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1 SUMMARY  
Prior to the Proceed program, the main challenges preventing practical demonstrations and use of 
Fully Homomorphic Encryption (FHE) were efficiency and scalability. At the start of the 
Program, the state-of-the-art FHE implementations were both inefficient and not scalable. Our 
work in Scalable Implementation of Primitives for Homomorphic EncRyption (SIPHER) has 
brought FHE into the realm of practice, bringing several orders of magnitude runtime 
improvement, and resulting in FHE implementations that can be executed on single and 
multicore computers (including iPhones). Furthermore, our implementation of an FHE hardware 
accelerator on a Virtex 7 Field Programmable Gate Array (FPGA) can speed up core FHE 
functions by over three orders of magnitude.  

Previous FHE schemes were inefficient because the underlying algorithms and their 
implementations take too long to run at an appropriate level of assured security.  Similarly, these 
FHE schemes were not scalable because memory requirements for encrypting practical-length 
messages with a reasonable level of security exceed the abilities of highly parallel computation 
devices like FPGAs.  These issues are driven by several factors:  
 The very large keys required for an assured level of security and large expansion of

unencrypted plaintext messages to encrypted ciphertext.
 The large computation depth needed for Bootstrapping/Recryption circuits (an efficiency

bottleneck of FHE schemes).
 The lack of scalable and highly optimized implementations of basic modulus ring operations,

which are building blocks used across many lattice FHE schemes.

Our activities culminated in many orders of magnitude improvement for these bottlenecks. We 
achieved this revolutionary improvement by significantly advancing the state of the art in a 
number of independent focus areas: 
 Multiple foundational improvements in the underlying FHE scheme for more efficient and

scalable implementations of FHE operations.  These improvements include a new approach to
FHE Recryption, and the use of modulus and ring reduction to limit ciphertext expansion.
 Parallelizable, efficient algorithm design for scalable implementations of basic computational

primitives at the core of lattice FHE schemes improving runtime of all FHE operations.
 Advanced code development approach for efficient

and flexible embedded and FPGA implementations.

Figure 1 shows the layered SIPHER approach.  We 
provide software interfaces for our optimized basic 
FHE operations. This lets users construct general 
applications computing on encrypted data. Core 
lattice-based primitives form the heart of our FHE 
implementations.  Our modular approach allowed us 
to: 1) construct and experimentally modify multiple 
implementations of FHE operations and 2) easily 
deploy code on FPGA hardware to run the primitives 
on cost-effective, massively parallel hardware, 
providing 3 orders of magnitude improvement in 
basic FHE operation runtimes.  

Figure 1: Layered SIPHER approach 
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2 INTRODUCTION 
This report is organized as follows:  

In Section 2 we introduce our work and describe our NTRU-based FHE cryptosystem that 
motivates our design choices in the SIPHER library. We introduce our two demonstration 
applications: Multiparty Voice over IP (VOIP) Teleconferencing and FHE based Keyword 
Search of Encrypted Documents. We finally introduce our work in FPGA hardware acceleration 
of FHE Primitives. 

In Section 3 we discuss our Methods, Assumptions, and Procedures. Specifically we discuss our 
methodology of a three pronged research approach: theory, software design, and hardware 
acceleration. We then detail the SIPHER crypto system issues and developmental approaches 
from the theoretical, software, and hardware  perspectives. We discuss the issues of FHE 
parameter selection for VOIP and Encrypted Keyword Search. Finally, we discuss approaches to 
parallelism for accelerating both our software and hardware implementations.  

In section 4 we discuss actual implementation details for the SIPHER from the point of view of 
theory, software and hardware. We then present key experimental results, including basic 
SIPHER software library operation, VOIP and Key Word Search performance and Hardware 
Acceleration speedup. 

Section 5 is a discussion of our insights and conclusions. 

Section 6 contains our recommendations for future work for furthering the applicability of our 
FHE efforts towards wide spread practice.   

2.1 Practical Somewhat and Fully Homomorphic Encryption (SHE and 
FHE) 

Recent breakthroughs in Fully Homomorphic Encryption (FHE) have shown that it is 
theoretically possible to securely run arbitrary computations over encrypted data without 
decrypting the data [1], [2]. Known FHE schemes have several nice properties which make them 
very attractive techniques to consider addressing pressing cybersecurity issues. For one, FHE 
schemes are believed to be very secure. The security of FHE schemes are derived from the 
hardness of mathematical problems which are currently believed to be hard to solve even with 
quantum computing devices [3]. Known FHE schemes are consequently labelled as post-
quantum, meaning that there are no known algorithms which are computationally efficient that 
can be used to practically break these schemes, even for execution on quantum computing 
devices. In addition to security, a practical FHE capability would be game-changing for 
cybersecurity researchers and practitioners. With practical FHE, sensitive data could be 
encrypted and placed into a low cost cloud computing environment for processing without 
having to share decryption keys. This could greatly reduce the operational costs of highly 
regulated industries such as medical, legal, financial and government industries where regulatory 
compliance restricts the ability to outsource computation to low cost cloud computing 
environments. Practical FHE could also greatly reduce the impact of insider attacks by greatly 
restricting who can access sensitive data within an organization, but still permitting processing of 
this data. 

Despite the attractiveness of known FHE schemes, there are practical limitations that have 
prevented their broad practical use. As indicated in early implementation research [4], runtime is 
a major obstacle to be overcome before homomorphic encryption technologies become practical. 

Approved for Public Release; Distribution Unlimited.
2



Solutions to FHE runtime challenges have been explored through several means, including by 
improving the theoretical efficiency of the underlying scheme [5]– [9], and by developing more 
efficient implementations of these schemes [10]– [16]. Despite these advances in FHE schemes 
and implementations, there have been little results on the application of these technologies. 
Many of the implementation-focused papers have used the homomorphic evaluation of the AES 
circuits as benchmarks [10], [13], [14]. Beyond this is [17] which uses the HELib library [15] to 
support statistical operations such as linear regression.  

2.2 The Scalable Implementation of Primitives for Homomorphic 
EncRyption (SIPHER) Library for SHE and FHE 

In this report we discuss our experience designing a general lattice encryption library called 
SIPHER (Scalable Implementation of Primitives for Homomorphic EncRyption) to support both 
limited depth computations for Somewhat Homomorphic Encryption (SHE) and full depth 
computations for FHE. We discuss using this library to support an encrypted end-to-end VoIP 
teleconferencing application on an embedded processor (iPhone). We also discuss using the 
same library to support Encrypted Keyword Search (EKS) on single and multicore Linux 
computers. Finally, we discuss accelerating the single core EKS with an attached FPGA based 
FHE accelerator, showing that a single Virtex 7 FPGA will execute FHE primitives 1600x faster 
than a single core and 35x faster than a 64 core system. 

Unlike prior libraries, SIPHER is intended to be as adaptable and extensible as possible, with 
modular software architecture to support rapid prototyping of the library, easier integration of the 
library into a broader computing infrastructures and possessing increased parallelism. Our 
motivation with the SIPHER library is that as prior homomorphic encryption implementations 
have reduced absolute runtime, there has been limited attention paid to software engineering 
issues that need to be addressed for these libraries to be flexibly adapted to application contexts.  

We implement in software specialized lattice primitives such as Ring Addition, Ring 
Multiplication and the Chinese Remainder Transform (CRT).We use our primitive 
implementations to construct the FHE operations of Key Generation (KeyGen), Encryption 
(Enc), Decryption (Dec), Evaluation Addition (EvalAdd), Evaluation Multiplication (EvalMult) 
and Bootstrapping (Boot). We use supporting Modulus Reduction (ModReduce), Ring Reduction 
(RingReduce) and Key Switching (KeySwitch) operations to augment the EvalMult operation 
and support larger depth computations before Bootstrapping or decreasing the security of our 
scheme. Finally, Recryption (Bootstrapping) is a function that will refresh a ciphertext that has 
previously been operated on, in order to enable further processing. These primitives are shown 
schematically in Figure 2. 
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Although SIPHER can support general FHE capabilities, we can also target our design on a more 
focused SHE capability which supports the execution of limited-depth programs on encrypted 
data. Known FHE schemes are built from SHE schemes with the addition of Bootstrapping to 
extend the depth of computation supported by SHE. Our Bootstrapping approach is based on 
[18]. We particularly focus our SHE/FHE design and implementation efforts on a variant of the 
LTV scheme [8] which is itself based on NTRU [19]. We also focus on implementations for 
enterprise computing environments with multi-core x86 computing infrastructure and hardware 
acceleration on FPGAs to support parallelism. 

Although it is possible to support parallelism at multiple levels in our design, we focus on 
providing parallelism using the “double-CRT” representations of ciphertext [10]. Prior SHE and 
FHE implementation designs [4], [11], [20], [21], for the most part, rely on single-threaded 
execution on commodity CPU-type hardware, partially due to the difficulty of or lack of native 
support for multi-threaded execution with underlying software libraries [22], [23]. Although 
there have been prior implementation efforts that support double-CRT representations to reduce 
runtime by reducing the bit-widths of ciphertexts to be less than 64 bits, ours is the first 
implementations that leverages double-CRT implementations to reduce runtime through 
parallelism. 

2.3 Application of SHE to multiparty Voice over IP Teleconferencing 
Despite our design foci on a general SHE/FHE library for enterprise environments, we show how 
our library is adaptable to support a practical end-to-end encrypted VoIP teleconferencing 
prototype running on commodity iOS-based iPhones. The basis of this application is that there 

Figure 2: SIPHER lattice library primitives 
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has been an unmet technological need to provide a scalable capability for multiple 
geographically distributed people need to simultaneously converse as a group at the same time 
over commercial data networks. This need, until know, has been partially served by either have 
physically secure dedicated point-to-point communication links as provided by dedicated 
circuits, or through physically unsecured point-to-point communication links which are made 
secure with point to point encryption technologies [24], [25]. These prior approaches to secure 
communication are either not scalable or have not adequately addressed several important 
vulnerabilities to address this need. Physically secure communication links are not feasible over 
broad geographic areas and are not accessible by the general population. Point-to-point 
encryption solutions do no scale because when there are more than a handful of participants in a 
teleconference call, a large number of point-to-point communication links are practically difficult 
to setup and maintain, often leading to latency issues which would degrade the quality of user 
experiences. For these reasons, there is a need for such a technology to provide scalable, secure 
and practical teleconferencing services which can be used to host multi-party negotiations, 
planning, education, and information distribution of a sensitive nature.  

VoIP can provide a fundamentally scalable and practical approach to teleconferencing, especially 
with the advent of global packet-switched information networks. Unfortunately, existing VoIP 
teleconferencing capabilities such as GoToMeeting, Skype and Mumble among others have not 
been both scalable and secure against data leaking to adversaries who wish to snoop on private or 
even proprietary group communication. For example, these existing VoIP technologies have 
been vulnerable to man-in-the-middle attacks of various types [26]. The majority of widely used 
existing VoIP teleconferencing capabilities require a central VoIP server to mix all of the VoIP 
signals from clients which are then sent back to the clients. The VoIP mixing operation, which 
merges the VoIP streams from the clients, has until now needed to be performed in the clear, on 
unencrypted VoIP data. This creates a possible opportunity for adversaries to snoop on otherwise 
protected VoIP data if the adversaries gain access to the VoIP server. This security vulnerability 
is a practical security challenge because VoIP teleconferencing servers are often hosted in a semi 
secure environment, such as by commodity cloud providers such as Amazon AWS or Microsoft 
Azure which might not be completely trusted. This induces an unfortunate trade-off of for this 
architecture of either requiring all participants to maintain group conversations in the clear in 
untrusted environments or paying a higher cost of maintaining access to a trusted VoIP server if 
secure teleconferencing is needed. The limitation of required server trust has until now prevented 
the use of VoIP teleconferencing technologies from being used in regulated industries where 
privacy is of an utmost concern. 

Taken together, these technological deficiencies and practical needs point to a need for a VoIP 
teleconferencing capability where VoIP data can never decrypted except on the clients which 
have access to decryption keys. Thus, unlike previous VoIP attack analyses which focus on 
signaling attacks [27], [28] during VoIP call set-up, we are particularly interested in protecting 
against man-in-the-middle attacks to protect against compromise at VoIP servers.  

As part of our project we developed a secure, scalable and practical method to protect against the 
leakage of sensitive VoIP teleconferences even on VoIP teleconference servers that have been 
fully compromised. The basis of our approach is to modify the SIPHER library to support an 
efficient, additive homomorphic encryption. Teleconferencing clients encode their voice samples 
with an additive encoding scheme, encrypt their encoded voice data with an additive 
homomorphic encryption scheme, send their encrypted voice samples to a mixer which performs 
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an encrypted homomorphic addition on the encrypted voice and sends the results back to the 
clients. The clients then decrypt, decode and play back the result. Our scheme relies on the pre-
sharing of a common private key for an additive homomorphic encryption scheme, but it is 
possible in principle to practically generalize beyond this pre-shared key design. 

We modified the SIPHER library and integrated it with an existing VoIP teleconferencing 
application to provide this capability on commodity iPhone clients and the current lowest-cost 
Amazon EC2 server. We describe the design tradeoffs that we made to provide this capability 
and focus on novel VoIP encoding schemes that makes the mixing of encrypted signals possible 
at the VoIP server. We discuss related engineering tradeoffs we make so this capability provides 
relatively high sound quality with full-duplex 100 kbs data rates. This initial implementation is 
intended to be a proof-of-concept capability, with the possibility of improving upon this 
technology with existing key management technologies [29] and session initiation technologies 
[30] with additional engineering investment and little or no research risk. 

A preliminary version of some of the material in this report was published [31], but without full 
discussion of the software engineering and design tradeoffs of the SIPHER library, and without 
any discussion of the end-to-end encrypted VoIP application.  

2.4 Application of FHE to keyword search of encrypted documents 
As a demonstration of our FHE capability, we focused on the e-mail filtering problem.  We 
selected a use model where users encrypt e-mail messages on their (trusted) computer, and the 
messages are sent to an untrusted mail server for forwarding to a destination. In this use model, 
the mail server also acts as a “border guard”: each e-mail message is checked for the presence of 
certain strings, and is only passed on to its destination if those strings are absent. Because the e-
mail messages are private and for that reason encrypted, the border guard must perform this 
checking without decrypting the messages. Such a use model might appear in a corporate 
enclave where users need the ability to send encrypted messages out of the enclave and over the 
Internet, yet the administrators of the enclave need the ability to ensure that certain information 
is not allowed beyond the enclave. Interestingly enough, this application was one of the few 
applications identified during the Proceed program as having an appropriate security model for 
practical application for FHE. 

2.1 Hardware acceleration of FHE primitives 
One of our main contributions to the Proceed program has been the development of FPGA based 
hardware primitives to accelerate computation on encrypted data.  Cipher texts in our scheme are 
represented as rectangular matrices of 64-bit integers. This bounding of the operand sizes has 
allowed us to take advantage of modern code generation tools developed by Mathworks to 
implement VHDL code for FPGA circuits directly from Simulink models.  Furthermore the 
implicit parallelism of the scheme allows for large amounts of pipelining in the implementation 
in order to achieve efficient throughput. The resulting VHDL is integrated into an AXI4 bus 
“Soft System on Chip” using Xilinx platform studio and a Microblaze soft core processor 
running on aVirtex7 VC707 evaluation board for use as an attached processor over Gigabit 
Ethernet. The resulting system can also be hosted directly in a computer using the PCIe Express 
interface for direct access by the host CPU (eliminating the need for the Microblaze processor). 
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 
3.1 Our methodology (the three pronged research approach)  
Our methodology for SIPHER was to adopt a three-pronged research approach, as shown in 
Figure 3. Our work falls into three specific categories. The first focus is on the theoretical aspects 
of FHE. Our FHE expert provides the latest in theoretical innovations as applied to our 
constrained design space. The second focus is on implementation of software designs that will 
support practical FHE operations. Often algorithms are developed by the theory group and 
passed on to the design group, iterating back and forth as improvements are found.  The third 
thrust area is in highly parallelized implementations, for example on multi-core processors, but 
also in the extreme case with FPGA implementations. We use a common development 
environment and code generation tools to rapidly prototype our FHE operations in these highly 
parallelized implementations. The constraints imposed by the implementations are actually fed 
back into the theory group, where it drove the search for a more efficient implementation of the 
algorithms from first principles.   

3.2 Procedure of approach  
Over the course of our four year program, developments generally cascaded from theory to 
design then to acceleration. Each research thrust was generally six months behind the progress of 
the one before it. Figure 4 shows a timeline of the various milestones of the program with the 
major contribution of each six month period. The initial year focused on basic SHE algorithms 
and early hardware implementation of key primitive operations. This provided a basic 
functionality, and also required addressing implementation issues such as efficient modulo 
arithmetic in hardware, and ways to limit the number of bits required for operations. The second 
year focused on scaling up the software implementations, and implementing the first FHE 
Processing Unit (FHEPU) on an FPGA (first a Virtex 6, then later a Virtex 7). The third year 
added the breakthrough theory of Power of 2 bootstrapping, and also focused work on the two 

Figure 3: The multi-pronged research approach of SIPHER 
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applications mentioned in this report (secure VOIP teleconferencing and encrypted keyword 
search). The final year focused on accelerating the KWS with FHE (including bootstrapping) 
using FPGA acceleration.  

3.3 SIPHER cryptosystem  
3.3.1 SIPHER cryptosystem design 

We begin by describing the overall target of cryptosystem target of the SIPHER library. We use 
this cryptosystem based on [8] to motivate design and engineering tradeoffs in our SIPHER 
library, even though we target SIPHER to be as modular and adaptable as possible to support 
variations of this scheme. 

We begin with some mathematical preliminaries based on our focus on power-of-2 cyclotomics. 
For n a power of 2, we define the ring ܴ	 ൌ 	Ժሾݔሿ/ሺݔ 	 1ሻ (i.e., integer polynomials modulo 
ݔ 	 1ሻ where, and for any positive integer q, define Rq = R/qR (i.e., integer polynomials 
modulo xn + 1, with mod-q coefficients). The message space is Rp for some integer p ≥ 2, and 
most arithmetic operations are performed modulo some q ≫ p that is relatively prime with p. 
Fast addition and multiplication in Rq can be performed by using the mod-q CRT representation 
of elements. 

Basic functions 

With these mathematical preliminaries, the mathematical description of the basic LTV-variant 
scheme with “least significant bit” message encoding is as follows. (Concrete parameters and 
implementation discussions are given later.) 

• KeyGen: choose a “short” f ∈ R such that f = 1 mod p and f is invertible modulo q, and a
“short” g ∈ R. Output pk = h = gf−1 mod q and sk = f.
Note that f is invertible modulo q if and only if each of its mod-q CRT coefficients is
nonzero. The CRT coefficients of f−1 (modulo q) are just the mod-q inverses of those of f.
Concretely, the “short” elements f and g can be chosen from discrete Gaussians. E.g., we
can let f = p · f′ + 1 for some Gaussian-distributed f′.

• Enc(pk = h, μ ∈ Rp): choose a “short” r ∈ R and a “short” m ∈ R such that m = μ mod p.
Output c = p · r · h + m mod q.
Concretely, m can be chosen as m = p ·m′ + μ for a Gaussian-distributed m′. In some
cases it may be better to choose m as a zero-centered random variable congruent to μ
modulo p.

• Dec(sk = f, c ∈ Rq): compute തܾ = f · c mod q, and lift it to the integer polynomial b ∈ R
with coefficients in [−q/2, q/2). Output μ = b mod p.

Figure 4: A timeline of SIPHER advances over the duration of the program 
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Homomorphic operations 

• EvalAdd(c0, c1): output c = c0+ c1mod q.
• EvalMult(c0, c1): output c = c0· c1 mod q.

With the use of EvalMult, the decryption procedure changes slightly. Define the “degree” of 
ciphertexts as follows: a freshly generated ciphertext has degree 1, and the degree of c = 
EvalMult(c0, c1) is the sum of the degrees of c0 and c1. Then decryption of a degree-d ciphertext 
c is the same as above, except that we compute തܾ = fd · c mod q. 

Key Switching 

Key switching converts a ciphertext of degree at most d, encrypted under secret key f1, into a 
degree-1 ciphertext c2 encrypted under a secret key f2 (which may or may not be the same as f1). 
This requires publishing a “hint” ܽଵ→ଶ ൌ 	݉	  	 ଵ݂

ௗ  	 ଶ݂
ିଵ	mod	ݍ for a “short” m ∈ R congruent to 

1 modulo p. (Concretely, we can choose m = p · e + 1 for a Gaussian-distributed e.) 

• KeySwitch(c1, a1→2): output c2 = a1→2· c1 mod q.

(Note that a1→2, c1, c2 can all be stored and operated upon in CRT form, so key switching is very 
efficient – just one coordinate-wise multiplication of the CRT vectors.) 

Modulus Reduction 

Modulus reduction converts a ciphertext from modulus q to a smaller modulus (q/q′), where q′ 
divides q (and so is also relative prime with p), while also reducing the underlying noise by a q′ 
factor. 

The basic description is as follows: given a ciphertext c ∈ Rq, we add to it a small integer 
multiple of p that is congruent to −c mod q′. This ensures that the underlying noise remains 
small, that the plaintext remains unchanged, and that the resulting ciphertext is divisible by q′. 
Then we can divide both the ciphertext and modulus by q′, which reduces the underlying noise 
term by a q′ factor as well. 

Note that the final step (of dividing by q′) implicitly multiplies the underlying message by (q′)−1 
mod p. We can either keep track of these extra factors as part of the ciphertext and correct for 
them as the final step of decryption, or we can just ensure that q′ = 1 mod p, so that division by q′ 
does not affect the underlying message. 

The following formal procedure uses the fixed (ciphertext-independent) value v = (q′)−1 mod p, 
which can be computed in advance and stored. 

• ModReduce(c, q, q′):
1) compute d = c mod q′ (in coefficient form).
2) let  = (vq′ − 1) · d mod (pq′), with all of ’s entries in [−pq′/2, pq′/2).
3) let d′ = c+ mod q. In coefficient form, all the entries of d′ should be divisible by q′.
4) output (d′/q′) ∈ R(q/q′)

The above is most efficient to implement when q = q1 · · · qt is the product of several small, 
pairwise relatively prime moduli; when q′ is one of those moduli (say, q′ = qt without loss of 
generality); and when c is represented in “double-CRT” form, i.e., each of c’s mod-q CRT 
coefficients is itself represented in (integer) CRT form as a vector of mod-qi values, one for each 
i. Then the above steps can be performed as follows:
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1) Computing d = c mod qt (in coefficient form) is done by inverting the mod- qt CRT on
the vector of mod- qt components of c (leaving the other mod- qi components untouched).

2) Computing  is done by just multiplying the coefficients of d by the fixed scalar (vqt − 1)
modulo p qt, and putting the results in the desired range. 

3) Adding  to c is done by computing the double-CRT representation of  (i.e., applying each
mod- qi CRT to ), and adding it entry wise to c’s double-CRT representation. 

Note that the mod- qt CRTs of  and c are just the negations of each other (by design), so their 
sum is the all-zeros vector. Therefore, there is no need to explicitly compute the mod- qt CRT of 
 (though it can be done as a sanity check). 

4) Computing d′/ qt is done by dropping the mod- qt components in the double-CRT
representation of d′ (which are all zero anyway), and multiplying every mod-qi component by the 
fixed scalar qt

−1 mod qi. (These scalars can be computed in advance and stored.) 

Composed EvalMult 

We use the Key Switching, Ring Reduction and Modulus Reduction operations as supporting 
functions with EvalMult to improve noise management and enable more computation between 
calls to the Bootstrapping operation. Taken together, we form a composite operation, which we 
call ComposedEvalMult (CEM), from the sequential execution of an EvalMult, Key Switching 
and Modulus Reduction operation. 

Ring Reduction is called during some CEM operations, depending on the level of security 
provided by a ciphertext resulting from the result of the Ring Reduction operation. 

As Modulus Reduction operations are performed the security provided by a ciphertexts increases 
(as described in the next section). Ring Reduction correspondingly reduces the level of security 
provided by a ciphertext. We implemented our FHE library such that a minimum level of 
security ′ is provided at all times, and this level of ′ is a parameter selectable by the library 
user. If a call to a Ring Reduction operation will result in a level of security  ≤ ′, then the 
RingReduction is performed in the CEM operation. 

Our conception is that due to the ModReduction and RingReduction component of 
ComposedEvalMult, it is feasible to coordinate the choice of the original ciphertext width t and 
the scheduling of CEM operations so that the final ciphertext resulting from secure circuit 
evaluation and which needs to be decrypted is only one column wide with respect to a single 
modulus q1 and provides a level of security at least as great as the original ciphertexts resulting 
from the encryption operation. More explicitly, if we need to support a depth t – 1 computation, 
the initial encryptions should only be t columns wide to ensure that the final ciphertext is 1 
column wide. Whereas the runtime of Encryption, EvalAdd, CEM depend on the ring dimension 
and depth of computation supported, the Decryption operation would hence depend only on the 
final ring dimension after all ring switching has been completed. If we need to decrypt a 
ciphertext that has multiple columns in our double-CRT representation, we could perform 
multiple ModReduction operations to reduce this t > 1 ciphertext until we are left with a single 
mod-q1 column. 

Approved for Public Release; Distribution Unlimited. 
10 



Bootstrapping 

The addition of the Bootstrap operation enables the noise that accumulates in our ciphertext to be 
“refreshed”, allowing further CEM operations to be performed until the need for the next 
Bootstrap “refresh”.  This can be repeated a large number of times, converting our SHE scheme 
into an FHE scheme.  

In our scheme, a ciphertext is “fresh” if is encoded with a large modulus (i.e., at a high "tower" 
level t in a double-CRT representation) and at a large ring dimension.  As we perform 
computation on the ciphertext, we iteratively perform modulus reduction operations with every 
ComposedEvalMult operation, and RingReduction operations scheduled with 
ComposedEvalMult operations to ensure that a minimum security level is always maintained. 

Starting from a "fresh" large ciphertext, with the iterative application of ComposedEvalMult 
operations, we eventually obtain a resulting ciphertext with a minimal double-CRT 
representation that consists of a single ciphertext vector (that corresponds to a single-tower level 
- the base tower level).  The Bootstrapping operation refreshes the ciphertext back up to a larger 
ring dimension and tower level.  Bootstrapping does this by first switching to a larger ring, and 
the largest tower possible.  Bootstrapping then performs a homomorphic rounding, thus 
consuming several of the tower levels to refresh the noise.  As such, the resulting ciphertext 
output by bootstrapping is at a lower level than a ciphertext output by an encryption operation, 
but still supports computation on itself.   

Our design goal was to support operations with ciphertext as large at t=32 and n=16384.  In 
practice, this is at a lower level of security than would be justifiable for high-security 
applications, and a maximum level of t=16 and n=16384 was seen as a practical limit.  Due to 
limitations in the bit overflows of our ciphertext encoding both in 64 bit CPU and our FPGA 
implementations, we were practically limited to ciphertext moduli which were less than 64 bits 
and subsequently were unable to support bootstrapping larger ring dimensions within the 
remaining scope of the program. 

We found that the bootstrapping operation consumed anywhere from 6 levels of a ciphertext 
towers for n=512, and up to 12 for n=16384.  As such, if we support a maximum of 16 levels in 
practical use of our scheme, we can support depth 4 computations between bootstrapping 
activities. 

The basis of our bootstrapping approach comes from a new approach to homomorphic rounding. 
This approach to bootstrapping is described in detail in [18]. We provide a high-level overview 
of this operation here, simplified for our restriction to power-of-2 rings.  

This Bootstrap operation has the following steps:  

1) Round the ciphertext: For each entry v for residue i, we output round(v ∗ q/qi), where the
inner expression is rational, and ”round” means taking the nearest integer. Generally q = 2ℓ is
chosen experimentally, but as small as possible.

2) Convert the plaintext modulus: This is a null operation under our simplifying assumptions.
3) Lift the ciphertext and plaintext moduli: This is also a null operation under our simplifying

assumptions.
4) Scale the ciphertext: We scale up the ciphertext by a Q/q′ factor (rounding to nearest integers

in the power basis), and embed into dimension N (new ring dimension) as well. The plaintext
modulus is still q′.
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5) Compute the homomorphic trace: The following steps are performed iteratively log2(N)
times:

a. ”Lift” the ciphertext modulus to 2Q, which has the effect of making the plaintext
modulus 2q.

b. Apply the automorphism from [18], with appropriate key switching to put the result
into the same key as the original ciphertext in the iteration.

c. Sum the original and resulting ciphertexts.
d. Divide the ciphertexts by 2.

6) Perform a homomorphic rounding: This operation is described in full detail in Appendix B of
[18].

Note: bootstrapping is not a reciprocal of modulus reduction.  The reciprocal of modulus 
reduction is modulus switching (to a larger modulus). 

Bootstrapping does not completely reset noise.  If we start with a ciphertext with noise level, say 
nf, every modulus reduction operation changes the noise level from noise ni to level ni-1 where   
ni-1  > ni .  We bootstrap when the noise level reaches n1.  If Boostrapping takes b levels to 
complete, then the output of a optimally configured bootstrapping operation will always be nf – 
nb >= n1. While not completely resetting noise to the original level, it always resets it to the same 
level.  

3.3.2 SIPHER parameter selection for SHE/FHE 

The selection of n and q1, . . . , qt depends heavily on the plaintext modulus p, the depth of 
computation that needs to be supported, and the desired security level. We capture the primary 
concerns influencing the selection of a ring dimension n and the moduli q1, . . . , qt at a high level 
as follows: 

• The necessary ring arithmetic should be easily supported on the computation substrate –
i.e., that mod-qi operations (for i ∈ {1, . . . , t}) require few clock cycles.

• The moduli q1, . . . , qt are sufficiently large to enable sufficient noise shrinkage via
modulus reduction.

• The ring dimension n and noise parameters are sufficiently large so the scheme provides
adequate security.

• The ring dimension n is not so large that it becomes overly time-consuming and memory
intensive to manipulate the ciphertexts.

• The plaintext modulus p and any noise added to the ciphertext during encryption is
sufficiently small that we can evaluate reasonably sized circuits with correct decryption.

We choose to add discrete Gaussian noise to the fresh ciphertexts where r = 6 represents the 
selected probability distribution parameter. We have found theoretically that the smallest 
modulus q1 needs to satisfy the expression ݍଵ 	  in order to ensure successful ݓ݊√ݎ4	
decryption, where the parameter w ≈ 6 represents an “assurance” measure for correct decryption 
(essentially, the probability of decryption failure is bounded by the probability that a normally 
distributed variable is more than ߨ2√ݓ standard deviations from its mean), and p · r is the 
Gaussian parameter of the noise used in fresh ciphertexts. (Hence r is the Gaussian parameter of 
the underlying NTRU-like problem.) 

After selecting q1, we select the remaining qi ∈ {q2, . . . , qt} such that qi > 4p2r5n1.5w5, which 
ensures that modulus reduction by a factor of qi sufficiently reduces the noise after a 
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ComposedEvalMult operation. For implementation simplicity, we set q1 to be the smallest 
feasible solution to q1 > 4p2r5n1.5w5.  Consequently all qi are represented by log2(qt) bits, leading 
to simpler implementations. Table 1 shows how many bits are required to represent q1, . . . , qt 
for varying ring dimensions for p = 2. Note that all q1, . . . , qt can be represented in less than 64 
bits. 

Table 1: Dependence of bit lengths of moduli qi, as a function of ring dimension for p = 2. 

Ring dimension n 512 1024 2048 4096 8192 16384
Bit length log2 (qi ) 44 45 47 48 50 51

Following [32]–[ 35], we use the standard “root Hermite factor”  as the primary measure of 
concrete security for a set of parameters. The most recent experimental evidence [32] suggests 
that  = 1.007 would require roughly 240 core-years on recent Intel Xeon processors to break. 
Using the estimates from [33], [34], we found that in order to achieve a security level  for a 
depth of computation d = t − 1 using the t moduli q1, . . . , qt, we need to ensure that 
n ≥ lg(q1 · · · qt)/(4 lg()). 

Table 2 shows how  varies as a function of the ring dimension and depth of computation 
supported. Based on our analysis, if we impose the requirement that  ≤ 1.007, then we would 
need to use ring dimension n = 16324 to support depth d = 13 computations. The colors 
correspond to roughly equivalent security level. 

Table 2: Security level , as a function of depth of computation supported (columns) and ring 
dimension (rows) for p = 2  

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

8 52772 28157 15024 8016 4277 2282 1217 649 346 184 98 52 28 14 8 4 2 1.2152 

16 276 199 144 104 75 54 39 28 20 14 10 7. 5 4 2 2 1.5256 1.1024 

32 20 16 14 11 10 8 7 5 5 4 3 2 2 2 1.7754 1.4929 1.2554 1.0556 

64 4 4 3 3 3 3 2 2 2 2 1.9204 1.7563 1.6061 1.4689 1.3433 1.2285 1.1235 1.0274 

128 2 2 2 1.9704 1.8792 1.7923 1.7093 1.6302 1.5548 1.4828 1.4142 1.3488 1.2863 1.2268 1.1700 1.1159 1.0643 1.0150 

256 1.5246 1.4879 1.4520 1.4171 1.3830 1.3497 1.3172 1.2855 1.2545 1.2243 1.1949 1.1661 1.1380 1.1106 1.0839 1.0578 1.0323 1.0075 

512 1.2494 1.2335 1.2177 1.2022 1.1868 1.1716 1.1567 1.1419 1.1273 1.1129 1.0987 1.0846 1.0708 1.0571 1.0436 1.0302 1.0171 1.0041 

1024 1.1210 1.1136 1.1063 1.0990 1.0918 1.0846 1.0775 1.0704 1.0634 1.0564 1.0494 1.0425 1.0357 1.0288 1.0221 1.0153 1.0087 1.0020 

2048 1.0619 1.0582 1.0546 1.0509 1.0473 1.0437 1.0400 1.0364 1.0329 1.0293 1.0257 1.0222 1.0186 1.0151 1.0116 1.0081 1.0046 1.0011 

4096 1.0312 1.0294 1.0276 1.0258 1.0239 1.0221 1.0203 1.0185 1.0167 1.0149 1.0131 1.0113 1.0095 1.0077 1.0059 1.0041 1.0023 1.0006 

8192 1.0162 1.0153 1.0144 1.0134 1.0125 1.0115 1.0106 1.0096 1.0087 1.0078 1.0068 1.0059 1.0050 1.0040 1.0031 1.0022 1.0012 1.0003 

16384 1.0083 1.0078 1.0073 1.0068 1.0064 1.0059 1.0054 1.0049 1.0044 1.0040 1.0035 1.0030 1.0025 1.0021 1.0016 1.0011 1.0006 1.0001 

We will show in our results section later, that while this suffices for most cases, when 
Bootstrapping is used, there are issues associated with our parameter selection that limit the 
security of our FHE operations in our current software and hardware implementations (due to 
limitations on FPGA circuit modulus bit width).

3.4 SIPHER library and software architecture for SHE and FHE 
We implemented our scheme in the Mathworks Matlab environment and used the Matlab Coder 
toolkit [36] to generate an ANSI C representation of our implementation. We subsequently hand-
modified our auto-generated ANSI C to incorporate the pthreads library [37]. This leveraged 
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efficient mechanisms for light weight parallelism. We compiled this ANSI C using gcc to run as 
an executable in a Linux environment. We believe that additional performance improvements 
could be obtained by implementing our FHE scheme natively in C. 

We chose to implement our scheme in Matlab because it provides an interpreted computation 
environment for rapid prototyping with native support for vector and matrix manipulation which 
simplifies implementation development. We found the Matlab syntax to be a natural fit for 
writing software to support the primitive lattice operations needed for our double-CRT NTRU-
based SHE design. 

We wrote our Matlab implementation of our double-CRT NTRU SHE scheme using the Matlab 
fixed-point toolbox. The Matlab fixed-point toolbox also provides a path toward generated HDL 
implementations of our design that can be deployed for practical use on highly parallel 
computing hardware such as FPGAs. Part of our vision for the use of our SHE design was to 
develop an FPGA implementation of FHE [38], [39] as discussed later in this report. 

3.5 Application of SIPHER to SHE VOIP and resulting architecture 
3.5.1 Design goals for SHE VOIP teleconferencing 

We identified several design goals and metrics of performance with which to evaluate and reason 
over our end-to-end encrypted VoIP teleconferencing designs and implementations. Our primary 
high-level design goals and metrics are: 

1) Sound Quality: The end-to-end encrypted VoIP teleconferencing capability should provide
sound quality at least as good as a Public Switched Telephone Network (PSTN), preferably
with full-duplex.

2) Latency: The end-to-end encrypted VoIP teleconferencing capability should provide an end-
to-end latency ideally of less than 100ms for trans-continental VoIP teleconference session, a
generally accepted reasonable latency for VoIP technologies, but more latency is acceptable
for inter-continental operations.

3) Scalability: The end-to-end encrypted VoIP teleconferencing capability should be able to
support four people speaking simultaneously while tens of participants listen without
degradation in sound quality or latency.

4) Secure: The end-to-end encrypted VoIP teleconferencing capability should provide an
encryption work factor roughly at least as good as the work factor for AES-128. This means
that the VoIP data, when encrypted, should require at least as much computational effort to
obtain the unencrypted data without a key as is needed for AES-128, a commonly used point-
to-point secure encryption technology.

5) Resource Efficient: FHE schemes have been known to require encrypted data which is much
larger than the original source data. Early schemes provided a ciphertext expansion of several
orders of magnitude larger than the source data. The end-to-end encrypted VoIP
teleconferencing capability should ideally require less than an order of magnitude ciphertext
expansion.

6) Wide Geographic Area: The end-to-end encrypted VoIP teleconferencing capability should
operate with users and the VoIP mixing server over a wide geographic area, ideally
transcontinental if not inter-continental without an unacceptable degradation in sound quality
or latency.

7) Portable: The end-to-end encrypted VoIP teleconferencing capability should be easily ported
to other client and server types.
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8) Easily Deployable: The end-to-end encrypted VoIP teleconferencing capability should be
easy to deploy, such as with small binaries.

9) Usable: The end-to-end encrypted VoIP teleconferencing capability should be intuitive and
easy to use.

10) Extensible: The end-to-end encrypted VoIP teleconferencing capability should be easy to
modify to add additional and more advanced functionality at a later date.

3.5.2 Architecture for VOIP  

Figure 5 shows a high level example illustrative application of this privacy-preserving VoIP 
teleconferencing technology with end-to-end encryption. Each of the client’s samples users’ 
voice data, encodes it, encrypts it and sends the result to the VoIP mixer. The mixer sends a 
result back which is then decrypted, decoded and played back to the clients’ users. Any 
encryption system could be used that supports an additive homomorphism which could be 
implemented in a practical manner. A representational scheme that supports additive 
homomorphisms is NTRU which can be made both Somewhat Homomorphic (SHE) and Fully 
Homomorphic (FHE) in addition to additive homomorphic.  

Our approach uses a shared secret key, but more general designs are possible that generalize 
beyond this initial shared secret key design. Input voice streams from clients are sampled and 
homomorphically encrypted using a client’s public key. The encrypted voice samples are sent to 
an FHE-enabled VoIP server that does not have access to encryption keys. The VoIP server 
combines and balances the encrypted audio feeds. The combined output is then forwarded to the 
client handsets, where it is decrypted and played back for the user. Our HE-based solution 
processes streaming audio at 10 kBytes/s per voice.  

The output of the processing is sent to the client, where it is decrypted using the clients private 
key. No keys are stored on the teleconference server, so privacy is preserved even if an adversary 
views all communication links and operations on the server. No trust of the communication links 
or teleconference server is required to provide privacy. The level of security provided in the 
current prototype is roughly at the level of AES-128, but parallels between the security levels of 
the encryption scheme and other current standards are not exact. We can increase the security of 
our teleconference capability to be arbitrarily higher at the expense of voice quality by 
decreasing sampling rate and dynamic range. 

Approved for Public Release; Distribution Unlimited.
15



Figure 6 shows how the clients support data flows internally. In the top of the diagram, data from 
the microphone is sampled and fed to the encoder, encrypted using an additive homomorphic 
encryption scheme and sent to the mixer. As seen in the bottom of the figure, the result returned 
from the mixer is decrypted, decoded and played back over a speaker. 

Figure 7 shows how the VoIP mixer takes encrypted input from various clients and returns a 
common output. For a representational VoIP system with clients (c1, c2, c3, . . . , cm), a client ci 
would want (c1+c2+. . .+ci−1+ci+1+. . .+cm). This summation can be performed in a tree fashion as 
illustrated in Figure 7. For our representational NTRU scheme, the ciphertexts are vectorized in 
blocks of m, and all additions are performed modulo some large integer q pre-specified by the 
key generator. 

Our encoder/decoder is additive so that we can rely on an additive homomorphism such as the 
EvalAdd operation to mix VoIP signals. Because we require only an efficient secure EvalAdd 
operation to support encrypted VoIP mixing, our design builds on the recent efficient FHE 
design and implementation discussed in [ 31]. We simplified this prior work such that we remove 
the ability to support EvalMult operations. As such, because we only need to support much 
smaller circuits, we do not need the parallelism capabilities as discussed in [31] for our VoIP 
application and integration with the existing Mumble/Murmur open-source VoIP systems. We 
also use much smaller parameters than the designs advocated in [31] because we require much 
more greatly reduced functionality. Thus, the basis of our encryption approach is a special 
limited version of FHE called Additive Homomorphic Encryption which allows an untrusted 
computation host to compute the encrypted sum of encrypted integers. 

Figure 5: High level VoIP Teleconferencing Design 
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Client Vocoder 

We have a developed a vocoder technology which takes voice samples from a client and encodes 
the voice samples as vectors of integers. This vocoder is linear so that it can be used, for 
example, with an additive homomorphic encryption scheme to provide an encrypted VoIP 
teleconferencing capability. In this example, the encoded voice samples are encrypted using the 
additive homomorphic encryption scheme. These operations are performed on multiple clients. 
The resulting ciphertexts are sent to a VoIP mixer which queues and adds the ciphertexts from 
the clients. The resulting added ciphertext can be sent back to the clients. When decrypted with 
the additive homomorphic decryption scheme, decoded using our decoding scheme and played 
back to the clients, the resulting audio is a mixing of the audio from the clients. 

