

particular language, compiler, OS, and/or processor. Thus, while these tools can be used

to design and optimize systems, the non-recurring engineering (NRE) costs associated

with such a traditional design approach make it increasingly expensive to maintain and

upgrade the system. NRE refers to one-time costs to research, develop, design, and test

a new product. In signal processing systems, NRE costs can include the cost to research

available platforms, the cost of the analysis to create a design that meets the requirements,

and the cost to implement signal processing applications on the selected platform. The

specificities of a traditional design result in the designer having to go through much of the

development process for a new iteration of the system and limits the ability to leverage

previous development investments.

To amortize development costs, designers are increasingly using a model based

design (MBD) approach, which allows a designer to decompose a complex system into

simpler sub-functions. Refining the original algorithm to a formal model enables strong

analysis and optimization that can identify various forms of parallelism, derive efficient

schedules for computational tasks, and allocate resources effectively. In addition, many

existing tools facilitate re-targeting an application to a different platform by automatically

generating platform-specific code.

3

1.2 Contribution

In this dissertation, we develop profile- and instrumentation-driven techniques to

improve the design of signal processing applications on embedded systems. We first

focus on a traditional design challenge by developing a new compiler-assisted profile-

based technique to improve the performance of one of the critical operations in embedded

systems, virtual address translation.

In the next two parts of the dissertation, we investigate the MBD process and de-

velop several techniques to accelerate dataflow based design (DBD), a specific type of

MBD. In the second part of the dissertation, we develop a dataflow instrumentation tech-

nique and use it with traditional profiling tools to facilitate converting of legacy designs to

DBD semantics. Finally, we enhance the instrumentation technique to create a framework

that can be used to validate dataflow properties in DBD applications.

1.2.1 TLB Interference Reduction in Multi-tasked Systems

Rapid system responsiveness and execution time predictability are of significant

importance for a large class of real-time embedded systems. Multitasking leads to inter-

ference in the shared processor resources such as caches and translation lookaside buffers

(TLBs). Such interference in turn results in not only deteriorated performance, but more

importantly for some applications, highly sub-optimal worst-case execution time (WCET)

estimates due to the unpredictability of interference. In our first contribution, we develop

a methodology for task-aware D - TLB interference reduction and preloading through an

4

application-specific task’s state introspection at context-switch time for embedded multi-

tasking.

We address the problem of precisely identifying and loading into the TLB the set

of memory mappings that will be used by a computational task immediately after it is al-

located to the CPU and before it is preempted again. This problem is impossible to solve

through compiler-only or OS-only techniques. The compiler has static knowledge about

a program, including which registers are used for array indices, array sizes, and memory

access patterns. However, the compiler lacks run-time knowledge, such as current loca-

tion in the code, and information about the platform. This type of run-time information

is available to the operating system. Thus, combining the static information, available to

the compiler, with the run-time information, available to the operating system, enables

deriving the set of memory mappings that will be needed by a process after preemption.

Our contribution addresses this problem through a synergistic cooperation between (1)

the compiler, for an application-specific analysis of the task’s context; and (2) the OS, for

a run-time introspection of the context and an efficient identification of TLB entries of

current (live) and “near-future” usage.

Signal processing programs often contain large numbers of operations involving

vectors and matrices that are implemented using loops. Such linear algebra operations

exhibit well-understood memory access patterns and are highly amenable to compiler

optimizations. Optimizing these computationally intensive sections of code (or hotspots)

can be achieved with profile guided optimizations (PGO) [4]. In our approach, we first

identify hotspots using profiling and then optimize them with our proposed new TLB

preloading methodology. The set of extensive experimental results with signal processing

5

kernels demonstrates the effectiveness of the proposed technique in eliminating inter-task

TLB interference and preemptively allocating TLB entries during context-switch.

1.2.2 Model Detection and Actor Partitioning

Dataflow modeling offers a myriad of tools to improve optimization and analysis of

signal processing applications, and is often used by designers to help design, implement,

and maintain systems on chip for signal processing [5]. However, maintaining and up-

grading legacy systems that were not originally designed using dataflow methods can be

challenging. Designers often convert legacy code to dataflow graphs by hand, a process

that can be difficult and time consuming.

We develop a method to facilitate this conversion process by automatically detect-

ing the dataflow models of the core functions from bodies of legacy code. First, we

introduce a method for instrumenting dataflow graphs that can be used to profile, measure

various statistics, and extract run-time information. Second, we use this instrumenta-

tion technique to demonstrate a method that facilitates the conversion of legacy code to

dataflow-based implementations. This method operates by automatically detecting the

dataflow model of the core functions being converted. Third, we present an iterative

actor partitioning process that can be used to partition complex actors into simpler sub-

functions that are more prone to analysis techniques. We demonstrate the utility of the

proposed approach on several signal processing applications.

6

1.2.3 Validation of Dataflow Applications

Dataflow based designs enable a designer to take advantage of dataflow properties

to effectively tune the system in connection with functionality and different performance

metrics. However, a disparity in the specification of dataflow properties and the final im-

plementation can lead to incorrect behavior that is difficult to detect. This motivates the

problem of ensuring consistency between dataflow properties that are declared or other-

wise assumed as part of dataflow-based application models, and the dataflow behavior

that is exhibited by implementations that are derived from the models.

We address this problem by introducing a novel dataflow validation framework

(DVF) that is able to identify disparities between an application’s formal dataflow repre-

sentation and its implementation. We demonstrate the utility of our DVF through design

and implementation case studies involving an automatic speech recognition application,

a JPEG encoder, and an acoustic tracking application.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows. In the next chapter,

we provide background on virtual address translation and TLB operation, formal spec-

ifications, dataflow models, and verification. In chapter 3, we describe a compiler-OS

synergistic TLB preloading technique that enables significant reduction of TLB misses

in signal processing applications. We describe in chapter 4 a dataflow instrumentation

technique that is useful to obtain trace information and apply it to facilitate the process of

converting legacy designs to DBD by detecting instances of well-known dataflow models.

7

In chapter 5, we introduce a dataflow validation framework that can identify disparities

between an application’s formal dataflow representation and its implementation. Finally,

conclusions and directions for future work are presented in chapter 6.

8

Chapter 2: Background

In this chapter, we provide background information on multiple topics that form

the basis of this dissertation. First, we discuss several profile- and instrumentation-based

CAD tools. We then describe embedded system design strategies, followed by an intro-

duction to dataflow modeling concepts and notation that will be used in chapter 4 and

chapter 5. We then introduce several other formal specifications that, like dataflow, can

be used to describe a system. Lastly, we provide the basics of virtual address translation

and discuss the importance of the TLB, which are relevant in the next chapter.

2.1 Instrumentation and Profiling

As discussed in chapter 1, instrumentation and profiling tools are used by designers

to facilitate analysis, debugging, and performance evaluation. In this section, we describe

several profile- and instrumentation-based techniques used by popular CAD tools.

Software instrumentation tools are usually classified based on how and when in-

strumentation code is inserted inside a program. Static instrumentation tools insert code

before, during, or after compilation, but before program execution. Source-to-source

transformations add instrumentation code directly to the program’s source. This tech-

9

nique can enable measuring parallelism [6], evaluating the complexity of signal process-

ing algorithms [7], and conducting performance estimation of SoC designs [8].

One of the most popular static instrumentation tools (prof on Unix and gprof

on Linux) enables profiling of programs. It works by adding instrumentation code to

the program, as it is being compiled, that extracts performance information when the

program executes [3]. When the instrumented program executes, the added monitoring

routines collect and output execution times of different functions, which can then be used

in an analysis to determine which portions of the program consume most of the processing

cycles.

Several tools have been created that add instrumentation to object code, a pro-

cess that is more easily extensible to different compilers and languages than source- and

compiler-based techniques. This technique is used by the IBM Rational Purify tool to

identify memory leaks and access errors [9].

In addition to static instrumentation, several modern tools have begun to use dy-

namic instrumentation. Dynamic instrumentation is inserted while the program is run-

ning, and is inserted between the executing program and the operating system or host

machine. For example, both Pin [10] and DynInst [11] use Linux ptrace, a part of

the Linux kernel, to monitor the execution of every instruction according to the instru-

mentation code. DynamoRio uses a dynamic instrumentation technique called library

interposing in which an instrumentation library is interposed between the program and

the actual library, allowing examination and monitoring of library function calls [12].

10

The last class of dynamic instrumentation tools use a just-in-time-compilation tech-

nique. Such frameworks, including Valgrind, intercept program elements that are about

to execute and recompile the application code with the inserted instrumentation [13].

In addition to the analysis tools described above, several FPGA and SoC profiling

tools have been created that help evaluate system level design decisions, such as the map-

ping of applications to different SoC architectures. For example, Wang, Li, and Zhao

propose a novel system design approach that uses profiling to map embedded media

streaming applications to heterogeneous SoC systems [14]. Profiling enables identify-

ing critical sections that benefit when mapped to higher performing components, thereby

increasing overall system performance.

The authors of [15] present a memory-trace profiling tool that enables performance

and memory access analysis of embedded systems. The tool is demonstrated on a hard-

ware/software design for H264/AVC video decoding. The authors demonstrate how the

tool can be used to evaluate the performance of system components with different design

options (e.g., different cache configurations). Such analysis can then aid with scheduling

and mapping of functionality onto the available platforms.

There have been several FPGA-based techniques that enable profiling SoC designs.

Unlike the software tools described above, profiling FPGAs can be done with the use of

hardware-counter based profiling (HCBP) tools [16]. HCBP tools utilize on-chip hard-

ware counters to monitor specific events that occur during the run-time of an application.

These counters can then be queried to conduct performance analysis. Chen et al. in-

troduce a multiprocessor profiling architecture (MPPA) for profiling MPSoC embedded

11

systems [17]. Using MPPA, designers can collect low level events of the target system by

automatically adding extra profiling hardware to the design.

2.2 Embedded System Design Strategies

Software/hardware design space exploration can span a wide-array of techniques

and technologies that offer trade-offs among performance, cost, power utilization, and

overall system design complexity. A common design methodology entails optimizing in-

dividual layers within a system. While this approach can achieve exceptional results,

it rarely translates to future iterations of the design. Thus, practitioners are increas-

ingly using MBD methods to design complex systems, since MBD facilitates correct-

ness verification and can be used to automatically generate implementations for new plat-

forms [18, 19]. In this section, we first describe different design decisions and optimiza-

tion techniques that can be applied in the various layers of a system. We then describe

MBD methodologies and their benefits in Section 2.3.

At the highest layer of abstraction, problems are addressed in algorithmic terms.

Over the years, numerous innovations at the algorithmic layer of signal processing have

greatly improved the output quality and simultaneously, reduced the computational re-

quirements. Examples of such innovations include the Fast Fourier transform (FFT);

multi-rate signal processing; numerous filtering algorithms; and adaptive algorithms, such

as linear predictive coding (LPC) and Kalman filtering [20]. Instead of relying on features

of a given programming language, signal processing practitioners may apply mathemat-

12

ical tools to significantly reduce the quantity of computations necessary to solve a given

problem without sacrificing quality.

At the next layer of abstraction are languages used to implement signal processing

algorithms. Whether it is hardware design languages, such as Verilog and VHDL, which

are used to design application specific integrated circuits (ASICs) and field programmable

gate arrays (FPGAs), or whether it is software programming languages, such as assem-

bly, C, and C++, which are used to program general purpose processors (GPPs), graphics

processing units (GPUs), and programmable digital signal processors (PDSPs), it is im-

portant to choose the appropriate language to solve the given problem. Programs were

initially written in assembly language, where a simple program could involve thousands

of lines of assembly code. The performance of initial compilers, which convert high-level

programs into assembly language, was considered inferior to human-generated assembly

programs. However, as the complexity of problems and the resulting length of assembly

programs increased, high-level languages became increasingly preferred by designers.

Also, compiler technology has undergone a significant transformation within the last 40

years, which has resulted in compilers that can produce output that is similar in quality to

that of hand-crafted assembly language code.

The complexity of modern signal processing systems has required the use of operat-

ing systems (OS) to help manage multiple parallel jobs and interface with various periph-

erals and sensors. As a result, modern signal processing applications typically run within

the context of an OS, thereby allowing the programmer to rely on the OS to provide the

interface to features such as virtual memory (VM), scheduling, and process management,

while simultaneously abstracting away the complexity required to enable these features.

13

Selecting the appropriate computing platform to satisfy a set of system require-

ments remains a challenge in the design of signal processing systems. Over the years,

designers have created numerous platforms that utilize advanced micro-architecture tech-

niques including, pipelining, caching, out-of-order execution, and branch-prediction, to

significantly improve performance at the micro-architecture layer.

At the instruction set architecture (ISA) layer, several data-level parallelism en-

hancements, such as SIMD and vectorization, have resulted in significant throughput im-

provements in signal processing applications. In addition, several PDSPs offer very-large

instruction word (VLIW) platforms that provide instruction-level parallelism with the aid

of compilers. However, while active research to improve micro-architectures continues to

be pursued at commercial companies [21], a system designer can rarely modify the micro-

architecture on an existing platform. Instead, signal processing practitioners can design

custom hardware with FPGAs and ASICs for scenarios when the performance offered by

the available programmable processors is insufficient to meet design constraints.

2.3 Dataflow Modeling

MBD approaches involve decomposing the original algorithm to formal models,

which are more amenable to analysis. Many existing tools and languages use MBD ap-

proaches to facilitate iterative designs by enabling re-targeting of applications to different

platforms (e.g., see Ptolemy [22], CAL [23], and DIF [24]). Dataflow modeling is a type

of MBD methodology that is commonly used with signal processing systems. In this

section, we describe dataflow modeling and supported formal dataflow models.

14

2.3.1 Formal Description

A dataflow graphG is an ordered pair (V,E), where V is a set of vertices (or actors),

and E is a set of directed edges. A directed edge e = (v1, v2) ∈ E is an ordered pair of a

source vertex v1 ∈ V and a sink vertex v2 ∈ V . Actors represent computational modules,

while edges represents first-in, first-out (FIFO) communication links between actors. The

complexity of the actors depends on the application, where actors may represent simple

arithmetic operations, such as multiply-and-add (MAC), or more complex operations such

as a JPEG encoder.

When an actor v executes or fires, it consumes zero or more tokens from each input

edge and produces zero or more tokens on each output edge. For each edge e, the numbers

of data values produced by the source actor of e and consumed by the sink actor of e are

defined as the production rate (denoted by prd(e)) and consumption rate (denoted by

cns(e)), respectively. Given an edge e, we denote its source actor as src(e) and its sink

actor as snk(e). The set of ports for actor a is defined as port(a) = port in(a)∪portout(a),

where port in(a) = {e|e ∈ E ∧ snk(e) = a} is the set of input ports, and portout(a) =

{e|e ∈ E ∧ src(e) = a} is the set of output ports for actor a.

In this thesis, the “dataflow rate” symbols prd(e) and cns(e) can be viewed as

annotations that are available to provide known or derived information about the numbers

of tokens that are produced and consumed during individual actor invocations. In general,

the mathematical form of prd(e) and cns(e) depend on the enclosing actor, the associated

actor port, the underlying dataflow model of computation, and how much information is

known or has been derived about the associated actor and port. For example, as explained

15

below, synchronous dataflow actors have dataflow rates that are expressed in the form of

constant integers, while cyclo-static dataflow actors have dataflow rates that are expressed

as integer vectors. For some dynamic dataflow models, little may be known apriori about

prd(e) and cns(e); in this case, the associated annotations would contain correspondingly

little information. For example, prd(e) ∈ {0, 1} may indicate that the number of tokens

produced on e during a given firing may be 0 or 1, and that this number may vary from

one firing to the next. Thus, our use of cns(e) and prd(e) is an abuse of notation, where

the actual form of the represented rates depends on context that includes the actor, port,

and overall design scenario. With this abuse of notation, we avoid cluttering our notation

with multiple symbols that have same general meaning (dataflow rate characterization) in

the new kinds of DBD analysis methods that we develop in this thesis.

An actor’s dataflow behavior is a function of the dataflow model to which the actor

conforms [5]. Actors exhibiting static behavior have fixed consumption and production

rates, while in general production and consumption rates can vary across distinct firings

of the same actor. In the next subsection, we will describe the dataflow models considered

in this dissertation and describe their consumption and production behavior.

2.3.2 Dataflow Model Comparison

Many dataflow models of computation have been developed for both actors and

graphs to enable realization of a wide variety of applications and design techniques in

DBD environments [5]. Some of the associated actor models are highly restrictive and can

be used to infer powerful system-wide properties, which help, for example, to optimize

16

scheduling and memory management. Other actor models offer flexibility that enables

their use in a variety of applications not conducive to restrictive models; however, the

same flexibility makes it more difficult to reason about these models and analyzing them

becomes much more complex (e.g., see [25]).

The different dataflow models of computation (“dataflow MoCs” or “dataflow mod-

els”) that have been created over the years are not all easily related to one another. As

a result, it is not always possible to compare dataflow models in order to, for example,

determine whether or not one model A is more restrictive than a different model B. Here,

by “more restrictive”, we mean intuitively that the class of computations that can be rep-

resented byA is a proper subset of the class that can represented byB. However, there are

useful groups of models that can be compared in such a way — i.e., that can be compared

in terms of this restrictivity notion. We refer to such a group (subset) of dataflow models

as a comparable group. In this dissertation, we limit our discussion to comparable groups,

and demonstrate our methods on a comparable group that is supported in the lightweight

dataflow environment (LIDE) [26], which is a specific DBD tool that we have employed

to validate and experiment with many of the ideas explored in this thesis. Extending these

methods to groups that are not comparable is a useful direction for future investigation.

Figure 2.1 shows three classes of dataflow models within the universe of dataflow

models that are currently supported in LIDE: data independent, control-based, and mode-

based. As illustrated in Figure 2.1, data independent models are most restrictive and

mode-based models are least restrictive. Outer classes in Figure 2.1 generalize the inner

classes, so that for example, control-based models also contain data independent actors,

and mode-based models also contain control-based actors.

17

LIDE Universe
EIDF
CFDF

IDF
BDF

CSDF
SDF

HSDF

Data Flow Model Types
Control
Based

Data
Independent

Mode
Based

Most

restrictive

Least

restrictive

Mos
t

an
aly

za
bl

e

Le
as

t
an

aly
za

bl
e

Figure 2.1: A classification of dataflow models supported in the LIDE framework

In homogeneous synchronous dataflow (HSDF), all consumption and production

rates are restricted to be equal to unity [27]. Thus, an actor is an HSDF actor if every

input port consumes exactly one token per firing and every output port produces exactly

one token. More formally, the two conditions in Equation 2.1 have to be satisfied:

∀e ∈ port in(a) : cns(e) = 1,

∀e ∈ portout(a) : prd(e) = 1.

(2.1)

18

A more general model is synchronous dataflow (SDF), where the consumption and

production rates of actor ports must be constant (positive integer) valued [27] (i.e., they

cannot vary as a function of data or state). The consumption and production behavior for

the SDF model is defined as:

∀e ∈ port in(a) : cns(e) = v with v ∈ N+,

∀e ∈ portout(a) : prd(e) = v with v ∈ N+,

(2.2)

where N+ = {1, 2, . . .}.

The cyclo-static dataflow (CSDF) model introduces the concept of actor phases,

where in each phase an actor conforms to an “extended SDF” model (extended in the sense

that zero-valued production and consumption rates are also allowed) [28]. In addition, the

phases cycle through a periodic sequence, so that on each actor port, one can observe a

periodic pattern of token consumption or production. CSDF behavior can be formally

described by Equation 2.3:

∀e ∈ port in(a) : cns(e) = vω with v ∈ Znn ,

∀e ∈ portout(a) : prd(e) = vω with v ∈ Znn ,

(2.3)

where vω is a periodic sequence with ||v|| > 0, and Znn is the set of non-negative integers.

If for each actor port, the dataflow rates are the same in each phase (i.e., ||v|| = 1),

and they are all positive valued, then the CSDF actor conforms to the more restrictive

SDF model. Similarly, if the consumption and production rates of an SDF actor are all

19

equal to one, then the actor conforms to the more restrictive HSDF model. The HSDF,

SDF and CSDF models have the property of being data-independent in the sense that

actor consumption and production rates are not related to values of the data inputs.

The next two classes of models depicted in Figure 2.1 encapsulate what we refer

to as the data-dependent models. In a control-based data-dependent model, a dataflow

graph can contain one or more data-dependent dataflow (DDD) actors. A DDD actor is

one in which one or more inputs (data values consumed) or the actor state (or both inputs

and state) determine(s) how much data is consumed and produced by a given actor firing.

Boolean dataflow (BDF) is an example of a control-based model. In BDF, Boolean-valued

input tokens on designated ports are used to determine the production and consumption

rates for ports where the rates are data-dependent [25].

For example, when a control input is TRUE, the actor could consume tokens from

one data port, while it consumes tokens from a different data port when the control input is

FALSE. Compared to data-independent dataflow MoCs, it is more difficult to reason about

and analyze BDF graphs; however, useful quasi-static scheduling and analysis techniques

have been developed that exploit the control-token-based dynamic dataflow structure of

BDF (e.g., see [25]).

