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Preface

About seventy years ago Abraham Wald, while treating the problem of testing two simple hypothe-
ses, showed how the fixed sample size likelihood ratio test ofNeyman and Pearson can be modified
into the more efficient sequential scheme when observationsare collected one at a time and pro-
cessed on-line. This has led to the modern theory of sequential analysis developed due to a practical
demand for more efficient sampling policies and summarized by A. Wald in his monographSequen-
tial Analysispublished in 1947.

A separate important branch of sequential analysis is on-line surveillance, the so-called change-
point detection, the goal of which is to detect a change in distribution or anomaly quickly. More
specifically, sequential changepoint detection (or quickest change/“disorder” detection) is concerned
with the design and analysis of techniques for on-line detection of a change in the state of a phe-
nomenon, subject to a tolerable limit on the risk of false alarms. An observed process of interest
may unexpectedly undergo an abrupt change-of-state from “normal” to “abnormal” (or anomalous),
each defined as deemed appropriate given the physical context. The sequential setting assumes the
observations are made successively, and, as long as their behavior suggests that the process is in
the normal state, the process is allowed to continue. However, if the state is believed to have al-
tered, one’s aim is to detect the change “as soon as possible,” so that an appropriate response can be
provided in a timely manner.

Historically, the subject of changepoint detection first began to emerge in the 1920s motivated
by considerations of industrial quality control due to the work of Walter Shewhart who successfully
brought together the disciplines of statistics, engineering, and economics and became the father
of modern statistical quality control. Shewhart’s work (inparticular Shewhart control charts) was
highlighted in his booksEconomic Control of Quality of Manufactured Product(1931) [411] and
Statistical Method from the Viewpoint of Quality Control(1939) [412], for which he gained recog-
nition in the statistical community, but efficient (optimaland quasi-optimal) sequential detection
procedures were developed much later in the 1950–1960s after the emergence of Wald’s bookSe-
quential Analysis(1947) [494]. The ideas set in motion by Shewhart and Wald have formed a plat-
form for extensive research on both theory and practice of sequential changepoint detection, starting
with the seminal paper by Page (1954) where the now famous Cumulative Sum (CUSUM) detec-
tion procedure was first proposed, and followed by the seriesof works of Shiryaev (1961–1969)
[414, 413, 415, 416, 417, 418, 419] and Lorden (1971) [271] where the first optimality results in
Bayesian and non-Bayesian contexts were established.

During the past 20 years, general stochastic models appropriate for many interesting applica-
tions have been treated extensively, as theoretical foundation for asymptotic studies of properties of
known sequential tests such as Wald’s Sequential Probability Ratio Test (SPRT), matrix versions of
this test suitable for multiple decision problems, CUSUM and Shiryaev–Roberts change detection
procedures, which are known to be optimal or nearly optimal for the models with independent and
identically distributed (iid) observations. Asymptotic optimality of these rules has been established
under various conditions, including conventional iid and general non-iid scenarios. Novel proce-
dures have also been proposed and studied. Multihypothesisand multichannel change detection–
classification (or detection–isolation) rules have been developed and their asymptotic optimality
properties have been established for iid and general non-iid models. Even for relatively simple iid
models new results have been obtained, in particular towardvery precise analysis via solving inte-
gral equations numerically and asymptotic analysis using renewal-theoretic and nonlinear renewal-

xiii



xiv PREFACE

theoretic approaches. These numerical and asymptotic approaches are in fact complementary, since
numerical solutions become very time-consuming when dealing with small error probabilities or
low false alarm rates, while asymptotic approximations areusually not too accurate for high and
moderate false alarm rates.

The main focus of this book is on a systematic development of the theory of sequential hypoth-
esis testing (Part I) and changepoint detection (Part II). In Part III, we briefly describe certain im-
portant applications where theoretical results can be usedefficiently, perhaps with some reasonable
modifications. We review recent accomplishments in hypothesis testing and changepoint detection
both in decision-theoretic (Bayesian) and non-decision-theoretic (non-Bayesian) contexts. The em-
phasis is not only on more traditional binary hypotheses butalso on substantially more difficult
multiple decision problems. Scenarios with simple hypotheses and more realistic cases of (two and
finitely many) composite hypotheses are considered and treated in detail. While our major attention
is on more practical discrete-time models, since we strongly believe that “life is discrete in nature”
(not only due to measurements obtained from devices and sensors with discrete sample rates), cer-
tain continuous-time models are also considered once in a while, especially when general results can
be obtained very similarly in both cases. It should be noted that although we have tried to provide
rigorous proofs of the most important results, in some caseswe included heuristic argument instead
of the real proofs as well as gave references to the sources where the proofs can be found.

While there are many other interesting topics in sequentialanalysis such as point and interval
estimation, selection/ranking, and sequential games, these important topics are out of the scope
of our book. A detailed treatment of these additional sequential methods can be found, e.g., in
[56, 163, 259, 312, 452].