Figure 6: High-level data client internal data processing 
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Our encoding goal is to convert a length-m data frame of y-bit VoIP samples into a length- n 
frame of integers with the property that Encode(input1) + Encode(input2) = Encode(input1 + 
input2). As seen in the left hand side of Figure 8, we split the length m sample input into multiple 
blocks of n = 2(floor(log2(m)))-length vectors and a single mod(m − n)-length vector if mod(m − n) > 
0. The first step is to shift the samples so they are centered around 0, mod 2y. For the zth block of
samples, we multiply the integers in this block by 2(y + z − 1). We also pad the m − n block of 
samples with 2n − m zeros so this vector is n samples long. As seen on the right hand side of 
Figure 8, we sum these vectors. These operations are all highly efficient as they only involve 
splitting vectors, multiplication be two and bitwise concatenation, which are all extremely 
efficient to implement. This result is the encoded vector and has the desired Encode( ) property 
above. This encoded data is subsequently used for encryption. 

Figure 7: Encrypted VoIP Server mixing for three clients 
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Figure 9 shows our decoding process. On the right hand side of this figure we take the input 
vector. We make copies of this block and perform an integer division by 2(y +2 ∗ z −1) for the zth 
block. We then concatenate these vectors and return the result. Like for the encoding operation, 
these operations are all highly efficient as they only involve splitting vectors, multiplication be 
two and bitwise concatenation, which are all extremely efficient to implement. 

3.5.3 Homomorphic encryption and Key Generation for SHE VOIP 

In this subsection we describe the additive homomorphic cryptosystem we use to construct the 
end-to-end encrypted VoIP capability built on [31]. This cryptosystem is very similar to the 
NTRU system [19], [40], though it was not until recently that its homomorphic properties were 
noticed independently by L´opez-Alt et al. [41] and Gentry et al. [42]. A more general version of 
this cryptosystem was discussed in [31], but we discuss here a more limited version of the 
cryptosystem which is simplified for more efficient end-to-end VoIP encryption. 

The discussion of this simplified cryptosystem has a high degree of overlap with the more 
general cryptosystem. Our simplifications reside primarily in the encryption and decryption 
operations, but we include the full key generation and evaluation addition operations which are 

Figure 8: Encrypted VoIP encoding 

Approved for Public Release; Distribution Unlimited.
19



also modified, but to a lesser extent, for the sake of completeness. The modifications are 
primarily in the avoidance of any ciphertext decomposition to parallelize operations when the 
ciphertext modulus q > 264. We have found that we can parameterize the cryptosystem to support 
the vector addition of adequately large plaintext vectors such that requiring a larger ciphertext 
modulus is not needed. As such, because we can limit ourselves to 64-bit operations, our 
simplified cryptosystem can be implemented to run highly efficiently on native 64- and 32- bit 
processors without the parallelism advances obtained in [31] for more efficient more general 
computations. 

The basic design of the cryptosystem was detailed in section 3.3.1. For the cryptosystem the 
message space is Rp for some integer p ≥ 2. We use a mod-q Chinese Remainder Transform 
(CRT) representation of elements to provide fast addition. The basic operations of the scheme 
are as the same as section 3.3.1, with the exception that the Homomorphic Operations EvalMult 
and Bootstrapping are not used. 

3.5.4 Engineering tradeoffs in parameterizing SIPHER for SHE VOIP 

We need to choose parameters for both the vocoder and the cryptosystem so that: 

• VoIP signal data is encoded into VoIP plaintext.
• The VoIP plaintext can be securely encrypted into VoIP ciphertext.

Figure 9: Encrypted VoIP decoding 
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• The summation of multiple VoIP ciphertexts can be successfully decrypted back into
VoIP plaintext.

• The output VoIP plaintext can be decoded into an undistorted VoIP signal.
• All these operations need to be run efficiently on commodity hardware, such as 64- and

32-bit ARM and x86 processors.

Generally, these concerns mean that: 

• The bitwidth of the VoIP data P needs to be sufficiently large so that given a VoIP
integer signal vectors from y speakers v1, v2, . . . , vy, we are guaranteed that v1 + v2 + · ·
· + vy = (v1 + v2 + · · · + vy) mod P.

• The number of layers in the encodings (and hence the ring dimension n) and the plaintext
modulus p = 2x need to be sufficiently large with respect to P so that for the encodings z1,
z2, . . . , zy where zi = encode(vi), we have z1 + z2 + · · · + zy = (z1 + z2 + · · · + zy) mod p.

• The ciphertext modulus needs to be sufficiently small that we can support computations
on the ciphertext efficiently. For modern smart phones this means that the ciphertext
modulus is at most 264, so we can use native 64-bit computations.

• The selection of parameters needs to provide a non-trivial root Hermite factor to provide
security guarantees.

The selection of the ring dimension n and ciphertext modulus q parameters depends heavily on 
the desired security level and the plaintext modulus p. The plaintext modulus p depends on the 
VoIP data modulus P, the number of VoIP streams that need to be mixed without distortion y and 
the VoIP data bit width P. The selection of a ring dimension n and the modulus q follow the 
same procedure described previously in section 3.3.2. 

3.5.5 Integration of SIPHER library with a VoIP teleconferencing framework 

We evaluated our end-to-end encrypted VoIP capability by implementing our vocoder and 
homomorphic encryption library and then integrating them with an existing open-source VoIP 
teleconferencing capability. This activity resulted in an end-to-end encrypted VoIP client for 
teleconferencing clients running in an Apple iOS environment composed of a) the open-source 
Mumble VoIP client modified integrated with b) a custom linear codec of our design written in 
ANSI C and c) an FHE encryption library ported from Matlab to ANSI C. We also wrote and 
deployed the VoIP server capability running on Linux computing devices to perform the 
homomorphic mixing operation. We describe the implementation of this capability in this 
section. 

Codec and Homomorphic Encryption implementation 

As with the cryptosystem design, our implementation used for an additive homomorphic 
encryption library is a customization of the design introduced in [31]. We implemented our 
scheme in the Mathworks Matlab environment and used the Matlab Coder toolkit [36] to 
generate an ANSI C library of our implementation. We believe that additional performance 
improvements could be obtained by implementing our HE scheme natively in C. 

As mentioned in section 3.4, we chose to implement our scheme in Matlab using the Matlab 
fixed-point toolbox. We implemented the vocoder capability in native ANSI C. We compiled 
this capability using the gcc tool to create a vocoder library which we then integrated with the 
homomorphic encryption library and a VoIP teleconferencing substrate. 
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VoIP Teleconferencing substrate 

Rather than construct a VoIP capability from whole cloth, we decided to construct an end-to-end 
encrypted VoIP teleconferencing capability by integrating our additive homomorphic encryption 
library and our vocoder library with an existing open-source VoIP teleconferencing library. We 
selected the Mumble VoIP library (http://mumble.sourceforge.net) for this integration because 
the Mumble is mature, and offers high sound quality and runs on a variety of platforms. 

We decided to implement our end-to-end encrypted VoIP teleconferencing capability for iOS 
clients because the native iOS development environment uses Objective C, a dialect of ANSI C. 
However, even though we only developed iOS clients, there is no reason our client library could 
not be integrated in other environments such as for Android, Windows, Mac or Blackberry 
clients. 

By integrating with the Mumble library, our end-to-end encrypted VoIP library has the same 
usage and deployment models as the standard Mumble capability. Notably, Mumble clients 
present the user a simple, easy to use, graphical user interface that can be easily understood with 
minimal training. An image of the modified client running on an iPod Touch can be seen in 
Figure 10 where the client is running in push-to-talk mode. This client is indistinguishable from 
the standard iOS Mumble client. The Mumble software can also be deployed through an app 
store model, or as binaries which can be loaded onto iOS devices through XCode. 

We integrated the iOS capability so that client handsets encrypt their audio streams using the 
client’s public key. The proxy server computes over that encrypted data without decrypting the 
data or sharing keys. The output of the processing is sent to the client, where it is decrypted using 
the clients private key. No keys are stored on the teleconference server, so privacy is preserved 
even if an adversary views all communication links and operations on the server. 

This integration was relatively straight forward with several notable exceptions to reduce packet 
drops and improve sound quality: 

1) The client application generated voice packets that contained 480 samples at 48 KHz, or 10
mSec worth of sound. The sound driver, however, generated slightly larger packets. As a
result, the period of the sound packets was slightly larger than 10 mSec, and every so often
two sound packets were generated back to back. The original server set a 10 mSec timer and
just accepted one packet every 10 mSec. We added a small queue at the server so we did not
drop packets when we received two packets in a row very quickly.

2) We generated new frame numbers at the server as opposed to re-using the client frame
numbers. The clients correlated the frame numbers with time. This cut down on the time
jitter with regard to frame numbers.

3) The encryption and decryption operations for our applications were processor intensive, and
were run in batches of several audio packets at once. We moved the encryption and
decryption operations to a low priority thread and had the higher priority thread accept and
queue new audio packets (both from the network, and from the microphone). This helped
prevent a situation where we audio packets were dropped because we were too busy
decrypting or encrypting.

The goal of these changes was to reduce the drop rate of packets (an issue with initial 
prototypes). This in turn, allowed us to increase the audio sampling rate. As a result, we achieved 
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sampling 10 bit samples at a rate of 48 kHz. This configuration provides a sound quality 
substantially better than PSTN as long as there are only a few packet drops. 

After sampling the audio, we queue and encode 90 mSec blocks of this data into our encoder. 
We designed the system to accommodate 4 speakers, resulting in the homomorphic mixer to add 
four 10-bit integers homomorphically, resulting in a 12-bit plaintext without the encoding 
layering. If we use a ring dimension n = 1024, we are required to use 2-layer encoding and have 
a resulting plaintext modulus of p = 224 = 16777216. This encoding and encryption results in a 
root Hermite factor of  = 1.006 which is currently believed to be at least as secure as AES-128. 
With these parameter settings we observed that when running on an iPhone 5s, the encoding and 
encryption operation took a mean time of 9.2 mSec and decryption and decoding took 4.6 mSec. 
The summation on the VoIP server took 0.5 mSec. Transport of encrypted VoIP traffic from 
Cambridge MA to the Northern Virginia Amazon AWS servers took an average of 15 mSec. 
This resulted in a mean latency much less than our 100 mSec threshold for VoIP traffic, well 
within the bounds of reasonable, both in theory and in practice. 

Figure 10: The Push-To-Talk client GUI 
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3.6 Application of SIPHER to FHE keyword search (KWS) of encrypted 
documents 

We developed a FHE application that searches for encrypted keywords on encrypted text.  This 
method relies on a homomorphic string comparison operation that is repeated for all keywords in 
all locations in an encrypted message.  We imported this technology into a mail-guard-type 
scenario to provide outsourced mail filtering based on keywords of interest to email clients.  A 
sketch of use of this technology can be seen in Figure 11. 

The basis of our approach is a homomorphic “Secure Symbol Matching” method that relies on a 
set of symbols (called an alphabet) that is initially mapped to an integer representation.  This 
approach is seen in Figure 12.  In this example, ASCII characters in a text file maps to an integer 
between 0 and 128.  We can compute the equality of two encrypted characters by 
homomorphically evaluating their difference and then homomorphically raising the difference to 
the (p-1) power. Using a related technique we can logically AND the results for all the characters 
in a keyword into a single encrypted true/false bit. For a k bit keyword, we repeat the k-bit string 
comparison multiple times, over the entire encrypted message, each time shifting the starting 
point in the encrypted text to the next letter.  The logical AND of all the string search results is 
done in a binary tree structure to minimize the number of repeated AND operations the data must 
undergo. (ANDs are performed with ComposedEvalMult operations, so a t-level SHE 
implementation can only perform t repeated ComposedEvalMult on any one piece of encrypted 
data – a binary tree AND lets us compute 2t concatenated ANDs without Bootstrapping.)  

Because our keyword search was done on a regular computing platform (PC) we did not develop 
any novel encoding techniques as we did for VOIP. Rather we focused on accelerating the KWS 
using our FPGA hardware accelerator. Our results will be presented in section 4. 

Figure 11: Architecture of the FHE-based Encrypted keyword search E-Mail Guard 
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3.7 Implementation issues for parallelism and FHE hardware 
acceleration 

We have covered the underlying crypto system in 
detail, but now we will focus on aspects that are 
important when implementing accelerators in 
hardware.  The main advantage of our system is the 
use of the “double-CRT” representation of cipher 
texts which is discussed in [43]. With this double-
CRT representation, we can select parameters so that 
cipher texts are secure when represented as matrices 
of 64-bit integers, but still support the secure 
execution of programs on commodity computing 
devices without expending unnecessary 
computational overhead manipulating large multi-
hundred-bit or even multi-thousand-bit integers. 
Additionally, the parallelism implicit in this data 
representation is easily exploited to achieve 
efficiencies during implementation. Figure 13 shows 
a schematic representation of how ciphertext is 
represented in this double CRT format.  

Figure 12: String comparison operations for keyword search 

Figure 13: Double CRT representation 
of ciphertext allows for cipher text to 

be split into multiple towers 
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Our implementation encrypts a plaintext bit into a two dimensional array of 64 bit unsigned 
integers1. We use a residue number system implementation to represent cipher texts as T sets of 
length-N integer vectors. A ring in the tower entry t has a unique modulus qt which bounds all 
entries in that ring. The n dimension is known as the ring size, and the t dimension as the tower 
size.  This representation allows us to operate in parallel on the smaller bit width mod- qt values 
instead of on a single modulus q of much larger bit width, where q = q1 ∗ q2∗∗ qT for pairwise 
co-prime moduli qt.. 

As outlined in section 3.3 previously, our implementation requires only a few elementary 
operations to be implemented on the FPGA hardware in order to achieve large run time speedups 
over conventional CPU implementations.  These operations are: 
 RingAdd: cn,t = (an,t + bn,t) % qt

 RingSub: cn,t = (an,t - bn,t) % qt  ,
 RingMul: cn,t = (an,t * bn,t) % qt  .

All three of the above operations can be parallelized or pipelined over both n and t . Also 
required are the  
 CRT and Inverse CRT, which are implemented as a Number Theoretic Transform [44] coupled

with a pre or post RingMul with an appropriate Twiddle Vector.
 Round: A function to perform modulo rounding using different tower moduli (detailed below).

The two repeated key ring operations EvalAdd and EvalMult are the core functions in FHE. 
When our parameters are chosen such that a single plaintext bit is encrypted, the resulting 
operations on the encrypted data are XOR and AND respectively. These two operations allow us 
to implement any Boolean operation of input cipher text2.   

As mentioned previously, this crypto system, like many FHE systems is random (noisy) in 
nature. Because of this, only a limited number of operations can be performed on the encrypted 
data before the noise dominates and decryption is no longer guaranteed. EvalAdd does not add 
noise to the system, so an unlimited number of such operations are allowed to be chained 
together. EvalMult however does add noise, and this limits the number of such operations that 
can be chained together.  The double CRT representation allows a very straightforward 
implementation that controls this noise. This requires the use of both key switching and modulus 
reduction whenever an EvalMult is performed. The combination of these three steps is known as 
a Composed EvalMult. The property of CEM is that for a pair of inputs of a given tower size t, 
the output is a cipher text of tower size t-1. Thus for an initial tower size of T, at most (T-1) CEM 
operations can be performed, allowing SHE.  Figure 14 shows the impact CEM has on system 
parallelism. 

1 While the actual number of bits is determined by the parameter selection of the cryptosystem, we select 64 as our 
maximum dimension for FPGA implementation. 
2 Any arbitrary Boolean function can be constructed from NAND operations. Since NOT(a) == XOR(a, 1), and
NAND(a, b) == NOT(AND(a, b)), the two Homomorphic operations are a sufficient set. 
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The dimensions of the cryptosystem are determined algorithmically, and are a function of 
security required, and the number of CEM operations required to implement the desired 
application. If the number of operations required by the application exceeds O(16), then 
Bootstrapping will be required to reset the noise generated by the cryptographic operations.  
Bootstrapping is currently on the order of 10 CEM equivalent operations for reasonable security 
parameters. Bootstrapping has the property of taking a cipher text of tower size t, and generating 
a new ‘refreshed’ cipher text of the systems original tower size T.  Thus an unlimited number of 
operations can be performed on the data, enabling FHE.  

All ring operations other than CEM are embarrassingly parallel, i.e. all data needed for an 
operation stays within a particular tower. In fact in the CEM, everything except the Round 
operation (discussed later) of the modReduce is also embarrassingly parallel. This parallelism 
can be exploited in our implementation both on multicores and on the FPGA as show in Figure 
15. 

Our current SHE scheme relies on operations that are generally inefficient to implement on 
standard CPU architectures (i.e. modular arithmetic with a large modulus).  For convenience, 
most of the previously published SHE and FHE implementations have used standard tools such 
as the GNU  Multiple Precision Arithmetic Library (GMP) [45], which enable researchers to 
code operations using very large integers. This limits their focus to operations on CPUs and does 
not allow them to take advantage of specialized parallel computation hardware like FPGAs 
which provide highly cost-effective parallelism. Our approach to developing the FPGA code for 

Figure 14: Composed Eval Mult is only Operation not parallelized. Each CEM has a 
mod reduction step that removes one ciphertext column 
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implementing efficient ring operations is to develop arithmetic circuits that will achieve high 
throughput by using parallelism and pipelining on the FPGA as seen in Figure 15. 

Our approach was to develop prototype descriptions in Matlab using the fixed point toolbox. We 
then re-implemented these primitives in Simulink in a stream-oriented style that allows 
conversion to VHDL. The results of the two implementations are then directly compared to 
verify correctness. A conversion from Simulink to VHDL is done in a completely automated 
fashion using Mathwork’s HDL coder.  This tool chain provides us the means to develop our 
primitives, including testing of the resulting VHDL on FPGA hardware, much faster than 
traditional methods. Some examples of efficiency are: 
 The Matlab and Simulink Models are driven with the same fixed point data variables, and

generate the same format output, simplifying test and comparison
 The bit width of the circuits is specified at compile time by specifying the bit width of the input

data. The sizing of intermediate mathematical operations is done automatically by the fixed
point toolbox. Thus many of the same models can be used for 8 through 64 bit inputs.
 The resulting VHDL is vendor independent. This allows for rapid benchmarking on multiple

architectures. However, hand optimization of VHDL may be required for optimum
performance in order to take advantage of vendor specific IP.
 Mathwork’s HDL verifier allows automatically generated FPGA in the loop testing to verify

the operation of the resulting VHDL on actual hardware very early on in the program.

Figure 15: Ciphertext towers enable enables ring operations to be performed on each tower 
separately. Parallelism is acieved through concurrency on a multicore, or pipelining on an 

FPGA 
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4 RESULTS AND DISCUSSION 
4.1 SIPHER SHE library functions experimental timing results 
We ran our compiled C code (auto-generated from Matlab) SIPHER library implementation on 
the DARPA Deathstar 64core server with 2.1GHz Intel Xeon processors and 1TB of RAM in a 
CentOS environment. Although we had access to many resources, we used at most 10 GB of 
memory and 20 cores during the evaluation of our software implementation. 

We collected data on the runtime of the Encryption, EvalAdd, ComposedEvalMult, and 
Decryption operations over selections of depth of computation supported and ring dimension. 
We ran 100 iterations of this collection procedure for each combination of t and ring dimension. 
We used different randomly selected key sets, plaintexts and encryption noise with every 
iteration to mitigate minor variations in performance that may arise due to these experimental 
random variables on every iteration. Tables of the raw mean runtime results can be seen in Table 
14 through Table 17 in Appendix A. 

We collected data on the runtime of the Encryption, EvalAdd and ComposedEvalMult operations 
for settings of t ∈ {2, 4, 6, ..., 20} and for ring dimensions n ∈ {512, 1024, 2048, 4096, 8192, 
16384}. We collected data on the runtime of the Decryption operation of final ciphertexts, for 
computations with fresh (input) ciphertexts with ring dimensions n ∈ {512, 1024, 2048, 4096, 
8192, 16384} and depth of computation t−1 for t ∈ {2, 4, 6, ..., 20}. Note that due to ring 
switching, the decryption runtime is dependent only on the dimension of the final ciphertext. 
This is a function of the initial ciphertext and depth of computation. We did not collect data on 
the runtime of the Bootstrapping operation at this point but present them later on in this report. 
As discussed in [40], the depth of computation required for bootstrapping is logarithmic in the 
ring dimension.  

Our experimental results shows that run times grow linearly with ring dimension n and the 
ciphertext width t where t − 1 is the depth of computation supported before bootstrapping or 
decryption could still be performed and have a high probability of recovering a correctly 
decrypted ciphertext. This makes intuitive sense because as we double either the ring dimension 
or the ciphertext width, we roughly double the amount of computation that needs to be 
performed with every Encryption, EvalAdd and ComposedEvalMult operation. Similar results 
hold for Decryption (Table 17) which shows a linear dependence of runtime on ring dimension, 
but under the assumption that decryption occurs after t − 1 ModReduction operations, including 
ModReduction operations bundled in ComposedEvalMult operations. Our initial results show 
that Bootstrapping runtime is similarly linear with respect to the maximum ring dimension. As 
compared to the results reported in [4], [11], [21], our FHE software implementation provides 
order-of-magnitude improvements in the runtime of the FHE operations. 

4.2 SHE VOIP Teleconferencing experimental results 
We experimentally evaluated the performance of the VoIP service by deploying our encrypted 
VoIP servers in each of the Amazon AWS data centers across the world. We then connected 
iPod Touch clients to each of the servers through various connection types in the metro area of a 
United States city in southern New England. These connections included 802.11n wireless 
enterprise gateway connected to a high-speed enterprise Internet connection, the 4G LTE, 3G 
and 2G connections over the T-Mobile commercial wireless service and an AT&T DSL 
connection in a rural area outside the city. 

Approved for Public Release; Distribution Unlimited.
29



We measured the upload and download throughput of the connections, the drop rate of VoIP 
packets routed through the various server locations and the subjective quality of the VoIP 
teleconference session as defined by the experimenters. The upload and download throughput 
was measured by Ookla throughput measurement app [46] on the client devices. VoIP drop rates 
were measured experimentally by modifying the VoIP servers to measure drop rates. Voice 
quality was measured in comparison to PSTN voice quality where “Excellent” means the VoIP 
conversation was better than PSTN, “Good” means the VoIP conversation was comparable 
PSTN, “Poor” means the VoIP conversation was worse than PSTN but still usable for 
communication, and “Unusable” means the connection was useless for communication. 

All of the experiments were run over a 2 hour period on a weekday evening using 2 iPod Touch 
clients with servers deployed on the Amazon AWS t1.micro instances [47]. Each of the clients 
were on independent connections to the Internet at all times, so there was low likelihood of one 
client contributing substantially to congestion for the other client. 

Table 3 shows the upload and download throughput observed by each of the clients for each of 
the connections. Note that the rural DSL service provided better throughput than the 2G 
connection and better download throughput than the 3G connection. 

Table 4 shows the packet drop rates observed at each of the servers at the various Amazon AWS 
locations for the various client connection types. Note that distance between the client and server 
had only a minor impact on drop rates, while the connection type had a very large impact on 
drop rates. This implies that the connection could be a bottleneck for the VoIP service. 

Table 5 shows the subjective VoIP teleconference quality measurements observed through each 
of the servers at the various Amazon AWS locations for the various client connection types. Note 
that distance between the client and server had almost no observed impact on voice quality, 
while the connection type had a very large impact on voice quality. 

We observed that all of the various connections supported acceptable VoIP teleconference 
capabilities except for the 2G connections. Over all of the acceptable connections, the lowest 
upload or download throughput observation was on the 3G download: 0.43Mb/sec Because the 
VoIP download and upload data flows are symmetric, this implies at least a 0.43Mb/sec upload 
and download throughput connection is required to support VoIP teleconferencing using our 
prototype. 

In addition to our tests of connection-server pairings, we also tested the scalability of the number 
of clients that could be supported on a single server. For this experiment we connected 7 iPod 
Touch and/or iPhone 5s clients at various connections on the eastern United States seaboard to a 
single VoIP server in the Amazon AWS Northern Virginia data center. With these 7 connections 
running simultaneously with 4 people speaking simultaneously we were able to hold as good as a 
conversation possible with 4 people speaking simultaneously and no voice distortion was 
observed by the 3 non-speaking client users. 

Table 3: Experimentally measured data throughput in Mb/s for connection types 

Connection Type Upload Rate (Mb/sec) Download Rate (Mb/sec) 

Enterprise 802.11n  38.22 36.53

Approved for Public Release; Distribution Unlimited.
30

4G LTE 35.82 17

3G  6.31 0.43

2G  0.2 0.16

Rural DSL  2.55 0.47



Table 4: Packet Drop Rates for various server locations and client internet connection types 

Server Location  Client Location  Enterprise 
802.11n  

4G LTE 3G 2G  Rural 
DSL  

N. Virginia S. New England  0% 10% 10% 66% 33% 

Oregon  S. New England  0% 2% 3% 71% 35% 

N. California S. New England  0% 7% 8% 67% 34% 

Ireland  S. New England  0% 7% 7% 73% 38% 

Singapore  S. New England  5% 2% 2% 68% 39% 

Tokyo  S. New England  1% 3% 4% 69% 37% 

Sydney  S. New England  5% 3% 3% 67% 34% 

Sao Paulo S. New England  0.30% 4% 6% 76% 34% 

Table 5: Teleconference Quality for various server locations and client internet connection types 

Server Location  Client Location  Enterpris
e 802.11n  

4G LTE 3G 2G  Rural DSL 

N. Virginia S. New England  Excellent  Good Good Unusable  Poor 

Oregon  S. New England  Excellent  Good Good Unusable  Poor 

N. California S. New England  Excellent  Good Good Unusable  Poor 

Ireland  S. New England  Excellent  Good Good Unusable  Poor 

Singapore  S. New England  Excellent  Good Good Unusable  Poor 

Tokyo  S. New England  Excellent  Good Good Unusable  Poor 

Sydney  S. New England  Excellent  Good Good Unusable  Poor 

Sao Paulo S. New England  Excellent  Good Good Unusable  Poor 

4.3 VOIP SHE discussion 
Up to now, advances in secure VoIP technologies have focused on providing security for data in 
transit [24], [25] among other general security challenges such as DDoS attacks [48], identity 
and key management [49] among many others [50], [51]. These are all important challenges for 
secure VoIP teleconferencing capabilities, but a reliance on point-to-point encryption between 
participants has too often led to complicated VoIP teleconferencing systems and protocols [52]. 
In general, the complicated layering of protection mechanisms is often difficult to execute in 
practice, leading to overly complicated systems which are difficult to build and maintain. 
Further, these complicated systems are often difficult to perform security audits on [53]–[55]. 
Although all of the partial security solutions have worked very well in isolation and have served 
their purposes as a rule, the at time complicated layering of these protocols has resulted in the 
introduction of possible security holes which has enabled data leakage. 

To the best of our understanding, there have been no VoIP teleconferencing technologies which 
provide end to- end encryption. Our solution seeks to provide a clean-slate data protection 
capability that is also compatible, or at least easily integrated with existing VoIP protocols and 
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architectures. Because we provide end-to-end data encryption, our solution protects data against 
leakage even when layered with existing VoIP protocols for signaling and transport. Besides 
providing security against data leakage due to compromised servers, end-to-end encrypted VoIP 
teleconferencing has the possibility for greatly simplifying existing VoIP protocols, resulting in 
much simpler implementations and designs, thus resulting in more efficient VoIP 
implementations that are easier to audit. 

The basis of our design and implemented prototype for end-to-end encrypted VoIP 
teleconferencing is driven by and builds on recent breakthroughs in practical Fully 
Homomorphic Encryption (FHE). Recent breakthroughs in Homomorphic Encryption have 
shown that it is theoretically possible to securely run arbitrary computations over encrypted data 
without decrypting the data [1], [2]. There has been recent work on designing and implementing 
variations of homomorphic encryption schemes [4], [11], [15], [17], [20], [21], [41], [56]–[58]. 
These implementations have become increasingly practical with published results on both the 
runtime of isolated secure computing operations for some implementation [4], [11], [21] and 
evaluations of composite functions like AES [17], [20], [58]. 

Current approaches to design FHE schemes rely on a special, highly complex and 
computationally difficult operation called bootstrapping [18] to support the encrypted execution 
of arbitrary functions. As such, we use a simplification of the general FHE designs called 
”leveled” homomorphic encryption or Somewhat Homomorphic Encryption (SHE) the supports 
limited depth computations, such as vector addition, which is much more efficient because it 
does not require the use of bootstrapping. 

Besides the runtime challenges of HE designs, there are serious applications issues associated 
with data structures and representations [17]. Furthermore, it has not been well explored how to 
convert existing data structures and algorithms into forms that can be efficiently executed using 
FHE technologies. This is because FHE provides a very different computation model from 
existing RAM computing devices and the porting of known data structures and algorithms (such 
as for VoIP mixing) is non-trivial, especially for highly efficient encrypted execution of these 
algorithms over the encrypted input data. As an example of limitations, early uses of FHE relied 
on encrypting individual bits in ciphertext. These limitations, in addition to the inherent 
computational cost of secure computing using known FHE schemes, has until now prevented the 
practical use of FHE. Our innovation comes from designing a set of data structures, data 
encoding method (which we refer to as a vocoder) and a homomorphic mixing operation which 
supports a practical implementation of end-to-end encrypted VoIP teleconferencing. 

In particular, a key innovation of ours is to go beyond simple bit-per-ciphertext encodings by 
placing entire VoIP data frames into each ciphertext. These codec designs are in some sense 
much simpler than existing modern codecs, such as the mu-law encoders [59] which are much 
more common in modern VoIP systems. There have been prior known approaches to Additive 
Homomorphic Encryption, such as Paillier encryption [60], but these approaches have not been 
practically employed to support encrypted VoIP mixing. Further, there has been no prior work 
that has investigated the data structures required to support end-to-end encrypted VoIP 
teleconferencing with homomorphic mixing. 

There have been few other approaches to providing secure VoIP teleconferencing that approach 
to providing security properties such as end-to-end encryption. Most relevant is the work in [61] 
which discusses a VoIP teleconferencing approach based on Secure Multi-Party Computation 
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(SMC) [62]. This prior SMC-based approach is also built by modifying the Mumble/Murmur 
software and our team received implementation advice from the authors of [61]. Unlike our HE 
based approach which requires only one untrusted server for end-to-end encrypted VoIP 
teleconferencing, the MPC-based approach in [61] requires that every participant in the 
teleconference have at least one trusted server. 

4.4 FPGA accelerator -- FHE Processing Unit (FHEPU) 
4.4.1 VHDL implementations of fast modulus arithmetic using Simulink HDL 

Generator 

Software implementations of modulus usually use some form of trial division to determine the 
remainder operation. Implementing modulus integers with large numbers of bits in an efficient 
manner requires the use of special numerical algorithms that have been developed, such as the 
Montgomery Reduction [63], and the Barrett Reduction [64]. These algorithms avoid division by 
q, but rather scale the integers so that many of the divisions can be performed by a power of 2, 
requiring only simple bit shifts. Our SHE scheme requires circuits for fast modulo addition and 
multiplication (to directly implement the EvalAdd and EvalMult mentioned above). In addition, 
our scheme relies heavily on the Chinese Remainder Transform (CRT) [65], which can be 
implemented as an EvalMult of the input with a twiddle table, followed by an FFT [66] that uses 
modulo integer instead of complex arithmetic (also known as a Number Theoretic Transform or 
NTT). Our implementation of this FFT uses a standard radix 2 ‘Butterfly’ operations which uses 
one addition, one subtraction and one multiply, all modulo the residue q. Thus to implement a 
CRT we need to implement modulo subtraction as well. 

Initially, our selection of lattice based SHE led to looking at relatively modest sized modulus, on 
the order of twenty bits. An implementation using Montgomery Reduction based arithmetic was 
built that was be relatively efficient, requiring hardware multipliers on the order of 40 bits. 
However, later research showed that for any reasonable security requirements our SHE scheme 
would need O(64) bits for our modulus.  Our implementation of Montgomery arithmetic in 
Simulink required us to double our bit width to represent intermediate values represented in 
Montgomery form. We found that there is an intrinsic limitation of 128 bit width in Simulink 
even when using the fixed point toolbox. This meant that we could not compile our multipliers 
for bit widths on the order of 64 bits.  

Additionally, our early arithmetic models were all designed for a single value of modulus q to be 
used for all operations.  During the development of our SHE scheme we found that it was more 
efficient to decompose large bit width numbers into a set of smaller related moduli using the 
Double CRT representation. This resulted in far more efficient implementations. Thus our 
circuits would need to operate with multiple (but not unlimited) values of q. As a response to 
these new requirements we eliminated Montgomery arithmetic entirely and take a simpler 
approach to modulo addition and subtraction. 

Figure 16 shows the Matlab code and the resulting Simulink block for performing a streaming 
EvalAdd. This circuit requires the inputs to be constrained to less than a given modulus q (which 
is the native representation for our FHE scheme).  The model can operate on one pair of inputs 
every clock cycle. For simplicity, the model shown does not have any additional pipeline 
registers (which are modeled as unit delays), but they can be easily added to the model in order 
to increase the maximum clock speed of the resulting VHDL, at a cost of additional latency. In 
our applications we expect to process streams of input on the order of several thousand entries, 
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so this additional pipeline latency is trivial.  Additionally, our circuits have an index into a 
lookup table for the value of q (i.e. which tower index we are operating on), since the bit width 
of this index is much smaller than that of q (4 or 5 bits vs. 64 bits).  

Figure 17 shows the Matlab and resulting Simulink block for modulo subtraction. The same 
comments about pipelining the circuit apply.  

Modulo multiplication is a much more complicated operation than either add or subtract, even if 
the input multiplier and multiplicand are bounded by q. This is because the range of the output of 
the latter two are bounded by a small integer multiple of q, and can be adjusted within the range 
of [0…q-1] by simple comparisons and subtraction of q. However, for multiplication the product 
is approximately twice the bit width of q, so this trick cannot be used. Furthermore, we 
determined in our earlier work that the VHDL code generated by Simulink for large 
multiplications is not automatically pipelined, so the resulting (large bit width) multiplies 
severely restrict the resulting clock rates of the circuits. To address these two constraints, we 
adopted a recently developed interleaved modular multiplication based on a generalized Barrett 
reduction [67].  This multiplier has the following properties: 

Figure 16: Internal structure of Simulink HDL-ready streaming modulo-add primitive. 
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 Long words of bit length L can be represented by n smaller words of bit length S (i.e. four 16
bit words to represent a 64 bit modulus).
 The multiplication is performed in n stages, where each stage performs one modulo

multiplication that is L+S bits long. The stage can be pipelined to perform one modulo
multiply per clock cycle.
 Each stage has a Barrett modulus performed on the partial product, which reduces overall bit

growth of the partial products to L+S. Each stage requires 3 multiplies, and all divisions
required by the Barrett algorithm are implemented as simple bit shifts.
 One circuit can support multiple moduli towers. All parameters that are specific to a given

modulus tower can be stored in lookup tables and indexed, in the same manner as q is for our
add and subtract circuits.

Figure 18 shows the structure of our resulting multiplier for S=16, and L = 64 = 4*S, resulting in 
a four stage, 64x64 bit multiplier. This model will produce compile-able VHDL code, i.e. no 
single operation exceeds 128 bits in width. The red box in the figure shows the model for a 
single stage in the pipeline. All stages use the same model.   This implementation uses 47 stages 
of pipelining in a single stage order to achieve fast clock rates.  

Once the models were maximally pipelined, we identified several large (64 x 64 bit) product 
blocks within our RingMul Barret multiplication implementation as being the slowest 
components, and re-implemented them as an expanded multiplication model consisting of four 
parallel 32x32 bit products, and a pipelined accumulation of partial sums. These are shown in the 
green and blue boxes in the Figure.  This further increased the achievable clock speeds.  We 
discovered that adding additional pipelines of length four, both before and after each resulting 
smaller product block further allowed the Xilinx optimizer to break these product blocks into 
multiple DSP48E multipliers in a distributed fashion. This allowed the RingMul circuit to 
perform at speeds in excess of 350 MHz, well in excess of our target 200 MHz. 

Figure 17: Internal structure of Simulink HDL-ready streaming modulo-subtract primitive. 
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The resulting Barrett multi-word circuit supports 32 different moduli (i.e. towers up to 32 in 
size).  Furthermore, the implementation is strictly agnostic to the particular FPGA technology 
used, and is easily tunable in the generation software to re-optimize for a different FPGA 
technology. 

4.4.2 VHDL implementations of fast forward and inverse CRT using Simulink 
HDL Generator 

The workhorse function for our scheme is the CRT and its inverse, both of which rely heavily on 
modulo arithmetic. We have developed a Simulink model for performing a fast CRT, based on 
the modulo arithmetic primitives discussed above.  We implemented the Number Theoretic 
Transform using one of the standard pipeline decimation in frequency FFT architectures, known 
as the Radix 2, Multipath Delay Commutator [68].   

The fundamental structure of the Simulink model that performs a modulo arithmetic FFT (NTT) 
is identical to a complex version that computes the standard FFT. The only difference is in the 
Simulink subsystem model that implements the radix 2 butterfly (due to the use of our modular 
arithmetic function).  In fact, the flexibility of the Simulink approach allowed us to debug the 

Figure 18:The structures of Simulink HDL-ready, four-stage Barrett 64x64 bit modulo multiply 
primitive.  
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model using complex input and complex butterflies, and then use the same exact structure for the 
FFT (NNT) with only a change to the butterfly sub system block.  

Figure 19 shows the structure of this pipelined CRT. The design trades off area for processing 
speed. For an N point transform, Nstages = log2(N) radix 2 Butterflies are required (though the 
last butterfly does not require multiplies). Additionally, 3/2N-2 delay elements are required for 
the shuffle blocks.  

Note that this implementation results in the fastest possible computation rate of the CRT for a 
given FPGA clock speed, with one pair of output samples being generated every clock cycle. By 
concatenating several input vectors together sequentially, we can keep the pipeline full and, once 
the pipeline has filled up, run the circuit at 100% efficiency. 

Note that the only difference between the forward and inverse CRT is whether the NTT is pre or 
post multiplied with a special “Twiddle vector” (different from the NTT/FFT twiddles).  We 
programmed our VHDL wrapper that feeds the data to the NTT and RingMul components so that 
this pre or post multiplication is achieved in a pipelined manner (to be illustrated in detail later in 
Figure 26). 

The input and output data needs to be presented to the circuit in two parallel streams, with the 
top stream containing the first half of the input vector and the bottom stream containing the 
second half. The resulting output is in bit reverse order. Rather than implement this in Simulink 
we incorporated these data manipulations into the VHDL wrapper around the NTT portion of the 
CRT as shown in Figure 20. These wrappers use double buffering to efficiently keep the pipeline 
full.  

One shortcoming of this design is that it utilizes a large amount of FPGA area. Thus for a given 
bit width of q and maximum tower size T, there is a maximum number of stages that will fit into 
a given FPGA.  Another major shortcoming is that each stage has its own “twiddle memory”.  In 
practice, every stage’s twiddle memory is composed of exactly the same even entries in the 

Figure 19: Simulink HDL-ready streaming pipelined CRT Structure 
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twiddle memory preceding it in the pipeline.  It ends up that we were not able to fit this circuit as 
is into our candidate FPGA chip for high security applications where we need to perform CRT 
operations on vectors of up to 214 in length. There was simply not enough RAM in the FPGA 
chosen.  

Our solution was to develop a custom hand coded twiddle RAM to replace the SIMULINK 
VHDL twiddle RAM. Figure 20 depicts the final implementation of the CRT module.  The data 
stream is first fed through the “Top/Bottom” block, that divides the single data stream into two 
data streams, and then through a set of 13 stages.  Each stage has two 64-bit wide input streams 
and two 64-bit wide output streams.  The inputs of each stage, except the first stage (labeled 
“Stage 4096”) are the outputs from the previous stage.  Stages 4096 down to 4 also contain a 
bypass capability, depicted in the left of Figure 20.  When a particular stage’s bypass is enabled, 
that stage’s its input stream is passed directly to its output stream, unmodified.  This allows for 
variable-length CRT operations.  If none of the stages are bypassed, a 16384-point CRT is 
performed.  If the first stage (labeled “4096”) is bypassed, an 8192 CRT is performed.  If first 
two stages are bypassed (labeled “4096” and “2048”), a 4096 CRT is performed, etc…  

Each stage has an associated “Twiddle” Read Only Memory (ROM) table, implemented with 
FPGA block RAM.  The first stage has the largest table, and each successive stage’s twiddle 
table is half the size of the previous stage’s twiddle table.  Unfortunately, the FPGA does not 
have enough block RAM resources for each stage to have its own table.  To work around this, 
the first four stages share a table.  One reason this is possible is the twiddle tables have been 
designed with the property that each twiddle table contains same values as the values at the even 

Figure 20: Inside the NTT showing customizations VHDL wrapper that performs required I/O 
reordering, for sharing twiddle RAM and for stage bypass 
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addresses in the previous table.  For example, the values at addresses 0, 1, 2, and 3 in table 2048 
are the same as the values at address 0, 2, 4, and 6 in table 4096.  Similarly, the values at 
addresses 0, 1, 2, and 3 in table 1024 are the same as the values in 0, 2, 4, and 6 in table 2048, 
which themselves are the same as the values at address 0, 4, 8, and 12 in table 4096.  Therefore, 
the twiddle table for the first stage actually contains the values for all the other tables, assuming 
it is addressed appropriately.  The reason each stage needs its own table, however, is each stage 
needs to access its table simultaneously in order for the CRT module to achieve the desired data 
throughput.  Fortunately, the FPGA Block Ram primitives are Dual Port, which means that it 
possible to simultaneously read from two independent addresses.  By clocking the dual port 
block RAM at twice the rate (200 MHz) of the rest of the CRT logic (100 MHz), we were able to 
construct virtual quad port block RAM.  For each cycle of the CRT clock (100 MHz), two 
addresses are presented to each port of the large twiddle table, one on each cycle of its faster 
clock (200 MHz).  As a result, the large twiddle table is able to sustain a throughput of four 
independent reads per clock cycle, and saves the resources required by the twiddle tables for 
stages 2048, 1024, and 512.  After these savings, as shown in Figure 21, the design still uses 
98% of the available FPGA block RAM (BRAM) resources.   