Integer-controlled dataflow (IDF) is a natural generalization of BDF where the in-

puts used to control data-dependent actors are integer-valued [18, 29], and correspond-

ingly, the variations in consumption and production rates for individual ports can span

integer numbers of different values. For example, IDF can be used to represent a generic

multiplexer, where a control input selects data from a specific graph instance among N

possible instances, each of which can be structured based on a different dataflow model.

20

The most general dataflow model that we consider in this work is the enable-invoke

dataflow (EIDF) model [30]. In EIDF, an actor is specified in terms of a set of modes,

such that in each mode the production and consumption rates must be constant, non-

negative integer values. Intuitively then, in each mode, the actor can be viewed as an

extended SDF actor. However, different modes of an actor can have different production

and consumption rates, and dynamic dataflow behavior can be achieved in this way. This

form of dynamic dataflow is distinguished from the control-based data-dependent class

introduced previously by the decomposition of actor operation into distinct modes, and

the elimination of the requirement that there be any specific control ports through which

dynamic dataflow behavior is formulated. For dataflow models that employ decomposi-

tion into distinct modes, where production and consumption rates need not be constant or

periodic across distinct modes, we introduce the third (most general) class of models, the

mode-based models, represented in Figure 2.1.

In EIDF, each actor has two associated functions, called the enable function, and

the invoke function. The process of implementing an EIDF actor includes providing im-

plementations for these two functions. The enable function is a Boolean-valued function

that returns TRUE if the actor has sufficient data on its input edges, and sufficient empty

spaces on its output edges to execute a single firing based on the current state of the FI-

FOs in the enclosing dataflow graph. The invoke function carries out a single firing of the

actor in the current actor mode and returns the set M of possible next modes. This set M

gives the set of possible modes in which the actor can be invoked under normal operation

(i.e., unless the actor or graph is somehow reset or reconfigured through external control).

The process of selecting a specific next mode to execute among multiple possible next

21

modes (i.e., when M contains multiple elements) is not prescribed by the EIDF MoC;

this selection process is left up to the implementation.

The provision in EIDF for multi-element sets of valid next modes allows for non-

determinism, as in its next firing, an actor can be invoked in any mode within the next

mode set. A more restrictive, deterministic form of EIDF is the core functional dataflow

(CFDF) model [30]. CFDF enforces that the set of next modes must always have exactly

one element — i.e., |N(m)| = 1. Note that CFDF modes are different from CSDF phases

in that the selection of the next mode in CFDF can be data dependent.

In summary, a group of dataflow models in a given DBD environment can cover a

wide spectrum of trade-offs between expressive power and formal analysis potential. This

is demonstrated by the spectrum of comparable models illustrated in Figure 2.1. Model

detection helps designers identify the most restrictive dataflow model a given actor con-

forms too, thereby helping to identify the most powerful sets of analysis and optimization

methods that can be applied to subsystems that contain the actor.

2.3.3 Tools

To implement and experiment with our proposed DBD methodologies, we have

employed the DSPCAD Integrative Command Line Environment (DICE) [31], which is

a framework for facilitating efficient management of design and software projects. DICE

defines platform- and language-agnostic conventions for describing and organizing tests,

and uses shell scripts and programs written in high-level languages to run and analyze

these tests.

22

To create a generic method for instrumenting dataflow graphs, we used a DBD

framework called the Lightweight Dataflow Environment (LIDE) [32], which is supported

by DICE. This framework supports dynamic dataflow applications with the CFDF se-

mantic model. From its foundation in CFDF semantics, LIDE enables dynamic behavior

through structured application descriptions, making it an effective platform to instrument

dataflow graphs, and prototype techniques for automated dataflow model detection and

validation.

The application programming interface (API) in LIDE for defining actors includes

the enable and invoke functions that are fundamental to CFDF semantics. Thus, each

actor implementation in LIDE has an associated enable function, which returns a Boolean

value, and an associated invoke function, which carries out an actor firing, and returns an

integer index that identifies the next mode for the actor.

2.4 Formal Specification

From a designer’s perspective, a formal system specification aims to define the ex-

pected behavior precisely while abstracting away the implementation details. Using such

a specification, designers can evaluate system-level trade-offs without worrying about the

underlying details. In addition, the correct behavior of the final implementation can still

be verified by comparing the observed behavior to the expected behavior described in the

original specification.

Many different specification formalisms have been introduced over the years that

vary in the strictness of the semantics and applicability to various problems. For example,

23

finite state machines (FSMs) have been used extensively to specify sequential logic by

decomposing behavior into possible states and encoding the transitions between states

using events [33].

Petri nets are commonly used to specify concurrent behavior, such as in distributed

systems, due to their non-deterministic execution [34]. A Petri net consists of places and

transitions that are connected by arcs, which are used to transfer data, called tokens. A

Petri net may fire when there are sufficient numbers of tokens on all input arcs. When

multiple transitions are be enabled at the same time, any one of them may fire, leading to

non-deterministic execution.

Several high-level modeling languages and tools have been used to carry out system-

level analysis, verification and validation (V & V), and architectural exploration. Mod-

eling and Analysis of Real-Time and Embedded systems (MARTE) is an extension to

the Unified Modeling Language (UML) that was released in 2009. MARTE strives to

achieve interoperability between development tools to provide a common framework for

specification, design, and verification [35]. Another example is the Architecture Analysis

& Design Language (AADL) which has been used in automotive and avionics fields to

model software and hardware architecture of embedded systems. It enables architecture

exploration, system property checking, and timing analysis [36].

Using such specification facilitates the verification and testing processes [37]. For

example, the authors in [38] describe the formal specification and verification of a par-

allel DSP chip that has 64 processors. They abstract away the implementation details

by specifying the expected behavior from the programmer’s perspective and then use an

24

assume-guarantee method with a model checker called MOCHA to do compositional ver-

ification.

Dataflow-based specification is used to describe MPEG reconfigurable video coding

(RVC) to abstract away implementation specific complexities [39]. In [40], the authors

propose using CAL to specify the system, and then perform functional verification using

the OpenDF environment [41].

2.5 Virtual Address Translation and TLB

In this section, we provide a brief overview of virtual memory and address transla-

tion, including the use of a TLB. For a comprehensive coverage of the topic, see [42–44].

Virtual memory is the process of mapping virtual address (VA) space, as seen by a

program, to physical address (PA) space corresponding to RAM, which serves as a cache

for the program’s memory residing on disk. Memory is often segmented in fixed size

segments called pages, and a page table is used to track the mapping between virtual and

physical pages. Doing a translation from VA to a PA requires traversing the page table

and was traditionally done by the OS. Some CPUs include a hardware-based a memory

management unit (MMU) that automatically traverses page tables to perform VA to PA

translation. Because the process of converting a VA to a PA is expensive (i.e., for ev-

ery virtual memory access there are multiple physical memory accesses), most modern

systems cache recent translations in a TLB.

A TLB-based VA translation is depicted in Figure 2.2, where a translation is first

attempted using the TLB. If the page table entry (PTE) is present (TLB hit), the frame

25

number is retrieved and the PA is formed. If the desired PTE is not present in the TLB

(TLB miss), the traditional translation is done by indexing the page table to retrieve the

PTE, which is then used to form the PA.

Page # OffsetVA

Page Table

PTE

PT pointer

Frame # Offset

+
P

ag
e

#

PA

TLB
TLB Hit

TLB Miss

Figure 2.2: The virtual address translation is first attempted using the TLB. If the PTE is
present in the TLB, the frame number is retrieved and the PA is formed. If the desired
PTE is not present in the TLB, the traditional translation is done by indexing the page
table.

Modern CPUs implement the TLB to be highly-associative and perform a parallel

search using content-addressable memory (CAM) cells. In addition, TLBs are usually

separated into I - TLB, used for instruction accesses, and D - TLB, used for data accesses.

26

A TLB translation occurs every memory access resulting in energy consumption of up to

12% of total processor power [45].

A TLB hit takes less than 1 cycle, while a TLB miss penalty can be 10s of cy-

cles [43]. The miss penalty becomes significantly more expensive (on the order of mil-

liseconds) if the translation results in a page fault. As a result, improving overall system

performance often entails maximizing TLB hit rate.

Most operating systems maintain separate page tables for each process. This can

result in some of the TLB entries becoming invalid after a context switch. One way to deal

with this is to flush the TLB after every context switch. However, this results in having an

empty TLB, resulting in a TLB miss for initial memory accesses. Another strategy is to

add process-specific identifiers to each TLB entry to help each process identify its entries,

and thus effectively share the TLB [46]. However, as the number of processes operating

concurrently increases, the effectiveness of the TLB decreases due to interference among

the processes [47, 48].

Due to these challenges, optimizing TLB performance has remained an active area

of research for the last 20 years, and the TLB remains a fixture in modern processors due

to its beneficial effect on the performance of VA translation. In chapter 3, we address

the TLB sharing problem by proposing a novel OS/compiler synergistic technique that

enables preloading the TLB at the start of a context switch with the needed PTEs.

27

2.6 Summary

In this chapter, we have provided general background on embedded system design

strategies and model-based design. We have described the use of TLBs to improve virtual

address translation and introduced several profile- and instrumentation-based CAD tools.

Finally, we have provided background on formal specification and dataflow modeling.

28

Chapter 3: Context-aware TLB Preloading for Interference Reduction in

Embedded Multi-tasked Systems

Signal processing programs often contain multiple operations involving vectors and

matrices that are implemented using loops. Such linear algebra operations exhibit well-

understood memory access patterns and are highly amenable to compiler optimizations.

Optimizing these computationally intensive sections of code (or hotspots) can be achieved

with profile guided optimizations (PGO) [4]. In this chapter we present a TLB preloading

methodology that works by first identifying application hotspots using profiling, and then

optimizing them with a TLB preloading methodology.

The set of extensive experimental results with signal processing kernels demon-

strate the effectiveness of the proposed technique in eliminating the inter-task TLB inter-

ference and preemptively allocating TLB entries during context-switch. Material in this

chapter was published in partial, preliminary form in [49].

3.1 Introduction

Modern systems require multiple tasks to be operating concurrently. A cell phone,

for example, might be used to concurrently playback audio and manipulate discrete data

streams for SMS messaging. Due to size, cost, and power constraints, it is infeasible

29

to have a dedicated processor for each task. Instead, multitasking is used where a set

of tasks share the underlying hardware. To achieve multitasking in a way transparent to

the tasks, process state such as the PC and register file needs to be preserved at context

switch. Resources large in size that cannot be saved, such as the translation lookaside

buffer (TLB) and caches, are shared among the different processes. As a result, inter-task

interference can degrade performance.

A TLB is a cache used to enable fast virtual address translation. The TLB stores

recently used page table entries (PTE) thereby greatly reducing the need for page ta-

ble walks and improving performance of virtual memory systems. To reduce task self-

interference, TLBs employ highly associative structure with a relatively small number of

entries in order to minimize the impact on system power [42]. While appropriate in some

designs, reducing high-cost TLB misses using expensive hardware, such as hardware-

based page table support, is not feasible for low-power embedded systems.

In multiprocessing systems, a TLB is either flushed during a context switch, result-

ing in significant performance degradation undesired for high-end embedded systems, or

a process-specific identifier is added to each TLB entry to help each process identify its

entries, and thus effectively share the TLB [46]. As the number of processes operating

concurrently increases, the effectiveness of the TLB decreases due to interference among

the processes [47, 48].

Another very important consequence of increased TLB contention in multipro-

cessing systems is the complication of Worst-Case Execution Time (WCET) analysis

[48, 50, 51]. Many embedded system applications have real-time constraints where the

application must meet a deadline to ensure correctness. WCET analysis is used to es-

30

tablish an upper bound on execution time which is then used to schedule tasks on the

processor such that all the deadlines are met. In single task systems, WCET analysis,

although complex, is tractable [52, 53]. Predicting whether a memory access will find

its memory mapping in the TLB in the presence of inter-task interference becomes ex-

tremely difficult, if not impossible. Consequently, extremely conservative assumptions

must be followed resulting in overly pessimistic execution time estimates causing under-

utilization of the processor.

A simple solution to decrease contention is to increase TLB size, yet that degrades

access time and significantly increases power requirements. Another approach to alleviate

TLB interference is for a process to lock its PTEs in the TLB, thus preventing other

processes from evicting its TLB entries when preempted. This approach is ineffective

when the working set is large and can cause very high contention / starvation if each

process locks all of its entries. An alternative approach is to treat the TLB as part of

a process state and to save its TLB entries during a context switch. The next time the

scheduler allocates the process to the CPU, the OS would restore the saved TLB entries.

For a large working set, saving and restoring all TLB entries becomes infeasible, since

each process would need to traverse the entire TLB table at every context switch.

Instead of saving all the TLB entries, a method is needed to find the set of live TLB

entries, or more specifically, the set of live virtual page numbers (VPNs) for the task at

the moment it is switched for execution. A live entry is an entry that is currently in the

TLB, and that will be used in the subsequent execution time-slice of the task. Clearly,

there is no need to save entries in the TLB that will not be referenced by the process

in the future. Furthermore, at context-switch time, the utilization of application-specific

31

information will enable the identification of memory mappings that are not yet live but

will be used by the task in the near future. We refer to the combined set of live VPNs

plus VPNs to be used in the subsequent time-slice (but not yet used) as the Extended Live

Set (ELS). The ELS is defined at context-switch time – its determination is possible only

through the cooperation of compiler and OS.

We propose a Context-aware TLB Preloading (CTP) methodology, which not only

reduces D-TLB interference in multitasked embedded workloads, but also further lever-

ages compiler-generated application information to preload TLB entries that will be used

in the near future. Fundamentally, CTP attempts to determine the ELS at context-switch

time, and as such, to rapidly preload the set of live memory mappings and mappings that

are not yet active but are found to be needed in the near future. CTP leads to a more pre-

dictable TLB hit/miss behavior, since the group of tasks sharing the TLB are guaranteed

to have their most recently used PTEs in the TLB after preemption. A more predictable

TLB behavior alleviates the difficulty of WCET analysis for multitasked systems leading

to a more realistic WCET and a better processor utilization.

The rest of this chapter is organized as follows. In the next section we provide a

brief overview or prior research and then provide a high-level overview of CTP in Sec-

tion 3.3. An analysis of TLB contention is presented in Section 3.4. In Section 3.5,

we provide a detailed explanation of the context-aware TLB prefetching technique and

discuss the required OS and compiler support. The experimental setup and results are

presented in Section 3.6. Section 3.7 provides a summary of our contribution.

32

3.2 Related Work

TLB organizations and management policies have been the active focus of research

due to the fundamental role of virtual memory management in modern systems. The

interference effects on TLBs and caches caused by context switches were demonstrated

in [47, 48]. An in-depth study of the TLB characteristics on the performance of modern

applications was performed in [54]. One of the conclusions is that software-managed

techniques for TLB prefetching may be quite rewarding if implemented efficiently.

Several architectural techniques have been proposed to minimize translation over-

head. For example, [55] introduce a TLB architecture to dynamically support up to two

pages per entry with a banked fully-associative structure. Such an organization benefits

applications where larger pages can be used to minimize the translation overhead. In [56],

a special MMU has been proposed and evaluated that supports dynamic memory alloca-

tion and deallocations for a chip multiprocessor. The System-on-a-Chip Dynamic Mem-

ory Management Unit (SoCDMMU) allocates and grants, in deterministic time, portions

of the global on-chip memory.

Preserving useful TLB entries between context switches has been an active area of

research. In [57], TLB references are directed to a special set of registers capturing several

recently accessed TLB entries. Due to the small size of the register set compared to the

VPN footprint, the compiler needs to transform the code appropriately. A recency-based

TLB prefetching mechanism have been proposed in [58]. The technique maintains a

stack of page references and prefetches the page next to the one referenced. The distance-

prefetching TLB methodology was introduced in [59]. The authors also compare and

33

evaluate a set of TLB prefetching techniques. An compiler-based approach that introduces

predictable form of paging through the use of page-in and page-out points for a single

task was described in [51]. A TLB tagging method is presented in [50] that refrains from

flushing the hypervisor TLB entries during a virtual machine’s context switch.

3.3 CTP Overview

Even finding only even the set of live TLB entries is impossible through a compiler-

only or an OS-only technique. The compiler has access to static information about the

program, but lacks run-time knowledge needed to extract the actual values of the current

VPNs from the task’s context at the time when a preemption occurs. The OS, on the other

hand, has run-time information about the task’s state but lacks static information about

the program needed to interpret the context, e.g. which registers or stack frames can be

used and in what ways to extract the ELS. CTP uses a synergistic cooperation between

the OS and the compiler where our approach combines the compiler’s knowledge of static

information about the program with OS’s knowledge about the task’s context to allow the

OS to prefetch ELS.

A high-level overview of CTP is shown in Figure 3.1 where task T1 is initially exe-

cuting on the CPU and is about to be preempted with task T2. In the proposed approach,

the compiler has synthesized special routines for T1 and T2. In fact, such routines are

generated for each frequently executed loop / function in T1 and T2. We refer to this

routine as the ELS Preload Function (EPF). At its core, the EPF employs the compiler’s

knowledge about registers and stack frame usage to rapidly identify the set of live VPNs

34

used by the task at that moment by effectively obtaining all the pointer values of rele-

vance to the task. Moreover, the pointer values obtained from the context combined with

the knowledge of access patterns (e.g. strides) and array dimensions are used to determine

with very high accuracy the future VPNs to be accessed by the task.

This compile-time step corresponds to phase (0) in Figure 3.1. The EPFs associated

with each task are registered with the OS by using a specially provided API just prior

to executing the corresponding loop/function in the task. At run-time, the OS invokes

the EPF of the next task when the task is loaded for execution, after preempting the

previous task. During the next step in the example, the OS preempts T1 and saves its

state, corresponding to (1) and (2). After selecting the next task to execute, the OS would

restore that task’s state, shown by (3). After T2’s state is restored, the OS would call the

compiler-generated function for T2, EPF(T2), which would use the recently restored T2’s

state as input to generate a list of VPNs needed during the upcoming processing slice, as

shown by steps (4) and (5) in the Figure 3.1. This list of VPNs represents a highly accurate

estimate of the Extended Live Set of TLB entries for that context-switch operation. The

OS would then issue a block PTE prefetch for the list of VPNs, as shown by (6). When T2

begins execution, the TLB would contain a set of PTEs needed by T2 during its current

processing slice.

3.4 TLB Contention

A process executing on a dedicated CPU incurs very few TLB misses. This is

especially true for many embedded applications which are comprised of several kernels

35

OS

T1
 E

xe
cu

tio
n

(1)

T2
Context

T2
 E

xe
cu

tio
n

Key
0. Generate Function
1. Preemption of T1
2. Save T1 state
3. Restore T2 state
4. Call EPFj
5. Generate VPN list
6. Fill TLB
7. Resume T2

8. Preemption of T2
9. Save T2 state
10. Restore T1 state
11. Call EPFk
12. Generate VPN list
13. Fill TLB
14. Resume T1

(3)

(4)

(5)

(0)

C
on

te
xt

 S
w

itc
h

Compiler T1

Binary

EPFs

T2

Binary

EPFs

Tn

Binary

EPFs

...

T1
Context

(2)
TLB RF

PC

CPU

$$

TLB RF

PC

CPU

$$

(VPN0, VPN1,...)

EFPj

T1
 E

xe
cu

tio
n

C
on

te
xt

 S
w

itc
h

T1
Context

(10)

(11
)

T2
Context

(9)

TLB RF

PC

CPU

$$

TLB RF

PC

CPU

$$

(6)

(12)

(VPN0, VPN1,...)

EFPk

(13)

(7)

(8)

(14)

≈ELS

≈ELS

Figure 3.1: High level overview of CTP

36

that process the incoming data. On the other hand, when multiple tasks are executed by

sharing the TLB, the number of expensive TLB misses can increase significantly. Inter-

task interference in the TLB is the major culprit for such an increase.

To evaluate the effects of multitasking on the shared TLB and the resulting increase

in misses, we have conducted a set of experiments. We have used a set of known em-

bedded kernels to form multitasking benchmarks. The kernels considered for this work

include ADPCM encoder (AENC) and decoder (ADEC), extended jacobian (EJ), forward

discrete cosine transform (FDCT), fast Fourier transform (FFT), LU matrix factorization

(LU), matrix multiplication (MMUL), successive over-relaxation (SOR), and lower tri-

angular (TRI) transformation. A group of kernels running concurrently was defined as a

benchmark; the 5-kernel, 6-kernel, and 7-kernel benchmarks used in our evaluation are

defined in Table 3.1.