We would like to thank many colleagues who have directly and indirectly contributed to this
project. Several students and postdoctoral fellows at the University of Southern California worked
on some of the problems considered in the book at different stages. Aleksey Polunchenko con-
tributed to certain theoretical aspects and numerical methods related to the very precise analysis of
minimax changepoint detection procedures as well as helpedwith simulations and processing real
and semi-real data for computer network security applications. The joint work with Georgios Fel-
louris on minimax tests for discrete composite hypotheses became the basis for the corresponding
sections in Part I. Greg Sokolov performed useful numericalanalysis and Monte Carlo simulations
of multichannel change detection procedures. Collaboration with George Moustakides, Moshe Pol-
lak, and Venugopal Veeravalli as well as frequent discussions with them were extremely fruitful.
The joint work with Lionel Fillatre on FSS multiple hypothesis testing has been used for writing
Subsections 2.9.6 and 10.2.2.

Alexander Tartakovsky is thankful to various U.S. agencies(Department of Defense, Depart-
ment of Energy, National Science Foundation) for supporting his work under multiple contracts.1

Alexander Tartakovsky wants to thank his wife, Marina Blanco, for her patience, help, and
inspiration.

Igor Nikiforov is thankful to the University of Technology of Troyes for supporting this work
and for the environment in which the book has been written. A preliminary version of some ma-
terial of the book has been used for Master and PhD courses at the University of Technology of
Troyes. The work reported in Section 11.1 has been partly supported by the SERCEL (Socièté
d’Etudes, Recherches et Constructions Électroniques), bythe SAGEM (Société d’Applications
Générales d’Électricité et de Mécanique, of the SAFRAN group), by the LRBA (Laboratoire de
Recherches Balistiques et Aérodynamiques) and by the DGAC/DTI (Direction de la Technique et
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Chapter 1

Motivation for the Sequential Approach
and Selected Applications

In this chapter, we describe the theoretical and applied motivations for the sequential approach in
general and for change detection in particular, and we describe the positioning of the book as well.
We also introduce several typical application examples.

1.1 Motivation

Sequential analysis refers to statistical theory and methods for processing data in which the total
number of observations is not fixed in advance but depends somehow on the observed data as they
become available. A sequential method is characterized by two components:

1. A stopping rule that decides whether to stop the observation process with(X1,X2, . . . ,Xn) or to
get an additional observationXn+1 for n≥ 1;

2. A decision rule that specifies the action to be taken about the considered problem (estimation,
detection, classification,etc.) after the observation has stopped.

Denoting byT the stopping variable andd the terminal decision, the pairδ ∆
= (T,d) specifies

the sequential decision rule (or procedure). Such a pair maynot be unique for a given problem.
The objective of sequential analysis is to determine an optimal decision ruleδ that satisfies some
criteria. Note that ifT is fixed with probability 1 the procedure has ana priori fixed size of a sample.
We will refer to such procedures asFixed Sample Sizeprocedures.

In sequential changepoint detection problems, however, the situation is slightly different. A
change detection procedure is identified with a stopping time depending on the observations and
the decision on no-change is equivalent to the decision on continuing observation. Furthermore,
typically the observation process is not terminated even after deciding that the change is in effect
but rather renewed all over again, leading to a multicyclic detection procedure. This is practically
always the case in surveillance applications and often in other applications. See Section 6.3 for
further details.

Even though most experiments are essentially sequential, many classical statistical methods are
fixed sample size. In his history of sequential analysis, B.K. Ghosh distinguishes several practical
motivations for sequential analysis [161].

In some applications sequential analysis is nothing but intrinsic: no fixed sample size procedure
can be thought of. This is the case of industrial process control [81, 303, 482, 499, 501, 511]. This
is also the case in the classical secretary problem [144] andwhile monitoring some critical health
parameters of a patient in clinical trials [502]. Most surveillance problems are also sequential in na-
ture. It should be noted that in the key area of medical and pharmaceutical research the requirement
for sequential analysis may also result from ethical grounds.

In some other statistical inference applications, sequential analysis is the most economic solu-
tion, in terms of sample size or cost or duration of the experiment. This is the case of the so-called
curtailed sampling procedure that ensures the same power while requiring a smaller sample size

1
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than the best fixed sample size procedure [132, 189]. This is also the case of the repeated signifi-
cance test that also maintains the flexibility of deciding sooner than the fixed sample size procedure
at the price of some lower power [13, 514]. The sequential probability ratio test (SPRT) and the
Kiefer–Weiss procedure also belong to the category of most economic solutions, since they mini-
mize the expected sample size (resp. the maximum expected sample size). These sequential tests
are investigated in detail in Chapters 3 and 5, respectively.

Finally, in some parametric sequential point estimation problems, sequential analysis may rein-
force a fixed sample size procedure in a somewhat wider context than usual [311].

1.2 Two Theoretical Tracks

In this book we propose to focus on two tracks: Sequential Hypothesis Tests and Sequential (Quick-
est) Changepoint Detection.

First, classical settings of hypothesis testing and changepoint detection problems operate with
the case of independent and identically distributed (iid) observations and two simple hypotheses.
These assumptions may be quite restrictive for many contemporary applications. Therefore, gener-
alizations to general non-iid models are under way. However, even in a relatively simple iid setting
there are several challenges that have been addressed in theliterature during the last decade, includ-
ing the work by the authors. All these important results are scattered in the literature (conference
proceedings as well as in statistical, applied probability, engineering, computer science, and other
kinds of journals) and are not easily accessible and understandable for students and even for pro-
fessionals in the field. Moreover, the practical needs of various applied areas lead the researchers to
study more sophisticated statistical models by considering:

• Non-identically distributed and/or dependent observations,

• Multiple hypotheses,

• Composite hypotheses, including nuisance parameters in the statistical model.