4.4.3 VHDL implementation of Ring Round 

In addition to our implemented ring and CRT operations, we have implemented a function used 
in our Composed Eval Mult (CEM) called Round. The CEM function is implemented in our 
software in C, executed several FPGA primitives. First, a RingMul operation performs the 
multiply. Next a key-switch operation is performed consisting of another RingMul of the product 
with a hint variable defined by the cryptosystem. Then, a modulus reduction operation is 
performed on the single highest tower entry of the result which consists of an inverse CRT and 
this Round operation. Since the Round does several modulus operations not otherwise available, 
we implemented it in hardware. 

Figure 21: Virtex 7 485T FPGA resource utilization for the FHE accelerator 
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Figure 22 shows the Simulink Model of the round which consists of a modified EvalMult 
operation (using a modified set of moduli qi), and a pair of operations selected by the range of 
the result which ensure the output is bounded within an appropriate range. The operations are 
performed in a pipelined manner as well.   

The result of the rounding operation is a pair of new ring vectors that are then in turn applied to 
each remaining tower entry to reduce the noise accumulated by the initial product. These vectors 
are first processed with a series of RingAdds, RingSubs and a CRT using each of the 
corresponding ring moduli. The end result is that the highest tower ring is eliminated from the 
cipher text, and the overall noise of the system remains at a usable (i.e. decryptable) level. 

4.4.4 Further optimizations 

Mathworks determined that by selecting synchronous vs. asynchronous reset in the Simulink to 
HDL generation parameters, the resulting VHDL mapped more efficiently into the registers built 
into the DSP48E blocks on the Virtex 7 FPGA, increasing the efficiency of the resulting mapped 
VHDL by eliminating extra routing traces. 

The previous circuits were designed to run at a minimum speed of 100 MHz. We determined that 
adding explicit pipelining stages in the form of delay lines to the model enabled the Xilinx tools 
to better optimize FPGA mapping during place and route pipelining stages. Specifically pipelines 
were added between arithmetic operations within the RingAdd (4 stages), RingSub (3 stages), 
RingMul (188 stages) and RingButterfly (195 stages) models. Since our target ring size can be as 
large as 2^14, and all the towers of a variable are processed sequentially, the delay incurred from 
filling the pipeline is expected to be minimal.   

Several of our circuits utilize lookup tables, both for storing the moduli qi and for storing various 
twiddle table entries for the CRT and inverse.  Our previous direct implementation of the table 
lookup using the Simulink Lookup function block maps the resulting ROM directly into gate 
circuitry. This can increase the place and route drastically for very large tables, and also can 
result in less efficient circuits. Mathworks determined that by placing an additional delay line, 
with a “ResetType = none” HDL block property let the Xilinx tools map the table to block ram in 
the FPGA, which is a more efficient utilization of resources on the chip.   

Figure 22: Simulink model of Round function 
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4.4.5 FPGA hardware selection 

Our FPGA selection was driven by the need for a large number of hardware multipliers on the 
chip. Due to cost constraints we wanted to use a commercial off-the-shelf FPGA board for our 
experiments. Our selection of the Virtex 7 VC707 evaluation board was driven by the following 
sizing requirements.  Our final ring size of 2^14 requires 87% of the DSP48 blocks available on 
this board’s Virtex 7 485T chip.  Additionally, we require on-board DDR memory for storage of 
encrypted variables, and high speed Ethernet and PCI Express (PCIe) interfaces. All these are 
present on the VC707.  Note in this document both PCI and PCIe are used to refer to the PCI 
Express interface that connects the FPGA board with the PC motherboard when it is hosted in a 
PC. 

4.4.6 FHE Accelerator system architecture 

The design goal of our FPGA system was to be able to operate as an attached processor to 
accelerate the FHE primitive operations in way that allows one to chain together several 
operations in order to minimize the overhead due to data transfer. An attached processor design 
was developed in which a software programmable microcontroller would manage I/O 
communications with the host via Ethernet or PCI memory map, manage on board data storage 
in the form of an encrypted register file, and manage data transfer to and from the FHE primitive 
modules in as efficient manner as possible. We decided to use the Xilinx Platform Studio 
Microblaze soft core processor and AXI4 interconnect architecture to implement the attached 
FHE processor. We found that this supported Ethernet based operation well. For PCI operation 
we determined that the Microblaze was not required, so we remove the soft core and the Ethernet 
controller from the FPGA for those builds. 

A high level diagram of the FHE Accelerator Architecture is shown in Figure 23.  At the top of 
the diagram is block labeled “Applications”.  This represents user applications, such as Matlab, 
that use the FHE accelerator code.  User applications utilize the accelerator by communicating 
with the FHE Kernel Driver, which exposes a Linux “character device”.  The FHE character 
device behaves a bit like a file, or a network device.  The user application sends commands and 
data to the FHE Kernel driver by writing packets of data to the FHE character device, and 
likewise the user application receives responses and status via data packets from the FHE 
character device.  The packet packed-based communication protocol allows the user application 
to be agnostic to whether the FHE Accelerator is on a local PCIe bus, on separate network-
connected device. 
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The core FHE Kernel Driver code is written in portable “C” code.  Therefore, although we run 
this code in the Linux kernel, it can also run on a soft-core Microblaze processor inside the 
FPGA.  This portable driver code instantiates a set registers, in memory, which store the FHE 
input and output data, as well as intermediate results.  When the code runs on Microblaze, these 
registers exist in the FPGA-connected DDR memory and when the code runs in the Linux 
Kernel, these register exist in PC memory.  Figure 23 depicts the PCI hosted case where the code 
runs in the Linux Kernel. For the case where the FPGA is not in a PCI bus, the registers exist on 
the FPGA evaluation board in DDR3 RAM, and the FHE Kernel driver code is split between the 
Linux Kernel and the Microblaze on the FPGA.  Data packets (described below) are sent via 
Gigabit Ethernet rather than to mapped PCI memory. 

Note that, in Figure 23, the (AXI Full Interface) arrow between the Input DMA module and the 
PCIe interface originates at the DMA module, even though the data flows in the other direction.  
This is because the DMA modules are both a Master, meaning they initiate the data transfers.  
One DMA Master (Input) reads from PC memory, and the other (Output) writes to PC memory.  
The DMA modules also have an AXI slave port, for control, which is written to and from by the 
PC (via the PCIe interface). 

Figure 24 shows a system block diagram of the FPGA system for both the Ethernet and PCI 
hosted configurations. The Xilinx platform studio enables us to implement our FHE primitives as 

Figure 23: FHE hardware accelerator architecture 
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streaming co-processors on the AXI bus. An AXI4 lite bus is used to set control parameters of 
our Ring operation circuits, such as ring size and tower size.  

Figure 25 depicts the interior of the FHE Primitives module (purple) in Figure 24.  The module is 
fed by two 256-bit wide data streams in the AXI clock domain (shown on top), but internally 
processes two 64-bit streams in a different clock domain called the “math clock” domain.  In this 
design, the math clock runs at 100 MHz, and the AXI clock runs at 125 MHz. Separating the 
FHE math clock domain from the PCIe clock domain give us quite a bit of design flexibility.  
The frequency of the AXI clock is determined by the speed of the PCIe interface.  The math 
clock frequency, however, can be set arbitrarily so long as the FHE Core logic meets timing at 
that frequency.   We are conservative with the math clock frequency due to the fact we have 
some internal (CRT twiddle) memories that are run at twice the math clock frequency (described 
in Figure 20).  As the FHE Core logic eventually is rewritten and becomes more efficient, we 
will be able to increase the rate of the math clock.  The AXI clock may also be doubled if we 
move to a PCIe Gen 3 architecture.   

When running with Ethernet, the main AXI4 interconnects remain a 256 bit bus connecting the 
DDR3 ram with the various FHE primitives. In this mode, the I/O rate into and out of DDR3 
memory limits the overall processing speed of the system. 

Figure 24: System Block Diagram showing major components and the AXI4 interconnect for 
the various implementations of the FHEPU.  
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Figure 26 shows the internal structure of the FHE core and how the inputs and output streams are 
routed to the various FHE primitive functions. The core block performs one of several operations 
on the data – Add, Sub, Mul, CRT, or Round.  The CRT operation can perform either inverse or 
forward CRTs of ring sizes from 16 to 16384 (in powers of 2).  However, the CRT operation also 
uses the Mul block.  For forward CRTs, the CRT block is fed with input In 0, and the CRT 
module’s output is then multiplied with input In 1 using the Mul module.  Similarly, for inverse 
CRTs, inputs In 0 and In1 are fed into the Mul module, and the Mul output is fed into the CRT 
module.  This architecture conserves FPGA resources for a couple reasons.  First, FPGA logic 
resources are conserved since we would otherwise need to instantiate another Mul block inside 
the CRT module.  Second, since the Mul inputs for CRT operations (CRT Twiddle Table) arrive 
from In 1 (via DMA from DDR3 ram or PC memory depending on hosting), they do not need to 
be stored locally as ROM tables in the FPGA.  This reduces the amount of FPGA block memory 
used by the design.  

Each of the operations in purple receives their input data pipelined first by ring elements, then by 
tower indices.  Thus all input and output for a complete double CRT is streamed in one 
operation. The CRT modules require slightly different interfaces that change the order of the 
input and output data as mentioned previously.  

Figure 25: Integration of FHE primitives with the AXI stream data streams. 
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4.4.7 Communication between the Application and Kernel Driver.  

Ethernet-Hosted Mode 

The Xilinx platform studio is used to implement a Microblaze soft core processor when the 
system is in an Ethernet Hosted configuration,. The system architecture is based on the demo 
hardware self-test example that is provided with the Xilinx board. The software architecture is 
based on the web-service example provided with the Xilinx Virtex 6 ML605 evaluation kit, 
updated with the Xilinx SGMII 144 Ethernet controller (our first implementations, as we later 
moved to the Virtex 7 and the VC707 evaluation board). The software controlling the system on 
the Microblaze is written in C code. The system is multithreaded to allow the use of Ethernet 
TCP/IP socket I/O. A network thread manages socket level I/O between the host and the attached 
processor. Another thread reads the incoming messages from the socket, parses the commands 
received and dispatches execution to various subroutines.  

The DDR3 ram is partitioned into a set of register data structures, as well as a set of internal 
registers to store constants used in our encryption schemes. Each register can hold one encrypted 
bit in the form of 2 dimensional vectors of unsigned long longs that are allocated out of DDR 
ram. One dimension (the fastest index) is the ring size N and is software programmable. The 
other dimension, the tower size, varies with the state of the register.  Typically registers are 
loaded into the FHE coprocessor with a fixed starting number of the tower elements (up to 
MAX_TOWER_SIZE = 32 elements.  

The registers are allocated out of heap in the DDR3 ram. There are three flavors of registers: 
Input, Output and Scratch. This design decision was made in order to allow us to later segregate 

Figure 26: FHE Core. Ring operation pipelines are kept fed with two Input data streams, and 
produce one or two output data streams, all under direct DMA control from PCI or Microblaze. 
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I/O and scratch registers into different memory locations if that were to increase throughput. The 
quantity of each register type is software defined at compile time but there is usually a small 
numbers of Input and Output registers and as many Scratch registers as will utilize all the 
available heap space. Control structures mark the current tower size of each register, and if the 
register is used or not. Registers are allocated so they are aligned to 32 byte address boundaries 
in order to allow the AXI4 DMA engines to move the register data into and out of the FHE 
primitives. This format allows the contents of an entire register (all used towers) to be streamed 
with only one DMA transfer.  

A Linux Driver is used to interface with the user Application code. It translates the Application 
Level text interface messages to a binary format message (both to be described later) and handles 
all Ethernet I/O to the FPGA board.   

PCI-Hosted Mode 

The Linux Driver for the PCI Hosted mode is written to emulate the buffer I/O of the Ethernet 
interface, allowing the same user application software to be used for both Ethernet and PCI 
operation. 

In this mode, the DDR3 is not used at all, and both the Microblaze and Ethernet controllers are 
removed from the system build to conserve resources. Registers are allocated out of the PCI 
Kernel memory. All Microblaze code is executed in Linux Kernel Space. 

Application Level Text Interface 

The communication protocol between the user application code and Linux Driver is message 
based. The messages are in ASCII. Each processor instruction is then parsed. The parsing test 
starts with a keyword that defines the rest of the instruction format. The keywords are shown in 
Table 6. 

Table 6: Application Level Control Protocol keywords 

Keyword Function 
LOAD Transfer the contents of the message (ascii) into a particular Input register. 
GET Request the contents of a particular output register to be loaded into a message buffer and sent back to 

the host. 
STATUS Generates a short report on the FPGA board console for debugging showing the contents of all used 

registers, a listing of the current program loaded. 
PROG Loads a sequence of operations to be performed on the register data, in a simple assembly language. 
RUN Starts a software Finite State Machine to run the stored program to completion. 
CRT, ICRT, 
CEM 

A single command that will LOAD two registers, perform a forward CRT, inverse CRT or Composed 
EvalMult on them and GET the resulting output. Used for accelerating applications that only require 
these three operations. 

RESET Resets the system to its original state. 

The user application can string commands together to program the FPGA to operate on several 
pieces of encrypted data in the form of an assembly language. The FPGA accelerator’s assembly 
language has the syntax shown in Table 7.  

Table 7: Table of available Opcodes for Application program 

Opcode Example Description
LOAD R1 = LOAD(In0) Moves data from an input register to scratch register, all active tower 

elements are moved. 
STORE Out4 = STORE(R3) Moves data from a scratch register to output register, all active tower 

elements are moved. 
RADD R2 = RADD(R3, R4) Sets up DMAs of the two input and one output registers to the RingAdd 

Approved for Public Release; Distribution Unlimited. 
46 



circuit. All active tower elements are processed I one large data flow. 
RSUB R2 = RSUB(R3, R4) Sane as RingAdd, except the RingSub circuit is the target of the DMAs. 
RMUL R2 = RMUL(R3, R4) Sane as RingMul, except the RingSub circuit is the target of the DMAs. 
CRT R3= CRT(R1, R2) Same as RingAdd, except the input and output registers are used as 

endpoints for pairs of DMA transfers, each moving one half of the ring data.  
Note second input register is used as a scratch register so is contents are 
destroyed. 

ICRT R2 = ICRT(R4, R5) Same as CRT except an inverse CRT circuit is used. 
EMULC R2 = EMULC(R3, R4) Executes a ComposedEvalMult, in software which in turns executes several 

Ring primitives (see below). Note that output register is one tower smaller 
than the input registers. 

An example simple program in now given in Table 8. The program first moves encrypted data 
from input register 0, to scratch register 0, then repeats the process for a second input variable to 
register 1. It then computes a RingAdd, RingSub and RingMul using the two inputs, and storing 
the result in scratch registers 2, 3 and 4 respectively. It then stores those three results in output 
registers 0, 1 and 2 respectively. 

Table 8: Sample FHEPU program 

R0 = LOAD(In0) 

R1 = LOAD(In1) 

R2 = RADD(R0,R1) 

R3 = RSUB(R0,R1) 

R4 = RMUL(R0,R1) 

Out0 = STORE(R2) 

Out1 = STORE(R3) 

Out2 = STORE(R4) 

Typical system operation would be for the user to execute two LOAD commands to load the 
contents of input registers 0 and 1 with encrypted data (the encryption being done on the secure 
host). The user then executes a RUN command to allow the Homomorphic operations to be run 
on the unsecure FPGA processor. Then subsequent calls to GET commands will transfer the 
resulting encrypted result data back to the host. Finally decryption would be done on the secure 
host. 

4.4.8 Communication between the Kernel Driver and the FPGA 

The FHE Kernel driver delegates certain primitive operations to the FPGA.  This FPGA control 
is made possible by a set of AXI-LITE register-based interfaces, which exist in the FPGA, but 
are memory-mapped (made accessible) to the FHE Kernel Driver (on the PC) via the PCIe 
interface.  The FPGA Kernel driver configures the FHE module in the FPGA for a particular 
operation by writing to its AXI-LITE interface.  Next, the input and output DMA modules are 
configured by the FHE Kernel Driver via their AXI-LITE interfaces.  At this point, the input 
DMA module fetches input data directly from PC memory via the PCIe interface and sends the 
data to the FHE module.  The FHE module processes the data, and sends its output to the output 
DMA module.  The output DMA module writes the data directly back to PC memory via the 
PCIe interface. 
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The driver communicates with the FPGA either over Ethernet or PCIe by sending and receiving 
packets.  Each packet starts with a 32-byte header that contains 8 4-byte fields as shown in Table 
9. 

Table 9: Driver Packet header format 

Field Size Description
totalLength 32-bits Contains the total length of the packet, in bytes 
cmd 32-bits Defines the command (packet type) 
aux1 32-bits Command-Specific data
aux2 32-bits Command-Specific data
aux3 32-bits Command-Specific data
aux4 32-bits Command-Specific data
aux5 32-bits Command-Specific data
aux6 32-bits Command-Specific data

All 32-bit numeric fields are in little endian byte order.  The first two header fields are used by 
every packet, while the next 6 fields (aux1-aux6) are interpreted differently depending on the 
command.  Some packets also contain data following the header.  If a packet contains more data 
following the header, its totalLength field will be greater than the header size, otherwise it will 
be equal to the header size.  Packets from the driver back to the user application start with the 
same packet header, however have different values in the “cmd” field.  The “cmd” field may 
have the following values as shown in Table 10. 

Table 10: Driver Packet command enumeration 

Command Enumer
-ation 

Description 

LOAD 0 This command instructs the driver to load a register with a set of values.  The aux1 field 
contains the index of the register to load, and the aux2 field contains the tower index 
within that register.  The number of values to load is determined by the number of bytes 
left in the packet.  The remaining packet bytes contain a set of 64-bit little endian encoded 
integers.  The user application should always load tower index 0 first, as the number of 
elements in tower index 0 determines the ring size.  After tower index 0 of a register is 
loaded, the driver will not allow other tower indices to be loaded unless the number of 
element to be loaded is equal to the ring size (defined by the number of elements in tower 
index 0).  The ring size my be changed by re-loading tower index 0. 

PROG 1 The driver may execute a set of operations on behalf of the user application.  These 
operations are defined by a small “program” sent to the driver.  Each instruction in the 
program is encoded by a 32-bit instruction, and this command is used to load the program 
– one instruction at a time.   The aux1 field contains the instruction index (where it resides
in the program), with the first instruction residing at index 1.  The aux2 field contains the 
instruction itself.  The driver keeps track of how many instructions were written so it knows 
how many instructions to execute.  An existing program may be cleared by writing a new 
instruction to index 1. 

GET 2 This command causes the driver to send back the contents of an output register, (with a 
respGET packet, described below).  The aux1 field contains the output register number, 
and the aux2 field contains the tower number. 

RUN 3 This command causes the driver to execute the program,  set by one or more PROG 
commands (described above). 

VERIFY 4 This command causes the driver verify the contents of an output register.  The aux1 field 
contains the output register index, and the aux2 field contains the tower index.  The 
packet data (following the packet header), is compared to the register contents by the 
driver to see if it matches.  The driver will then send back a respVerify packet back to the 
user application to let the application know if the data matched or not.  If the data size in 
this packet does not match the register’s ring size, the driver outputs an error message to 
its standard output, but does not send a response packet  

DUMP 5 This is a debug command that causes the driver to dump the contents of a register to its 
standard output.  The aux field contains the register index, and the aux2 field contains the 
tower index. 
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HINT 6 This command is used to load a hint register.  The aux1 field contains the hint register 
index, and the aux2 field contains the tower index. 

respGET 8 This response, sent from the driver back to the user application, is a the response to a 
GET command.  Its header is followed by the data in the register requested by a GET 
command from the application.  The aux1 field is set to the register index. 

respVERIFY 9 This response, sent from the driver to the user application to inform the user application 
the result of a VERIFY command.  The aux1 field contains 0 if  the register contents 
matched the data in the VERIFY command, and 1 if the data did not match. 

The user application my send the driver a small program, using the PROG and RUN commands, 
described above.  Each program instruction is encoded with a 32-bit little-endian word, using the 
format described in Table 11. 

Table 11: Driver Packet instruction encoding 

Bits Field Name Description
24-31 Opcode Encodes the type of operation to be performed.  See Table 

below for a description of the available operations. 
23-22 Return Value Type Encodes the register type of the return value. 
16-22 Return Value Index Encodes the register number of the return value. 
14-15 Argument 2 Type Encodes the register type of the second argument. 
8-13 Argument 2 Index Encodes the register number of the second argument. 
7-6 Argument 1 Type Encodes the register type of the first argument. 
5-0 Argument 1 Index Encodes the register number of the first argument. 

There are four possible values for the register type fields.  These are outlined in Table 12: 

Table 12: Driver Packet register encoding 

Register 
Type 

Enumer-
ation 

Description 

None 0 This encoding is used if an argument does not refer to a register.  Its interpretation 
would depend on the opcode. 

Input 1 Input registers are filled with data from LOAD commands – i.e. with data from user 
applications. 

Output 2 Output registers are sent to the user application as responses to GET commands.  
They typically contain the results of operations. 

Scratch 3 Scratch registers are contain the inputs and output of FPGA operations. 

The opcodes are summarized in Table 13 below.  Note that some encodings have been omitted.  
This is because some opcodes were defined but never implemented.  The following table only 
contains the implemented opcodes: 

Table 13: Driver Packet opcode encoding 

Opcode Enumer
-ation 

Description 

LOAD 0 Move the content of an input register to a scratch register.  Argument 1 contains the input 
register address, and the return value contains the scratch register address. 

STORE 1 Move the contents of a scratch register to an output register.  Argument 1 contains the 
scratch register address, and the return value contains output register address. 

RADD 5 Perform the ADD operation on two scratch registers.  Arguments 1 and 2 contain the two 
input scratch register addresses for the operation, and the return value contains the 
address of the output register. 

RSUB 6 Perform the SUB operation on two scratch registers.  Arguments 1 and 2 contain the two 
input scratch register addresses for the operation, and the return value contains the 
address of the output register. 

RMUL 7 Perform the MUL operation on two scratch registers.  Arguments 1 and 2 contain the two 
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input scratch register addresses for the operation, and the return value contains the 
address of the output register. 

CRT 8 Perform the CRT operation on a scratch register.  Arguments 1 contains the input scratch 
register addresses for the operation, and the return value contains the address of the 
output register. 

ICRT 9 Perform the ICRT operation on a scratch register.  Arguments 1 contains the input scratch 
register addresses for the operation, and the return value contains the address of the 
output register. 

ROUND
1 

10 Perform the ROUND operation on a scratch register.  Arguments 1 contains the input 
scratch register addresses for the operation, and argument 2 contains the tower index 
(register type None).   The return value contains the address of the output register. 

ROUND
2 

11 Same as the ROUND 1 operation, but returns the second result (the ROUND operation 
returns to results) 

EMULC 12 Perform the EMULC operation on two scratch registers.  Arguments 1 and 2 contain the 
two input scratch register addresses for the operation, and the return value contains the 
address of the output register. 

END 13 Stop executing the program 
NOP 14 No-operation.  Does no work. 
MOD 15 Perform the CRT operation on a scratch register.  Arguments 1 contains the input scratch 

register addresses for the operation, and the return value contains the address of the 
output register. 

4.4.9 Performance results 

During our evaluations of FPGA acceleration of the KWS application we noticed that RingAdd 
does not actually benefit from acceleration, simply because our C implementation is very 
efficient, and the additional overhead of data transfer to and from the FPGA eliminates any 
potential benefit. Our accelerations primarily benefit any functions using CRT. We focus 
primarily on the CRT and Bootstrap (which has only its CRTs accelerated). 

We evaluated the performance of our FPGA co-processor implementation from multiple 
perspectives.  In particular, we evaluated both the individual performance improvements of the 
CRT operation running in isolation on the FPGA and running the CRT in the context of a 
broader use-case for encrypted KWS. 

The CRT text search operation was run to compare 1) a native interpreted Matlab runtime of the 
CRT running on the CPU of the FPGA systems, 2) a mex (i.e. compiled Matlab) version of the 
CRT running on the PROCEED Deathstar environment (64 cores) and 3) with calls the FPGA 
co-processor to run the CRT operation.  All of the experiment test harnesses were run in 
interpreted Matlab with the variable being how the CRT was executed.  We did not include 
FPGA setup time in our analysis.  We did include the time to submit the CRT jobs to the FPGA, 
and the response times in our experimental analysis. 

Our experimental results on CRT runtimes for the Matlab interpreted, Matlab CPU compiled and 
FPGA-supported CRT runtimes for various ring dimensions can be seen in Figure 27.  We found 
experimentally that the value of the ciphertext moduli has little impact on runtime, as long as the 
modulus is smaller than the maximum value supported by the CRT.   

In this figure we see that there is a multiple order of magnitude performance improvement by 
offloading CRT computations from the CPU to the FPGA.  Note that the curves have a distinct 
“J” shape with slightly increased runtimes at smaller ring dimensions on the FPGA.  This is a 
result of the FPGA communication times and is a common artifact of FPGA co-processor 
behavior. An additional view of the FPGA speed-up as compared to the Matlab and mex 
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runtimes can be seen in Figure 28. It can be clearly seen that the FPGA implementation is 1600 
times faster than our fastest single CPU version. It is 35 times faster than the Deathstar version.  

We attempted to use the FPGA to support our bootstrapping operation, but we ran into 
challenges due to parameter selection issues.  In particular, we found that in order to support the 
necessary depth of computation and larger plaintext moduli needed for bootstrapping, we needed 
to support parameters with bit widths larger than 64 bits for the most secure ring sizes.  This 
would have required rewriting all our FPGA code, which was not possible within the remaining 
project scope.  However, in software we took a straightforward approach to implementation and 
attempted an FPGA implementation that supported solely the CRT operations on the FPGA, with 
smaller ring sizes that could still be supported by our initial <=64 bit parameter settings.  
Because we limited ourselves to a lower ciphertext modulus than necessary, there remains 
further research needed to fully push this capability into operational production.  This “parameter 
engineering” for bootstrapping will be early low-hanging fruit for any future development effort. 

We collected initial results to evaluate bootstrapping performance with only the CRT accelerated 
on the FPGA.  The speedup can be seen in the graph in Figure 29.  Figure 30 shows the speedup 
for bootstrapping as a function of ring dimension. We see a less dramatic performance 
improvement as compared to solely running the CRT on the FPGA as in earlier experimental 
results due to the increased amount of non-FPGA computation running on bootstrapping.  Many 
of the operations we are still running on the CPU could also be out-sourced to an FPGA as 
additional low-hanging fruit for future development work. 

Figure 27: CRT absolute runtimes. 
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Figure 28: CRT relative speedup 

Figure 29: Bootstrapping runtime performance with the CRT running on the FPGA. 

Approved for Public Release; Distribution Unlimited. 
52 



4.5 Encrypted keyword search FHE results and discussion 
We initially run our KWS implementation at a low security level (δ = 1.08) using SHE 
computing to enable the email system to be interactive with fast response times. Our initial 
implementation uses a ring dimension of n = 512 and encrypts emails with a supported depth of 
computation d = 12. This will result in an effective ciphertext modulus q represented with 430 
bits and provides a security level of less than AES-128 in terms of work-factor.  

To evaluate the relative performance speed-up of the FPGA co-processor with only CRT 
acceleration in a more real-world setting, we developed both compiled and FPGA accelerated 
implementations of our string searching algorithms. 

The compiled implementation supported all string search operations in mex Matlab, a C-
compiled version of Matlab.  The FPGA co-processor implementation ran almost all of the string 
search operations in the slower native Matlab interpreter, except for the CRT operation which 
were run on the FPGA co-processor. 

To set a baseline of performance, we ran the runtime experiments on a ring dimension of 
n=2048, text corpuses of length 1,4, 16,64 and 256 characters long (corresponding to the length 
of modern text messages) and keywords of length 1,2,3,4 and 5 characters long.  We supported 
all of ASCII in our search operations.  We selected n=2048 because the runtime of the compiled 
string search at higher dimensions was too long to collected meaningful data over. 

Figure 31 and Figure 32 show the runtime of the string search operation for the compiled string 
search.  As we can see, the runtime grows nearly linearly with both the keyword length and 
corpus length. 

Figure 30: Bootstrapping runtime speedup with the CRT running on the FPGA. 
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Figure 33 and Figure 34 show the runtime of the string search operation for the FPGA string 
search.  As we can see, the runtime grows nearly linearly with both the keyword length and 
corpus length, similar to with the compiled version of the operation, but substantially faster. 

We created plots to show the relative speed-up of using the FPGA co-processor in Figure 35 and 
Figure 36. We see that the speed-up is relatively constant at 50x (1.5 orders of magnitude) 
despite variations in the length of keywords and corpora.  We found that this 50X speed-up was 
relatively consistent across ring dimensions in broader experiments at lower security levels. 

Figure 31: Runtime of the compiled string search operation vs. length of corpus 
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Figure 32: Runtime of the compiled string search operation vs. length of keyword 
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Our intentions are to continue to evaluate the performance of the string search operations.  For 
example, we plan on generating more data on the experiments we have run on larger keyword 
and corpus sets.  We plan on generating data over more parameter settings to assess how ring 
dimension affects the FPGA co-processor in comparison to the compiled operations.  For 
example, we will assess performance up to the n=16384 ring dimension and up to 10 character 
keywords and 1000 character text corpora.  Early indications are that ring dimension has a lesser 
impact on the runtime of FPGA-based co-processor and we expect this to be much faster. 

Figure 33: Runtime of the FPGA accellerated string search operation vs. length of keyword
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Figure 34: Runtime of the FPGA accellerated string search operation vs. length of corpus
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We plan on generating these results and preparing them for publication in an IEEE Transactions-
type journal in the near future. 

5 CONCLUSIONS  
In conclusion we have taken FHE from an early theoretical possibility to an actual 
implementation on multiple platforms. Our three pronged approach of theory, software and 
hardware implementation has had many benefits we did not see at the outset. By working closely 
with newly developed FHE schemes, we were able to continuously improve the capabilities of 
our FHE scheme. At the onset we did not have a bootstrapping approach, yet eventually this 

Figure 35: Relative speed-up of string search operation vs. length of keyword 
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Figure 36: Relative Relative speed-up of string search operation vs. length of keyword 
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capability was not only developed but proved to be one of the most efficient approaches 
available. By using a rapid prototyping approach to software development, we were able to 
quickly implement working prototypes of our FHE scheme, and develop an understanding of 
where the strengths and weaknesses were in our implementations. We were able to apply 
software engineering to a relatively new set of algorithms, determining appropriate ways to 
parallelize our operations in order to achieve speedup on multicore computers.  Our approach 
also allowed us to use state of art code generation approaches to generate embedded C code for 
use on iPhone and iPod systems from the same code we used for prototyping.  Targeting 
hardware for our implementation drove our development in some fundamental ways. We knew 
from the onset that we needed efficient implementations of large integer modulus arithmetic. 
This helped drive our double CRT implementation, which keeps bit widths within reasonable 
limits. As a side result we found that such implementations improved the performance of our 
software as well.   

Beyond our VoIP functionality, our implementation is part of a long-term community vision to 
support a general, practical and secure computing capability through a layered services 
architecture. Part of our vision is to provide software interfaces in our design for our highly 
optimized implementations of the basic FHE operations for both general and specific 
applications. 

Although we only utilize limited-depth SHE for VOIP, that encryption system design is a scaled-
down version of our FHE scheme design. Our design offers the possibility for a much more 
general VoIP teleconferencing capability that incorporates signal detection and noise filtering 
operations on the encrypted VoIP channels. This more general design would enable protection 
against some of the more practical attacks that could be made by an adversary such as noise 
injection attacks where an adversary inserts noise into a VoIP teleconferencing session to reduce 
the ability of participants to hear one another. Using more general FHE capabilities, we could 
enable the untrusted cloud host to securely filter the encrypted VoIP signals before or after 
mixing to reduce the impacts of insertion attacks.  

A further aspect of our layered architecture vision is ability to mix-and-match a computing 
substrate at the server for much larger scalability and throughput. Our FHE design has been 
ported to an FPGA, but with further refinement could be amenable to GPUs [14] operating as 
FHE co-processors. 

6 RECOMMENDATIONS 
Recommendations for future work in this area are organized into three areas. The first area for 
future work is research into application specific uses of FHE. One noticeable area that did not get 
sufficient attention during our program was in the areas of applications. Initial attempts to 
identify applications of FHE had usually been selected by the Proceed researchers as being 
potential areas for both FHE and SMP computation. However, we often found that the security 
model for the application, while good for SMP did not make sense for the postulated cloud based 
FHE implementation. It is apparent to us, that as FHE becomes more usable through research 
and development that streamlines the implementation and executions costs, that more 
applications will become apparent. We also found from our research, that often times, a 
customized, application specific data representation and FHE parameter selection  was more 
conducive to FHE manipulation  (such as our VOIP application).  
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The second area for future research is in the area of FHE acceleration. Our approach of using 
Matlab and Simulink to rapidly prototype both VHDL and C code implementations of key FHE 
functions was vital to our being able to rapidly prototype and develop FHE accelerators of key 
FHE functions. However, we find now that as FHE technology matures, these key functions have 
been relatively stable. It is now time that native implementations of both C/C++ and VHDL of 
these functions will allow developers to achieve even more efficiencies in implementation. 
Further, the dramatic improvements in GPU technology over the last few years have brought 
wider bit width operations closer to reality. GPUs have a deeper penetration into the cloud 
computing commodity market than FPGAs currently have, and as such, may prove a valuable 
implementation platform for acceleration of FHE.  As with many complex systems, there are 
numerous improvements that could be made to the FPGA based FHE Accelerator: 
 We originally chose the largest tower size of 32 before we actually had a viable Bootstrap

operation derived.  We have since determined that we don’t need that many tower entries for
FHE at high security levels. Currently we are running the internal twiddle table block RAM at
twice the frequency of the rest of the logic.  Through a combination of decreasing the number
of tower vectors down from 32, and using a larger size FPGA chip with more block RAM
resources, we will no longer need to run the block RAM at twice the frequency of the other
logic, and we will be able to increase the clock frequency of the other logic.
 Currently, the ring math logic is all internally gated by a clock enable signal.  This allows the

data to be fed though ring math logic at the rate at which it arrives to the FPGA from the PCIe
interface.  However, by updating the logic that drives the ring math logic so that it
appropriately buffers data and sends it though the ring logic without any breaks, we would
negate the need for the clock enable signals.  This would further allow us to increase the ring
math clock frequency since the large fan out of the clock enable signal complicates placement
and routing.
 The system currently runs 8–lane x8 PCIe Gen1, which provides approximately 2 Gb/sec per

lane for a total 16 Gb/sec throughput.  If we move to PCIe Gen2, the throughput would double
to 4 Gb/sec per lane.  The current hardware supports Gen2 PCIe, however the PCIe IP block
we used did not.  However, it should be possible to move to Gen2 PCIe by either upgrading the
FPGA tools, or by developing our own PCIe interface logic.

The third area for future work is in the development of a portable, extensible library of FHE 
operations that are easily adapted by users unfamiliar with FHE details. Such a library should be 
developed using state of the art programming practices, and be able to support a wide range of 
platforms: single and multi-core systems, hardware accelerators such as FPGAs and GPUs, and 
distributed cloud-type enterprise systems. This would enable developers to develop on one 
platform then scale their work easily to large compute environments.  
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A.1 Appendix SIPHER SHE runtime data tables 
Table 14: Encryption runtime (mSec) vs. depth of computation supported and Ring Dimension for 

p = 2 

 Depth 
Dim.  

1 3 5 7 8 11 13 15 17 19

512 2.32 2.83 2.86 3.27 3.39 3.25 4.38 4.64 5.35 5.66 

1024 3.87 5.33 5.17 5.98 5.68 5.63 6.94 8.4 9.04 9.2 

2048 6.26 6.48 7.01 7.47 7.94 8.78 12.7 13.03 13.05 14.52 

4096 12.08 12.27 13.04 14.87 17.38 17.65 20.73 17.46 21.57 22.13 

8192 24.53 25.18 26.13 29.07 30.81 32.15 34.43 32.46 36.16 37.9 

16384 52.3 55.02 58.05 59.71 60.29 61.98 63.44 64.99 69.96 72.89 

Table 15: EvalAdd runtime (mSec) vs. depth of computation supported and Ring Dimension for p 
= 2 

   Depth 
Dim.  

1 3 5 7 9 11 13 15 17 19

512 .  0.21  0.32  0.42  0.54  0.64  0.73  1.26  2.11  2.90  3.12  

1024 0.3 1.04 0.47 0.57 0.72 0.74 1.4 2.72 2.85 2.93 

2048 0.37 0.45 0.55 0.67 0.8 1 1.97 3 3.04 3.24 

4096 0.56 0.65 0.74 0.91 1.92 2.07 2.25 2.43 3.73 3.54 

8192 0.89 1.01 1.2 1.36 2.46 2.7 3.69 3.23 5.05 5.44 

16384 1.58 1.82 2.12 2.39 3.99 4.19 4.27 4.77 7.16 7.29 

Table 16: ComposedEvalMult runtime (mSec) vs. depth of computation and Ring Dimension for p 
= 2 

    Depth 

Dim..  

1 3 5 7 9 11 13 15 17 19

512 16.03 22.73 23.32 22.65 22.87 22.96 24.35 25.24 25.37 25.78 

1024 29.15 37.85 39.05 39.11 38.79 39.24 39.49 39.59 39.52 39.68 

2048 49.17 66.31 66.77 67.41 67.15 68.38 68.22 69.27 69.45 71.09 

4096 99.56 140.42 140.71 141.42 141.26 142.75 143.52 145.51 144.61 148.31 

8192 196.83 279.37 280.42 284.4 283.98 285.69 289.59 286.55 292.69 295.69 

16384 463.92 623.19 622.74 628.87 630.43 633.37 639.52 642.8 651.2 659.88 

Table 17: Decryption runtime (mSec) vs. depth of computation supported and initial Ring 
Dimension for p = 2 

  Depth 
Dim 

1 3 5 7 9 11 13 15 17 19
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512 0.40  0.26  0.13  0.14  0.10  0.10  0.06  0.06  0.06  0.06  

1024 0.87 0.38 0.18 0.11 0.11 0.11 0.11 0.11 0.05 0.05 

2048 1.92 0.84 0.38 0.38 0.22 0.22 0.22 0.22 0.12 0.12 

4096 3.36 1.7 0.84 0.86 0.37 0.39 0.38 0.22 0.22 0.21 

8192 7.22 3.43 1.67 1.72 0.85 0.87 0.86 0.87 0.39 0.4 

16384 15.36 7.18 3.37 3.37 1.67 1.67 1.67 1.73 0.87 0.85 
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SIPHER: Scalable Implementation of Primitives for Homomorphic 
EncRyption – FPGA implementation using Simulink 

David Bruce Cousins, Kurt Rohloff, Chris Peikert, Rick Schantz   

Raytheon BBN Technologies, Georgia Institute of Technology 

{dcousins, krohloff, schantz}@bbn.com     cpeikert@cc.gatech.edu 

Abstract
*

Practical Fully Homomorphic Encryption (FHE) would be a 

game-changing technology to enable secure, general 

computation on encrypted data, e.g., on untrusted off-site 

hardware. Recent theoretical breakthroughs demonstrated 

the existence of Fully Homomorphic Encryption schemes 

[1,4]. However, FHE remains impractical because current 

implementations are many orders of magnitude too slow for 

practical use, and do not scale well to the very large keys 

and ciphertexts needed to assure a sufficient level of 

security. A new DARPA program (PROCEED) has as its 

focus the acceleration of various aspects of the FHE 

concept toward practical implementation and use. 

In this paper we present early work on our SIPHER project, 

an element of the PROCEED program, whose goal is to 

demonstrate FHE implementations that improve the state of 

the art by many orders of magnitude. As part of our activity 

we are developing a set of hardware primitives to accelerate 

FHE implementations based on lattice problems [3]. As an 

important aspect of our design methodology we use a state 

of the art tool-chain offered by the Mathworks to develop 

FPGA circuits from Simulink Models.  We initially develop 

prototype descriptions in Matlab that we re-implement in a 

stream oriented, hardware implementable manner in 

Simulink. The operations of the implementations are 

compared to verify correctness. A conversion from 

Simulink to VHDL is done in a completely automated 

fashion using Mathwork’s HDL coder.  This tool chain 

provides us the means to develop our primitives, including 

cyclic VHDL based FPGA prototyping, much faster than 

traditional methods. 

Fully and Somewhat Homomorphic 

Encryption 
Fully Homomorphic Encryption (FHE) holds the promise to 

securely run arbitrary computations over encrypted data on 

untrusted computation hosts [4].  The general FHE concept 

of operations is that sensitive data is encrypted with a 

public key, then sent to an untrusted computation host, 

which can perform arbitrary computations on the encrypted 

data without first needing to decrypt it.  It has been shown 

to be theoretically possible to evaluate arbitrary programs 

* Sponsored by the Defense Advanced Research Projects Agency 
(DARPA) and the Air Force Research Laboratory (AFRL) under Contract 

No. FA8750-11-C-0098.  The views expressed are those of the authors and 

do not reflect the official policy or position of the Department of Defense 
or the U.S. Government. Distribution Statement ―A‖ (Approved for Public 

Release, Distribution Unlimited). 

using just two special purpose FHE operations, EvalAdd 

and EvalMult, which roughly correspond to bitwise XOR 

and AND gates operating on encrypted bits.  A sequence of 

these operations is run against the encrypted data, resulting 

in an encryption of the output of the original program run 

on the unencrypted data.  This encrypted result can then be 

sent back to the original client, who decrypts the result 

using its secret key.  The encrypted data is protected at all 

times with reasonable security guarantees based on 

computational hardness results.   