Table 3.1: Benchmarks used for evaluation

B1 B2 B3 B4 B5 B6 B7 B8
Task 1 EJ EJ AENC EJ ADEC ADEC ADEC AENC
Task 2 FFT FFT EJ FDCT AENC EJ AENC EJ
Task 3 LU MMUL FFT LU EJ FFT EJ FDCT
Task 4 MMUL SOR MMUL MMUL FFT LU FDCT FFT
Task 5 SOR TRI SOR SOR MMUL MMUL LU MMUL
Task 6 – – TRI TRI TRI SOR MMUL SOR
Task 7 – – – – – TRI TRI TRI

TLB sizes of 32 and 128 entries were used, where for each size, 4-way and 16-

way set associative settings were applied, allowing 4 possible TLB size / associativity

configurations. In order to evaluate the impact of interference, we have instantiated (for

simulation purposes only) a local TLB used exclusively by each kernel in the benchmark,

37

and a global TLB shared by the kernels in the benchmark. Each VA translation occurs

in the task’s local TLB, as well as in the global TLB shared between the different tasks.

This setup allows distinction between self-interference (i.e., TLB misses occurring in

both global and local TLBs) and inter-task interference (i.e., misses that occur only in

the global TLB). All the TLBs used an LRU replacement policy. Each simulation lasted

200 million instructions. For kernels shorter than 200 million instructions, the execution

was restarted until 200 million instructions were executed. Time slices of 200K and

500K1were used, where the tasks defined for each benchmark were switched in a round-

robin order every time slice.

Figure 3.2 contains miss-breakdown for 32 and 128 entry TLBs. The first and

second columns in each group corresponds to 200k time slice results, while columns three

and four correspond to 500k time slice results. In addition, the first and third columns

correspond to TLBs that are 16-way associative, while columns two and four correspond

to TLBs that have associativity of 4. The local misses correspond to TLB misses resulting

from self interference (i.e., a self interference miss is a miss in both the local and global

TLB) and are shown by solid color sections of each bar. Global misses are the result of

inter-task interference when a given kernel executes concurrently with other kernels (i.e.,

a global miss is a hit in the local TLB but a miss in the global TLB) and are shown by

striped sections of each bar.

The results for 32 entry TLB simulations show 37% of the TLB misses were the

result of inter-task interference. The other 63% were the result of self-interference, but
1For a low-power embedded processor with a clock speed of 100 MHz and a CPI of 1.9 [60],

this would correspond to a process time slice of 4ms and 10ms respectively.

38

0

20

40

60

80

100

M
is

s
e

s
 %

B1 B2 B3 B4 B5 B6 B7 B8
0

20

40

60

80

100

M
is

s
e

s
 %

Benchmarks

T1 SelfT1 Inter T2 SelfT2 Inter T3 SelfT3 Inter T4 SelfT4 Inter T5 SelfT5 Inter T6 SelfT6 Inter T7 SelfT7 Inter

(a) 32 entry TLBs

0

20

40

60

80

100

M
is

s
e

s
 %

B1 B2 B3 B4 B5 B6 B7 B8
0

20

40

60

80

100

M
is

s
e

s
 %

Benchmarks

T1 SelfT1 Inter T2 Self T2 Inter T3 SelfT3 Inter T4 Self T4 Inter T5 SelfT5 Inter T6 SelfT6 Inter T7 SelfT7 Inter

(b) 128 entry TLBs

Figure 3.2: TLB misses can be separated into self and inter-task interference misses. The
analysis of 32 entry and 128 entry TLBs are shown in subfigures (a) and (b), respec-
tively. The first and second columns in each group corresponds to 200k time slice results;
columns three and four correspond to 500k time slice results; the first and third columns
correspond to TLBs that are 16-way associative; columns two and four correspond to
TLBs that have associativity of 4.

39

after analyzing the results further one can see that the EJ and TRI kernels are responsible

for a large portion of those misses. EJ and TRI both have a large working set and a 32

entry TLB is not large enough to accommodate it.

As expected, prolonging the processing time slice from 200K instructions to 500K

instructions increases the proportion of self-interference misses for EJ and TRI, since by

executing for a longer time, each task processes more data and requiring more page table

translations.

Increasing the TLB size to 128 entries alleviates self-interference for each task.

Both EJ and TRI are now able to fit their entries in the TLB without significant conflicts.

As can be seen from the large portion of striped bars, however, inter-task interference con-

tributes on average to 99% of total TLB misses. The actual number of misses, however,

decreases significantly since a large TLB reduces the number of conflicts.

The total number of misses incurred by each benchmark is shown in Table 3.2 and

Table 3.3. As expected benchmarks using the smaller sized, 32-entry, have a greater

number of misses for each configuration than that 128-entry TLBs. Due to the small

TLB size, the number of TLB misses stays approximately the same when increasing

associativity from 4 to 16 for 32 entry TLBs. The miss-breakdown composition also

stays approximately the same.

For the 128 entry TLBs, increased associativity leads to fewer misses on bench-

marks where the working sets are better able to utilize TLBs as in B1, B2, B3, B4, which

are all 5 and 6 task benchmarks. On the other hand, in benchmarks having many paral-

lel tasks, as in B6, B7, and B8, increasing associativity allows tasks with large working

sets to thrash the TLB by evicting other task’s entries without reducing its own TLB

40

miss rate. For those benchmarks, a larger associativity results in fewer non-thrashed TLB

lines. These results are representative of the general multitask TLB interference and is

the problem that we attempt to address by identifying and preloading the ELS.

Table 3.2: Number of Misses for 32-entry TLB (in thousands)

#Inst x Asc B1 B2 B3 B4 B5 B6 B7 B8
200K x 16 124.0 131.0 138.1 144.2 129.5 163.5 142.7 145.0
200K x 4 124.0 131.6 138.6 144.7 130.0 163.9 143.1 145.5
500k x 16 86.2 102.2 105.0 107.5 98.9 115.7 104.2 107.9
500k x 4 86.1 103.2 106.0 108.4 99.9 116.6 105.1 108.9

Table 3.3: Number of Misses for 128-entry TLB (in thousands)

#Inst x Asc B1 B2 B3 B4 B5 B6 B7 B8
200K x 16 73.3 98.9 111.4 121.0 98.7 155.2 117.1 123.3
200K x 4 80.6 104.4 111.8 115.5 101.1 135.8 113.8 119.2
500k x 16 77.4 93.9 96.8 99.0 90.4 107.3 95.7 99.7
500k x 4 72.3 90.3 93.1 97.6 86.1 106.2 93.6 96.1

3.5 Context-Aware TLB Preloading

To enable preservation of the TLB state between context switches, we propose us-

ing CTP, a synergistic cooperation between the OS and compiler, to predict and preload

PTEs needed in the future. CTP would be primarily applied to application hotspots. A

hotspot, like FFT and FDCT, is a frequently executed part of a program responsible for

data processing. Hotspots can be identified by doing profiling, either manually, using

tools like gprof, or automatically, with the use of a compiler technique like PGO. Since

most of the processing time is spent in hotspots, no preloading would occur between

hotspots (i.e., the system would operate as if CTP was not present).

41

3.5.1 Identifying the Extended Live Set

Finding the Extended Live Set (ELS) of live memory mappings is impossible through

compiler-only or OS-only techniques. The compiler can extract the static information

about the program, e.g., the register set used as array indeces, the stack frame or global

memory locations allocated that points to the data, the sizes of arrays, loop access patterns

(affine index functions). An example of algorithmic knowledge is the memory access pat-

tern. However, in addition to this static information, run-time information is required as

well, i.e., the place in the code where the context switch occurred, and the specific values

of the pointers (in registers or memory locations) which the compiler lacks. The OS, on

the other hand, has this run-time knowledge but lacks static information about the pro-

gram being executed. Combining the compiler’s knowledge of static information with the

OS’s knowledge of the task’s current context, the proposed technique identifies the pages

that will be needed during the next process slice.

In the proposed CTP technique, this synergism between the compiler and the OS

is achieved through a specially generated ELS Preload Function (EPF) by the compiler,

which is invoked at context-switch time (when the task is scheduled for execution) by the

OS with arguments comprising the task’s state, the anticipated duration of the time-slice

given to the task, and the TLB parameters. EPF will estimate in a highly accurate manner

the task’s ELS for that moment in execution.

Since the CTP methodology is applied on the application hot-spots of phases in an

independent manner, an EPF will be generated at compile-time for all the major appli-

cation loops. Prior to commencing the execution of such a major loop, the EPF for that

42

loop is registered with the OS and from that moment on, the OS will invoke that EPF at

context-switch time for that task.

The structure of the EPF, a detailed example of which is given in subsection 3.5.3,

fundamentally includes a simple set of instructions, which by reading the appropriate

registers and stack frame location, obtain the current value of the data set pointers (array

locations) used in that loop. Since the EPF is generated by the compiler, it is trivial to

identify all the valid VPNs accessed by the loop. CTP uses the loops’ access-pattern

strides to estimate in a highly accurate manner the set of VPNs that are not pointed to

by the loop but will be in the near future. It is noteworthy, that the access pattern here

may be much more complex than a simple stride as used in many general-purpose TLB

prefetching techniques. Fundamentally, the loop-specific EPF, when invoked by the OS,

will rapidly identify a set of VPNs that approximate very accurately the task’s ELS for

that specific run-time moment.

The compiler generates EPF using the static information known about a program

at compile time and includes it in the compiled program binary as one or more ELS

preload functions. At context switch, the OS calls the EPF, passing it the knowledge of

the underlying hardware and program state to determine which PTE entries should be

preloaded for the task to be run in the upcoming time slice.

3.5.2 Compiler and Operating System Support

Recent advances in compiler technology have enabled better program understand-

ing and have resulted in sophisticated code analysis. Compilers can already easily rear-

43

range code, as in loop tiling, to enable better cache utilization and exploit fast scratchpad

memories. To do so, the compiler determines memory access patterns based on the way

the data arrays are indexed. Our approach similarly uses data reuse analysis from the

compiler to identify the current live set and access strides, which are functions of loop

indeces, to estimate ELS.

As was shown in Figure 3.1, a compiler supporting CTP would create one or more

EPFs as part of the binary. The number of EPFs would depend on the number of hotspots

present. One EPF would be generated if the program consists of a single loop nest as in

MMUL. If a program, however, is comprised of several functions, then several EPFs

would be generated. For irregular code or code that depends on run-time conditions

(e.g., conditional branches and other control conditions that cannot be predicted by the

compiler), no EPF would be generated.

In addition to generating the EPFs, the compiler would insert system calls before

and after each computational segment to be used to associate the code segment with a

specific EPF. During execution, the application would issue a system call when reaching a

certain segment, informing the OS to use the corresponding EPF during a context switch.

The system call at the end of a code segment would notify the OS to no longer use an EPF

during context switches for that application.

An EPF would require as input the length of a process time slice (T) and context

state of the process. The time slice length would be used to determine how many pages

will be needed during the next processing time slice. For example, if T is 100K cycles,

each loop takes on average 20 cycles, and a new page is needed every 1000 iterations, then

5 (i.e., 100K
1000∗20) new PTEs would need to be prefetched as part of the extended live set. The

44

output of the EPF would be a list of VPNs that will be needed for the next processing

slice that will be derived from the array pointers.

Each preloading routine will derive a list of pages and corresponding VPNs needed

for the next processing slice from the VAs contained in the array pointers, as well as

the indexing stride (e.g., an array indexed as A[8*i] would need the next page sooner

than an array indexed as A[i]). The length of the processing time slice, array sizes, TLB

configuration, loop length and algorithmic information extracted by the compiler will

determine the number of TLB entries to be preloaded. Array size information needs to be

known to define array boundaries; thus, enabling correct preloading from the start of the

array when reaching its end.

TLB configuration is an important parameter that helps avoid aggressive preloading

that can evict useful TLB entries. An example of such a situation can occur in a 64-entry

4-way set associative TLB where the access pattern for a given array is every 16th page.

In such a situation, the fifth TLB prefetch based on that array will cause an eviction of the

first preloaded entry. Thus, the EPF will prioritize PTEs such that those needed soonest

would receive highest priority.

The required operating system support is shown in Figure 3.3. The operating system

would operate normal, without CTF, until it reaches a part of the program for which a CTF

exists. At that time, a system call would be made to setup the use of a CTF for the ensuing

context switches. In Figure 3.3, the arrow from OS to EPFs corresponds to the system call

which would be made when entering a section of the program for which an EPF exists.

Next time that task is scheduled to the CPU during a context switch, the OS would call the

EPF passing it the processing time slice length (T in Figure 3.3) as input. The EPF would

45

use the set of array pointers to compute the list of VPNs needed to be preloaded. After

receiving a list of VPNS, the OS can then do a block page table lookup filling the TLB

with PTEs needed by the process. A one time block page table lookup avoids expensive

system calls necessary for most TLB misses.

Figure 3.3: Required Operating Systems Modifications

3.5.3 CTP Example – Matrix Multiplication

To show how CTP works on an actual program, consider the MMUL kernel pseu-

docode shown in 3.5.3. Line 2 contains array size information which the compiler can

use to compute array boundaries. The 3 loops on lines 3 − 9 multiply the rows of A by

the columns of B and store the result in C. The assembly corresponding to lines 7 − 9

46

is shown in Figure 3.5. During the compilation process, registers r10, r5, and r4 are

allocated for use as address indeces for arrays A, B, and C respectively.

As can be seen on line 6 of 3.5.3, array A is traversed using the two outer loops with

i and j; thus, once a certain row of A has been used, it is not used again. On the other

hand, the array B is traversed using the inner two loops utilizing j and k, thus when i,

corresponding to the row of A, increases, array B is traversed from the beginning. Array

C is traversed using i and k from the outer and inner loops respectively. Each column of

C is traversed N consecutive times, but once the algorithm reaches column n, the data

from columns n− 1 is not used. These observations can be verified by looking at lines 8

and 11 of Figure 3.5 where the registers allocated to B and C are is incremented by 4.

1: N ⇐ 128

2: int A[N][N], B[N][N], C[N][N];

3: for i = 0 to N do
4: for j = 0 to N do
5: for k = 0 to N do
6: C[i][k]⇐ C[i][k] + A[i][j] ∗B[j][k]

7: end for
8: end for
9: end for

Figure 3.4: Matrix Multiplication

Using array indeces i, j, k along with page boundaries, the compiler is able to

extract the pages currently used and the pages that will be needed in the future for each

array. However, the compiler only has static information about the program and cannot

predict what values of i, j, and k will be when a context switch occurs. Without that

run-time knowledge, the compiler by itself cannot determine which PTE entries should

be saved from the TLB.

47

1: $L25:
2: lw $3,0($10) //r10 holds A[]
3: lw $2,0($5) //r5 holds B[]
4: mmult $3,$2
5: mflo $3
6: lw $2,0($4) //r4 holds C[]
7: addu $6,$6,1
8: addu $5,$5,4
9: addu $2,$2,$3

10: sw $2,0($4)
11: addu $4,$4,4
12: slt $2,$6,256
13: bne $2,$0,$L25

Figure 3.5: Assembly corresponding to inner loop of MMUL

Combining the compiler-generated static information with OS’s knowledge of the

run-time state we are able to identify some of the live TLB entries simply from knowing

the registers the compiler allocated to index into the three arrays. The array pointers are

usually stored in registers but can also be in the stack frame, the location of which is

also known in the EPF. Restoring the VPNs obtained from those registers at the start of a

process slice would enable the operating system to do a group TLB prefetch.

Since MMUL has one nested loop, only one EPF would be generated. To make

this example more concrete, several assumptions were made about the architecture of

the system. Each page size was assumed to be 4096 bytes. Arrays A,B, and C were

assumed to be each 16 pages respectively. The inner loop on lines 5− 7 is 10 instructions

corresponding to 12 cycles when the CPI is 1.2. A context switch occurs every 200K

cycles. Finally, lines 4− 8 were assumed to take approximately a processing slice (200K

cycles).

48

The compiler can extract most of these parameters from doing static analysis of the

code. Being given the page size information by the OS, the compiler can the compute

required space for each array.

Using this information and the values of i, j, and k, the preloading routine can com-

pute exactly which PTEs will be needed during the next processing cycle. For example,

a process slice starting when i = 1, j = 0, and k = 0 would require the pages C[1][∗],

A[1][∗], B[0][∗], B[8][∗], B[16][∗], ..., B[120][∗]

A sample EPF for MMUL is shown in Figure 3.6, where the VPNs obtained from

r10, r5, and r4, corresponding to the current pages of arrays A, B, and C, respectively,

are added to the VPN set in lines 1− 3. In addition, 15 predicted VPNs obtained from r5

corresponding to array B are added to the VPN set in lines 5−7. The number of predicted

pages (Npredict) is a function of the length of the process time slice (Tslice) and number

of instructions needed to complete a given code segment (Ninstr). Ninstr is determined

during compiler time, and Tslice is provided by the OS (this relationship is shown on line

4). Since the access stride is 1, corresponding to 4 bytes, the 15 future VPNs can be

obtained by simply adding a multiple of 0x1000 to the current address of B being held in

r5.

After receiving the list of VPNs, the OS would do a block page table lookup

eliminating some potential TLB misses. TLB misses can still occur as a result of self-

interference, when the preloading routine cannot predict VPNs or when the context switch

occurs during a section of code for which no EPF exists.

49

1: VPN [0]⇐ VPN (r10) ; // current VPN for A[]
2: VPN [1]⇐ VPN (r4) ; // current VPN for C[]
3: VPN [2]⇐ VPN (r5) ; // current VPN for B[]

4: Npredict ⇐ 16∗Tslice

Ninst

5: for i = 1 to Npredict − 1 ; // Npredict is 16, predict 15 pages
do

6: VPN [i+ 2]⇐ VPN (r5 + 0x1000 ∗ i) ; // future VPNs for B[]
7: end for
8: Function VPN (r) return (r&0xFFFFF000) >> 12

Figure 3.6: MMUL EPF

3.6 Evaluation

3.6.1 Experimental Setup

To evaluate the effectiveness of the proposed TLB preloading technique, we per-

formed an extensive simulation-based study using various TLB configurations. We have

evaluated two EPF structures: a naive implementation that uses values of current pointers

from each task to preload what they are pointing to, resulting in a subset of the live set;

and an approximation of execution-aware policy that identifies the future VPNs based on

the access pattern.

The approximation of ELS was implemented by prefetching the subset of the live

set – the VPN of the current page was extracted from the pointer to each array and was

prefetched during a context switch; and 4 additional VPNs for each array that were de-

rived from the stride of each array. This was achieved by prefetching the VPNs of the

current and the ensuing pages extracted from the pointers to each array (e.g, if the pointer

for a given array has address 0x1000, the extended live set would contain VPNs extracted

from [0x1000, 0x2000, 0x3000, 0x4000, 0x5000], where the page size is 0x1000).

50

SimpleScalar [61] was used to generate memory traces for each task. In addition

to the trace information, we also extracted execution progress of each task. The custom

traces were then used as input to a TLB simulator which could be configured in standard,

live set preloading, and ELS preloading modes.

3.6.2 Analysis of Extended Live Set Results

Extending the live set by predicting future VPNs that will be needed, offers more

opportunities to reduce the TLB miss rate. On the other hand, TLB miss rate can increase

if the valid TLB entries are evicted when filling the TLB with translations for VPNs that

will not be needed.

The ELS preservation results are shown in Figure 3.7. The miss-rate improves by

more than 20% for all of the configurations. Each group of bars corresponds to overall

miss improvement of each benchmark in different configurations. The first two bars in

each group show results for 200K process time slice while the last two bars in each group

show the 500k process time slice configuration results. In addition, bars one and three in

each group show results for 16-way set associative TLBs while bars two and four show

4-way set associative TLB configuration results. The technique is most effective when

process time slices are short, since a short slice allows numerous opportunities to preload

TLB entries.

For 32-entry TLBs, increased associativity provides more tolerance for mispredict-

ing VPNs and results in a slightly higher improvement in the overall miss rates as com-

pared to lower associativity configurations. The larger 128 entry, 16-way associative

51

1 2 3 4 5 6 7 8
0

10

20

30

40

Benchmarks: 32 entry TLB

1 2 3 4 5 6 7 8
0

10

20

30

40

Benchmarks: 128 entry TLB

200K x 16 200K x 4 500K x 16 500K x 4

% Improvement

% Improvement

Figure 3.7: ELS Preloading - Overall Miss Improvement

TLBs are already more tolerable to TLB contention, thus preloading TLB entries offers a

smaller improvement for those configurations as compared to 32-entry TLBs.

As described above, the implemented approximation of EPF preloads always the

next 4 VPNs, regardless of whether they will be needed during the present time slice, and

it is not ideal in most situations. Conversely, using a compiler-generated EPF as outlined

in Section 3.5 would enable a more accurate preloading and thus, would achieve a higher

miss rate reduction.

We selected B1 and B8 as examples to analyze the effects of CTP on the TLB per-

formance of individual task within the benchmark. Figure 3.8 plots the breakdown of

misses for B1, a 5 task benchmark, in the top plot and for B8, a 7 task benchmark, in the

bottom half of the figure. For each benchmark, a breakdown of misses incurred by each

task is shown across the different simulation settings. In each configuration group, the last

bar shows the total change in number of misses for the entire benchmark. Positive values

52

correspond to the reduction in the number of misses while negative values correspond to

an increase in the number of misses. Notice that even though the total improvement is

positive, individual tasks within a benchmark can suffer negative performance changes.

