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Preface

About seventy years ago Abraham Wald, while treating thélera of testing two simple hypothe-
ses, showed how the fixed sample size likelihood ratio telsiegiman and Pearson can be modified
into the more efficient sequential scheme when observationgollected one at a time and pro-
cessed on-line. This has led to the modern theory of seqiamtlysis developed due to a practical
demand for more efficient sampling policies and summarized.Wald in his monograpBequen-
tial Analysispublished in 1947.

A separate important branch of sequential analysis israndirveillance, the so-called change-
point detection, the goal of which is to detect a change itridigion or anomaly quickly. More
specifically, sequential changepoint detection (or qustkkange/“disorder” detection) is concerned
with the design and analysis of techniques for on-line dete®f a change in the state of a phe-
nomenon, subject to a tolerable limit on the risk of falseral An observed process of interest
may unexpectedly undergo an abrupt change-of-state frammial” to “abnormal” (or anomalous),
each defined as deemed appropriate given the physical ¢tofhtexsequential setting assumes the
observations are made successively, and, as long as theivibe suggests that the process is in
the normal state, the process is allowed to continue. Horvévihe state is believed to have al-
tered, one’s aim is to detect the change “as soon as po%sibliat an appropriate response can be
provided in a timely manner.

Historically, the subject of changepoint detection firsgdeto emerge in the 1920s motivated
by considerations of industrial quality control due to therkvof Walter Shewhart who successfully
brought together the disciplines of statistics, engimegrand economics and became the father
of modern statistical quality control. Shewhart’s work garticular Shewhart control charts) was
highlighted in his book&conomic Control of Quality of Manufactured Prod&®31) [411] and
Statistical Method from the Viewpoint of Quality Cont(@P39) [412], for which he gained recog-
nition in the statistical community, but efficient (optimahd quasi-optimal) sequential detection
procedures were developed much later in the 1950-1960<hétemergence of Wald's bo&e-
quential Analysi§1947) [494]. The ideas set in motion by Shewhart and Wale liexmed a plat-
form for extensive research on both theory and practiceaqieetial changepoint detection, starting
with the seminal paper by Page (1954) where the now famousuGtirre Sum (CUSUM) detec-
tion procedure was first proposed, and followed by the sefiegorks of Shiryaev (1961-1969)
[414, 413, 415, 416, 417, 418, 419] and Lorden (1971) [271&nelthe first optimality results in
Bayesian and non-Bayesian contexts were established.

During the past 20 years, general stochastic models apgptefor many interesting applica-
tions have been treated extensively, as theoretical fdiordfr asymptotic studies of properties of
known sequential tests such as Wald’s Sequential ProbaR#itio Test (SPRT), matrix versions of
this test suitable for multiple decision problems, CUSUNM &hiryaev—Roberts change detection
procedures, which are known to be optimal or nearly optiraattie models with independent and
identically distributed (iid) observations. Asymptotiptanality of these rules has been established
under various conditions, including conventional iid arahgral non-iid scenarios. Novel proce-
dures have also been proposed and studied. Multihypothedisnultichannel change detection—
classification (or detection—isolation) rules have beereldped and their asymptotic optimality
properties have been established for iid and general nomdidels. Even for relatively simple iid
models new results have been obtained, in particular towanyl precise analysis via solving inte-
gral equations numerically and asymptotic analysis usimgwal-theoretic and nonlinear renewal-

Xiii



Xiv PREFACE

theoretic approaches. These numerical and asymptotioapipes are in fact complementary, since
numerical solutions become very time-consuming when dgalfiith small error probabilities or
low false alarm rates, while asymptotic approximationsieseally not too accurate for high and
moderate false alarm rates.

The main focus of this book is on a systematic developmentetheory of sequential hypoth-
esis testing (Part I) and changepoint detection (Partilpart 111, we briefly describe certain im-
portant applications where theoretical results can be ef&ikntly, perhaps with some reasonable
modifications. We review recent accomplishments in hypgthiesting and changepoint detection
both in decision-theoretic (Bayesian) and non-decisk@otetic (hon-Bayesian) contexts. The em-
phasis is not only on more traditional binary hypothesesatsd on substantially more difficult
multiple decision problems. Scenarios with simple hyps#iseand more realistic cases of (two and
finitely many) composite hypotheses are considered anttttéadetail. While our major attention
is on more practical discrete-time models, since we stsobglieve that “life is discrete in nature”
(not only due to measurements obtained from devices anadsewith discrete sample rates), cer-
tain continuous-time models are also considered once irilavéspecially when general results can
be obtained very similarly in both cases. It should be natedl although we have tried to provide
rigorous proofs of the most important results, in some casesicluded heuristic argument instead
of the real proofs as well as gave references to the sourceseviine proofs can be found.

While there are many other interesting topics in sequeatialysis such as point and interval
estimation, selection/ranking, and sequential gamesegtiraportant topics are out of the scope
of our book. A detailed treatment of these additional setjaemethods can be found, e.g., in
[56, 163, 259, 312, 452].