FHE enables more secure and private computation, but to 

be effective there needs to be multiple orders of magnitude 

efficiency improvements before it can be practical. Known 

FHE schemes are highly inefficient partly because they are 

―noisy‖ - the encryption schemes’ ciphertext is a function 

not only of the plaintext and encryption keys but also of a 

noise term.  The amount of noise in a ciphertext rapidly 

increases as the EvalAdd and EvalMult operations are 

performed, and after too many such operations there is too 

much noise to correctly decrypt the ciphertext.  To run 

larger numbers of EvalAdd and EvalMult operations, FHE 

schemes typically address the accumulation of noise with a 

very computationally expensive ―recryption‖ operation that 

is periodically run on intermediate ciphertexts to keep the 

noise at a level that still permits decryption. 

A Somewhat Homomorphic Encryption (SHE) scheme 

supports several (but not unlimited) EvalMult and EvalAdd 

operations while preserving the correctness of decryption. 

In other words, SHE can schemes support secure 

computation for only a small subset of programs.  Our 

development approach is to select an efficient 

implementation of an SHE scheme which can be converted 

into a full FHE scheme with the addition of a recryption 

(noise reduction) operation and/or other supporting 

modifications.  This enables us to incrementally develop 

SHE results using modest initial resources. 

Although there have been some initial FHE 

implementations [1], there have been no practical 

implementations that can be used for effective general 

computation. Current designs of FHE schemes rely on 

operations (i.e. modular arithmetic with an enormous 

modulus) that are inefficient on standard CPU architectures 

and which are too memory intensive. For convenience all of 

these previous implementations have been limited by their 

focus on CPUs and do not take advantage of specialized 

parallel computation hardware like FPGAs. 
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Figure 1 shows our vision for the layered services we 

provide in our FHE implementation.  There are software 

interfaces for implementations of the basic FHE operations 

(KeyGen, Encrypt, EvalAdd, EvalMult, Recrypt, Decrypt) 

as a primitive basis for constructing more general 

applications on encrypted data.  Our approach to the FHE 

primitives is based on the highly efficient lattice-based 

techniques developed by one of our investigators [3], which 

can be implemented with only a handful of core 

mathematical primitive operations (see Figure 2).  Many of 

these operations are closely related to well-understood 

operations, such as Fast Fourier Transforms, which we are 

targeting for efficient implementations on FPGAs.  The 

EvalAdd and EvalMult operations for example are simply 

element wise vector adds and multiplies taken modulo some 

particular prime integer q. These are trivial to express using 

Matlab:  c = mod(a+b, q) and c = mod(a.*b, q).   

We are leveraging previous work on signal processing 

implementations to implement the primitives (and 

consequently the FHE scheme) as circuits on FPGAs.  The 

FPGAs provide highly cost-effective parallelism. 

One of our primary primitive operations is the Chinese 

Remainder Transform (CRT). The CRT is mathematically 

similar to the Discrete Fourier Transform, but implemented 

using modular integer (instead of complex) arithmetic. 

Figure 3 shows the CRT implementation we are working 

with that is structurally very similar to the familiar 

processing of multi-dimensional signal data. The 

similarities of our primitives with well understood signal-

processing operations that have been efficiently 

implemented in FPGAs give us confidence toward 

developing efficient and scalable FPGA implementations of 

the primitives.  

The FFT operation in Figure 4 is similar to the standard 

FFT [2], except all operations are done in modulo q 

arithmetic.  We were able to take Mathwork’s example 

Simulink streaming FFT model (Figure 4), slightly modify 

the ordering of the output, and easily change from complex 

to integer arithmetic simply by altering the input and 

twiddle factor data types.  Converting to modular arithmetic 

is also straightforward. 

Figure 1: Conceptual diagram of system. 

Figure 2: Primitives for a SHE scheme. 

Figure 3: Internal Structure of CRT Primitive showing similarity 

to signal processing data flow. 

Figure 4: Simulink model for streaming FFT. 
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To implement the modular arithmetic efficiently in 

hardware we have taken advantage of the Montgomery 

Reduction method [5], which allows one to express mod q 

operations in a larger basis r, which can be a power of two. 

So while the bits required to represent the integers have 

grown, all arithmetic operations now are allowed to wrap 

around on overflow, eliminating the need to do a costly 

modular reduction operation in the hardware. We 

implement the Montgomery reduction method in Simulink 

using the fixed point tool box (Figure 5).  The additional 

complexity this adds to the Simulink model for our ring 

operations is trivial. Figure 6 shows the Montgomery 

reduction steps in Red and Blue.  Red steps convert to the 

Montgomery space, and are done once for each input. Any 

number of additions can be done without the need for a 

reduction step. Each multiply requires one reduction step. A 

final reduction step converts back into the original mod q 

representation. Our modified FFT implementation requires 

pre-computation of the twiddle factors in Montgomery 

representation (no real time impact), one reduction step for 

each input sample, one reduction for each output sample 

and one reduction at the output of each butterfly 

multiplication. Since all reduction is done using a pipelined 

approach, there is no additional computation time added 

(just latency).  

Interim Results 
Our presentation will include examples of our primitives 

coded in Matlab and Simulink and examples of VHDL code 

generated by the HDL coder. We will also be able to show 

timing results from Modelsim based simulations of the 

resulting code.   
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Abstract

We give new methods for generating and using “strong trapdoors” in cryptographic lattices, which
are simultaneously simple, efficient, easy to implement (even in parallel), and asymptotically optimal
with very small hidden constants. Our methods involve a new kind of trapdoor, and include specialized
algorithms for inverting LWE, randomly sampling SIS preimages, and securely delegating trapdoors.
These tasks were previously the main bottleneck for a wide range of cryptographic schemes, and our
techniques substantially improve upon the prior ones, both in terms of practical performance and quality
of the produced outputs. Moreover, the simple structure of the new trapdoor and associated algorithms can
be exposed in applications, leading to further simplifications and efficiency improvements. We exemplify
the applicability of our methods with new digital signature schemes and CCA-secure encryption schemes,
which have better efficiency and security than the previously known lattice-based constructions.

1 Introduction

Cryptography based on lattices has several attractive and distinguishing features:

• On the security front, the best attacks on the underlying problems require exponential 2Ω(n) time in
the main security parameter n, even for quantum adversaries. By constrast, for example, mainstream
factoring-based cryptography can be broken in subexponential 2Õ(n1/3) time classically, and even in
polynomial nO(1) time using quantum algorithms. Moreover, lattice cryptography is supported by
strong worst-case/average-case security reductions, which provide solid theoretical evidence that the
random instances used in cryptography are indeed asymptotically hard, and do not suffer from any
unforeseen “structural” weaknesses.
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• On the efficiency and implementation fronts, lattice cryptography operations can be extremely simple,
fast and parallelizable. Typical operations are the selection of uniformly random integer matrices A
modulo some small q = poly(n), and the evaluation of simple linear functions like

fA(x) := Ax mod q and gA(s, e) := stA + et mod q

on short integer vectors x, e.1 (For commonly used parameters, fA is surjective while gA is injective.)
Often, the modulus q is small enough that all the basic operations can be directly implemented using
machine-level arithmetic. By contrast, the analogous operations in number-theoretic cryptography (e.g.,
generating huge random primes, and exponentiating modulo such primes) are much more complex,
admit only limited parallelism in practice, and require the use of “big number” arithmetic libraries.

In recent years lattice-based cryptography has also been shown to be extremely versatile, leading to a large
number of theoretical applications ranging from (hierarchical) identity-based encryption [GPV08, CHKP10,
ABB10a, ABB10b], to fully homomorphic encryption schemes [Gen09b, Gen09a, vGHV10, BV11b, BV11a,
GH11, BGV11], and much more (e.g., [LM08, PW08, Lyu08, PV08, PVW08, Pei09b, ACPS09, Rüc10,
Boy10, GHV10, GKV10]).

Not all lattice cryptography is as simple as selecting random matrices A and evaluating linear functions
like fA(x) = Ax mod q, however. In fact, such operations yield only collision-resistant hash functions,
public-key encryption schemes that are secure under passive attacks, and little else. Richer and more advanced
lattice-based cryptographic schemes, including chosen ciphertext-secure encryption, “hash-and-sign” digital
signatures, and identity-based encryption also require generating a matrix A together with some “strong”
trapdoor, typically in the form of a nonsingular square matrix (a basis) S of short integer vectors such that
AS = 0 mod q. (The matrix S is usually interpreted as a basis of a lattice defined by using A as a “parity
check” matrix.) Applications of such strong trapdoors also require certain efficient inversion algorithms for the
functions fA and gA, using S. Appropriately inverting fA can be particularly complex, as it typically requires
sampling random preimages of fA(x) according to a Gaussian-like probability distribution (see [GPV08]).

Theoretical solutions for all the above tasks (generating A with strong trapdoor S [Ajt99, AP09], trapdoor
inversion of gA and preimage sampling for fA [GPV08]) are known, but they are rather complex and not very
suitable for practice, in either runtime or the “quality” of their outputs. (The quality of a trapdoor S roughly
corresponds to the Euclidean lengths of its vectors — shorter is better.) The current best method for trapdoor
generation [AP09] is conceptually and algorithmically complex, and involves costly computations of Hermite
normal forms and matrix inverses. And while the dimensions and quality of its output are asymptotically
optimal (or nearly so, depending on the precise notion of quality), the hidden constant factors are rather large.
Similarly, the standard methods for inverting gA and sampling preimages of fA [Bab85, Kle00, GPV08]
are inherently sequential and time-consuming, as they are based on an orthogonalization process that uses
high-precision real numbers. A more efficient and parallelizable method for preimage sampling (which
uses only small-integer arithmetic) has recently been discovered [Pei10], but it is still more complex than is
desirable for practice, and the quality of its output can be slightly worse than that of the sequential algorithm
when using the same trapdoor S.

More compact and efficient trapdoors appear necessary for bringing advanced lattice-based schemes
to practice, not only because of the current unsatisfactory runtimes, but also because the concrete security
of lattice cryptography can be quite sensitive to even small changes in the main parameters. As already

1 Inverting these functions corresponds to solving the “short integer solution” (SIS) problem [Ajt96] for fA, and the “learning
with errors” (LWE) problem [Reg05] for gA, both of which are widely used in lattice cryptography and enjoy provable worst-case
hardness.
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mentioned, two central objects are a uniformly random matrix A ∈ Zn×mq that serves as a public key, and an
associated secret matrix S ∈ Zm×m consisting of short integer vectors having “quality” s, where smaller
is better. Here n is the main security parameter governing the hardness of breaking the functions, and m is
the dimension of a lattice associated with A, which is generated by the vectors in S. Note that the security
parameter n and lattice dimension m need not be the same; indeed, typically we have m = Θ(n lg q), which
for many applications is optimal up to constant factors. (For simplicity, throughout this introduction we
use the base-2 logarithm; other choices are possible and yield tradeoffs among the parameters.) For the
trapdoor quality, achieving s = O(

√
m) is asymptotically optimal, and random preimages of fA generated

using S have Euclidean length β ≈ s
√
m. For security, it must be hard (without knowing the trapdoor) to find

any preimage having length bounded by β. Interestingly, the computational resources needed to do so can
increase dramatically with only a moderate decrease in the bound β (see, e.g., [GN08, MR09]). Therefore,
improving the parameters m and s by even small constant factors can have a significant impact on concrete
security. Moreover, this can lead to a “virtuous cycle” in which the increased security allows for the use
of a smaller security parameter n, which leads to even smaller values of m, s, and β, etc. Note also that
the schemes’ key sizes and concrete runtimes are reduced as well, so improving the parameters yields a
“win-win-win” scenario of simultaneously smaller keys, increased concrete security, and faster operations.
(This phenomenon is borne out concretely; see Figure 2.)

1.1 Contributions

The first main contribution of this paper is a new method of trapdoor generation for cryptographic lattices,
which is simultaneously simple, efficient, easy to implement (even in parallel), and asymptotically optimal
with small hidden constants. The new trapdoor generator strictly subsumes the prior ones of [Ajt99, AP09],
in that it proves the main theorems from those works, but with improved concrete bounds for all the
relevant quantities (simultaneously), and via a conceptually simpler and more efficient algorithm. To
accompany our trapdoor generator, we also give specialized algorithms for trapdoor inversion (for gA) and
preimage sampling (for fA), which are simpler and more efficient in our setting than the prior general
solutions [Bab85, Kle00, GPV08, Pei10].

Our methods yield large constant-factor improvements, and in some cases even small asymptotic im-
provements, in the lattice dimension m, trapdoor quality s, and storage size of the trapdoor. Because trapdoor
generation and inversion algorithms are the main operations in many lattice cryptography schemes, our
algorithms can be plugged in as ‘black boxes’ to deliver significant concrete improvements in all such applica-
tions. Moreover, it is often possible to expose the special (and very simple) structure of our trapdoor directly
in cryptographic schemes, yielding additional improvements and potentially new applications. (Below we
summarize a few improvements to existing applications, with full details in Section 6.)

We now give a detailed comparison of our results with the most relevant prior works [Ajt99, AP09,
GPV08, Pei10]. The quantitative improvements are summarized in Figure 1.

Simpler, faster trapdoor generation and inversion algorithms. Our trapdoor generator is exceedingly
simple, especially as compared with the prior constructions [Ajt99, AP09]. It essentially amounts to just one
multiplication of two random matrices, whose entries are chosen independently from appropriate probability
distributions. Surprisingly, this method is nearly identical to Ajtai’s original method [Ajt96] of generating a
random lattice together with a “weak” trapdoor of one or more short vectors (but not a full basis), with one
added twist. And while there are no detailed runtime analyses or public implementations of [Ajt99, AP09],
it is clear from inspection that our new method is significantly more efficient, since it does not involve any
expensive Hermite normal form or matrix inversion computations.
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Our specialized, parallel inversion algorithms for fA and gA are also simpler and more practically
efficient than the general solutions of [Bab85, Kle00, GPV08, Pei10] (though we note that our trapdoor
generator is entirely compatible with those general algorithms as well). In particular, we give the first parallel
algorithm for inverting gA under asymptotically optimal error rates (previously, handling such large errors
required the sequential “nearest-plane” algorithm of [Bab85]), and our preimage sampling algorithm for fA
works with smaller integers and requires much less offline storage than the one from [Pei10].

Tighter parameters. To generate a matrix A ∈ Zn×mq that is within negligible statistical distance of
uniform, our new trapdoor construction improves the lattice dimension from m > 5n lg q [AP09] down to
m ≈ 2n lg q. (In both cases, the base of the logarithm is a tunable parameter that appears as a multiplicative
factor in the quality of the trapdoor; here we fix upon base 2 for concreteness.) In addition, we give the first
known computationally pseudorandom construction (under the LWE assumption), where the dimension can
be as small as m = n(1 + lg q), although at the cost of an Ω(

√
n) factor worse quality s.

Our construction also greatly improves the quality s of the trapdoor. The best prior construction [AP09]
produces a basis whose Gram-Schmidt quality (i.e., the maximum length of its Gram-Schmidt orthogonalized
vectors) was loosely bounded by 20

√
n lg q. However, the Gram-Schmidt notion of quality is useful only

for less efficient, sequential inversion algorithms [Bab85, GPV08] that use high-precision real arithmetic.
For the more efficient, parallel preimage sampling algorithm of [Pei10] that uses small-integer arithmetic,
the parameters guaranteed by [AP09] are asymptotically worse, at m > n lg2 q and s ≥ 16

√
n lg2 q. By

contrast, our (statistically secure) trapdoor construction achieves the “best of both worlds:” asymptotically
optimal dimension m ≈ 2n lg q and quality s ≈ 1.6

√
n lg q or better, with a parallel preimage sampling

algorithm that is slightly more efficient than the one of [Pei10].
Altogether, for any n and typical values of q ≥ 216, we conservatively estimate that the new trapdoor

generator and inversion algorithms collectively provide at least a 7 lg q ≥ 112-fold improvement in the
length bound β ≈ s

√
m for fA preimages (generated using an efficient algorithm). We also obtain similar

improvements in the size of the error terms that can be handled when efficiently inverting gA.

New, smaller trapdoors. As an additional benefit, our construction actually produces a new kind of
trapdoor — not a basis — that is at least 4 times smaller in storage than a basis of corresponding quality,
and is at least as powerful, i.e., a good basis can be efficiently derived from the new trapdoor. We stress that
our specialized inversion algorithms using the new trapdoor provide almost exactly the same quality as the
inefficient, sequential algorithms using a derived basis, so there is no trade-off between efficiency and quality.
(This is in contrast with [Pei10] when using a basis generated according to [AP09].) Moreover, the storage
size of the new trapdoor grows only linearly in the lattice dimension m, rather than quadratically as a basis
does. This is most significant for applications like hierarchical ID-based encryption [CHKP10, ABB10a]
that delegate trapdoors for increasing values of m. The new trapdoor also admits a very simple and efficient
delegation mechanism, which unlike the prior method [CHKP10] does not require any costly operations like
linear independence tests, or conversions from a full-rank set of lattice vectors into a basis. In summary,
the new type of trapdoor and its associated algorithms are strictly preferable to a short basis in terms of
algorithmic efficiency, output quality, and storage size (simultaneously).

Ring-based constructions. Finally, and most importantly for practice, all of the above-described construc-
tions and algorithms extend immediately to the ring setting, where functions analogous to fA and gA require
only quasi-linear Õ(n) space and time to specify and evaluate (respectively), which is a factor of Ω̃(n)
improvement over the matrix-based functions defined above. See the representative works [Mic02, PR06,
LM06, LMPR08, LPR10] for more details on these functions and their security foundations.
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[Ajt99, AP09] constructions This work (fast f−1
A ) Factor Improvement

Dimension m
slow f−1

A [Kle00, GPV08]: > 5n lg q 2n lg q (
s
≈)

2.5 – lg q
fast f−1

A [Pei10]: > n lg2 q n(1 + lg q) (
c
≈)

Quality s
slow f−1

A : ≈ 20
√
n lg q

≈ 1.6
√
n lg q (

s
≈) 12.5 – 10

√
lg q

fast f−1
A : ≈ 16

√
n lg2 q

Length β ≈ s
√
m

slow f−1
A : > 45n lg q

≈ 2.3n lg q (
s
≈) 19 – 7 lg q

fast f−1
A : > 16n lg2 q

Figure 1: Summary of parameters for our constructions and algorithms versus prior ones. In the column
labelled “this work,”

s
≈ and

c
≈ denote constructions producing public keys A that are statistically close to

uniform, and computationally pseudorandom, respectively. (All quality terms s and length bounds β omit the
same statistical “smoothing” factor for Z, which is about 4–5 in practice.)

To illustrate the kinds of concrete improvements that our methods provide, in Figure 2 we give rep-
resentative parameters for the canonical application of GPV sigantures [GPV08], comparing the old and
new trapdoor constructions for nearly equal levels of concrete security. We stress that these parameters are
not highly optimized, and making adjustments to some of the tunable parameters in our constructions may
provide better combinations of efficiency and concrete security. We leave this effort for future work.

1.2 Techniques

The main idea behind our new method of trapdoor generation is as follows. Instead of building a random
matrix A through some specialized and complex process, we start from a carefully crafted public matrix G
(and its associated lattice), for which the associated functions fG and gG admit very efficient (in both
sequential and parallel complexity) and high-quality inversion algorithms. In particular, preimage sampling
for fG and inversion for gG can be performed in essentially O(n log n) sequential time, and can even be
performed by n parallel O(log n)-time operations or table lookups. (This should be compared with the
general algorithms for these tasks, which require at least quadratic Ω(n2 log2 n) time, and are not always
parallelizable for optimal noise parameters.) We emphasize that G is not a cryptographic key, but rather a
fixed and public matrix that may be used by all parties, so the implementation of all its associated operations
can be highly optimized, in both software and hardware. We also mention that the simplest and most
practically efficient choices of G work for a modulus q that is a power of a small prime, such as q = 2k, but a
crucial search/decision reduction for LWE was not previously known for such q, despite its obvious practical
utility. In Section 3 we provide a very general reduction that covers this case and others, and subsumes all of
the known (and incomparable) search/decision reductions for LWE [BFKL93, Reg05, Pei09b, ACPS09].

To generate a random matrix A with a trapdoor, we take two additional steps: first, we extend G
into a semi-random matrix A′ = [Ā | G], for uniform Ā ∈ Zn×m̄q and sufficiently large m̄. (As shown
in [CHKP10], inversion of gA′ and preimage sampling for fA′ reduce very efficiently to the corresponding
tasks for gG and fG.) Finally, we simply apply to A′ a certain random unimodular transformation defined by
the matrix T =

[
I −R
0 I

]
, for a random “short” secret matrix R that will serve as the trapdoor, to obtain

A = A′ ·T = [Ā | G− ĀR].

5

Approved for Public Release; Distribution Unlimited. 
76 



[AP09] with fast f−1
A This work Factor Improvement

Sec param n 436 284 1.5

Modulus q 232 224 256

Dimension m 446,644 13,812 32.3

Quality s 10.7× 103 418 25.6

Length β 12.9× 106 91.6× 103 141

Key size (bits) 6.22× 109 92.2× 106 67.5

Key size (ring-based) ≈ 16× 106 ≈ 361× 103 ≈ 44.3

Figure 2: Representative parameters for GPV signatures (using fast inversion algorithms) for the old and new
trapdoor generation methods. Using the methodology from [MR09], both sets of parameters have security
level corresponding to a parameter δ of at most 1.007, which is estimated to require about 246 core-years
on a 64-bit 1.86GHz Xeon using the state-of-the-art in lattice basis reduction [GN08, CN11]. We use a
smoothing parameter of r = 4.5 for Z, which corresponds to statistical error of less than 2−90 for each
randomized-rounding operation during signing. Key sizes are calculated using the Hermite normal form
optimization. Key sizes for ring-based GPV signatures are approximated to be smaller by a factor of about
0.9n.

The transformation given by T has the following properties:

• It is very easy to compute and invert, requiring essentially just one multiplication by R in both cases.
(Note that T−1 =

[
I R
0 I

]
.)

• It results in a matrix A that is distributed essentially uniformly at random, as required by the security
reductions (and worst-case hardness proofs) for lattice-based cryptographic schemes.

• For the resulting functions fA and gA, preimage sampling and inversion very simply and efficiently
reduce to the corresponding tasks for fG, gG. The overhead of the reduction is essentially just a single
matrix-vector product with the secret matrix R (which, when inverting fA, can largely be precomputed
even before the target value is known).

As a result, the cost of the inversion operations ends up being very close to that of computing fA and gA in the
forward direction. Moreover, the fact that the running time is dominated by matrix-vector multiplications with
the fixed trapdoor matrix R yields theoretical (but asymptotically significant) improvements in the context
of batch execution of several operations relative to the same secret key R: instead of evaluating several
products Rz1,Rz2, . . . ,Rzn individually at a total cost of Ω(n3), one can employ fast matrix multiplication
techniques to evaluate R[z1, . . . , zn] as a whole is subcubic time. Batch operations can be exploited in
applications like the multi-bit IBE of [GPV08] and its extensions to HIBE [CHKP10, ABB10a, ABB10b].

Related techniques. At the surface, our trapdoor generator appears similar to the original “GGH” approach
of [GGH97] for generating a lattice together with a short basis. That technique works by choosing some
random short vectors as the secret “good basis” of a lattice, and then transforms them into a public “bad basis”
for the same lattice, via a unimodular matrix having large entries. (Note, though, that this does not produce
a lattice from Ajtai’s worst-case-hard family.) A closer look reveals, however, that (worst-case hardness
aside) our method is actually not an instance of the GGH paradigm: here the initial short basis of the lattice
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defined by G (or the semi-random matrix [Ā|G]) is fixed and public, while the random unimodular matrix
T =

[
I −R
0 I

]
actually produces a new lattice by applying a (reversible) linear transformation to the original

lattice. In other words, in contrast with GGH we multiply a (short) unimodular matrix on the “other side” of
the original short basis, thus changing the lattice it generates.

A more appropriate comparison is to Ajtai’s original method [Ajt96] for generating a random A together
with a “weak” trapdoor of one or more short lattice vectors (but not a full basis). There, one simply chooses a
semi-random matrix A′ = [Ā | 0] and outputs A = A′ ·T = [Ā | −ĀR], with short vectors

[
R
I

]
. Perhaps

surprisingly, our strong trapdoor generator is just a simple twist on Ajtai’s original weak generator, replacing
0 with the gadget G.

Our constructions and inversion algorithms also draw upon several other techniques from throughout the
literature. The trapdoor basis generator of [AP09] and the LWE-based “lossy” injective trapdoor function
of [PW08] both use a fixed “gadget” matrix analogous to G, whose entries grow geometrically in a structured
way. In both cases, the gadget is concealed (either statistically or computationally) in the public key by
a small combination of uniformly random vectors. Our method for adding tags to the trapdoor is very
similar to a technique for doing the same with the lossy TDF of [PW08], and is identical to the method used
in [ABB10a] for constructing compact (H)IBE. Finally, in our preimage sampling algorithm for fA, we use
the “convolution” technique from [Pei10] to correct for some statistical skew that arises when converting
preimages for fG to preimages for fA, which would otherwise leak information about the trapdoor R.

1.3 Applications

Our improved trapdoor generator and inversion algorithms can be plugged into any scheme that uses such tools
as a “black box,” and the resulting scheme will inherit all the efficiency improvements. (Every application
we know of admits such a black-box replacement.) Moreover, the special properties of our methods allow
for further improvements to the design, efficiency, and security reductions of existing schemes. Here we
summarize some representative improvements that are possible to obtain; see Section 6 for complete details.

Hash-and-sign digital signatures. Our construction and supporting algorithms plug directly into the “full
domain hash” signature scheme of [GPV08], which is strongly unforgeable in the random oracle model, with
a tight security reduction. One can even use our computationally secure trapdoor generator to obtain a smaller
public verification key, though at the cost of a hardness-of-LWE assumption, and a somewhat stronger SIS
assumption (which affects concrete security). Determining the right balance between key size and security is
left for later work.

In the standard model, there are two closely related types of hash-and-sign signature schemes:

• The one of [CHKP10], which has signatures of bit length Õ(n2), and is existentially unforgeable (later
improved to be strongly unforgeable [Rüc10]) assuming the hardness of inverting fA with solution
length bounded by β = Õ(n1.5).2

• The scheme of [Boy10], a lattice analogue of the pairing-based signature of [Wat05], which has
signatures of bit length Õ(n) and is existentially unforgeable assuming the hardness of inverting fA
with solution length bounded by β = Õ(n3.5).

We improve the latter scheme in several ways, by: (i) improving the length bound to β = Õ(n2.5); (ii) reducing
the online runtime of the signing algorithm from Õ(n3) to Õ(n2) via chameleon hashing [KR00]; (iii) making
the scheme strongly unforgeable a la [GPV08, Rüc10]; (iv) giving a tighter and simpler security reduction

2All parameters in this discussion assume a message length of Θ̃(n) bits.
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(using a variant of the “prefix technique” [HW09] as in [CHKP10]), where the reduction’s advantage degrades
only linearly in the number of signature queries; and (v) removing all additional constraints on the parameters
n and q (aside from those needed to ensure hardness of the SIS problem). We stress that the scheme itself
is essentially the same (up to the improved and generalized parameters, and chameleon hashing) as that
of [Boy10]; only the security proof and underlying assumption are improved. Note that in comparison
with [CHKP10], there is still a trade-off between the bit length of the signatures and the bound β in the
underlying SIS assumption; this appears to be inherent to the style of the security reduction. Note also that the
public keys in all of these schemes are still rather large at Õ(n3) bits (or Õ(n2) bits using the ring analogue
of SIS), so they are still mainly of theoretical interest. Improving the key sizes of standard-model signatures
is an important open problem.

Chosen ciphertext-secure encryption. We give a new construction of CCA-secure public-key encryption (in the
standard model) from the learning with errors (LWE) problem with error rate α = 1/poly(n), where larger α
corresponds to a harder concrete problem. Existing schemes exhibit various incomparable tradeoffs between
key size and error rate. The first such scheme is due to [PW08]: it has public keys of size Õ(n2) bits (with
somewhat large hidden factors) and relies on a quite small LWE error rate of α = Õ(1/n4). The next scheme,
from [Pei09b], has larger public keys of Õ(n3) bits, but uses a better error rate of α = Õ(1/n). Finally, using
the generic conversion from selectively secure ID-based encryption to CCA-secure encryption [BCHK07],
one can obtain from [ABB10a] a scheme having key size Õ(n2) bits and using error rate α = Õ(1/n2).
(Here decryption is randomized, since the IBE key-derivation algorithm is.) In particular, the public key of
the scheme from [ABB10b] consists of 3 matrices in Zn×mq where m is large enough to embed a (strong)
trapdoor, plus essentially one vector in Znq per message bit.

We give a CCA-secure system that enjoys the best of all prior constructions, which has Õ(n2)-bit public
keys, uses error rate α = Õ(1/n) (both with small hidden factors), and has deterministic decryption. To
achieve this, we need to go beyond just plugging our improved trapdoor generator as a black box into prior
constructions. Our scheme relies on the particular structure of the trapdoor instances; in effect, we directly
construct a “tag-based adaptive trapdoor function” [KMO10]. The public key consists of only 1 matrix with
an embedded (strong) trapdoor, rather than 3 as in the most compact scheme to date [ABB10a]; moreover,
we can encrypt up to n log q message bits per ciphertext without needing any additional public key material.
Combining these design changes with the improved dimension of our trapdoor generator, we obtain more than
a 7.5-fold improvement in the public key size as compared with [ABB10a]. (This figure does not account for
removing the extra public key material for the message bits, nor the other parameter improvements implied
by our weaker concrete LWE assumption, which would shrink the keys even further.)

(Hierarchical) identity-based encryption. Just as with signatures, our constructions plug directly into the
random-oracle IBE of [GPV08]. In the standard-model depth-d hierarchical IBEs of [CHKP10, ABB10a],
our techniques can shrink the public parameters by an additional factor of about 2+4d

1+d ∈ [3, 4], relative to
just plugging our improved trapdoor generator as a “black box” into the schemes. This is because for each
level of the hierarchy, the public parameters only need to contain one matrix of the same dimension as G
(i.e., about n lg q), rather than two full trapdoor matrices (of dimension about 2n lg q each).3 Because the
adaptation is straightforward given the tools developed in this work, we omit the details.

3We note that in [Pei09a] (an earlier version of [CHKP10]) the schemes are defined in a similar way using lower-dimensional
extensions, rather than full trapdoor matrices at each level.
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1.4 Other Related Work

Concrete parameter settings for a variety “strong” trapdoor applications are given in [RS10]. Those parameters
are derived using the previous suboptimal generator of [AP09], and using the methods from this work would
yield substantial improvements. The recent work of [LP11] also gives improved key sizes and concrete
security for LWE-based cryptosystems; however, that work deals only with IND-CPA-secure encryption,
and not at all with strong trapdoors or the further applications they enable (CCA security, digital signatures,
(H)IBE, etc.).

2 Preliminaries

We denote the real numbers by R and the integers by Z. For a nonnegative integer k, we let [k] = {1, . . . , k}.
Vectors are denoted by lower-case bold letters (e.g., x) and are always in column form (xt is a row vector).
We denote matrices by upper-case bold letters, and treat a matrix X interchangeably with its ordered set
{x1,x2, . . .} of column vectors. For convenience, we sometimes use a scalar s to refer to the scaled identity
matrix sI, where the dimension will be clear from context.

The statistical distance between two distributionsX , Y over a finite or countable domainD is ∆(X,Y ) =
1
2

∑
w∈D|X(w)− Y (w)|. Statistical distance is a metric, and in particular obeys the triangle inequality. We

say that a distribution over D is ε-uniform if its statistical distance from the uniform distribution is at most ε.
Throughout the paper, we use a “randomized-rounding parameter” r that we let be a fixed function

r(n) = ω(
√

log n) growing asymptotically faster than
√

log n. By “fixed function” we mean that r =
ω(
√

log n) always refers to the very same function, and no other factors will be absorbed into the ω(·)
notation. This allows us to keep track of the precise multiplicative constants introduced by our constructions.
Concretely, we take r ≈

√
ln(2/ε)/π where ε is a desired bound on the statistical error introduced by

each randomized-rounding operation for Z, because the error is bounded by ≈ 2 exp(−πr2) according to
Lemma 2.3 below. For example, for ε = 2−54 we have r ≤ 3.5, and for ε = 2−71 we have r ≤ 4.

2.1 Linear Algebra

A unimodular matrix U ∈ Zm×m is one for which |det(U)| = 1; in particular, U−1 ∈ Zm×m as well. The
Gram-Schmidt orthogonalization of an ordered set of vectors V = {v1, . . . ,vk} ∈ Rn, is Ṽ = {ṽ1, . . . , ṽk}
where ṽi is the component of vi orthogonal to span(v1, . . . ,vi−1) for all i = 1, . . . , k. (In some cases we
orthogonalize the vectors in a different order.) In matrix form, V = QDU for some orthogonal Q ∈ Rn×k,
diagonal D ∈ Rk×k with nonnegative entries, and upper unitriangular U ∈ Rk×k (i.e., U is upper triangular
with 1s on the diagonal). The decomposition is unique when the vi are linearly independent, and we always
have ‖ṽi‖ = di,i, the ith diagonal entry of D.

For any basis V = {v1, . . . ,vn} of Rn, its origin-centered parallelepiped is defined as P1/2(V) =

V · [−1
2 ,

1
2)n. Its dual basis is defined as V∗ = V−t = (V−1)t. If we orthogonalize V and V∗ in forward

and reverse order, respectively, then we have ṽ∗i = ṽi/‖ṽi‖2 for all i. In particular, ‖ṽ∗i ‖ = 1/‖ṽi‖.
For any square real matrix X, the (Moore-Penrose) pseudoinverse, denoted X+, is the unique matrix

satisfying (XX+)X = X, X+(XX+) = X+, and such that both XX+ and X+X are symmetric. We
always have span(X) = span(X+), and when X is invertible, we have X+ = X−1.

A symmetric matrix Σ ∈ Rn×n is positive definite (respectively, positive semidefinite), written Σ > 0
(resp., Σ ≥ 0), if xtΣx > 0 (resp., xtΣx ≥ 0) for all nonzero x ∈ Rn. We have Σ > 0 if and only if Σ
is invertible and Σ−1 > 0, and Σ ≥ 0 if and only if Σ+ ≥ 0. Positive (semi)definiteness defines a partial
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ordering on symmetric matrices: we say that Σ1 > Σ2 if (Σ1 − Σ2) > 0, and similarly for Σ1 ≥ Σ2. We
have Σ1 ≥ Σ2 ≥ 0 if and only if Σ+

2 ≥ Σ+
1 ≥ 0, and likewise for the analogous strict inequalities.

For any matrix B, the symmetric matrix Σ = BBt is positive semidefinite, because

xtΣx = 〈Btx,Btx〉 = ‖Btx‖2 ≥ 0

for any nonzero x ∈ Rn, where the inequality is always strict if and only if B is nonsingular. We say that
B is a square root of Σ > 0, written B =

√
Σ, if BBt = Σ. Every Σ ≥ 0 has a square root, which can be

computed efficiently, e.g., via the Cholesky decomposition.
For any matrix B ∈ Rn×k, there exists a singular value decomposition B = QDPt, where Q ∈ Rn×n,

P ∈ Rk×k are orthogonal matrices, and D ∈ Rn×k is a diagonal matrix with nonnegative entries si ≥ 0 on
the diagonal, in non-increasing order. The si are called the singular values of B. Under this convention, D is
uniquely determined (though Q,P may not be), and s1(B) = maxu‖Bu‖ = maxu‖Btu‖ ≥ ‖B‖, ‖Bt‖,
where the maxima are taken over all unit vectors u ∈ Rk.

2.2 Lattices and Hard Problems

Generally defined, anm-dimensional lattice Λ is a discrete additive subgroup of Rm. For some k ≤ m, called
the rank of the lattice, Λ is generated as the set of all Z-linear combinations of some k linearly independent
basis vectors B = {b1, . . . ,bk}, i.e., Λ = {Bz : z ∈ Zk}. In this work, we are mostly concerned with
full-rank integer lattices, i.e., Λ ⊆ Zm with k = m. (We work with non-full-rank lattices only in the analysis
of our Gaussian sampling algorithm in Section 5.4.) The dual lattice Λ∗ is the set of all v ∈ span(Λ) such
that 〈v,x〉 ∈ Z for every x ∈ Λ. If B is a basis of Λ, then B∗ = B(BtB)−1 is a basis of Λ∗. Note that when
Λ is full-rank, B is invertible and hence B∗ = B−t.

Many cryptographic applications use a particular family of so-called q-ary integer lattices, which contain
qZm as a sublattice for some (typically small) integer q. For positive integers n and q, let A ∈ Zn×mq be
arbitrary and define the following full-rank m-dimensional q-ary lattices:

Λ⊥(A) = {z ∈ Zm : Az = 0 mod q}
Λ(At) = {z ∈ Zm : ∃ s ∈ Znq s.t. z = Ats mod q}.

It is easy to check that Λ⊥(A) and Λ(At) are dual lattices, up to a q scaling factor: q · Λ⊥(A)∗ = Λ(At),
and vice-versa. For this reason, it is sometimes more natural to consider the non-integral, “1-ary” lattice
1
qΛ(At) = Λ⊥(A)∗ ⊇ Zm. For any u ∈ Znq admitting an integral solution to Ax = u mod q, define the
coset (or “shifted” lattice)

Λ⊥u (A) = {z ∈ Zm : Az = u mod q} = Λ⊥(A) + x.

Here we recall some basic facts about these q-ary lattices.

Lemma 2.1. Let A ∈ Zn×mq be arbitrary and let S ∈ Zm×m be any basis of Λ⊥(A).

1. For any unimodular T ∈ Zm×m, we have T · Λ⊥(A) = Λ⊥(A ·T−1), with T · S as a basis.

2. [ABB10a, implicit] For any invertible H ∈ Zn×nq , we have Λ⊥(H ·A) = Λ⊥(A).

3. [CHKP10, Lemma 3.2] Suppose that the columns of A generate all of Znq , let A′ ∈ Zn×m′q be arbitrary,
and let W ∈ Zm×m′ be an arbitrary solution to AW = −A′ mod q. Then S′ =

[
I 0
W S

]
is a basis of

Λ⊥([A′ | A]), and when orthogonalized in appropriate order, S̃′ =
[
I 0
0 S̃

]
. In particular, ‖S̃′‖ = ‖S̃‖.
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Cryptographic problems. For β > 0, the short integer solution problem SISq,β is an average-case version
of the approximate shortest vector problem on Λ⊥(A). The problem is: given uniformly random A ∈ Zn×mq

for any desired m = poly(n), find a relatively short nonzero z ∈ Λ⊥(A), i.e., output a nonzero z ∈ Zm such
that Az = 0 mod q and ‖z‖ ≤ β. When q ≥ β

√
n·ω(
√

log n), solving this problem (with any non-negligible
probability over the random choice of A) is at least as hard as (probabilistically) approximating the Shortest
Independent Vectors Problem (SIVP, a classic problem in the computational study of point lattices [MG02])
on n-dimensional lattices to within Õ(β

√
n) factors in the worst case [Ajt96, MR04, GPV08].

For α > 0, the learning with errors problem LWEq,α may be seen an average-case version of the
bounded-distance decoding problem on the dual lattice 1

qΛ(At). Let T = R/Z, the additive group of
reals modulo 1, and let Dα denote the Gaussian probability distribution over R with parameter α (see
Section 2.3 below). For any fixed s ∈ Znq , define As,α to be the distribution over Znq × T obtained by
choosing a ← Znq uniformly at random, choosing e ← Dα, and outputting (a, b = 〈a, s〉/q + e mod 1).
The search-LWEq,α problem is: given any desired number m = poly(n) of independent samples from As,α

for some arbitrary s, find s. The decision-LWEq,α problem is to distinguish, with non-negligible advantage,
between samples from As,α for uniformly random s ∈ Znq , and uniformly random samples from Znq × T.
There are a variety of (incomparable) search/decision reductions for LWE under certain conditions on the
parameters (e.g., [Reg05, Pei09b, ACPS09]); in Section 3 we give a reduction that essentially subsumes
them all. When q ≥ 2

√
n/α, solving search-LWEq,α is at least as hard as quantumly approximating SIVP

on n-dimensional lattices to within Õ(n/α) factors in the worst case [Reg05]. For a restricted range of
parameters (e.g., when q is exponentially large) a classical (non-quantum) reduction is also known [Pei09b],
but only from a potentially easier class of problems like the decisional Shortest Vector Problem (GapSVP)
and the Bounded Distance Decoding Problem (BDD) (see [LM09]).

Note that the m samples (ai, bi) and underlying error terms ei from As,α may be grouped into a matrix
A ∈ Zn×mq and vectors b ∈ Tm, e ∈ Rm in the natural way, so that b = (Ats)/q+ e mod 1. In this way, b
may be seen as an element of Λ⊥(A)∗ = 1

qΛ(At), perturbed by Gaussian error. By scaling b and discretizing
its entries using a form of randomized rounding (see [Pei10]), we can convert it into b′ = Ats + e′ mod q
where e′ ∈ Zm has discrete Gaussian distribution with parameter (say)

√
2αq.

2.3 Gaussians and Lattices

The n-dimensional Gaussian function ρ : Rn → (0, 1] is defined as

ρ(x)
∆
= exp(−π · ‖x‖2) = exp(−π · 〈x,x〉).

