
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

210-458-7663

W911NF-11-1-0170

59043-CS-REP.12

Final Report

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

03-08-2015 19-Apr-2011 18-Apr-2015

Approved for Public Release; Distribution Unlimited

Final Report: Mobile Assisted Security in Wireless Sensor
Networks

The aim of the project is to investigate ways for integrating mobile robots to improve and reduce to complexity of
providing security in wireless sensor networks. We worked on mobile assisted key management to distribute keys
using mobile robots and controlled path traversal where a robot has to prove the path traversed to a base station. In
addition, we worked on finding location of mobile robots to use this information in security protocols, robot
coordination in case multiple robots are used and they have to be connected all the time and traversal algorithms for
the mobile robots.

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

mobile robots, security, sensor networks

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Ali Tosun

Ali Saman Tosun, Ali Tekeoglu, Andrew Wichmann

206022

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

University of Texas at San Antonio
One UTSA Circle

San Antonio, TX 78249 -1644

18-Apr-2015

ABSTRACT

Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

Final Report: Mobile Assisted Security in Wireless Sensor Networks

Report Title

The aim of the project is to investigate ways for integrating mobile robots to improve and reduce to complexity of providing security in
wireless sensor networks. We worked on mobile assisted key management to distribute keys using mobile robots and controlled path
traversal where a robot has to prove the path traversed to a base station. In addition, we worked on finding location of mobile robots to use
this information in security protocols, robot coordination in case multiple robots are used and they have to be connected all the time and
traversal algorithms for the mobile robots.

We spent the last year of this project on securing multimedia devices that can be connected to wireless sensor networks and publishing the
work done in earlier years. We focused on HDMI based video streaming devices that have become popular over the last two years and IP
cameras. Our work in this area was experimental and we used the testbed to investigate security of HDMI based multimedia devices and IP
cameras. Two PhD students supported by the project graduated recently.

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of
the project to the date of this printing. List the papers, including journal references, in the
following categories:

(b) Papers published in non-peer-reviewed journals (N/A for none)

(c) Presentations

Received Paper

TOTAL:

Received Paper

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

0.00Number of Presentations:

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

Received Paper

TOTAL:

Received Paper

TOTAL:

Received Paper

TOTAL:

Books

Number of Manuscripts:

Patents Submitted

Patents Awarded

Awards

Graduate Students

Names of Post Doctorates

Received Book

TOTAL:

Received Book Chapter

TOTAL:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Discipline
Ali Tekeoglu 0.50
Andrew Wichmann 0.50

1.00

2

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Sub Contractors (DD882)

Names of Faculty Supported

Names of Under Graduate students supported

Names of Personnel receiving masters degrees

Names of personnel receiving PHDs

Names of other research staff

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:
The number of undergraduates funded by your agreement who graduated during this period and intend to work

for the Department of Defense
The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:

0.00

0.00

0.00

0.00

0.00

0.00

0.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in
science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue
to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:......

......

......

......

......

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

National Academy Member
Ali Saman Tosun 0.30

0.30

1

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

NAME

Total Number:

NAME

Total Number:

Andrew Wichmann
Ali Tekeoglu

2

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

......

......

Inventions (DD882)

Scientific Progress

Technology Transfer

Mobile Assisted Security in Wireless Sensor Networks

We have built a comprehensive testbed for mobile assisted sensor network research. Two mobile

robots, sensors and servers that can run large scale simulations are now available for students working

on the project. PhD students Ali Tekeoglu and Andrew Wichmann are partially supported by the

project and they both graduated recently. Over the last year we had publications at International

workshop on robotic sensor networks, IEEE 11th international conference on Mobile Ad Hoc and

Sensor Systems, INFOCOM Multimedia Cloud Communication Workshop.

1 Equipments Acquired For Sensor Networks Lab

We have purchased 2 Pioneer-AT Mobile Robots for Experiments. The PIONEER 3-AT is a highly

versatile four wheel drive robotic platform. Powerful, yet easy to use reliable, yet flexible, P3-AT is a

popular team performer for outdoor or rough-terrain projects. P3-AT offers an embedded computer

option, opening the way for onboard vision processing, Ethernet-based communications, laser, DGPS,

and other autonomous functions. 8 forward and 8 rear sonar sense obstacles from 15 cm to 7 m.

P3-AT’s powerful motors and four knobby wheels can reach speeds of .8 meters per second and carry

a payload of up to 12 kg. We have purchased 2 Memsic Classroom kits. Classroom kits are ideal for

getting students up and running quickly and economically. To support 10 lab stations, a collection of

30 wireless modules, 20 sensor and data acquisition boards, 10 gateway and programming boards are

included. The Classroom Kit is available in 2.4GHz. We have also purchased 3D robotics UAV to be

used as an aerial node to communicate with the mobile robots on the ground.

2 Personnel Supported By The Project

Ali Tekeoglu is a PhD student working on secure multimedia delivery He defended his dissertation in

summer 2015. Andrew Wichmann is working on task allocation and path planning and He defended

his dissertation in spring 2015.

3 Technical Manuscripts From The Project

A couple of technical manuscripts that resulted from the project are attached to the progress report.

1

Coordinating Robots for Connectivity in Wireless

Sensor Networks

Baris Tas and Ali Şaman Tosun

Department of Computer Science

University of Texas at San Antonio

San Antonio, TX 78249

{btas,tosun}@cs.utsa.edu

Abstract—Mobile robots improve scalability and performance
of wireless sensor networks. Protocols for many services including
data collection, localization, topology control and security in
wireless sensor networks include mobile robots. Using a single
robot limits the scalability and performance and multiple robots
are used as a result. When multiple robots are deployed, it
is desirable to have the robots connected to provide improved
services. However, coordinating the robots optimally to achieve
connectivity among them is not trivial. We use computational
geometry techniques to achieve connectivity. We use the concept
of Fréchet distance between curves to synchronize the robots
for connectivity. We extend the idea of Fréchet distance to
multiple curves where each curve is the path of a robot. We
analyze the proposed idea theoretically and show that the theory
can not be applied directly due to limitations on robot speed
and speed changes. Therefore, we propose a practical approach
where maximum robot speed is bounded and speed changes is
limited. Simulations show that the connectivity among the robots
is maintained when the robots follow the movement pattern based
on the Fréchet distance between the paths of consecutive robots.

I. INTRODUCTION

A wireless sensor network (WSN) consists of potentially
hundreds of sensor nodes and is deployed in an ad hoc
manner for collecting data from a region of interest over a
period of time. Even though the technology is new, WSNs
received an enthusiastic reception in the science community
as WSNs enable precise and fine-grain monitoring of a large
region in real-time. Some examples of successful large-scale
deployments of WSNs to date are in the context of ecology
monitoring (monitoring of micro-climate forming in redwood
forests), habitat monitoring (monitoring of nesting behavior of
seabirds), and military surveillance (detection and classifica-
tion of an intruder as a civilian, soldier, car, or SUV).

To improve the scalability and performance of WSNs, there
has been a flurry of work on employing a mobile node for data
collection. The data mules [1] work exploit random movement
of mobile node to opportunistically collect data from a sparse
WSN. Here, the nodes buffer all their data locally, and upload
the data only when the mobile node arrives within direct com-
munication distance. Zebranet [2] system uses tracking collars
carried by animals for wildlife tracking. Data is forwarded
in a peer-to-peer manner and redundant copies are stored in
other nodes. Shared wireless info-station model [3] uses radio
tagged whales as part of a biological information acquisition
system. Mobility of the mobile node is not controlled in
these approaches. Mobile element scheduling (MES) work [4]

considers controlled mobility of the mobile node in order to
reduce latency and serve the varying data-rates in the WSNs
effectively. The MES work shows that the problem of planning
a path for the mobile node to visit the nodes before their buffers
overflow is NP-complete. Heuristic based simple solutions are
proposed to address this problem [4]–[6]. Data salmon [7]
constructs a spanning tree and moves the mobile base station
on this tree to optimize the cost of retrieval. To reduce the
size of the path the mobile node travels, rendezvous points are
used as regional collection points and the mobile node collects
the data from the rendezvous points [8]. Readers are referred
to [9] for using a mobile element in data collection.

Multiple robots are employed in WSNs to enhance the
monitoring of an environment. Using multiple robots brings its
own challenges. One challenge is to preserve the connectivity
among them. Having connected robots improves the services
the network offers in terms of more efficient and new protocols.
Also, the connectivity among the robots leads to more secure
protocols. There has been some work in the literature for
providing connectivity. The connectivity between the base
station (BS) and a robot exploring the environment is main-
tained using intermediate robots in [10], [11]. The coordinated
motion planning problem where robots need to cooperate is
studied [12]–[14]. A distributed algorithm that preserves the
connectivity of a team of robots with limited communication
among the robots is proposed in [15]. Periodic connectivity
where the robots are connected at fixed intervals is introduced
in [16]. Periodic connectivity is desired for scenarios where the
robots explores the environment individually at some points
and then regains the connectivity to share their information.

We focus on a scenario where multiple robots as a team
monitor an area of interest. Our aim is to have a connectiv-
ity among the robots whose paths are pre-determined. Pre-
determined paths are frequently used for monitoring an area
since the use of pre-determined paths has advantages over non-
determined paths. When a robot traverses a region multiple
times, it can optimize its path according to the regions where
a sensor exists or not. It does not have to travel to empty
areas. When the mapping of the environment is known, the
paths are set so that the robots avoid obstacles such as rocks
and impossible regions such as lakes where robots might get
stuck. Also, it is easy to estimate energy use and transmission
power when the paths are known. Finally, managing multiple
robots is easier when pre-determined paths are used. Also, pre-
determined paths serve as a first step to solving unrestricted
case where no constraints are put for mobile movement.

Fréchet distance (DF) is used to coordinate the robots in a
connected way optimally in terms of transmission range. The
solution of DF between two curves gives locations of point
pairs - one point is on the first curve, and the other point is
on the second curve - where the distance between the points
in a pair is less than the similarity value between the curves.
The robots move along the curves and the movement pattern
of the robots is based on the solution pairs. DF is a similarity
measure between two curves. It is introduced by Fréchet [17].
It has been used in many applications including matching of
time series in databases [18], map-matching vehicle tracking
data [19], [20], moving object analysis [21], [22], speech
recognition [23], and song identification [24].

The rest of the paper is organized as follows. We describe
the system model in Section II. The foundations of our
proposal which include the Fréchet distance is studied in
Section III. Theoretical aspects of the system are shown in
Section IV. We provide simulation results in Section V. Other
system issues are discussed in Section VI, and we conclude
with Section VII.

II. SYSTEM MODEL

The WSN in this work consists of t sensors and n robots
(ri is a robot where i is the id of a robot and 1 ≤ i ≤ n).
The sensors are statically deployed in a bounded region of
A×A. The area possibly contains obstacles. The robots move
on polygonal curves as a team, monitor the area, and retrieve
information from the sensors. The paths of the robots are set
by the base station (BS). After the robots collect information
about the environment, they return back to the BS, and transmit
their data to the BS. After the batteries of the robots are
recharged, they start the next round of monitoring. The BS
can set new paths to the robots. The robots are connected
all the time. When this connectivity is guaranteed, efficient
and more robust protocols can be designed improving the
security of the services the network offers. For example,
events such as fire can be recognized faster. The robot sensing
the event can communicate with the other robots instantly.
Moreover, attacks against the network can be minimized using
multiple connected robots since more information about the
environment is collected at a time.

Fig. 1. System Model

Figure 1 demonstrates a possible scenario. Sensors are
deployed in the area. The robots follow their pre-determined
paths monitoring the environment. The polygons represent
the obstacles, so the robots can not pass through them. The
robots are synchronized to be connected using Fréchet distance
solutions. It is also possible to have another team of connected
robots monitoring and enhancing the services of the network.

III. FOUNDATIONS

As a starting point for achieving the connected multiple
robots, we first consider a movement pattern which guarantees
the connectivity between two robots whose paths are pre-
determined. Our aim is to provide the connectivity using the
shortest transmission ranges.

(a) (b) (c)

Fig. 2. How to coordinate two robots optimally.

Figure 2 gives an idea of how to coordinate two robots
with optimal transmission ranges. For all the sub-figures, the
robots have to move in a way so that their y-coordinates
should be the same at all times to achieve the minimum
distance in between. If the y-coordinates differ, they have to
have longer transmission ranges to communicate. This simple
observation reveals that there has to be a coordination between
the robots possibly requiring changes on their speed to provide
the connectivity.

A. Fréchet Distance

We use the Fréchet distance (DF) to coordinate multiple
robots. The DF is a similarity measure between two curves.
The DF between two curves can be defined informally using
an analogy to a man walking a dog on a leash. The man moves
in one curve, and the dog moves in another curve. Their speed
may vary, but they can not move backwards. The length of
the shortest possible leash required until both complete their
curves is the DF between the curves. The DF considers the
location and ordering of the points along the curves. In our
case, one robot will take the role of the man, and the other
robot will take the role of the dog.

P (0)

P (1)
P (1.5)

P (3)

P (4.25)P (5)

Fig. 3. Parametrization of P : [0, 5]

The first step to compute the DF between two curves
is to approximate a curve by a polygonal curve which is
a curve entirely made up of line segments. Therefore, we
mean a polygonal curve whenever we mention a curve. A
polygonal curve, P : [0, N], is a continuous and piecewise
linear curve made up of N connected segments. N is the
length of the curve. Using a parameter a ∈ R, P : [0, N] can
be parameterized so that P (a) refers to a point on the curve.
Figure 3 shows the parameterization of the curve, P : [0, 5].

Time concept also needs to be parameterized to model the
man-dog example. Assume that the man is following a curve
P : [0, N], and the dog is following a curve Q : [0,M]. Then,

the position of the man and the dog can be expressed as a
function of t by P (α(t)), and Q(β(t)), where α(0) = 0,
α(1) = N , β(0) = 0, β(1) = M , and the functions α and
β are continuous and non-decreasing functions.

Although 2-dimensional space is considered for simplicity,
the following definitions for DF between two curves work
for arbitrary dimensions. Finally, DF is defined formally as
follows [25].

Definition 1. Let V denote an arbitrary Euclidean vector
space. Let f : [a, a′] → V and g : [b, b′] → V be curves where
a, a′, b, b′ ∈ R and a < a′, b < b′. Then, DF (f, g) denotes
their Fréchet distance, defined as

DF (f, g) : = min
α[0,1]→[a,a′]
β[0,1]→[b,b′]

max
t∈[0,1]

||f(α(t))− g(β(t))||

where α, β range over continuous and increasing functions
with α(0) = a, α(1) = a′, β(0) = b, β(1) = b′.