We would like to thank many colleagues who have directly ardirectly contributed to this
project. Several students and postdoctoral fellows at thigddsity of Southern California worked
on some of the problems considered in the book at differegest Aleksey Polunchenko con-
tributed to certain theoretical aspects and numerical austhelated to the very precise analysis of
minimax changepoint detection procedures as well as heijtadsimulations and processing real
and semi-real data for computer network security appbeeti The joint work with Georgios Fel-
louris on minimax tests for discrete composite hypothesesime the basis for the corresponding
sections in Part I. Greg Sokolov performed useful numesdoalysis and Monte Carlo simulations
of multichannel change detection procedures. Collabmmatith George Moustakides, Moshe Pol-
lak, and Venugopal Veeravalli as well as frequent discusssigith them were extremely fruitful.
The joint work with Lionel Fillatre on FSS multiple hypothiesesting has been used for writing
Subsections 2.9.6 and 10.2.2.

Alexander Tartakovsky is thankful to various U.S. agen¢i@spartment of Defense, Depart-
ment of Energy, National Science Foundation) for suppgtis work under multiple contracts.

Alexander Tartakovsky wants to thank his wife, Marina Blanfor her patience, help, and
inspiration.

Igor Nikiforov is thankful to the University of Technologyf @royes for supporting this work
and for the environment in which the book has been writtenrdiminary version of some ma-
terial of the book has been used for Master and PhD coursé afirtiversity of Technology of
Troyes. The work reported in Section 11.1 has been partlpated by the SERCEL (Sociéeté
d’Etudes, Recherches et Constructions ElectroniquestheySAGEM (Société d’Applications
Générales d’Electricité et de Mécanique, of the SAFRAN gipby the LRBA (Laboratoire de
Recherches Balistiques et Aérodynamiques) and by the DBAQDirection de la Technique et
de I'lnnovation, formerly known as STNA).

LIn particular, the work of Alexander Tartakovsky was pditisupported by the U.S. Air Force Office of Scientific
Research under MURI grant FA9550-10-1-0569, by the U.Seisd Threat Reduction Agency under grant HDTRA1-10-
1-0086, by the U.S. Defense Advanced Research Projectscgemer grant W911NF-12-1-0034, the U.S. Army Re-
search Office under MURI grant W911NF-06-1-0044 and undantgrW911NF-13-1-0073 and W911NF-14-1-0246, and
by the U.S. National Science Foundation under grants C@Ep4B, EFRI-1025043, and DMS-1221888 at the University
of Southern California, Department of Mathematics and athiversity of Connecticut, Department of Statistics.
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Chapter 1

Motivation for the Sequential Approach
and Selected Applications

In this chapter, we describe the theoretical and appliedvatains for the sequential approach in
general and for change detection in particular, and we testite positioning of the book as well.
We also introduce several typical application examples.

1.1 Motivation

Sequential analysis refers to statistical theory and nu=ttior processing data in which the total
number of observations is not fixed in advance but dependsisomon the observed data as they
become available. A sequential method is characterizedibyomponents:

1. A stopping rule that decides whether to stop the obsenmvatiocess with{Xy, X, ..., Xn) or to
get an additional observatiof 1 forn> 1;

2. A decision rule that specifies the action to be taken abfmitonsidered problem (estimation,
detection, classificatiomtc) after the observation has stopped.

Denoting byT the stopping variable andi the terminal decision, the paﬁé (T,d) specifies
the sequential decision rule (or procedure). Such a pair madyoe unique for a given problem.
The objective of sequential analysis is to determine ammgdttecision rul& that satisfies some
criteria. Note thatifT is fixed with probability 1 the procedure hasapriori fixed size of a sample.
We will refer to such procedures &ixed Sample Sizerocedures.

In sequential changepoint detection problems, howeversituation is slightly different. A
change detection procedure is identified with a stopping tilepending on the observations and
the decision on no-change is equivalent to the decision otirating observation. Furthermore,
typically the observation process is not terminated evésr aleciding that the change is in effect
but rather renewed all over again, leading to a multicyctitedtion procedure. This is practically
always the case in surveillance applications and often lieroapplications. See Section 6.3 for
further details.

Even though most experiments are essentially sequentaly itlassical statistical methods are
fixed sample size. In his history of sequential analysis,.BsKosh distinguishes several practical
motivations for sequential analysis [161].

In some applications sequential analysis is nothing butisit: no fixed sample size procedure
can be thought of. This is the case of industrial processabf@l, 303, 482, 499, 501, 511]. This
is also the case in the classical secretary problem [144jdmil@ monitoring some critical health
parameters of a patient in clinical trials [502]. Most sulteace problems are also sequential in na-
ture. It should be noted that in the key area of medical andpaeeutical research the requirement
for sequential analysis may also result from ethical greund

In some other statistical inference applications, seqaleaalysis is the most economic solu-
tion, in terms of sample size or cost or duration of the experit. This is the case of the so-called
curtailed sampling procedure that ensures the same powiér melguiring a smaller sample size

1
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than the best fixed sample size procedure [132, 189]. Thisdsthe case of the repeated signifi-
cance test that also maintains the flexibility of decidingresr than the fixed sample size procedure
at the price of some lower power [13, 514]. The sequentiabglpdity ratio test (SPRT) and the
Kiefer—Weiss procedure also belong to the category of momt@mic solutions, since they mini-
mize the expected sample size (resp. the maximum expeatgglesaize). These sequential tests
are investigated in detail in Chapters 3 and 5, respectively

Finally, in some parametric sequential point estimatiarbpgms, sequential analysis may rein-
force a fixed sample size procedure in a somewhat wider cotti@x usual [311].

1.2 Two Theoretical Tracks

In this book we propose to focus on two tracks: Sequentialdttygsis Tests and Sequential (Quick-
est) Changepoint Detection.

