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Background
• A vector sensor employs multiple (Nc) sensor components. For acoustic:
Nc = 4; for electromagnetic: Nc = 6.

• Two strategies: matrix-based scheme (left) and tensor-based scheme (right).
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• Tensor-based scheme conserves the multidimensional structures of the data,
and provides better performance than the matrix-based scheme.

• Our goal: Apply the nested-array strategy to vector-sensor arrays via tensor
modeling.
• Challenge: Multidimensional operation.
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Signal Model

• Consider a two-level nested linear array with N vector sensors. The output of
each vector sensor is an Nc-dimensional vector.

• Assume K far-field sources from directions {(φk, θk), k = 1, . . . ,K}, where
φk and θk represent the azimuth and elevation angles

• Then, we obtain the tensor measurement model:
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Y (t) = A×3 x(t) +E(t), (1)

• Y (t): N ×Nc measurement matrix at time t

• A: N ×Nc ×K array manifold tensor

• x(t): K × 1 source signals

• E(t): N ×Nc measurement noise at time t
—————————-

A×3 B: Mode-3 product of A ∈ CI1×I2×I3 and B ∈ CJ1×J2×I3 , defined as (A×3 B)i1i2j1j2
=

∑
i3
ai1i2i3

bj1j2i3
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Signal Model (Cont.)
• ai,j,k = (Ak)i,j, where Ak = dkp

T
k

• dk = [ej2πu
T
k r1/λ, . . . , ej2πu

T
k rN/λ]T is the phase delay vector.

• uk = [cosφkcosθk, sinφkcosθk, sinθk]
T is the unit vector at the sensor pointing

towards the kth signal.

• pk is the steering vector of a single vector sensor located at the origin.

• Based on (1), we get the N ×Nc ×N ×Nc interspectral tensor:

R = E[Y ◦ Y ∗] = A×3 Rx×̇3A∗ + E[E ◦E∗], (2)

which is a tensor version of the covariance matrix in the scalar case.

• We apply mode-2 matricization to R, and obtain

Z , RT
(2) = (A∗T(3) }A)×3 s+ σ2

e

−→
I , (3)

– Z is an NcN
2 ×Nc matrix

– s = [σ2
1, σ

2
2, . . . , σ

2
K]T

–
−→
I = blkdiag(

−→
1 , . . . ,

−→
1 ), where

−→
1 = [eT1 , e

T
2 , . . . , e

T
N ]T
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Signal Model (Cont.)

Generalized Kahtri-Rao product } 
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Consider one column vector: 

—————————-

A×̇3B: Mode-3 inner product of A ∈ CI1×I2×I3 and B ∈ CJ1×J2×I3 , defined as (A×̇3B)i1i2j1j2
=

∑
i3
ai1i2i3

bj1j2i3

A } B: Generalized Khatri-Rao product of A ∈ CJ×I3 and B ∈ CI1×I2×I3 , with dimension I1J × I2 × I3, defined as

(A } B)(i1+(j−1)I1),i2,i3
= aj,i3

bi1,i2,i3

A ◦B: Outer product of A ∈ CI1×I2 and B ∈ CJ1×J2 , defined as (A ◦B)i1i2j1j2
= ai1i2

bj1j2

A(2): mode-2 matrix unfolding of tensor A ∈ CI1×I2×I3 , defined as (A(2))i2,(i1−1)I3+i3
= (A)i1i2i3
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Signal Model (Cont.)

• Comparing (3) with the original signal model (1), we observe that Z in (3)
behaves like a received measurement with a longer vector-sensor array whose
manifold is given by A∗T(3) }A. In (3) the equivalent source signal vector is

represented by s and the noise becomes a deterministic matrix given by σ2
e

−→
I .

• Looking at the structure of the tensor A∗T(3) } A, we observe that there are
Nc sets of horizontal slices, and they have same horizontal slices except for
different amplitudes. Without loss of generality we will consider to use only
the first set.

• Note that, although we choose only one set, we use the information from all
the Nc sensor components.
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Signal Model (Cont.)

Dimension change of the manifold tensor using the nested-array strategy.

  

 

𝓐 

𝑁 

𝐾 

𝑁c 

 

   
  

  

 c 

 

 

    
     

 

 

𝑁  

𝐾 

𝑁c 

One set 

 

𝑁 

2
+ 𝑁 − 1 

𝐾 

𝑁c 

𝓐 

Manifold tensor A of the
original signal model.

CSSIP Lab 7



Signal Model (Cont.)

Dimension change of the manifold tensor using the nested-array strategy.
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Signal Model (Cont.)

Dimension change of the manifold tensor using the nested-array strategy.
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Signal Model (Cont.)