To compute the DF between two polygonal curves, the
following decision problem is considered. Given polygonal
curves P and Q, and some ǫ ≥ 0, decide whether DF ≤ ǫ.
Let P : [0, p] and Q : [0, q] be polygonal curves where p and q
are the number of edges of P and Q respectively. To solve the
problem, let’s first consider the case where p = q = 1; and de-
fine the free space, Fǫ = (s, t) ∈ [0, 1]2 | d(P (s), Q(t)) ≤ ǫ,
which describes all pairs of points, one on P and one on Q,
whose distance is at most ǫ. Figure 4 shows line segments P ,
Q, a distance ǫ > 0, and Fǫ being the white area within the
unit square [25]. The Fǫ corresponding to the line segments is
the intersection of the unit square with an ellipse (Its proof can
be found in [25]). For example, the ‘◦’ in the white area of the
free space diagram corresponds to the points represented by
‘◦’s on the curves whose pairwise distance is less than ǫ. On
the contrary, the ‘×’ in the gray area corresponds to the points
represented by ‘×’s on the curves whose pairwise distance is
greater than ǫ.

P

Q

ǫ

(a) One segment curves P, Q (b) Free space diagram

Fig. 4.

The Fǫ equation is extended to arbitrary curves P : [0, p]
and Q : [0, q] as follows:

Fǫ = (s, t) ∈ [0, p]× [0, q] | d(P (s), Q(t)) ≤ ǫ (1)

Figure 5 demonstrates an example of curves P : [0, 3], Q :
[0, 3] along with their corresponding free space diagram for a

given ǫ = 70. A point on the free space diagram corresponds to
a solution pair on the curves. For example, the ‘�’ on the free
space diagram corresponds to the ‘�’s on the curves. Similarly,
the ‘◦’ corresponds to the ‘◦’s; and the ‘×’ corresponds to
the ‘×’s on the curves. The distance between the ‘×’s on the
curves is 110, the distance between the ‘◦’s on the curves is
70, and the distance between the ‘�’s is 52. The distances
between the points (�, ◦) which correspond to the points in
the white area in the free space diagram are less than the
ǫ value, whereas the distance between ‘×’s is greater than ǫ
since the corresponding ‘×’ in the free space diagram is in the
gray area. If there exists a monotone curve in both directions
from (0, 0) to (p, q) within the Fǫ of curves P and Q, we
have DF ≤ ǫ. In other words, the man following one curve
can walk his dog following the other curve with a leash of
length ǫ referring back to the man-dog example. The monocity
condition comes from the fact that the man and the dog can
not move backwards. If the monocity condition is eliminated,
then the problem is called weak Fréchet Distance.

(a) Free space diagram (ǫ = 70)

P Q

ǫ = 70

(b) Curves: P, Q

Fig. 5. Fréchet Distance between curves.

In order to solve the decision problem, Fǫ values are
calculated starting from ǫ = 0 to the smallest ǫ value which
make Fǫ contain a monotone curve from (0, 0) to (p, q). At
that point, DF is found to be the final value of ǫ. However,
a more clever algorithm is achieved using the technique of
parametric search on some critical ǫ values. The runtime of
this algorithm is O(pq log(pq)), and its details can be found
in [25]. The corresponding free space diagrams of the curves
P and Q from Figure 5 for ǫ values 67, 70 and 73 are shown in
Figures 5, and 6. As seen from the figures, Fǫ gets larger as ǫ
values increase, and DF of the curves is 70 since the smallest ǫ
value which make the free space diagram contain a monotone
curve from (0, 0) to (3, 3) is 70. We call the monotone curve
a solution curve for the curves P and Q (Sǫ

P,Q).

(a) ǫ = 67. No solution (b) ǫ = 73.

Fig. 6. Free space diagrams with different epsilon values.

B. Adapting Fréchet Distance to Connectivity Problem

We start with the basic case where the coordination be-
tween two robots is considered. Later, we extend the idea to the
case where there exist arbitrary number of robots. A solution
curve (Sǫ) to the Fréchet distance between two curves is used
in coordinating two robots to have a connectivity between the
robots. The curves are assumed to be the paths of the robots.
Let one curve be P , and the other curve be Q. Also, assume
that RP is the robot following curve P , and RQ is the robot
following curve Q. A point on Sǫ

P.Q in the free space diagram
of two curves corresponds to a pair, which we call a solution
pair, consisting of two locations on the curves. One location is
on curve P and the other location is on curve Q. We know that
the distance between the locations in a solution pair is less than
DF , and this is also true for all solution pairs. Therefore, if
the transmission ranges of the robots are greater than DF , the
robots are guaranteed to be connected at the solution locations.
As a result, a movement pattern for the robots is driven based
on the solution locations.

(a) Free space diagram (ǫ = 80)

P Q

ǫ = 80

(b) P, Q

Fig. 7. Robot movement based on Fréchet Distance.

Since the paths of the robots are pre-determined, DF

and the corresponding free space diagram can be computed.
Figure 7 shows two paths P [0 : N], Q[0 : M] and their
corresponding free space diagram where N = 6 is the size
of curve P , M = 4 is the size of curve Q. Consider the point
‘�’ on curve P . Let Param(P,�) be the parametrized value of
the point ‘�’ (see Figure 3 for curve parametrization). The
intersection of the line segment ((Param(P,�), 0); (Param(P,�),
M)) and the solution curve in the free space diagram is
represented as ‘�’ in Figure 7(a). The x-coordinate of this
point is Param(P,�) and the y-coordinate is Param(Q,�) where
Param(Q,�) is the parametrized value of the point ‘�’ on curve
Q. Using this value, it is trivial to compute the xy-coordinates
of the point ‘�’ on curve Q. Similarly, ‘◦’, ‘×’, ‘⋄’, and ‘+’
are the other example solution pairs on curves P and Q. The
distances between the points in each pair are less than DF . If
the robots, RP and RQ, are coordinated so that they reside
at the pair points at the same time, they are guaranteed to be
connected at these points. For example, assume that RP with
constant speed passes by the locations ‘�’, ‘◦’, ‘×’, ‘⋄’, and
‘+’ on curve P at times t�, t◦, t×, t⋄, and t+ respectively.
If the speed of RQ is arranged so that RQ passes by the
locations ‘�’, ‘◦’, ‘×’, ‘⋄’, and ‘+’ on curve Q at times t�,
t◦, t×, t⋄, and t+ respectively, then it is guaranteed that the
robots are connected at the specified points. In theory, any
point on a curve and its pair point on the other curve can be
computed using the solution curve on the free space diagram
and continuous connectivity is achieved.

We extend the case where there exist two robots to the
case with arbitrary number of robots. When multiple robots are
coordinated, we assume a simplified version where the paths of
the robots do not intersect (the case where the paths intersect
can be dealt with solving Fréchet distance for partial curves).
In this way, the idea used for two robots can be applied to
every two consecutive robots in a chained way. Assume that
there exist three robots, RP , RQ, and RR following the curves
P [0 : 5], Q[0 : 6], R[0 : 4] respectively as shown in Figure 8(a).
Consider the first two consecutive robots RP and RQ. The free
space diagram of the curves P and Q (FSD(P,Q)) is given in
Figure 8(b). Using the solution curve in FSD(P,Q), solution
pairs on the curves can be computed as discussed in the two
robot case. For example, for the locations ‘�’, ‘◦’, ‘×’, ‘⋄’,
and ‘+’ on curve P ; their corresponding locations on curve
Q derived from the solution curve in FSD(P,Q) is shown on
curve Q. To compute the corresponding points on curve R, we
make use of Param(Q,�), Param(Q,◦), Param(Q,×), Param(Q,⋄) and
Param(Q,+) along with FSD(Q,R). For instance, Param(R,�) is the
intersection of the line segment ((Param(Q,�), 0); (Param(Q,�), 4))

and the solution curve in FSD(Q,R). Once Param(R,�) is found,
computing the xy-coordinates of the point ‘�’ on curve R is
trivial. Finally, when the speeds of the robots VRP

, VRQ
, and

VRR
are arranged so that the robots reside at points ‘�’ on their

curves at time t�, the connectivity is achieved at locations ‘�’s
on the curves. The same also applies for the ‘◦’, ‘×’, ‘⋄’, ‘+’
locations.

1) Coordinating Multiple Robots in an Application: The-
oretically, multiple robots are guaranteed to be connected at
all times when all solutions from the free space diagram is
used. However, this might cause too many changes on the
speed of the robots. We explain this in detail in section V. To
limit the speed changes for robots, we coordinate the robots
based on one robot (Rbase). Only the vertices on the path
of Rbase are considered for the resulting solution points. For
example, consider that robots RP , RQ and RR is set to follow
the curves P , Q, R in Figure 8(a). If RP is picked as Rbase,
then the vertices of curve P are considered as solution points
and the corresponding solution points on the other curves
are computed as discussed above. This results in connectivity
when the robots are at locations �, ◦, ×, ⋄, + on their
own curves. Any robot could have been chosen as Rbase.
If the application requires more locations where the robots
are connected, additional robots are picked as Rbase, and the
solutions from each setting are combined.

IV. THEORETICAL FOUNDATIONS

In this section, we discuss the theoretical aspects of our
idea. We will show that the speed of the mobile robots needs
to be updated during traversal to follow the solution curve.
Consider the following example.

In Figure 9, when robot RP is at x, robot RQ must be at
a and when robot RP is at y, robot RQ must be at b. In the
first part, when RP travels 20 units, RQ travels 40 units and
in the second part when RP travels 60 units, RQ travels 100
units. So, even if RP has constant speed, RQ needs to update
its speed during traversal.

Theorem 1. Given curves C1 and C2, a solution curve Sǫ

in Free Space diagram FSD(C1,C2), mobile robots can follow

P Q R

(a) (b) FSD(P,Q) (c) FSD(Q,R)

Fig. 8. Multiple robot movement.

20

60

x

y

(a) RP

20
40

40

40

a

b

(b) RQ

P

Q

(c) FSD(P,Q)

Fig. 9. The speed of the robots needs to be updated

the solution curve Sǫ by setting the speed on curve C2 relative
to the speed on curve C1.

Proof: Solution curve Sǫ intersecting current cell of free
space diagram can be represented as a special case of one of
the following.

e1

e2

V11

V12

V1i

V1m

(a)

e1

e2

V21
V22

V2i

V2m

(b)

Fig. 10. Example

Figure 10(a) follows a complete edge of C2 and Fig-
ure 10(b) follows a complete edge of C1. Let corresponding
edges on curves C1 and C2 be e1 and e2 with lengths |e1| and
|e2| respectively. Let the left and right endpoints of solution in
current cell be L1 = (x1, y1) and L2 = (x2, y2) respectively.

• Case 1: Current cell of free space diagram follows
a complete edge of C2 as in left side of figure. Let
fraction of e1 in current cell be α.
Line segment [L1, L2] may have multiple segments
with different speed requirements on C1. Let’s assume
there are m segments and let V1i, 1 ≤ i ≤ m be the
speed on segment i. Since time spend on both C1 and
C2 must be equal for each segment, we have

V1i

V2i
=

α|e1|
|e2|

So, speed on C2 for a line segment with speed V1i on
C1 is

V2i = V1i
|e2|
α|e1|

• Case 2: Current cell of free space diagram follows
a complete edge of C1 as in left side of figure. Let
fraction of e2 in current cell be β.
Line segment [L1, L2] may have multiple segments
with different speed requirements on C2. Let’s assume
there are m segments and let V1i, 1 ≤ i ≤ m be the
speed on segment i. Since time spend on both C1 and
C2 must be equal for each segment, we have

V1i

V2i
=

|e1|
β|e2|

So, speed on C2 for a line segment with speed V1i on
C1 is

V2i = V1i
β|e2|
|e1|

�

We use the following terminology for multiple curves.
Given k curves C1, . . . , Ck and a pairwise solution curves
Sǫ
i,i+1 is a solution curve for curve Ci and Ci+1 and free

space diagram FSDǫ
i,i+1 is the free space diagram for curves

Ci and Ci+1.

Theorem 2. Given k curves C1, . . . , Ck and pairwise solu-
tion curves Sǫ

i,i+1, 1 ≤ i ≤ k − 1 in free space diagram
FSDǫ

i,i+1, 1 ≤ i ≤ k − 1, we can follow all solution curves
Sǫ
i,i+1, 1 ≤ i ≤ k − 1 simultaneously.

Proof: By repeated application of Theorem 1. Follow
solution curve Sǫ

i,i+1 by setting the speed on curve Ci+1

relative to the speed on curve Ci. �

Depending on the pattern of the robot paths, some heuris-
tics can be applied. However, these heuristics do not yield the
optimal solution. For instance, plane sweep solution would fail
in the following example. Consider Figure 11.

Plane sweep in this example yields a distance of 4. How-
ever, Fréchet distance in this case is 2

√
2.

Fig. 11. Example

V. SIMULATIONS

We conducted simulations to support the proposed method
both in terms of theory and practice to verify if multiple robots
can have connectivity in a wireless network. We implemented
the simulation using ns2 network simulator [26]. 802.15.4
MAC layer is used for low-rate wireless communications.
In addition to the simulation results presented in this paper,
supplementary videos created from the simulations can be
found on the project web page [27].

n random polygonal curves covering an area of 1000×1000
are created for n robots. The curves are generated so that they
do not intersect. Robot Ri follows curve ci. The x-coordinate
of any vertices of ci is less than the x-coordinate of any vertices
of ci+1. Simulations with up to 20 robots are conducted. To
test the connectivity, we kept track of the number of packets
sent and received between consecutive robots. The robots send
dummy packets to their neighbors with a frequency of f which
is set to 1.0s. To mitigate collisions, we added a back-off

mechanism. For Ri, a duration of f
n
∗ i is added to the time

Ri sends its packet. Let DF (ci, ci+1) be the Fréchet distance
between curves ci and ci+1. The transmission range of a
robot, Ri, is set to max(DF (ci−1, ci), DF (ci, ci+1))+λ where
λ = 10m.

The type of a simulation where the solution curve between
the robots R1 and R2 is used as Sǫ

base is called simfirst. Also,
the type of a simulation where the solution curve between
the robots Rn

2
and Rn

2
+1 is used as Sǫ

base is called simmid.
In the second approach to find the solution points, we use
each solution curve as Sǫ

base and combine all resulting solution
points. We call this type of simulations simall. We study both
the theoretical and the practical versions.

A. Continuous Connectivity

This section simulates the theoretical solution. One of the
solution curves is picked as the base solution curve Sǫ

base =
Sǫ
(1,2). S

ǫ
(1,2) is the solution curve between the first and the

second robot. Solution points for the first robot is selected by
intersecting Sǫ

(1,2) with the free space diagram grid (FSDG).