First, classical settings of hypothesis testing and chaoigé detection problems operate with
the case of independent and identically distributed (ild§eyvations and two simple hypotheses.
These assumptions may be quite restrictive for many cordeanpapplications. Therefore, gener-
alizations to general non-iid models are under way. Howeaxen in a relatively simple iid setting
there are several challenges that have been addresseditartterre during the last decade, includ-
ing the work by the authors. All these important results a@gtered in the literature (conference
proceedings as well as in statistical, applied probab#ihgineering, computer science, and other
kinds of journals) and are not easily accessible and uralatable for students and even for pro-
fessionals in the field. Moreover, the practical needs abuarapplied areas lead the researchers to
study more sophisticated statistical models by considerin

¢ Non-identically distributed and/or dependent observetjo
e Multiple hypotheses,
e Composite hypotheses, including nuisance parameters istétistical model.

Therefore, we believe that a book that would combine allglresults in a synergistic way is timely.

Second, the proposed book contains both theoretical ctsiaegd results and a number of appli-
cation examples. As explained below and detailed in thetaldtontents, the book covers sequential
hypothesis testing and sequential quickest changepdiettilen from theoretical developments to
applications in a wide range of engineering and environalafdmains. It is the intention of the
authors to explain how the theoretical aspects influencetbkelem statement and the design of
algorithms when addressing problems in various applinatieas.

Third, we would like to mention two recent books related tqusmntial hypothesis tests and
quickest change detection: by G. Peskir and A.N. Shiry@ptimal Stopping and Free Bound-
ary Problemg[360] and by H.V. Poor and O. HadjiliadiQuickest Detectiofi376]. While these
books cover certain interesting aspects of sequentialthgscs testing and changepoint detection,
they both focus mainly on continuous-time models, whichrastricted for most applications. The
present book covers mostly more practical discrete-timdetsoas well as very general cases that
include both continuous- and discrete-time models. Intagdiwe consider multiple decision mak-
ing problems, including sequential multinypothesis testd quickest change detection—isolation
procedures, that are not presented in the above referenoéd.b

1.2.1 Track 1: Sequential Hypothesis Testing

The goal of testing statistical hypotheses is to relate eseded stochastic process to oneNbf
(N > 2) possible classes based on some knowledge about théuligmis of the observations under
each class or hypothesis. In a sequential setting, the nurhbbservations is allowed to be random,
i.e., a function of the observations. The theoretical stofdsequential hypothesis testing has been
initiated by A. Wald [492]. A sequential procedure or testlides a stopping time and a terminal
decision to achieve a tradeoff between the average obgarvahe and the quality of the decision.
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Most efforts have been devoted to testing two hypotheseselyato developing optimal strategies
and obtaining lower bounds for the average number of ob8ensanecessary to decide between the
two hypotheses with given error probabilities; see Wal®[4®4], Wolfowitz [496, 497], Hoeffding
[192, 193], and many others. Also, these bounds have beeparewhwith the sample size of the
best non-sequential, fixed sample size test. It has beemdhathe sequential procedure performs
significantly better than the classical Neyman—Pearsairtéise case of two simple hypotheses.

The problem of sequential testing of many hypotheses istantiglly more difficult than that
of testing two hypotheses. For multiple-decision testimgbpems, it is usually very difficult, if
even possible, to obtain optimal solutions. The first rashive been established by Sobel and
Wald [435], Armitage [12], and Paulson [350]. The lower bdsifior the average sample number
has been established by Simons [432].

A substantial part of the development of sequential muftdtiiesis testing in the last several
decades has been directed toward the study of suboptimedgumoes, basically multihypothesis
modifications of a sequential probability ratio test, far data models. See, e.g., Armitage [12],
Chernoff [97], Dragalin [123], Dragalin and Novikov [127Kiefer and Sacks [231], Lorden
[269, 275], Pavlov [351, 352]. The generalization to theecaknon-stationary processes with in-
dependent increments was made by Tartakovsky [449, 452, @blubev and Khas'minskii [168],
and Verdenskaya and Tartakovsky [484]. The condition oépehdence of the log-likelihood ra-
tio increments was crucial in these works. Further gereatitins to the case of non-iid stochastic
models that may include both nonhomogeneous and corrgladedsses observed in continuous or
in discrete time were made by Lai [248], Tartakovsky [455]d &ragalinet al. [128]. The results
obtained in these latter works are indeed very general amdr@most any, and perhaps every,
model of interest in the applications. Such popular modelsdeprocesses, state-space models, and
hidden Markov models with discrete and continuous spacpateular cases.

1.2.2 Track 2: Quickest Changepoint Detection

Changepoint problems deal with detecting changes in the ata process. In the sequential setting,
as long as the behavior of the observations is consistenthtinitial or target state, one is content
to let the process continue. If the state changes, then oinéeigsted in detecting that a change
is in effect, usually as soon as possible after its occuseAny detection policy may give rise to
false alarms. The desire to detect a change quickly causet®dre trigger-happy, which will bring
about many false alarms if there is no change. On the othet, lsdtempting to avoid false alarms
too strenuously will lead to a long delay between the timeatfuorence of a real change and its
detection . The gist of the changepoint problem is to produdetection policy that minimizes the
average delay to detection subject to a bound on the averegasihcy of false alarms.