Applying a linear transformation given by a (not necessarily square) matrix B with linearly independent
columns yields the (possibly degenerate) Gaussian function

ρB(x)
∆
=

{
ρ(B+x) = exp

(
−π · xtΣ+x

)
if x ∈ span(B) = span(Σ)

0 otherwise

where Σ = BBt ≥ 0. Because ρB is distinguished only up to Σ, we usually refer to it as ρ√Σ.
Normalizing ρ√Σ by its total measure over span(Σ), we obtain the probability distribution function of

the (continuous) Gaussian distribution D√Σ. By linearity of expectation, this distribution has covariance
Ex←D√Σ

[x ·xt] = Σ
2π . (The 1

2π factor is the variance of the Gaussian D1, due to our choice of normalization.)
For convenience, we implicitly ignore the 1

2π factor, and refer to Σ as the covariance matrix of D√Σ.
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Let Λ ⊂ Rn be a lattice, let c ∈ Rn, and let Σ ≥ 0 be a positive semidefinite matrix such that
(Λ + c) ∩ span(Σ) is nonempty. The discrete Gaussian distribution DΛ+c,

√
Σ is simply the Gaussian

distribution D√Σ restricted to have support Λ + c. That is, for all x ∈ Λ + c,

DΛ+c,
√

Σ(x) =
ρ√Σ(x)

ρ√Σ(Λ + c)
∝ ρ√Σ(x).

We recall the definition of the smoothing parameter from [MR04], generalized to non-spherical (and
potentially degenerate) Gaussians. It is easy to see that the definition is consistent with the partial ordering of
positive semidefinite matrices, i.e., if Σ1 ≥ Σ2 ≥ ηε(Λ), then Σ1 ≥ ηε(Λ).

Definition 2.2. Let Σ ≥ 0 and Λ ⊂ span(Σ) be a lattice. We say that
√

Σ ≥ ηε(Λ) if ρ√
Σ+(Λ∗) ≤ 1 + ε.

The following is a bound on the smoothing parameter in terms of any orthogonalized basis. Note that for
practical choices like n ≤ 214 and ε ≥ 2−80, the multiplicative factor attached to ‖B̃‖ is bounded by 4.6.

Lemma 2.3 ([GPV08, Theorem 3.1]). Let Λ ⊂ Rn be a lattice with basis B, and let ε > 0. We have

ηε(Λ) ≤ ‖B̃‖ ·
√

ln(2n(1 + 1/ε))/π.

In particular, for any ω(
√

log n) function, there is a negligible ε(n) for which ηε(Λ) ≤ ‖B̃‖ · ω(
√

log n).

For appropriate parameters, the smoothing parameter of a random lattice Λ⊥(A) is small, with very high
probability. The following bound is a refinement and strengthening of one from [GPV08], which allows for a
more precise analysis of the parameters and statistical errors involved in our constructions.

Lemma 2.4. Let n, m, q ≥ 2 be positive integers. For s ∈ Znq , let the subgroup Gs = {〈a, s〉 : a ∈ Znq } ⊆
Zq, and let gs = |Gs| = q/ gcd(s1, . . . , sn, q). Let ε > 0, η ≥ ηε(Zm), and s > η be reals. Then for
uniformly random A ∈ Zn×mq ,

E
A

[
ρ1/s(Λ

⊥(A)∗)
]
≤ (1 + ε)

∑
s∈Znq

max{1/gs, η/s}m. (2.1)

In particular, if q = pe is a power of a prime p, and

m ≥ max

{
n+

log(3 + 2/ε)

log p
,
n log q + log(2 + 2/ε)

log(s/η)

}
, (2.2)

then EA

[
ρ1/s(Λ

⊥(A)∗)
]
≤ 1+2ε, and so by Markov’s inequality, s ≥ η2ε/δ(Λ

⊥(A)) except with probability
at most δ.

Proof. We will use the fact (which follows from the Poisson summation formula; see [MR04, Lemma 2.8])
that ρt(Λ) ≤ ρr(Λ) ≤ (r/t)m · ρt(Λ) for any rank-m lattice Λ and r ≥ t > 0.

For any A ∈ Zn×mq , one can check that Λ⊥(A)∗ = Zm + {Ats/q : s ∈ Znq }. Note that Ats is uniformly
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random over Gm
s , for uniformly random A. Then we have

E
A

[
ρ1/s(Λ

⊥(A)∗)
]
≤
∑
s∈Znq

E
A

[
ρ1/s(Zm + Ats/q)

]
(lin. of E)

=
∑
s∈Znq

g−ms · ρ1/s(g
−1
s · Zm) (avg. over A)

≤
∑
s∈Znq

g−ms ·max{1, gsη/s}m · ρ1/η(Zm), (above fact)

≤ (1 + ε)
∑
s∈Znq

max{1/gs, η/s}m, (η ≥ ηε(Zm)).

To prove the second part of the claim, observe that gs = pi for some i ≥ 0, and that there are at most gn

values of s for which gs = g, because each entry of s must be in Gs. Therefore,∑
s∈Znq

1/gms ≤
∑
i≥0

pi(n−m) =
1

1− pn−m
≤ 1 +

ε

2(1 + ε)
.

(More generally, for arbitrary q we have
∑

s 1/gms ≤ ζ(m− n), where ζ(·) is the Riemann zeta function.)
Similarly,

∑
s(η/s)

m = qn(s/η)−m ≤ ε
2(1+ε) , and the claim follows.

We need a number of standard facts about discrete Gaussians.

Lemma 2.5 ([MR04, Lemmas 2.9 and 4.1]). Let Λ ⊂ Rn be a lattice. For any Σ ≥ 0 and c ∈ Rn,
we have ρ√Σ(Λ + c) ≤ ρ√Σ(Λ). Moreover, if

√
Σ ≥ ηε(Λ) for some ε > 0 and c ∈ span(Λ), then

ρ√Σ(Λ + c) ≥ 1−ε
1+ε · ρ√Σ(Λ).

Combining the above lemma with a bound of Banaszczyk [Ban93], we have the following tail bound on
discrete Gaussians.

Lemma 2.6 ([Ban93, Lemma 1.5]). Let Λ ⊂ Rn be a lattice and r ≥ ηε(Λ) for some ε ∈ (0, 1). For any
c ∈ span(Λ), we have

Pr
[
‖DΛ+c,r‖ ≥ r

√
n
]
≤ 2−n · 1+ε

1−ε .

Moreover, if c = 0 then the bound holds for any r > 0, with ε = 0.

The next lemma bounds the predictability (i.e., probability of the most likely outcome or equivalently,
min-entropy) of a discrete Gaussian.

Lemma 2.7 ([PR06, Lemma 2.11]). Let Λ ⊂ Rn be a lattice and r ≥ 2ηε(Λ) for some ε ∈ (0, 1). For any
c ∈ Rn and any y ∈ Λ + c, we have Pr[DΛ+c,r = y] ≤ 2−n · 1+ε

1−ε .

2.4 Subgaussian Distributions and Random Matrices

For δ ≥ 0, we say that a random variable X (or its distribution) over R is δ-subgaussian with parameter
s > 0 if for all t ∈ R, the (scaled) moment-generating function satisfies

E [exp(2πtX)] ≤ exp(δ) · exp(πs2t2).
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Notice that the exp(πs2t2) term on the right is precisely the (scaled) moment-generating function of the
Gaussian distribution Ds. So, our definition differs from the usual definition of subgaussian only in the
additional factor of exp(δ); we need this relaxation when working with discrete Gaussians, usually taking
δ = ln(1+ε

1−ε) ≈ 2ε for the same small ε as in the smoothing parameter ηε.
If X is δ-subgaussian, then its tails are dominated by a Gaussian of parameter s, i.e., Pr [|X| ≥ t] ≤

2 exp(δ) exp(−πt2/s2) for all t ≥ 0.4 This follows by Markov’s inequality: by scaling X we can assume
s = 1, and we have

Pr[X ≥ t] = Pr[exp(2πtX) ≥ exp(2πt2)] ≤ exp(δ) exp(πt2)/ exp(2πt2) = exp(δ) exp(−πt2).

The claim follows by repeating the argument with −X , and the union bound. Using the Taylor series
expansion of exp(2πtX), it can be shown that any B-bounded symmetric random variable X (i.e., |X| ≤ B
always) is 0-subgaussian with parameter B

√
2π.

More generally, we say that a random vector x or its distribution (respectively, a random matrix X) is δ-
subgaussian (of parameter s) if all its one-dimensional marginals 〈u,v〉 (respectively, utXv) for unit vectors
u,v are δ-subgaussian (of parameter s). It follows immediately from the definition that the concatenation of
independent δi-subgaussian vectors with common parameter s, interpreted as either a vector or matrix, is
(
∑
δi)-subgaussian with parameter s.

Lemma 2.8. Let Λ ⊂ Rn be a lattice and s ≥ ηε(Λ) for some 0 < ε < 1. For any c ∈ span(Λ), DΛ+c,s is
ln(1+ε

1−ε)-subgaussian with parameter s. Moreover, it is 0-subgaussian for any s > 0 when c = 0.

Proof. By scaling Λ we can assume that s = 1. Let x have distribution DΛ+c, and let u ∈ Rn be any unit
vector. We bound the scaled moment-generating function of the marginal 〈x,u〉 for any t ∈ R:

ρ(Λ + c) · E [exp(2π〈x, tu〉)] =
∑

x∈Λ+c

exp(−π(〈x,x〉 − 2〈x, tu〉))

= exp(πt2) ·
∑

x∈Λ+c

exp(−π〈x− tu,x− tu〉)

= exp(πt2) · ρ(Λ + c− tu).

Both claims then follow by Lemma 2.5.

Here we recall a standard result from the non-asymptotic theory of random matrices; for further details,
see [Ver11]. (The proof for δ-subgaussian distributions is a trivial adaptation of the 0-subgaussian case.)

Lemma 2.9. Let X ∈ Rn×m be a δ-subgaussian random matrix with parameter s. There exists a universal
constant C > 0 such that for any t ≥ 0, we have s1(X) ≤ C · s · (

√
m+

√
n+ t) except with probability at

most 2 exp(δ) exp(−πt2).

Empirically, for discrete Gaussians the universal constant C in the above lemma is very close to 1/
√

2π.
In fact, it has been proved that C ≤ 1/

√
2π for matrices with independent identically distributed continuous

Gaussian entries.
4The converse also holds (up to a small constant factor in the parameter s) when E[X] = 0, but this will frequently not quite be

the case in our applications, which is why we define subgaussian in terms of the moment-generating function.
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3 Search to Decision Reduction

Here we give a new search-to-decision reduction for LWE that essentially subsumes all of the (incomparable)
prior ones given in [BFKL93, Reg05, Pei09b, ACPS09].5 Most notably, it handles moduli q that were not
covered before, specifically, those like q = 2k that are divisible by powers of very small primes. The only
known reduction that ours does not subsume is a different style of sample-preserving reduction recently given
in [MM11], which works for a more limited class of moduli and error distributions; extending that reduction
to the full range of parameters considered here is an interesting open problem. In what follows, ω(

√
log n)

denotes some fixed function that grows faster than
√

log n, asymptotically.

Theorem 3.1. Let q have prime factorization q = pe11 · · · p
ek
k for pairwise distinct poly(n)-bounded primes pi

with each ei ≥ 1, and let 0 < α ≤ 1/ω(
√

log n). Let ` be the number of prime factors pi < ω(
√

log n)/α.
There is a probabilistic polynomial-time reduction from solving search-LWEq,α (in the worst case, with
overwhelming probability) to solving decision-LWEq,α′ (on the average, with non-negligible advantage) for
any α′ ≥ α such that α′ ≥ ω(

√
log n)/peii for every i, and (α′)` ≥ α · ω(

√
log n)1+`.

For example, when every pi ≥ ω(
√

log n)/α we have ` = 0, and any α′ ≥ α is acceptable. (This special
case, with the additional constraint that every ei = 1, is proved in [Pei09b].) As a qualitatively new example,
when q = pe is a prime power for some (possibly small) prime p, then it suffices to let α′ ≥ α · ω(

√
log n)2.

(A similar special case where q = pe for sufficiently large p and α′ = α� 1/p is proved in [ACPS09].)

Proof. We show how to recover each entry of s modulo a large enough power of each pi, given access to the
distribution As,α for some s ∈ Znq and to an oracle O solving DLWEq,α′ . For the parameters in the theorem
statement, we can then recover the remainder of s in polynomial time by rounding and standard Gaussian
elimination.

First, observe that we can transform As,α into As,α′ simply by adding (modulo 1) an independent sample
from D√α′2−α2 to the second component of each (a, b = 〈a, s〉/q+Dα mod 1) ∈ Znq ×T drawn from As,α.

We now show how to recover each entry of s modulo (powers of) any prime p = pi dividing q. Let
e = ei, and for j = 0, 1, . . . , e define Ajs,α′ to be the distribution over Znq × T obtained by drawing
(a, b) ← As,α′ and outputting (a, b + r/pj mod 1) for a fresh uniformly random r ← Zq. (Clearly, this
distribution can be generated efficiently from As,α′ .) Note that when α′ ≥ ω(

√
log n)/pj ≥ ηε((1/p

j)Z)

for some ε = negl(n), Ajs,α′ is negligibly far from U = U(Znq × T), and this holds at least for j = e
by hypothesis. Therefore, by a hybrid argument there exists some minimal j ∈ [e] for which O has a
non-negligible advantage in distinguishing between Aj−1

s,α′ and Ajs,α′ , over a random choice of s and all other
randomness in the experiment. (This j can be found efficiently by measuring the behavior of O.) Note that
when pi ≥ ω(

√
log n)/α ≥ ω(

√
log n)/α′, the minimal j must be 1; otherwise it may be larger, but there

are at most ` of these by hypothesis. Now by a standard random self-reduction and amplification techniques
(e.g., [Reg05, Lemma 4.1]), we can in fact assume that O accepts (respectively, rejects) with overwhelming
probability given Aj−1

s,α′ (resp., Ajs,α′), for any s ∈ Znq .

Given access to Aj−1
s,α′ and O, we can test whether s1 = 0 mod p by invoking O on samples from Aj−1

s,α′

that have been transformed as follows (all of what follows is analogous for s2, . . . , sn): take each sample
(a, b = 〈a, s〉/q + e+ r/pj−1 mod 1)← Aj−1

s,α′ to

(a′ = a− r′ · (q/pj) · e1 , b′ = b = 〈a′, s〉/q + e+ (pr + r′s1)/pj mod 1) (3.1)
5We say “essentially subsumes” because our reduction is not very meaningful when q is itself a very small prime, whereas those

of [BFKL93, Reg05] are meaningful. This is only because our reduction deals with the continuous version of LWE. If we discretize
the problem, then for very small prime q our reduction specializes to those of [BFKL93, Reg05].
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for a fresh r′ ← Zq (where e1 = (1, 0, . . . , 0) ∈ Znq ). Observe that if s1 = 0 mod p, the transformed
samples are also drawn from Aj−1

s,α′ , otherwise they are drawn from Ajs,α′ because r′s1 is uniformly random
modulo p. Therefore, O tells us which is the case.

Using the above test, we can efficiently recover s1 mod p by ‘shifting’ s1 by each of 0, . . . , p− 1 mod p
using the standard transformation that maps As,α′ to As+t,α′ for any desired t ∈ Znq , by taking (a, b)
to (a, b + 〈a, t〉/q mod 1). (This enumeration step is where we use the fact that every pi is poly(n)-
bounded.) Moreover, we can iteratively recover s1 mod p2, . . . , pe−j+1 as follows: having recovered
s1 mod pi, first ‘shift’ As,α′ to As′,α′ where s′1 = 0 mod pi, then apply a similar procedure as above to
recover s′1 mod pi+1: specifically, just modify the transformation in (3.1) to let a′ = a− r′ · (q/pj+i) · e1,
so that b′ = b = 〈a′, s〉/q + e+ (pr + r′(s′1/p

i))/pj . This procedure works as long as pj+i divides q, so we
can recover s1 mod pe−j+1.

Using the above reductions and the Chinese remainder theorem, and letting ji be the above minimal value
of j for p = pi (of which at most ` of these are greater than 1), from As,α we can recover s modulo

P =
∏
i

p
ei−(ji−1)
i = q/

∏
i

pji−1
i ≥ q ·

(
α′

ω(
√

log n)

)`
≥ q · α · ω(

√
log n),

because α′ < ω(
√

log n)/pji−1
i for all i by definition of ji and by hypothesis on α′. By applying the ‘shift’

transformation to As,α we can assume that s = 0 mod P . Now every 〈a, s′〉/q is an integer multiple of
P/q ≥ α · ω(

√
log n), and since every noise term e ← Dα has magnitude < (α/2) · ω(

√
log n) with

overwhelming probability, we can round the second component of every (a, b)← As,α to the exact value of
〈a, s〉/q mod 1. From these we can solve for s by Gaussian elimination, and we are done.

4 Primitive Lattices

At the heart of our new trapdoor generation algorithm (described in Section 5) is the construction of a very
special family of lattices which have excellent geometric properties, and admit very fast and parallelizable
decoding algorithms. The lattices are defined by means of what we call a primitive matrix. We say that a
matrix G ∈ Zn×mq is primitive if its columns generate all of Znq , i.e., G · Zm = Znq .6

The main results of this section are summarized in the following theorem.

Theorem 4.1. For any integers q ≥ 2, n ≥ 1, k = dlog2 qe and m = nk, there is a primitive matrix
G ∈ Zn×mq such that

• The lattice Λ⊥(G) has a known basis S ∈ Zm×m with ‖S̃‖ ≤
√

5 and ‖S‖ ≤ max{
√

5,
√
k}.

Moreover, when q = 2k, we have S̃ = 2I (so ‖S̃‖ = 2) and ‖S‖ =
√

5.

• Both G and S require little storage. In particular, they are sparse (with only O(m) nonzero entries)
and highly structured.

• Inverting gG(s, e) := stG + et mod q can be performed in quasilinear O(n · logc n) time for any
s ∈ Znq and any e ∈ P1/2(q ·B−t), where B can denote either S or S̃. Moreover, the algorithm is
perfectly parallelizable, running in polylogarithmic O(logc n) time using n processors. When q = 2k,
the polylogarithmic term O(logc n) is essentially just the cost of k additions and shifts on k-bit integers.

6We do not say that G is “full-rank,” because Zq is not a field when q is not prime, and the notion of rank for matrices over Zq is
not well defined.
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• Preimage sampling for fG(x) = Gx mod q with Gaussian parameter s ≥ ‖S̃‖ · ω(
√

log n) can
be performed in quasilinear O(n · logc n) time, or parallel polylogarithmic O(logc n) time using n
processors. When q = 2k, the polylogarithmic term is essentially just the cost of k additions and shifts
on k-bit integers, plus the (offline) generation of about m random integers drawn from DZ,s.

More generally, for any integer b ≥ 2, all of the above statements hold with k = dlogb qe, ‖S̃‖ ≤
√
b2 + 1,

and ‖S‖ ≤ max{
√
b2 + 1, (b− 1)

√
k}; and when q = bk, we have S̃ = bI and ‖S‖ =

√
b2 + 1.

The rest of this section is dedicated to the proof of Theorem 4.1. In the process, we also make several
important observations regarding the implementation of the inversion and sampling algorithms associated
with G, showing that our algorithms are not just asymptotically fast, but also quite practical.

Let q ≥ 2 be an integer modulus and k ≥ 1 be an integer dimension. Our construction starts with a
primitive vector g ∈ Zkq , i.e., a vector such that gcd(g1, . . . , gk, q) = 1. The vector g defines a k-dimensional
lattice Λ⊥(gt) ⊂ Zk having determinant |Zk/Λ⊥(gt)| = q, because the residue classes of Zk/Λ⊥(gt) are
in bijective correspondence with the possible values of 〈g,x〉 mod q for x ∈ Zk, which cover all of Zq
since g is primitive. Concrete primitive vectors g will be described in the next subsections. Notice that
when q = poly(n), we have k = O(log q) = O(log n) and so Λ⊥(gt) is a very low-dimensional lattice. Let
Sk ∈ Zk×k be a basis of Λ⊥(gt), that is, gt · Sk = 0 ∈ Z1×k

q and |det(Sk)| = q.
The primitive vector g and associated basis Sk are used to define the parity-check matrix G and basis

S ∈ Zq as G := In ⊗ gt ∈ Zn×nkq and S := In ⊗ Sk ∈ Znk×nk. That is,

G :=


· · ·gt · · ·

· · ·gt · · ·
. . .
· · ·gt · · ·

 ∈ Zn×nkq , S :=


Sk

Sk
. . .

Sk

 ∈ Znk×nk.

Equivalently, G, Λ⊥(G), and S are the direct sums of n copies of gt, Λ⊥(gt), and Sk, respectively. It follows
that G is a primitive matrix, the lattice Λ⊥(G) ⊂ Znk has determinant qn, and S is a basis for this lattice. It
also follows (and is clear by inspection) that ‖S‖ = ‖Sk‖ and ‖S̃‖ = ‖S̃k‖.

By this direct sum construction, it is immediate that inverting gG(s, e) and sampling preimages of
fG(x) can be accomplished by performing the same operations n times in parallel for ggt and fgt on the
corresponding portions of the input, and concatenating the results. For preimage sampling, if each of the fgt
preimages has Gaussian parameter

√
Σ, then by independence, their concatenation has parameter In ⊗

√
Σ.

Likewise, inverting gG will succeed whenever all the n independent ggt-inversion subproblems are solved
correctly.

In the next two subsections we study concrete instantiations of the primitive vector g, and give optimized
algorithms for inverting ggt and sampling preimages for fgt . In both subsections, we consider primitive
lattices Λ⊥(gt) ⊂ Zk defined by the vector

gt :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q , k = dlog2 qe, (4.1)

whose entries form a geometrically increasing sequence. (We focus on powers of 2, but all our results
trivially extend to other integer powers, or even mixed-integer products.) The only difference between
the two subsections is in the form of the modulus q. We first study the case when the modulus q = 2k

is a power of 2, which leads to especially simple and fast algorithms. Then we discuss how the results
can be generalized to arbitrary moduli q. Notice that in both cases, the syndrome 〈g,x〉 ∈ Zq of a binary
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vector x = (x0, . . . , xk−1) ∈ {0, 1}k is just the positive integer with binary expansion x. In general, for
arbitrary x ∈ Zk the syndrome 〈g,x〉 ∈ Zq can be computed very efficiently by a sequence of k additions
and binary shifts, and a single reduction modulo q, which is also trivial when q = 2k is a power of 2. The
syndrome computation is also easily parallelizable, leading to O(log k) = O(log log n) computation time
using O(k) = O(log n) processors.

4.1 Power-of-Two Modulus

Let q = 2k be a power of 2, and let g be the geometric vector defined in Equation (4.1). Define the matrix

Sk :=


2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k.

This is a basis for Λ⊥(gt), because gt · Sk = 0 mod q and det(Sk) = 2k = q. Clearly, all the basis vectors
are short. Moreover, by orthogonalizing Sk in reverse order, we have S̃k = 2 · Ik. This construction is
summarized in the following proposition. (It generalizes in the obvious way to any integer base, not just 2.)

Proposition 4.2. For q = 2k and g = (1, 2, . . . , 2k−1) ∈ Zkq , the lattice Λ⊥(gt) has a basis S such that
S̃ = 2I and ‖S‖ ≤

√
5. In particular, ηε(Λ⊥(gt)) ≤ 2r = 2 · ω(

√
log n) for some ε(n) = negl(n).

Using Proposition 4.2 and known generic algorithms [Bab85, Kle00, GPV08], it is possible to invert
ggt(s, e) correctly whenever e ∈ P1/2((q/2) · I), and sample preimages under fgt with Gaussian parameter
s ≥ 2r = 2 · ω(

√
log n). In what follows we show how the special structure of the basis S leads to simpler,

faster, and more practical solutions to these general lattice problems.

Inversion. Here we show how to efficiently find an unknown scalar s ∈ Zq given bt = [b0, b1, . . . , bk−1] =
s · gt + et = [s+ e0, 2s+ e1, . . . , 2

k−1s+ ek−1] mod q, where e ∈ Zk is a short error vector.
An iterative algorithm works by recovering the binary digits s0, s1, . . . , sk−1 ∈ {0, 1} of s ∈ Zq, from

least to most significant, as follows: first, determine s0 by testing whether

bk−1 = 2k−1s+ ek−1 = (q/2)s0 + ek−1 mod q

is closer to 0 or to q/2 (modulo q). Then recover s1 from bk−2 = 2k−2s + ek−2 = 2k−1s1 + 2k−2s0 +
ek−2 mod q, by subtracting 2k−2s0 and testing proximity to 0 or q/2, etc. It is easy to see that the algorithm
produces correct output if every ei ∈

[
− q

4 ,
q
4

)
, i.e., if e ∈ P1/2(q · Ik/2) = P1/2(q · (S̃k)−t). It can also be

seen that this algorithm is exactly Babai’s “nearest-plane” algorithm [Bab85], specialized to the scaled dual
q(Sk)

−t of the basis Sk of Λ⊥(gt), which is a basis for Λ(g).
Formally, the iterative algorithm is: given a vector bt = [b0, . . . , bk−1] ∈ Z1×k

q , initialize s← 0.

1. For i = k−1, . . . , 0: let s← s+2k−1−i ·
[
bi − 2i · s 6∈

[
− q

4 ,
q
4

)
mod q

]
, where [E] = 1 if expression

E is true, and 0 otherwise. Also let ei ← bi − 2i · s ∈
[
− q

4 ,
q
4

)
.

2. Output s ∈ Zq and e = (e0, . . . , ek−1) ∈
[
− q

4 ,
q
4

)k ⊂ Zk.
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Note that for x ∈ {0, . . . , q − 1} with binary representation (xk−1xk−2 · · ·x0)2, we have[
x 6∈

[
− q

4 ,
q
4

)
mod q

]
= xk−1 ⊕ xk−2.

There is also a non-iterative approach to decoding using a lookup table, and a hybrid approach between
the two extremes. Notice that rounding each entry bi of b to the nearest multiple of 2i (modulo q, breaking
ties upward) before running the above algorithm does not change the value of s that is computed. This lets
us precompute a lookup table that maps the 2k(k+1)/2 = qO(lg q) possible rounded values of b to the correct
values of s. The size of this table grows very rapidly for k > 3, but in this case we can do better if we assume
slightly smaller error terms ei ∈

[
− q

8 ,
q
8

)
: simply round each bi to the nearest multiple of max{ q8 , 2

i}, thus
producing one of exactly 8k−1 = q3/8 possible results, whose solutions can be stored in a lookup table. Note
that the result is correct, because in each coordinate the total error introduced by ei and rounding to a multiple
of q

8 is in the range
[
− q

4 ,
q
4

)
. A hybrid approach combining the iterative algorithm with table lookups of `

bits of s at a time is potentially the most efficient option in practice, and is easy to devise from the above
discussion.

Gaussian sampling. We now consider the preimage sampling problem for function fgt , i.e., the task of
Gaussian sampling over a desired coset of Λ⊥(gt). More specifically, we want to sample a vector from the
set Λ⊥u (gt) = {x ∈ Zk : 〈g,x〉 = u mod q} for a desired syndrome u ∈ Zq, with probability proportional
to ρs(x). We wish to do so for any fixed Gaussian parameter s ≥ ‖S̃k‖ · r = 2 · ω(

√
log n), which is an

optimal bound on the smoothing parameter of Λ⊥(G).
As with inversion, there are two main approaches to Gaussian sampling, which are actually opposite

extremes on a spectrum of storage/parallelism trade-offs. The first approach is essentially to precompute
and store many independent samples x← DZk,s, ‘bucketing’ them based on the value of 〈g,x〉 ∈ Zq until
there is at least one sample per bucket. Because each 〈g,x〉 is statistically close to uniform over Zq (by the
smoothing parameter bound for Λ⊥(gt)), a coupon-collecting argument implies that we need to generate
about q log q samples to occupy every bucket. The online part of the sampling algorithm for Λ⊥(gt) is trivial,
merely taking a fresh x from the appropriate bucket. The downside is that the storage and precomputation
requirements are rather high: in many applications, q (while polynomial in the security parameter) can be in
the many thousands or more.

The second approach exploits the niceness of the orthogonalized basis S̃k = 2Ik. Using this basis, the
randomized nearest-plane algorithm of [Kle00, GPV08] becomes very simple and efficient, and is equivalent
to the following: given a syndrome u ∈ {0, . . . , q − 1} (viewed as an integer),

1. For i = 0, . . . , k − 1: choose xi ← D2Z+u,s and let u← (u− xi)/2 ∈ Z.

2. Output x = (x0, . . . , xk−1).

Observe that every Gaussian xi in the above algorithm is chosen from one of only two possible cosets of 2Z,
determined by the least significant bit of u at that moment. Therefore, we may precompute and store several
independent Gaussian samples from each of 2Z and 2Z+1, and consume one per iteration when executing the
algorithm. (As above, the individual samples may be generated by choosing several x← DZ,s and bucketing
each one according to its least-significant bit.) Such presampling makes the algorithm deterministic during
its online phase, and because there are only two cosets, there is almost no wasted storage or precomputation.
Notice, however, that this algorithm requires k = lg(q) sequential iterations.

Between the extremes of the two algorithms described above, there is a hybrid algorithm that chooses
` ≥ 1 entries of x at a time. (For simplicity, we assume that ` divides k exactly, though this is not
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strictly necessary.) Let ht = [1, 2, . . . , 2`−1] ∈ Z1×`
2`

be a parity-check matrix defining the 2`-ary lattice
Λ⊥(ht) ⊆ Z`, and observe that gt = [ht, 2` · ht, . . . , 2k−` · ht]. The hybrid algorithm then works as follows:

1. For i = 0, . . . , k/`−1, choose (xi`, . . . , x(i+1)`−1)← DΛ⊥
u mod 2`

(ht),s and let u← (u−x)/2`, where

x =
∑`−1

j=0 xi`+j · 2j ∈ Z.

2. Output x = (x0, . . . , xk−1).

As above, we can precompute samples x ← DZ`,s and store them in a lookup table having 2` buckets,
indexed by the value 〈h,x〉 ∈ Z2` , thereby making the algorithm deterministic in its online phase.

4.2 Arbitrary Modulus

For a modulus q that is not a power of 2, most of the above ideas still work, with slight adaptations. Let
k = dlg(q)e, so q < 2k. As above, define gt := [1, 2, . . . , 2k−1] ∈ Z1×k

q , but now define the matrix

Sk :=



2 q0

−1 2 q1

−1 q2

. . .
...

2 qk−2

−1 qk−1


∈ Zk×k

where (q0, . . . , qk−1) ∈ {0, 1}k is the binary expansion of q =
∑

i 2i · qi. Again, S is a basis of Λ⊥(gt)
because gt · Sk = 0 mod q, and det(Sk) = q. Moreover, the basis vectors have squared length ‖si‖2 = 5
for i < k and ‖sk‖2 =

∑
i qi ≤ k. The next lemma shows that Sk also has a good Gram-Schmidt

orthogonalization.

Lemma 4.3. With S = Sk defined as above and orthogonalized in forward order, we have ‖s̃i‖2 = 4−4−i

1−4−i
∈

(4, 5] for 1 ≤ i < k, and ‖s̃k‖2 = 3q2

4k−1
< 3.

Proof. Notice that the the vectors s1, . . . , sk−1 are all orthogonal to gk = (1, 2, 4, . . . , 2k−1) ∈ Zk. Thus,
the orthogonal component of sk has squared length

‖s̃k‖2 =
〈sk,gk〉2

‖gk‖2
=

q2∑
j<k 4j

=
3q2

4k − 1
.

Similarly, the squared length of s̃i for i < k can be computed as

‖s̃i‖2 = 1 +
4i∑
j<i 4j

=
4− 4−i

1− 4−i
.

This concludes the description and analysis of the primitive lattice Λ⊥(gt) when q is not a power
of 2. Specialized inversion algorithms can also be adapted as well, but some care is needed. Of course,
since the lattice dimension k = O(log n) is very small, one could simply use the general methods of
[Bab85, Kle00, GPV08, Pei10] without worrying too much about optimizations, and satisfy all the claims
made in Theorem 4.1. Below we briefly discuss alternatives for Gaussian sampling.
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The offline ‘bucketing’ approach to Gaussian sampling works without any modification for arbitrary
modulus, with just slighly larger Gaussian parameter s ≥

√
5 · r, because it relies only on the smoothing

parameter bound of ηε(Λ⊥(gt)) ≤ ‖S̃k‖ · ω(
√

log n) and the fact that the number of buckets is q. The
randomized nearest-plane approach to sampling does not admit a specialization as simple as the one we have
described for q = 2k. The reason is that while the basis S is sparse, its orthogonalization S̃ is not sparse in
general. (This is in contrast to the case when q = 2k, for which orthogonalizing in reverse order leads to
the sparse matrix S̃ = 2I.) Still, S̃ is “almost triangular,” in the sense that the off-diagonal entries decrease
geometrically as one moves away from the diagonal. This may allow for optimizing the sampling algorithm
by performig “truncated” scalar product computations, and still obtain an almost-Gaussian distribution on the
resulting samples. An interesting alternative is to use a hybrid approach, where one first performs a single
iteration of randomized nearest-plane algorithm to take care of the last basis vector sk, and then performs
some variant of the convolution algorithm from [Pei10] to deal with the first k−1 basis vectors [s1, . . . , sk−1],
which have very small lengths and singular values. Notice that the orthogonalized component of the last
vector sk is simply a scalar multiple of the primitive vector g, so the scalar product 〈sk, t〉 (for any vector t
with syndrome u = 〈g, t〉) can be immediately computed from u as u/q (see Lemma 4.3).

4.3 The Ring Setting

The above constructions and algorithms all transfer easily to compact lattices defined over polynomial rings
(i.e., number rings), as used in the representative works [Mic02, PR06, LM06, LPR10]. A commonly used
example is the cyclomotic ring R = Z[x]/(Φm(x)) where Φm(x) denotes the mth cyclotomic polynomial,
which is a monic, degree-ϕ(m), irreducible polynomial whose zeros are all the primitive mth roots of unity
in C. The ring R is a Z-module of rank n, i.e., it is generated as the additive integer combinations of the
“power basis” elements 1, x, x2, . . . , xϕ(m)−1. We let Rq = R/qR, the ring modulo the ideal generated by an
integer q. For geometric concepts like error vectors and Gaussian distributions, it is usually nicest to work
with the “canonical embedding” of R, which roughly (but not exactly) corresponds with the “coefficient
embedding,” which just considers the vector of coefficients relative to the power basis.

Let g ∈ Rkq be a primitive vector modulo q, i.e., one for which the ideal generated by q, g1, . . . , gk is the
full ring R. As above, the vector g defines functions fgt : Rk → Rq and ggt : Rq ×Rk → R1×k

q , defined as
fgt(x) = 〈g,x〉 =

∑k
i=1 gi · xi mod q and ggt(s, e) = s · gt + et mod q, and the related R-module

qRk ⊆ Λ⊥(gt) := {x ∈ Rk : fgt(x) = 〈g,x〉 = 0 mod q} ( Rk,

which has index (determinant) qn = |Rq| as an additive subgroup of Rk because g is primitive. Concretely,
we can use the exact same primitive vector gt = [1, 2, . . . , 2k−1] ∈ Rkq as in Equation (4.1), interpreting its
entries in the ring Rq rather than Zq.

Inversion and preimage sampling algorithms for ggt and fgt (respectively) are relatively straightforward
to obtain, by adapting the basic approaches from the previous subsections. These algorithms are simplest
when the power basis elements 1, x, x2, . . . , xϕ(m)−1 are orthogonal under the canonical embedding (which
is the case exactly when m is a power of 2, and hence Φm(x) = xm/2 + 1), because the inversion operations
reduce to parallel operations relative to each of the power basis elements. We defer the details to the full
version.
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5 Trapdoor Generation and Operations

In this section we describe our new trapdoor generation, inversion and sampling algorithms for hard random
lattices. Recall that these are lattices Λ⊥(A) defined by an (almost) uniformly random matrix A ∈ Zn×mq ,
and that the standard notion of a “strong” trapdoor for these lattices (put forward in [GPV08] and used
in a large number of subsequent applications) is a short lattice basis S ∈ Zm×m for Λ⊥(A). There are
several measures of quality for the trapdoor S, the most common ones being (in nondecreasing order):
the maximal Gram-Schmidt length ‖S̃‖; the maximal Euclidean length ‖S‖; and the maximal singular
value s1(S). Algorithms for generating random lattices together with high-quality trapdoor bases are given
in [Ajt99, AP09]. In this section we give much simpler, faster and tighter algorithms to generate a hard
random lattice with a trapdoor, and to use a trapdoor for performing standard tasks like inverting the LWE
function gA and sampling preimages for the SIS function fA. We also give a new, simple algorithm for
delegating a trapdoor, i.e., using a trapdoor for A to obtain one for a matrix [A | A′] that extends A, in a
secure and non-reversible way.

The following theorem summarizes the main results of this section. Here we state just one typical
instantiation with only asymptotic bounds. More general results and exact bounds are presented throughout
the section.

Theorem 5.1. There is an efficient randomized algorithm GenTrap(1n, 1m, q) that, given any integers n ≥ 1,
q ≥ 2, and sufficiently large m = O(n log q), outputs a parity-check matrix A ∈ Zn×mq and a ‘trapdoor’ R
such that the distribution of A is negl(n)-far from uniform. Moreover, there are efficient algorithms Invert
and SampleD that with overwhelming probability over all random choices, do the following:

• For bt = stA + et, where s ∈ Znq is arbitrary and either ‖e‖ < q/O(
√
n log q) or e← DZm,αq for

1/α ≥
√
n log q · ω(

√
log n), the deterministic algorithm Invert(R,A,b) outputs s and e.

• For any u ∈ Znq and large enough s = O(
√
n log q), the randomized algorithm SampleD(R,A,u, s)

samples from a distribution within negl(n) statistical distance of DΛ⊥u (A),s·ω(
√

logn).

Throughout this section, we let G ∈ Zn×wq denote some fixed primitive matrix that admits efficient
inversion and preimage sampling algorithms, as described in Theorem 4.1. (Recall that typically, w =
ndlog qe for some appropriate base of the logarithm.) All our algorithms and efficiency improvements are
based on the primitive matrix G and associated algorithms described in Section 4, and a new notion of
trapdoor that we define next.

5.1 A New Trapdoor Notion

We begin by defining the new notion of trapdoor, establish some of its most important properties, and give a
simple and efficient algorithm for generating hard random lattices together with high-quality trapdoors.

Definition 5.2. Let A ∈ Zn×mq and G ∈ Zn×wq be matrices with m ≥ w ≥ n. A G-trapdoor for A is a
matrix R ∈ Z(̄m−w)×w such that A

[
R
I

]
= HG for some invertible matrix H ∈ Zn×nq . We refer to H as the

tag or label of the trapdoor. The quality of the trapdoor is measured by its largest singular value s1(R).

We remark that, by definition of G-trapdoor, if G is a primitive matrix and A admits a G trapdoor, then
A is primitive as well. In particular, det(Λ⊥(A)) = qn. Since the primitive matrix G is typically fixed and
public, we usually omit references to it, and refer to G-trapdoors simply as trapdoors. We remark that since
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G is primitive, the tag H in the above definition is uniquely determined by (and efficiently computable from)
A and the trapdoor R.

The following lemma says that a good basis for Λ⊥(A) may be obtained from knowledge of R. We
do not use the lemma anywhere in the rest of the paper, but include it here primarily to show that our new
definition of trapdoor is at least as powerful as the traditional one of a short basis. Our algorithms for Gaussian
sampling and LWE inversion do not need a full basis, and make direct (and more efficient) use of our new
notion of trapdoor.

Lemma 5.3. Let S ∈ Zw×w be any basis for Λ⊥(G). Let A ∈ Zn×mq have trapdoor R ∈ Z(m−w)×w with
tag H ∈ Zn×nq . Then the lattice Λ⊥(A) is generated by the basis

SA =

[
I R
0 I

] [
I 0
W S

]
,

where W ∈ Zw×m̄ is an arbitrary solution to GW = −H−1A[I | 0]T mod q. Moreover, the basis SA

satisfies ‖S̃A‖ ≤ s1(
[
I R
0 I

]
) · ‖S̃‖ ≤ (s1(R) + 1) · ‖S̃‖, when SA is orthogonalized in suitable order.

Proof. It is immediate to check that A · SA = 0 mod q, so SA generates a sublattice of Λ⊥(A). In fact, it
generates the entire lattice because det(SA) = det(S) = qn = det(Λ⊥(A)).

The bound on ‖S̃A‖ follows by simple linear algebra. Recall by Item 3 of Lemma 2.1 that ‖B̃‖ = ‖S̃‖
when the columns of B =

[
I 0
W S

]
are reordered appropriately. So it suffices to show that ‖T̃B‖ ≤

s1(T) · ‖B̃‖ for any T, B. Let B = QDU and TB = Q′D′U′ be Gram-Schmidt decompositions of B
and TB, respectively, with Q,Q′ orthogonal, D,D′ diagonal with nonnegative entries, and U,U′ upper
unitriangular. We have

TQDU = Q′D′U′ =⇒ T′D = D′U′′,

where T = Q′T′Q−1 ⇒ s1(T′) = s1(T), and U′′ is upper unitriangular because such matrices form a
multiplicative group. Now every row of T′D has Euclidean norm at most s1(T) · ‖D‖ = s1(T) · ‖B̃‖,
while the ith row of D′U′′ has norm at least d′i,i, the ith diagonal of D′. We conclude that ‖T̃B‖ = ‖D‖ ≤
s1(T) · ‖B̃‖, as desired.

We also make the following simple but useful observations:

• The rows of
[
R
I

]
in Definition 5.2 can appear in any order, since this just induces a permutation of A’s

columns.

• If R is a trapdoor for A, then it can be made into an equally good trapdoor for any extension [A | B],
by padding R with zero rows; this leaves s1(R) unchanged.

• If R is a trapdoor for A with tag H, then R is also a trapdoor for A′ = A − [0 | H′G] with tag
(H −H′) for any H′ ∈ Zn×nq , as long as (H −H′) is invertible modulo q. This is the main idea
behind the compact IBE of [ABB10a], and can be used to give a family of “tag-based” trapdoor
functions [KMO10]. In Section 6 we give explicit families of matrices H having suitable properties
for applications.