FSDG is defined as the horizontal segments:

hl0[(0, 0); (N, 0)], hl1[(0, 1); (N, 1)], . . . , hlM [(0,M); (N,M)]

and the vertical segments:

vl0[(0, 0); (0,M)], vl1[(1, 0); (1,M)], . . . , vlN [(N, 0); (N,M)]

on the free space curve where N is the curve size of c1 and
M is the curve size of c2. A segment is represented as the
xy-coordinates on the free space diagram. Once we find the
solution points for Sǫ

(1,2), we find the corresponding solution

points on the rest of the solution curves. The solution points
found on Sǫ

(1,2) is converted to the locations on the curve, c1.

We set a constant speed, Speed1, for R1 which follows c1.
Using Speed1, the associated time values, tp, are found for all
the solution points. In this way, all curves have to adapt their
speed to reside at the corresponding solution points at the same
time based on R1’s speed. For example, while R1 is moving
at constant speed, R2 has to adapt its speed at the solution
points based on Sǫ

(1,2). R2 moves at constant speed between the

solution points. For c2, there exists additional solution points
from the intersection of the solution curve between c2 and c3;
and FSDG of free space diagram of c2 and c3. The timing
values for these additional points are found based on R2’s
speed and they are used as speed change locations for R3. For
the rest of the robots, the same idea is used causing additional
speed change locations for each robot.

In Figure 12, we see a snapshot taken from a simulation
using the theoretical approach where there are five robots, and
the outer robot has the constant speed 3m/s. A circle represents
the transmission range of a robot.

Fig. 12. Snapshot for the simulation with five robots.

When the theoretical approach is used, the connectivity is
guaranteed all the time. Table I shows the connectivity results
for the above example with 5 robots when f = 1.0s. For each
robot, Ri, the number of packets Ri broadcasts, the number of
packets received from the previous robot Ri−1, and the number
of packets received from the next robot Ri+1 is shown as a
row in the table.

TABLE I. ROBOT CONNECTIVITY RESULTS (THEORY)

Ri Sent Received from Ri−1 Received from Ri+1

R1 348 - 348

R2 348 348 348

R3 348 348 348

R4 348 348 347

R5 347 348 -

Figure 13(a) demonstrates the number of speed change per
robot when R1 moves at constant speed 3m/s for 20 robots.
The last robot has to change its speed 275 times.

We also analyzed the maximum speed a robot can take
for the same setting. Figure 13(b) shows the maximum speed
each robot takes. To guarantee the continuous connectivity a
robot should travel with the speed of 1753m/s. Since this is not
applicable with the current technology, we propose a practical
approach by setting a maximum speed a robot can take.

 0

 50

 100

 150

 200

 250

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1
0

R
1
1

R
1
2

R
1
3

R
1
4

R
1
5

R
1
6

R
1
7

R
1
8

R
1
9

R
2
0

N
u

m
b

e
r

o
f

c
h

a
n

g
e

s
 i
n

 s
p

e
e

d
Number of speed changes per robot

simfirst

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1
0

R
1
1

R
1
2

R
1
3

R
1
4

R
1
5

R
1
6

R
1
7

R
1
8

R
1
9

R
2
0

M
a

x
im

u
m

 s
p

e
e

d

Maximum speed per robot

simfirst

(b)

Fig. 13. Based on theory. R1 has constant speed 3m/s.

B. Connectivity at Selected Points

Since the maximum speed a robot takes is not applicable
in the theoretical approach, we set a limit on the speed a robot
can take for practical reasons. In this approach, connectivity
is guaranteed at selected points. The solution points where
connectivity is guaranteed are found as follows. In the first
approach, one of the solution curves is picked as the base
solution curve Sǫ

base. On this solution curve, the points on
every ∆ distance are chosen as the solution points. ∆ values
we use are 0.4, 0.2, 0.1 and 0.05. The corresponding solutions
points on the rest of the solution curves are found using
these solution points. Detailed discussion about finding the
corresponding solution points of the other solution curves
based on one solution curve can be found in subsection III-B.

The speeds of the robots are arranged as follows. Let’s
assume that all robots reside at their current solution points
at time tk. For example, Ri resides at L(Ri,tk) at time tk.
Each robot knows the location (L(Ri,tk+1)) to be at time tk+1

to have connectivity at tk+1. Simulation takes an argument,
maxSpeed, which specifies the maximum speed a robot can
travel with. The robot which needs to travel farthest to its
next solution point will adjust its speed to maxSpeed. The
maximum distance to next solution point is found as:

maxDistancek = max
1≤i≤n

||L(Ri,tk+1) − L(Ri,tk)||

Let’s assume that ath robot needs to travel farthest to its next
solution point. Then, the speed of Ra is set to maxSpeed.
Once, the speed of Ra is found, tk+1 is computed; and the
speeds of the rest of the robots (Ri where 1 ≤ i ≤ n and
i 6= a) are adjusted using tk, tk+1 and ||L(Ri,tk+1)−L(Ri,tk)||.
So the speed of the robot Ri is set to:

Si =
||L(Ri,tk+1) − L(Ri,tk)||

tk+1 − tk

Figure 14 demonstrates a few snapshots from a simulation run
of type simfirst with 20 robots, f = 1.0s, and maxSpeed =
10. A circle represents the transmission range of a robot. The
simulation takes 452s, and the snapshots are taken at seconds
150 and 300 respectively.

Table II presents the connectivity results for ten robots
when f = 1.0s, maxSpeed = 10m/s and the type of the
simulation is simfirst. Almost all of the packets a robot sends
will be received by the neighboring robots, and a robot receives
almost all of the packets the neighboring robots broadcast.
Some robots can not receive all the packets a neighboring
robot sends (see the communication between R5 and R6 in
the table). Although the robots are guaranteed to be connected

TABLE II. ROBOT CONNECTIVITY RESULTS FOR 10 ROBOTS

Ri Sent Received from Ri−1 Received from Ri+1

R1 376 - 376

R2 376 375 376

R3 376 376 376

R4 376 376 376

R5 376 376 370

R6 376 372 376

R7 376 376 375

R8 375 376 375

R9 375 375 375

R10 375 375 -

at the solution points, we do not guarantee that whether a
robot broadcasts at the solution points since a robot broadcasts
dummy packets with a frequency of 1.0s in our simulation.
However, even in this case, only a few packets are missing
which shows that the network is connected almost all the time.
Figure 15 shows a case where the connectivity is lost. RP is
guaranteed to be connected with RQ at consecutive locations
(P1, Q1) and (P2, Q2). However, there is no locations that
guarantee connectivity in between |P1, P2| and |Q1, Q2|. As a
result, connectivity is lost.

P1

P2

Q1

Q2

not connected

Fig. 15. Not connected

TABLE III. ROBOT CONNECTIVITY RESULTS FOR 5 ROBOTS

Ri Sent Received from Ri−1 Received from Ri+1

R1 345 - 345

R2 345 345 345

R3 345 345 344

R4 344 345 339

R5 344 338 -

Table III shows the results for five robots where ∆ = 0.4.
Moreover, Table IV shows the results for five robots where
∆ = 0.4 on curves which are more skewed and consist of more
segments. Table V shows the results for five robots following
the same type of curves where ∆ = 0.05. All of them are
results from type simfirst simulation.

TABLE IV. ROBOT CONNECTIVITY RESULTS FOR 5 ROBOTS

Ri Sent Received from Ri−1 Received from Ri+1

R1 492 - 491

R2 491 492 487

R3 491 485 490

R4 491 479 477

R5 491 479 -

Figure 16 shows the number of changes in speed per
robot when the solution points are selected based on the
curves’ segment end points. x-axis denotes the robots and y-
axis denotes the number of changes in speed. Figure 16(a)
compares the simulation types simfirst and simmid. In this
approach, Rbase has the most number of speed changes since

(a) t = 150 (b) t = 300

Fig. 14. Snapshots from our simulation. 20 robots

 0

 20

 40

 60

 80

 100

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1
0

R
1
1

R
1
2

R
1
3

R
1
4

R
1
5

R
1
6

R
1
7

R
1
8

R
1
9

R
2
0

N
u

m
b

e
r

o
f

c
h

a
n

g
e

s
 i
n

 s
p

e
e

d

Number of speed changes per robot

simmid
simfirst

(a) First and middle robot.

 0

 200

 400

 600

 800

 1000

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
1
0

R
1
1

R
1
2

R
1
3

R
1
4

R
1
5

R
1
6

R
1
7

R
1
8

R
1
9

R
2
0

N
u

m
b

e
r

o
f

c
h

a
n

g
e

s
 i
n

 s
p

e
e

d

Number of speed changes per robot

simall
simmid
simfirst

(b) Comparison of all settings.
Fig. 16. Comparison of the settings with respect to number of speed changes.

TABLE V. ROBOT CONNECTIVITY RESULTS FOR 5 ROBOTS

Ri Sent Received from Ri−1 Received from Ri+1

R1 505 - 504

R2 504 505 504

R3 504 504 501

R4 504 498 491

R5 504 492 -

the vertical and horizontal lines on the rest of the solution
curves cause solution point losses. Figure 16(b) compares all
of the simulation types simfirst, simmid and simall. Since
there exist more solution points in simall type, the speed of
a robot needs to be adjusted many more times compared to
the simulation types, simfirst and simmid. Finally, the total
numbers of changes in speed for simfirst, simmid and simall

are 1142, 1509, and 15460 respectively.

VI. DISCUSSION

It is easy to develop heuristics based on the movement
pattern of the robots for an application. If robots are moving in
one direction, plane sweep heuristic can be used. However, this
approach can not be generalized. For example, Figure 17 shows
a case where plane-sweep heuristic can not be used. Also,
even if the robots move in one direction, plane sweep heuristic
does not yield the optimum solution in terms of transmission
range. Figure 18 compares the transmission ranges for Fréchet
distance and plane sweep when the robots are moving in one
direction. Fréchet distance solution serves as a general solution
to the problem of connectivity among robots for any kind of
path pattern given.

We focused on paths which do not cross in this paper.
However, proposed idea can be applied to crossing paths
with a modification. The paths can be split at the crossing
points and proposed idea can be used for partial curves with
different order of curves on each side of crossing point.
Figure 19 demonstrates the idea. At point, C, the curves Q
and R intersect. Curves are split by the dashed line. The

P

Q

(a)

P

Q

(b)

Fig. 17. Fréchet as a general solution

 65

 70

 75

 80

 85

 90

 95

 100

1
:2

2
:3

3
:4

4
:5

5
:6

6
:7

7
:8

8
:9

9
:1

0
1
0
:1

1
1
1
:1

2
1
2
:1

3
1
3
:1

4
1
4
:1

5
1
5
:1

6
1
6
:1

7
1
7
:1

8
1
8
:1

9
1
9
:2

0

D
is

ta
n

c
e

s

Curve pairs

Frechet distance vs. Sweepline

SweepLine
Frechet

Fig. 18. Frechet Distance vs. Sweepline

solution points for the curves below the dashed line and the
solution points for the curves above the dashed line are found
separately using the proposed idea. Below the dashed line we
have solution points corresponding to P and Q and Q and R.
Although same order of curves can be used above the crossing
point, distances will end of being large. Instead we can use
solution points corresponding to P and R and R and Q above
the dashed line.

In proposed approach, we set the transmission range of
a robot based on the Fréchet distance and use the same
range during the traversal of the path. Since the paths are

P Q R

C

Fig. 19. Crossing paths

pre-determined, the transmission range of the robots can be
adjusted dynamically to save energy and reduce interference.
Robot can compute the range it needs to have to reach the
other robots and use this range for communication.

VII. CONCLUSION

Mobile robots are introduced to overcome the limitations
of wireless sensor networks. When multiple robots are used,
maintaining connectivity between mobile robots is challeng-
ing. We propose a method to guarantee connectivity among
multiple robots which move in a coordinated manner. Having
continuously connected robots is important since it improves
the efficiency and scalability of network protocols. In addition,
larger area can be monitored at a time and the network
becomes more responsive to attacks and events when contin-
uous connectivity is achieved. We extend the idea of Fréchet
distance between two curves to compute the Fréchet distance
between several curves and provide a practical implementation
of the approach. We provide a theoretical analysis of Fréchet
distance to form the foundations of our approach. We simulate
the proposed method and verify the connectivity among the
robots using our method. Proposed approach is generic and
can be applied to a large number of robot movement patterns.

REFERENCES

[1] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data mules: modeling
a three-tier architecture for sparse sensor networks,” in Proceedings of

the First IEEE International Workshop on Sensor Network Protocols

and Applications, 2003, pp. 30–41.

[2] P. Juang, H. Oki, and Y. Wang, “Energy-efficient computing for wildlife
tracking: Design tradeoffs and early experiences with zebranet,” in 10th

International Conference on Architectural Support for Programming

languages and Operating Systems., October 2002.

[3] T. Small and Z. Haas, “The shared wireless infostation model - a new ad
hoc networking paradigm (or where there is a whale, there is a way),”
in ACM MobiHoc, 2003, pp. 233–244.

[4] A. Somasundara, A. Ramamoorthy, and M. Srivastava, “Mobile element
scheduling for efficient data collection in wireless sensor networks with
dynamic deadlines,” in Proceedings of the 25th IEEE International

Real-Time Systems Symposium, 2004, pp. 296–305.

[5] Y. Gu, D. Bozdag, E. Ekici, F. Ozguner, and C. Lee, “Partitioning
based mobile element scheduling in wireless sensor networks,” in IEEE

SECON, 2005, pp. 386–395.

[6] W. Zhao and M. Ammar, “Message ferrying: Proactive routing in
highly-partitioned wireless ad hoc networks,” in Proceedings of the

The Ninth IEEE Workshop on Future Trends of Distributed Computing

Systems, 2003, pp. 308– 314.

[7] M. Demirbas, O. Soysal, and A. S. Tosun, “Data salmon: A greedy
mobile basestation protocol for efficient data collection in wireless
sensor networks,” in IEEE International Conference on Distributed

Computing in Sensor Systems, 2007.

[8] G. Xing, T. Wang, Z. Xie, and W. Jia, “Rendezvous planning in
mobility-assistedwireless sensor networks,” in 28th IEEE International

Real-Time Systems Symposium, 2007, pp. 311–320.

[9] M. Di Francesco, S. K. Das, and G. Anastasi, “Data collection in
wireless sensor networks with mobile elements: A survey,” ACM Trans.

Sen. Netw., vol. 8, no. 1, pp. 7:1–7:31, Aug. 2011.

[10] 2008 IEEE International Conference on Robotics and Automation,

ICRA 2008, May 19-23, 2008, Pasadena, California, USA. IEEE,
2008.

[11] D. Tardioli, A. Mosteo, L. Riazuelo, J. Villarroel, and L. Montano,
“Enforcing network connectivity in robot team missions,” Int. J. Rob.