The theoretical study of quickest changepoint detectigrblegn initiated in two different direc-
tions: Bayesian and minimax. In the Bayesian case, it is@sgbthat the changepoint is a random
variable independent of the observations with known digtion. On the contrary, in the minimax
case it is assumed that the changepoint is an unknown nalmanumber. The very first study of
the Bayesian quickest changepoint detection approachdsmsdone by Girschick and Rubin [165]
in the framework of quality control. An optimal solution thi$ problem has been obtained by
Shiryaev [413, 414, 415] who has also performed the compabigtween the optimal procedure,
the repeated sequential Wald test and the classical NeyPeamnson test. Independently, another,
minimax approach has been adopted by Lorden [271]. In csintoathe Bayesian approach, the
minimax criterion is based on the worst-case mean detedttmy, characterized by the essential
supremum with respect to pre-change observations and tsugfremum over all possible change-
points. An optimal solution to the problem and a lower bounthe class of procedures with a given
mean time (average run length) to a false alarm has beeredthgiLorden [271] in the asymptotic
case for large average run length to false alarm. In this warkden established, for the first time,
asymptotic minimax optimality of Page’s CUSUM procedurégB a well-known statistical control
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chart. Later Moustakides [305] showed that the CUSUM pracedk in fact exactly minimax with
respect to Lorden’s essential supremum detection speesumeea

In 1961, for detecting a change in the drift of a Brownian mofiShiryaev [413, 414] in-
troduced a change detection procedure, which is now ustefltyred to as the Shiryaev—Roberts
procedure [394]. This procedure has a number of interesiitignality properties. In particular, it
minimizes thantegral average detection del&ging Generalized Bayesian for an improper uniform
prior distribution of the changepoint. It is also optimatlire sense of minimizing the stationary aver-
age detection delay when a change occurs in a distant futdrisgreceded by a long interval with
a stationary flow of false alarms; see Feinberg and ShiryEz®}[and Pollak and Tartakovsky [370].
On the other hand, Pollak [365] introduced a natural woasiedetection delay measuremaximal
conditional average delay to detectiomhich is less pessimistic than Lorden’s essential supremu
measure, and attempted to find an optimal procedure thathvminimize this measure over proce-
dures subject to constraint on the average run length te &¢sm. Pollak’s idea was to modify the
Shiryaev—Roberts statistic by randomization of the ihd@ndition in order to make it an equalizer.
Pollak’s version of the Shiryaev—Roberts procedure sfaots a random point sampled from the
quasi-stationary distribution of the Shiryaev—Roberasistic. He proved that, for a large average
run length to false alarm, this randomized procedure is asytically nearly minimax within an
additive vanishing term. Since the Shiryaev—Roberts-aRgltocedure is an equalizer, it is tempt-
ing for one to conjecture that it may in fact beictly optimal for any false alarm rate. However, a
recent work of Moustakidest al.[310] and Polunchenko and Tartakovsky [373] indicates ttmat
Shiryaev—Roberts—Pollak procedure is not exactly minilauadt sheds light on this issue by con-
sidering a generalization of the Shiryaev—Roberts proeethat starts from a specially designed
deterministic point.

As we mentioned above, in the early stages the theoretical@@ement was focused on iid
models. However, in practice the iid assumption may be tstrictive. The observations may be
either non-identically distributed or correlated or ba#h,, non-iid. An extension of Lorden’s results
to the case of dependent stationary random processes befbadter the change has been done by
Bansal and Papantoni-Kazakos [26]. A general theory of gbpoint detection is now available
both in the Bayesian and minimax settings due to the work ofakavsky and Veeravalli [475,
476], Baron and Tartakovsky [28], Lai [251], and Fuh [1545]19n patrticular, for a low false
alarm rate the asymptotic minimax optimality of the CUSUM &hiryaev—Roberts procedures
has been established in [154, 155, 251, 475] and the asyimppdimality of the Bayesian Shiryaev
procedure proven in [28, 476]. Moustakides [306] geneedlifor the It6 processes the CUSUM
minimax optimality result with respect to Lorden’s essaldupremum measure acting on the total
expected Kullback—Leibler information.

For iid data and for large thresholds, the suitably stanidadddistributions of the CUSUM
and Shiryaev—Roberts stopping times are asymptoticafipeantial and fit well into the geometric
distribution even for a very moderate false alarm rate [369this case, the mean time to false
alarm, the global false alarm rate metric, is obviously appiate. However, for non-iid models
the limiting distribution is not guaranteed to be exporandr even close to it. In general, we
cannot even guarantee that large values of the mean timéstodkarm will produce small values
of the maximal local false alarm probability. Thereforeg tinean time to false alarm, a standard
and well accepted measure of false alarms, may not be ajgie@pr general. Instead of global
measures of false alarms, it may be more appropriate to eakrweasures, for example the local
false alarm probability, as suggested in [459]. This issuexiremely important for non-iid models
as a discussion in [293, 460] and other discussion piecdsshal inSequential Analysjs/ol. 27,
No. 4, 2008 show.