This phenomenon can occur when a task with a large working set, like MMUL, has sub-

stantial miss reduction but at the same time evicts some useful entries during prefetching

that belong to other tasks where the evicted-entries would not have been evicted other-

wise. This explains the increased number of misses for FFT and LU tasks within B1 in

128x16:200K configuration.

32x16:200K 32x4:200K 32x16:500K 32x4:500K 128x16:200K 128x4:200K 128x16:500K 128x4:500K
−10

0

10

20

30

40

50

60

70

Simulation Configuration (SIZExASSOC:TIME_SLICE)

Task1 Task2 Task3 Task4 Task5 Total

Change in Number of Misses (thousands)

32x16:200K 32x4:200K 32x16:500K 32x4:500K 128x16:200K 128x4:200K 128x16:500K 128x4:500K
−10

0

10

20

30

40

50

60

70

Simulation Configuration (SIZExASSOC:TIME_SLICE)

Task1 Task2 Task3 Task4 Task5 Task6 Task7 Total

Change in Number of Misses (thousands)

Figure 3.8: Miss change breakdown with ELS preloading for B1 on top, B8 on bottom

53

3.7 Summary

In this chapter, we have presented context-aware TLB preloading (CTP), a method

to reduce TLB misses in multitasked workloads. CTP requires profiling the application

to identify hotspots, which can be done manually using a tool such as gprof or achieved

by using profile guided optimization (PGO) compiler technique. When executing a given

hotspot, CTP utilizes a synergistic relationship between the OS and the compiler to in-

spect the process state and preload the extended live set (ELS) - the set of memory map-

pings that will be required during the upcoming process time slice. The implementation of

CTP preloads the current and 4 “near-future” VPNs extracted from registers and memory

locations used for array pointers at the start of every process time-slice. The experimental

results showed up to 48% reduction in overall TLB miss rates which in turn results in a

more accurate estimation of worst-case execution time (WCET).

Instead of using profiling to improve performance, as we have done in this chap-

ter, in the next chapters we will examine instrumentation-driven techniques that enable

analysis of dataflow applications. In chapter 4, we will use a traditional profiling tech-

nique with a novel instrumentation framework to facilitate converting legacy designs to

DBD semantics. Then in chapter 5, we enhance the instrumentation technique to create a

framework that can be used to validate dataflow properties in DBD applications.

54

Chapter 4: Instrumentation-driven Model Detection and Actor Partition-

ing for Dataflow Graphs

In this chapter, we continue to use profiling and combine it with a generic dataflow

instrumentation technique to facilitate converting of legacy designs to DBD semantics.

First, we introduce a generic method for instrumenting dataflow graphs that can be used

to profile, measure various statistics, and extract run-time information. Second, we use

this instrumentation technique to demonstrate a method that facilitates the conversion of

legacy code to dataflow-based implementations. This method operates by automatically

detecting the dataflow model of the core functions being converted. Third, we present

an iterative actor partitioning process that can be used to partition complex actors into

simpler sub-functions that are more prone to analysis techniques. We demonstrate the

utility of the proposed approach on several signal processing applications. Material in

chapter was published in a preliminary from in [62, 63].

4.1 Introduction

Modern digital signal processing (DSP) systems run sophisticated algorithms on

high-performance platforms based on field programmable gate arrays (FPGAs), programmable

digital signal processors (PDSPs), and multiprocessor system-on-chip (MPSoC) devices.

55

As a result, designing these systems is a complex process prone to inefficiencies and

mistakes.

Formal specifications define the expected system’s behavior while abstracting away

the implementation details. This allows the designer to evaluate system-level trade-offs

without worrying about the underlying details. The correct behavior of the final im-

plementation can then be verified by comparing the observed behavior to the expected

behavior of the original specification.

Many different specification formalisms have been introduced over the years and

range in strictness of semantics and applicability to various problems. Examples of such

formalisms include finite state machines (FSMs) [33], Petri nets [34], Kahn Process Net-

works (KPNs) [64] and synchronous dataflow graphs [27].

The techniques for verifying the correct behavior for systems designed using speci-

fication formalisms vary in both complexity and correctness guarantees. At one extreme,

formal methods are impractical for large or complex systems but can guarantee correct-

ness when applied (e.g., FSMs). At the other extreme, unit testing can be used to test

a variety of systems for correctness, but offer no guarantees in finding all the defects.

The quality of the unit test depends on the code coverage provided by the inputs used to

exercise the system.

The complexity of modern systems and the shrinking of the transistor’s feature size

increase the likelihood that the verification techniques will be unable to guarantee a defect

free system. The manufacturing variability in the intricate fabrication process often results

in defective devices. In addition, the increases in complexity of the software that runs

on the fabricated hardware make it challenging for modern software tools to guarantee

56

correct operations. As a result, a variety of fault-tolerance strategies are employed to

combat the potential hardware and software defects.

Design tools, including dataflow modeling, are often used to help with the design

process. Modeling DSP applications through coarse-grain dataflow graphs is widespread

in the DSP design community, and a variety of dataflow models have been developed

for dataflow-based design (DBD). DBD allows a designer to decompose a complex sys-

tem into simpler sub-functions (actors) that are connected to form a graph. A variety of

dataflow modeling tools can then be used to verify correctness of the graph and optimize

the entire system (e.g, see [25, 27, 30, 65]).

When employing DBD techniques, it is useful for a designer to find a match be-

tween his actors and one of the well-studied models, such HSDF, SDF, CSDF, or BDF,

described in Section 2.3. When such a match is found, one can systematically exploit

specialized characteristics of actors that conform to the models, and take advantage of

more effective, model-specific methods for analysis and optimization. For example, if

a dataflow model match cannot be found, a less efficient, generic scheduler and more

conservative memory allocation may need to be employed.

Economic factors necessitate reuse of existing designs with periodic upgrades to

keep up with technological advances while saving on the non-recurring engineering costs

associated with new designs. For example, the Large Hadron Collider (LHC) used for

high energy physics experiments is planned to undergo a periodic series of large tech-

nology upgrades to allow for new experiments and the expansion of existing experi-

ments [66]. Having a dataflow representation of such a system can alleviate this upgrade

process by facilitating correctness verification, and in some cases enabling the use of auto-

57

matically generated implementations for the new hardware [18,19]. DSP systems that are

not designed using DBD, including legacy systems, are more difficult to upgrade, since

implementation details can lead to errors that are hard to detect. For this reason, deriving

dataflow graphs for these systems is beneficial and is increasingly done even though con-

verting existing DSP code to dataflow graphs can be difficult and time consuming (e.g.,

see [5]).

In this chapter, we introduce a method to facilitate this conversion process by au-

tomatically detecting specialized dataflow models that can be used to represent key func-

tions being converted. By taking more generally described actors and automatically iden-

tifying them as instances of specific dataflow models, we enable the application of model-

specific analysis and optimization techniques, which are often much more powerful than

general purpose techniques [67]. We further demonstrate an iterative model partitioning

process that can be used to help decompose complex actors, whose behavior does match

specific dataflow models, into simpler actors that are more prone to analysis techniques.

To accomplish these goals, we propose a generic instrumentation framework that

enables extracting actor-specific as well as system-wide state. This flexible instrumen-

tation framework enables targeting only the desired part of the dataflow graph to debug

graph components and extract various statistics.

As with unit testing, we rely on significant coverage of the behaviors of an actor

instead of requiring a formal solution to analyze the code of the actor itself. While this

requires good tests to exercise all of the behaviors that would occur during running the

application in a real world environment, our approach need not understand the language

or build process of the target-specific actor, which makes it applicable to a wide variety of

58

DSP design scenarios. Designers are free to focus on the correct, efficient implementation

of the actor, while the proposed model-detection design instruments the dataflow graph to

generate trace information during each test. The trace information is then automatically

processed to infer the dataflow model. Although our current implementation detects static

and control-based dynamic dataflow models – in particular, CSDF, HSDF, SDF, BDF, and

IDF – the design is extensible to detect other models as well.

We demonstrate that correct dataflow models can be extracted with minimal over-

head for different components of the triggering system in the LHC. The performance of

the model detection algorithm is not related to the complexity of the actor, but rather is a

function of the trace file length. However, in order to achieve appropriate coverage, anal-

ysis of complex actors may result in longer trace files. Our proposed approach for detec-

tion of data independent models has a run time complexity of O(kn log n), where n is the

length (number of actor firings) of the trace file, and k is the number of actor ports. The

complexity for detection of data dependent dataflow models increases to O(ckn log n),

where c is the number of different control token values detected. This is a for a specific

form of dynamic dataflow behavior, such as that exhibited by the BDF and IDF models of

computation, in which dynamic token and production rates are determined as functions

of tokens on selected ports. These selected ports are referred to as control ports, and the

tokens that they carry are referred to as control tokens. Careful selection of inputs for

maximum coverage helps to maximize the accuracy of dataflow model detection while

minimizing the run time cost.

59

4.2 Related Work

Finding a match between the actors within a design and one of the well studied

dataflow models enables the use of model-specific analysis and optimization methods.

More restrictive models generally offer stronger analysis and optimization techniques.

As a result, designers often try to find a match to the most restrictive model, which can

still model the actor’s behavior.

For example, [68] present a method to classify general dataflow actors into known

models of computation (MoCs). The approach uses formal analysis of the SystemC FSM

describing the actor to identify the actor as SDF or CSDF. While this formal analysis

based approach can definitively identify dataflow models, it requires the actor to be rep-

resented by an FSM, which is not always possible, and furthermore, this approach is

language specific. Such language-specific approaches provide the designer convenient

methods to test individual functions, but lack the ability to provide arbitrary insight into

the state of a system as a whole. Our proposed method is complementary to this approach

– for example, our method can be used to provide post processing for instrumentation-

driven detection of model properties that are not detected using the formal methods ap-

plied in [68].

In an effort to improve the performance of reconfigurable video coding (RVC) pro-

grams, [69] propose classifying dynamic actors defined as part of the RVC standard as

instances of more restrictive MoCs. Their approach relies on converting general RVC-

CAL actors into an abstract form, which can then be analyzed systematically. In their

follow-on work, [70] improve the accuracy of their classification algorithm by adding an

60

additional transformation by converting RVC-CAL actors to an intermediate representa-

tion (IR) and then analyze the IR using abstract representation. They further enhance

the ability to detect time-dependent behavior by utilizing a satisfiability solving library

(SMT-LIB). Although the authors claim that their approach is not CAL specific, signif-

icant effort would be required to apply such model detection to actors represented in a

different language. In addition, the results in [70] show that such a classification method

works best for small actors that are more amenable to analysis. Our trace based approach

relies on availability of effective unit tests that exercise all of the behaviors that would

occur when running the application in a real world environment, and is equally applicable

for large complex actors.

Aspects of our instrumentation method are related to the actor programming model

in Ptolemy [71]. We provide a detailed discussion on this relationship in Section 4.4.

While we apply DICE as the underlying unit testing framework for the implemen-

tation and experiments reported on in this chapter, our model detection methodology is

not dependent on DICE or any specific kind of test suite implementation approach. Our

methodology can readily be adapted to work with other kinds of unit testing frameworks

(e.g., see [72] and reference in [37]).

Our work is also useful when working with system descriptions in general dataflow

programming environments, such as CAL [73], by allowing tools to automatically detect

specialized dataflow models that can be used to help streamline later stages of the design

flow. However, unlike automated tools that have been developed for CAL and related

frameworks (e.g., see [74]), the methods that we propose in this chapter are trace-driven,

and hence do not depend on any specific DBD language or intermediate representation

61

4.3 Dataflow Graph Instrumentation

Dataflow graph instrumentation provides a modular and flexible approach for ex-

tracting run-time information, which can be used to help debug incorrect behavior, mea-

sure performance, or see how different forms of execution state evolve as a graph ex-

ecutes. The enable-invoke interface provided by the LIDE framework is a convenient

mechanism to build upon for instrumenting dataflow graphs. As described by [30], the

enable and invoke functions correspond to testing for sufficient input data, and exe-

cuting a single firing (invocation) for a given actor, respectively.

An example of an EIDF graph along with a simple form of scheduler, called the

canonical scheduler, for EIDF is shown in Figure 4.1. The canonical scheduler is usually

not efficient for implementation purposes, but for simulation and testing processes, such

as those relevant to model detection, it is useful as a simple, generally-applicable schedul-

ing method that can easily be applied for instrumentation purposes. The instrumentation

approach described below can easily be extended to work with other scheduling mecha-

nisms.

When an actor is executed by the canonical scheduler, the enable function for the

actor is called. This function, which is a basic actor primitive in the EIDF model, returns

TRUE if and only if the actor has a sufficient number of tokens on each input edge to allow

for a complete firing of the actor in its next mode. If the enable function returns TRUE,

then the actor is executed using the invoke function; otherwise, the enable function of

the next scheduled actor is called. The canonical scheduler applies this two-phase process

62

(a call to enable followed by a conditional call to invoke) on a given sequence of

graph actors.

Enable?

Invoke

True

False
Scheduler

Enable?

Pre-invoke
instr.

True

False

Invoke

Post-invoke
instr.

Scheduler

Figure 4.1: Using the enable-invoke interface to instrument dataflow graphs: a) an illus-
tration an EIDF graph that is executed by the canonical EIDF scheduler; b) An instru-
mented dataflow graph.

To support model detection and related applications of dataflow graph instrumen-

tation in a structured way, we propose “instrumentation extensions” just prior to and just

after execution of the invoke function, as illustrated in Figure 4.1. By inserting ap-

propriate forms of instrumentation before and after an actor fires, developers can expose

powerful insight into the actor’s state, and patterns or useful statistics that can be derived

to characterize the progression of actor execution state over time. Such an approach en-

ables the developer to precisely capture relevant changes in a graph state caused by the

firing of an actor, which is a powerful technique that can be used for debugging purposes,

as well as for understanding characteristics of actor and subsystem operation.

Based on the returned value of the enable function, we can precisely determine

if a given actor will fire, and we can insert pre-invoke instrumentation (pre_ins), as

63

shown in Figure 4.1. After the invoke function finishes, the post-invoke instrumentation

(post_ins) can execute to complete instrumentation of the actor associated with its

most recent firing. For example, by observing the populations of the input FIFOs before

and after an actor fires, one is able to compute the consumption rate. Similarly, the actor

execution time can be obtained by recording the clock during pre_ins and comparing

it to the clock obtained in post_ins, after the actor finishes executing.

For relatively simple forms of instrumentation and coarse-grain actors, the pro-

posed instrumentation approach adds minimal overhead to the scheduler. Furthermore,

in the simulation/testing time context where we use instrumentation for model detection,

significant overheads can often be tolerated (compared to actual run time overhead in an

implementation). In addition to executing the enable and invoke functions for each

actor in the given actor ordering, our instrumentation augmented scheduler (IAS) executes

pre_ins and post_ins functions associated with the actors of interest (i.e., for each

actor appearance in the schedule that the designer wishes to instrument). The designer

determines the exact behavior of the pre_ins and post_ins functions such that only

the state and statistics of interest are examined. By having full control of instrumentation

functions, and allowing definition and use of arbitrary state within these functions, the

designer can instrument the actor a specific number of times (e.g., the first time the actor

fires, every time the actor fires, every other time the actor fires, or every time the actor is

in a specific mode).

64

4.4 Comparison to Ptolemy’s Prefire and Postfire

Aspects of our instrumentation method are related to the actor programming model

in Ptolemy [71]. Similarly to the pre_ins and post_ins constructs, Ptolemy’s Atom-

icActor API contains prefire and postfiremethods, which execute before and after

an actor fires (see [75]). However, there are some important differences:

• Prefire / postfire are part of the actor implementation.

• Pre-invoke / post-invoke are separate from actor implementation. Instead,

they can be viewed as part of the scheduler implementation, although their mod-

ularity allows the same library of pre-invoke / post-invoke methods to

be used in different schedulers. A related point of distinction is that execution

of pre-invoke and post-invoke can easily be limited to selected parts of

a schedule — for example, for a schedule S = (A,B,C), pre-invoke could

be executed before A, post-invoke could be executed after C, and all other

pre-invoke / post-invoke executions for these actors could be bypassed.

This allows the designer to obtain information at the boundaries of selected sub-

schedules while avoiding the overhead of executing pre-invoke / post-invoke

at the level of every actor.

• Prefire / postfire cannot be used to obtain the kind of consumption/produc-

tion information that we seek, since tokens may arrive during the multiple fire()

invocations. This distinction arises because one dataflow firing (i.e., discrete unit

65

of dataflow actor execution, as discussed in [76]) may occur through multiple invo-

cations of the fire() method.

• Prefire / postfire can access the actor’s state information, while pre-invoke

/ post-invoke cannot.

• Pre-invoke / post-invoke can access various forms of data associated with

schedule execution, as provided by the dataflow instrumentation (DFI) context.

To summarize, in contrast to Ptolemy’s prefire / postfiremethods, the pre-invoke

and post-invoke methods were specifically designed to instrument dataflow graphs,

and are therefore extensible to accomplish a variety of tasks, including collecting trace

data necessary for model detection, that are relevant to dataflow graph instrumentation.

4.5 Model Detection Notation

In this section, we introduce the formal notation that is used to precisely define the

problem that this chapter attempts to address. We then describe an approach to solve the

problem in the Section 4.6, which is the core contribution of this chapter. As discussed

in Section 2.3, a dataflow graph G is an ordered pair (V,E), where V is a set of vertices

(actors), and E is a set of directed edges. Actors represent computations while edges

represent communication links between them.

We define:

A = {a1, a2, . . . , an} (4.1)

66

as the set of all actors of interest in a given DBD scenario (e.g., a DSP system design

project or group of related projects). For example, these could be the set of all actors that

are available across all of the actor libraries accessible to the design team. In the same

design scenario, suppose that

M = {m1,m2, . . . ,mz} (4.2)

is a group of comparable models that make up the “universe” of available models (analo-

gous to how the LIDE universe is depicted in Figure 2.1). Furthermore, assume that the

mis are ordered in increasing generality (ma is more restrictive compared tomb whenever

a < b). Intuitively,M is the set of available dataflow models of computation in the given

design scenario, and we assume that the models in M are comparable, as discussed in

Section 2.3. In conjunction with the notion thatM is the model universe, we assume that

each actor in A conforms to at least one of the models inM.

We define the actor set Ak ⊂ A of each model mk as the set of all actors in A

that conform to model mk. It is important to note that some actors can be represented by

multiple models, which means that Ak ∩ Al can be nonempty for k 6= l. In fact, since

M is assumed to be ordered in terms of increasing generality, we will have Ak ⊂ Al for

k < l.

We defineR(a) as the set of all models in M that actor a conforms to, and we define

the most specialized model (MSM) for an actor a as:

MSM(a) = min{i | mi ∈ R(a)}. (4.3)

67

That is, MSM(a) is the most specialized model in the model universe to which a con-

forms. For a given actor, the model detection problem can then be defined as: given an

actor a ∈ A, determine MSM(a).

For example, consider the LIDE universe of Figure 2.1. We can represent this model

universe as

M = {HSDF,SDF,CSDF,BDF, IDF,CFDF,EIDF}, (4.4)

and given an actor a, the model detection problem amounts to determining which of these

seven models is the most specialized model that a conforms to.

Note that we have assumed that each actor conforms to at least onemi only for sim-

plicity and conciseness. The formulation in this section can easily be adapted to handle

actors in A that do not belong to any of the models in the universe (e.g., because of bugs

in the implementation or documentation of the “misfit” actors). In such cases, the model

detection problem formulation can be extended to allow for the additional “output” value

of ⊥, which represents that the given actor does not conform to any of the models in the

universe.

4.6 Model Detection Process

Our proposed model detection methodology is illustrated as the iterative process

shown in Figure 4.2. The given legacy code is converted to a generic LIDE-compatible

dataflow format in the first stage. The dataflow instrumentation methodology discussed in

the Dataflow Graph Instrumentation section is then used to analyze the LIDE-compatible

component and determine whether its behavior matches one of the recognized dataflow

68

models (i.e., one of the models from the universe of supported models). If such a match

is not found, the original legacy code can be partitioned into sub-functions. Each of the

sub-functions is then made LIDE-compatible and model detection is performed again.

This iterative process can continue until a dataflow model is found for the each of the

sub-functions or until no further partitioning can be made. In our implementation, all of

the steps in the model detection process are performed in conjunction with DICE features

for unit testing.

LIDE-
compatible

Initial
Legacy Code
fnc(in1,in2,out1,out2)
{
 …
 ...
{

Model
detection
analysis

Dataflow
model found?Partition actor Dataflow

model

Figure 4.2: Iterative model detection process

4.6.1 Transformation of Legacy Code to LIDE-compatible Format

Figure 4.3 shows the steps in converting generic code to an LIDE-compatible for-

mat. The initial transformation step entails adding an LIDE-supported FIFO for each

input and output port. In the next step, the invoke and enable functions required for

LIDE compatibility are created. In the example of Figure 4.3, the invoke function is

set to fnc, such that when the invoke function for this block is called, fnc would

execute. The enable function is created to return TRUE when the input FIFOs have

enough tokens to fire and FALSE otherwise. Our approach to validating correctness of

69

this transformation relies on the availability of a collection of unit tests that can be used

to populate the input buffers with an appropriate quantity of tokens, such that all of the

input tokens are used after some number of invocations of the invoke function.

fnc(in1,in2,out1,out2)
{
 …
 ...
 ...
{

fnc(in1,in2,out1,out2)
{
 …
 ...
 ...
{

Enable

fnc
Invoke

Set invoke() to fnc()

enable() returns
TRUE if input buffers
contain enough
tokens to fire

Original function
Inputs/outputs
replaced with buffers LIDE block

Figure 4.3: Converting legacy code to an LIDE-compatible dataflow block involves
adding input/output buffers and creating enable and invoke functions.