Res., vol. 29, no. 4, pp. 460–480, Apr. 2010. [Online]. Available:
http://dx.doi.org/10.1177/0278364909358274

[12] M. Defoort and K. Veluvolu, “A motion planning framework with
connectivity management for multiple cooperative robots,” Journal of

Intelligent & Robotic Systems, pp. 1–15, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10846-013-9872-0

[13] O. Dengiz, A. Konak, and A. E. Smith, “Connectivity management in
mobile ad hoc networks using particle swarm optimization,” Ad Hoc

Netw., vol. 9, no. 7, pp. 1312–1326, Sep. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.adhoc.2011.01.010

[14] M. Defoort, A. Kokosy, T. Floquet, W. Perruquetti, and J. Palos,
“Motion planning for cooperative unicycle-type mobile robots with
limited sensing ranges: A distributed receding horizon approach,”
Robot. Auton. Syst., vol. 57, no. 11, pp. 1094–1106, Nov. 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.robot.2009.07.004

[15] N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pappas, “Maintaining
connectivity in mobile robot networks,” in ISER, 2008, pp. 117–126.

[16] G. Hollinger and S. Singh, “Multi-robot coordination with periodic con-
nectivity,” in Robotics and Automation (ICRA), 2010 IEEE International

Conference on, 2010, pp. 4457–4462.

[17] M. Fréchet, “Sur quelques points du calcul fonctionnel,” Rendiconti del

Circolo Matematico di Palermo (1884 - 1940), vol. 22, pp. 1–72, 1906.

[18] M.-S. Kim, S.-W. Kim, and M. Shin, “Optimization of subsequence
matching under time warping in time-series databases,” in SAC, 2005,
pp. 581–586.

[19] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk, “On map-
matching vehicle tracking data,” in Proceedings of the 31st

international conference on Very large data bases, ser. VLDB
’05. VLDB Endowment, 2005, pp. 853–864. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1083592.1083691

[20] C. Wenk, R. Salas, and D. Pfoser, “Addressing the need for map-
matching speed: Localizing global curve-matching algorithms,” in Sci-

entific and Statistical Database Management, 2006. 18th International

Conference on, 2006, pp. 379–388.

[21] K. Buchin, M. Buchin, and J. Gudmundsson, “Detecting single file
movement,” in Proceedings of the 16th ACM SIGSPATIAL international

conference on Advances in geographic information systems, ser. GIS
’08. New York, NY, USA: ACM, 2008, pp. 33:1–33:10. [Online].
Available: http://doi.acm.org/10.1145/1463434.1463476

[22] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo,
“Detecting commuting patterns by clustering subtrajectories,” in
Proceedings of the 19th International Symposium on Algorithms and

Computation, ser. ISAAC ’08. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 644–655. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-92182-0 57

[23] S. Kwong, Q. He, K.-F. Man, C. W. Chau, and K.-S. Tang, “Parallel
genetic-based hybrid pattern matching algorithm for isolated word
recognition,” IJPRAI, vol. 12, no. 4, pp. 573–594, 1998.

[24] J. Serrà, E. Gómez, P. Herrera, and X. Serra, “Chroma binary similarity
and local alignment applied to cover song identification,” IEEE Trans-

actions on Audio, Speech & Language Processing, vol. 16, no. 6, pp.
1138–1151, 2008.

[25] H. Alt and M. Godau, “Computing the fréchet distance between two
polygonal curves,” Int. J. Comput. Geometry Appl., vol. 5, pp. 75–91,
1995.

[26] S. McCanne and S. Floyd, “ns network simulator,”
http://www.isi.edu/nsnam/ns/.

[27] B. Tas and A. S. Tosun, “Project web page for simulation results,”
www.cs.utsa.edu/∼tosun/robotconnectivity/robotcon.html, accessed: 06
April 2014.

Resilient Data Collection in Mobile-assisted Wireless

Sensor Networks

Baris Tas and Ali Şaman Tosun
Department of Computer Science
University of Texas at San Antonio

San Antonio, TX 78249
email{btas,tosun}@cs.utsa.edu

ABSTRACT
Mobility facilitates efficient data collection protocols im-
proving the performance, scalability and life-time of wireless
sensor networks. We propose a simple, yet effective and scal-
able method for resilient data collection in mobile-assisted
wireless sensor networks. The mobile element covers an area
using periodic long-range broadcast messages. Upon receiv-
ing a broadcast message, a sensor sends its data to the mo-
bile element using trajectory routing in a multi-hop manner.
The mobile element includes sensor acknowledgements in the
broadcast using a Bloom filter. If a packet is not received
by the mobile element due to an erroneous node along the
trajectory, a different trajectory is used to avoid malicious
nodes. Simulation results demonstrate that low number of
broadcasts is enough to collect data from a large-scale net-
work with over 99% success rate if the system parameters
are set properly.

1. INTRODUCTION
To improve the scalability and performance of WSNs, there
has been a flurry of work on employing a mobile node for
data collection. The data mules [12] work exploit random
movement of mobile node to opportunistically collect data
from a sparse WSN. Here, the nodes buffer all their data
locally, and upload the data only when the mobile node ar-
rives within direct communication distance. Zebranet [4]
system uses tracking collars carried by animals for wildlife
tracking. Data is forwarded in a peer-to-peer manner and
redundant copies are stored in other nodes. Shared wire-
less info-station model [13] uses radio tagged whales as part
of a biological information acquisition system. Mobility of
the mobile node is not controlled in these approaches. Mo-
bile element scheduling (MES) work [14] considers controlled
mobility of the mobile node in order to reduce latency and
serve the varying data-rates in the WSNs effectively.

WSNs are vulnerable to various attacks due to their na-
ture. In selective forwarding, a sensor on the path from the
source to the destination drops forwarding packets [5]. Pro-

posed solutions for detection of the attack include watchdog
mechanisms where a node keeps track of its neighbors’ be-
havior [8]. However, this solution depletes sensors’ resources
quickly. Another scheme which uses acknowledgement from
intermediate nodes is proposed in [16]. False forwarding,
where a node does not follow the forwarding mechanism
precisely, is a type of misrouting attack. A malicious node
falsify the routing packets to disrupt the routing tables [6].
In the wormhole attack, an adversary tunnels messages re-
ceived in one part of the network over a low-latency link
and replays them in a different part. An adversary could
convince nodes who would normally be multiple hops from
a base station that they are only one or two hops away via
the wormhole [5]. To defend against wormhole attacks, a
leash is added to a packet to restrict the packet’s maximum
allowed transmission distance [3].

The main components of our data collection protocol include
trajectory routing, a cone-based topology control mecha-
nism, and Bloom filter. Trajectory-based routing (TBR) de-
scribed in [10, 9] is a generalization of source based routing,
and cartesian routing. In TBR, a packet is forwarded along
a curve set by the source. A cone-based distributed topol-
ogy control mechanism proposed in [7] preserves the network
connectivity by ensuring at least one neighbor exists in every
cone of degree α around each sensor. Bloom filter is a space-
efficient randomized hash-coding method for representing a
set to support membership queries introduced by Burton
Bloom [1]. These components fit together in harmony pro-
ducing a scalable and efficient data collection mechanism.

We propose a data collection mechanism resilient to the node
failures or packet dropping attacks for large-scale mobile-
assisted wireless sensor networks. The WSN we consider
consists of a mobile element (ME) and static sensors. The
ME covers the area to be monitored using a pre-determined
route. Since an ME is expected to have more resources than
a regular sensor, its transmission range can be longer than
a sensor’s. On its journey, the ME broadcasts long-range
messages. Each broadcast message triggers the sensors in
the vicinity of the ME to reply back with their data in a
multi-hop manner using trajectory routing. The cone-based
topology control mechanism is employed to control the num-
ber of hops a packet travels towards the ME. Bloom filter
is the main data structure of our system’s acknowledgement
mechanism. Simulation results indicate the ME is able to
collect data from over 99% of the total sensors using the
proposed scheme.

Sr

S

Figure 1: System Model

2. SYSTEM MODEL
The WSN in this work consists of an ME and n sensors (si is
a sensor where i is the id of the sensor and 1 ≤ i ≤ n). The
sensors are statically deployed in a bounded region of A×A.
We assign the transmission range of a sensor according to
the distances between the sensor and its close neighbors with
a cone-based topology control mechanism. This approach
reduces the transmission interference which is a bottleneck
for the performance of an application designed for a dense
WSN. Also, it extends the life-time of the sensors. ri is the
range of the sensor with the id i; whereas rME is the range
of the ME. The range of the ME is the same throughout
the application except for a few initial transmissions. Also,
It is greater than the range of any sensors. The ME covers
the area of interest with periodic broadcasts, and speed,
VME . Each broadcast message is associated with a sequence
number (SNi: ith sequence number). Sensors within the
transmission range of a broadcast reply back to the ME with
their data in a multi-hop manner. The ME follows a space-
filling curve as its route. Once the ME completes its tour,
it reports all the sensor readings it has collected to the base
station (BS).

The communication from the sensors to the ME is based
on trajectory routing. Trajectory routing requires a dense
network, and the nodes know the locations of their neigh-
bors, at least approximately. Therefore, the sensors are as-
sumed to know their locations and the locations of their
neighbors. Also, the ME knows the sensor locations ap-
proximately. These can be achieved using mobile-assisted
localization techniques such as the one proposed in [11], or
an expensive option for localization would be attaching a
GPS device for each node. In Trajectory routing, the source
node embeds a curve into the packet, and the intermediate
nodes forward the packet as close as possible to the curve
using greedy techniques.

The system model is shown in Figure 1. The ME collects
data from the static sensors deployed in an area of interest.
The circles represent the sensors. The thick dashed line rep-
resents the route of the ME. The transmission range of the

ME is larger than the transmission range of a sensor. The
transmission range of a sensor (Sr), and the ME is depicted
in the figure. The ME transmits long-range broadcasts. The
broadcast message triggers the sensors within the broadcast
range to send their data. An acknowledgement mechanism
bypasses unnecessary replies. For example, when the sensor,
S, receives the broadcast message, it sends its data along the
curve as shown in the figure if S has not received its acknowl-
edgement yet. The intermediate nodes forward the packet
originated from S to the ME along the trajectory shown as
the dashed line.

3. PROPOSED SCHEME
The ME covers the area to be monitored following a space-
filling curve. It transmits broadcast messages. A broad-
cast message has two functionalities. It triggers the sen-
sors within the vicinity of the ME to reply back with their
data, and it contains a Bloom filter carrying the acknowl-
edgements for the sensors whose data have been successfully
received after the previous broadcast. Trajectory routing is
used when the sensors send their data to the ME. Colli-
sions are mitigated using the acknowledgement mechanism,
the cone-based topology control algorithm, and a back-off
mechanism which adds proper delays to the reply messages
from the sensors to the ME. The communications are se-
cured using symmetric-asymmetric keys and cryptographic
functions. The proposed scheme is designed for dense net-
works, and it is resilient to node failures and packet dropping
attacks.

3.1 Sensor-ME Communication
Trajectory routing is used for the communication from the
sensors to the ME. When a sensor receives a broadcast mes-
sage, it either drops the packet, or replies back to the ME
depending on whether the sensor had previously sent its data
to the ME successfully, or not. If the ME has not received
the sensor data yet, the sensor picks a trajectory where the
starting point of the trajectory is the sensor location, and
the final point of the trajectory is the ME position. Then,
the sensor embeds the trajectory into the packet, and the
packet is sent to the ME along the trajectory in a multi-hop
manner.

Although a broad range of curves can be defined, we pick the
upper or lower arc of the major axis of an ellipse as the tra-
jectory. When a sensor is ready to send its data to the ME,
it picks one side of the ellipse, embeds that trajectory into
its packet, and sends the packet. If it receives an acknowl-
edgement at the next broadcast, the sensor is done with
sending its own data to the ME; and drops the succeeding
broadcast messages. However, it continues to forward the
packets which were originated by the other sensors if the
sensor is along the curve of those packets. If the sensor does
not receive the corresponding acknowledgement at the next
broadcast due to node failures, collisions, or insufficient den-
sity of the network, it picks the other side of the ellipse as
its trajectory; and sends its data along this trajectory. This
approach increases the probability of the data packets to be
received by the ME. The major axis of the ellipse divides
the plane in half, and we guarantee that a node does not
forward its packet if its only forwarding choice is a node on
the other half plane. Since the half planes can not contain a
sensor in common, the hops along both curves are different.

a

b

c

d

e

f

S

1
2 3

4
5
6

7 8

broadcast content:
reply content:

ME location

ME heading

HCcorners

SN

SN

Bloom filter

data

sourceId

Trajectory

βi

nextHopId

DS,ME

2
DS,ME

4

Figure 2: Switching between curves

Figure 2 shows the interaction between an ME and sensor
nodes. In the figure, circles represent sensor nodes, the two
arcs (solid and dashed) represent two different trajectories.
The dashed arc on the left shows the long-range broadcast
of the ME since the figure shows a tiny portion of the whole
network. The rectangles show the broadcast and reply mes-
sage contents. The source node, S, embeds the solid tra-
jectory into its packet and sends the packet to the ME in
a hop-by-hop manner. The packet follows the trajectory,
and in the ideal case, the packet is transmitted to the ME
through the sensor nodes a, b, c, d, e, and f. If the ac-
knowledgement for this packet is not received at the next
broadcast, the sensor, S, sends its data along the dashed
trajectory. The packet is expected to be forwarded through
the sensors 1, 2, 3, 4, 5, 6, 7, 8.

An acknowledgement mechanism is required to prevent a
sensor from replying to every broadcast message it receives.
Each broadcast message has a Bloom filter containing the
acknowledgements corresponding to successful sensor data
receptions triggered by the previous broadcast message. In
this way, sensors become aware of their successful data trans-
missions. With the acknowledgement mechanism, node fail-
ures on the trajectories can also be detected. Moreover,
if a sensor does not receive its acknowledgement due to a
node failure on the trajectory, it uses a different trajectory
increasing the resilience to the node failures. Finally, the
acknowledgement mechanism increases the overall quality
of the network bypassing unnecessary transmissions.

Since the ME uses long-range broadcast messages, it is pos-
sible that a sensor receives the broadcast message multiple
times with different ME locations. As a result, the sen-
sor uses a trajectory having different destination location.
In this way, different intermediate nodes are used for the
sensor-ME communication when the ME is at different re-
gions increasing the resilience to the node failures. As a
result, A sensor will have many chances to transmit its data
to the ME thanks to the long-range broadcasts and separate
forwarding paths increasing the resilience to node failures.

3.2 ME-Sensor Communication
The ME transmits long-range broadcast messages period-
ically. The broadcast period, τ , is an important factor for
the performance of our system. A significant issue regarding
the broadcast period is the limitation on the packet size for
WSNs. Remember that we use an acknowledgement mecha-
nism to prevent further replies from the sensors whose data
had been received successfully by the ME previously. To
achieve this, the acknowledgements are embedded to the
broadcast packets. Because of the packet size limitation,
there is a limit on the number of the acknowledgements

that can be embedded into the broadcast packet. We use
a probabilistic space-efficient data structure, Bloom filter,
to increase the number of acknowledgements that can be
embedded into a broadcast message.