Therefore, we believe that a book that would combine all these results in a synergistic way is timely.
Second, the proposed book contains both theoretical concepts and results and a number of appli-

cation examples. As explained below and detailed in the table of contents, the book covers sequential
hypothesis testing and sequential quickest changepoint detection from theoretical developments to
applications in a wide range of engineering and environmental domains. It is the intention of the
authors to explain how the theoretical aspects influence theproblem statement and the design of
algorithms when addressing problems in various application areas.

Third, we would like to mention two recent books related to sequential hypothesis tests and
quickest change detection: by G. Peskir and A.N. Shiryaev,Optimal Stopping and Free Bound-
ary Problems[360] and by H.V. Poor and O. Hadjiliadis,Quickest Detection[376]. While these
books cover certain interesting aspects of sequential hypothesis testing and changepoint detection,
they both focus mainly on continuous-time models, which arerestricted for most applications. The
present book covers mostly more practical discrete-time models as well as very general cases that
include both continuous- and discrete-time models. In addition, we consider multiple decision mak-
ing problems, including sequential multihypothesis testsand quickest change detection–isolation
procedures, that are not presented in the above referenced books.

1.2.1 Track 1: Sequential Hypothesis Testing

The goal of testing statistical hypotheses is to relate an observed stochastic process to one ofN
(N≥ 2) possible classes based on some knowledge about the distributions of the observations under
each class or hypothesis. In a sequential setting, the number of observations is allowed to be random,
i.e., a function of the observations. The theoretical studyof sequential hypothesis testing has been
initiated by A. Wald [492]. A sequential procedure or test includes a stopping time and a terminal
decision to achieve a tradeoff between the average observation time and the quality of the decision.
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Most efforts have been devoted to testing two hypotheses, namely, to developing optimal strategies
and obtaining lower bounds for the average number of observations necessary to decide between the
two hypotheses with given error probabilities; see Wald [492, 494], Wolfowitz [496, 497], Hoeffding
[192, 193], and many others. Also, these bounds have been compared with the sample size of the
best non-sequential, fixed sample size test. It has been shown that the sequential procedure performs
significantly better than the classical Neyman–Pearson test in the case of two simple hypotheses.

The problem of sequential testing of many hypotheses is substantially more difficult than that
of testing two hypotheses. For multiple-decision testing problems, it is usually very difficult, if
even possible, to obtain optimal solutions. The first results have been established by Sobel and
Wald [435], Armitage [12], and Paulson [350]. The lower bounds for the average sample number
has been established by Simons [432].

A substantial part of the development of sequential multihypothesis testing in the last several
decades has been directed toward the study of suboptimal procedures, basically multihypothesis
modifications of a sequential probability ratio test, for iid data models. See, e.g., Armitage [12],
Chernoff [97], Dragalin [123], Dragalin and Novikov [127],Kiefer and Sacks [231], Lorden
[269, 275], Pavlov [351, 352]. The generalization to the case of non-stationary processes with in-
dependent increments was made by Tartakovsky [449, 452, 457], Golubev and Khas’minskii [168],
and Verdenskaya and Tartakovsky [484]. The condition of independence of the log-likelihood ra-
tio increments was crucial in these works. Further generalizations to the case of non-iid stochastic
models that may include both nonhomogeneous and correlatedprocesses observed in continuous or
in discrete time were made by Lai [248], Tartakovsky [455], and Dragalinet al. [128]. The results
obtained in these latter works are indeed very general and cover almost any, and perhaps every,
model of interest in the applications. Such popular models as Itô processes, state-space models, and
hidden Markov models with discrete and continuous space areparticular cases.

1.2.2 Track 2: Quickest Changepoint Detection

Changepoint problems deal with detecting changes in the state of a process. In the sequential setting,
as long as the behavior of the observations is consistent with the initial or target state, one is content
to let the process continue. If the state changes, then one isinterested in detecting that a change
is in effect, usually as soon as possible after its occurrence. Any detection policy may give rise to
false alarms. The desire to detect a change quickly causes one to be trigger-happy, which will bring
about many false alarms if there is no change. On the other hand, attempting to avoid false alarms
too strenuously will lead to a long delay between the time of occurrence of a real change and its
detection . The gist of the changepoint problem is to producea detection policy that minimizes the
average delay to detection subject to a bound on the average frequency of false alarms.

The theoretical study of quickest changepoint detection has been initiated in two different direc-
tions: Bayesian and minimax. In the Bayesian case, it is supposed that the changepoint is a random
variable independent of the observations with known distribution. On the contrary, in the minimax
case it is assumed that the changepoint is an unknown non-random number. The very first study of
the Bayesian quickest changepoint detection approach has been done by Girschick and Rubin [165]
in the framework of quality control. An optimal solution to this problem has been obtained by
Shiryaev [413, 414, 415] who has also performed the comparison between the optimal procedure,
the repeated sequential Wald test and the classical Neyman–Pearson test. Independently, another,
minimax approach has been adopted by Lorden [271]. In contrast to the Bayesian approach, the
minimax criterion is based on the worst-case mean detectiondelay, characterized by the essential
supremum with respect to pre-change observations and by thesupremum over all possible change-
points. An optimal solution to the problem and a lower bound in the class of procedures with a given
mean time (average run length) to a false alarm has been studied by Lorden [271] in the asymptotic
case for large average run length to false alarm. In this work, Lorden established, for the first time,
asymptotic minimax optimality of Page’s CUSUM procedure [346], a well-known statistical control
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chart. Later Moustakides [305] showed that the CUSUM procedure is in fact exactly minimax with
respect to Lorden’s essential supremum detection speed measure.