The LIDE-compatible block created with this transformation conforms to the generic

EIDF model. Doing further analysis to determine whether the LIDE-compatible block

conforms to a more restrictive model, such as SDF or CSDF, can enable the use of stronger

analysis and optimization techniques than those available for EIDF models. This further

analysis step is done utilizing a unit test framework.

4.6.2 Reappropriation of Units Tests for Model Detection

A typical unit test is depicted in 4.4(a), where test inputs are fed to the module

under test (MUT), which in our context is the intermediate dataflow actor being tested,

and the outputs of the MUT are saved in the output file. After all the inputs have been

processed, the “outputs” file is compared to the expected outputs. The unit test is consid-

70

ered PASSED if the expected outputs match the generated outputs, otherwise, the test is

considered FAILED.

By enhancing an actor’s unit test with dataflow graph instrumentation, as introduced

in Section 4.3, the designer can glean key properties needed to determine the MSM for

the actor. The general design of such an enhanced unit test is shown in 4.4(b), where the

first step is to provide the actor’s interface information to the pre_ins and post_ins

functions, denoted by the model detector block. As the unit test executes by feeding

inputs to the actor (shown in Step 2a), the instrumentation functions monitor the state

of the actor and extract the consumption and production information (denoted by C&P

rates in the figure), as well as the coverage information, as shown in Step 2b. Using

the knowledge about inputs, outputs, and the consumption and productions rates, the

model detector can test this data for certain dataflow properties, which in turn can be used

to determine the MSM. The result of the enhanced unit test is no longer a PASS/FAIL

criterion, but is instead the hypothesized MSM (detected MSM) of the actor. The accuracy

of this hypothesis is generally as good as the coverage of the associated test suite, and

can be improved as the test suite evolves, just as the designer’s confidence in functional

correctness can be improved.

4.6.3 Model Detection Algorithm

The model-detector block is depicted in Figure 4.5. The input to the block is in-

terface information of the MUT, and the output is the detected MSM of the MUT. The

model detector instruments the MUT and extracts runtime information, including the con-

71

Unit Test

Actor

1. Inputs 2. Outputs

3. Result

(a) Generic unit test.

Model
Detector

Actor

1. Interface
Information2a. Inputs

2b. Outputs,
C&P rates,

and
coverage

information

3. Result

(b) Enhanced unit test.

Figure 4.4: The generic unit test can be enhanced to capture the actor’s state information
used by our model detection algorithm.

sumption and production values after each firing, as well as the coverage information.

As discussed in the Section 4.1, coverage knowledge indicates how much of the MUT’s

typical behavior has been covered, and in some instances, enables generating inputs to

exercise new code paths. The hypothesis-generator block cycles through the supported

dataflow models and provides the expected pattern for a given dataflow model to the

hypothesis-tester block. The hypothesis-tester block uses pattern matching functions to

test whether the actor outputs conform to the expected pattern of the MSM hypothesis. If

the hypothesis-tester finds a given hypothesis to be TRUE, then model detection is com-

plete and that dataflow model is the detected MSM for the MUT. However, low coverage

values may lead to false findings of the MSM. For those cases, it is recommended to

generate new inputs to more fully exercise the MUT and rerun the model detection test.

72

Input Generation Hyp.
Tester

MSM

Actor
Inputs

Actor
Outputs

Interface
Specification

Feedback

Cov
Info

T/FHyp.

Hyp.
Gen

Figure 4.5: Our model detector uses the actor interface information to generate inputs
to exercise the actor. The actor outputs are used by the hypothesis generator and tester
components to determine the MSM relative to the enclosing dataflow model universe.

The pseudo-code specification of the hypothesis_generator function is shown

in Figure 4.6. This function inputs the instrumentation-obtained trace information for all

the ports and outputs the detected MSM of the actor, as defined by Equation 4.3 in Sec-

tion 4.5. The models array contains all the models being tested, sorted from most re-

strictive to least restrictive. On lines 6-12, a data independent dataflow model is detected

for each port by testing whether the observed consumption/production rates for that port

are consistent with the dataflow model being analyzed. If a data independent model was

found for each port, the detected MSM for the actor can be found by selecting the least

restrictive model of all the ports (as shown on lines 13-15).

Tests for data dependent models (shown on lines 16-22) are performed when the

trace data does not conform to any data independent models. The behavior of a data

dependent model conforms to a static model for fixed values of the control port (since

73

we restrict our detection of DDD models to control-based ones). Thus, data dependent

models are detected by testing whether one of the ports is acting as the control. The

MSM is found to be one of the data dependent values when a control port is identified

for which the behavior of the actor conforms to a specific data dependent model. In

cases when the actor does not conform to either, the data independent or data dependent

models, the MSM of EIDF is returned since it is the least restrictive model of LIDE (see

subsection 4.6.1).

A pseudo-code specification of the hypothesis_tester function is shown in

Figure 4.7. This function tests whether the inputted instrumentation obtained trace infor-

mation conforms to the specific model being tested. Our initial implementation can detect

HSDF, SDF, CSDF, BDF, and IDF models. The code testing for HSDF (shown on lines

1-5) and SDF (shown on lines 7-11) each take O(n) time, where n is the length of data.

A CSDF model is defined by consumption/production rates that repeat in a con-

sistent pattern. We utilize the findreps algorithm introduced in [77] to find the posi-

tions of all repetitions in data in O(n log n) time, where n is the length of data. Next,

dist_reps is computed by taking the difference between consecutive elements of the

repetitions array inO(n) time. Finally, we determine that the test for CSDF is TRUE

if the separation between all the patterns is the same, and the patterns span the length of

data. The entire CSDF test (shown on lines 12-21) takes O(n log n) time. As discussed

in the Section 2.3, a BDF model contains a Boolean control port. If the designated control

port carries non-Boolean values (lines 23-25), or more generally if there are more than

two distinct values observed on the port, then the trace information does not match the

BDF model. Note that the key properties and techniques of BDF hold when there are two

74

hypothesis_generator(instr_data)
//models ranked from most to least restrictive
data_independent_models = {HSDF, SDF, CSDF}
data_dependent_models = {BDF, IDF}
models = {data_independent_models, data_dependent_models, EIDF}
//detect data_independent_models
for p in ports

detected_models[p] = NONE
port_data = instr_data[p]
for m in data_independent_models

if hypothesis_tester(m, port_data)
detected_models[p] = m
break

if detected_models != NONE
msm = max(detected_models)
return msm

//detect data dependent models
for p in ports

//test if p is control port
for m in data_dependent_models

if hypothesis_tester(m, instr_data,p)
detected_models = m
return msm = m;

return EIDF

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

Figure 4.6: Pseudocode for the hypothesis generator block.

distinct values x and y — the use of TRUE and FALSE as the actual values is not critical,

as the observed values can be mapped arbitrarily into TRUE and FALSE (x = TRUE, y =

FALSE or vice versa) for any subsequent analysis and transformation related to the BDF

control signals.

Next, a check is performed to verify that all non-control ports abide to some static

model for TRUE values of the control token (lines 26-29). A similar check is made for

FALSE values of the control token (lines 30-33). Finally, if all non-control ports exhibit

data independent static behavior for a fixed value of the control token, the actor is de-

termined to be BDF (lines 34-36). Each of the two calls to check_static_models

75

takesO(kn log n) time, where n is the length of data and k is the number of non-control

ports, making the total time to detect a BDF model be O(2kn log n) = O(kn log n).

The test for adherence to the IDF model is an extension of the BDF test. Since, the

control port can have more values than in a BDF actor, an extra loop is used to iterate over

all of the detected values of the control port (lines 44-50). If for all the control tokens, the

actor conforms to data independent, static models, then the actor is determined to be IDF

(line 51). The total time to check all of the ports is O(ckn log n), where c is the number

of different values of the token in the control port, n is the length of data, and k is the

number of ports.

4.6.4 Partitioning of an Actor

The granularity (complexity) of actors used in a dataflow-based application speci-

fication is associated with important performance trade-offs (e.g., see [78]). Optimizing

actor granularity for dataflow actors with respect to specific implementation criteria re-

mains a challenging research problem. Using fine-grained partitioning of an application

hypothesis_tester(model, data, ctrl=0)
//all consumption/production values have to be 1
if model == HSDF

if data == 1
return TRUE

return FALSE
//all consumption/production values have to be k
if model == SDF

k = data[1]
 if data == k

return TRUE
return FALSE

if model == CSDF
//findreps returns positions of all repetitions in data
repetitions = findreps (data)

 dist_reps = diff(repetitions)
//distance between reps has to be the same AND
//patterns needs to span the entire space
if length(unique(dist_reps)) == 1 &&

repetitions[end] + dist_reps[1] > length(data)
return TRUE

return FALSE
if model == BDF

//control token can only have TRUE/FALSE value
if data[ctrl][:] != {TRUE, FALSE}

return FALSE

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

//for a given ctrl (TRUE), all data ports must conform to a static model
indx = find(data[ctrl][:]== TRUE)
//check all non-control ports
rt1 = check_static_models(data[0:ctrl,ctrl+1:end][indx])
//for a given ctrl (FALSE), all data ports must conform to a static model
indx = find(data[control][:]== FALSE)
//check all non-control ports
rt2 = check_static_models(data[0:ctrl,ctrl+1:end][indx])
if rt1 == rt2

return TRUE
return FALSE

if model == IDF
//control token can have C different values
[C, ctrl_vals] = unique(data[ctrl][:]
//for a given ctrl, all data ports must conform to a static model
indx = find(data[ctrl][:]== ctrl_vals[1])
//check all non-control ports
rt1 = check_static_models(data[0:ctrl,ctrl+1:end][indx])
for c in ctrl_vals[2:end]

//for a given ctrl, all data ports must conform to a static model
indx2 = find(data[ctrl][:]== ctrl_vals[1])
//check all non-control ports
rt2 = check_static_models(data[0:ctrl,ctrl+1:end][indx])
if rt1 != rt2

return FALSE
return TRUE

26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:

Figure 4.7: Pseudocode for the hypothesis tester block.

76

can result in high communication cost between multiple levels of actors in a dataflow

graph. Conversely, a coarse-grained partitioning of an application may result in having

the actors exhibit dynamic behavior, requiring a run-time scheduler, and not being able to

take advantage of parallelism offered by finer partitioning schemes.

We propose using the model detection technique to help aid the portioning of com-

plex functions by providing feedback regarding the detected dataflow model. The de-

signer can apply the model detection algorithm to the LIDE actor converted from the

legacy function, and observe the detected MSM. If the behavior of the actor conforms to

one of the well-understood dataflow models, then further partitioning may not be neces-

sary.

For cases in which the model detection algorithm finds EIDF as the MSM for the

initial legacy function, it may be possible to partition the original code into sub-functions

such that the individual sub-functions conforms to more restrictive dataflow models. The

difficulty of the partitioning process depends on the regularity of the implementation and

as a result varies on a case-by-case basis.

As a case study, we converted a JPEG encoder code to be LIDE-compatible. The

initial model detection analysis was unable to find a MSM more restrictive than EIDF for

the actor. This was largely due to the data dependent behavior of the JPEG encoder, where

its consumption and production rates are functions of the size of the input image. How-

ever, partitioning the JPEG encoder into subcomponents and performing model detection

on these individual parts resulted in detection of several HSDF-based actors. These and

other results are discussed in more detail in the Section 4.7.

77

4.7 Model Detection Evaluation

We used the DICE testing framework to implement dataflow model detection of

high energy physics actors that are part of the Trigger system of the Compact Muon

Solenoid (CMS) detector of the Large Hadron Collider (LHC) at CERN [79]. Following

recommended design practices, unit tests have been created for the core components of

the CMS Level-1 Trigger [66] and added to our DICE-based test suite and LIDE-based

design framework for these high energy physics design components. We modified these

existing unit tests by augmenting the scheduler to instrument the MUT, as discussed in

Section 4.6.

The jet reconstruction component attempts to identify a group of particles using

a sensor grid. The actor has one input port, which consumes an 8x8 grid, where each

entry represents a sensor. This results in the consumption of 64 tokens each time the actor

executes. The jet reconstruction actor also has two output ports, which correspond to the

total energy detected, and a Boolean value indicating if a jet has been identified. The actor

produces one token on each of the two output ports.

An example of the trace file containing state information produced by the jet re-

construction actor is shown in Table 4.1. Notice that the consumption values are nega-

tive while the production values are positive (i.e., these values are listed in terms of the

changes in the associated FIFO populations). The actor has one mode and two output

ports conforming to the HSDF model, and one input port conforming to an SDF model.

Since SDF is less restrictive than HSDF, the jet reconstruction actor is determined from

this analysis to conform to the SDF model.

78

Table 4.1: Instrumentation results for a jet reconstruction actor.

Mode In[0] Out[0] Out[1]
1 -64 1 1
1 -64 1 1
1 -64 1 1
1 -64 1 1

Model Detected SDF HSDF HSDF

The dataflow model detection results for the CMS actors are summarized in Ta-

ble 4.2. Having confidence that all of the actors in the system have static dataflow models,

the designer can utilize an aggressive scheduler. Combining this dataflow model infor-

mation with inter-dependency information, which can also be obtained from the dataflow

graph, the developer can strategically partition the system to maximize parallelism. Fi-

nally, an efficient buffer size for each dataflow graph edge can be derived from the con-

sumption and production rates extracted by the instrumentation code, as well as from

knowing that each actor conforms to a static dataflow model (e.g., see [5]).

In addition to the CMS actors, we have tested our improved model detection pro-

cess on a variety of communication and signal processing actors (see Table 4.3) from the

actor libraries within LIDE [26]. This set of actors includes auto-correlator, block adder,

coefficient computation, cross-correlator, fast switch, inner product, JPEG encoder, ma-

Table 4.2: Detected dataflow models of various CMS actors.

Actor #Inputs #Outputs Cons./Prod. Model
Rates Detected

Jet Reconstruction 1 2 64/1 SDF
Cluster Threshold 12 12 1/1 HSDF
Cluster Compute 12 6 1/1 HSDF
Cluster Isolation 1 2 64/8 SDF

79

trix inversion, noise adder, and switch, among others. The actors ranged in complexity

from less than 50 lines of code, for some of the simple functions, to more than 1000 lines

of code, for more complex computations.

The trace information for a block adder conforming to a CSDF model is shown in

Table 4.4. The block adder has two input ports and one output port. Unlike the previous

examples where all the actors had static behavior and only one phase, the block adder

cycles through three phases. The actor consumes one token from input port In[0] when

in phase 2; it consumes one token from input port In[1] when in phase 3; and it produces

one token to output port Out[0] when in phase 1. This results in all of the ports having

repeating firing patterns: {-1,0,0} for In[0], {0,-1,0} for In[1] and {0,0,1} for Out[0], in-

dicative of a CSDF dataflow model, which is what the model detector determined. Again,

negative values indicate consumption, while positive values indicate production.

The model detection algorithm was able to correctly identify the MSM for 22 out of

23 actors in Table 4.3. Initially, due to a limited unit-test, the model detection algorithm

incorrectly classified one of the BDF actors as CSDF. This was caused by the enhanced

unit-test cycling the inputs to the control port and resulted in the trace information con-

taining a cycle on every port, reminiscent of CSDF behavior. After refining the inputs to

Table 4.3: Detected dataflow model results for 23 actors that provide various communi-
cation and signal processing functions.

Model Detected Number of Actors
HSDF 6
SDF 7

CSDF 2
BDF 2
EIDF 6

80

Table 4.4: Instrumentation results for a block adder.

Mode In[0] In[1] Out[0]
2 -1 0 0
3 0 -1 0
1 0 0 1
2 -1 0 0
3 0 -1 0
1 0 0 1
2 -1 0 0
3 0 -1 0
1 0 0 1
2 -1 0 0
3 0 -1 0
1 0 0 1

Model Detected CSDF CSDF CSDF

the MUT, the model detection algorithm correctly identified the dataflow model as BDF.

This misclassification and our associated rectification of it demonstrate concretely the

importance of test suite rigor in the model detection process.

The one actor for which the model detection algorithm was not able to identify a

dataflow model more restrictive than EIDF was the JPEG encoder, the implementation of

which is derived from [80]. The trace generated when testing this actor was insufficient

to determine a dataflow model more restrictive than the generic EIDF. Since the JPEG

encoder was composed of more than 1000 lines of code, it was a good candidate for

repartitioning – i.e., for decomposition into a network of finer granularity actors.

By manual analysis and manipulation of the code, we partitioned the JPEG encoder

into 5 separate actors and applied our model detection algorithm to each one. The results

in Table 4.5 show the original JPEG encoder on the first row and the detected dataflow

models for the partitioned actors on the 5 remaining rows. The model detection algorithm

81

was able to find HSDF as the MSM for 3 out of the 5 actors. Further analysis revealed

that the BMP Reader actor consumes the entire BMP file with one firing and produces

the entire data portion of the BMP file on its output port. This results in very limited

trace information, insufficient for the model detection algorithm to identify the actor as

being anything other than EIDF-based. Investigating the JPEG Prep actor showed that

during the first invocation, it consumes the BMP data token from the BMP Reader. On

ensuing invocations, the actor outputs a fixed block of pixels until the entire BMP image

has been processed. The model detection algorithm was not able to detect an MSM other

than EIDF for the JPEG Prep actor, since its behavior is dependent on the size of the

BMP image, and since our current model detection system detects only control-based

data dependent actors.

Our results on the CMS Detector demonstrate the utility of our model detection

approaches on a complex and important application. The partitioning of the complex

JPEG actor into simpler actors demonstrates the efficacy of using the proposed approach

to explore trade-offs involving actor granularity. The low run time complexity of our

Table 4.5: Detected dataflow models of JPEG encoder actors.

Actor #Inputs #Outputs Cons./Prod. Model
Rates Detected

JPEG Encoder 1 1 1/1 EIDF
BMP Reader 1 1 1/1 EIDF
DCT 1 1 1/1 HSDF
Huffman Encoder 3 0∗ 1/0 HSDF
JPEG Prep 2 2 1/6 EIDF
Quantizer 1 2 1/1 HSDF
*writes the data to a file

82

model detection techniques (see the subsection 4.6.3) enhances this utility, and facilitates

high confidence detection from large traces associated with coverage-intensive test suites.

4.8 Summary

A common problem of modern, high-performance system-on-chip designs is the

need for frequent upgrades to keep up with current technology or evolving application

requirements. Designers can convert legacy code to dataflow-based implementations to

help alleviate this upgrade process, though the conversion can be laborious and time con-

suming. In this chapter, we have developed a method to facilitate this conversion process

by automatically detecting the dataflow models of the core functions, and we have devel-

oped techniques to strategically apply the formal model characteristics revealed through

such conversion.

We have also developed a generic instrumentation approach that, when combined

with traditional profiling tools, can be used to facilitate conversion of legacy designs to

DBD semantics. We have demonstrated our instrumentation approach using the lightweight

dataflow environment (LIDE) framework and the DSPCAD integrative command line en-

vironment (DICE). In addition to supporting our proposed model detection features, this

instrumentation-driven approach can be useful in debugging dataflow graphs, measuring

performance, and experimenting with system design trade-offs.

Third, we have presented an iterative actor partitioning process that can be used

to partition complex actors into simpler sub-functions that are more prone to analysis

techniques. In the next chapter, we will extend this instrumentation technique to develop a

83

validation framework that can be used to validate dataflow properties in signal processing

systems.

84

Chapter 5: Instrumentation-driven Validation of Dataflow Applications

In the previous chapter, we presented a generic instrumentation approach that was

used to detect instances of well understood models from legacy code. In this chapter,

we will extend that instrumentation technique to develop a validation framework that can

be used to validate dataflow properties of signal processing applications. Material in this

chapter was published in partial, preliminary form in [81].

5.1 Introduction

Dataflow modeling is an important tool often used by the designers of communica-

tion and signal processing systems to facilitate system level analysis and optimizations by

exposing high level application structure. Such dataflow-based analysis and optimization

has the potential to increase design quality in various dimensions — e.g., by taking ad-

vantage of parallelism [78], minimizing resource utilization [82], or enhancing the use of

vectorization [83, 84]. Developers then apply these optimizations to the implementation

of the hardware and software components in the final system.

Formal methods and testing are two important approaches to system verification.

Such methods attempt to validate that the system complies with its original specifications.

Formal methods use mathematical means to prove that the system meets a specification.

85

Although such formal methods provide correctness guarantees, their rigor often makes

them impractical to prove the correctness of large, complex systems [85].