Another challenging extension is a multidecision chadgection—isolatiorproblem when,
along with detecting a change with a given false alarm rateidantification/isolation of a true
post-change hypothesis with a given misidentification iatequired [48, 49]. An optimal solution
to the problem of abrupt change detection—isolation andraraoursive algorithm that asymptot-
ically attains the lower bound were obtained by Nikiforof&22] by using a minimax approach
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based on minimizing the Lorden-type worst-case mean detedsolation delay for a given mean
time before a false alarm and for a given probability of fakation. The comparison between
the optimal sequential and repeated fixed sample size agiprsand different recursive sequential
detection—isolation algorithms have been studied by Dira§E?5], Nikiforov [326, 328, 331], Os-
kiper and Poor [343], and Tartakovsky [453, 461]. A multipigothesis extension of the Shiryaev—
Roberts procedure by adopting a dynamic programming apptteas been proposed by Malladi and
Speyer [287]. Next, Lai [252] generalized the results atsdifor the worst-case mean detection—
isolation criterion in [322] to the case of dependent obastowns. Lai also proposed two new op-
timality criteria: a non-Bayesian one, where the maximumwbpbilities of false alarm and false
isolation within a given time window are constrained; anday&sian one, where a weighted sum
of the false alarm and false isolation probabilities is useédally, Lai designed a window-limited
generalized likelihood ratio-based algorithm with redicemputational complexity for on-line
processing that asymptotically attains the lower bounds.

1.3 Several Applications

Hypothesis testing and changepoint problems arise acaosssg branches of science and engineer-
ing and have an enormous spectrum of important applicatioakiding environment surveillance
and monitoring, biomedical signal and image processinglityucontrol engineering, link failure
detection in communication networks, intrusion detectionomputer networks and security sys-
tems, detection and tracking of covert hostile activitdsemical or biological warfare agent de-
tection systems as a protection tool against terroristlkdtadetection of the onset of an epidemic,
failure detection in manufacturing systems and large nmehitarget detection in surveillance sys-
tems, econometrics, financial markets, detection of sggmdh unknown arrival time in seismology,
navigation, radar and sonar signal processing, speechesegtion, and the analysis of historical
texts. In all of these applications, sensors take obsemvathat undergo a change in their distribu-
tion in response to changes and anomalies in the enviroronehtinges in the patterns of a certain
behavior. The observations are obtained sequentiallyemidng as their behavior is consistent with
the normal state, one is content to let the process contifthe. state changes, then one is interested
in detecting the change as soon as possible while minimfaisg detections.

During the last years, a number of new application fields leswmerged: structural health mon-
itoring of bridges [24, 25, 43], wind turbines [178, 216]daaircraft [41, 102, 186, 188], detecting
multiple sensor faults in an unmanned air vehicle (UAV) [H@®3onitoring railway vehicle dynam-
ics [87], detecting road traffic incidents [521] or changelsighway traffic condition [170], monitor-
ing low consumption components of road vehicles [36], dasgmg automotive antilock braking sys-
tems [285], chemical process control [196], physiologizth analysis [398], surveillance of daily
disease counts [439], nanoscale analysis of soft bionadégehrough atomic force microscopy [402],
biosurveillance [110, 342, 424], radio-astronomy [152848nd interferometry [341], spectrum
sensing in cognitive radio systems [201, 263], landmined&n [379], leak detection in water
channels [58], monitoring biological waste water treathq@ants [19], environmental monitoring
[57, 120, 361, 385, 409], hydrology [286], handling climateanges [284, 393, 526], navigation
systems monitoring [295, 336, 408], detecting salient arofor dynamic scene modeling [233],
human motion analysis [85], video scene analysis [262} sptial steganography [479, 480], bio-
metric identification [7], onset detection in music sign&8], detecting changes in large payment
card datasets [107], running consensus in sensor netwd2k88], and distributed systems moni-
toring [382, 461, 475].

In particular a number of computer and network problems ane addressed with the aid
of sequential hypothesis testing and change detectiorritdges: anomaly detection in IP net-
works [477], secure IP telephony [386], detection of inibasviruses, and other denial of service
(DoS) attacks [215, 357, 433, 472], including scanning weoinfections [397, 406], bioterror-
ism detection and other aspects of global security, Inteaneess patterns characterization [208],
teletraffic monitoring [2, 3, 211, 313], tracking the prefeces of users in recommendation sys-
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tems [520], network bandwith monitoring [183], active gaemanagement [74], and even cost
estimation for software evolution [383] and software quadind performance monitoring [171].

In this section, we describe several typical applicaticemagles of sequential hypothesis testing
and change detection techniques. For each example, we giveradescription of the particular
problem and its context. For some of these models, the ddtaiformation about the possibly
complex underlying physical models is given in Part Ill. §helection of examples is not exclusive;
it is intended to give only sufficient initial insights inthe variety of problems that can be solved
within this framework. In Part Ill, we come back to some apglion problems, showing results
of the processing of real data with the aid of sequential Hygsis testing and change detection
algorithms.

In Subsections 1.3.1 and 1.3.2 we start with quality coratnol target detection, and we continue
with integrity monitoring of navigation systems in Subsesct1.3.3. Then in Subsection 1.3.4 we
describe a couple of signal processing problems, nameiyeetgtion of signals and seismic signal
processing. Mechanical systems integrity monitoring &dssed in Subsection 1.3.5. Finally, we
discuss application to finance and economics and to competeork surveillance and security in
Subsections 1.3.6 and 1.3.7.