Bloom filter is used to test whether an element is a mem-
ber of a set or not. It is a one-bit vector array of size m,
initially all bits set to 0. Whenever an element is inserted
to the Bloom filter, the element is first hashed by k inde-
pendent and uniformly distributed hash functions. Each of
the k hash values is used as the bit index of the Bloom filter
which is set to 1. In our protocol, when the ME receives
a packet originating from a sensor, si, with the sequence
number SNj , the ME applies the one-way sha1 function on
idsi |SNj . The Bloom filter is reset for each broadcast mes-
sage. sha1 produces a 20 byte message digest of which we
use each of the first k bytes as the index values to the Bloom
filter. This is repeated for all the sensors which can trans-
mit their data successfully to the ME. The Bloom filter is
included in the next broadcast message (SNj+1). When the
sensor, si, receives the broadcast, it queries the Bloom filter
using the result of sha1 applied on idsi |SNj . The sensor ei-
ther drops the broadcast or replies back to the ME depend-
ing on the membership in the Bloom filter. If the sensor
does not see its id in the Bloom filter, it replies with its
data. In the meantime, the ME resets the Bloom filter for
the new broadcast, and inserts the acknowledgement for the
sensors from which the ME received their data. The bloom
filter containing the acknowledgement corresponding to the
broadcast message with SNj+1 is included in the new broad-
cast message with SNj+2. The same mechanism is repeated
for all broadcasts. In this way, a sensor knows whether the
sensor data is received by the ME or not.

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

SNi SNi+1

(a) Consecutive broadcast
messages

(b) Hilbert curve

Figure 3: Data collection protocol.

The false positives rate (fpr) of a Bloom filter can be con-
trolled through the parameters nbf, m, and k; since the fpr

is approximately (1−e
−kn
m)k. Because of the packet size lim-

itation in WSNs, we pick m as 256 bits (32 bytes). More-
over, we only let 1% or less than 1% of fpr. Under these
constraints, nbf is found as 25, and k is found as 5 after
trying various values for nbf and k for our data collection
application. As a result, our Bloom filter is capable of hold-
ing nbf acknowledgements for nbf sensors at each broadcast
message. nbf, the number of total sensors in the network
(n), the speed (vME) and the range of the ME (rME) are
the key factors for determining the broadcast period. As-
suming most of the sensors within the range of the previous
broadcast message are acknowledged, the next broadcast is
transmitted when there are nbf expected unacknowledged
sensors within the range of the ME. In Figure 3(a), the solid
circles represent the sensors which have received their ac-

knowledgements from the ME; and the void circles represent
the sensors which could not receive their acknowledgements
yet. The figure shows two consecutive broadcasts. Since the
Bloom filter is able to carry nbf sensor acknowledgements,
the next broadcast is transmitted when the shaded area in
the figure holds nbf expected number of sensors. Let the
shaded area be As. Then, As = nbf

n
A2 where A2 is the to-

tal area of the monitored field. As is actually the difference
of the two circles with radius rME : As = CSNi+1

− CSNi

where CSNi
is the transmission area of the broadcast mes-

sage with SNi, and CSNi+1
is the transmission area of the

consecutive broadcast message. From geometry, we know
that the area of the difference of any two circles with the

same radius is Circdiff = πr2ME − 2(
θr2ME

2
− d

2

√

r2ME − (d
2
)
2
)

where θ = 2arccos(d

2rME
) is the angle of the arc between

the intersection points of the two circles, and d is the dis-
tance between the two circles. If As == Circdiff, then the
centers of the circles are the locations of two consecutive
broadcast messages. Let dc be the d value guaranteeing the
equality, As == Circdiff. dc becomes the expected distance
between two consecutive broadcast messages. Since all the
variables other than d is known, dc is computed using a
binary search. Then, the expected broadcast period, τ , is
calculated as τ = dc

VME
.

3.3 Controlling Collisions
Upon receiving a broadcast message, if the sensors in the
vicinity of the ME reply back to the ME all at the same time,
collisions occur inevitably. Therefore, a back-off mechanism
is required to mitigate the number of collisions. After finding
the delay, a sensor predicts the location of the ME at the
time (current time + delay) the sensor will be sending its
data, and uses this location as the destination point of its
trajectory.

The aim of the back-off mechanism is to assign different
periods of delays to the sensors. After receiving a broadcast
message, a sensor, si, calculates a delay of period (Delaysi)
which is less than the broadcast period, τ . Delaysi depends
on the orientation of the sensor with respect to the ME,
and the heading of the ME. Recall that two consecutive
broadcasts intersect because of the limitation on the packet
size. This limitation favors the mitigation of the collisions
since fewer sensors have to send their data within the period
between two consecutive broadcasts.

The location of the ME at the time a sensor is sending its
reply message needs to be predicted. The predicted ME
location is set as the destination point of the trajectory.
The broadcast message includes the ME location, and a few
corners of the space filling curve being used. For example,
if Hilbert Curve (HC) [2] is used as the route of the ME,
the next two HC corners the ME will visit are included in
the broadcast. The speed of the ME is also known by the
sensor (can be included in the broadcast messages). Using
this information together with the Delaysi , predicting the
location of the ME at the time si sends its reply message
becomes trivial.

4. SIMULATIONS
We conducted extensive simulations to support the proposed
scheme. We implemented the simulations using ns2 wireless

network simulator. Our protocol is implemented and added
as a new protocol to ns2 core code. We used a modified
version of 802.11 MAC layer. The RTS/CTS mechanism
is disabled to provide the communication between two ele-
ments which have different transmission ranges as our proto-
col requires, and to mimic 802.15.4 standards. Disabling the
RTS/CTS protocol also mitigates the collisions since there
will be relatively less transmissions. In addition to the sim-
ulation results presented in this paper, supplementary sim-
ulation results can be found on the project web page [15].
Videos are available for some of the individual sample runs
of the simulations to give an idea about the mechanics of
the system.

n sensors are deployed using uniform distribution in a region
of 1000m×1000m. The values of the system parameters are
the following: number of sensors (n: 200, 400, 800, 1600,
3200), maximum sensor range (rmax: 10m, 20m, 30m, ...,
150m), the range of the ME (rME : 150m, 200m, 250m), cone
alpha values (α: 60◦, 90◦,120◦, 150◦), curve levels (2, 3),
and the ME speed (VME : 3m/s, 6m/s). Also, the constant
parameters for the Bloom filter are m = 256, nbf = 25,
and k = 5. For each setting, we generated 100 different
sensor configurations. Our main performance criterion is
the success rate which is described as the percentage rate
of the number of the sensors whose data is received by the
ME over the number of all sensors considering that the ME
tours the area to be monitored once.

Although any space-filling curve can be used as the route of
the ME, we used two different space-filling curves for com-
parison purposes: Hilbert curve(HC), and snake-scan curve
(SC) which is a non-recursive space-filling curve. A level-3
HC is shown in Figure 3(b). A HC is defined recursively. 4
level k curves are combined to have a level k+1 curve as fol-
lows. A square is initially divided into 4 ordered quadrants
and a first-order curve is drawn by connecting the center of
the quadrants. For the next level of HC, each of the quad-
rants is divided into 4 and 4 scaled-down level 1 HCs are
connected by changing the level 1 HCs’ orientations preserv-
ing their order. SC produces better results since it contains
less number of turns compared to HC. Although the use of
SC outperforms the use of HC, their success rates are almost
identical. We focus on HC for the route of the ME as we
present the simulation results.

The required number of broadcasts is feasible although the
system achieves high success rates. The number of broadcast
messages depends on rME, n, and the length of the ME route
(HClevel). The relation among these variables are shown in
Figure 4(a) where HClevel = 2 is used. As n increases, the
number of broadcasts increases since the required area of
the difference of two consecutive broadcast messages gets
smaller and the broadcast frequency increases. Also, the
number of broadcasts is directly proportional to rME . The
broadcast period, τ , depends on rME , n, and VME. The re-
lation among τ , rME , and n is demonstrated in Figure 4(a)
when VME = 3. As rME increases, τ decreases since the
area of the difference of two consecutive broadcast messages
increases faster when rME is longer. When the network gets
denser, the required area of the difference of two consecu-
tive broadcast messages gets smaller since dense network has
more sensors per unit of area; and τ decreases.

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500

N
um

be
r

of
 B

ro
ad

ca
st

s

number of sensors

hc: 2, filter: 256|25|5

robotRange: 150
robotRange: 200
robotRange: 250

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

150 200 250

B
ro

ad
ca

st
 p

er
io

d

Robot range

speed: 3, filter: 256|25|5

800 sensors
1600 sensors

3200 sensors

(b)

Figure 4: Number of broadcasts and broadcast pe-

riod

The ranges of the sensors are arranged using the cone-based
topology algorithm. The technology can only allow limited
number of range levels for the transmission range of the
commercial sensors [7]. In our simulations, the cone-based
topology mechanism is applied assuming the sensors are able
to set one of eight range levels to their transmission range.
rmax is divided into eight and the result is set to range level
1. The other range levels are computed by adding the divi-
sion result each time as the eighth level being rmax.

Most of the simulation results we present discuss the cases
where the sensor range is increasing. The graphs use the
maximum sensor range (rmax) as the sensor values for clear
representation. However, the real values for the sensor ranges
are different depending on the α cone value, and the network
density since we are deploying the cone-based topology al-
gorithm. We use α = 60◦, and 120◦ in our simulations. To
give an idea regarding the relation between the rmax values
and the average of real sensor ranges for different settings,
Figures 5(a), and 5(b) are used respectively for α values
60◦, and 120◦. The figures include the deployments with
800, 1600, and 3200 sensors. As seen in the figures, for low
rmax values, the averages of the real sensor ranges are the
same as the rmax values. As the maximum sensor range in-
creases, the effect of cone-based topology control algorithm
can be seen since a sensor now has more neighbors around
it. Also, the average of the real sensor range values for dense
networks is less than the average of the ones for scarce net-
works because of the same reason. Finally, the average of
the real sensor ranges when α = 120◦ is less than the average
of the real sensor ranges when α = 60◦ as expected.

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

A
vr

 s
en

so
r

ra
ng

e
(m

)

max sensor range (m)

α60

rmax
800s
1600s
3200s

(a) α60

 0

 20

 40

 60

 80

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

A
vr

 s
en

so
r

ra
ng

e
(m

)

max sensor range (m)

α120

rmax
800s
1600s

3200s

(b) α120

Figure 5: Cone-based topology.

The success rate of our system is promising collecting data
from over 99% of the sensors deployed. The success rate
values as the maximum sensor range increases are depicted
in Figure 6(a) for the configuration where rME = 200m,
HClevel = 2, α = 120◦, and VME = 3m/s. In the fig-
ure, the x-axis represents the maximum sensor range. The
actual sensor ranges are different than the presented since

the cone-based topology is used. For example, a setting
with 3200 sensors achieve the optimum success rate when
rmax = 40m. The corresponding average sensor range is
found to be about 30m when Figure 5(b) is analyzed. In the
beginning, as the sensor range increases, the success rate
also increases. The reason is when the sensor range is small,
a sensor does not have enough neighbors to apply the trajec-
tory routing. Also, dense networks achieve their optimum
success rates earlier than the scarce networks because dense
networks have more number of neighbors which results in
better routing performance.

The number of total collisions as the sensor range increases
for the same configuration is shown in log-scale in Figure 6(b).
For all sensor range values, more collisions occur in dense
networks compared to scarce networks as expected. In the
beginning, the sensor range is small, so the collisions are less
likely to occur. As the sensor range increases, the number
of collisions also increases until sensors start to send their
data to the ME successfully. When more packets are be-
ing received by the ME, the number of collisions start to
decrease since a sensor is not required to re-send its data
once it receives its acknowledgement. The number of col-
lisions continue decreasing sharply until optimum success
rates are achieved. Further increase in sensor range provides
less collisions since the number of hops in the communica-
tions between the sensors and the ME will decrease. We also
analyzed the distribution of the collisions. The maximum
number of collisions per sensor is as low as 1 for individual
simulation optimum settings with 1600 or less sensors. The
maximum number of collisions per sensor is about 40 for
the simulations resulting optimum success rate with 3200
sensors. Also, more packets collide on the sensors closer to
the ME route. When the ME changes its direction, more
collisions occur. Furthermore, when the range of the ME
increases, the number of collisions also increases since more
sensors are triggered to send their replies.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 20
 40

 60
 80

 100
 120

 140
 160

N
um

be
r

of
 h

op
s

pe
r

pa
ck

et

sensor range(m)

robot range: 200, speed: 3, hc: 2, alpha: 120, filter: 256|25|5

3200s
1600s
800s
400s
200s

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20
 40

 60
 80

 100
 120

 140

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

sensor range(m)

robot range: 200, speed: 3, hc: 2, alpha: 120, filter: 256|25|5

3200s
1600s
800s
400s
200s

(b)

Figure 7: Average number of hops per packet and

total no of false positives.

The average number of hops a packet visits (Hopavr) is
shown in Figure 7(a). As the sensor range increases, the
packets are more likely to be received by the ME and Hopavr
increases. Hopavr reaches its maximum value when the suc-
cess rate is maximum. After this point, the increase in sen-
sor range results in less Hopavr values since the packet can
reach the ME using less many hops. The sensor ranges are
shorter when denser networks are considered as a result of
the cone-based topology algorithm. Therefore, Hopavr val-
ues for dense networks are higher than Hopavr values for
sparse networks. The total number of false positives caused
by the Bloom filter is depicted in Figure 7(b). The number

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140
P

er
ce

nt
ag

e
of

 S
uc

ce
ss

es

sensor range(m)

robot range: 200, speed: 3, hc: 2, alpha: 120, filter: 256|25|5

3200s
1600s
800s
400s
200s

(a) Success ratio

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

 0 20
 40

 60
 80

 100
 120

 140

N
um

be
r

of
 c

ol
lis

io
ns

sensor range(m)

robot range: 200, speed: 3, hc: 2, alpha: 120, filter: 256|25|5

3200s
1600s
800s
400s
200s

(b) Collisions

Figure 6: Success ratio and collisions.

of false positives reaches its local minimum value when the
success rate is maximum. In terms of speed, the success rate
decreases as the ME travels faster since the performance of
the back-off mechanism decreases causing more collisions.