5.2 Trapdoor Generation

We now give an algorithm to generate a (pseudo)random matrix A together with a G-trapdoor. The algorithm
is straightforward, and in fact it can be easily derived from the definition of G-trapdoor itself. A random
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lattice is built by first extending the primitive matrix G into a semi-random matrix A′ = [Ā | HG]
(where Ā ∈ Zn×m̄q is chosen at random, and H ∈ Zn×nq is the desired tag), and then applying a random
transformation T =

[
I R
0 I

]
∈ Zm×m to the semi-random lattice Λ⊥(A′). Since T is unimodular with inverse

T−1 =
[
I −R
0 I

]
, by Lemma 2.1 this yields the lattice T · Λ⊥(A′) = Λ⊥(A′ · T−1) associated with the

parity-check matrix A = A′ ·T−1 = [Ā | HG− ĀR]. Moreover, the distribution of A is close to uniform
(either statistically, or computationally) as long as the distribution of [Ā | 0]T−1 = [Ā | −ĀR] is. For
details, see Algorithm 1, whose correctness is immediate.

Algorithm 1 Efficient algorithm GenTrapD(Ā,H) for generating a parity-check matrix A with trapdoor R.
Input: Matrix Ā ∈ Zn×m̄q for some m̄ ≥ 1, invertible matrix H ∈ Zn×nq , and distribution D over Zm̄×w.

(If no particular Ā, H are given as input, then the algorithm may choose them itself, e.g., picking
Ā ∈ Zn×m̄q uniformly at random, and setting H = I.)

Output: A parity-check matrix A = [Ā | A1] ∈ Zn×mq , where m = m̄+ w, and trapdoor R with tag H.
1: Choose a matrix R ∈ Zm̄×w from distribution D.
2: Output A = [Ā | HG− ĀR] ∈ Zn×mq and trapdoor R ∈ Zm̄×w.

We next describe two types of GenTrap instantiations. The first type generates a trapdoor R for a
statistically near-uniform output matrix A using dimension m̄ ≈ n log q or less (there is a trade-off between
m̄ and the trapdoor quality s1(R)). The second types generates a computationally pseudorandom A (under
the LWE assumption) using dimension m̄ = 2n; this pseudorandom construction is the first of its kind in the
literature. Certain applications allow for an optimization that decreases m̄ by an additive n term; this is most
significant in the computationally secure construction because it yields m̄ = n.

Statistical instantiation. This instantiation works for any parameter m̄ and distribution D over Zm̄×w
having the following two properties:

1. Subgaussianity: D is subgaussian with some parameter s > 0 (or δ-subgaussian for some small δ).
This implies by Lemma 2.9 that R ← D has s1(R) = s · O(

√
m̄ +

√
w), except with probability

2−Ω(m̄+w). (Recall that the constant factor hidden in the O(·) expression is ≈ 1/
√

2π.)

2. Regularity: for Ā← Zn×m̄q and R← D, A = [Ā | ĀR] is δ-uniform for some δ = negl(n).

In fact, there is no loss in security if Ā contains an identity matrix I as a submatrix and is otherwise
uniform, since this corresponds with the Hermite normal form of the SIS and LWE problems. See,
e.g., [MR09, Section 5] for further details.

For example, let D = Pm̄×w where P is the distribution over Z that outputs 0 with probability 1/2, and ±1
each with probability 1/4. Then P (and hence D) is 0-subgaussian with parameter

√
2π, and satisfies the

regularity condition (for any q) for δ ≤ w
2

√
qn/2m̄, by a version of the leftover hash lemma (see, e.g., [AP09,

Section 2.2.1]). Therefore, we can use any m̄ ≥ n lg q + 2 lg w
2δ .

As another important example, let D = Dm̄×w
Z,s be a discrete Gaussian distribution for some s ≥ ηε(Z)

and ε = negl(n). Then D is 0-subgaussian with parameter s by Lemma 2.8, and satisfies the regularity
condition when m̄ satisfies the bound (2.2) from Lemma 2.4. For example, letting s = 2ηε(Z) we can use
any m̄ = n lg q + ω(log n). (Other tradeoffs between s and m̄ are possible, potentially using a different
choice of G, and more exact bounds on the error probabilities can be worked out from the lemma statements.)
Moreover, by Lemmas 2.4 and 2.8 we have that with overwhelming probability over the choice of Ā, the
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conditional distribution of R given A = [Ā | ĀR] is negl(n)-subgaussian with parameter s. We will use
this fact in some of our applications in Section 6.

Computational instantiation. Let Ā = [I | Â] ∈ Zn×m̄q for m̄ = 2n, and let D = Dm̄×w
Z,s for some

s = αq, where α > 0 is an LWE relative error rate (and typically αq >
√
n). Clearly, D is 0-subgaussian

with parameter αq. Also, [Ā | ĀR = ÂR2 + R1] for R =
[
R1
R2

]
← D is exactly an instance of decision-

LWEn,q,α (in its normal form), and hence is pseudorandom (ignoring the identity submatrix) assuming that
the problem is hard.

Further optimizations. If an application only uses a single tag H = I (as is the case with, for example,
GPV signatures [GPV08]), then we can save an additive n term in the dimension m̄ (and hence in the total
dimension m): instead of putting an identity submatrix in Ā, we can instead use the identity submatrix from
G (which exists without loss of generality, since G is primitive) and conceal the remainder of G using either
of the above methods.

All of the above ideas also translate immediately to the ring setting (see Section 4.3), using an appropriate
regularity lemma (e.g., the one in [LPR10]) for a statistical instantiation, and the ring-LWE problem for a
computationally secure instantiation.

5.3 LWE Inversion

Algorithm 2 below shows how to use a trapdoor to solve LWE relative to A. Given a trapdoor R for
A ∈ Zn×mq and an LWE instance bt = stA + et mod q for some short error vector e ∈ Zm, the algorithm
recovers s (and e). This naturally yields an inversion algorithm for the injective trapdoor function gA(s, e) =
stA + et mod q, which is hard to invert (and whose output is pseudorandom) if LWE is hard.

Algorithm 2 Efficient algorithm InvertO(R,A,b) for inverting the function gA(s, e).
Input: An oracle O for inverting the function gG(ŝ, ê) when ê ∈ Zw is suitably small.

• parity-check matrix A ∈ Zn×mq ;

• G-trapdoor R ∈ Zm̄×kn for A with invertible tag H ∈ Zn×nq ;
• vector bt = gA(s, e) = stA + et for any s ∈ Znq and suitably small e ∈ Zm.

Output: The vectors s and e.
1: Compute b̂t = bt

[
R
I

]
.

2: Get (ŝ, ê)← O(b̂).
3: return s = H−tŝ and e = b−Ats (interpreted as a vector in Zm with entries in [− q

2 ,
q
2)).

Theorem 5.4. Suppose that oracle O in Algorithm 2 correctly inverts gG(ŝ, ê) for any error vector ê ∈
P1/2(q · B−t) for some B. Then for any s and e of length ‖e‖ < q/(2‖B‖s) where s =

√
s1(R)2 + 1,

Algorithm 2 correctly inverts gA(s, e). Moreover, for any s and random e ← DZm,αq where 1/α ≥
2‖B‖s · ω(

√
log n), the algorithm inverts successfully with overwhelming probability over the choice of e.

Note that using our constructions from Section 4, we can implement O so that either ‖B‖ = 2 (for q a
power of 2, where B = S̃ = 2I) or ‖B‖ =

√
5 (for arbitrary q).
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Proof. Let R̄ = [ Rt I ], and note that s = s1(R̄). By the above description, the algorithm works correctly
when R̄e ∈ P1/2(q ·B−t); equivalently, when (btiR̄)e/q ∈ [−1

2 ,
1
2) for all i. By definition of s, we have

‖btiR̄‖ ≤ s‖B‖. If ‖e‖ < q/(2‖B‖s), then |(btiR̄)e/q| < 1/2 by Cauchy-Schwarz. Moreover, if e is
chosen at random from DZm,αq, then by the fact that e is 0-subgaussian (Lemma 2.8) with parameter αq, the
probability that |(btiR̄)e/q| ≥ 1/2 is negligible, and the second claim follows by the union bound.

5.4 Gaussian Sampling

Here we show how to use a trapdoor for efficient Gaussian preimage sampling for the function fA, i.e.,
sampling from a discrete Gaussian over a desired coset of Λ⊥(A). Our precise goal is, given a G-trapdoor R
(with tag H) for matrix A and a syndrome u ∈ Znq , to sample from the spherical discrete Gaussian DΛ⊥u (A),s

for relatively small parameter s. As we show next, this task can be reduced, via some efficient pre- and
post-processing, to sampling from any sufficiently narrow (not necessarily spherical) Gaussian over the
primitive lattice Λ⊥(G).

The main ideas behind our algorithm, which is described formally in Algorithm 3, are as follows. For
simplicity, suppose that R has tag H = I, so A

[
R
I

]
= G, and suppose we have a subroutine for Gaussian

sampling from any desired coset of Λ⊥(G) with some small, fixed parameter
√

ΣG ≥ ηε(Λ
⊥(G)). For

example, Section 4 describes algorithms for which
√

ΣG is either 2 or
√

5. (Throughout this summary we
omit the small rounding factor r = ω(

√
log n) from all Gaussian parameters.) The algorithm for sampling

from a coset Λ⊥u (A) follows from two main observations:

1. If we sample a Gaussian z with parameter
√

ΣG from Λ⊥u (G) and produce y =
[
R
I

]
z, then y is

Gaussian over the (non-full-rank) set
[
R
I

]
Λ⊥u (G) ( Λ⊥u (A) with parameter

[
R
I

]√
ΣG (i.e., covariance[

R
I

]
ΣG[ Rt I ]). The (strict) inclusion holds because for any y =

[
R
I

]
z where z ∈ Λ⊥u (G), we have

Ay = (A
[
R
I

]
)z = Gz = u.

Note that s1(
[
R
I

]
·
√

ΣG) ≤ s1(
[
R
I

]
) · s1(

√
ΣG) ≤

√
s1(R)2 + 1 · s1(

√
ΣG), so y’s distribution is

only about an s1(R) factor wider than that of z over Λ⊥u (G). However, y lies in a non-full-rank subset
of Λ⊥u (A), and its distribution is ‘skewed’ (non-spherical). This leaks information about the trapdoor
R, so we cannot just output y.

2. To sample from a spherical Gaussian over all of Λ⊥u (A), we use the ‘convolution’ technique from [Pei10]
to correct for the above-described problems with the distribution of y. Specifically, we first choose a
Gaussian perturbation p ∈ Zm having covariance s2 −

[
R
I

]
ΣG [ Rt I ], which is well-defined as long

as s ≥ s1(
[
R
I

]
·
√

ΣG). We then sample y =
[
R
I

]
z as above for an adjusted syndrome v = u−Ap,

and output x = p + y. Now the support of x is all of Λ⊥u (A), and because the covariances of p and y
are additive (subject to some mild hypotheses), the overall distribution of x is spherical with Gaussian
parameter s that can be as small as s ≈ s1(R) · s1(

√
ΣG).

Quality analysis. Algorithm 3 can sample from a discrete Gaussian with parameter s · ω(
√

log n) where
s can be as small as

√
s1(R)2 + 1 ·

√
s1(ΣG) + 2. We stress that this is only very slightly larger — a

factor of at most
√

6/4 ≤ 1.23 — than the bound (s1(R) + 1) · ‖S̃‖ from Lemma 5.3 on the largest
Gram-Schmidt norm of a lattice basis derived from the trapdoor R. (Recall that our constructions from
Section 4 give s1(ΣG) = ‖S̃‖2 = 4 or 5.) In the iterative “randomized nearest-plane” sampling algorithm
of [Kle00, GPV08], the Gaussian parameter s is lower-bounded by the largest Gram-Schmidt norm of the
orthogonalized input basis (times the same ω(

√
log n) factor used in our algorithm). Therefore, the efficiency
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and parallelism of Algorithm 3 comes at almost no cost in quality versus slower, iterative algorithms that use
high-precision arithmetic. (It seems very likely that the corresponding small loss in security can easily be
mitigated with slightly larger parameters, while still yielding a significant net gain in performance.)

Runtime analysis. We now analyze the computational cost of Algorithm 3, with a focus on optimizing the
online runtime and parallelism (sometimes at the expense of the offline phase, which we do not attempt to
optimize).

The offline phase is dominated by sampling from DZm,r
√

Σ for some fixed (typically non-spherical)
covariance matrix Σ > I. By [Pei10, Theorem 3.1], this can be accomplished (up to any desired statistical
distance) simply by sampling a continuous Gaussian Dr

√
Σ−I with sufficient precision, then independently

randomized-rounding each entry of the sampled vector to Z using Gaussian parameter r ≥ ηε(Z).
Naively, the online work is dominated by the computation of H−1(u − w̄) and Rz (plus the call to

O(v), which as described in Section 4 requires only O(logc n) work, or one table lookup, by each of n
processors in parallel). In general, the first computation takes O(n2) scalar multiplications and additions
in Zq, while the latter takes O(m̄ · w), which is typically Θ(n2 log2 q). (Obviously, both computations are
perfectly parallelizable.) However, the special form of z, and often of H, allow for some further asymptotic
and practical optimizations: since z is typically produced by concatenating n independent dimension-k
subvectors that are sampled offline, we can precompute much of Rz by pre-multiplying each subvector by
each of the n blocks of k columns in R. This reduces the online computation of Rz to the summation of n
dimension-m̄ vectors, or O(n2 log q) scalar additions (and no multiplications) in Zq. As for multiplication by
H−1, in some applications (like GPV signatures) H is always the identity I, in which case multiplication is
unnecessary; in all other applications we know of, H actually represents multiplication in a certain extension
field/ring of Zq, which can be computed in O(n log n) scalar operations and depth O(log n). In conclusion,
the asymptotic cost of the online phase is still dominated by computing Rz, which takes Õ(n2) work, but the
hidden constants are small and many practical speedups are possible.

Theorem 5.5. Algorithm 3 is correct.

To prove the theorem we need the following fact about products of Gaussian functions.

Fact 5.6 (Product of degenerate Gaussians). Let Σ1,Σ2 ∈ Rm×m be symmetric positive semidefinite matrices,
let Vi = span(Σi) for i = 1, 2 and V3 = V1∩V2, let P = Pt ∈ Rm×m be the symmetric matrix that projects
orthogonally onto V3, and let c1, c2 ∈ Rm be arbitrary. Supposing it exists, let v be the unique point in
(V1 + c1) ∩ (V2 + c2) ∩ V ⊥3 . Then

ρ√Σ1
(x− c1) · ρ√Σ2

(x− c2) = ρ√Σ1+Σ2
(c1 − c2) · ρ√Σ3

(x− c3),

where Σ3 and c3 ∈ v + V3 are such that

Σ+
3 = P(Σ+

1 + Σ+
2 )P

Σ+
3 (c3 − v) = Σ+

1 (c1 − v) + Σ+
2 (c2 − v).

Proof of Theorem 5.5. We adopt the notation from the algorithm, let V = span(
[
R
I

]
) ⊂ Rm, let P be the

matrix that projects orthogonally onto V , and define the lattice Λ = Zm ∩ V = L(
[
R
I

]
), which spans V .

We analyze the output distribution of SampleD. Clearly, it always outputs an element of Λ⊥u (A), so let x̄ ∈
Λ⊥u (A) be arbitrary. Now SampleD outputs x̄ exactly when it chooses in Step 1 some p̄ ∈ V + x̄, followed in
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Algorithm 3 Efficient algorithm SampleDO(R, Ā,H,u, s) for sampling a discrete Gaussian over Λ⊥u (A).

Input: An oracle O(v) for Gaussian sampling over a desired coset Λ⊥v (G) with fixed parameter r
√

ΣG ≥
ηε(Λ

⊥(G)), for some ΣG ≥ 2 and ε ≤ 1/2.

Offline phase:
• partial parity-check matrix Ā ∈ Zn×m̄q ;
• trapdoor matrix R ∈ Zm̄×w;
• positive definite Σ ≥

[
R
I

]
(2 + ΣG)[ Rt I ], e.g., any Σ = s2 ≥ (s1(R)2 + 1)(s1(ΣG) + 2).

Online phase:
• invertible tag H ∈ Zn×nq defining A = [Ā | HG− ĀR] ∈ Zn×mq , for m = m̄+ w

(H may instead be provided in the offline phase, if it is known then);
• syndrome u ∈ Znq .

Output: A vector x drawn from a distribution within O(ε) statistical distance of DΛ⊥u (A),r·
√

Σ.

Offline phase:

1: Choose a fresh perturbation p← DZm,r
√

Σp
, where Σp = Σ−

[
R
I

]
ΣG [ Rt I ] ≥ 2

[
R
I

]
[ Rt I ].

2: Let p = [ p1
p2 ] for p1 ∈ Zm̄, p2 ∈ Zw, and compute w̄ = Ā(p1 −Rp2) ∈ Znq and w = Gp2 ∈ Znq .

Online phase:

3: Let v← H−1(u− w̄)−w = H−1(u−Ap) ∈ Znq , and choose z← DΛ⊥v (G),r
√

ΣG
by calling O(v).

4: return x← p +
[
R
I

]
z.

Step 3 by the unique z̄ ∈ Λ⊥v (G) such that x̄− p̄ =
[
R
I

]
z̄. It is easy to check that ρ√ΣG

(z̄) = ρ√
Σy

(x̄− p̄),
where

Σy =
[
R
I

]
ΣG [ Rt I ] ≥ 2

[
R
I

]
[ Rt I ]

is the covariance matrix with span(Σy) = V . Note that Σp + Σy = Σ by definition of Σp, and that
span(Σp) = Rm because Σp > 0. Therefore, we have (where C denotes a normalizing constant that may
vary from line to line, but does not depend on x̄):

px̄ = Pr[SampleD outputs x̄]

=
∑

p̄∈Zm∩(V+x̄)

DZm,r
√

Σp
(p̄) ·D

Λ⊥v (G),r
√

Σy
(z̄) (def. of SampleD)

= C
∑
p̄

ρ
r
√

Σp
(p̄) · ρ

r
√

Σy
(p̄− x̄)/ρr

√
ΣG

(Λ⊥v (G)) (def. of D)

= C · ρr√Σ(x̄) ·
∑
p̄

ρr
√

Σ3
(p̄− c3)/ρr

√
ΣG

(Λ⊥v (G)) (Fact 5.6)

∈ C[1, 1+ε
1−ε ] · ρr√Σ(x̄) ·

∑
p̄

ρr
√

Σ3
(p̄− c3) (Lemma 2.5 and r

√
ΣG ≥ ηε(Λ⊥(G)))

= C[1, 1+ε
1−ε ] · ρr√Σ(x̄) · ρr√Σ3

(Zm ∩ (V + x̄)− c3), (5.1)

where Σ+
3 = P(Σ+

p + Σ+
y )P and c3 ∈ v + V = x̄ + V , because the component of x̄ orthogonal to V is the

unique point v ∈ (V + x̄) ∩ V ⊥. Therefore,

Zm ∩ (V + x̄)− c3 = (Zm ∩ V ) + (x̄− c3) ⊂ V
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is a coset of the lattice Λ = L(
[
R
I

]
). It remains to show that r

√
Σ3 ≥ ηε(Λ), so that the rightmost term

in (5.1) above is essentially a constant (up to some factor in [1−ε
1+ε , 1]) independent of x̄, by Lemma 2.5. Then

we can conclude that px̄ ∈ [1−ε
1+ε ,

1+ε
1−ε ] · ρr√Σ(x̄), from which the theorem follows.

To show that r
√

Σ3 ≥ ηε(Λ), note that since Λ∗ ⊂ V , for any covariance Π we have ρP
√

Π(Λ∗) =

ρ√Π(Λ∗), and so P
√

Π ≥ ηε(Λ) if and only if
√

Π ≥ ηε(Λ). Now because both Σp,Σy ≥ 2
[
R
I

]
[ Rt I ], we

have
Σ+
p + Σ+

y ≤ (
[
R
I

]
[ Rt I ])+.

Because r
[
R
I

]
≥ ηε(Λ) for ε = negl(n) by Lemma 2.3, we have r

√
Σ3 = r

√
(Σ+

p + Σ+
y )+ ≥ ηε(Λ), as

desired.

5.5 Trapdoor Delegation

Here we describe very simple and efficient mechanism for securely delegating a trapdoor for A ∈ Zn×mq

to a trapdoor for an extension A′ ∈ Zn×m′q of A. Our method has several advantages over the previous
basis delegation algorithm of [CHKP10]: first and most importantly, the size of the delegated trapdoor grows
only linearly with the dimension m′ of Λ⊥(A′), rather than quadratically. Second, the algorithm is much
more efficient, because it does not require testing linear independence of Gaussian samples, nor computing
the expensive ToBasis and Hermite normal form operations. Third, the resulting trapdoor R has a ‘nice’
Gaussian distribution that is easy to analyze and may be useful in applications. We do note that while the
delegation algorithm from [CHKP10] works for any extension A′ of A (including A itself), ours requires
m′ ≥ m + w. Fortunately, this is frequently the case in applications such as HIBE and others that use
delegation.

Algorithm 4 Efficient algorithm DelTrapO(A′ = [A | A1],H′, s′) for delegating a trapdoor.

Input: an oracle O for discrete Gaussian sampling over cosets of Λ = Λ⊥(A) with parameter s′ ≥ ηε(Λ).
• parity-check matrix A′ = [A | A1] ∈ Zn×mq × Zn×wq ;

• invertible matrix H′ ∈ Zn×nq ;
Output: a trapdoor R′ ∈ Zm×w for A′ with tag H ∈ Zn×nq .

1: Using O, sample each column of R′ independently from a discrete Gaussian with parameter s′ over the
appropriate coset of Λ⊥(A), so that AR′ = H′G−A1.

Usually, the oracleO needed by Algorithm 4 would be implemented (up to negl(n) statistical distance) by
Algorithm 3 above, using a trapdoor R for A where s1(R) is sufficiently small relative to s′. The following
is immediate from Lemma 2.9 and the fact that the columns of R′ are independent and negl(n)-subgaussian.
A relatively tight bound on the hidden constant factor can also be derived from Lemma 2.9.

Lemma 5.7. For any valid inputs A′ and H′, Algorithm 4 outputs a trapdoor R′ for A′ with tag H′, whose
distribution is the same for any valid implementation of O, and s1(R′) ≤ s′ · O(

√
m +

√
w) except with

negligible probability.
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6 Applications

The main applications of “strong” trapdoors have included digital signature schemes in both the random-
oracle and standard models, encryption secure under chosen-ciphertext attack (CCA), and (hierarchical)
identity-based encryption. Here we focus on signature schemes and CCA-secure encryption, where our
techniques lead to significant new improvements (beyond what is obtained by plugging in our trapdoor
generator as a “black box”). Where appropriate, we also briefly mention the improvements that are possible
in the remaining applications.

6.1 Algebraic Background

In our applications we need a special collection of elements from a certain ringR, which induce invertible
matrices H ∈ Zn×nq as required by our trapdoor construction. We construct such a ring using ideas from the
literature on secret sharing over groups and modules, e.g., [DF94, Feh98]. Define the ringR = Zq[x]/(f(x))
for some monic degree-n polynomial f(x) = xn + fn−1x

n−1 + · · · + f0 ∈ Z[x] that is irreducible
modulo every prime p dividing q. (Such an f(x) can be constructed by finding monic irreducible degree-
n polynomials in Zp[x] for each prime p dividing q, and using the Chinese remainder theorem on their
coefficients to get f(x).) Recall that R is a free Zq-module of rank n, i.e., the elements of R can be
represented as vectors in Znq relative to the standard basis of monomials 1, x, . . . , xn−1. Multiplication by
any fixed element ofR then acts as a linear transformation on Znq according to the rule x · (a0, . . . , an−1)t =
(0, a0, . . . , an−2)t−an−1(f0, f1, . . . , fn−1)t, and so can be represented by an (efficiently computable) matrix
in Zn×nq relative to the standard basis. In other words, there is an injective ring homomorphism h : R → Zn×nq

that maps any a ∈ R to the matrix H = h(a) representing multiplication by a. In particular, H is invertible
if and only if a ∈ R∗, the set of units inR. By the Chinese remainder theorem, and because Zp[x]/(f(x))
is a field by construction of f(x), an element a ∈ R is a unit exactly when it is nonzero (as a polynomial
residue) modulo every prime p dividing q. We use this fact quite essentially in the constructions that follow.

6.2 Signature Schemes

6.2.1 Definitions

A signature scheme SIG for a message spaceM (which may depend on the security parameter n) is a tuple
of PPT algorithms as follows:

• Gen(1n) outputs a verification key vk and a signing key sk.

• Sign(sk, µ), given a signing key sk and a message µ ∈M, outputs a signature σ ∈ {0, 1}∗.
• Ver(vk, µ, σ), given a verification key vk, a message µ, and a signature σ, either accepts or rejects.

The correctness requirement is: for any µ ∈M, generate (vk, sk)← Gen(1n) and σ ← Sign(sk, µ). Then
Ver(vk, µ, σ) should accept with overwhelming probability (over all the randomness in the experiment).

We recall two standard notions of security for signatures. An intermediate notion is strong unforge-
ability under static chosen-message attack, or su-scma security, is defined as follows: first, the forger F
outputs a list of distinct query messages µ(1), . . . , µ(Q) for some Q. (The distinctness condition simplifies
our construction, and does not affect the notion’s usefulness.) Next, we generate (vk, sk) ← Gen(1n)
and σ(i) ← Sign(sk, µ(i)) for each i ∈ [Q], then give vk and each σ(i) to F . Finally, F outputs an at-
tempted forgery (µ∗, σ∗). The forger’s advantage Advsu-scma

SIG (F) is the probability that Ver(vk, µ∗, σ∗)
accepts and (µ∗, σ∗) 6= (µ(i), σ(i)) for all i ∈ [Q], taken over all the randomness of the experiment. The
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scheme is su-scma-secure if Advsu-scma
SIG (F) = negl(n) for every nonuniform probabilistic polynomial-time

algorithm F .
Another notion, called strong existential unforgeability under adaptive chosen-message attack, or su-acma

security, is defined similarly, except that F is first given vk and may adaptively choose the messages µ(i) to
be signed, which need not be distinct.

Using a family of chameleon hash functions, there is a generic transformation from eu-scma- to eu-acma-
security; see, e.g., [KR00]. Furthermore, the transformation results in an offline/online scheme in which the
Sign algorithm can be precomputed before the message to be signed is known; see [ST01]. The basic idea
is that the signer chameleon hashes the true message, then signs the hash value using the eu-scma-secure
scheme (and includes the randomness used in the chameleon hash with the final signature). A suitable type of
chameleon hash function has been constructed under a weak hardness-of-SIS assumption; see [CHKP10].

6.2.2 Standard Model Scheme

Here we give a signature scheme that is statically secure in the standard model. The scheme itself is essentially
identical (up to the improved and generalized parameters) to the one of [Boy10], which is a lattice analogue of
the pairing-based signature of [Wat05]. We give a new proof with an improved security reduction that relies
on a weaker assumption. The proof uses a variant of the “prefix technique” [HW09] also used in [CHKP10].

Our scheme involves a number of parameters. For simplicity, we give some exemplary asymptotic bounds
here. (Other slight trade-offs among the parameters are possible, and more precise values can be obtained
using the more exact bounds from earlier in the paper and the material below.) In what follows, ω(

√
log n)

represents a fixed function that asymptotically grows faster than
√

log n.

• G ∈ Zn×nkq is a gadget matrix for large enough q = poly(n) and k = dlog qe = O(log n), with the
ability to sample from cosets of Λ⊥(G) with Gaussian parameter O(1) · ω(

√
log n) ≥ ηε(Λ

⊥(G)).
(See for example the constructions from Section 4.)

• m̄ = O(nk) and D = Dm̄×nk
Z,ω(
√

logn)
so that (Ā, ĀR) is negl(n)-far from uniform for Ā← Zn×m̄q and

R← D, and m = m̄+ 2nk is the total dimension of the signatures.

• ` is a suitable message length (see below), and s = O(
√
`nk) · ω(

√
log n)2 is a sufficiently large

Gaussian parameter.

The legal values of ` are influenced by the choice of q and n. Our security proof requires a special
collection of units in the ringR = Zq[x]/(f(x)) as constructed in Section 6.1 above. We need a sequence of
` units u1, . . . , u` ∈ R∗, not necessarily distinct, such that any nontrivial subset-sum is also a unit, i.e., for
any nonempty S ⊆ [`],

∑
i∈S ui ∈ R∗. By the characterization of units inR described in Section 6.1, letting

p be the smallest prime dividing q, we can allow any ` ≤ (p− 1) · n by taking p− 1 copies of each of the
monomials xi ∈ R∗ for i = 0, . . . , n− 1.

The signature scheme has message space {0, 1}`, and is defined as follows.

• Gen(1n): choose Ā← Zn×m̄q , choose R ∈ Zm̄×nk from distribution D, and let A = [Ā | G− ĀR].

For i = 0, 1, . . . , `, choose Ai ← Zn×nkq . Also choose a syndrome u← Znq .

The public verification key is vk = (A,A0, . . . ,A`,u). The secret signing key is sk = R.

• Sign(sk, µ ∈ {0, 1}`): let Aµ =
[
A | A0 +

∑
i∈[`] µiAi

]
∈ Zn×mq , where µi ∈ {0, 1} is the ith bit

of µ, interpreted as an integer. Output v ∈ Zm sampled from DΛ⊥u (Aµ),s, using SampleD with trapdoor
R for A (which is also a trapdoor for its extension Aµ).
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• Ver(vk, µ,v): let Aµ be as above. Accept if ‖v‖ ≤ s ·
√
m and Aµ · v = u; otherwise, reject.

Notice that the signing process takesO(`n2k) scalar operations (to add up the Ais), but after transforming
the scheme to a fully secure one using chameleon hashing, these computations can be performed offline
before the message is known.

Theorem 6.1. There exists a PPT oracle algorithm (a reduction) S attacking the SISq,β problem for large
enough β = O(`(nk)3/2) · ω(

√
log n)3 such that, for any adversary F mounting an su-scma attack on SIG

and making at most Q queries,

AdvSISq,β (SF ) ≥ Advsu-scma
SIG (F)/(2(`− 1)Q+ 2)− negl(n).

Proof. Let F be an adversary mounting an su-scma attack on SIG, having advantage δ = Advsu-scma
SIG (F).

We construct a reduction S attacking SISq,β . The reduction S takes as input m̄+ nk + 1 uniformly random
and independent samples from Znq , parsing them as a matrix A = [Ā | B] ∈ Zn×(m̄+nk)

q and syndrome
u′ ∈ Znq . It will use F either to find some z ∈ Zm of length ‖z‖ ≤ β − 1 such that Az = u′ (from which it
follows that [A | u′] · z′ = 0, where z′ = [ z

−1 ] is nonzero and of length at most β), or a nonzero z ∈ Zm
such that Az = 0 (from which is follows that [A | u′] · [ z0 ] = 0).

We distinguish between two types of forger F : one that produces a forgery on an unqueried message
(a violation of standard existential unforgeability), and one that produces a new signature on a queried
message (a violation of strong unforgeability). Clearly any F with advantage δ has probability at least δ/2 of
succeeding in at least one of these two tasks.

First we consider F that forges on an unqueried message (with probability at least δ/2). Our reduction S
simulates the static chosen-message attack to F as follows:

• Invoke F to receive up to Q messages µ(1), µ(2), . . . ∈ {0, 1}`. Compute the set P of all strings
p ∈ {0, 1}≤` having the property that p is a shortest string for which no µ(j) has p as a prefix.
Equivalently, P represents the set of maximal subtrees of {0, 1}≤` (viewed as a tree) that do not
contain any of the queried messages. The set P has size at most (`− 1) ·Q+ 1, and may be computed
efficiently. (See, e.g., [CHKP10] for a precise description of an algorithm.) Choose some p from P
uniformly at random, letting t = |p| ≤ `.

• Construct a verification key vk = (A,A0, . . . ,A`,u = u′): for i = 0, . . . , `, choose Ri ← D, and let

Ai = HiG− ĀRi, where Hi =


h(0) = 0 i > t

(−1)pi · h(ui) i ∈ [t]

−
∑

j∈[t] pj ·Hj i = 0

.

(Recall that u1, . . . , u` ∈ R = Zq[x]/(f(x)) are units whose nontrivial subset-sums are also units.)

Note that by hypothesis on m̄ and D, for any choice of p the key vk is only negl(n)-far from uniform
in statistical distance. Note also that by our choice of the Hi, for any message µ ∈ {0, 1}` having p
as a prefix, we have H0 +

∑
i∈[`] µiHi = 0. Whereas for any µ ∈ {0, 1}` having p′ 6= p as its t-bit

prefix, we have

H0 +
∑
i∈[`]

µiHi =
∑
i∈[t]

(p′i − pi) ·Hi =
∑

i∈[t],p′i 6=pi

(−1)pi ·Hi = h
( ∑
i∈[t],p′i 6=pi

ui
)
,

which is invertible by hypothesis on the uis. Finally, observe that with overwhelming probability
over any fixed choice of vk and the Hi, each column of each Ri is still independently distributed as
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a discrete Gaussian with parameter ω(
√

log n) ≥ ηε(Ā) over some fixed coset of Λ⊥(Ā), for some
negligible ε = ε(n).

• Generate signatures for the queried messages: for each message µ = µ(i), compute

Aµ =
[
A | A0 +

∑
i∈[`]

µiAi

]
=
[
Ā | B | HG− Ā

(
R0 +

∑
i∈[`]

µiRi

)]
,

where H is invertible because the t-bit prefix of µ is not p. Therefore, R = (R0 +
∑

i∈[`] µiRi) is
a trapdoor for Aµ. By the conditional distribution on the Ris, concatenation of subgaussian random
variables, and Lemma 2.9, we have

s1(R) =
√
`+ 1 ·O(

√
m̄+

√
nk) · ω(

√
log n) = O(

√
`nk) · ω(

√
log n)

with overwhelming probability. Since s = O(
√
`nk) ·ω(

√
log n)2 is sufficiently large, we can generate

a properly distributed signature vµ ← DΛ⊥u (Aµ),s using SampleD with trapdoor R.

Next, S gives vk and the generated signatures to F . Because vk and the signatures are distributed within
negl(n) statistical distance of those in the real attack (for any choice of the prefix p), with probability at least
δ/2−negl(n), F outputs a forgery (µ∗,v∗) where µ∗ is different from all the queried messages, Aµ∗v

∗ = u,
and ‖v∗‖ ≤ s ·

√
m. Furthermore, conditioned on this event, µ∗ has p as a prefix with probability at least

1/((` − 1)Q + 1) − negl(n), because p is still essentially uniform in P conditioned on the view of F .
Therefore, all of these events occur with probability at least δ/(2(`− 1)Q+ 2)− negl(n).

In such a case, S extracts a solution to its SIS challenge instance from the forgery (µ∗,v∗) as follows.
Because µ∗ starts with p, we have Aµ∗ =

[
Ā | B | −ĀR∗

]
for R∗ = R0 +

∑
i∈[`] µ

∗
iRi, and so

[Ā | B]︸ ︷︷ ︸
A

[
Im̄ −R∗

Ink

]
v∗︸ ︷︷ ︸

z

= u mod q,

as desired. Because ‖v∗‖ ≤ s ·
√
m = O(

√
`nk) · ω(

√
log n)2 and s1(R∗) =

√
`+ 1 · O(

√
m̄ +

√
nk) ·

ω(
√

log n) with overwhelming probability (conditioned on the view of F and any fixed Hi), we have
‖z‖ = O(`(nk)3/2) · ω(

√
log n)3, which is at most β − 1, as desired.

Now we consider an F that forges on one of its queried messages (with probability at least δ/2). Our
reduction S simulates the attack to F as follows:

• Invoke F to receive up to Q distinct messages µ(1), µ(2), . . . ∈ {0, 1}`. Choose one of these messages
µ = µ(i) uniformly at random, “guessing” that the eventual forgery will be on µ.

• Construct a verification key vk = (A,A0, . . . ,A`,u): generate Ai exactly as above, using p = µ.
Then choose v← DZm,s and let u = Aµv, where Aµ is defined in the usual way.

• Generate signatures for the queried messages: for all the queries except µ, proceed exactly as above
(which is possible because all the queries are distinct and hence do not have p = µ as a prefix). For µ,
use v as the signature, which has the required distribution DΛ⊥u (Aµ),s by construction.

When S gives vk and the signatures to F , with probability at least δ/2− negl(n) the forger must output a
forgery (µ∗,v∗) where µ∗ is one of its queries, v∗ is different from the corresponding signature it received,
Aµ∗v

∗ = u, and ‖v∗‖ ≤ s ·
√
m. Because vk and the signatures are appropriately distributed for any
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choice µ that S made, conditioned on the above event the probability that µ∗ = µ is at least 1/Q− negl(n).
Therefore, all of these events occur with probability at least δ/(2Q)− negl(n).

In such a case, S extracts a solution to its SIS challenge from the forgery as follows. Because µ∗ = µ, we
have Aµ∗ =

[
Ā | B | −ĀR∗

]
for R∗ = R0 +

∑
i∈[`] µ

∗
iRi, and so

[Ā | B]︸ ︷︷ ︸
A

[
Im̄ −R∗

Ink

]
(v∗ − v)︸ ︷︷ ︸

z

= 0 mod q.

Because both ‖v∗‖, ‖v‖ ≤ s ·
√
m = O(

√
`nk) · ω(

√
log n)2 and s1(R∗) = O(

√
`nk) · ω(

√
log n) with

overwhelming probability (conditioned on the view of F and any fixed Hi), we have ‖z‖ = O(`(nk)3/2) ·
ω(
√

log n)3 with overwhelming probability, as needed. It just remains to show that z 6= 0 with overwhelming
probability. To see this, write w = v∗ − v = (w1,w2,w3) ∈ Zm̄ × Znk × Znk, with w 6= 0. If w2 6= 0 or
w3 = 0, then z 6= 0 and we are done. Otherwise, choose some entry of w3 that is nonzero; without loss of
generality say it is wm. Let r = (R0)nk. Now for any fixed values of Ri for i ∈ [`] and fixed first nk − 1
columns of R0, we have z = 0 only if r · wm = y ∈ Rm̄ for some fixed y. Conditioned on the adversary’s
view (specifically, (A0)nk = Ār), r is distributed as a discrete Gaussian of parameter ≥ 2ηε(Λ

⊥(Ā)) for
some ε = negl(n) over a coset of Λ⊥(Ā). Then by Lemma 2.7, we have r = y/wm with only 2−Ω(n)

probability, and we are done.

6.3 Chosen Ciphertext-Secure Encryption

Definitions. A public-key cryptosystem for a message space M (which may depend on the security
parameter) is a tuple of algorithms as follows:

• Gen(1n) outputs a public encryption key pk and a secret decryption key sk.

• Enc(pk,m), given a public key pk and a message m ∈M, outputs a ciphertext c ∈ {0, 1}∗.
• Dec(sk, c), given a decryption key sk and a ciphertext c, outputs some m ∈M∪ {⊥}.

The correctness requirement is: for any m ∈M, generate (pk, sk)← Gen(1n) and c← Enc(pk,m). Then
Dec(sk, c) should output m with overwhelming probability (over all the randomness in the experiment).

We recall the two notions of security under chosen-ciphertext attacks. We start with the weaker notion
of CCA1 (or “lunchtime”) security. Let A be any nonuniform probabilistic polynomial-time algorithm.
First, we generate (pk, sk)← Gen(1n) and give pk to A. Next, we give A oracle access to the decryption
procedure Dec(sk, ·). Next, A outputs two messages m0,m1 ∈ M and is given a challenge ciphertext
c← Enc(pk,mb) for either b = 0 or b = 1. The scheme is CCA1-secure if the views of A (i.e., the public
key pk, the answers to its oracle queries, and the ciphertext c) for b = 0 versus b = 1 are computationally
indistinguishable (i.e., A’s acceptance probabilities for b = 0 versus b = 1 differ by only negl(n)). In the
stronger CCA2 notion, after receiving the challenge ciphertext, A continues to have access to the decryption
oracle Dec(sk, ·) for any query not equal to the challenge ciphertext c; security it defined similarly.

Construction. To highlight the main new ideas, here we present a public-key encryption scheme that
is CCA1-secure. Full CCA2 security can be obtained via relatively generic transformations using either
strongly unforgeable one-time signatures [DDN00], or a message authentication code and weak form of
commitment [BCHK07]; we omit these details.

Our scheme involves a number of parameters, for which we give some exemplary asymptotic bounds. In
what follows, ω(

√
log n) represents a fixed function that asymptotically grows faster than

√
log n.
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• G ∈ Zn×nkq is a gadget matrix for large enough prime power q = pe = poly(n) and k = O(log q) =
O(log n). We require an oracle O that solves LWE with respect to Λ(Gt) for any error vector in some
P1/2(q ·B−t) where ‖B‖ = O(1). (See for example the constructions from Section 4.)

• m̄ = O(nk) and D = Dm̄×nk
Z,ω(
√

logn)
so that (Ā, ĀR) is negl(n)-far from uniform for Ā← Zn×m̄q and

R← D, and m = m̄+ nk is the total dimension of the public key and ciphertext.

• α is an error rate for LWE, for sufficiently large 1/α = O(nk) · ω(
√

log n).

Our scheme requires a special collection of elements in the ring R = Zq[x]/(f(x)) as constructed in
Section 6.1 (recall that here q = pe). We need a very large set U = {u1, . . . , u`} ⊂ R with the “unit
differences” property: for any i 6= j, the difference ui − uj ∈ R∗, and hence h(ui − uj) = h(ui)− h(uj) ∈
Zn×nq is invertible. (Note that the uis need not all be units themselves.) Concretely, by the characterization
of units in R given above, we take U to be all linear combinations of the monomials 1, x, . . . , xn−1 with
coefficients in {0, . . . , p− 1}, of which there are exactly pn. Since the difference between any two such
distinct elements is nonzero modulo p, it is a unit.