In 1961, for detecting a change in the drift of a Brownian motion, Shiryaev [413, 414] in-
troduced a change detection procedure, which is now usuallyreferred to as the Shiryaev–Roberts
procedure [394]. This procedure has a number of interestingoptimality properties. In particular, it
minimizes theintegral average detection delaybeing Generalized Bayesian for an improper uniform
prior distribution of the changepoint. It is also optimal inthe sense of minimizing the stationary aver-
age detection delay when a change occurs in a distant future and is preceded by a long interval with
a stationary flow of false alarms; see Feinberg and Shiryaev [139] and Pollak and Tartakovsky [370].
On the other hand, Pollak [365] introduced a natural worst-case detection delay measure —maximal
conditional average delay to detection, which is less pessimistic than Lorden’s essential supremum
measure, and attempted to find an optimal procedure that would minimize this measure over proce-
dures subject to constraint on the average run length to false alarm. Pollak’s idea was to modify the
Shiryaev–Roberts statistic by randomization of the initial condition in order to make it an equalizer.
Pollak’s version of the Shiryaev–Roberts procedure startsfrom a random point sampled from the
quasi-stationary distribution of the Shiryaev–Roberts statistic. He proved that, for a large average
run length to false alarm, this randomized procedure is asymptotically nearly minimax within an
additive vanishing term. Since the Shiryaev–Roberts–Pollak procedure is an equalizer, it is tempt-
ing for one to conjecture that it may in fact bestrictly optimal for any false alarm rate. However, a
recent work of Moustakideset al. [310] and Polunchenko and Tartakovsky [373] indicates thatthe
Shiryaev–Roberts–Pollak procedure is not exactly minimaxand sheds light on this issue by con-
sidering a generalization of the Shiryaev–Roberts procedure that starts from a specially designed
deterministic point.

As we mentioned above, in the early stages the theoretical development was focused on iid
models. However, in practice the iid assumption may be too restrictive. The observations may be
either non-identically distributed or correlated or both,i.e., non-iid. An extension of Lorden’s results
to the case of dependent stationary random processes beforeand after the change has been done by
Bansal and Papantoni-Kazakos [26]. A general theory of changepoint detection is now available
both in the Bayesian and minimax settings due to the work of Tartakovsky and Veeravalli [475,
476], Baron and Tartakovsky [28], Lai [251], and Fuh [154, 155]. In particular, for a low false
alarm rate the asymptotic minimax optimality of the CUSUM and Shiryaev–Roberts procedures
has been established in [154, 155, 251, 475] and the asymptotic optimality of the Bayesian Shiryaev
procedure proven in [28, 476]. Moustakides [306] generalized for the Itô processes the CUSUM
minimax optimality result with respect to Lorden’s essential supremum measure acting on the total
expected Kullback–Leibler information.

For iid data and for large thresholds, the suitably standardized distributions of the CUSUM
and Shiryaev–Roberts stopping times are asymptotically exponential and fit well into the geometric
distribution even for a very moderate false alarm rate [369]. In this case, the mean time to false
alarm, the global false alarm rate metric, is obviously appropriate. However, for non-iid models
the limiting distribution is not guaranteed to be exponential or even close to it. In general, we
cannot even guarantee that large values of the mean time to false alarm will produce small values
of the maximal local false alarm probability. Therefore, the mean time to false alarm, a standard
and well accepted measure of false alarms, may not be appropriate in general. Instead of global
measures of false alarms, it may be more appropriate to use local measures, for example the local
false alarm probability, as suggested in [459]. This issue is extremely important for non-iid models
as a discussion in [293, 460] and other discussion pieces published inSequential Analysis, Vol. 27,
No. 4, 2008 show.

Another challenging extension is a multidecision changedetection–isolationproblem when,
along with detecting a change with a given false alarm rate, an identification/isolation of a true
post-change hypothesis with a given misidentification rateis required [48, 49]. An optimal solution
to the problem of abrupt change detection–isolation and a non-recursive algorithm that asymptot-
ically attains the lower bound were obtained by Nikiforov in[322] by using a minimax approach
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based on minimizing the Lorden-type worst-case mean detection–isolation delay for a given mean
time before a false alarm and for a given probability of falseisolation. The comparison between
the optimal sequential and repeated fixed sample size approaches and different recursive sequential
detection–isolation algorithms have been studied by Dragalin [125], Nikiforov [326, 328, 331], Os-
kiper and Poor [343], and Tartakovsky [453, 461]. A multiplehypothesis extension of the Shiryaev–
Roberts procedure by adopting a dynamic programming approach has been proposed by Malladi and
Speyer [287]. Next, Lai [252] generalized the results obtained for the worst-case mean detection–
isolation criterion in [322] to the case of dependent observations. Lai also proposed two new op-
timality criteria: a non-Bayesian one, where the maximum probabilities of false alarm and false
isolation within a given time window are constrained; and a Bayesian one, where a weighted sum
of the false alarm and false isolation probabilities is used. Finally, Lai designed a window-limited
generalized likelihood ratio-based algorithm with reduced computational complexity for on-line
processing that asymptotically attains the lower bounds.