5. CONCLUSION
In this paper, we propose an efficient, scalable, and re-
silient data collection protocol for large-scale mobile assisted
WSNs. The system is built on components including trajec-
tory routing, cone-based topology mechanism, and Bloom
filter which are seamlessly integrated. Performance of the
proposed scheme depends on many tunable parameters in-
cluding sensor range, density and topology of the network.
Using simulations, we show that the system parameters can
be tuned for a high rate of successful data collection. It is
possible to cover a large area using limited number of broad-
casts for networks with sufficiently high density ideal for
trajectory routing. Collisions play an important role on the
success rate, and they are minimized with a back-off mech-
anism. As sensor range is increased, success rate initially
increases and starts to decrease after reaching its maximum
value. This is due to the higher number of collisions that
occur with increased range. Finally, future work includes
identifying the misbehaving or malicious nodes.

6. REFERENCES
[1] B. H. Bloom. Space/time trade-offs in hash coding

with allowable errors. Communications of the ACM,
13:422–426, 1970.

[2] D. Hilbert. Uber die stetige Abbildung einer Linie auf
Flachenstuck, volume 38, pages 459–460. Math. Ann,
1891.

[3] Y.-C. Hu, A. Perrig, and D. Johnson. Packet leashes:
a defense against wormhole attacks in wireless
networks. In INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and
Communications. IEEE Societies, volume 3, pages
1976–1986 vol.3, 2003.

[4] P. Juang, H. Oki, and Y. Wang. Energy-efficient
computing for wildlife tracking: Design tradeoffs and
early experiences with zebranet. In 10th International
Conference on Architectural Support for Programming
languages and Operating Systems., October 2002.

[5] C. Karlof and D. Wagner. Secure Routing in Wireless
Sensor Networks: Attacks and Countermeasures.
Elsevier’s AdHoc Networks Journal, Special Issue on
Sensor Network Applications and Protocols,

1(2–3):293–315, September 2003.

[6] I. Khalil. Mimi: Mitigating packet misrouting in
locally-monitored multi-hop wireless ad hoc networks.
In Global Telecommunications Conference, 2008.
IEEE GLOBECOM 2008. IEEE, pages 1–5, 2008.

[7] L. Li, J. Halpern, P. Bahl, Y.-M. Wang, and
R. Wattenhofer. A cone-based distributed
topology-control algorithm for wireless multi-hop
networks. Networking, IEEE/ACM Transactions on,
13(1):147 – 159, feb. 2005.

[8] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating
routing misbehavior in mobile ad hoc networks. In
Proceedings of the 6th annual international conference
on Mobile computing and networking, MobiCom ’00,
pages 255–265, New York, NY, USA, 2000. ACM.

[9] B. Nath and D. Niculescu. Routing on a curve.
SIGCOMM Comput. Commun. Rev., 33(1):155–160,
2003.

[10] D. Niculescu and B. Nath. Trajectory based
forwarding and its applications. In Mobicom 03, New
York, NY, USA, 2003. ACM.

[11] N. Priyantha, H. Balakrishnan, E. Demaine, and
S. Teller. Mobile-assisted localization in wireless
sensor networks. In INFOCOM 2005, volume 1, pages
172 – 183 vol. 1, march 2005.

[12] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data
mules: modeling a three-tier architecture for sparse
sensor networks. In Proceedings of the First IEEE
International Workshop on Sensor Network Protocols
and Applications, pages 30–41, 2003.

[13] T. Small and Z. Haas. The shared wireless infostation
model - a new ad hoc networking paradigm (or where
there is a whale, there is a way). In ACM MobiHoc,
pages 233–244, 2003.

[14] A. Somasundara, A. Ramamoorthy, and M. Srivastava.
Mobile element scheduling for efficient data collection
in wireless sensor networks with dynamic deadlines. In
Proceedings of the 25th IEEE International Real-Time
Systems Symposium, pages 296–305, 2004.

[15] B. Tas and A. S. Tosun. Project web page for
simulation results. www.cs.utsa.edu/~tosun/
trajectory/trajectory.html. Accessed: 31 January
2015.

[16] B. Yu and B. Xiao. Detecting selective forwarding
attacks in wireless sensor networks. In Parallel and
Distributed Processing Symposium, 2006. IPDPS
2006. 20th International, pages 8 pp.–, 2006.

A Closer Look into Privacy and Security of

Chromecast Multimedia Cloud Communications

Ali Tekeoglu, Ali Şaman Tosun

Department of Computer Science

University of Texas at San Antonio

San Antonio, TX, 78249

Email: {icy449@my.utsa.edu, ali.tosun@utsa.edu}

Abstract—Chromecast is a small, system-on-chip device, that
plugs into the HDMI port of a larger screen and turns it into a
smart screen. It is designed for multimedia streaming in a home-
network environment. By setting up Chromecast, you can stream
videos onto a larger screen and control it from a mobile device
such as a smart-phone, tablet or a laptop. The idea is to cast the
multimedia to a larger second screen and use the smaller one as a
remote control. Since its based on Google Cast SDK which is open
to developers, a growing number of multimedia content providers
such as YouTube, Netflix, Hulu and HBO are offering appli-
cations to support Chromecast streaming for mobile operating
systems. This device uses Discovery and Launch (DIAL) protocol,
developed by YouTube and Netflix. We examined the network
packets exchanged between the smaller remote control device
and the Chromecast attached larger screen. While Chromecast
encrypts most of the content, remote control device sends control
packets to the remote servers in the clear-text, which makes it
vulnerable to reply-attacks or session-hijacking attacks. Besides,
data transmission pattern leak personal information outside of
the home-network, raising privacy concerns. Network protocols
used by Chromecast are investigated and known vulnerabilities
are listed. A method to detect the existence of Chromecast behind
a home-router is proposed.

I. INTRODUCTION

With the recent improvements in networking and multime-

dia technology in the last couple of years, streaming high

definition audio and video, whether its local or remote, became

increasingly popular in a home-network environment. Many

hardware and software companies have been stimulating the

consumer market by developing innovative, convenient, cost

effective multimedia devices that are easy to integrate to a

home-network setting. Apple TV [8], Google TV [10], Roku

Streaming Player [13], Netgear NeoTV [12], and Amazon Fire

TV [7] are just a few of the most popular devices on the

market. Apple TV lets their users stream 1080p HD content

over the internet from the most popular video providers such as

Netflix, Hulu Plus, YouTube, Vimeo and iTunes. It has AirPlay

technology to stream local content from mobile devices such

as a phone or tablet. Google TV is a platform which is

designed to combine entertainment from TV, apps, and the

internet. It comes integrated into new smart TVs like LG Smart

TV as well as with set-top-boxes such as NetGear NeoTV,

Sony Internet Player, Asus Cube and Vizio Co-Star. Roku

is in the market with a Chromecast like streaming HDMI

stick that has similar hardware and functionality. In addition,

Roku has set-top-boxes Roku 1, Roku 2 and Roku 3 which

are comparable to Apple TV. Netgear NeoMediacast HDMI

Dongle [11] is another HDMI stick, which is about to be re-

leased to the market. It runs Android OS and is decorated with

the latest specification WiFi hardware, Miracast functionality

and integrated DRM support. Chromecast is a cost effective

way of streaming multimedia, either from Internet or locally

stored, onto a larger screen. Its an HDMI stick that connects to

HDMI port and communicates over Wi-Fi. Among the severe

competition in the market, Chromecast [9] has emerged as the

most successful with respect to functionality/cost metric.

In this paper, we have evaluated the network protocols used

by Chromecast; packet flow between client, Chromecast and

external servers; and examined the network communications

in a blackbox manner from security and privacy perspective.

The rest of the paper is organized as follows: Section II dis-

cusses the related work. In Section III, background information

about the Chromecast Device and DIAL protocol is presented.

Experimental test-bed setup and experimental results are given

in Section IV. Conclusion of the paper and future work plans

about security of Chromecast is presented in Section VI.

II. RELATED WORK

In this section, the related work on security analysis of

protocols used by Chromecast and the relevant papers will

be briefly mentioned. To the best of our knowledge, there has

been no evaluation of the Chromecast device in the literature.

Chromecast runs a stripped-down version of Android OS,

with limited capability of application installation. Although

there has been a flurry of research on Android security

recently, most of the research focuses on full-fledged An-

droid OS and application security. More than 1000 Android

malware samples were investigated in [24] and most of the

malware were repackaged versions of legitimate applications

with malicious payloads. Different approaches were used to

investigate security of Android applications. Taintdroid [3]

monitors behavior of Android applications to detect misuse

of private information and Kirin [5] is a security service

for lightweight certification to mitigate malware at install

time. Static analysis was used on more than 1,000 Android

applications for security [4] and widespread misuse of private

information and advertising networks is detected. Readers

are referred to [6] for an overview of Android Security

Framework. All of the above research focuses on a complete

Android OS and to our knowledge no work exists for stripped-

down android OS used on Chromecast device.

STUN protocol is used by Chromecast while a local com-

puter with a Chrome browser running TabCasting extension to

mirror a browser tab onto Chromecast. Recently, researchers

have uncovered multiple vulnerabilities in Belkin WeMo

Home Automation devices, one of which was due to the way

STUN protocol used in the framework [14]. According to

the advisory, using one Wemo device an attacker may be able

to use the STUN & TURN protocols to relay connections to

any other Wemo device. There are possible attack scenarios

listed in the Security Considerations section of RFC-5389 [21].

Attacks against the STUN protocol include, outside attacks;

where an attacker modifies the messages in transit in order

to fail the operation of STUN between client and server.

Inside attacks could occur, such as a rogue client that may

try to launch a DoS attack against a server by sending large

number of STUN requests. In security sensitive applications

TLS might be used to encrypt the STUN packets, however

Chromecast does not make use of TLS with STUN. To the

best of our knowledge, there is no published academic paper

in the literature discussing the attacks scenarios mentioned in

the RFC in detail.

Network Time Protocol (NTP) is used by Chromecast to

synchronize its time after a reboot or when connecting to

the internet after an extended period of time. In [15], authors

discuss the security issues of NTP protocol. As a solution

to address the security problems in NTP protocol, authors

proposed a new security model named Autokey which is

implemented in NTP version 4. However, in our experiments

NTP client included with Chromecast’s operating system

always used the NTP version 3, which has many known

vulnerabilities and security holes.

Our experiments made use of commodity hardware running

on Linux OS, in order to capture the Chromecast traffic. The

work of authors in [1] provides guidelines for configuring

the packet capturing system for optimal performance. Even

though, in our experiments we did not stress the network with

more than normal amount of traffic, the methods in this paper

are applied to improve the packet capture performance for the

benefit of future work experiments such as DoS resilience of

Chromecast.

III. BACKGROUND

In this section we will discuss the underlying protocol

Chromecast device and Chromecast enabled apps are talking

in order to discover each other.

A. Discovery and Launch (DIAL) Protocol

Netflix and YouTube engineers developed Discovery and

Launch (DIAL) Protocol [17] in cooperation. This open source

protocol eases the application development and integration.

This protocol is used by Chromecast, for the purpose of

discovering and launching applications on 1st screen devices,

by 2nd screen devices. 1st screen devices have smaller screens,

such as a tablet, mobile phone or a laptop. Whereas, 2nd screen

devices are primarily built for better display with larger screen

sizes. TVs, set-top boxes, Blu-ray players, LCD monitors

could be classified as 2nd screen devices.

In a situation where one finds a video on his/her mobile

phone and wants to play it on a local connected TV, he

can launch the mobile app on the phone and then tap the

Play on TV button on the mobile app. DIAL protocol is the

underlying communication protocol that enables this simple

interaction [17].

DIAL is only used for discovery and launch of an appli-

cation, it does not provide further means of communication

between 2nd and 1st screen apps. DIAL also, does not

involve nor require pairing or authentication, since its a simple

mechanism for discovering and launching apps on a single

subnet, such as a home network [17].

Chromecast and devices on the same network with Chrome-

cast communicates via DIAL protocol to discover each other.

Both devices send multicast SSDP messages over UDP to

IP address 239.255.255.250 on port 1900. M-SEARCH *

HTTP/1.1 packets are multicasted by clients for Chrome-

cast discovery, while Chromecast device sends NOTIFY *

HTTP/1.1 packets to announce the IP address and port its

listening to and the location of its device description XML

file. According to NOTIFY * packets sent by Chromecast,

device description file is found at http://local-chromecast-ip-

address:8008/ssdp/device-desc.xml. Chromecast runs a UPNP

Server with a kernel linux/3.8.13, over UPnP version 1.0 and

it uses libupnp1.6.18 Portable SDK for UPnP devices. X-User-

Agent field has redsonic in Chromecast SSDP packets.

One security concern mentioned in DIAL specification

involves properly dealing with optional DIAL payloads. DIAL

payloads are a container for information that can be passed

to a first screen app via the DIAL start request as URL

encoded UTF-8 strings. If payloads are accepted, 1st screen

app-develeper must ensure to do a proper security analysis

since these requests could come from an untrusted source [17].

IV. EXPERIMENTAL RESULTS

In this section, we provide and discuss the results of

experiments executed on the testbed shown in Figure 1.

Fig. 1. Experimental Network Setup

A. Home-Network Testbed Setup

In our experimental test-bed we had; a Chromecast device

plugged into the HDMI port of an LCD monitor, an Android

tablet as Chromecast remote device, and a laptop as a traffic

monitoring device are connected to a D-Link DIR-615 v.E3

Wireless Router as shown in Figure 1.

The router used in the experiments was a D-Link DIR-

615rev.E3 which is fairly cheap, low-end, targeted for home-

user, off-the shelf device. Router hardware is flashed with

open-source Open-Wrt [19] firmware. Open-Wrt [19] is a

Linux based alternative OpenSource firmware suitable for a

great variety of WLAN routers and embedded systems. We

made use of iptables [16] firewall that is embedded into most

linux based kernels. Open-Wrt kernel comes with iptables

firewall.

Even though linux kernels include iptables, because of

memory space limitations, open-wrt excluded the module

required for port-mirroring functionality. We have customized

and built the source after adding the support for iptables kernel

module ipt TEE. With the ipt TEE support, it was possible to

mimic the high-end router capability called ”Port-Mirroring”

with our low-end router.

By adding rules to mangle [23] table of iptables firewall,

to send a copy of each packet destined or sourced from the

Chromecast device IP, we were able to monitor the network

traffic.

The following iptables commands are used to mirror all of

the network communication;

$ iptables -t mangle -A POSTROUTING -s 192.168.1.0/24 -j TEE --gateway 192.168.1.154

$ iptables -t mangle -A POSTROUTING -d 192.168.1.0/24 -j TEE --gateway 192.168.1.154

The first firewall rule here, sends a copy of all locally

generated packets to the gateway machine at IP address

192.168.1.154, which is running wireshark to capture the

packets.

Second rule mirrors a copy of each packet that is destined

to a local machine, coming from an outside machine.