The system has message space {0, 1}nk, which we map bijectively to the cosets of Λ/2Λ for Λ = Λ(Gt)
via some function encode that is efficient to evaluate and invert. Concretely, letting S ∈ Znk×nk be any basis
of Λ, we can map m ∈ {0, 1}nk to encode(m) = Sm ∈ Znk.

• Gen(1n): choose Ā← Zn×m̄q and R← D, letting A1 = −ĀR mod q. The public key is pk = A =
[Ā | A1] ∈ Zn×mq and the secret key is sk = R.

• Enc(pk = [Ā | A1],m ∈ {0, 1}nk): choose nonzero u ← U and let Au = [Ā | A1 + h(u)G].
Choose s← Znq , ē← Dm̄

Z,αq, and e1 ← Dnk
Z,s where s2 = (‖ē‖2 + m̄(αq)2) · ω(

√
log n)2.

Let
bt = 2(stAu mod q) + et + (0, encode(m))t mod 2q,

where e = (ē, e1) ∈ Zm and 0 has dimension m̄. (Note the use of mod-2q arithmetic: 2(stAu mod q)
is an element of the lattice 2Λ(At

u) ⊇ 2qZm.) Output the ciphertext c = (u,b) ∈ U × Zm2q.

• Dec(sk = R, c = (u,b) ∈ U × Zm2q): Let Au = [Ā | A1 + h(u)G] = [Ā | h(u)G− ĀR].

1. If c does not parse or u = 0, output ⊥. Otherwise, call InvertO(R,Au,b mod q) to get values
z ∈ Znq and e = (ē, e1) ∈ Zm̄×Znk for which bt = ztAu+et mod q. (Note that h(u) ∈ Zn×nq

is invertible, as required by Invert.) If the call to Invert fails for any reason, output ⊥.

2. If ‖ē‖ ≥ αq
√
m̄ or ‖e1‖ ≥ αq

√
2m̄nk · ω(

√
log n), output ⊥.

3. Let v = b− e mod 2q, parsed as v = (v̄,v1) ∈ Zm̄2q × Znk2q . If v̄ 6∈ 2Λ(Āt), output ⊥. Finally,
output encode−1(vt

[
R
I

]
mod 2q) ∈ {0, 1}nk if it exists, otherwise output ⊥.

(In practice, to avoid timing attacks one would perform all of the Dec operations first, and only then
finally output ⊥ if any of the validity tests failed.)

Lemma 6.2. The above scheme has only 2−Ω(n) probability of decryption error.

The error probability can be made zero by changing Gen and Enc so that they resample R, ē, and/or e1

in the rare event that they violate the corresponding bounds given in the proof below.
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Proof. Let (A,R) ← Gen(1n). By Lemma 2.9, we have s1(R) ≤ O(
√
nk) · ω(

√
log n) except with

probability 2−Ω(n). Now consider the random choices made by Enc(A,m) for arbitrary m ∈ {0, 1}nk.
By Lemma 2.6, we have both ‖ē‖ < αq

√
m̄ and ‖e1‖ < αq

√
2m̄nk · ω(

√
log n), except with probability

2−Ω(n). Letting e = (ē, e1), we have∥∥et[RI ]∥∥ ≤ ‖ētR‖+ ‖e1‖ < αq ·O(nk) · ω(
√

log n).

In particular, for large enough 1/α = O(nk) · ω(
√

log n) we have et
[
R
I

]
∈ P1/2(q ·B−t). Therefore, the

call to Invert made by Dec(R, (u,b)) returns e. It follows that for v = (v̄,v1) = b− e mod 2q, we have
v̄ ∈ 2Λ(Āt) as needed. Finally,

vt
[
R
I

]
= 2(sth(u)G mod q) + encode(m) mod 2q,

which is in the coset encode(m) ∈ Λ(Gt)/2Λ(Gt), and so Dec outputs m as desired.

Theorem 6.3. The above scheme is CCA1-secure assuming the hardness of decision-LWEq,α′ for α′ =
α/3 ≥ 2

√
n/q.

Proof. We start by giving a particular form of discretized LWE that we will need below. Given access to an
LWE distribution As,α′ over Znq × T for any s ∈ Znq (where recall that T = R/Z), by [Pei10, Theorem 3.1]
we can transform its samples (a, b = 〈s,a〉/q+e mod 1) to have the form (a, 2(〈s,a〉 mod q)+e′ mod 2q)
for e′ ← DZ,αq, by mapping b 7→ 2qb + DZ−2qb,s mod 2q where s2 = (αq)2 − (2α′q)2 ≥ 4n ≥ ηε(Z)2.
This transformation maps the uniform distribution over Znq × T to the uniform distribution over Znq × Z2q, so
the discretized distribution is pseudorandom under the hypothesis of the theorem.

We proceed via a sequence of hybrid games. The game H0 is exactly the CCA1 attack with the system
described above.

In gameH1, we change how the public key A and challenge ciphertext c∗ = (u∗,b∗) are constructed, and
the way that decryption queries are answered (slightly), but in a way that introduces only negl(n) statistical
difference with H0. At the start of the experiment we choose nonzero u∗ ← U and let the public key be
A = [Ā | A1] = [Ā | −h(u∗)G − ĀR], where Ā and R are chosen in the same way as in H0. (In
particular, we still have s1(R) ≤ O(

√
nk) · ω(

√
log n) with overwhelming probability.) Note that A is still

negl(n)-uniform for any choice of u∗, so conditioned on any fixed choice of A, the value of u∗ is statistically
hidden from the attacker. To aid with decryption queries, we also choose an arbitrary (not necessarily short)
R̂ ∈ Zm̄×nk such that A1 = −ĀR̂ mod q.

To answer a decryption query on a ciphertext (u,b), we use an algorithm very similar to Dec with
trapdoor R. After testing whether u = 0 (and outputting ⊥ if so), we call InvertO(R,Au,b mod q) to get
some z ∈ Znq and e ∈ Zm, where

Au = [Ā | A1 + h(u)G] = [Ā | h(u− u∗)G− ĀR].

(If Invert fails, we output ⊥.) We then perform steps 2 and 3 on e ∈ Zm and v = b− e mod 2q exactly as
in Dec, except that we use R̂ in place of R when decoding the message in step 3.

We now analyze the behavior of this decryption routine. Whenever u 6= u∗, which is the case with
overwhelming probability because u∗ is statistically hidden, by the “unit differences” property on U we have
that h(u − u∗) ∈ Zn×nq is invertible, as required by the call to Invert. Now, either there exists an e that
satisfies the validity tests in step 2 and such that bt = ztAu + et mod q for some z ∈ Znq , or there does not.
In the latter case, no matter what Invert does in H0 and H1, step 2 will return ⊥ in both games. Now consider
the former case: by the constraints on e, we have et

[
R
I

]
∈ P1/2(q ·B−t) in both games, so the call to Invert
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must return this e (but possibly different z) in both games. Finally, the result of decryption is the same in
both games: if v̄ ∈ 2Λ(Āt) (otherwise, both games return ⊥), then we can express v as

vt = 2(stAu mod q) + (0,v′)t mod 2q

for some s ∈ Znq and v′ ∈ Znk2q . Then for any solution R ∈ Zm̄×nk to A1 = −ĀR mod q, we have

vt
[
R
I

]
= 2(sth(u)G mod q) + (v′)t mod 2q.

In particular, this holds for the R in H0 and the R̂ in H1 that are used for decryption. It follows that both
games output encode−1(v′), if it exists (and ⊥ otherwise).

Finally, in H1 we produce the challenge ciphertext (u,b) on a message m ∈ {0, 1}nk as follows. Let
u = u∗, and choose s ← Znq and ē ← Dm̄

Z,αq as usual, but do not choose e1. Note that Au = [Ā | −ĀR].
Let b̄t = 2(stĀ mod q) + ēt mod 2q. Let

bt1 = −b̄tR + êt + encode(m) mod 2q,

where ê ← Dnk
Z,αq

√
m·ω(

√
logn)

, and output (u,b = (b̄,b1)). We now show that the distribution of (u,b)

is within negl(n) statistical distance of that in H0, given the attacker’s view (i.e., pk and the results of
the decryption queries). Clearly, u and b̄ have essentially the same distribution as in H0, because u is
negl(n)-uniform given pk, and by construction of b̄. By substitution, we have

bt1 = 2(st(−ĀR) mod q) + (ētR + êt) + encode(m).

Therefore, it suffices to show that for fixed ē, each 〈ē, ri〉+ êi has distribution negl(n)-far from DZ,s, where
s2 = (‖ē‖2 +m(αq)2) · ω(

√
log n)2, over the random choice of ri (conditioned on the value of Āri from

the public key) and of êi. Because each ri is an independent discrete Gaussian over a coset of Λ⊥(Ā), the
claim follows essentially by [Reg05, Corollary 3.10], but adapted to discrete random variables using [Pei10,
Theorem 3.1] in place of [Reg05, Claim 3.9].

In game H2, we only change how the b̄ component of the challenge ciphertext is created, letting it be
uniformly random in Zm̄2q. We construct pk, answer decryption queries, and construct b1 in exactly the
same way as in H1. First observe that under our (discretized) LWE hardness assumption, games H1 and
H2 are computationally indistinguishable by an elementary reduction: given (Ā, b̄) ∈ Zn×m̄q × Zm̄2q where
Ā is uniformly random and either b̄t = 2(stĀ mod q) + et mod 2q (for s ← Znq and e ← Dm̄

Z,αq) or b̄
is uniformly random, we can efficiently emulate either game H1 or H2 (respectively) by doing everything
exactly as in the two games, except using the given Ā and b̄ when constructing the public key and challenge
ciphertext.

Now by the leftover hash lemma, (Ā, b̄t, ĀR,−b̄tR) is negl(n)-uniform when R is chosen as in H2.
Therefore, the challenge ciphertext has the same distribution (up to negl(n) statistical distance) for any
encrypted message, and so the adversary’s advantage is negligible. This completes the proof.
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Abstract

We give direct constructions of pseudorandom function (PRF) families based on conjectured hard
lattice problems and learning problems. Our constructions are asymptotically efficient and highly
parallelizable in a practical sense, i.e., they can be computed by simple, relatively small low-depth
arithmetic or boolean circuits (e.g., in NC1 or even TC0). In addition, they are the first low-depth
PRFs that have no known attack by efficient quantum algorithms. Central to our results is a new
“derandomization” technique for the learning with errors (LWE) problem which, in effect, generates the
error terms deterministically.

1 Introduction and Main Results

The past few years have seen significant progress in constructing public-key, identity-based, and homomorphic
cryptographic schemes using lattices, e.g., [Reg05, PW08, GPV08, Gen09, CHKP10, ABB10a] and many
more. Part of their appeal stems from provable worst-case hardness guarantees (starting with the seminal
work of Ajtai [Ajt96]), good asymptotic efficiency and parallelism, and apparent resistance to quantum
attacks (unlike the classical problems of factoring integers or computing discrete logarithms).

Perhaps surprisingly, there has been comparatively less progress in using lattices for symmetric cryp-
tography, e.g., message authentication codes, block ciphers, and the like, which are widely used in practice.
While in principle most symmetric objects of interest can be obtained generically from any one-way function,
and hence from lattices, these generic constructions are usually very inefficient, which puts them at odds
with the high performance demands of most applications. In addition, generic constructions often use their
underlying primitives (e.g., one-way functions) in an inherently inefficient and sequential manner. While
most lattice-based primitives are relatively efficient and highly parallelizable in a practical sense (i.e., they
can be evaluated by small, low-depth circuits), those advantages are completely lost when plugging them
into generic sequential constructions. This motivates the search for specialized constructions of symmetric
objects that have comparable efficiency and parallelism to their lower-level counterparts.

Our focus in this work is on pseudorandom function (PRF) families, a central object in symmetric cryp-
tography first rigorously defined and constructed by Goldreich, Goldwasser, and Micali (“GGM”) [GGM84].
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Given a PRF family, most central goals of symmetric cryptography (e.g., encryption, authentication, identifica-
tion) have simple solutions that make efficient use of the PRF. Informally, a family of deterministic functions
is pseudorandom if no efficient adversary, given adaptive oracle access to a randomly chosen function from
the family, can distinguish it from a uniformly random function. The seminal GGM construction is based
generically on any length-doubling pseudorandom generator (and hence on any one-way function), but it
requires k sequential invocations of the generator when operating on k-bit inputs.

In contrast, by relying on a generic object called a “pseudorandom synthesizer,” or directly on concrete
number-theoretic problems (such as decision Diffie-Hellman, RSA, and factoring), Naor and Reingold [NR95,
NR97] and Naor, Reingold, and Rosen [NRR00] (see also [LW09, BMR10]) constructed very elegant and
more efficient PRFs, which can in principle be computed in parallel by low-depth circuits (e.g., in NC2

or TC0). However, achieving such low depth for their number-theoretic constructions requires extensive
preprocessing and enormous circuits, so their results serve mainly as a proof of theoretical feasibility rather
than practical utility.

In summary, thus far all parallelizable PRFs from commonly accepted cryptographic assumptions
rely on exponentiation in large multiplicative groups, and the functions (or at least their underlying hard
problems) can be broken by polynomial-time quantum algorithms. While lattices appear to be a natural
candidate for avoiding these drawbacks, and there has been some partial progress in the form of randomized
weak PRFs [ACPS09] and randomized MACs [Pie10, KPC+11], constructing an efficient, parallelizable
(deterministic) PRF under lattice assumptions has, frustratingly, remained open for some time now.

1.1 Results and Techniques

In this work we give the first direct constructions of PRF families based on lattices, via the learning with
errors (LWE) [Reg05] and ring-LWE [LPR10] problems, and some new variants. Our constructions are
highly parallelizable in a practical sense, i.e., they can be computed by relatively small low-depth circuits, and
the runtimes are also potentially practical. (However, their performance and key sizes are still far from those
of heuristically designed functions like AES.) In addition, (at least) one of our constructions can be evaluated
in the circuit class TC0 (i.e., constant-depth, poly-sized circuits with unbounded fan-in and threshold gates),
which asymptotically matches the shallowest known PRF constructions based on the decision Diffie-Hellman
and factoring problems [NR97, NRR00].

As a starting point, we recall that in their work introducing synthesizers as a foundation for PRFs [NR95],
Naor and Reingold described a synthesizer based on a simple, conjectured hard-to-learn function. At first
glance, this route seems very promising for obtaining PRFs from lattices, using LWE as the hard learning
problem (which is known to be as hard as worst-case lattice problems [Reg05, Pei09]). However, a crucial
point is that Naor and Reingold’s synthesizer uses a deterministic hard-to-learn function, whereas LWE’s
hardness depends essentially on adding random, independent errors to every output of a mod-q “parity”
function. (Indeed, without any error, parity functions are trivially easy to learn.) Probably the main obstacle
so far in constructing efficient lattice/LWE-based PRFs has been in finding a way to introduce (sufficiently
independent) error terms into each of the exponentially many function outputs, while still keeping the
function deterministic and its key size a fixed polynomial. As evidence, consider that recent constructions
of weaker primitives such as symmetric authentication protocols [HB01, JW05, KSS06], randomized weak
PRFs [ACPS09], and message-authentication codes [Pie10, KPC+11] from noisy-learning problems are
all inherently randomized functions, where security relies on introducing fresh noise at every invocation.
Unfortunately, this is not an option for deterministic primitives like PRFs.

2

Approved for Public Release; Distribution Unlimited. 
114 



Derandomizing LWE. To resolve the above-described issues, our first main insight is a way of partially
“derandomizing” the LWE problem, i.e., generating the errors efficiently and deterministically, while pre-
serving hardness. This technique immediately yields a deterministic synthesizer and hence a simple and
parallelizable PRF, though with a few subtleties specific to our technique that we elaborate upon below.

Before we explain the derandomization idea, first recall the learning with errors problem LWEn,q,α in
dimension n (the main security parameter) with modulus q and error rate α. We are given many independent
pairs (ai, bi) ∈ Znq × Zq, where each ai is uniformly random, and the bi are all either “noisy inner products”
of the form bi = 〈ai, s〉 + ei mod q for a random secret s ∈ Znq and “small” random error terms ei ∈ Z
of magnitude ≈ αq, or are uniformly random and independent of the ai. The goal of the (decision) LWE
problem is to distinguish between these two cases, with any non-negligible advantage. In the ring-LWE
problem [LPR10], we are instead given noisy ring products bi ≈ ai · s, where s and the ai are random
elements of a certain polynomial ring Rq (the canonical example being Rq = Zq[z]/(zn + 1) for n a power
of 2), and the error terms are “small” in a certain basis of the ring; the goal again is to distinguish these
from uniformly random pairs. While the dimension n is the main hardness parameter, the error rate α also
plays a very important role in both theory and practice: as long as the “absolute” error αq exceeds

√
n

or so, (ring-)LWE is provably as hard as approximating conjectured hard problems on (ideal) lattices to
within Õ(n/α) factors in the worst case [Reg05, Pei09, LPR10]. Moreover, known attacks using lattice
basis reduction (e.g., [LLL82, Sch87]) or combinatorial/algebraic methods [BKW03, AG11] require time
2Ω̃(n/ log(1/α)), where the Ω̃(·) notation hides polylogarithmic factors in n. We emphasize that without the
error terms, (ring-)LWE would become trivially easy, and that all prior hardness results for LWE and its many
variants (e.g., [Reg05, Pei09, GKPV10, LPR10, Pie10]) require random, independent errors.

Our derandomization technique for LWE is very simple: instead of adding a small random error term to
each inner product 〈ai, s〉 ∈ Zq, we just deterministically round it to the nearest element of a sufficiently
“coarse” public subset of p � q well-separated values in Zq (e.g., a subgroup). In other words, the “error
term” comes solely from deterministically rounding 〈ai, s〉 to a relatively nearby value. Since there are only p
possible rounded outputs in Zq, it is usually easier to view them as elements of Zp and denote the rounded
value by b〈ai, s〉ep ∈ Zp. We call the problem of distinguishing such rounded inner products from uniform
samples the learning with rounding (LWRn,q,p) problem. Note that the problem can be hard only if q > p
(otherwise no error is introduced), that the “absolute” error is roughly q/p, and that the “error rate” relative
to q (i.e., the analogue of α in the LWE problem) is on the order of 1/p.

We show that for appropriate parameters, LWRn,q,p is at least as hard as LWEn,q,α for an error rate α
proportional to 1/p, giving us a worst-case hardness guarantee for LWR. In essence, the reduction relies
on the fact that with high probability, we have b〈a, s〉+ eep = b〈a, s〉ep when e is small relative to q/p,
while bU(Zq)ep ≈ U(Zp) where U denotes the uniform distribution. Therefore, given samples (ai, bi)
of an unknown type (either LWE or uniform), we can simply round the bi terms to generate samples of a
corresponding type (LWR or uniform, respectively). (The formal proof is somewhat more involved, because
it has to deal with the rare event that the error term changes the rounded value.) In the ring setting, the
derandomization technique and hardness proof based on ring-LWE all go through without difficulty as
well. While our proof needs both the ratio q/p and the inverse LWE error rate 1/α to be slightly super-
polynomial in n, the state of the art in attack algorithms indicates that as long as q/p is an integer (so that
bU(Zq)ep = U(Zp)) and is at least Ω(

√
n), LWR may be exponentially hard (even for quantum algorithms)

for any p = poly(n), and superpolynomially hard when p = 2n
ε

for any ε < 1.
We point out that in LWE-based cryptosystems, rounding to a fixed, coarse subset is a common method of

removing noise and recovering the plaintext when decrypting a “noisy” ciphertext; here we instead use it to
avoid having to introduce any random noise in the first place. We believe that this technique should be useful
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in many other settings, especially in symmetric cryptography. For example, the LWR problem immediately
yields a simple and practical pseudorandom generator that does not require extracting biased (e.g., Gaussian)
random values from its input seed, unlike the standard pseudorandom generators based on the LWE or LPN
(learning parity with noise) problems. In addition, the rounding technique and its implications for PRFs are
closely related to the “modulus reduction” technique from a concurrent and independent work of Brakerski
and Vaikuntanathan [BV11a] on fully homomorphic encryption from LWE, and a very recent follow-up work
of Brakerski, Gentry, and Vaikuntanathan [BGV11]; see Section 1.3 below for a discussion and comparison.

LWR-based synthesizers and PRFs. Recall from [NR95] that a pseudorandom synthesizer is a two-
argument function S(·, ·) such that, for random and independent sequences x1, . . . , xm and y1, . . . , ym
of inputs (for any m = poly(n)), the matrix of all m2 values zi,j = S(xi, yj) is pseudorandom (i.e.,
computationally indistinguishable from uniform). A synthesizer can be seen as an (almost) length-squaring
pseudorandom generator with good locality properties, in that it maps 2m random “seed” elements (the xi
and yj) to m2 pseudorandom elements, and any component of its output depends on only two components of
the input seed.

Using synthesizers in a recursive tree-like construction, Naor and Reingold gave PRFs on k-bit inputs,
which can be computed using a total of about k synthesizer evaluations, arranged nicely in only lg k levels
(depth). Essentially, the main idea is that given a synthesizer S(·, ·) and two independent PRF instances F0

and F1 on t input bits each, one gets a PRF on 2t input bits, defined as

F (x1 · · ·x2t) = S
(
F0(x1 · · ·xt) , F1(xt+1 · · ·x2t)

)
. (1.1)

The base case of a 1-bit PRF can trivially be implemented by returning one of two random strings in the
function’s secret key. Using particular NC1 synthesizers based on a variety of both concrete and general
assumptions, Naor and Reingold therefore obtain k-bit PRFs in NC2, i.e., having circuit depth O(log2 k).

We give a very simple and computationally efficient LWRn,q,p-based synthesizer Sn,q,p : Znq × Znq → Zp,
defined as

Sn,q,p(a, s) = b〈a, s〉ep. (1.2)

(In this and what follows, products of vectors or matrices over Zq are always performed modulo q.) Pseudoran-
domness of this synthesizer under LWR follows by a standard hybrid argument, using the fact that the ai vec-
tors given in the LWR problem are public. (In fact, the synthesizer outputs S(ai, sj) are pseudorandom even
given the ai.) To obtain a PRF using the tree construction of [NR95], we need the synthesizer output length
to roughly match its input length, so we actually use the synthesizer Tn,q,p(S1,S2) = bS1 · S2ep ∈ Zn×np for
Si ∈ Zn×nq . Note that the matrix multiplication can be done with a constant-depth, size-O(n2) arithmetic
circuit over Zq. Or for better space and time complexity, we can instead use the ring-LWR synthesizer
SR,q,p(s1, s2) = bs1 · s2ep, since the ring product s1 · s2 ∈ Rq is the same size as s1, s2 ∈ Rq. The ring
product can also be computed with a constant depth, size-O(n2) circuit over Zq, or in O(log n) depth and
only O(n log n) scalar operations using Fast Fourier Transform-like techniques [LMPR08, LPR10].

Using the recursive input-doubling construction from Equation (1.1) above, we get the following concrete
PRF with input length k = 2d. Let qd > qd−1 > · · · > q0 ≥ 2 be a chain of moduli where each qj/qj−1

is a sufficiently large integer, e.g., qj = qj+1 for some q ≥
√
n. The secret key is a set of 2k matrices

Si,b ∈ Zn×nqd
for each i ∈ {1, . . . , k} and b ∈ {0, 1}. Each pair (Si,0,Si,1) defines a 1-bit PRF Fi(b) = Si,b,

and these are combined in a tree-like fashion according to Equation (1.1) using the appropriate synthesizers
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Tn,qj ,qj−1 for j = d, . . . , 1. As a concrete example, when k = 8 (so x = x1 · · ·x8 and d = 3), we have

F{Si,b}(x) =

⌊⌊
bS1,x1 · S2,x2eq2· bS3,x3 · S4,x4eq2

⌉
q1
·
⌊
bS5,x5 · S6,x6eq2· bS7,x7 · S8,x8eq2

⌉
q1

⌉
q0

. (1.3)

(In the ring setting, we just use random elements si,b ∈ Rqd in place of the matrices Si,b.) Notice that the
function involves d = lg k levels of matrix (or ring) products, each followed by a rounding operation. In the
exemplary case where qj = qj+1, the rounding operations essentially drop the “least-significant” base-q digit,
so they can be implemented very easily in practice, especially if every qj is a power of 2. The function is also
amenable to all of the nice time/space trade-offs, seed-compression techniques, and incremental computation
ideas described in [NR95].

In the security proof, we rely on the conjectured hardness of LWRqj ,qj−1 for j = d, . . . , 1. The strongest
of these assumptions appears to be for j = d, and this is certainly the case when relying on our reduction from
LWE to LWR. For the example parameters qj = qj+1 where q ≈

√
n, the dominating assumption is therefore

the hardness of LWRqd+1,qd , which involves a quasi-polynomial inverse error rate of 1/α ≈ qd = nO(lg k).
However, because the strongest assumptions are applied to the “innermost” layers of the function, it is unclear
whether security actually requires such strong assumptions, or even whether the innermost layers need to be
rounded at all. We discuss these issues further in Section 1.2 below.

Degree-k synthesizers and shallower PRFs. One moderate drawback of the above function is that it
involves lg k levels of rounding operations, which appears to lower-bound the depth of any circuit computing
the function by Ω(lg k). Is it possible to do better?

Recall that in later works, Naor and Reingold [NR97] and Naor, Reingold, and Rosen [NRR00] gave
direct, more efficient number-theoretic PRF constructions which, while still requiring exponentiation in large
multiplicative groups, can in principle be computed in very shallow circuit classes like NC1 or even TC0.
Their functions can be interpreted as “degree-k” (or k-argument) synthesizers for arbitrary k = poly(n),
which immediately yield k-bit PRFs without requiring any composition. With this in mind, a natural question
is whether there are direct LWE/LWR-based synthesizers of degree k > 2.

We give a positive answer to this question. Much like the functions of [NR97, NRR00], ours have a
subset-product structure. We have public moduli q � p, and the secret key is a set of k matrices Si ∈ Zn×nq

(whose distributions may not necessarily be uniform; see below) for i = 1, . . . , k, along with a uniformly
random a ∈ Znq .1 The function F = Fa,{Si} : {0, 1}k → Znp is defined as the “rounded subset-product”

Fa,{Si}(x1 · · ·xk) =

⌊
at ·

k∏
i=1

Sxii

⌉
p

. (1.4)

The ring variant is analogous, replacing a with uniform a ∈ Rq (or R∗q , the set of invertible elements)
and each Si by some si ∈ Rq. This function is particularly efficient to evaluate using the discrete Fourier
transform, as is standard with ring-based primitives (see,e.g., [LMPR08, LPR10]). In addition, similarly
to [NR97, NRR00], one can optimize the subset-product operation via pre-processing, and evaluate the
function in TC0. We elaborate on these optimizations in Section 5.2.

For the security analysis of construction (1.4), we have meaningful security proofs under various condi-
tions on the parameters and computational assumptions, including standard LWE. In our LWE-based proof,
two important issues are the distribution of the secret key components Si, and the choice of moduli q and p.

1To obtain longer function outputs, we can replace a ∈ Znq with a uniformly random matrix A ∈ Zn×mq for any m = poly(n).

5

Approved for Public Release; Distribution Unlimited.
117



For the former, it turns out that our proof needs the Si matrices to be short, i.e., their entries should be drawn
from the LWE error distribution. (LWE is no easier to solve for such short secrets [ACPS09].) This appears
to be an artifact of our proof technique, which can be viewed as a variant of our LWE-to-LWR reduction,
enhanced to handle adversarial queries. Summarizing the approach, define

G(x) = Ga,{Si}(x) := at ·
∏
i

Sxii

to be the subset-product function inside the rounding operation of (1.4). The fact that F = bGep lets us
imagine adding independent error terms to each distinct output of G, but only as part of a thought experiment
in the proof. More specifically, we consider a related randomized function G̃ = G̃a,{Si} : {0, 1}k → Znq
that computes the subset-product by multiplying by each Sxii in turn, but then also adds a fresh error term
immediately following each multiplication. Using the LWE assumption and induction on k, we can show that
the randomized function G̃ is itself pseudorandom (over Zq), hence so is bG̃ep (over Zp). Moreover, we show
that for every queried input, with high probability bG̃ep coincides with bGep = F , because G and G̃ differ
only by a cumulative error term that is small relative to q—this is where we need to assume that the entries of
Si are small. Finally, because bG̃ep is a (randomized) pseudorandom function over Zp that coincides with
the deterministic function F on all queries, we can conclude that F is pseudorandom as well.

In the above-described proof strategy, the gap between G and G̃ grows exponentially in k, because we
add a separate noise term following each multiplication by an Si, which gets enlarged when multiplied by
all the later Si. So in order to ensure that bG̃ep = bGep on all queries, our LWE-based proof needs both the
modulus q and inverse error rate 1/α to exceed nΩ(k). In terms of efficiency and security, this compares
rather unfavorably with the quasipolynomial nO(lg k) bound in the proof for our tree-based construction,
though on the positive side, the direct degree-k construction has better circuit depth. However, just as with
construction (1.3) it is unclear whether such strong assumptions and large parameters are actually necessary
for security, or whether the matrices Si really need to be short.

In particular, it would be nice if the function in (1.4) were secure if the Si matrices were uniformly
random over Zn×nq , because we could then recursively compose the function in a k-ary tree to rapidly extend
its input length.2 It would be even better to have a security proof for a smaller modulus q and inverse error rate
1/α, ideally both polynomial in n even for large k. While we have been unable to find such a security proof
under standard LWE, we do give a very tight proof under a new, interactive “related samples” LWE/LWR
assumption. Roughly speaking, the assumption says that LWE/LWR remains hard even when the sampled
ai vectors are related by adversarially chosen subset-products of up to k given random matrices (drawn
from some known distribution). This provides some evidence that the function may indeed be secure for
appropriately distributed Si, small modulus q, and large k. For further discussion, see Section 1.2.

PRFs via the GGM construction. The above constructions aim to minimize the depth of the circuit
evaluating the PRF. However, if parallel complexity is not a concern, and one wishes to minimize the
total amount of work per PRF evaluation (or the seed length), then the original GGM construction with an
LWR-based pseudorandom generator may turn out to be even more efficient in practice.

Recall that the GGM construction makes generic use of any length-doubling pseudorandom generator
G : {0, 1}n → {0, 1}2n. The generator’s output G(s) is viewed as a pair (G0(s), G1(s)), where |G0(s)| =
|G1(s)| = n. The key for a member of the PRF family is a seed s for G, and on input x ∈ {0, 1}k the

2Note that we can always compose the degree-k function with our degree-2 synthesizers from above, but this would only yield a
tree with 2-ary internal nodes.
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function is defined as
Fs(x1 · · ·xk) = Gxk(Gxk−1

(· · ·Gx1(s) · · · )). (1.5)

As mentioned above, the LWR problem immediately yields a simple and practical pseudorandom generator
that, in contrast to the generators obtained from the LWE or LPN problems, does not require extracting
biased random error terms from its input seed. By plugging this generator into the GGM construction
we immediately get a PRF whose evaluation involves precisely k sequential evaluations of the underlying
generator.

The LWR-based generator that we have in mind is a function GA : Znq → Zmp , where the moduli q � p
and the (uniformly random) matrix A ∈ Zn×mq are publicly known. Given a seed s ∈ Znq , the generator is
defined as

GA(s) =
⌊
At · s

⌉
p
. (1.6)

The generator’s seed length (in bits) is n log2 q and its output length is m log2 p, which gives an expansion
rate of (m log2 p)/(n log2 q) = (m/n) logq p. For example, to obtain a length-doubling generator we may
set q = p2 = 22k > n and m = 4n. (Other choices yielding different expansion rates are of course possible.)
This choice of parameters has the additional benefit of admitting a practical implementation of the rounding
and inner-product operations. Note also that when evaluating the resulting PRF, one can get the required part
of GA(s) by computing only the inner products of s with the corresponding columns of A, not the entire
product At · s.

For an even faster implementation one may replace GA by its analogous ring variant, obtained by
replacing A ∈ Zn×mq with uniform a ∈ Rmq , and s ∈ Znq with uniform s ∈ Rq. As noted before, the ring
variant is particularly efficient to evaluate using Fast Fourier Transform-like algorithms.

1.2 Discussion and Open Questions

The quasipolynomial nO(log k) or exponential nO(k) moduli and inverse error rates used in our LWE-based
security proofs are comparable to those used in recent fully homomorphic encryption (FHE) schemes
(e.g., [Gen09, vGHV10, BV11b, BV11a, BGV11]), hierarchical identity-based encryption (HIBE) schemes
(e.g., [CHKP10, ABB10a, ABB10b]), and other lattice-based constructions. However, there appears to be a
major difference between our use of such strong assumptions, and that of schemes such as FHE/HIBE in
the public-key setting. Constructions of the latter systems actually reveal LWE samples having very small
error rates (which are needed to ensure correctness of decryption) to the attacker, and the attacker can break
the cryptosystems by solving those instances. Therefore, the underlying assumptions and the true security
of the schemes are essentially equivalent. In contrast, our PRF uses (small) errors only as part of a thought
experiment in the security proof, not for any purpose in the operation of the function itself. This leaves open
the possibility that our functions (or slight variants) remain secure even for much larger input lengths and
smaller moduli than our proofs require. We conjecture that this is the case, even though we have not yet found
security proofs (under standard assumptions) for these more efficient parameters. Certainly, determining
whether there are effective cryptanalytic attacks is a very interesting and important research direction.

Note that in our construction (1.4), if we draw the secret key components from the uniform (or error)
distribution and allow k to be too large relative to q, then the function can become insecure via a simple
attack (and our new “interactive” LWR assumption, which yields a tight security proof, becomes false).
This is easiest to see for the ring-based function: representing each si ∈ Rq by its vector of “Fourier
coefficients” over Znq , each coefficient is 0 with probability about 1/q (depending on the precise distribution
of si). Therefore, with noticeable probability the product of k = O(q log n) random si will have all-0 Fourier
coefficients, i.e., will be 0 ∈ Rq. In this case our function will return zero on the all-1s input, in violation
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of the PRF requirement. (A similar but more complicated analysis can also be applied to the matrix-based
function.) Of course, an obvious countermeasure is just to restrict the secret key components to be invertible;
to our knowledge, this does not appear to have any drawback in terms of security. In fact, it is possible to
show that the decision-(ring-)LWE problem remains hard when the secret is restricted to be invertible (and
otherwise drawn from the uniform or error distribution), and this fact may be useful in further analysis of the
function with more efficient parameters.

In summary, our work raises several interesting concrete questions, including:

• Is LWRn,q,p really exponentially hard for p = poly(n) and sufficiently large integer q/p = poly(n)?
Are there stronger worst-case hardness guarantees than our current proof based on LWE?

• Is there a security proof for construction (1.4) (with k = ω(1)) for poly(n)-bounded moduli and
inverse error rates, under a non-interactive assumption?

• In construction (1.4), is there a security proof (under a non-interactive assumption) for uniformly
random Si? Is there any provable security advantage to using invertible Si?

• Our derandomization technique and LWR problem require working with moduli q greater than 2. Is
there an efficient, parallel PRF construction based on the learning parity with noise (LPN) problem?

1.3 Other Related Work

Most closely related to the techniques in this work are two very recent results of Brakerski and Vaikun-
tanathan [BV11a] and a follow-up work of Brakerski, Gentry, and Vaikuntanathan [BGV11] on fully homo-
morphic encryption from LWE. In particular, the former work includes a “modulus reduction” technique for
LWE-based cryptosystems, which maps a large-modulus ciphertext to a small-modulus one; this induces a
shallower decryption circuit and allows the system to be “bootstrapped” into a fully homomorphic scheme
using the techniques of [Gen09]. The modulus-reduction technique involves a rounding operation much like
the one we use to derandomize LWE; while they use it on ciphertexts that are already “noisy,” we apply it
to noise-free LWE samples. Our discovery of the rounding/derandomization technique in the PRF context
was independent of [BV11a]. In fact, the first PRF and security proof we found were for the direct degree-k
construction defined in (1.4), not the synthesizer-based construction in (1.3). As another point of comparison,
the “somewhat homomorphic” cryptosystem from [BV11a] that supports degree-k operations (along with all
prior ones, e.g., [Gen09, vGHV10]) involves an inverse error rate of nO(k), much like the LWE-based proof
for our degree-k synthesizer.

Building on the modulus reduction technique of [BV11a], Brakerski et al. [BGV11] showed that homo-
morphic cryptosystems can support certain degree-k functions using a much smaller modulus and inverse
error rate of nO(log k). The essential idea is to interleave the homomorphic operations with several “small”
modulus-reduction steps in a tree-like fashion, rather than performing all the homomorphic operations
followed by one “huge” modulus reduction. This very closely parallels the difference between our direct
degree-k synthesizer and the Naor-Reingold-like [NR95] composed synthesizer defined in (1.3). Indeed, after
we found construction (1.4), the result of [BGV11] inspired our search for a PRF having similar tree-like
structure and quasipolynomial error rates. Given our degree-2 synthesizer, the solution turned out to largely
be laid out in the work of [NR95]. We find it very interesting that the same quantitative phenomena arise in
two seemingly disparate settings (PRFs and FHE).
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1.4 Organization

The rest of the paper is organized as follows. In Section 2 we recall the necessary preliminaries regarding
PRFs and the (ring-)LWE problem. In Section 3 we introduce the “learning with rounding” (LWR) problem
and discuss its relationship with LWE. In Section 4 we describe LWR-based (degree-2) synthesizers and the
PRFs that follow from them. In Section 5 we describe our direct degree-k synthesizer/PRF and its security
proofs under the LWE and “subset-product” LWR problem.

2 Preliminaries

For a probability distribution X over a domain D, let Xn denote its n-fold product distribution over Dn.
The uniform distribution over a finite domain D is denoted by U(D). The discrete Gaussian probability
distribution over Z with parameter r > 0, denoted DZ,r, assigns probability proportional to exp(−πx2/r2)
to each x ∈ Z. It is possible to efficiently sample from this distribution (up to negl(n) statistical distance) via
rejection [GPV08].

For any integer modulus q ≥ 2, Zq denotes the quotient ring of integers modulo q. We define a ‘rounding’
function b·ep : Zq → Zp, where q ≥ p ≥ 2 will be apparent from the context, as

bxep = b(p/q) · x̄e mod p, (2.1)

where x̄ ∈ Z is any integer congruent to x mod q. We extend b·ep component-wise to vectors and matrices
over Zq, and coefficient-wise (with respect to the “power basis”) to the quotient ring Rq defined in the next
subsection. Note that we can use any other common rounding method, like the floor b·c, or ceiling d·e
functions, in Equation 2.1 above, with only minor changes to our proofs. In implementations, it may be
advantageous to use the floor function b·c when q and p are both powers of some common base b (e.g., 2). In
this setting, computing b·cp is equivalent to dropping the least-significant digit(s) in base b.

2.1 Pseudorandom Functions

The main security parameter through this paper is n, and all algorithms (including the adversary) are implicitly
given the security parameter n in unary. We write negl(n) to denote an arbitrary negligible function in n, one
that vanishes faster than the inverse of any polynomial. We say that a probability is overwhelming if it is
1− negl(n).

We consider adversaries interacting as part of probabilistic experiments called games. For an adversary
A and two games H0, H1 with which it can interact, A’s distinguishing advantage (implicitly, as a function
of n) is AdvH0,H1(A) := |Pr[A accepts in H0]− Pr[A accepts in H1]|.

Definition 2.1 (Computational Indistinguishability). We say that games H0, H1 are computationally indistin-
guishable, written H0

c
≈ H1, if AdvH0,H1(A) = negl(n) for any probabilistic polynomial-time A.

By the triangle inequality,
c
≈ is a transitive relation over any poly(n)-length sequence of games. If

H0
c
≈ H1 and S is any probabilistic polynomial-time algorithm, then the outputs of S playing in games H0

and H1 (respectively) are also computationally indistinguishable.

Definition 2.2 (Pseudorandom functions). Let A and B be finite sets, and let F = {Fi : A→ B} be a
function family, endowed with an efficiently sampleable distribution (more precisely, F , A and B are all
indexed by the security parameter n). We say thatF is a pseudorandom function (PRF) family if the following
two games are computationally indistinguishable:
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1. Choose a function F ← F and give the adversary adaptive oracle access to F (·).

2. Choose a uniformly random function U : A→ B and give the adversary adaptive oracle access to U(·).

To efficiently simulate access to a uniformly random function U : A → B, one may think of a process in
which the adversary’s queries are “lazily” answered with independently and randomly chosen elements in B,
while keeping track of the answers so that queries made more than once are answered consistently.

2.2 (Ring) Learning With Errors

We recall the learning with errors (LWE) problem due to Regev [Reg05] and its ring analogue by Lyuba-
shevsky, Peikert, and Regev [LPR10]. For positive integer dimension n (the security parameter) and modulus
q ≥ 2, a probability distribution χ over Z, and a vector s ∈ Znq , define the LWE distribution As,χ to be
the distribution over Znq × Zq obtained by choosing a vector a ← Znq uniformly at random, an error term
e ← χ, and outputting (a, b = 〈a, s〉 + e mod q). We use the following “normal form” of the decision-
LWEn,q,χ problem, which is to distinguish (with advantage non-negligible in n) between any desired number
m = poly(n) of independent samples (ai, bi) ← As,χ where s ← χn mod q is chosen from the (folded)
error distribution, and the same number of samples from the uniform distribution U(Znq × Zq). This form of
the problem is as hard as the one where s ∈ Znq is chosen uniformly at random [ACPS09].

We extend the LWE distribution to w ≥ 1 secrets, defining AS,χ for S ∈ Zn×wq to be the distribution
obtained by choosing a ← Znq , an error vector et ← χw, and outputting (a,bt = atS + et mod q). By a
standard hybrid argument, distinguishing such samples (for S← χn×w) from uniformly random is as hard
as decision-LWEn,q,χ, for any w = poly(n). It is often convenient to group many (say, m) sample pairs
together in matrices. This allows us to express the LWE problem as: distinguish any desired number of pairs
(At,Bt = AtS + E mod q) ∈ Zm×nq × Zm×wq , for the same S, from uniformly random.