1.3.1 Quality Control

One of the earliest applications of change detection is thblem of quality control, or continuous
production monitoring. On-line quality control deals wibenarios where the measurements are
taken one at a time and the decisions are to be reached sedjyers the measurements are taken.
Consider a production process that carirbeontrolandout of control The events associated with
the transitions of this process from the in-control statbé&out-of-control state are calléldsorders
For many reasons, it is necessary to detect a disorder adyjag possible after its occurrence as
well as to estimate its onset time. It may be a question ofygafdhe technological process, quality
of the production, or classification of output productioenits. For all these problems, the best
solution is thequickest detection of the disorder with as few false alarmpassibleThis criterion

is used because the delay until detection is a time interwéihd which the technological process is
out of control, but there is no action of the monitoring syste this event. From both the safety and
quality points of view, this situation is obviously highlyndesirable. On the other hand, frequent
false alarms are inconvenient because of the cost of stgggoduction, verifying whether this is
a true or false disorder, and searching for the origin of tefect; nor is this situation desirable
from a psychological point of view, because the operatdrsidlp using the monitoring system very
quickly if it produces too-frequent false alarms. Thus, @tiroal solution is based on teadeoff
between the speed of detection or detection delay and tbe &rm rate, using a comparison of
the losses implied by the true and false detections.

We stress that we are interested in solving this problemguaistatistical approachthat is,
assuming that the measurements are a realization of a rapdmass. Because of the random be-
havior, large fluctuations can occur in the measurements when the process is in control, and
these fluctuations result in false alarms. On the other teemd(even the best) decision rule cannot
detect the change instantaneously, again because of themdffuctuations in the measurements.
When the technological process is in control, the measuneseave a specific probability distri-
bution. When the process is out of control, this distribotahanges. If a parametric approach is
used, we speak about changes in the parameters of this [iiybdilstribution. A chemical plant
where the quality of the output material is characterizedHgyconcentration of some chemical
component is a typical example, where the concentratioisisittlited according to the Gaussian
law. Under normal operating conditions, the mean value sanbiard deviation of this normal dis-
tribution arepy and gy, respectively. Under abnormal conditions three types ahges can occur
in these parameters:

e Deviation from the reference mean valugtoward p; with constant standard deviation, i.e., a
systematic error;
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e Increase in the standard deviation fragto g; with constant mean, i.e., a random error;
e Both the mean and the standard deviation change, i.e.sgteand random errors.

The goal is to design a statistical decision rule (detegtimeedure, algorithm) that can detect these
disorders effectively. Typically a decision procedureaives comparing a statistic sensitive to a
change with a threshold that controls a false alarm rate.

If a decision statistic is chosen, the tuning of the statidtilecision rule is reduced to selecting a
threshold that guarantees the tradeoff between the fasmahte and the mean delay to detection.
Several types of decision rules are used in the industryaasiatds, they are callesbntrol charts
and each differs by the detection statistic. In the simptase, the pre-change and post-change
parameters are assumed to be known. In this case the desfiatmtics should be a function of the
likelihood ratio for the pre- and post-change parameters.

The main references in the area of quality control and SizdisProcess Control (SPC) are the
books [80, 81, 114, 130, 153, 184, 288, 303, 340, 348, 434,482 500, 501, 515] and the survey
papers [65, 106, 443, 447, 509, 510, 511], with special edtic[381] and [67, 185].

1.3.2 Target Detection and Tracking

Surveillance systems, such as those for ballistic andemissile defense, deal with the detection
and tracking of moving targets. The most challenging pnokfier such systems is the quick detec-
tion of maneuvering targets that appear and disappear aowrkpoints in time against a strong
cluttered background. To illustrate the importance of thgk, we remark that under certain condi-
tionsa few seconds decreasethe time it takes to detect a sea/surface skimming cruissilacan
yield a significant increase in thgrobability of raid annihilation Furthermore, usually detection
systems are multichannel, since the target velocity is ankn Thus, finding an optimal combi-
nation of a multihypothesis testing algorithm with changiepdetection methods is a challenge.
This challenging applied problem can be effectively solusthg the quickest detection—isolation
methods developed in this book.

We also note that standard ad hoc methods for target tratition and termination [27, 68, 69]
can be substantially improved by using advanced quickésttien methods that are the subject of
this book. Improving the operating characteristics is ey important for Space-Based Infrared
and Space Tracking and Surveillance System sensors wititically vibrating lines-of-sight that
have to provide early detection and tracking of low obseevédrgets in the presence of highly-
structured cluttered backgrounds.

1.3.3 Navigation System Integrity Monitoring

For many safety-critical aircraft navigation modes (largditakeoff.etc), a major problem of exist-
ing navigation systems consists in their lack of integfitye integrity monitoring concept, defined
by the International Civil Aviation Organization, requsra navigation system to detect the faults
and remove them from the navigation solution before theficseftly contaminate the output. Re-
cent research shows that the quickest detection—isolafitve navigation message contamination
is crucially important for the safety of the radio-navigatisystem, e.g., GPS, GLONASS, Galileo,
etc. It is proposedo encourage all the transportation modes to give attent@mautonomous in-
tegrity monitoring of GPS signa[93].

Monitoring the integrity of a navigation system can be restlito a quickest change detection—
isolation problem [21, 324, 325, 332]. The time when thetfaaturs and the type of fault are not
just unknown but sometimes can be intentionally chosen tgimiae their negative impacts on
the navigation system. Therefore, the optimality critershould favor fast detection in the worst
case with few false alarms and false isolations. Fast deteis necessary because abnormal mea-
surements are taken in the navigation system between theyepaint (fault onset time) and its
detection, which is clearly very undesirable. On the othamd) false alarms/isolations result in
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lower accuracy of the estimates because incorrect infoomé used at certain time intervals. An
optimal solution involves a tradeoff between these two itittory requirements. The changepoint
detection—isolation techniques developed in this booklEansed for obtaining optimal solutions
to this challenging problem. This is discussed in Sectiod IHistorical references related to iner-
tial navigation system monitoring are [315, 506]. The imtiggmonitoring of navigation systems is
investigated in [93, 227, 295, 324, 325, 332, 336, 446]. Sohadlenges are pointed out in [408].