Testing methods can be used to improve the quality of a product by detecting and

removing as many defects as possible, and increasing developer confidence in the proper

functioning of the system. Testing methods cannot guarantee the absence of defects, but

are easier to use when compared to formal techniques. As a result, testings methods are

widely used to test various system properties.

During the implementation process, carefully performed testing and functional val-

idation can mitigate functional errors. Unit tests, in particular, help to validate the correct

behavior of each core function by comparing the generated outputs to the expected out-

puts [86]. However, conventional approaches to testing do not systematically uncover

implementation mistakes that cause the violation of dataflow properties specified in the

original design. Such violations are difficult to detect if they are not explicitly targeted

in the testing process — for example, because they may not result in incorrect output

values of a given functional component (actor). However, in signal processing systems,

violations of the assumed dataflow properties often lead to sporadically-incorrect behav-

ior of the application as a whole, since key optimizations and design decisions, such as

the employed scheduling strategy, may depend strongly on specific dataflow properties.

In this chapter, we present a system level validation technique that complements

functional validation that is traditionally done through unit tests. It ensures that sys-

tem level concerns (e.g., scheduling and buffer management) that make use of declared

dataflow properties will not fail due to bugs in the property declarations or due to bugs in

the implementations that lead to deviation from the specifications. Our dataflow valida-

86

tion framework (DVF) can be used to detect inconsistencies in individual dataflow ports,

entire actors, or dataflow subgraphs. The technique builds on a systematic approach to

dataflow graph instrumentation introduced in [63].

Our overall DVF validation approach works by (1) having the designer specify ex-

pected dataflow behavior for components that the designer wants to test; (2) executing the

application, which results in parts of the dataflow graph being instrumented to validate

that the observed dataflow behavior matches the expected behavior; and (3) correcting

any reported errors that result from the application execution in Step (2). In addition to

supporting this dataflow-property-oriented validation approach, DVF facilitates the diag-

nosis and repair of detected errors by saving the execution state of the application at the

time of the violation, thereby providing the developer with insights into the cause of the

detected malfunction.

We demonstrate DVF in the context of audio and image processing applications,

and show that typical dataflow properties can be validated with minimal amounts of extra

processing (i.e., with low run-time overhead). The correctness of the supported valida-

tion approach relies on having a thorough set of unit-tests that exercises as much of the

dataflow graph as possible. Thus, DVF provides systematic integration of dataflow prop-

erty considerations into the general framework of unit testing.

5.2 Related Work

By helping to alleviate the problem of system-level validation, the contributions in

this chapter address one of the major bottlenecks in design processes for signal processing

87

systems. Our work combines aspects of dataflow modeling, application profiling, and

system verification. In this section, we briefly discuss relevant background in these areas

and compare our work to the current state of the art.

Many different specification models have been introduced over the years that vary

in the strictness of their semantics and their utility for different application domains. Such

a system specification approach facilitates the verification and testing processes [37]. For

example, the authors in [38] describe the formal specification and verification of a mul-

ticore digital signal processor that employs 64 processors. They abstract implementation

details by specifying the expected behavior from the programmer’s perspective, and then

use an assume-guarantee method with a model checker called MOCHA to perform com-

positional verification.

Dataflow-based specification is used to describe MPEG reconfigurable video coding

(RVC) to abstract away implementation specific complexities [39]. In [40], the authors

propose using CAL [23] to specify the system, and then perform functional validation us-

ing the OpenDF environment [41]. The approach that we present in this chapter comple-

ments the functional validation methods provided by these related works in its emphasis

on validation of dataflow properties.

Various tools have been introduced to facilitate profiling and complexity analysis

for signal processing systems. For example, Ravasi and Mattavelli describe the Software

Instrumentation Tool (SIT), which acts as a C virtual machine and allows extraction of

information related to fine-grained computation and memory utilization [87]. Like SIT,

DVF also instruments the application. A distinguishing aspect of DVF is that it operates at

88

the dataflow level, and focuses on validation of dataflow properties, thus complementing

SIT’s fine-grained functional analysis.

Causation traces are introduced in [88]. Such traces are obtained from specific ex-

ecutions of the system under development, and represent dataflow actions that have token

dependencies. These traces can then be used in offline analysis to improve scheduling

and parallelization decisions.

Several high-level modeling languages and tools have been used to carry out system-

level analysis, verification and validation, and architectural exploration (e.g., see [35, 36,

89–91]). These tools enable designers to validate the expected behavior of an implemen-

tation and check that the resulting software meets the specified performance requirements.

Similar to these tools, DVF enables validation of system behavior. However, DVF differs

from these tools in its focus on system-level dataflow properties, which are of increasing

relevance in the design and implementation of signal processing systems.

Instrumentation-based validation (IBV) uses monitors to instrument Simulink ap-

plications and find violations of requirements [92]. The validation occurs by checking

if the observed run-time behavior captured by the monitors matches that of the require-

ments, which are encoded as assertions. In [93], the authors demonstrate the utility of

IBV by applying it to the validation of automotive controllers. While both IBV and DVF

use run-time instrumentation, IBV tests the functional correctness of an application, while

DVF uses instrumentation to validate dataflow properties. Although dataflow properties

may influence the functional correctness of an implementation, our specialized focus on

dataflow properties allows more precise identification of design defects that have such

influence.

89

5.3 Validation Framework

Figure 5.1 illustrates our approach to validating application behavior using DVF.

DVF consists of 3 general phases: the offline behavior specification phase, application

setup phase, and application execution phase. During the first phase, which occurs of-

fline (before running the application), the designer creates a specification of the expected

behavior. The application setup phase consists of processing that specification and in-

strumenting the dataflow application. During the application execution phase, the in-

strumentation inserted during the second phase collects run-time information from the

application context, and then validates that observed behavior with the expected behavior.

The run-time information extracted during the third phase is collected by monitoring and

storing information associated with how actors access their input and output edges during

dataflow graph execution.

In the remainder of this section, we introduce formal notation that is useful to de-

scribe dataflow validation, and we provide further details on the behavior specification

phase. Then in Section 5.4 and Section 5.5, we discuss the application setup and applica-

tion execution phases, respectively.

5.3.1 Dataflow Validation Notation

In this section, we extend the formal notation from Section 2.3 that we use to pre-

cisely define the problem that this chapter addresses. We then describe the approach to

solve the problem in the ensuing sections, which form the core contribution of this chap-

ter.

90

Setup

Execution

End

Application

Specification
Processing

Instrumentation

Statistics
Collection

Behavior
Validation

Check

Behavior
Specification

Error
Success

Legend of Phases

Offline

App. Setup

App. Execution

Figure 5.1: An illustration of DVF. The framework includes a setup phase, during which
the application is instrumented, and an execution phase, during which run-time behavior
is checked against expected behavior.

Recall that an actor’s dataflow behavior is a function of the dataflow model to which

the actor conforms [5]. Actors exhibiting static behavior have fixed consumption and pro-

duction rates, while in general production and consumption rates can vary across distinct

firings of the same actor. For example, as was shown in Section 2.3, an actor a conform-

ing to the SDF model will by definition have fixed consumption and production rates —

∀e ∈ port in(a) : cns(e) ∈ N, and ∀e ∈ portout(a) : prd(e) ∈ N, where N = {1, 2, . . .}.

91

The knowledge that a system’s dataflow behavior is static, for example, can lead to

better analysis and stronger optimizations (e.g., see [5]). However, these optimization are

generally valid only if the assumed dataflow properties hold true. We define I as the set

of declared invariants (or dataflow properties) that the designer believes should hold true

throughout system execution.

Applying a minor abuse of notation, we define the invariant set Ia ⊂ I of each actor

a as the set of all invariants in I that define properties for actor a. Similarly, we define the

invariant set Ie ⊂ I of each edge e as the set of all invariants in I that define properties

for edge e. Invariants are derived from the dataflow properties encoded in the behavior

specification file (described in subsection 5.3.2) during the specification processing stage.

The relevant state of the executing dataflow application can be specified as:

Sys = (G,Π,Φ), (5.1)

where Π is the set of actors being executed on the available processing elements (PEs),

and Φ is the state of the system FIFOs. Here, the state of the FIFO associated with each

edge e includes the number of tokens queued on the edge along with the sequence of

token values stored.

The validation function maps the set of declared invariants I and system state Sys

to a Boolean value: Val : I × Σ 7→ B, where B = {True, False}, and Σ represents the

set of all possible system states.

92

For a given system state x ∈ Σ, the validation of actor a is successful if

∀i ∈ Ia,Val(i, x) = True. (5.2)

Intuitively, each invariant i ∈ Ia is evaluated on the given system state x to determine the

validation of actor a. The validation of an edge e can be performed with Equation 5.2 by

replacing Ia with Ie.

Intuitively, a detectable fault is a defect in the dataflow graph G = (V,E) (i.e., a

defect involving one or more elements of ({V ∪ E})) that leads to a violation of one or

more invariants in I under some system state x′, where x′ can be reached by executing

the graph from some valid initial state xo.

In our proposed DVF approach, the statistics collection and behavior validation

stages defined in Section 5.5 carry out computations associated with Val , and the process

of identifying detectable faults.

5.3.2 Behavior Specification

In the behavior specification phase, the designer specifies the expected dataflow

behavior of the actors in the design through a text file, called the behavior specification

file. This specification file contains a high-level description of the expected behavior for

the application components that need to be validated. The description is provided in an

XML format, thereby decoupling it from the language-specific implementation of the

final design. As a result, the same specification file can be used to validate the high-

level, language-agnostic dataflow design as well as the language-specific implementation

93

of the final solution. By using the same specification at the early design stage and later

implementation stages, the designer can guarantee consistent, correct behavior and track

any errors that may have been introduced during the implementation.

An example specification file for an actor containing three ports is shown in Fig-

ure 5.2. Two of the ports are input ports conforming to the SDF model. Each of these

ports is specified to have a consumption rate of of 2 tokens per firing. The actor also

has one output port, which conforms to the homogeneous synchronous dataflow (HSDF)

model, meaning that it has a constant product rate of 1 token per actor firing. By de-

sign, the XML-based behavior specification file does not contain any information about

the functional behavior of the associated component. This is because DVF is oriented

toward orthogonalizing dataflow properties during the validation process so that they can

be focused on during testing, and addressed in a method that is independent of the imple-

mentation platform or language.

In dataflow graphs containing multiple instances of the same actor, the actor id

disambiguates which instance needs to be instrumented. Similarly, port numbers are used

to identify specific ports within a DVF behavior specification file.

5.4 Application Setup Phase

The behavior specification file is applied as input to the application setup phase,

and consists of two stages — (1) specification processing and (2) instrumentation — as

illustrated in Figure 5.1.

94

<a c t o r>
<name=” a d d e r ” />
<id =1/>
<port>

<number =1/>
<d i r e c t i o n = i n p u t />
<type =SDF />
<behavior =2/>

< / port>
<port>

<number =2/>
<d i r e c t i o n = i n p u t />
<type =SDF />
<behavior =2/>

< / port>
<port>

<number =3/>
<d i r e c t i o n = o u t p u t />
<type =HSDF />

< / port>
< / a c t o r>

Figure 5.2: The contents of a DVF behavior specification file for an adder actor.

5.4.1 Specification Processing

The specification processing stage parses the behavior specification file to construct

and initialize interfaces that will be employed in the instrumentation stage. These inter-

faces will specify how instrumentation code interacts with the associated dataflow graph

actors and edges.

For the example of Figure 5.2, the specification processing parser extracts the ex-

pected dataflow behavior for each port of the adder actor and translates that behavior

into a set of invariants that will be checked at run-time. The result of the specification

processing phase would be the following set of invariants for the adder actor:

95

Iadder = {cns(e1) = 2, cns(e2) = 2, prd(e3) = 1}.

The XML parser captures any dependencies that may exist between the ports, and

allows the instrumentation and validation stages to utilize such dependency information.

For example, a Boolean dataflow (BDF) [94] actor containing a control input port would

require the other input ports to specify behaviors for the True and False cases. This

dependency would be captured in the specification processing stage and encoded in the

set of invariants held by the expected and observed behavior structures. This knowledge

will then be applied during application execution to provide appropriate instrumentation

and validation.

5.4.2 Instrumentation

In DVF, the interfaces that are initialized in the specification processing stage dic-

tate the instrumentation required to validate the dataflow behavior of each component.

Instrumentation code is generated automatically from the behavior specification file. This

includes code to validate the connection of the correct ports in the implementation with

the corresponding actors, and results in the insertion of lightweight segments of monitor-

ing code that execute before and after each instrumented actor. We refer to these code

segments as DVF monitoring code segments (DMCSs).

To provide this kind of monitoring code, we have generalized the instrumentation

technique introduced in [63] such that the pre-invoke instrumentation and post-invoke

96

instrumentation operations can be applied in a manner that is independent of the type of

scheduling strategy used.

The DMCSs for each instrumented port execute an associated statistics collection

function before and after the corresponding actor executes. The type of statistics col-

lection function applied is determined by the port behavior, as specified in the behavior

specification file. Both the specification processing and instrumentation stages are parts

of the application setup phase, as illustrated in Figure 5.1, and are carried out before the

application starts executing.

In the example of Figure 5.2, DMCSs would be added for each port, resulting in

a dataflow graph model of the form depicted in Figure 5.3. As the application executes,

the DMCSs for each instrumented port invoke the statistics collection process before and

after Actor 1 fires.

5.5 Application Execution Phase

The execution phase of DVF contains two stages, as illustrated in Figure 5.1. In this

section, we present details on the operation of these two stages.

5.5.1 Statistics Collection

The separation of specification processing, instrumentation, and statistics collec-

tion activities into separate stages results in a flexible framework capable of validating

a variety of dataflow behaviors, while simultaneously allowing reuse of common vali-

dation components. The statistics collection stage collects selected statistics of each in-

97

Actor 1

Actor 0

...

Actor N

Legend

Instrumented Port

Expected Behavior

Figure 5.3: The expected behavior for each port, shown in dark, is extracted from the
behavior specification file during the specification processing stage. DMCSs, represented
by the light shade, are added to each instrumented port such that the associated statistics
collection function is called before and after the actor fires.

strumented component when the associated actor fires. The type of data collected varies

for each port and depends on the assigned statistics collection function, which is selected

from a library of available functions during the instrumentation stage. The flexibility of-

fered by DVF enables the designer to add new statistics collection functions to the library

as desired.

98

The validation of the behavior for static dataflow models, such as HSDF and SDF,

requires collecting the consumption and production rates for each instrumented port when

the associated actor fires. The resulting statistics collection function collects the FIFO

populations before and after the instrumented actor fires, thus enabling computation of

the consumption and production rates.

Collection of data required to validate dynamic dataflow behavior generally requires

more complex statistics collection functions that collect more kinds of data. For example,

the statistics collection function for a BDF actor, whose behavior varies depending on the

input to the control port, collects the value of the token at the control port as well as the

consumption and production rates for the data ports.

Figure 5.4 shows that the collected information from an instrumented component is

stored in an entity called the observed behavior structure. The observed behavior struc-

ture in DVF can be viewed as a placeholder for an arbitrary data structure that is used

to store and organize collected statistics during execution. The complexity of the ob-

served behavior structure depends on the behavior being validated. For example, for an

SDF model, the observed behavior structure can be implemented as a vector, where each

element corresponds to the consumption or production rate of a specific actor port, and

for cyclo-static dataflow (CSDF) [28], one can use an array of vectors with each port

represented by a separate vector of non-negative integers.

99

Dataflow
Graph

Instrumented
Actor

Observed
Behavior

Expected
Behavior

Validate

Pass/Fail

Figure 5.4: The statistics collection stage obtains and stores data about observed dataflow
behavior during each actor firing and passes the collected information to the behavior
validation stage. The behavior validation stage in turn compares the observed behavior
with the expected behavior, and reports any inconsistencies as errors. Details on any
detected inconsistencies are also reported to help the designer identify and fix the errors.

5.5.2 Behavior Validation

The behavior validation stage involves comparing the observed behavior structure

populated during the statistics collection stage with the expected behavior structure that

is defined in the specification processing stage. To ensure that the validation process does

not report false errors from the beginning of application execution, the observed behavior

structure is initialized to the expected behavior. Such an initialization translates to the

premise that all the invariants for the application are assumed to be True until proven

otherwise.

Because the DVF validation process is carried out concurrently with application

execution (rather than as a kind of trace-based post-processing), an invocation of the val-

idation process does not need to compare the observed and expected structures in their

100

entirety. Only the observed behavior structure elements set during the most recent ac-

tor firing need to be compared to the corresponding elements in the expected behavior

structure, thus resulting in a significant reduction in the required processing and storage

requirements. For example, with the observed behavior vector in Figure 5.4, only the

most recent elements populated by the statistics collection function would be compared

to the corresponding elements in the expected behavior vector.

Matching of the compared elements in the observed and expected behavior struc-

tures results in the pass of the validation check (as in Equation 5.2), in which case the

application continues to execute and the validation process continues with the statistics

collection stage, as shown in Figure 5.1. However, if the validation fails, execution of the

application terminates with an error report, and the execution state of the application is

saved to a file to facilitate the diagnosis and repair of the detected “dataflow behavior mal-

function”. If DVF is operating within an actual application deployment (e.g., rather than

during testing), a controlled shutdown or warning indication can be initiated upon detec-

tion of a dataflow behavior malfunction. Such proactive fault handling is often preferable

to silently allowing the system to enter an invalid execution state that is related to mis-

matches between design time assumptions and actual implementation characteristics.

5.6 Evaluation

5.6.1 Experimental Setup

To further concretize DVF, we have used the framework to validate dataflow prop-

erties for an automatic speech recognition (ASR), acoustic tracking (AT), and JPEG en-

101

coder applications. In this section, we describe our experimental setup. The description

and results for each application can be found in subsection 5.6.2, subsection 5.6.3, and

subsection 5.6.4.

Each application was implemented using the lightweight dataflow environment (LIDE) [32].

In particular, we used LIDE-C, which provides libraries and application programming

interfaces to construct dataflow actors and graphs using the C language. The dataflow

properties for each component being validated were encapsulated in a separate behavior

specification file (as described in Section 5.4). A corpus consisting of 20 audio files, 12

bitmap (BMP) files, and 32 acoustic test files was used as input to the ASR, JPEG, and AT

applications, respectively, while validating the dataflow properties for each actor. Each

experiment was repeated 50 times per input file to better characterize the effects of DVF

in the presence of background applications.

We employed 2 different platforms to conduct experiments. The embedded system

experiments were conducted on a Raspberry Pi embedded platform that has an ARM1176JZF-

S 700 MHz processor with 256 MB of RAM. Experiments were also conducted on a

laptop platform with an Intel(R) Core(TM) i7-2675QM 2.20GHz processor and 6 GB of

RAM.

5.6.2 Validation of Automatic Speech Recognition Application

5.6.2.1 ASR: Description

We implemented the embedded automatic speech recognition (ASR) algorithm based

on [95], and applied this implementation to experiment with our proposed DVF approach.

102

We separated the ASR system functionality into 7 actors, as shown in Figure 5.5. These

actors are described as follows.

Reader
Pre-

emphasis
Framing

FFT

Feature
Extraction

MatchingWriterResult

Speech

Figure 5.5: The ASR algorithm is separated into seven actors that repeatedly extract a
feature set from the input speech signal and compute the closest match against a database
of pre-collected speech samples.

Reader

The reader detects a voiced signal and partitions the 8 kHz-sampled signal into

frames that span 256 samples (31.25 ms) each.

Pre-emphasis

The pre-emphasis actor processes each frame by applying a first order high-

pass filter to compensate for variations in the low and high frequency components

of speech.

Framing

The framing actor applies a Hamming window to the overlapping frames.

FFT

The FFT actor computes the spectrum of the windowed signal.

103

Feature Extraction

The feature extraction actor derives the Mel Frequency Cepstral Coeffi-

cients (MFCCs) of the signal by

1. applying the Mel filter bank to the frequency spectrum to compute the Mel

spectrum, and

2. applying an inverse discrete cosine transform (IDCT) to the logarithm of the

Mel spectrum. The MFCCs are managed as vectors of 15 coefficients each. A

single vector of this form is computed for each speech frame.

Matching

The matching actor uses a dynamic time warping (DTW) algorithm to find the

best match between the input signal and the collection of speech signals.

Writer

The writer actor saves the results of the matching actor to a text file.

Dataflow properties for each ASR actor are summarized in Table 5.1. These proper-

ties include the dataflow model; the number of input and output ports; and the consump-

tion and production rates. Here, by the “dataflow model” of the actor, we mean the model

that the designer declares the actor to conform to or the most specialized model that has

been determined for the actor through prior application of relevant analysis tools, such

as model detection [63]. The reader produces one extra token corresponding to an SNR

value every 20 frames, making it a CSDF actor (the notation in Table 5.1 shows the actor

104

producing 257 tokens during the first firing and then producing 256 tokens during each of

the next 19 firings).

Table 5.1: Dataflow properties of ASR actors.