Dimension change of the manifold tensor using the nested-array strategy.
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Spatial Smoothing

• Spatial smoothing is used to exploit the increased DOFs by building up the
rank of the observation tensor.

• Similar to the scalar sensor case, we remove repeated slices and sort them
according to virtual sensor positions:

Z̄ = Ā×3 s+ σ2
eĒ.

• Divide these 2N̄ − 1 (N̄ = N2/4 + N/2) virtual sensors into N̄ partially
overlapping subarrays, and the lth subarray is Z̄l = Āl ×3 s+ σ2

eĒl.

• Define Rl , Z̄l ◦ Z̄l
∗
, and take the average of Rl over all l: T , 1

N̄

∑N̄
l=1 Rl.

• T is the N̄ ×Nc × N̄ ×Nc spatially smoothed interspectral tensor.

• Based on T , the nested array with N vector sensors provides N̄ − 1 DOFs,
whereas a ULA with the same number of vector sensors can provide only N−1
DOFs.
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Higher-Order Singular Value Decomposition (HOSVD)

• HOSVD is a higher-order generalization of the matrix singular value
decomposition (SVD) [3].

• The HOSVD of tensor T can be written as

T = K×1 U1 ×2 U2 ×3 U3 ×4 U4, (4)

where U1,U3 ∈ CN̄×N̄ , and U2,U4 ∈ CNc×Nc are orthonormal matrices,
provided by the SVD of the i-mode matricization of the tensor T : T (i) =

UiΛiV
H
i . K ∈ CN̄×Nc×N̄×Nc is the core tensor.

• Since T is an Hermitian tensor, i.e., ti1,i2,i3,i4 = t∗i3,i4,i1,i2, ∀i1, i2, i3, i4, the
HOSVD of T can be written as

T = K×1 U1 ×2 U2 ×3 U
∗
1 ×4 U

∗
2 . (5)

—————————-

[3] M. Boizard, G. Ginolhac, F. Pascal, S. Miron, and P. Forster, Numerical performance of a tensor MUSIC algorithm based on HOSVD for

a mixture of polarized sources, in EUSIPCO 2013, Marrakech, Marocco, Sep. 2013.
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Applications: Acoustic Vector Sensors

• For acoustic vector sensors, Nc = 4.

• The array steering matrix can be written as Ak = dkp
T
k , with

pk = [1,uTk ]T ,

which is the steering vector of a single vector sensor located at the origin.
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Applications: Electromagnetic Vector Sensors

• For EM vector sensors, Nc = 6. Here, we consider polarized signals.

• The array steering matrix can be written as Ak = dkp
T
k , with pk = Vkρk,

where

Vk =


−sinφk −cosφksinθk
cosφk −sinφksinθk

0 cosθk
−cosφksinθk sinφk
−sinφksinθk −cosφk

cosθk 0

 , and

ρk = [cosγk sinγke
jηk]T .

• Ak is the N × Nc steering matrix of the array associated with a polarized
signal coming from the direction (φk, θk) with polarization (γk, ηk), where
γk ∈ [0, 2π] and ηk ∈ (−π, π] are polarization parameters. Vk is the steering
matrix of one EM vector sensor associated with the kth signal. ρk is the
polarization vector for the kth signal.
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Acoustic Case I: MUSIC Spectrum

Fig. 1: MUSIC spectrum using a nested acoustic vector-sensor array with 6 sensors, as a function

of elevation angle θ, T = 1000, SNR = 0dB, K = 6 sources with the same azimuth angles.

Observation: The 2-level nested array resolves all the 6 sources.
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EM Case II: DOA Estimation

Fig. 2: MUSIC spectrum using a ULA (left: tensor-based) and a nested array (middle: matrix-

based; right: tensor-based) with 6 EM vector sensors, as a function of azimuth φ and elevation

angles θ, T = 1000, SNR = 21.97dB, K = 2.

Observation: The proposed nested vector-sensor array strategy outperforms the
ULA with the same number of sensors. In addition, the tensor-based method
outperforms the matrix-based method.
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EM Case III: Source Number Detection

Fig. 3: Probability of detection versus SNR using a nested array with 6 EM vector sensors and

ULAs with 6 and 12 EM vector sensors, T = 1000, K = 2.

Observation: We can see that the detection performance of all the three arrays
improves with increasing SNRs. In addition, the nested array outperforms the
corresponding ULA with same number of sensors and performs closer to the ULA
with double number of sensors.
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Summary

• Nested vector-sensor array processing via tensor modeling

– We established the analytical foundation of the nested vector-sensor array
by exploiting multilinear algebra

– We constructed corresponding signal processing strategies, and verified their
effectiveness through numerical examples.
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