1.3.4 Signal Processing Applications
1.3.4.1 Segmentation of Signals and Images

A first processing step of recognition-oriented signal pssing consists in automatic segmenta-
tion of a signal. A segmentation algorithm splits the sightd homogeneous segments, with sizes
adapted to the local characteristics of the analyzed sidied homogeneity of a segment can be
formulated in terms of the mean level or in terms of the spéctaracteristics. The segmentation
approach has proved useful for the automatic analysis adwsubiomedical signals, in particular

electroencephalograms [11, 73, 78, 207, 213, 404] andretsstiograms [172]. Several segmen-
tation algorithms for recognition-oriented geophysidghal processing are discussed in [39]. A
changepoint detection based segmentation algorithm ka$akn introduced as a powerful tool for
the automatic analysis of continuous speech signals, botie€ognition [10] and for coding [117].

The main desired properties of a segmentation algorithrfoaréalse alarm and mis-detection
ratesand asmall detection delgyas in the previous examples. However, we have to keep in mind
that signal segmentation is usually only the first step ofcageition procedure. From this point of
view, it is obvious that the properties of a given segmeatadilgorithm also depend upon the pro-
cessing of the segments which is performed at the next Fgexample, it is often the case that,
for segmentation algorithms, false alarms (sometimesdalersegmentation) are less critical than
for onset detection algorithms. A false alarm for the dédeadf an imminent tsunami obviously has
severe and costly practical consequences. On the other inaamdecognition system, false alarms
at the segmentation stage can often be easily recognizefilteaned at the next stage, which means
that the loss due to false alarms is small at the first segrientstage. A segmentation algorithm
exhibiting the above-mentioned properties is potentialpowerful tool for a recognition system.

It should be clear that a segmentation algorithm allows uketect several types of events. Ex-
amples of events obtained through a spectral segmentdgorithm and concerning recognition-
oriented speech processing are discussed in [10]. Other@ga of events in seismology are men-
tioned in the previous subsection.

Changepoint detection methods are also efficient and uiseiillage segmentation and bound-
ary tracking problems [96].

1.3.4.2 Seismic Data Processing

In many situations of seismic data processing, it is necggeaestimatein situ the geographical
coordinates and other parameters of earthquakes.

The standard sensor equipment of a three-component sessatiien results in the availability
of records of seismograms with three components, namelgabewest, north-south, and vertical
components. When an earthquake arises, the sensors begaotd several types of seismic waves
(body and surface waves), among which the more importarg aretheP-wave and theswave.
TheP-wave is polarized in the source-to-receiver directiomaly from the epicenter of the earth-
quake to the seismic station. Hence, it is possible to estitha source-to-receiver azimutrusing
the linear polarization of thB-wave in the direction of propagation of the seismic wavéds o
main events to be detected are thavave and th&S-wave; note that th®-wave can be very low-
contrast with respect to seismic noise. The processingesktthree-dimensional measurements can
be split into three tasks:

1. On-line detection and identification of the seismic waves
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2. Off-line estimation of the onset times of these waves;

3. Off-line estimation of the azimuth using the correlatimetween the components of tRewave
segments.

The P-wave has to be detectegry quickly with a fixed false alarms ratso that theS-wave can
also be detected on-line. The detection of Bawave is a difficult problem, because the data con-
tain many nuisance signals (interference) coming from thvirenment of the seismic station, and
discriminating between these events and a Bweave is not easy. The same is true for Siwave,
which is an even more difficult problem because of a low sigoaloise ratio and numerous inter-
ferences between tHewave and th&-wave.

After P-wave andS-wave detection, theff-line accurate estimation of onset timesequired
for both types of waves. A possible solution is to use fixew-siamples of the three-dimensional
signals centered at a rough estimate of the onset time m@d\wg the detection algorithm. Some
references for seismic data processing are [235, 301, &% 337, 478].

1.3.5 Mechanical Systems Integrity Monitoring

Detecting and localizing damages for monitoring the intg@f structural and mechanical systems
is a topic of growing interest, due to the aging of many engjiimg) constructions and machines and
to increased safety norms. Many structures to be monitergd,civil engineering structures subject
to wind and earthquakes, aircraft subject to turbulence sabject to both fast and unmeasured
variations in their environment and small slow variationgheir modal or vibrating properties.
While any change in the excitation is meaningless, damagdatigues on the structure are of
interest. But the available measurements do not separateffibcts of the external forces from
the effect of the structure. Moreover, the changes of istetdat may be as small as 1% in the
eigenfrequencies, are visible neither on the signals nahein spectra. A global health monitoring
method must rather rely on a model which will help in discnating between the two mixed causes
of the changes that are contained in the data. This vibrationitoring problem can be stated as
the problem of detecting changes in the autoregressive paR)of a multivariable autoregressive
moving average (ARMA) model having nonstationary MA coédiits. Change detection turns out
to be very useful for this monitoring purpose, for examplerfmnitoring the integrity of the civil
infrastructure [24, 25, 45].