Dataflow #Inputs/ Cons./Prod.
Actor Model #Outputs Rates
Reader CSDF 0/1 0/257,256{19}
Pre-emphasis CSDF 1/1 257,256{19}/256
Framing SDF 1/1 200/256
FFT SDF 1/1 256/128
Feature Extraction SDF 1/1 128/15
Matching SDF 1/1 300/2
Writer SDF 1/0 2/0

5.6.2.2 ASR: Results

Applying DVF to the ASR application in this case study enabled detecting and

correcting several critical errors caused by violations of various dataflow assumptions.

Incorrect Buffer Size

A change to the behavior of the reader actor was not propagated to the FIFO con-

necting it to the rest of the dataflow graph. DVF was able to detect the reader

attempting to output more data than what was specified in its behavior specifica-

tion.

SDF Behavior Violation

To optimize for varying signal-to-noise (SNR) in the input speech signal, the reader

was augmented to calculate SNR at the start of every speech sample. During ini-

tialization for a given speech sample, the optimized reader actor produces 256 to-

105

kens (signal samples), followed by a single token that encapsulates the SNR value.

Ensuing invocations of reader result in the output of 256 tokens, as described in

Table 5.1, for the remaining processing of the current speech signal. DVF detected

the discrepancy between the actual dataflow behavior of the optimized reader, and

the specified (obsolete) behavior, which was based on the original reader. This al-

lowed quick detection of the error and corresponding repair of the overall dataflow

schedule.

Deadlock Detection

The sizes of the FIFOs connecting ASR actors were adjusted several times dur-

ing the development process. During one of the design iterations, an error was

introduced that caused the ASR application to reach a deadlock because of a mis-

configured FIFO between the pre-emphasis and framing actors. DVF was able to

identify both actors responsible for the deadlock and provided information about

the behavior specification violations that helped in repairing the misconfiguration.

The setup time needed to process the behavior specification and instrument the

dataflow graph is shown in the second column of Table 5.2 and Table 5.3. From this,

we see that the average setup time is 3.36 ms and 220 µs on the embedded and laptop

platforms, respectively. The average time for the entire ASR application without DVF is

70 ms on the embedded platform and 10 ms on the laptop platform. Thus, DVF setup adds

about 5% overhead to the run-time of the ASR application on the embedded platform and

2% overhead on the laptop platform.

106

Recall that in addition to the application setup stage, which occurs once at the

start of the application, DVF includes statistics collection and behavior validation stages,

which occur every time the instrumented component executes. The run-time overhead

caused by DVF for each instrumented component of ASR on the embedded platform is

shown graphically in Figure 5.6. For each actor, the figure shows two box plots, where

the left plot shows the baseline execution time without DVF and the right plot shows the

execution time with the actor being validated using DVF. Table 5.2 shows the mean val-

ues of the same results, from which we see that the run-time validation overhead was on

average 2.1% of the execution time for the actors tested. The same results for the laptop

platform, depicted in Table 5.3, show the run-time validation overhead to be on average

9.1% of the execution time.

Table 5.2: DVF performance results for the actors in the ASR application on the embed-
ded platform.

Setup Baseline With DVF DVF Overhead
Actor Time Time Time %
Reader 3.25 ms 56 µs 58 µs 3.6
Pre-emphasis 3.38 ms 102 µs 105 µs 2.9
Framing 3.43 ms 77 µs 78 µs 1.3
FFT 3.41 ms 288 µs 291 µs 1.0
Feature Extraction 3.40 ms 101 µs 105 µs 4.0
Matching 3.46 ms 2.97 ms 2.98 ms 0.3
Writer 3.25 ms 294 µs 300 µs 2.0

107

2900
2950
3000
3050
3100
3150
3200
3250
3300

Feature_Extraction Fft Frame Matching Preemphasis Reader Writer
50

100

150

200

250

300

B V B V B V B V B V B V B V

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Figure 5.6: Execution time comparison with validation (denoted by V), and without vali-
dation (“baseline”, denoted by B) on the embedded platform.

5.6.3 Validation of Acoustic Tracking Application

5.6.3.1 Acoustic Tracking: Description

We implemented the acoustic tracking (AT) application based on [96], and applied

DVF to validate the 6 actors shown in Figure 5.7. These actors are described as follows.

Source(Data)

The source actor reads acoustic data sampled at 8000Hz.

108

Table 5.3: DVF performance results for the actors in the ASR application on the laptop
platform.

Setup Baseline With DVF DVF Overhead
Actor Time Time Time %
Reader 157 µs 6 µs 7 µs 16.7
Pre-emphasis 223 µs 9 µs 10 µs 11.1
Framing 209 µs 6 µs 7 µs 16.7
FFT 248 µs 30 µs 30 µs 0.0
Feature Extraction 255 µs 14 µs 14 µs 0.0
Matching 209 µs 758 µs 768 µs 1.3
Writer 144 µs 6 µs 7 µs 16.7

Detection

The detection actor detects potential target(s). The detection algorithm works

on a frame by:

1. applying a smoothing filter to the data;

2. identifying local minimum and maximum regions; and

3. selecting regions that are outside the desired tolerance (e.g., that deviate from

the mean by more than σ2).

The frame size is configured with a parameter and can take on the values of 10 ms,

100 ms, and 1000 ms.

Feature Extraction

The feature extraction actor computes the discrete Fourier transform (DFT)

of the envelope from the input data. It then computes the energy in the frequency

domain. The feature set consists of DFT coefficients in selected spectrum bands.

109

Data
Source

Detection

Feature
Extraction

Classifier

Param
Source

SinkResult

Acoustic
Data

Figure 5.7: The AT algorithm is separated into six actors that repeatedly extract a feature
set from the input acoustic signal and compute the closest match against a database of
pre-collected acoustic templates.

Classifier

The linear discriminant analysis (LDA) classifier actor classifies the signal

into one of three classes: human, vehicle, and noise. The actor outputs the classifi-

cation result and the posterior probability.

Source(Parameters)

The second source actor reads the classifier parameters, which are pre-computed

from training data.

Sink

The sink actor saves the class of each detected target to a file.

The dataflow properties for each AT actor, including the dataflow model, number

of input and output ports, and consumption and production rates, are summarized in Ta-

110

ble 5.4. The behavior of the detection, classifier, and feature extraction actors can be

configured with parameters as shown in the Cons./Prod. Rates column of Table 5.4.

Table 5.4: Dataflow properties of actors in the acoustic tracking application.

Dataflow #Inputs/ Cons./Prod.
Actor Model #Outputs Rates
Source (Data) HSDF 0/1 0/1
Source (Params) PSDF 0/1 0/1
Sink HSDF 1/0 1/0
Detection PSDF 1/1 224000 /

frame size
Feature Extraction PSDF 1/1 frame size /

feature length
Classifier PSDF 2/1 30 x num cases,

6 x feature length /
1

5.6.3.2 Acoustic Tracking: Results

DVF identified several important violations of the specified dataflow behavior. The

following is a list of discrepancies that were found and corrected with the aid of DVF:

• The detection actor was incorrectly specified as SDF. For fixed parameter values,

the detection actor is CFDF. As mentioned in chapter 2, CFDF stands for core func-

tional dataflow, which is a very general (expressive) dynamic dataflow model [30].

The detection actor consumes and processes input data in one mode, but outputs

the data in a different mode. Thus, this CFDF actor needs to be scheduled twice as

many times as an SDF version of the actor, which would input, process, and output

data in the same mode.

111

• There was a discrepancy in the specification of the consumption rate for port 2 in

the classifier actor.

• As the system design evolved, we had changed the behavior of the Source (Data)

actor to output a large frame size (224000 vs. 1), but failed to update the behavior

specification file and schedule based on this change.

• An update to the implementation of the classifier actor resulted in a change of CFDF

mode assignments and associated consumption and production rates. This change

was mistakenly not relayed to the system integrator, but the resulting inconsisten-

cies were detected using DVF.

The setup time needed to process the behavior specification and instrument the

dataflow graph is shown in the second column of Table 5.5 and Table 5.6. The average

setup time is 3.46 ms and 583 µs on the embedded and laptop platforms, respectively.

This is slightly higher than the times seen for the ASR application and can be attributed

to the processing of a more complex set of behaviors. The average time to run the entire

AT application without DVF is 2.83 sec on the embedded platform and 178 ms on the

laptop platform. Thus, the DVF setup adds less than 2% overhead to the run-time of the

AT application.

As discussed above, DVF includes statistics collection and behavior validation

stages, which occur every time the instrumented component executes. The three right

columns in Table 5.5 and Table 5.6 can be used to examine the DVF overhead for the

AT actors on each platform. On average, the baseline configuration (i.e., execution with-

out DVF) runs 11.4% faster than the configuration with DVF on the laptop platform and

112

11.9% faster on the embedded platform. The amount of overhead added by DVF is related

to the complexity of the behaviors that are being validated. Thus, validation of more com-

plex behaviors will result in higher total execution time. However, the fraction of time

that DVF consumes for each individual actor will be highly dependent on the complexity

of the actor itself. This explains the large variance in the overheads reported in Table 5.5

and Table 5.6. Because more complex actors typically consume a larger fraction of the

application’s total execution time, the overall overhead caused by DVF when compared

to the baseline is less than 10% on a laptop and less that 15% on an embedded platform.

Table 5.5: DVF performance results for the actors in the AT application on the embedded
platform.

Setup Baseline With DVF DVF Overhead
Actor Time Time Time %
Source (Data) 3.36 ms 102 ms 103 ms 1.0
Source (Params) 3.34 ms 26 µs 30 µs 15.0
Sink 3.35 ms 53 µs 60 µs 13.2
Detection 3.54 ms 262 µs 274 µs 4.6
Feature Extraction 3.51 ms 319 ms 356 ms 11.6
Classifier 3.67 ms 35 µs 44 µs 25.7

Table 5.6: DVF performance results for the actors in the AT application on the laptop
platform.

Setup Baseline With DVF DVF Overhead
Actor Time Time Time %
Source (Data) 572 µs 4.45 ms 4.46 ms 0.2
Source (Params) 556 µs 1 µs 1 µs 0.0
Sink 571 µs 7 µs 8 µs 14.3
Detection 599 µs 20 µs 20 µs 0.0
Feature Extraction 595 µs 6.84 µs 7.10 µs 3.6
Classifier 604 µs 2 µs 3 µs 50

113

5.6.4 Validation of JPEG Encoder

5.6.4.1 JPEG Encoder: Description

We have also applied DVF to validate a JPEG encoder described by the dataflow

graph in Figure 5.8. The dataflow properties for each JPEG actor, including the declared

dataflow model, number of input and output ports, and consumption and production rates,

are shown in Table 5.7. The dataflow properties for each component from Table 5.7 were

encapsulated in a separate behavior specification file and were validated using DVF.

BMP
Reader

JPEG Prep

DCT

Quantization
Huffman
Coding

JPEG

BMP

Figure 5.8: The JPEG encoder is separated into 5 actors that encode a BMP file into a
JPEG file.

Table 5.7: Dataflow properties of actors in the JPEG encoder.

Dataflow #Inputs/ Cons./Prod.
Actor Model #Outputs Rates
BMP Reader HSDF 1/1 1/1
DCT HSDF 1/1 1/1
Huffman Encoder HSDF 3/0∗ 1/0
JPEG Prep CFDF 2/2 1/6
Quantizer HSDF 1/2 1/1
*writes the data to a file

114

5.6.4.2 JPEG Encoder: Results

The results of our validation experiments are summarized in Table 5.8. DVF found

that our initially presumed dataflow model for the JPEG prep actor was incorrect. Thus,

optimizations that were made on the assumption that all the actors in the graph exhibit

static dataflow behavior were also incorrect and had to be modified.

The setup time needed to process the behavior specification and instrument the

dataflow graph is shown in the second column of Table 5.9 and Table 5.10. This setup

time is seen to be 2.36 ms and 216 µs on the embedded and laptop platforms, respectively.

The average time to run the entire JPEG encoder application without DVF is 510 ms on

the embedded platform and 15 ms on the laptop platform. Thus, the DVF setup adds less

than 2% overhead to the run-time of the JPEG encoder.

As discussed above, DVF includes statistics collection and behavior validation

stages, which occur every time the instrumented component executes. The three right

columns in Table 5.9 and Table 5.10 can be used to examine the DVF overhead for the

JPEG encoder actors on each platform. On average, the baseline configuration (i.e., exe-

cution without DVF) runs 8% faster than the configuration with DVF on the laptop plat-

form and 15.1% faster on the embedded platform. Thus, the overall overhead caused by

DVF when compared to the baseline is less than 10% on a laptop and less than 20% on

an embedded platform.

115

Table 5.8: Inconsistencies detected with DVF for the actors in the JPEG encoder.

Actor Presumed DF Model Actual DF Model
BMP Reader HSDF HSDF
DCT HSDF HSDF
Huffman Encoder HSDF HSDF
JPEG Prep HSDF CFDF
Quantizer HSDF HSDF

Table 5.9: DVF performance results for the actors in the JPEG encoder on the embedded
platform.

Setup Baseline With DVF DVF Overhead
Actor Time Times Time %
BMP Reader 3.41 ms 76.2 µs 76.5 µs 0.3
DCT 3.43 ms 21 µs 24 µs 14.3
Huffman Encoder 3.54 ms 21 µs 25 µs 19.0
JPEG Prep 3.65 ms 55 µs 61 µs 10.9
Quantizer 3.54 ms 16 µs 21 µs 31.3

5.7 Summary

In this chapter, we have extended the instrumentation technique from chapter 4

to develop a framework, called dataflow validation framework (DVF), for validating

dataflow properties during design and implementation of signal processing systems. We

have demonstrated the utility of DVF using case studies involving automatic speech

Table 5.10: DVF performance results for the actors in the JPEG encoder on the laptop
platform.

Setup Baseline With DVF DVF Overhead
Actor Time Time Time %
BMP Reader 232 µs 2.26 ms 2.29 ms 1.2
DCT 204 µs 1.02 µs 1.03 µs 1.0
Huffman Encoder 313 µs 1.24 µs 1.47 µs 18.5
JPEG Prep 196 µs 6.86 µs 7.39 µs 7.7
Quantizer 233 µs 1.05 µs 1.16 µs 10.5

116

recognition, JPEG encoding, and acoustic tracking applications. Using DVF, we were

able to identify and quickly diagnose and repair several violations of dataflow properties.

On the case studies that we experimented with, our results show that DVF adds less than

15% execution time overhead to the existing application, making it a suitable approach

both for design-time testing and for run-time fault detection. Useful directions for future

work include extending the proposed methods in the context of run-time fault detection

to help drive efficient and reliable system reconfiguration for fault recovery.

117

Chapter 6: Conclusion and Future Work

The insatiable desire for newer and better technology has resulted in frequent up-

grade cycles during which key system components are updated with the latest trends. In

order to meet shorter time-to-market requirements, developers are increasingly relying on

an iterative design cycle. The adoption of iterative designs and the complexity of mod-

ern embedded systems have resulted in the use of various computer-aided design (CAD)

tools to facilitate analysis, debugging, and profiling. In this dissertation, we presented

new profile- and instrumentation-based techniques to facilitate design and implementa-

tion of embedded systems for signal processing. First, we demonstrated the use of a new

profile-based technique to improve the performance of translation-lookaside-buffers used

in virtual memory systems. Next, we developed several instrumentation-based techniques

to facilitate design and maintenance of signal processing systems that are developed using

dataflow-based design (DBD) methodologies. In this chapter, we summarize our contri-

butions presented in this dissertation and provide useful directions for future research.

6.1 TLB Interference Reduction in Multi-tasked Systems

Modern signal processing systems run concurrent applications that share the un-

derlying hardware leading to inter-task interference. Such interference results in not only

118

deteriorated performance, but more importantly for some applications, highly sub-optimal

worst-case execution time (WCET) estimates due to the unpredictability of interference.

In chapter 3, we presented a Context-aware TLB Preloading (CTP) methodology that can

alleviate D-TLB interference in multi-tasked workloads by preloading at context-switch

time extended live set (ELS) TLB entries that will be used in the near future.

CTP works through a synergistic cooperation between (1) the compiler, for an

application-specific analysis of the task’s context, and (2) the OS, for a run-time introspec-

tion of the context and an efficient identification of the TLB ELS. The CTP methodology

includes the following steps.

1. Hotspots are identified, either by manually profiling an application, or using a pro-

file guided optimization compiler (PGO) technique.

2. The compiler generates an ELS preload function (EPF) for each hotspot.

3. Executing applications register active EPFs with the OS.

4. At context-switch time, the OS calls registered EPFs to preload the associated

TLBs.

The experimental results, using popular signal processing kernels as synthetic bench-

marks, show up to 48% reduction in overall TLB miss rates, which results in more effi-

cient execution, and more accurate estimation of the WCET.

We have demonstrated the benefits of a compiler-OS synergistic cooperation for

the problem of reducing TLB interference on a uni-processor. A natural extension of the

proposed technique would be to apply it to multiprocessor platforms. TLBs are typically

119

processor-specific; thus, when a task gets scheduled on a new processor core, none of its

page-table entries (PTEs) would be present in the TLB. Preloading the TLB with the ELS

in such scenarios should significantly improve performance.

Another possible direction for future work includes adapting the compiler-OS syn-

ergistic cooperation to the problem of parallel scheduling on heterogeneous embedded

systems. A compiler can identify parallelization opportunities within an application and

encode them into the program. The operating system can then make run-time decisions,

either at launch time or at context-switch time, regarding the parallelization level that can

be supported, and taking into consideration the current workload and available resources.

6.2 Instrumentation-driven Dataflow Analysis

Dataflow modeling offers a myriad of tools to improve optimization and analysis

of signal processing applications, and is often used by designers to help design, imple-

ment, and maintain systems on chip for signal processing. However, maintaining and

upgrading legacy systems that were not originally designed using dataflow methods can

be challenging.

In chapter 4, we presented a method to facilitate the process of converting legacy

systems to dataflow semantics. To achieve this, 1) we developed a generic method for

instrumenting dataflow graphs; 2) we used this instrumentation method to automatically

detect instances of well-understood dataflow models from core functions being converted;

and 3) we presented an iterative actor partitioning process that enables partitioning of

120

complex actors into simpler sub-functions that are more prone to automated analysis tech-

niques.

In chapter 5, we addressed the problem of ensuring consistency between (1) dataflow

properties that are declared or otherwise assumed as part of dataflow-based application

models, and (2) the dataflow behavior that is exhibited by implementations that are de-

rived from the models. This was achieved by extending the instrumentation technique

from chapter 4 to create a novel dataflow validation framework (DVF), which enables

identifying disparities between an application’s formal dataflow representation and its

implementation. We demonstrated the utility of DVF through design and implementation

case studies involving several signal processing applications.

Useful directions for future work include enhancing our developed dataflow instru-

mentation framework to be able to detect and act upon system faults. Extending DVF to

detect such faults and reconfigure relevant aspects of a dataflow application is an impor-

tant direction of future research. Possible reconfiguration options in this context include:

• Buffer reconfiguration: detecting unexpected token production and consumption

behavior and dynamically reconfiguring allocated buffers.

• Schedule reconfiguration: detecting incorrectly identified schedule execution be-

havior (e.g., when dynamic behavior is encountered in a context where static be-

havior is expected), and switching to a new schedule that departs from the invalid

assumptions on which the current schedule is based.

• Actor reconfiguration: applying hierarchical design [97] to actors to enable adap-

tive selection of actors based on the current operating environment (e.g., selecting

121

a classifier based on observed performance or dynamically-varying, real-time con-

straints).

Exploring such fault tolerance and reconfiguration techniques at the dataflow level

offers an interesting study of system-level trade-offs between required redundancy and

system performance.

122

Bibliography

[1] Connie U. Smith and Murray Woodside, “Performance validation at early stages
of software development,” in System Performance Evaluation: Methodologies and
Applications. 1999, CRC Press.

[2] Torsten Kempf, Kingshuk Karuri, and Lei Gao, Software Instrumentation, John
Wiley & Sons, Inc., 2007.

[3] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick, “Gprof: A call
graph execution profiler,” SIGPLAN Not., vol. 39, no. 4, pp. 49–57, Apr. 2004.

[4] Karl Pettis and Robert C. Hansen, “Profile guided code positioning,” SIGPLAN
Not., vol. 25, no. 6, pp. 16–27, June 1990.

[5] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, Eds., Handbook of
Signal Processing Systems, Springer, second edition, 2013, ISBN: 978-1-4614-
6858-5 (Print); 978-1-4614-6859-2 (Online).

[6] M. Kumar, “Measuring parallelism in computation-intensive scientific/engineering
applications,” Computers, IEEE Transactions on, vol. 37, no. 9, pp. 1088–1098, Sep
1988.

[7] Massimo Ravasi and Marco Mattavelli, “High-level algorithmic complexity evalua-
tion for system design,” Journal of Systems Architecture, vol. 48, no. 1315, pp. 403
– 427, 2003.

[8] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers, and H. Meyr, “A
SW performance estimation framework for early system-level-design using fine-
grained instrumentation,” in Design, Automation and Test in Europe, 2006. DATE
’06. Proceedings, March 2006, vol. 1, pp. 6 pp.–.