1.3 Several Applications

Hypothesis testing and changepoint problems arise across various branches of science and engineer-
ing and have an enormous spectrum of important applications, including environment surveillance
and monitoring, biomedical signal and image processing, quality control engineering, link failure
detection in communication networks, intrusion detectionin computer networks and security sys-
tems, detection and tracking of covert hostile activities,chemical or biological warfare agent de-
tection systems as a protection tool against terrorist attacks, detection of the onset of an epidemic,
failure detection in manufacturing systems and large machines, target detection in surveillance sys-
tems, econometrics, financial markets, detection of signals with unknown arrival time in seismology,
navigation, radar and sonar signal processing, speech segmentation, and the analysis of historical
texts. In all of these applications, sensors take observations that undergo a change in their distribu-
tion in response to changes and anomalies in the environmentor changes in the patterns of a certain
behavior. The observations are obtained sequentially and,as long as their behavior is consistent with
the normal state, one is content to let the process continue.If the state changes, then one is interested
in detecting the change as soon as possible while minimizingfalse detections.

During the last years, a number of new application fields haveemerged: structural health mon-
itoring of bridges [24, 25, 43], wind turbines [178, 216], and aircraft [41, 102, 186, 188], detecting
multiple sensor faults in an unmanned air vehicle (UAV) [403], monitoring railway vehicle dynam-
ics [87], detecting road traffic incidents [521] or changes in highway traffic condition [170], monitor-
ing low consumption components of road vehicles [36], diagnosing automotive antilock braking sys-
tems [285], chemical process control [196], physiologicaldata analysis [398], surveillance of daily
disease counts [439], nanoscale analysis of soft biomaterials through atomic force microscopy [402],
biosurveillance [110, 342, 424], radio-astronomy [152, 438] and interferometry [341], spectrum
sensing in cognitive radio systems [201, 263], landmine detection [379], leak detection in water
channels [58], monitoring biological waste water treatment plants [19], environmental monitoring
[57, 120, 361, 385, 409], hydrology [286], handling climatechanges [284, 393, 526], navigation
systems monitoring [295, 336, 408], detecting salient motion for dynamic scene modeling [233],
human motion analysis [85], video scene analysis [262], sequential steganography [479, 480], bio-
metric identification [7], onset detection in music signals[59], detecting changes in large payment
card datasets [107], running consensus in sensor networks [82, 83], and distributed systems moni-
toring [382, 461, 475].

In particular a number of computer and network problems are now addressed with the aid
of sequential hypothesis testing and change detection algorithms: anomaly detection in IP net-
works [477], secure IP telephony [386], detection of intrusion, viruses, and other denial of service
(DoS) attacks [215, 357, 433, 472], including scanning worms infections [397, 406], bioterror-
ism detection and other aspects of global security, Internet access patterns characterization [208],
teletraffic monitoring [2, 3, 211, 313], tracking the preferences of users in recommendation sys-
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tems [520], network bandwith monitoring [183], active queue management [74], and even cost
estimation for software evolution [383] and software quality and performance monitoring [171].

In this section, we describe several typical application examples of sequential hypothesis testing
and change detection techniques. For each example, we give ashort description of the particular
problem and its context. For some of these models, the detailed information about the possibly
complex underlying physical models is given in Part III. This selection of examples is not exclusive;
it is intended to give only sufficient initial insights into the variety of problems that can be solved
within this framework. In Part III, we come back to some application problems, showing results
of the processing of real data with the aid of sequential hypothesis testing and change detection
algorithms.

In Subsections 1.3.1 and 1.3.2 we start with quality controland target detection, and we continue
with integrity monitoring of navigation systems in Subsection 1.3.3. Then in Subsection 1.3.4 we
describe a couple of signal processing problems, namely segmentation of signals and seismic signal
processing. Mechanical systems integrity monitoring is discussed in Subsection 1.3.5. Finally, we
discuss application to finance and economics and to computernetwork surveillance and security in
Subsections 1.3.6 and 1.3.7.

1.3.1 Quality Control

One of the earliest applications of change detection is the problem of quality control, or continuous
production monitoring. On-line quality control deals withscenarios where the measurements are
taken one at a time and the decisions are to be reached sequentially as the measurements are taken.
Consider a production process that can bein controlandout of control. The events associated with
the transitions of this process from the in-control state tothe out-of-control state are calleddisorders.
For many reasons, it is necessary to detect a disorder as quickly as possible after its occurrence as
well as to estimate its onset time. It may be a question of safety of the technological process, quality
of the production, or classification of output production items. For all these problems, the best
solution is thequickest detection of the disorder with as few false alarms as possible. This criterion
is used because the delay until detection is a time interval during which the technological process is
out of control, but there is no action of the monitoring system to this event. From both the safety and
quality points of view, this situation is obviously highly undesirable. On the other hand, frequent
false alarms are inconvenient because of the cost of stopping production, verifying whether this is
a true or false disorder, and searching for the origin of the defect; nor is this situation desirable
from a psychological point of view, because the operator will stop using the monitoring system very
quickly if it produces too-frequent false alarms. Thus, an optimal solution is based on atradeoff
between the speed of detection or detection delay and the false alarm rate, using a comparison of
the losses implied by the true and false detections.