In order to connect to Chromecast, Google’s official

Chromecast app is installed to the Android tablet from Google

PlayStore. Additionally, couple of apps such as HBO Go,

YouTube, Pandora, Netflix, HuluPlus, RedBullTV and Vevo

are installed on the tablet device.

Both Chromecast and Tablet are connected through wireless

to the D-Link Wi-Fi Router. The network traffic monitoring

device is connected to the router via an ethernet cable to

enhance the packet forwarding performance of router and

not to effect the wireless spectrum capacity that is used for

streaming with Chromecast and Tablet device.

B. Experiments, Results & Findings

In our experiments, we have installed Chromecast App

Software Version 1.7.4 on our Nexus-7, Android 4.4.4 tablet.

The Chrome browser installed on desktop, used Google-

Cast plug-in version 14.805.0.6 for TabCasting experiments.

Chromecast device itself is automatically checking for updates

each time it boots up, the latest firmware version during our

experiments was 17977. By examining the mirrored/captured

network packets, we wanted to investigate the connections

that are opened, kept-alive, protocols that are used, packet

flow between Chromecast sender apps (resides on the small

screen device) and the Chromecast receiver app. We have

found several interesting points that might be either improved

or extended for better privacy of Chromecast users. Following

are the different experiments that have been done to examine

the network packets exchanged under different scenarios.

• Experiment#1- Tablet device casting YouTube video to

Chromecast: YouTube app in Anroid tablet has a cast

to Chromecast button enabled, if the mobile device has

previously discovered a Chromecast device in the same

network. Once tapped, the tablet would stop showing the

video in the small screen and start streaming the YouTube

video to the Chromecast attached larger screen. Tablet de-

vice becomes a remote control. In this setting the control

packets such as play, stop, pause etc. are sent through

clear-text over HTTP from tablet to YouTube servers.

This would pose a security threat and provide feasibility

for man-in-the-middle attacks and replay-attacks. The

video control packets are sent from the mobile remote

device to YouTube servers and video is streamed directly

to the Chromecast. When looked closer to the control

packets; they use HTTP POST, HTTP GET methods to

control the video played on Chromecast attached screen.

Several information that could be extracted from these

packets that are going unencrypted such as; the google

account username (if logged in to YouTube), which video

is being watched at what time of the day, what kind of

Operating System and which version is installed on the

remote device (Android 4.2.2, iOS etc), brand and model

of remote device used (brand=Asus,model=Nexus) etc.

Even if listened passively from outside home-network

without any attacks, this information could be seen as

a leak of privacy.

• Experiment#2- Vulnerability Scanning Chromecast:

OpenVAS (Open Vulnerability Assessment System) [20]

is an open source vulnerability scanner that is updated

daily from several security advisories. As of writing this

paper, it has about 35000 NVTs (Network Vulnerability

Tests) in its database. There are multiple components

in OpenVAS Framework; OpenVAS Manager, OpenVAS

Scanner and Web Interface. In our testbed, OpenVAS-

7 is installed in a virtual machine running on an Ubuntu

host, connected in the same local network as Chromecast.

We run the most rigorous test against Chromecast to

scan it for known vulnerabilities. However, OpenVAS

couldn’t find any in Chromecast. Nmap scan listed 3 open

ports before the setup in Chromecast; 53, 8008 and 8009.

Port 53 is listening for DNS queries while Port 8008 is

listening for http connections and port 8009 is listed as

”ajp13” service. Apps are communicating with the device

through Port 8008.

• Experiment#3- Cipher Suites used by Chromecast de-

vice: Chromecast uses TLSv1.2 for communicating with

TLS capable servers. For example; Chromecast commu-

nicates over TLSv1.2 while downloading an image to

display during idle. After getting the IP address of the

content server from Google’s DNS, Chromecast and the

content server does the 3-way TCP Handshake which is

followed by Client Hello and Server Hello TLS messages.

In our experiment which spanned around 65 hours, at idle,

all the internet connections to the remote servers which

are shown at the Figure 8 utilized TLS v1.2, except NTP

servers and google’s DNS server.

In the TLS v1.2, after handshake, client and server sends

Client Hello and Server Hello Messages in order. In

Client Hello messages, client offers a list of Cipher

Suites that it supports. Each Cipher Suite defines the

key exchange algorithm for authentication, as well as

the subsequently used symmetric encryption for bulk

encryption and integrity check algorithms for message

authentication code calculation. Server responds with a

Server Hello message in which it chooses one of them

out of the client supported cipher suites list [2]. In

our idle experiment that spanned 65 hours, Chromecast

offered two different Cipher Suite list in its Client Hello

messages. Lists either consisted of 18 or 62 different

suites. About 99% of the Client Hello messages consisted

of 18 cipher suites, where the tiny 1% offered 62 different

cipher suites.

Out of the list of Cipher Suites supported by

Chromecast, the most chosen by Google Server’s was

TLS ECDHE ECDSA WITH AES 128 GCM SHA256,

which was also listed as the first cipher suite in

the Chromecast’s list, by 99.29 % of the time.

TLS ECDHE RSA WITH AES 128 GCM SHA256

and TLS ECDHE RSA WITH AES 256 GCM SHA384

was also chosen by some servers. In our 65 hour idle

experiment, most popular cipher suite picked up by

servers 2123 times out of 2138 times.

• Experiment#4- Remote server orchestrated local

Chrome TabCasting: Chrome TabCasting is an experi-

mental future that is used through the GoogleCast Plugin

to Chrome Browser. Chrome Browser extensions/plugins

are installed from the Chrome Web Store. After installing

this extension on a desktop Chrome Browser, browser can

cast the view of a tab to a local ChromeCast device if

one is found on the same local network. The interesting

problem here that was found after capturing the network

packets is that the desktop casting the Chrome Tab is

connecting to a remote STUN [21], [22] server and

sending the cast through it instead of just sending the

packets directly to the Chromecast device locally.

In this experiment we have monitored the CPU and

memory usage of a TabCasting machine. We have used

sysstat tools (pidstat) to capture the CPU and Memory

usage of all the processes that Chrome Browser runs.

Figure 3 shows the CPU usage of the chrome processes

while tab-casting. Figure 2 shows the total Memory

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
P

e
rc

e
n
ta

g
e
 O

f
M

E
M

O
R

Y

Time(seconds)

Total Percentage of MEMORY usage PERCENTAGE by all Chrome Pids vs. Time

Total_MEM_Usage%

Fig. 2. Memory usage percentage of Desktop machine while TabCasting to
Chromecast

usage of the Chrome processes while tab-casting. As

figures show, TabCasting is overly resource consuming,

especially for CPU cycles. CPU cycles are calculated with

combining total usage of 11 processes belongs to Chrome

browser; which are assigned to run on different CPU

cores in parallel, thus total CPU usage spikes over 100%

in Figure 3. Even though its quite useful for multimedia

websites that do not a have a Chromecast app yet, this

feature is still experimental and not even close to optimal.

A router with simultaneous dual band Wi-Fi interfaces

(2.4 and 5 GHz); one for Chromecast, other for the

desktop would yield much better performance.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
P

e
rc

e
n
ta

g
e
 O

f
C

P
U

Time(seconds)

Total Percentage of CPU usage by all Chrome Pids vs. Time

Total_CPU_Usage%

Fig. 3. CPU performance on the Desktop while tabcasting to Chromecast

• Experiment#5- Connections maintained when Chrome-

cast is running in idle: Chromecast maintains a couple

of connections to Google servers when it is connected

to the home wireless network, but not streaming video.

One connection is for retrieving the images that are

displayed on screen as a wallpaper. For this purpose,

Chromecast connects to a Google server every 60 seconds

to download the next image.

These images are retrieved from several different Google

servers. Chromecast queries the Google’s DNS server at

8.8.8.8, which in turn responds with couple of different IP

 0

 50000

 100000

 150000

 200000

 250000

 300000

0-60
60-120

120-180

180-240

240-300

300-360

360-420

420-480

480-540

540-600

600-660

660-720

720-780

780-840

840-900

900-960

960-1020

1020-1080

1080-1140

1140-1200

T
o
ta

l
S

iz
e
 (

B
y
te

s
)

Time Range (Seconds)

Time vs. PacketSize (Incoming to Chromecast)

TotalIncomingBytes

Fig. 4. Bar Graph of Incoming Packets to Chromecast at Idle

addresses of Google content servers that Chromecast can

connect and download a new image to display as wallpa-

per. Chromecast opens a connection to the first address

in the DNS response. After a successful TCP-Handshake

they set-up a TLS v1.2 connection, with Chromecast

offering Cipher Suites for authentication-bulk encryption-

decryption-Hashing and signature. In case Chromecast

would keep downloading the image from the IP address,

it keeps the connection alive with a TCP Keep-Alive

packet, which is sent 45 seconds after wallpaper image

is downloaded from the server. 15 seconds after the TCP

Keep-Alive, another image is requested from the same

server or DNS is queried again to get another IP to keep

downloading wallpaper images.

The bar-graph in Figure 4 shows us the total amount of

data incoming to Chromecast device per minute. This

corresponds to the wallpaper images that are displayed

on screen when the Chromecast is not used actively by

another local remote control device. Although the packets

are encrypted with TLS v1.2, someone listening the traffic

from outside can differentiate which image is displayed

on the screen from the total size of incoming packets

every 60 seconds.

Data from a 3 days of network trace plotted in Fig-

ure 5 shows that Chromecast, when running in idle, is

connecting to many different IP addresses. Even though

its connecting to 11 different domains as shown in

Figure 8, every once in a while IP address corresponding

to the same domain name changes for load balancing &

availability reasons. This could be mistaken as a malware

leaking information from internal network over-time.

Figure 6, shows us the number of queries per domain

name sent by Chromecast to DNS server during a stream-

ing session of 2 hours from YouTube. When Figure 6

and Figure 8 are compared, YouTube streaming session

of only 2 hours establishes connections to more domains

as opposed to days of idle streaming.

To examine the total number of different IP address that

Chromecast connects during the same 2 hours YouTube

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50000 100000 150000 200000 250000

N
u
m

b
e
r

O
f
D

if
fe

re
n
t
M

a
c
h
in

e
s

Time (Seconds)

Total Number of Different Machines Connected vs. Time

#MachinesConnected

Fig. 5. Chromecast connecting to different machines at idle

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

clients3.google.com

clients4.google.com

lh4.googleusercontent.com

lh3.googleusercontent.com

lh5.googleusercontent.com

lh6.googleusercontent.com

w
w
w
.youtube.com

w
w
w
.youtube-nocookie.com

r1---sn-uxm
qx2uv4po4v-50ne.googlevideo.com

r17---sn-q4f7dn7r.googlevideo.com

gdata.youtube.com

s.youtube.com

s.ytim
g.com

csi.gstatic.com

w
w
w
.gstatic.com

tools.google.com

w
w
w
.google.com

ajax.googleapis.com

fonts.googleapis.com

i1.ytim
g.com

gg.google.com

pool.ntp.org

N
u

m
b

e
r

o
f

T
im

e
s
 Q

u
e

ri
e

d

Domain Names in Chromecast DNS Queries vs. Num Of Times Queried

#QueriesPerDomainName

Fig. 6. Chromecast DNS Queries to Google DNS server while streaming
from YouTube

streaming experiment; Figure 7 is plotted. Chromecast

connects to several Google content servers on different

IPs for image download on idle as seen in Figure 5 and for

downloading different parts of stripped video as depicted

in Figure 7 while streaming from YouTube.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10000 20000 30000 40000 50000 60000

N
u
m

b
e
r

o
f
D

if
fe

re
n
t
M

a
c
h
in

e
s

Time (Seconds)

Total Number of Different Machines Connected vs. Time

#MachinesConnected

Fig. 7. Chromecast connecting to different machines while streaming from
YouTube

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

clients3.google.com

clients4.google.com

lh3.googleusercontent.com

lh4.googleusercontent.com

lh5.googleusercontent.com

lh6.googleusercontent.com

tools.google.com

ajax.googleapis.com

fonts.googleapis.com

w
w
w
.gstatic.com

pool.ntp.org

N
u
m

b
e
r

o
f
T

im
e
s
 Q

u
e
ri
e
d

Domain Names in Chromecast DNS Queries vs. Num Of Times Queried

#QueriesPerDomainName

Fig. 8. Chromecast DNS Queries at idle to Google DNS server

• Experiment#6- DNS Queries at idle: Chromecast always

uses the Google DNS Server, 8.8.8.8. As show in Figure 8

the requests at idle are for the following Address Mapping

Records(A);

For random wallpaper image download at idle,

first Chromecast queries the 8.8.8.8 Google

DNS server for an Address Mapping Record(A)

with the the name lh3.googleusercontent.com,

lh4.googleusercontent.com, lh5.googleusercontent.com

or lh6.googleusercontent.com. Then, DNS

server replies with couple of IP addresses

which maps to the cannonical name (CNAME)

googlehosted.l.googleusercontent.com. Also, Address

Mapping Records(A) for clients3.google.com and

clients4.google.com are queried from DNS server and it

replies with usually 17 IP records for canonical name

clients.l.google.com. These are also used for wallpaper

image download.

Another DNS query Chromecast sends to 8.8.8.8 asks for

the IP address of tools.google.com, which the DNS server

replies with 17 IP addresses mapped to the Canonical

Name Record (CNAME) of tools.l.google.com. However,

this query is not common, in our experiments it was

queried once in every 3-4 hours.

Chromecast queries the DNS server for pool.ntp.org

address. DNS server replies with 4 random different IP

addresses. In our experiments the interval for checking

the ntp servers for Chromecast is not frequent. When

Chromecast first checked the time, its clock has about 2

seconds of time drift from the server. There is not regular

pattern for Chromecast to check for time.

Another DNS query was for the ajax.googleapis.com

which returned an IP for the CNAME

googleapis.l.google.com. This query was made only

once during our 1 day experiment. Another one time

query was for www.gstatic.com.

• Experiment#7: NTP (Network Time Protocol): Chrome-

cast uses NTP protocol after it’s rebooted to get the

current time through a NTP server. However, there are

some known vulnerabilities in this protocol, specifically

the version that is used by the servers that Chromecast

is connecting for time synchronization. The most current

stable version of NTP is listed as 4.2.6 at ntp.org official

website [18] which has been released in 2011. When

Chromecast queries the Network Time Server, it uses

NTP Version 3 which was released in 1999 that has

long been deprecated. Even though Chromecast uses an

insecure version of NTP, this connections are infrequent,

as seen in the experiment it has connected to an NTP

server only 5 times over a 65 hours of idle period.