[9] Reed Hastings and Bob Joyce, “Purify: Fast detection of memory leaks and access
errors,” in In Proc. of the Winter 1992 USENIX Conference, 1991, pp. 125–138.

123

[10] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood, “Pin: Building
customized program analysis tools with dynamic instrumentation,” SIGPLAN Not.,
vol. 40, no. 6, pp. 190–200, June 2005.

[11] J.K. Hollingsworth, B.P. Miller, and J. Cargille, “Dynamic program instrumentation
for scalable performance tools,” in Scalable High-Performance Computing Confer-
ence, 1994., Proceedings of the, May 1994, pp. 841–850.

[12] Gregory T. Sullivan, Derek L. Bruening, Iris Baron, Timothy Garnett, and Saman
Amarasinghe, “Dynamic native optimization of interpreters,” in Proceedings of the
2003 Workshop on Interpreters, Virtual Machines and Emulators, New York, NY,
USA, 2003, IVME ’03, pp. 50–57, ACM.

[13] Nicholas Nethercote, Dynamic Binary Analysis and Instrumentation, Ph.D. thesis,
Computer Laboratory, University of Cambridge, United Kingdom, Nov. 2004.

[14] Dawei Wang, Sikun Li, and Peng Zhao, “System level design in embedded stream
media process system-on-chip using application profiling,” in Digital Media and its
Application in Museum Heritages, Second Workshop on, Dec 2007, pp. 353–358.

[15] H. Hubert, B. Stabernack, and K.-I. Wels, “Performance and memory profiling
for embedded system design,” in Industrial Embedded Systems, 2007. SIES ’07.
International Symposium on, July 2007, pp. 94–101.

[16] Jason G. Tong and Mohammed A.S. Khalid, “Profiling tools for fpga-based embed-
ded systems: Survey and quantitative comparison,” Journal of Computers, vol. 3,
no. 6, pp. 1 – 14, 2008.

[17] Po-Hui Chen, Chung-Ta King, Yuan-Ying Chang, and Shau-Yin Tseng, “Multi-
processor system-on-chip profiling architecture: Design and implementation,” in
Parallel and Distributed Systems (ICPADS), 2009 15th International Conference
on, Dec 2009, pp. 519–526.

[18] T. Miyazaka and E. A. Lee, “Code generation by using integer-controlled dataflow
graph,” in Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing, 1997.

[19] Hyunok Oh and Soonhoi Ha, “Efficient code synthesis from extended dataflow
graphs for multimedia applications,” in In Proc. 39th DAC, 2002. 2002, pp. 275–
280, IEEE Computer Society.

[20] Frederik Nebeker, Fifty Years of Signal Processing: The IEEE Processing Society
and its Technologies 1948-1998, IEEE History Center, 1998.

[21] Agner Fog, “The microarchitecture of Intel, AMD and VIA CPUs: An optimiza-
tion guide for assembly programmers and compiler makers,” Tech. Rep., Technical
University of Denmark, 2014.

124

[22] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software synthesis for DSP using
Ptolemy,” Journal of VLSI Signal Processing, vol. 9, no. 1, January 1995.

[23] J. Eker and J. W. Janneck, “CAL language report, language version 1.0 — docu-
ment edition 1,” Tech. Rep. UCB/ERL M03/48, Electronics Research Laboratory,
University of California at Berkeley, December 2003.

[24] C. Hsu, F. Keceli, M. Ko, S. Shahparnia, and S. S. Bhattacharyya, “DIF: An inter-
change format for dataflow-based design tools,” in Proceedings of the International
Workshop on Systems, Architectures, Modeling, and Simulation, Samos, Greece,
July 2004, pp. 423–432.

[25] J. T. Buck, Scheduling Dynamic Dataflow Graphs with Bounded Memory using
the Token Flow Model, Ph.D. thesis, Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, September 1993.

[26] C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya, “A lightweight dataflow
approach for design and implementation of SDR systems,” in Proceedings of the
Wireless Innovation Conference and Product Exposition, Washington DC, USA,
November 2010, pp. 640–645.

[27] E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,” Proceedings of the
IEEE, vol. 75, no. 9, pp. 1235–1245, September 1987.

[28] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-static dataflow,”
IEEE Transactions on Signal Processing, vol. 44, no. 2, pp. 397–408, February
1996.

[29] J. T. Buck, “Static scheduling and code generation from dynamic dataflow graphs
with integer-valued control systems,” in Proceedings of the IEEE Asilomar Confer-
ence on Signals, Systems, and Computers, October 1994, pp. 508–513.

[30] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya, “Functional
DIF for rapid prototyping,” in Proceedings of the International Symposium on Rapid
System Prototyping, Monterey, California, June 2008, pp. 17–23.

[31] S. S. Bhattacharyya, W. Plishker, C. Shen, N. Sane, and G. Zaki, “The DSPCAD
integrative command line environment: Introduction to DICE version 1.1,” Tech.
Rep. UMIACS-TR-2011-10, Institute for Advanced Computer Studies, University
of Maryland at College Park, 2011.

[32] C. Shen, L. Wang, I. Cho, S. Kim, S. Won, W. Plishker, and S. S. Bhattacharyya,
“The DSPCAD lightweight dataflow environment: Introduction to LIDE version
0.1,” Tech. Rep. UMIACS-TR-2011-17, Institute for Advanced Computer Studies,
University of Maryland at College Park, 2011.

[33] M. Morris Mano and Michael D. Ciletti, Digital Design (4th Edition), Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 2006.

125

[34] Michel Diaz, Petri Nets: Fundamental Models, Verification and Applications, ISTE,
2010.

[35] Bran Selić and Sébastien Gérard, Modeling and Analysis of Real-Time and Embed-
ded Systems with UML and MARTE, Morgan Kaufmann, Boston, 2014.

[36] Yue Ma, Huafeng Yu, Thierry Gautier, Paul Le Guernic, Jean-Pierre Talpin, Loic
Besnard, and Maurice Heitz, “Toward polychronous analysis and validation for
timed software architectures in AADL,” in Design, Automation Test in Europe Con-
ference Exhibition (DATE), 2013, March 2013, pp. 1173–1178.

[37] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John
Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul
Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy Vilkomir, Martin R. Wood-
ward, and Hussein Zedan, “Using formal specifications to support testing,” ACM
Comput. Surv., vol. 41, no. 2, pp. 9:1–9:76, Feb. 2009.

[38] T.A. Henzinger, Xiaojun Liu, S. Qadeer, and S.K. Rajamani, “Formal specification
and verification of a dataflow processor array,” in Computer-Aided Design, 1999.
Digest of Technical Papers. 1999 IEEE/ACM International Conference on, 1999,
pp. 494–499.

[39] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli, and M. Raulet,
“Overview of the MPEG reconfigurable video coding framework,” Journal of Signal
Processing Systems, vol. 63, no. 2, pp. 251–263, May 2011.

[40] K. Jerbi, M. Wipliez, M. Raulet, O. Deforges, M. Babel, and M. Abid, “Fast hard-
ware implementation of an hadamard transform using rvc-cal dataflow program-
ming,” in Proceedings of the 2010 5th International Conference on Embedded and
Multimedia Computing (EMC 2010), Piscataway, NJ, USA, 2010.

[41] S. S. Bhattacharyya, G. Brebner, J. Eker, J. W. Janneck, M. Mattavelli, C. von Platen,
and M. Raulet, “OpenDF — a dataflow toolset for reconfigurable hardware and mul-
ticore systems,” in Proceedings of the Swedish Workshop on Multi-Core Computing,
Ronneby, Sweden, November 2008, pp. 43–49.

[42] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk, Morgan
Kaufmann, 2007.

[43] J.L. Hennessy, D.A. Patterson, and K. Asanović, Computer Architecture: A Quanti-
tative Approach, Computer Architecture: A Quantitative Approach. Morgan Kauf-
mann/Elsevier, 2012.

[44] William Stallings, Operating Systems: Internals and Design Principles, Prentice
Hall Press, Upper Saddle River, NJ, USA, 6th edition, 2008.

[45] Arkaprava Basu, Mark D. Hill, and Michael M. Swift, “Reducing memory reference
energy with opportunistic virtual caching,” SIGARCH Comput. Archit. News, vol.
40, no. 3, pp. 297–308, June 2012.

126

[46] M. Cekleov and M. Dubois, “Virtual-address caches part 1: Problems and solutions
in uniprocessors,” IEEE Micro, vol. 17, no. 5, pp. 64–71, 1997.

[47] A. Agarwal, J. Hennessy, and M. Horowitz, “Cache performance of operating sys-
tem and multiprogramming workloads,” ACM Transactions on Computer Systems,
vol. 6, no. 4, pp. 393–431, 1988.

[48] S. Yamada and S. Kusakabe, “Effect of context aware scheduler on TLB,” in Inter-
national Symposium on Parallel and Distributed Processing (IPDPS), April 2008,
pp. 1–8.

[49] Ilya Chukhman and Peter Petrov, “Context-aware TLB preloading for interference
reduction in embedded multi-tasked systems,” in Proceedings of the 20th Sympo-
sium on Great Lakes Symposium on VLSI, New York, NY, USA, 2010, GLSVLSI
’10, pp. 401–404, ACM.

[50] O. Tickoo, H. Kannan, V. Chadha, R. Illikkal, R. Iyer, and D. Newell, “qTLB:
Looking inside the look-aside buffer,” Lecture Notes in Computer Science, vol.
4873, no. 1, pp. 107–118, January 2008.

[51] Isabelle Puaut and Damien Hardy, “Predictable paging in real-time systems: A com-
piler approach,” in Euromicro Conference on Real-Time Systems (ECRTS), 2007, pp.
169–178.

[52] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The influence of
processor architecture on the design and the results of WCET tools,” Proceedings
of the IEEE, vol. 91, no. 7, pp. 1038–1054, July 2003.

[53] J. Staschulat and R. Ernst, “Worst case timing analysis of input dependent data
cache behavior,” in Euromicro Conference on Real-Time Systems (ECRTS), 2006,
pp. 227–236.

[54] Gokul B. Kandiraju and Anand Sivasubramaniam, “Characterizing the D-TLB be-
havior of SPEC cpu2000 benchmarks,” SIGMETRICS Performance Evaluation Re-
view, vol. 30, no. 1, pp. 129–139, 2002.

[55] J. H. Lee, J. S. Lee, S. Jeong, and S. Kim, “A banked-promotion TLB for high
performance and low power,” in ICCD, September 2001, pp. 118–123.

[56] M. Shalan and V. J. Mooney, “Hardware support for real-time embedded multipro-
cessor system-on-a-chip memory management,” in CODES, 2002.

[57] M. Kandemir, I. Kadayif, and G. Chen, “Compiler-directed code restructuring for
reducing data TLB energy,” in CODES+ISSS, September 2004, pp. 98–103.

[58] Ashley Saulsbury, Fredrik Dahlgren, and Per Stenström, “Recency-based TLB
preloading,” in International Symposium on Computer Architecture (ISCA), New
York, NY, USA, 2000, pp. 117–127, ACM.

127

[59] Gokul B. Kandiraju and Anand Sivasubramaniam, “Going the distance for TLB
prefetching: an application-driven study,” in International Symposium on Computer
Architecture (ISCA), 2002, pp. 195–206.

[60] Arm Ltd., Dhrystone and MIPs performance of ARM processors,
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka3885.html.

[61] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for computer
system modeling,” IEEE Computer, vol. 35, no. 2, pp. 59–67, February 2002.

[62] I. Chukhman, W. Plishker, and S.S. Bhattacharyya, “Instrumentation-driven model
detection for dataflow graphs,” in System on Chip (SoC), 2012 International Sym-
posium on, Oct., pp. 1–8.

[63] I. Chukhman, S. Lin, W. Plishker, C. Shen, and S. S. Bhattacharyya,
“Instrumentation-driven model detection and actor partitioning for dataflow graphs,”
International Journal of Embedded and Real-Time Communication Systems, vol. 4,
pp. 1–21, June 2013.

[64] G. Kahn, “The semantics of a simple language for parallel programming,” in Pro-
ceedings of the IFIP Congress, 1974.

[65] F. Siyoum, M. Geilen, O. Moreira, R. Nas, and H. Corporaal, “Analyzing syn-
chronous dataflow scenarios for dynamic software-defined radio applications,” in
Proceedings of the International Symposium on System-on-Chip, 2011, pp. 14–21.

[66] A. Gregerson, M. J. Schulte, and K. Compton, “High-energy physics,” in Handbook
of Signal Processing Systems, S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and
J. Takala, Eds. Springer, 2010.

[67] W. Plishker, C. Shen, S. S. Bhattacharyya, G. Zaki, S. Kedilaya, N. Sane, K. Sudus-
inghe, T. Gregerson, J. Liu, and M. Schulte, “Model-based DSP implementation on
FPGAs,” in Proceedings of the International Symposium on Rapid System Prototyp-
ing, Fairfax, Virginia, June 2010.

[68] C. Zebelein, J. Falk, C. Haubelt, and J. Teich, “Classification of general data flow
actors into known models of computation,” in Proceedings of the International
Conference on Formal Methods and Models for Codesign, 2008, pp. 119–128.

[69] M. Wipliez and M. Raulet, “Classification and transformation of dynamic dataflow
programs,” in Design and Architectures for Signal and Image Processing (DASIP),
2010 Conference on, Oct. 2010, pp. 303 –310.

[70] Matthieu Wipliez and Mickaël Raulet, “Classification of dataflow actors with satis-
fiability and abstract interpretation,” IJERTCS, vol. 3, no. 1, pp. 49–69, 2012.

[71] J.T. Buck, S. Ha, E.A. Lee, and D.G. Messerschmitt, “Ptolemy: A framework
for simulating and prototyping heterogeneous systems,” Int. Journal of Computer
Simulation, April 1994.

128

[72] Jonathan Piat, Mickael Raulet, Maxime Pelcat, Pengcheng Mu, and Olivier De-
forges, “An extensible framework for fast prototyping of multiprocessor dataflow
applications,” in Proceedings - 2008 3rd International Design and Test Workshop,
IDT 2008, Monastir, Tunisia, 2008, pp. 215 – 220.

[73] Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Sonia Sachs, and Yuhong Xiong, “Taming heterogeneity - the ptolemy approach,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, January 2003.

[74] R. Gu, J. Janneck, M. Raulet, and S. S. Bhattacharyya, “Exploiting statically schedu-
lable regions in dataflow programs,” in Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing, Taipei, Taiwan, April 2009, pp. 565–
568.

[75] Shuvra S. Bhattacharyya et al., “Heterogeneous concurrent modeling and design
in java, volume 1: Introduction to Ptolemy II,” Tech. Rep. UCB/ERL M03/27,
Electronics Research Laboratory, University of California at Berkeley, July 2003.

[76] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings of the IEEE,
pp. 773–799, May 1995.

[77] M. G. Main and R. J. Lorentz, “An O(n log n) algorithm for finding all repetitions
in a string,” Journal of Algorithms, vol. 5, no. 3, pp. 422–432, September 1984.

[78] Vivek Sarkar and John Hennessy, “Partitioning parallel programs for macro-
dataflow,” in Proceedings of the 1986 ACM conference on LISP and functional
programming, New York, NY, USA, 1986, LFP ’86, pp. 202–211, ACM.

[79] CMS Collaboration, “CMS TriDAS project : Technical design report; 1, the trigger
systems,” Tech. Rep. CERN-LHCC-2000-038, CERN. Geneva. LHC Experiments
Committee, 2000.

[80] Richard Geldreich, “Jpeg-compressor,” http://code.google.com/p/
jpeg-compressor/, 2012, [Online; accessed September-2012].

[81] Ilya Chukhman and Shuvra S. Bhattacharyya, “Instrumentation-driven framework
for validation of dataflow applications,” in Signal Processing Systems (SiPS), 2014
IEEE Workshop on, Oct 2014, pp. 1–6.

[82] Gwo Giun Lee, Chun-Fu Chen, and He-Yuan Lin, “Algorithmic complexity analysis
on data transfer rate and data storage for multidimensional signal processing,” in
Signal Processing Systems (SiPS), 2013 IEEE Workshop on, Oct 2013, pp. 171–176.

[83] S. Ritz, M. Pankert, and H. Meyr, “Optimum vectorization of scalable synchronous
dataflow graphs,” in Proceedings of the International Conference on Application
Specific Array Processors, October 1993.

129

http://code.google.com/p/jpeg-compressor/
http://code.google.com/p/jpeg-compressor/

[84] M. Ko, C. Shen, and S. S. Bhattacharyya, “Memory-constrained block processing
for DSP software optimization,” Journal of Signal Processing Systems, vol. 50, no.
2, pp. 163–177, February 2008.

[85] Ralf Kneuper, “Limits of formal methods,” Formal Aspects of Computing, vol. 9,
no. 4, pp. 379–394, 1997.

[86] J. B. Rainsberger, JUnit Recipes: Practical Methods for Programmer Testing, Man-
ning Publications, illustrated edition edition, July 2004.

[87] M. Ravasi and M. Mattavelli, “High-abstraction level complexity analysis and mem-
ory architecture simulations of multimedia algorithms,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 15, no. 5, pp. 673–684, May 2005.

[88] J.W. Janneck, I.D. Miller, and D.B. Parlour, “Profiling dataflow programs,” in Mul-
timedia and Expo, 2008 IEEE International Conference on, June 2008, pp. 1065–
1068.

[89] Luis Alejandro Cortés, Petru Eles, and Zebo Peng, “Modeling and formal verifica-
tion of embedded systems based on a petri net representation,” J. Syst. Archit., vol.
49, no. 12-15, pp. 571–598, Dec. 2003.

[90] Paul Le Guernic, Jean pierre Talpin, and Jean christophe Le Lann, “Polychrony for
system design,” Journal for Circuits, Systems and Computers, vol. 12, pp. 261–304,
2002.

[91] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gerard Berry, Compiling Es-
terel, Springer Publishing Company, Incorporated, 1st edition, 2007.

[92] Rance Cleaveland, Scott A. Smolka, and Steven T. Sims, “An instrumentation-based
approach to controller model validation,” in Lecture Notes in Computer Science, San
Diego, CA, USA, 2008, vol. 4922 LNCS, pp. 84 – 97.

[93] A. Ray, I. Morschhaeuser, C. Ackermann, R. Cleaveland, C. Shelton, and C. Martin,
“Validating automotive control software using instrumentation-based verification,”
in Proceedings of 24th IEEE/ACM Conference on Automated Software Engineering,
2009, pp. 15–25.

[94] J. T. Buck and E. A. Lee, “Scheduling dynamic dataflow graphs using the token flow
model,” in In Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing, April 1993.

[95] S. Phadke, R. Limaye, S. Verma, and K. Subramanian, “On design and implemen-
tation of an embedded automatic speech recognition system,” in Proceedings of the
International Conference on VLSI Design, 2004, pp. 27–132.

[96] T. Damarla, A. Mehmood, and J. Sabatier, “Detection of people and animals using
non-imaging sensors,” in Information Fusion (FUSION), 2011 Proceedings of the
14th International Conference on, July 2011, pp. 1–8.

130

[97] Lai-Huei Wang, HierarchicaL Mapping Techniques For Signal Processing Systems
On Parallel Platforms, Ph.D. thesis, University of Maryland, College Park, 2014.

131

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Overview
	Contribution
	TLB Interference Reduction in Multi-tasked Systems
	Model Detection and Actor Partitioning
	Validation of Dataflow Applications

	Dissertation Organization

	Background
	Instrumentation and Profiling
	Embedded System Design Strategies
	Dataflow Modeling
	Formal Description
	Dataflow Model Comparison
	Tools

	Formal Specification
	Virtual Address Translation and TLB
	Summary

	Context-aware TLB Preloading for Interference Reduction in Embedded Multi-tasked Systems
	Introduction
	Related Work
	CTP Overview
	TLB Contention
	Context-Aware TLB Preloading
	Identifying the Extended Live Set
	Compiler and Operating System Support
	CTP Example – Matrix Multiplication

	Evaluation
	Experimental Setup
	Analysis of Extended Live Set Results

	Summary

	Instrumentation-driven Model Detection and Actor Partitioning for Dataflow Graphs
	Introduction
	Related Work
	Dataflow Graph Instrumentation
	Comparison to Ptolemy's Prefire and Postfire
	Model Detection Notation
	Model Detection Process
	Transformation of Legacy Code to LIDE-compatible Format
	Reappropriation of Units Tests for Model Detection
	Model Detection Algorithm
	Partitioning of an Actor

	Model Detection Evaluation
	Summary

	Instrumentation-driven Validation of Dataflow Applications
	Introduction
	Related Work
	Validation Framework
	Dataflow Validation Notation
	Behavior Specification

	Application Setup Phase
	Specification Processing
	Instrumentation

	Application Execution Phase
	Statistics Collection
	Behavior Validation

	Evaluation
	Experimental Setup
	Validation of Automatic Speech Recognition Application
	Validation of Acoustic Tracking Application
	Validation of JPEG Encoder

	Summary

	Conclusion and Future Work
	TLB Interference Reduction in Multi-tasked Systems
	Instrumentation-driven Dataflow Analysis

	Bibliography