The improved safety and performance of aerospace strscncreduced aircraft development
and operating costs are major concerns. One of the critlujalctives is to ensure that the newly
designed aircraft is stable throughout its operating raAggitical aircraft instability phenomenon,
known as flutter, results from an unfavorable interactioaebdynamic, elastic, and inertial forces,
and may cause major failures. A careful exploration of thesshgical behavior of the structure sub-
ject to vibration and aeroservoelastic forces is thus reguiA major challenge is the in-flight use
of flight test data. The flight flutter monitoring problem camdxddressed on-line as the problem of
detecting that some instability indicators decrease bsluwe critical value. CUSUM-type change
detection algorithms are useful solutions to these probler, 46, 296, 531].

These application examples illustrate change detectitimegtimating functions different from
the likelihood [36, 38].

The vibration-based structural health monitoring probismxplored in Section 11.2.

1.3.6 Finance and Economics

Stochastic modeling in finance is a new application areafitinal stopping and quickest change-
point detection. For example, in thRussian optiorj410] the fluctuations in the price of an asset
are modeled by geometric Brownian motion (the Black—Shaitzlel), and the problem consists
in finding a stopping time that maximizes a certain gain. s tptimization problem, the option

owner is trying to find an exercise strategy that maximizesetkpected value of his future reward
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with a certain interest rate for discounting. This problean be effectively solved using the optimal
stopping theory which is a part of the book. A similar appiroean be applied for finding an optimal
solution to theAmerican put optionvith infinite horizon [359].

An application of the optimal stopping theory in financiabareering imposes an analysis for
the gain process depending on the future and referring topéimal prediction problem, which
falls outside the scope of the classical optimal stoppiagigwork. A typical setting is related to
minimizing over a stopping time a functional of a Browniantion.

These examples show that the optimal stopping theory caffédagieely applied to many prob-
abilistic settings of theoretical and practical interéstaddition, we mention the articles [52, 358]
and references therein.

We also argue that quickest changepoint detection schearebe effectively applied to the
analysis of financial data. In particular, quickest chamjg®etection problems are naturally asso-
ciated with rapid detection of the appearance of an arlgtiag market [421].

1.3.7 Computer Network Surveillance and Security

A considerable interest exhibited over the past decadeifighd of defense against cyber-terrorism
in general, and network security in particular, has beended by a series of external and inter-
nal attacks on public, private corporate, and governmeataputer network resources. Malicious
intrusion attempts occur every day and have become a comheromenon in contemporary com-
puter networks. Examples of malicious activities are spamgaigns, phishing, personal data theft,
worms, distributed denial-of-service (DDoS) attacks,radd resolution protocol man-in-the-middle
(ARP MiM) attacks, fast fluxetc. These pose an enormous risk to the users for a multitude of rea
sons such as significant financial damage, or severe thréa iotegrity of personal information.

It is therefore essential to devise automated techniqudstirt such events as quickly as possible
so that an appropriate response can be provided and theveegatisequences for the user can be
eliminated.

The detection of traffic anomalies is done by employing arusibn detection system (IDS).
Such systems in one way or another capitalize on the factthbtious traffic is noticeably different
from legitimate traffic. Depending on the principle of opéra there are two categories of IDSs:
either signature or anomaly based [113, 224]. A signatasee IDS inspects the passing traffic with
the intent to find matches against already known maliciottepes. By contrast, an anomaly-based
IDS is first trained to recognized the normal network behaaitd then watches for any deviation
from the normal profile.

Currently both types of IDSs are plagued by a high rate o&fplssitives and the susceptibility
to carefully crafted attacks that blend themselves intanabitraffic. These two systems are com-
plementary, and neither alone is sufficient to detect andtiséhe myriad of network malicious or
legitimate anomalies generated by attacks or other noicimas events.

Intrusions usually lead to an abrupt change in the stadistltaracteristics of the observed traffic.
For example, DDoS attacks lead to changes in the averageerunhipackets sent through the
victim’s link per unit time. It is therefore appealing to foulate the problem of detecting computer
intrusions as @uickest changepoint detection probletm detect changes in statistical models as
rapidly as possible, i.e., with minimal average delays,levmaintaining the false alarm rate at a
given low level. The feasibility of this approach has bearady demonstrated in [472, 473, 474].

To make the detection delay small one has to increase theedtdem rate (FAR), andce versa.
As a result, the FAR cannot be made arbitrarily low withoutr#&ing other important performance
metrics such as the detection delay and the probability fadien in a given time interval. There-
fore, while attack detection algorithms can run with very Idelay, this comes at the expense of
high FAR, and thus changepoint detection techniques mapeefficient enough for intrusion de-
tection. The ability of changepoint detection techniguesun at high speeds and with low delay,
combined with the generally low frequency of intrusion atfgs, presents an interesting opportu-
nity: What if one could combine such techniques with othbeg bffer very low false alarm rates
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but are too heavy to use at line speeds? Do such synergisis éRist, and how can they be in-
tegrated? Such an approach is explored in Section 11.3ift8pélg, a novel hybrid approach to
network intrusion detection that combingsangepoint detection based anomHMs with aflow-
based signaturédDS is proposed. The proposed hybrid IDS with profiling caligtcomplements
existing anomaly- and signature-based systems. In addiiachieving high performance in terms
of the tradeoff between delay to detection, correct detactind false alarms, the system also allows
for isolating the anomalies. Therefore, the proposed amre@vercomes common drawbacks and
technological barriers of existing anomaly and signat®d by combining statistical changepoint
detection and signal processing methods.