V. DISCUSSION

Chromecast Detection: During our experiments, some

patterns of network behaviour are found to be specific to

Chromecast. There is not one simple formula to prove the

existence of Chromecast behind a home-router, however the

following could be combined to come up with a tool to detect

it.

a) MAC address of Chromecast: which has the prefix of

(6C:AD:F8), traces back to AzureWave Technologies, Inc.

b) Chromecast Hot Spot broadcasts if its powered up but

not connected to the home Wi-Fi router. Which is also

dangerous because anyone nearby searching for Wi-Fi

routers can connect to it and change its settings.

c) Image downloading from Google servers with a 60 second

interval is a characteristic behaviour of Chromecast at idle.

d) TLS v1.2 Client Hello message lists almost always 18

Cipher Suites that Chromecast supports.

e) TabCasting future uses the STUN protocol, however, in-

stead of using registered UDP port number 3478 for this

protocol, Chromecast communicates over port 19302 with

Google STUN server which is for Google Talk Voice and

Video connections.

These are not exclusively characteristic features of Chrome-

cast but they could be combined together to implement a tool

that can accurately detect Chromecast behind a NAT device.

ISP’s could make use of this tool to detect their users who are

streaming videos onto a Chromecast behind their home-router.

VI. CONCLUSION AND FUTURE WORK

We examined the network packets exchanged between the

smaller remote control device and the Chromecast attached

larger screen. While Chromecast encrypts most of the content,

remote control device sends control packets to the remote

servers in the clear-text, which makes it vulnerable to several

attacks. Besides, it leaks personal information of the user to

outside network, raising privacy concerns. We have listed the

protocols used by Chromecast and their known vulnerabilities.

We also proposed a simple method to detect the existance of

a Chromecast device behind a home-network.

Future work includes but not limited to; implementation of

Chromecast detection tool, a tool for injecting control packets

like stop, pause, restart, for ongoing YouTube sessions and

casting new videos to Chromecast attached screen, executing

a DoS attack based on STUN protocol weaknesses, examining

network communication of official Chromecast supported apps

on the market, and comparing the security of other HDMI

streaming sticks from Amazon, Netgear and Roku.

REFERENCES

[1] Lothar Braun, Alexander Didebulidze, Nils Kammenhuber, and Georg
Carle. Comparing and improving current packet capturing solutions
based on commodity hardware. In Proceedings of the 10th ACM

SIGCOMM Conference on Internet Measurement, IMC ’10, pages 206–
217, New York, NY, USA, 2010. ACM.

[2] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), August 2008. Updated by
RFCs 5746, 5878, 6176.

[3] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taintdroid:
An information-flow tracking system for realtime privacy monitoring
on smartphones. In Proceedings of the 9th USENIX Conference on

Operating Systems Design and Implementation, OSDI’10, pages 1–6,
Berkeley, CA, USA, 2010. USENIX Association.

[4] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaud-
huri. A study of android application security. In Proceedings of the 20th

USENIX Conference on Security, SEC’11, pages 21–21, Berkeley, CA,
USA, 2011. USENIX Association.

[5] William Enck, Machigar Ongtang, and Patrick McDaniel. On
lightweight mobile phone application certification. In Proceedings of

the 16th ACM Conference on Computer and Communications Security,
CCS ’09, pages 235–245, New York, NY, USA, 2009. ACM.

[6] William Enck, Machigar Ongtang, and Patrick McDaniel. Understanding
android security. IEEE Security and Privacy, 7(1):50–57, January 2009.

[7] Amazon Inc. Amazon Fire TV. ”www.amazon.com/FireTV”, retrieved,
December 2014.

[8] Apple Inc. Apple TV. ”http://www.apple.com/appletv/”, retrieved,
December 2014.

[9] Google Inc. Chromecast. ”www.google.com/chromecast/”, retrieved,
December 2014.

[10] Google Inc. Google TV. ”http://www.google.com/tv/”, retrieved,
December 2014.

[11] Netgear Inc. NeoMediacast HDMI Dongle. ”http://www.
netgear.com/service-providers/products/connected-media/set-top-
boxes/NTV300D.aspx”, retrieved, December 2014.

[12] Netgear Inc. Netgear Streaming Players. ”http://www.netgear.com”,
retrieved, December 2014.

[13] Roku Inc. Roku Streaming Player. ”http://www.roku.com/”, retrieved,
December 2014.

[14] IOActive. Belkin WeMo Home Automation Vulnerabilities. ”http:
//www.ioactive.com/pdfs/IOActive Belkin-advisory-lite.pdf”, retrieved,
August 2014.

[15] David L. Mills. A Brief History of NTP Time: Memoirs of an Internet
Timekeeper. SIGCOMM Comput. Commun. Rev., 33(2):9–21, April
2003.

[16] netfilter.org. The netfilter.org IPTables Project. ”http://www.netfilter.org/
projects/iptables/index.html”, retrieved, January 2014.

[17] Netflix and YouTube. DIAL (DIscovery And Launch) Protocol. ”http:
//www.dial-multiscreen.org/”, retrieved, November 2013.

[18] ntp.org. Network Time Protocol. ”http://support.ntp.org”, retrieved,
December 2014.

[19] Open-Wrt. Open-Wrt, Wireless Freedom. ”https://openwrt.org/”, re-
trieved, December 2014.

[20] OpenVAS. Open Vulnerability Assessment System. ”http://www.
openvas.org/”, retrieved, August 2014.

[21] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal
Utilities for NAT (STUN). RFC 5389 (Proposed Standard), October
2008.

[22] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN -
Simple Traversal of User Datagram Protocol (UDP) Through Network
Address Translators (NATs). RFC 3489 (Proposed Standard), March
2003. Obsoleted by RFC 5389.

[23] thatexplainsalot.com. Use Wireshark And DD-WRT Router
Firmware To Imitate Port Monitoring On A Router Switch Port.
”http://thatexplainsalot.com/blog/2010/11/use-wireshark-and-dd-wrt-
router-firmware-to-imitate-port-monitoring-on-a-router-switch-port/”,
retrieved, January 2014.

[24] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Character-
ization and evolution. In IEEE Symposium on Security and Privacy,
pages 95–109, 2012.

Blackbox Security Evaluation of Chromecast

Network Communications

Ali Tekeoglu, Ali Şaman Tosun

Department of Computer Science

University of Texas at San Antonio

San Antonio, TX, 78249

Email: {icy449@my.utsa.edu, ali.tosun@utsa.edu}

Abstract—Chromecast is a small, system-on-chip device, that
plugs into the HDMI port of a larger screen and turns it into
a smart screen. It is designed for multimedia streaming in a
home-network environment. By setting up Chromecast, you can
stream videos onto a larger screen and control it from a mobile
device such as a smart-phone, tablet or a laptop. We examined
the network packets exchanged between the smaller remote
control device and the Chromecast attached larger screen. While
Chromecast encrypts most of the content, remote control device
sends control packets to the remote servers in the clear-text,
which makes it vulnerable to reply-attacks or session-hijacking
attacks. Besides, data transmission pattern leak personal infor-
mation outside of the home-network, raising privacy concerns.
Network protocols used by Chromecast are investigated and
known vulnerabilities are listed. A method to detect the existence
of Chromecast behind a home-router is proposed.

I. INTRODUCTION

With the recent improvements in networking and multime-

dia technology in the last couple of years, streaming high

definition audio and video, whether its local or remote, became

increasingly popular in a home-network environment. Chrome-

cast [1] is a cost effective way of streaming multimedia, either

from Internet or locally stored, onto a larger screen. Its an

HDMI stick that connects to HDMI port and communicates

over Wi-Fi.

In this paper, we have evaluated the network protocols used

by Chromecast; packet flow between client, Chromecast and

external servers; and examined the network communications

in a blackbox manner from security and privacy perspective.

The rest of the paper is organized as follows: Experimental

testbed setup and experimental results are given in Section II.

We discuss a method to detect Chromecast in Section III.

Conclusion of the paper is presented in Section IV.

II. EXPERIMENTAL RESULTS

In this section, we provide and discuss the results of

experiments executed on the test-bed shown in Figure 1.

A. Home-Network Testbed Setup

In our experimental testbed we had; a Chromecast device

plugged into the HDMI port of an LCD monitor, an Android

tablet as Chromecast remote control device, and a laptop as

a traffic monitoring device that are all connected to a D-Link

DIR-615 v.E3 Wireless Router as shown in Figure 1.

Fig. 1. Experimental Network Setup

Router hardware is flashed with open-source Open-Wrt

[4] firmware. Open-Wrt [4] is a Linux based alternative

OpenSource firmware suitable for a great variety of WLAN

routers and embedded systems. We made use of iptables [2]

firewall that is embedded into most linux based kernels. Open-

Wrt kernel comes with iptables firewall, however, because

of memory space limitations, Open-Wrt excluded the module

required for port-mirroring functionality. We have customized

and built the source after adding the support for iptables kernel

module ipt TEE. With the ipt TEE support, it was possible to

mimic the high-end router capability called ”Port-Mirroring”

with our low-end router.

By adding rules to mangle table of iptables firewall, to send

a copy of each packet destined or sourced from the Chromecast

device IP, we were able to monitor the network traffic.

The following iptables commands are used to mirror all of

the network communication;

$ iptables -t mangle -A POSTROUTING -s 192.168.1.0/24 -j TEE --gateway 192.168.1.154

$ iptables -t mangle -A POSTROUTING -d 192.168.1.0/24 -j TEE --gateway 192.168.1.154

The first firewall rule here, sends a copy of all locally

generated packets to the gateway machine at IP address

192.168.1.154, which is running wireshark to capture the

packets while second rule mirrors a copy of each packet that is

destined to a local machine, coming from an outside machine.

B. Experiments, Results & Findings

By examining the mirrored/captured network packets, we

wanted to investigate the connections that are opened, kept-

alive, protocols that are used, packet flow between Chromecast

sender apps (resides on the small screen device) and the

Chromecast receiver app. We have found several interesting

points that might be either improved or extended for better

privacy of Chromecast users.

• Experiment#1- Casting YouTube video to Chromecast:

The control packets such as play, stop, pause etc. are sent

through clear-text over HTTP from tablet to YouTube

servers. This would pose a security threat and pro-

vide feasibility for man-in-the-middle attacks and replay-

attacks. Unencrypted packets leaked information such

as; google account username (if logged-in to YouTube),

name and time of the video being watched, Operating

System and it’s version installed on the remote device

(Android 4.2.2, iOS etc), brand and model of remote

device (brand=Asus,model=Nexus) etc.

• Experiment#2- Vulnerability Scanning Chromecast:

OpenVAS (Open Vulnerability Assessment System) [5] is

an open source vulnerability scanner that is updated daily

from several security advisories. We run the most rigorous

tests against Chromecast to scan it for known vulnerabil-

ities, however, OpenVAS couldn’t find any. On the other

hand, nmap scan listed 2 open ports in Chromecast; 8008

and 8009. Port 8008 is listening for http connections and

port 8009 is listed as ”ajp13” service.

• Experiment#3- Cipher Suites used by Chromecast:

Chromecast offered two different Cipher Suite lists in its

Client Hello messages. Lists consisted of either 18 or 62

different suites. About 99% of the Client Hello messages

consisted of 18 cipher suites, where the tiny 1% offered

62 different cipher suites. This list of offered cipher suites

could be used to detect a Chromecast behind a router.

• Experiment#4- Remote server orchestrated local

Chrome TabCasting: The desktop casting the Chrome

browser tab is connecting to a remote STUN [6] server

and sending the cast through it instead of sending the

packets locally, however, STUN protocol has several

known vulnerabilities listed.

• Experiment#5- Connections maintained at idle state:

Chromecast maintains a couple of connections to Google

servers when it is connected to the home wireless net-

work, but not streaming video. One connection is for

retrieving the images that are displayed on screen as a

wallpaper. For this purpose, Chromecast connects to a

Google server every 60 seconds to download the next

image. Although the packets are encrypted with TLS

v1.2, someone listening the traffic from outside can

differentiate which image is displayed on the screen from

the total size of incoming packets every 60 seconds.

• Experiment#6- DNS Queries at idle state: Chromecast

always uses the Google DNS Server, 8.8.8.8. For

random wallpaper image download at idle, an Address

Mapping Record(A) for lh3.googleusercontent.com,

lh4.googleusercontent.com, lh5.googleusercontent.com

or lh6.googleusercontent.com, clients3.google.com and

clients4.google.com are requested. Other DNS queries

asked for the IP addresses of tools.google.com and

pool.ntp.org.In our experiments the interval for checking

the ntp servers for Chromecast is not frequent. Another

DNS query was for the ajax.googleapis.com This query

was made only once during our 1 day experiment.

Another one time query was for www.gstatic.com.

• Experiment#7: NTP (Network Time Protocol): Chrome-

cast uses NTP [3] protocol for getting the current time

through an NTP server each time it’s rebooted. However,

there are some known vulnerabilities in this protocol,

specifically the version that is used by the servers that

Chromecast is connecting for time synchronization.

III. DISCUSSION

During our experiments, some patterns of network be-

haviour are found to be specific to Chromecast. The following

could be combined to come up with a tool to detect it.

a) MAC address of Chromecast has the prefix of (6C:AD:F8),

traces back to AzureWave Technologies, Inc.

b) Chromecast Hot Spot broadcasts if its powered up but not

connected to the home Wi-Fi router. Which is dangerous

because anyone nearby searching for Wi-Fi routers can

connect to it and change its settings.

c) Image downloading from Google servers with a 60 second

interval is a characteristic behaviour of Chromecast at idle.

d) TLS v1.2 Client Hello message lists almost always 18

Cipher Suites that Chromecast supports.

e) TabCasting future uses the STUN protocol, however, in-

stead of using registered UDP port number 3478 for this

protocol, Chromecast communicates over port 19302 with

Google STUN server which is for Google Talk Voice and

Video connections.

IV. CONCLUSION

We examined the network packets exchanged between the

smaller remote control device and the Chromecast attached

larger screen. While Chromecast encrypts most of the content,

remote control device sends control packets to the remote

servers in the clear-text, which makes it vulnerable to several

attacks. Besides, it leaks personal information of the user to

outside network, raising privacy concerns. We have listed the

protocols used by Chromecast and their known vulnerabilities.

We also proposed a simple method to detect the existance of

a Chromecast device behind a home-network.

REFERENCES

[1] Google Inc. Chromecast. ”www.google.com/chromecast”, retrieved,
December 2013.

[2] netfilter.org. The netfilter.org IPTables Project. ”http://www.netfilter.org/
projects/iptables/index.html”, retrieved, January 2014.

[3] ntp.org. Network Time Protocol. ”http://support.ntp.org”, retrieved,
March 2014.

[4] Open-Wrt. Open-Wrt, Wireless Freedom. ”https://openwrt.org/”, re-
trieved, March 2014.

[5] OpenVAS. Open Vulnerability Assessment System. ”http://www.openvas.
org/”, retrieved, August 2014.

[6] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal
Utilities for NAT (STUN). RFC 5389 (Proposed Standard), October 2008.