We stress that we are interested in solving this problem using a statistical approach, that is,
assuming that the measurements are a realization of a randomprocess. Because of the random be-
havior, large fluctuations can occur in the measurements even when the process is in control, and
these fluctuations result in false alarms. On the other hand,any (even the best) decision rule cannot
detect the change instantaneously, again because of the random fluctuations in the measurements.
When the technological process is in control, the measurements have a specific probability distri-
bution. When the process is out of control, this distribution changes. If a parametric approach is
used, we speak about changes in the parameters of this probability distribution. A chemical plant
where the quality of the output material is characterized bythe concentration of some chemical
component is a typical example, where the concentration is distributed according to the Gaussian
law. Under normal operating conditions, the mean value and standard deviation of this normal dis-
tribution areµ0 andσ0, respectively. Under abnormal conditions three types of changes can occur
in these parameters:

• Deviation from the reference mean valueµ0 towardµ1 with constant standard deviation, i.e., a
systematic error;
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• Increase in the standard deviation fromσ0 to σ1 with constant mean, i.e., a random error;

• Both the mean and the standard deviation change, i.e., systematic and random errors.

The goal is to design a statistical decision rule (detectionprocedure, algorithm) that can detect these
disorders effectively. Typically a decision procedure involves comparing a statistic sensitive to a
change with a threshold that controls a false alarm rate.

If a decision statistic is chosen, the tuning of the statistical decision rule is reduced to selecting a
threshold that guarantees the tradeoff between the false alarm rate and the mean delay to detection.
Several types of decision rules are used in the industry as standards, they are calledcontrol charts,
and each differs by the detection statistic. In the simplestcase, the pre-change and post-change
parameters are assumed to be known. In this case the decisionstatistics should be a function of the
likelihood ratio for the pre- and post-change parameters.

The main references in the area of quality control and Statistical Process Control (SPC) are the
books [80, 81, 114, 130, 153, 184, 288, 303, 340, 348, 434, 482, 499, 500, 501, 515] and the survey
papers [65, 106, 443, 447, 509, 510, 511], with special notice for [381] and [67, 185].

1.3.2 Target Detection and Tracking

Surveillance systems, such as those for ballistic and cruise missile defense, deal with the detection
and tracking of moving targets. The most challenging problem for such systems is the quick detec-
tion of maneuvering targets that appear and disappear at unknown points in time against a strong
cluttered background. To illustrate the importance of thistask, we remark that under certain condi-
tionsa few seconds decreasein the time it takes to detect a sea/surface skimming cruise missile can
yield a significant increase in theprobability of raid annihilation. Furthermore, usually detection
systems are multichannel, since the target velocity is unknown. Thus, finding an optimal combi-
nation of a multihypothesis testing algorithm with changepoint detection methods is a challenge.
This challenging applied problem can be effectively solvedusing the quickest detection–isolation
methods developed in this book.

We also note that standard ad hoc methods for target track initiation and termination [27, 68, 69]
can be substantially improved by using advanced quickest detection methods that are the subject of
this book. Improving the operating characteristics is especially important for Space-Based Infrared
and Space Tracking and Surveillance System sensors with chaotically vibrating lines-of-sight that
have to provide early detection and tracking of low observable targets in the presence of highly-
structured cluttered backgrounds.

1.3.3 Navigation System Integrity Monitoring

For many safety-critical aircraft navigation modes (landing, takeoff,etc.), a major problem of exist-
ing navigation systems consists in their lack of integrity.The integrity monitoring concept, defined
by the International Civil Aviation Organization, requires a navigation system to detect the faults
and remove them from the navigation solution before they sufficiently contaminate the output. Re-
cent research shows that the quickest detection–isolationof the navigation message contamination
is crucially important for the safety of the radio-navigation system, e.g., GPS, GLONASS, Galileo,
etc. It is proposedto encourage all the transportation modes to give attentionto autonomous in-
tegrity monitoring of GPS signals[93].

Monitoring the integrity of a navigation system can be reduced to a quickest change detection–
isolation problem [21, 324, 325, 332]. The time when the fault occurs and the type of fault are not
just unknown but sometimes can be intentionally chosen to maximize their negative impacts on
the navigation system. Therefore, the optimality criterion should favor fast detection in the worst
case with few false alarms and false isolations. Fast detection is necessary because abnormal mea-
surements are taken in the navigation system between the changepoint (fault onset time) and its
detection, which is clearly very undesirable. On the other hand, false alarms/isolations result in
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lower accuracy of the estimates because incorrect information is used at certain time intervals. An
optimal solution involves a tradeoff between these two contradictory requirements. The changepoint
detection–isolation techniques developed in this book canbe used for obtaining optimal solutions
to this challenging problem. This is discussed in Section 11.1. Historical references related to iner-
tial navigation system monitoring are [315, 506]. The integrity monitoring of navigation systems is
investigated in [93, 227, 295, 324, 325, 332, 336, 446]. Somechallenges are pointed out in [408].

1.3.4 Signal Processing Applications

1.3.4.1 Segmentation of Signals and Images

A first processing step of recognition-oriented signal processing consists in automatic segmenta-
tion of a signal. A segmentation algorithm splits the signalinto homogeneous segments, with sizes
adapted to the local characteristics of the analyzed signal. The homogeneity of a segment can be
formulated in terms of the mean level or in terms of the spectral characteristics. The segmentation
approach has proved useful for the automatic analysis of various biomedical signals, in particular
electroencephalograms [11, 73, 78, 207, 213, 404] and electrocardiograms [172]. Several segmen-
tation algorithms for recognition-oriented geophysical signal processing are discussed in [39]. A
changepoint detection based segmentation algorithm has also been introduced as a powerful tool for
the automatic analysis of continuous speech signals, both for recognition [10] and for coding [117].

The main desired properties of a segmentation algorithm arelow false alarm and mis-detection
ratesand asmall detection delay, as in the previous examples. However, we have to keep in mind
that signal segmentation is usually only the first step of a recognition procedure. From this point of
view, it is obvious that the properties of a given segmentation algorithm also depend upon the pro-
cessing of the segments which is performed at the next stage.For example, it is often the case that,
for segmentation algorithms, false alarms (sometimes called oversegmentation) are less critical than
for onset detection algorithms. A false alarm for the detection of an imminent tsunami obviously has
severe and costly practical consequences. On the other hand, in a recognition system, false alarms
at the segmentation stage can often be easily recognized andfiltered at the next stage, which means
that the loss due to false alarms is small at the first segmentation stage. A segmentation algorithm
exhibiting the above-mentioned properties is potentiallya powerful tool for a recognition system.

It should be clear that a segmentation algorithm allows us todetect several types of events. Ex-
amples of events obtained through a spectral segmentation algorithm and concerning recognition-
oriented speech processing are discussed in [10]. Other examples of events in seismology are men-
tioned in the previous subsection.

Changepoint detection methods are also efficient and usefulin image segmentation and bound-
ary tracking problems [96].

1.3.4.2 Seismic Data Processing

In many situations of seismic data processing, it is necessary to estimatein situ the geographical
coordinates and other parameters of earthquakes.

The standard sensor equipment of a three-component seismicstation results in the availability
of records of seismograms with three components, namely theeast-west, north-south, and vertical
components. When an earthquake arises, the sensors begin torecord several types of seismic waves
(body and surface waves), among which the more important ones are theP-wave and theS-wave.
TheP-wave is polarized in the source-to-receiver direction, namely from the epicenter of the earth-
quake to the seismic station. Hence, it is possible to estimate the source-to-receiver azimuthα using
the linear polarization of theP-wave in the direction of propagation of the seismic waves. The two
main events to be detected are theP-wave and theS-wave; note that theP-wave can be very low-
contrast with respect to seismic noise. The processing of these three-dimensional measurements can
be split into three tasks:

1. On-line detection and identification of the seismic waves;
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2. Off-line estimation of the onset times of these waves;

3. Off-line estimation of the azimuth using the correlationbetween the components of theP-wave
segments.

TheP-wave has to be detectedvery quickly with a fixed false alarms rate, so that theS-wave can
also be detected on-line. The detection of theP-wave is a difficult problem, because the data con-
tain many nuisance signals (interference) coming from the environment of the seismic station, and
discriminating between these events and a trueP-wave is not easy. The same is true for theS-wave,
which is an even more difficult problem because of a low signal-to-noise ratio and numerous inter-
ferences between theP-wave and theS-wave.

After P-wave andS-wave detection, theoff-line accurate estimation of onset timesis required
for both types of waves. A possible solution is to use fixed-size samples of the three-dimensional
signals centered at a rough estimate of the onset time provided by the detection algorithm. Some
references for seismic data processing are [235, 301, 334, 363, 377, 478].

1.3.5 Mechanical Systems Integrity Monitoring

Detecting and localizing damages for monitoring the integrity of structural and mechanical systems
is a topic of growing interest, due to the aging of many engineering constructions and machines and
to increased safety norms. Many structures to be monitored,e.g., civil engineering structures subject
to wind and earthquakes, aircraft subject to turbulence, are subject to both fast and unmeasured
variations in their environment and small slow variations in their modal or vibrating properties.
While any change in the excitation is meaningless, damages or fatigues on the structure are of
interest. But the available measurements do not separate the effects of the external forces from
the effect of the structure. Moreover, the changes of interest, that may be as small as 1% in the
eigenfrequencies, are visible neither on the signals nor ontheir spectra. A global health monitoring
method must rather rely on a model which will help in discriminating between the two mixed causes
of the changes that are contained in the data. This vibrationmonitoring problem can be stated as
the problem of detecting changes in the autoregressive (AR)part of a multivariable autoregressive
moving average (ARMA) model having nonstationary MA coefficients. Change detection turns out
to be very useful for this monitoring purpose, for example for monitoring the integrity of the civil
infrastructure [24, 25, 45].

The improved safety and performance of aerospace structures and reduced aircraft development
and operating costs are major concerns. One of the critical objectives is to ensure that the newly
designed aircraft is stable throughout its operating range. A critical aircraft instability phenomenon,
known as flutter, results from an unfavorable interaction ofaerodynamic, elastic, and inertial forces,
and may cause major failures. A careful exploration of the dynamical behavior of the structure sub-
ject to vibration and aeroservoelastic forces is thus required. A major challenge is the in-flight use
of flight test data. The flight flutter monitoring problem can be addressed on-line as the problem of
detecting that some instability indicators decrease belowsome critical value. CUSUM-type change
detection algorithms are useful solutions to these problems [41, 46, 296, 531].

These application examples illustrate change detection with estimating functions different from
the likelihood [36, 38].

The vibration-based structural health monitoring problemis explored in Section 11.2.

1.3.6 Finance and Economics

Stochastic modeling in finance is a new application area for optimal stopping and quickest change-
point detection. For example, in theRussian option[410] the fluctuations in the price of an asset
are modeled by geometric Brownian motion (the Black–Sholtzmodel), and the problem consists
in finding a stopping time that maximizes a certain gain. In this optimization problem, the option
owner is trying to find an exercise strategy that maximizes the expected value of his future reward
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with a certain interest rate for discounting. This problem can be effectively solved using the optimal
stopping theory which is a part of the book. A similar approach can be applied for finding an optimal
solution to theAmerican put optionwith infinite horizon [359].

An application of the optimal stopping theory in financial engineering imposes an analysis for
the gain process depending on the future and referring to an optimal prediction problem, which
falls outside the scope of the classical optimal stopping framework. A typical setting is related to
minimizing over a stopping time a functional of a Brownian motion.

These examples show that the optimal stopping theory can be effectively applied to many prob-
abilistic settings of theoretical and practical interest.In addition, we mention the articles [52, 358]
and references therein.

We also argue that quickest changepoint detection schemes can be effectively applied to the
analysis of financial data. In particular, quickest changepoint detection problems are naturally asso-
ciated with rapid detection of the appearance of an arbitrage in a market [421].

1.3.7 Computer Network Surveillance and Security

A considerable interest exhibited over the past decade in the field of defense against cyber-terrorism
in general, and network security in particular, has been induced by a series of external and inter-
nal attacks on public, private corporate, and governmentalcomputer network resources. Malicious
intrusion attempts occur every day and have become a common phenomenon in contemporary com-
puter networks. Examples of malicious activities are spam campaigns, phishing, personal data theft,
worms, distributed denial-of-service (DDoS) attacks, address resolution protocol man-in-the-middle
(ARP MiM) attacks, fast flux,etc.These pose an enormous risk to the users for a multitude of rea-
sons such as significant financial damage, or severe threat tothe integrity of personal information.
It is therefore essential to devise automated techniques todetect such events as quickly as possible
so that an appropriate response can be provided and the negative consequences for the user can be
eliminated.

The detection of traffic anomalies is done by employing an intrusion detection system (IDS).
Such systems in one way or another capitalize on the fact thatmalicious traffic is noticeably different
from legitimate traffic. Depending on the principle of operation there are two categories of IDSs:
either signature or anomaly based [113, 224]. A signature-based IDS inspects the passing traffic with
the intent to find matches against already known malicious patterns. By contrast, an anomaly-based
IDS is first trained to recognized the normal network behavior and then watches for any deviation
from the normal profile.

Currently both types of IDSs are plagued by a high rate of false positives and the susceptibility
to carefully crafted attacks that blend themselves into normal traffic. These two systems are com-
plementary, and neither alone is sufficient to detect and isolate the myriad of network malicious or
legitimate anomalies generated by attacks or other non-malicious events.

Intrusions usually lead to an abrupt change in the statistical characteristics of the observed traffic.
For example, DDoS attacks lead to changes in the average number of packets sent through the
victim’s link per unit time. It is therefore appealing to formulate the problem of detecting computer
intrusions as aquickest changepoint detection problem: to detect changes in statistical models as
rapidly as possible, i.e., with minimal average delays, while maintaining the false alarm rate at a
given low level. The feasibility of this approach has been already demonstrated in [472, 473, 474].

To make the detection delay small one has to increase the false alarm rate (FAR), andvice versa.
As a result, the FAR cannot be made arbitrarily low without sacrificing other important performance
metrics such as the detection delay and the probability of detection in a given time interval. There-
fore, while attack detection algorithms can run with very low delay, this comes at the expense of
high FAR, and thus changepoint detection techniques may notbe efficient enough for intrusion de-
tection. The ability of changepoint detection techniques to run at high speeds and with low delay,
combined with the generally low frequency of intrusion attempts, presents an interesting opportu-
nity: What if one could combine such techniques with others that offer very low false alarm rates
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but are too heavy to use at line speeds? Do such synergistic IDSs exist, and how can they be in-
tegrated? Such an approach is explored in Section 11.3. Specifically, a novel hybrid approach to
network intrusion detection that combineschangepoint detection based anomalyIDS with aflow-
based signatureIDS is proposed. The proposed hybrid IDS with profiling capability complements
existing anomaly- and signature-based systems. In addition to achieving high performance in terms
of the tradeoff between delay to detection, correct detection, and false alarms, the system also allows
for isolating the anomalies. Therefore, the proposed approach overcomes common drawbacks and
technological barriers of existing anomaly and signature IDSs by combining statistical changepoint
detection and signal processing methods.