For certain moduli q and (discrete) Gaussian error distributions χ, the decision-LWE problem is as hard
as the search problem, where the goal is to find s given samples from As,χ (see, e.g., [Reg05, Pei09, ACPS09,
MM11], and [MP11] for the mildest known requirements on q, which include the case where q is a power
of 2). In turn, for χ = DZ,r with r = αq ≥ 2

√
n, the search problem is as hard as approximating worst-case

lattice problems to within Õ(n/α) factors; see [Reg05, Pei09] for precise statements.3

Ring-LWE. For simplicity of exposition, we use the following special case of the ring-LWE problem. (Our
results can be extended to the more general form defined in [LPR10].) Throughout the paper we let R denote
the cyclotomic polynomial ring R = Z[z]/(zn+1) for n a power of 2. (Equivalently, R is the ring of integers
Z[ω] for ω = exp(πi/n).) For any integer modulus q, define the quotient ring Rq = R/qR. An element of
R can be represented as a polynomial (in z) of degree less than n having integer coefficients; in other words,
the “power basis” {1, z, . . . , zn−1} is a Z-basis for R. Similarly, it is a Zq-basis for Rq.

For a modulus q, a probability distribution χ over R, and an element s ∈ Rq, the ring-LWE (RLWE)
distribution As,χ is the distribution over Rq ×Rq obtained by choosing a ∈ Rq uniformly at random, an error
term x← χ, and outputting (a, b = a ·s+x mod qR). The normal form of the decision-RLWER,q,χ problem
is to distinguish (with non-negligible advantage) between any desired number m = poly(n) of independent
samples (ai, bi) ← As,χ where s ← χ mod q, and the same number of samples drawn from the uniform

3It is important to note that the original hardness result of [Reg05] for search-LWE is for a continuous Gaussian error distribution,
which when rounded naı̈vely to the nearest integer does not produce a true discrete Gaussian DZ,r . Fortunately, a suitable randomized
rounding method does so [Pei10].
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distribution U(Rq ×Rq). We will use the error distribution χ over R where each coefficient (with respect to
the power basis) is chosen independently from the discrete Gaussian DZ,r for some r = αq ≥ ω(

√
n log n).

For a prime modulus q = 1 mod 2n and the error distribution χ described above, the decision-RLWE
problem is as hard as the search problem, via a reduction that runs in time q · poly(n) [LPR10]. In turn, the
search problem is as hard as quantumly approximating worst-case problems on ideal lattices.4

To bound products of samples drawn from the error distribution χ over R, we recall a useful result
from [LPR10].

Lemma 2.3. Let χ be the distribution over the ring R where each coefficient (with respect to the power basis)
is chosen independently from DZ,r for some r > 0, and let t = ω(

√
log n) denote any function that grows

asymptotically faster than
√

log n. Then in the product of k ≥ 1 independent samples drawn from χ, every
coefficient is bounded in magnitude by (r

√
n · t)k/

√
n, except with exp(−Ω(t2)) = negl(n) probability.

2.3 Subgaussian Distributions and Random Matrices

A random variable X over R (or its distribution) with E[X] = 0 is subgaussian with parameter r > 0
if it has Gaussian tails, i.e., for all t > 0, Pr[|X| > t] ≤ 2 exp(−π(t/r)2).5 In particular, DZ,r is
subgaussian with parameter r [Ban95]. Here we recall a useful result from the non-asymptotic theory of
random matrices [Ver11], which bounds the largest singular value (sometimes called the spectral norm)
s1(X) := maxu6=0‖Xu‖/‖u‖ of a matrix with independent subgaussian entries.

Lemma 2.4. Let X ∈ Rn×m be a random matrix (or vector) whose entries are drawn independently from
(not necessarily identical) subgaussian distributions with common parameter r. There exists a universal
constant C > 0 such that s1(X) ≤ r · C(

√
m+

√
n) except with probability at most 2−Ω(m+n).

3 The Learning With Rounding Problem

We now define the “learning with rounding” (LWR) problem and its ring analogue, which are like “derandom-
ized” versions of the usual (ring)-LWE problems, in that the error terms are chosen deterministically.

Definition 3.1. Let n ≥ 1 be the main security parameter and moduli q ≥ p ≥ 2 be integers.

• For a vector s ∈ Znq , define the LWR distribution Ls to be the distribution over Znq × Zp obtained by
choosing a vector a← Znq uniformly at random, and outputting (a, b = b〈a, s〉ep).

• For s ∈ Rq (defined in Section 2.2), define the ring-LWR (RLWR) distribution Ls to be the distribution
over Rq ×Rp obtained by choosing a← Rq uniformly at random and outputting (a, b = ba · sep).

For a given distribution over s ∈ Znq (e.g., the uniform distribution), the decision-LWRn,q,p problem is
to distinguish (with advantage non-negligible in n) between any desired number of independent samples
(ai, bi) ← Ls, and the same number of samples drawn uniformly and independently from Znq × Zp. The
decision-RLWRR,q,p problem is defined analogously.

4More accurately, to prove that the search problem is hard for an a priori unbounded number of RLWE samples, the worst-case
connection from [LPR10] requires the error distribution’s parameters to themselves be chosen at random from a certain distribution.
Our constructions are easily modified to account for this subtlety, but for simplicity, we ignore this issue and assume hardness for a
fixed, public error distribution.

5This simple definition will suffice for our purposes, because we will always use mean-zero distributions. For a more general
definition that applies to any distribution, see [MP11].
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Note that we have defined LWR exclusively as a decision problem, as this is the only form of the problem
we will need. By a simple (and by now standard) hybrid argument, the (ring-)LWR problem is no easier,
up to a poly(n) factor in advantage, if we reuse each public ai across several independent secrets. That is,
distinguishing samples (ai, b〈ai, s1〉ep, . . . , b〈ai, s`〉ep) ∈ Znq × Z`p from uniform, where each sj ∈ Znq is
chosen independently for any ` = poly(n), is at least as hard as decision-LWR for a single secret s. An
analogous statement also holds for ring-LWR.

3.1 Reduction from LWE

We now show that for appropriate parameters, decision-LWR is at least as hard as decision-LWE. We say
that a probability distribution χ over R (more precisely, a family of distributions χn indexed by the security
parameter n) is B-bounded (where B = B(n) is a function of n) if Prx←χ[|x| > B] ≤ negl(n). Similarly, a
distribution over the ring R is B-bounded if the marginal distribution of every coefficient (with respect to the
power basis) of an x← χ is B-bounded.

Theorem 3.2. Let χ be any efficiently sampleable B-bounded distribution over Z, and let q ≥ p ·B · nω(1).
Then for any distribution over the secret s ∈ Znq , solving decision-LWRn,q,p is at least as hard as solving
decision-LWEn,q,χ for the same distribution over s. The same holds true for RLWRR,q,p and RLWER,q,χ, for
any B-bounded χ over R.

We note that although our proof uses a super-polynomial q = nω(1), as long as q/p ≥
√
n is an integer,

the LWR problem appears to be exponentially hard (in n) for any p = poly(n), and super-polynomially hard
for p ≤ 2n

ε
for any ε < 1, given the state of the art in noisy learning algorithms [BKW03, AG11] and lattice

reduction algorithms [LLL82, Sch87]. We also note that in our proof, we do not require the error terms drawn
from χ in the LWE samples to be independent; we just need them all to have magnitude bounded by B with
overwhelming probability.

Proof of Theorem 3.2. We give a detailed proof for the LWR case; the one for RLWR proceeds essentially
identically. The main idea behind the reduction is simple: given pairs (ai, bi) ∈ Znq × Zq which are
distributed either according to an LWE distribution As,χ or are uniformly random, we translate them into
the pairs (ai, bbiep) ∈ Znq × Zp, which we show will be distributed according to the LWR distribution Ls

(with overwhelming probability) or uniformly random, respectively. Proving this formally takes some care,
however. We proceed via a sequence of games.

Game H0. This is the real attack game against the LWR distribution. That is, we choose s and upon request
generate and give the attacker independent samples from Ls.

Game H1. Here the attack is against a ‘rounded’ version of the LWE distribution As,χ. That is, we first
choose s. Then each time the attacker requests a sample, we generate a pair (a, b) distributed according to
As,χ (that is, choose a ← Znq and b = 〈a, s〉 + x for x ← χ), and return the pair (a, bbep), but with one
exception: we define a ‘bad event’ BAD to be

BAD := bb+ [−B,B]ep 6= {bbep} .

That is, BAD indicates whether b is “too close” to some value in Zq having a different rounded value. (In
other words, rounding the sample (a, b) from As,χ may give a different result than the corresponding sample

12

Approved for Public Release; Distribution Unlimited. 
124 



(a, b〈a, s〉ep) from the Ls distribution.) If BAD occurs on any of the attacker’s requests for a sample, we
immediately abort the game.

If BAD does not occur for a particular sample (a, b), then we have bbep := b〈a, s〉+ xep = b〈a, s〉ep
with overwhelming probability over the choice of x← χ, because χ is B-bounded. It immediately follows
that for any (potentially unbounded) attacker A,

AdvH0,H1(A) ≤ Pr[BAD occurs in H1 with attacker A] + negl(n). (3.1)

We do not directly bound the probability of BAD occurring in H1, instead deferring it to the analysis of the
next game, where we can show that it is indeed negligible.

Game H2. Here whenever the attacker requests a sample, we choose (a, b) ∈ Znq ×Zq uniformly at random
and give (a, bbep) to the attacker, subject to the same “bad event” and abort condition as described in the
game H1 above. Under the decision-LWE assumption and by the fact that BAD can be tested efficiently
given b, a straightforward reduction implies that AdvH1,H2(A) ≤ negl(n) for any efficient attacker A. For
the same reason, it also follows that

|Pr[BAD occurs in H1]− Pr[BAD occurs in H2]| ≤ negl(n).

Now for each uniform b, Pr[BAD occurs on b in H2] ≤ (2B + 1) · p/q = negl(n), by assumption on q. It
follows by a union bound over all the samples, and Equation (3.1), that

Pr[BAD occurs in H1 with A] ≤ negl(n) ⇒ AdvH0,H1(A) = negl(n).

Game H3. This game is similar to the game H2, with pairs (a, b) ∈ Znq × Zq being chosen uniformly at
random and BAD being defined similarly. However, in this game we always return (a, bbep) to the attacker,
even when BAD occurs. By the analysis above, we have that for any (potentially unbounded) attacker A,

AdvH2,H3(A) ≤ Pr[BAD occurs in H3 with A] = Pr[BAD occurs in H2 with A] = negl(n).

Game H4. In this game we give the attacker samples drawn uniformly from Znq × Zp. The statistical
distance between U(Znq × Zp) and U(Znq )× bU(Zq)ep is at most p/q = negl(n) by assumption on q, so by
a union bound over all the poly(n) samples, we have AdvH3,H4(A) = negl(n) for any efficient attacker A.

Finally, by the triangle inequality, we have AdvH0,H4(A) = negl(n) for any efficient adversary A,
which completes the proof. Essentially the same proof works for the RLWR problem as well.

4 Synthesizer-Based PRFs

We now describe the LWR-based synthesizer and our construction of a PRF from it. We first define a
pseudorandom synthesizer, slightly modified from the definition proposed by Naor and Reingold [NR95].

Let S : A×A→ B be a function (where A and B are finite domains, which along with S are implicitly
indexed by the security parameter n) and let X = (x1, . . . , xk) ∈ Ak and Y = (y1, . . . , y`) ∈ A` be two
sequences of inputs. Then CS(X,Y ) ∈ Bk×` is defined to be the matrix with S(xi, yj) as its (i, j)th entry.
(Here C stands for combinations.)
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Definition 4.1 (Pseudorandom Synthesizer). We say that a function S : A × A → B is a pseudorandom
synthesizer if it is polynomial-time computable, and if for every poly(n)-bounded k = k(n), ` = `(n),

CS

(
U(Ak) , U(A`)

) c
≈ U

(
Bk×`).

That is, the matrix CS(X,Y ) for uniform and independent X ← Ak, Y ← A` is computationally indistin-
guishable from a uniformly random k-by-` matrix over B.

4.1 Synthesizer Constructions

We now describe synthesizers whose security is based on the (ring-)LWR problem.

Definition 4.2 ((Ring-)LWR Synthesizer). For moduli q > p ≥ 2, the LWR synthesizer is the function
Sn,q,p : Znq × Znq → Zp defined as

Sn,q,p(x,y) = b〈x,y〉ep.

The RLWR synthesizer is the function SR,q,p : Rq ×Rq → Rp defined as

SR,q,p(x, y) = bx · yep.

Theorem 4.3. Assuming the hardness of decision-LWRn,q,p (respectively, decision-RLWRR,q,p) for a uni-
formly random secret, the function Sn,q,p (respectively, SR,q,p) given in Definition 4.2 above is a pseudoran-
dom synthesizer.

It follows generically from this theorem that the function Tn,q,p : Zn×nq × Zn×nq → Zn×np , defined as
Tn,q,p(X,Y) = bX ·Yep, is also a pseudorandom synthesizer, since by the definition of matrix multiplica-
tion, we only incur a factor of n increase in the length of the input sequences. This is the synthesizer that we
use below in the construction of a PRF.

Proof of Theorem 4.3. Let `, k = poly(n) be arbitrary. Let X = (x1, . . . ,xk) and Y = (y1, . . . ,y`) be
uniformly random and independent sequences of Znq -vectors. Assuming the hardness of “multiple secrets”
version of decision-LWRn,q,p (see the remark following Definition 3.1), we have that the tuples(

xi, b〈xi,y1〉ep, . . . , b〈xi,y`〉ep
)
∈ Znq × Z`p

for i = 1, . . . , k are computationally indistinguishable from uniform and independent. That is,(
(xi)i∈[k],CS(X,Y )

) c
≈ U(Zn×kq × Zk×`p ).

From this stronger fact, we have that CS(X,Y )
c
≈ U(Zk×`p ), as desired. Essentially the same proof works

for the RLWR synthesizer as well.

4.2 The PRF Construction

Definition 4.4 ((Ring-)LWR PRF). For parameters n ∈ N, input length k = 2d ≥ 1, and moduli qd ≥
qd−1 ≥ . . . ≥ q0 ≥ 2, the LWR family F (j) for 0 ≤ j ≤ d is defined inductively to consist of functions from
{0, 1}2j to Zn×nqd−j

. We define F = F (d).

• For j = 0, a function F ∈ F (0) is indexed by Sb ∈ Zn×nqd
for b ∈ {0, 1}, and is defined simply as

F{Sb}(x) = Sx. We endow F (0) with the distribution where the Sb are uniform and independent.
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• For j ≥ 1, a function F ∈ F (j) is indexed by some F0, F1 ∈ F (j−1), and is defined as

FF0,F1(x0, x1) = T (j)
(
F0(x0) , F1(x1)

)
where |x0| = |x1| = 2j−1 and T (j) = Tn,qd−j+1,qd−j is the appropriate synthesizer. We endow F (j)

with the distribution where F0 and F1 are chosen independently from F (j−1).

More explicitly, F ∈ F is indexed by a set of matrices {Si,b} (where i ∈ [k], b ∈ {0, 1}), and for input
x = x1 · · ·xk is defined as

F{Si,b}(x) =

⌊
· · ·
⌊
bS1,x1 · S2,x2eqd−1

· bS3,x3 · S4,x4eqd−1

⌉
qd−2

· · ·
⌊
Sk−1,xk−1

· Sk,xk
⌉
qd−1
· · ·
⌉
q0

.

The ring-LWR familyRF (j) is defined similarly to consist of functions from {0, 1}2j to Rqd−j , where
in the base case (j = 0) we replace each Sb with a uniformly random sb ∈ Rqd , and in the inductive case
(j ≥ 1) we use the ring-LWR synthesizer S(j) = SR,qd−j+1,qd−j .

S1,0 S1,1 S2,0 S2,1 Sk,0 Sk,1S3,0 S3,1 S4,0 S4,1

Tn,qd,qd−1
Tn,qd,qd−1

Tn,qd,qd−1

Tn,qd−1,qd−2

Tn,q1,q0

Figure 1: The synthesizer-based PRF evaluated on the input 0111 . . . 0

We remark that the recursive LWR-based construction above does not have to use square matrices; any
legal dimensions would be acceptable with no essential change to the security proof. Square matrices appear
to give the best combination of seed size, computational efficiency, and input/output lengths.

4.3 Efficiency

Consider a function in either one of the families F orRF from Definition 4.4. Computing the function at
any given point x ∈ {0, 1}k can be done in a tree-like fashion using a tree of depth d = lg k, where each
node of the tree corresponds to an evaluation of an appropriate synthesizer. Each synthesizer involves a single
matrix (or ring) product mod qd−j+1, followed by a rounding step. Here we discuss implementations of the
synthesizers, describing both the simplest practical methods along with depth-optimized parallel solutions
(which rely on preprocessing and use larger circuits). In summary, the synthesizers can be computed by
small, low-depth arithmetic circuits; moreover, in principle they can be implemented in TC0, the class of
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constant-depth, poly(n)-sized circuits with unbounded fan-in and threshold gates (which is a subset of NC1).
Therefore, the PRFs can be implemented in TC1, which matches the best constructions from [NR95].

In a practical sequential implementation, we can use any fast matrix multiplication algorithm (e.g.,
Strassen’s), and we can multiply ring elements (in the standard power basis) in O(n log n) scalar operations
mod q (see, e.g., [LPR10]). In a practical parallel implementation, we can compute a matrix multiplication in
the natural way using a size-O(n2), depth-2 arithmetic circuit over Zq, where the first layer of multiplication
gates have fan-in 2 and the second layer of addition gates has fan-in n. The same is true for a product of ring
elements in Rq, since it can be expressed as a matrix-vector product: multiplication by any fixed element
a ∈ Rq is a linear transformation.

For computing a synthesizer Tn,q,p in TC0, we note that a matrix product consists of n2 parallel inner
products of n-dimensional vectors, which each involve a multi-sum of (binary) scalar products modulo q.
The subsequent rounding step simply amounts to dropping some of the least-significant digits if q and p are
both powers of the same small base, or more generally, multiplying by p/q (under suitable precision) and
truncating. Both operations can be performed in TC0, for any q = 2poly(n) [RT92].

Interestingly, once we allow for threshold gates, there seems to be no asymptotic improvement in depth
for the ring-based synthesizer SR,q,p. This is because threshold circuits enable binary matrix product to be
computed in constant depth, and the depth of computing the PRF is anyway dominated by d, the depth of the
tree. The gains in efficiency obtained by using a ring-based construction will be much more pronounced in
the case of the degree-k synthesizers described in Section 5. We discuss these gains in detail in Section 5.2.

We remark that Naor and Reingold [NR95] describe several nice optimizations and additional features of
their synthesizer-based PRFs, including compression of the secret key and faster amortized computation for a
sequence of related inputs. Our functions are amenable to all these techniques as well.

4.4 Security Proof

The security proof for our PRF hinges on the fact that the functions T (j) = Tn,qd−j+1,qd−j are synthesizers for
appropriate choices of the moduli. In fact, the proof is essentially identical to Naor and Reingold’s [NR95]
for their PRF construction from pseudorandom synthesizers; the only reason we cannot use their theorem
exactly as stated is because they assume that the synthesizer output is exactly the same size as its two inputs,
which is not quite the case with our synthesizer due to the modulus reduction. This is a minor detail that does
not change the proof in any material way; it only limits the number of times we may compose the synthesizer,
and hence the input length of the PRF.

Theorem 4.5. Assuming that T (j) = Tn,qd−j+1,qd−j is a pseudorandom synthesizer for every j ∈ [d] (in
particular, assuming the hardness of decision-LWRn,qd−j+1,qd−j ), the LWR family F from Definition 4.4 is a
pseudorandom function family.

The same holds for the ring-LWR familyRF , assuming that S(j) = SR,qd−j+1,qd−j is a pseudorandom
synthesizer for every j ∈ [d] (in particular, assuming the hardness of decision-RLWRR,qd−j+1,qd−j ).

Proof. We give a detailed proof for the family F ; the one forRF proceeds essentially identically. We prove
that each F (j) is a pseudorandom function family by induction for j = 0, . . . , d. The case j = 0 is trivial by
construction of F (0). Assuming the inductive hypothesis on F (j−1) for some j ≥ 1, we prove the claim for
F (j) via the following series of games.

Game H0. This is the PRF attack game against F (j): we choose an F ← F (j), i.e., choose F0, F1 ←
F (j−1) independently, and give the attacker oracle access to FF0,F1(x0, x1) = T (j)(F0(x0), F1(x1)), where
as always |x0| = |x1| = 2j−1.
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Game H1. We replace F0, F1 above with truly uniform functions. Specifically, we (lazily) choose two
uniform and independent functions U0, U1 : {0, 1}2j−1 → Zn×nqd−j+1

. On each query x = (x0, x1) ∈ {0, 1}2j ,
we return T (j)(U0(x0), U1(x1)). By a trivial reduction using the inductive hypothesis that F (j−1) is a
PRF family (so F0, F1 are computationally indistinguishable from U0, U1 given query access), this game is
computationally indistinguishable from H0.

Game H2. We give the attacker oracle access to a (lazily defined) uniform function U : {0, 1}2j → Zn×nqd−j
.

We claim that games H0 and H1 are computationally indistinguishable, because T (j) is a synthesizer
by hypothesis. Suppose that an efficient adversary A makes at most Q = poly(n) total queries. We design
an efficient simulator S which, given input (Zi,j)i,j∈[Q] ∈ (Zn×nqd−j

)Q×Q where either Zi,j = T (j)(Xi,Yj)

for some uniformly random and independent Xi,Yj ∈ Zn×nqd−j+1
for i, j ∈ [Q], or each Zi,j is uniformly

random and independent, simulates game H1 or H2, respectively. Because the two types of inputs to S are
computationally indistinguishable by assumption on T (j) (and S is efficient), it follows that games H1 and
H2 are indistinguishable as well.
S works as follows: starting from i = j = 1, on each query x = (x0, x1) ∈ {0, 1}2j from A, look up

whether x0 (respectively, x1) is already associated with an index ı̂ (resp., ̂); if not, associate it with the
current value of i (resp., j) and increment that variable. Return the associated matrix Zı̂,̂ to A. It is clear by
inspection that the behavior of S is as claimed above.

We conclude that game H0 is computationally indistinguishable from game H2, i.e., that F (j) is a
pseudorandom function family, as desired.

5 Direct PRF Constructions

Here we present another, potentially more efficient construction of a pseudorandom function family whose
security is based on the intractibility of the LWE problem.

5.1 Constructions

Definition 5.1 ((Ring-)LWE degree-k PRF). For parameters n ∈ N, moduli q ≥ p ≥ 2, positive integer
m = poly(n), and input length k ≥ 1, the family F consists of functions from {0, 1}k to Zm×np . A function
F ∈ F is indexed by some A ∈ Zn×mq and Si ∈ Zn×n for each i ∈ [k], and is defined as

F (x) = FA,{Si}(x1 · · ·xk) :=

⌊
At ·

k∏
i=1

Sxii

⌉
p

. (5.1)

We endow F with the distribution where A is chosen uniformly at random, and below we consider a number
of natural distributions for the Si.

The ring-based family RF is defined similarly to consist of functions from {0, 1}k to Rp, where we
replace A with uniformly random a ∈ Rq and each Si with some si ∈ R.

5.2 Efficiency

Consider a function F ∈ F as in Definition 5.1. Computing the function involves a subset-product of
matrices. Generally speaking, matrix multi-product does not appear to be computable in TC0 (if it were, then
TC0 would equal NC1 [MP00]). However, in our case the matrices are known in advance (the variable input
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is the subset, so it may be possible to reduce the depth of the computation via preprocessing, using ideas
from [RT92]. As described in Section 4.3, both binary matrix product and rounding can be implemented with
simple depth-2 arithmetic circuits, and hence in TC0, so at worst F can be computed in TC1 by computing
the subset product in a tree-like fashion, followed by a final rounding step.

The ring variant of Construction 5.1 appears to be more efficient to evaluate, both in practice and in
terms of the best theoretical depth. Consider a function F ∈ RF as in Definition 5.1. As is standard
with ring-based primitives (see, e.g., [LMPR08, LPR10]), one could store the ring elements a, s1, . . . , sk as
vectors in Znq using the discrete Fourier transform or “Chinese remainder” representation modulo q (that is, by
evaluating a and the si as polynomials at the n roots of zn + 1 modulo q), so that multiplication of two ring
elements just corresponds to a coordinate-wise product of their vectors. Then to evaluate the function, one
would just compute a subset-product of the appropriate vectors, then interpolate the result to the power-basis
representation, using essentially an n-dimensional Fast Fourier Transform over Zq, in order to perform
the rounding operation. For the interesting case of k = ω(log n), the sequential runtime of this method is
dominated by the kn scalar multiplications in Zq to compute the subset-product; in parallel, the arithmetic
depth (over Zq) is O(log(nk)). Alternatively, the subset-product part of the function might be computed even
faster by storing the discrete logs, with respect to some arbitrary generator g of Z∗q , of the Fourier coefficients
of a and si.6 The subset-product then becomes a subset-sum, followed by exponentiation modulo q, or even
just a table lookup if q is relatively small. Assuming that additions mod q − 1 are significantly less expensive
than multiplications mod q, the sequential runtime of this method is dominated by the O(n log n) scalar
operations in the FFT, and the parallel arithmetic depth is again O(log n).

In terms of theoretical depth, the multi-product of vectors can be performed in TC0, as can the Fast Fourier
Transform and rounding steps [RT92]. This implies that the entire function can be computed in TC0, matching
(asymptotically) the shallowest known PRFs based on the DDH and factoring problems [NR97, NRR00].

5.3 Security Proof Under LWE

Our first theorem says that when the entries of the Si are “small,” i.e., chosen from a suitable LWE error
distribution, the degree-k construction is a PRF under a suitable LWE assumption.

Theorem 5.2. Let χ = DZ,r for some r > 0, and let q ≥ p · k(Cr
√
n)k · nω(1) for a suitable universal con-

stant C. Endow the family F from Definition 5.2 with the distribution where each Si is drawn independently
from χn×n. Then assuming the hardness of decision-LWEn,q,χ, the family F is pseudorandom.

An analogous theorem holds for the ring-based familyRF , under decision-RLWE.

Theorem 5.3. Let χ be the distribution over the ring R where each coefficient (with respect to the power
basis) is chosen independently from DZ,r for some r > 0, and let q ≥ p · k(r

√
n · ω(

√
log n))k · nω(1).

Endow the familyRF from Definition 5.2 with the distribution where each si is drawn independently from χ.
Then assuming the hardness of decision-RLWEn,q,χ, the familyRF is pseudorandom.

We first prove Theorem 5.2 for the standard LWE construction.

Proof of Theorem 5.2. To aid the proof, it helps to define a family G of functionsG : {0, 1}k → Zn×nq , which
are simply the unrounded counterparts of the functions in F . That is, for A ∈ Zn×mq and Si ∈ Zn×n for
i ∈ [k], we define GA,{Si}(x1 · · ·xk) := At ·

∏k
i=1 S

xi
i . We endow G with the same distribution over A and

the Si as F has.
6If necessary, one would also store binary mask vectors indicating which Fourier coefficients are zero, and hence not in Z∗q .
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We proceed via a sequence of games, much like in the proof of Theorem 3.2. First as a “thought
experiment” we define a new family G̃ of functions from {0, 1}k to Zm×nq . This family is a counterpart to G,
but with two important differences: it is a PRF family without any rounding (and hence, with rounding as
well), but each function in the family has an exponentially large key. Alternatively, one may think of the
functions in G̃ as randomized functions with small keys. Then we show that with overwhelming probability,
the rounding of G̃← G̃ agrees with the rounding of the corresponding G ∈ G on all the attacker’s queries,
because the outputs of the two functions are relatively close. It follows that the rounding of G ← G (i.e.,
F ← F) cannot be distinguished from a uniformly random function, as desired.

More formally, we define the following games:

GameH0. This is the real PRF attack game against the familyF : we choose an F ← F (so F (·) = bG(·)ep
for G← G), and the attacker has oracle access to F (·).

GameH1. Here we instead choose G̃← G̃, where the family G̃ is given in Definition 5.4 below. The choice
of G̃ induces a corresponding G ∈ G having the same distribution as in H0. (This is simply because the key
of G is just a portion of the key of G̃.) To be precise, we choose G̃ “lazily” as the attacker makes queries,
because the description of G̃ has exponential size; see the remarks following Definition 5.4 for details.

The attacker has oracle access to bG̃(·)ep, but with one exception: on query x, define the “bad event”
BADx for that query to be ⌊

G̃(x) + [−B,B]m×n
⌉
p
6= {bG̃(x)ep},

where B = k(Cr
√
n)k. That is, BADx indicates whether any entry of G̃(x) ∈ Zm×nq is “too close” to

another element of Zq that rounds to a different value in Zp. Note that a y ∈ Zq is “too close” in this sense if
and only if b(ȳ −B) · pq e 6= b(ȳ +B) · pq e ∈ Z, where ȳ ∈ Z is any integer congruent to y mod q, so BADx

can be efficiently detected given only the value of G̃(x). If BADx occurs any of the attacker’s queries, then
the game immediately aborts.

In Lemma 5.5 below, we show that for every fixed x ∈ {0, 1}k, with overwhelming probability over the
choice of G̃ ← G̃ and the induced G ∈ G, it is the case that G(x) ∈ G̃(x) + [−B,B]m×n mod q. Hence
bG(x)ep = bG̃(x)ep so long as BADx does not occur, and the attacker’s queries are answered exactly as they
are in H0, subject to the game not aborting. It follows that for any (potentially unbounded) attacker A,

AdvH0,H1(A) ≤ Pr[some BADx occurs in H1 with attacker A] + negl(n). (5.2)

We do not directly bound the probability that some BADx occurs in H1, but instead defer to the analysis of
the next game, where we can show that it is indeed negligible.

Game H2. Here we choose U to be a uniformly random function from {0, 1}k to Zm×nq (defined “lazily”
as the attacker makes queries). The attacker has oracle access to bU(·)ep, with the same “bad event” and
abort condition as in H1, but defined relative to U instead of G̃.

In Theorem 5.6 below, we show that under the LWE assumption from the theorem statement, no efficient
adversary can distinguish (given oracle access) between G̃← G̃ and a uniformly random function U . Because
the BADx event in H1 (respectively, H2) for a query x can be tested efficiently given query access to G̃
(resp., U ), a trivial simulation implies that for any efficient attacker A, we have AdvH1,H2(A) ≤ negl(n).
For the same reasons, it also follows by a straightforward simulation that for any efficient attacker A,

|Pr[some BADx occurs in H1 with A]− Pr[some BADx occurs in H2 with A]| ≤ negl(n).
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In H2, because U is a uniformly random function, for any particular query x the probability that BADx
occurs is bounded by (2B + 1) · p/q = negl(n), by assumption on q. By a union bound over all poly(n)
queries of an efficient A, and then applying Equation (5.2), we therefore have that

Pr[some BADx occurs in H1 with A] = negl(n) ⇒ AdvH0,H1(A) = negl(n).

Game H3. Here we still choose a uniformly random function U and give the attacker oracle access to
bU(·)ep. For each query x we define the event BADx as in game H2, but still answer the query and continue
with the game even if BADx occurs. From the above analysis of H2 it follows that for any (potentially
unbounded) attacker A making poly(n) queries, we have

AdvH2,H3(A) ≤ Pr[some BADx occurs in H2 with A] = negl(n).

Finally, observe that bU(·)ep is a truly random function from {0, 1}k to Zm×np , up to the bias involved in
rounding the uniform distribution on Zq to Zp. Because q ≥ p · nω(1), this bias is negligible (and there is no
bias if p divides q).

By the triangle inequality, it follows that for any efficient A, we have AdvH0,H3(A) = negl(n), and this
completes the proof.

We now define the family G̃ used in the proof of Theorem 5.2.

Definition 5.4. For parameters n, q,m, k and error distribution χ (over Z) as in Definition 5.1, the family G̃(i)

for 0 ≤ i ≤ k is defined inductively to consist of functions from {0, 1}i to Zm×nq ; we define G̃ = G̃(k).

• For i = 0, a function G̃ ∈ G̃(0) is indexed by some A ∈ Zm×nq , and is defined simply as G̃A(ε) = At.
We endow G̃(0) with the distribution where A is chosen uniformly at random.

• For i ≥ 1, a function G̃ ∈ G̃(i) is indexed by some G̃′ ∈ G̃(i−1), plus an Si ∈ Zn×n and error
matrices Ex′ ∈ Zm×n for each x′ ∈ {0, 1}i−1 (where {0, 1}0 is the singleton set {ε}). For x =
(x′, xi) ∈ {0, 1}i where |x′| = i− 1, the function is defined as

G̃(x) = G̃G̃′,Si,{Ex′}
(x′, xi) := G̃′(x′) · Sxii + xi ·Ex′ mod q.

We endow G̃(i) with the distribution where G̃′ ← G̃(i−1), and all the entries of Si and every Ex′ are
chosen independently from χ.

Note that a function G̃ ∈ G̃ is fully specified by A, {Si}i∈[k], and exponentially (in k) many error
matrices Ex1···xi−1 for all x ∈ {0, 1}k and i ∈ [k]; these error matrices are what prevents G̃ itself from being
used as a PRF family. However, as needed in the proof of Theorem 5.2 (game H1), the error matrices can be
chosen “lazily,” since the value of G̃(x) depends only on A, {Si}, and Ex1···xi−1 for i ∈ [k]. For a function
G̃ = G̃A,{Si},{Ex′} ∈ G̃, we define its induced function in the family G to be G = GA,{Si}. Note that for
G̃← G̃, the induced function G has the same marginal distribution as if it had been chosen from G directly.

The following lemma is used in the analysis of game H1.

Lemma 5.5. Let x ∈ {0, 1}k be arbitrary. Then except with 2−Ω(n) probability over the choice of G̃ =
G̃A,{Si},{Ex′} ← G̃ and its induced function G = GA,{Si} ∈ G, we have

G(x) ∈ G̃(x) + [−B,B]m×n mod q

for some B = k · (Cr
√
n)k, where C is a universal constant.
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Proof. Observe that

G̃(x1 · · ·xk) = (· · · ((At · Sx11 + x1 ·Eε) · Sx22 + x2 ·Ex1) · · · ) · Sxkk + xk ·Ex1···xk−1
mod q

= At ·
k∏
i=1

Sxii︸ ︷︷ ︸
G(x)

+ x1 ·Eε ·
k∏
i=2

Sxii + x2 ·Ex1 ·
k∏
i=3

Sxii + · · ·+ xk ·Ex1···xk−1
mod q.

Now by Lemma 2.4, except with probability 2−Ω(n), for every i ∈ [k] we have s1(Si) ≤ O(r
√
n) and

‖e‖ ≤ O(r
√
n) for every row e of the error matrices Ex1···xi−1 . Therefore, each row of the k cumulative

error matrices Ex1···xi−1 ·
∏k
j=i+1 S

xj
j (for i ∈ [k]) has Euclidean length at most O(r

√
n)k, and so its entries

are bounded by the same quantity in magnitude. The claim follows.

Theorem 5.6. Under the LWE assumption from the statement of Theorem 5.2, the family G̃ of functions from
{0, 1}k to Zm×nq is pseudorandom.

In the proof we will need the following intermediate function families.

Definition 5.7. For n, q, m, and χ as in Definition 5.1, and an integer i ≥ 1, the family H(i) consists of
functions from {0, 1}i to Zm×nq . A function H from the family is indexed by some Si ∈ Zn×n and matrices
Ax′ ∈ Zn×mq ,Ex′ ∈ Zm×n for each x′ ∈ {0, 1}i−1 (where {0, 1}0 = {ε}). It is defined as

H(x) = HSi,{Ax′},{Ex′}(x
′, xi) := At

x′ · S
xi
i + xi ·Ex′ mod q,

where |x′| = i− 1. We endowH with the distribution where each Ax′ is uniformly random and independent,
and all the entries of Si and Ex′ are chosen independently from χ. We remark that an H ← H(i) can be
chosen “lazily” in the natural way.

Proof of Theorem 5.6. We prove that each family G̃(i) is pseudorandom by induction on i, from 0 to k. The
base case of i = 0 is trivial by construction. For i ≥ 1, we prove the claim by the following series of games.

Game H0. We (lazily) choose a G̃← G̃(i) and give the attacker oracle access to G̃(·).

Game H1. We (lazily) choose an H ← H(i) (defined above) and give the attacker oracle access to H(·).
We claim that H0

c
≈ H1 under the inductive hypothesis that G̃(i−1) is a PRF family. To prove this, we

design an efficient simulator S that is given oracle access to a function F : {0, 1}i−1 → Zm×nq , where F is
either G̃′ ← G̃(i−1) or a uniformly random function, and S emulates either game H0 or H1 (respectively) to
an attacker. The simulator S first chooses an Si ← χn×n, and on each query x = (x′, xi) from the attacker
where |x′| = i− 1, S queries its oracle to get At

x′ = F (x′), chooses an Ex′ ← χm×n (if it has not already
been defined by a previous query), and returns At

x′ ·S
xi
i +xi ·Ex′ to the attacker. It is clear by the definitions

of G̃(i) and H(i) that if F is some G̃′ ← G̃(i−1), then S emulates access to G̃G̃′,Si,{Ex′} ∈ G̃
(i) with the

appropriate distribution, whereas if F is a uniformly random function, then S emulates access to H ← H(i).
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Game H2. We (lazily) choose a uniformly random function U : {0, 1}i → Zm×nq and give the attacker
oracle access to U(·).

We claim that H1
c
≈ H2 under the decision-LWE assumption from Theorem 5.2. To prove this, we

design an efficient simulator S that is given access to an oracle O that outputs arbitrarily many pairs
(At,Bt) ∈ Zm×nq × Zm×nq , drawn either as a group of samples (At,Bt = AtS + E mod q) from the LWE
distribution AS,χ (for the same S ← χn×n) or from the uniform distribution, and S emulates either game
H1 or H2 (respectively) to an attacker. Under the decision-LWE assumption, this will establish the claim.
The simulator S answers queries x = (x′, xi) where |x′| = i− 1 in the following way: if x′ has never been
queried before, then it draws a new sample (At

x′ ,B
t
x′) from O and stores it, otherwise it looks up the already

stored (At
x′ ,B

t
x′). It then returns At

x′ if xi = 0, and Bt
x′ if xi = 1. It is clear by inspection and the definition

ofH(i) that S has the claimed behavior given the two types of oracles O.
By the triangle inequality, we have H0

c
≈ H2, i.e., G̃(i) is a pseudorandom function family.

We now analyze the ring-LWE construction.

Proof sketch for Theorem 5.3. The proof proceeds almost identically to the proof of Theorem 5.2, so we only
outline the few small differences. We define the function familiesRG andRG̃ in exactly the same fashion as
the families G and G̃, respectively, with a ∈ Rq, si ∈ R and ex′ ∈ R substituting A, Si and Ex′ respectively.
In the games, the bad event BADx occurs if any coefficient of RG̃(x) ∈ Rq (for RG̃← RG̃) is “too close”
to another element in Zq having a different rounded value, where “too close” is defined using the interval
[−B,B] for B = k(r

√
n · ω(

√
log n))k/

√
n. For this bound B, the analogue of Lemma 5.5 (which bounds

the cumulative error terms, i.e., the difference RG̃(x) − RG(x)) follows immediately from Lemma 2.3.
Finally, pseudorandomness of the familyRG̃ follows analogously to the proof of Theorem 5.6, via families
RH(i) defined similarly toH(i).

Remark 5.8. By almost identical proofs, a similar subset-product-like construction

FA,{Si,b}(x1 · · ·xk) =

⌊
At ·

k∏
i=1

Si,xi

⌉
p

, (5.3)

for uniform A ∈ Zn×mq and matrices Si,b ∈ Zn×n (for i ∈ [k], b ∈ {0, 1}), and the analogous function
in the ring setting, are also PRF families for the same parameters and distributions as in Theorem 5.2 and
Theorem 5.3. (These functions are analogous to the factoring-based PRF of [NRR00].) While the secret keys
are about twice as large as their counterparts’ from Definition 5.1, these functions are more “symmetric,”
which may be important in practice (e.g., to prevent timing attacks).

5.4 Security Proof Under Interactive LWR

We now present an “interactive” LWR assumption and prove that under this assumption, the degree-k
construction from Definition 5.1 is a PRF under an appropriate distribution of the Si. The advantage of this
proof is that it allows us to prove security for a small modulus q and inverse error rate (both small polynomials
in n), and it also works for uniformly random (or uniform invertible) matrices Si, among other distributions.
For example, this allows us to compose the degree-k construction with itself (or with any other PRF) in a
k-ary tree. The drawback to our proof is that it relies on a stronger assumption that is harder to evaluate or
falsify, because it allows the adversary to make queries to its challenger.
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Definition 5.9 (k-subset-product LWR). Let q ≥ p be integer moduli. We describe a pair of games, which
are parameterized by integers k ≥ 1 and m = poly(n), and a distribution ψ over Zn×nq (e.g., the uniform
distribution). In both games, we choose A ∈ Zn×mq uniformly at random and Si ← ψ independently for each
i ∈ [k], then give A and Si for i ∈ [k − 1] to the attacker. We then allow the attacker to adaptively make
queries to a function H : {0, 1}k−1 → Zm×np . In the first game, the function H is defined to be

H(x) :=

⌊
At ·

k−1∏
i=1

Sxii · Sk

⌉
p

;

in the second game, H is a uniformly random function. The k-subset-product LWR problem, denoted
k-LWRq,p,m,ψ, is to distinguish between these two games with an advantage non-negligible in n. The k-
subset-product ring-LWR problem is defined analogously. (A subset-product version of (ring-)LWE is also
easy to formulate, where instead of rounding we add random and independent error terms to each answer.)

We make a few simple observations about the k-LWR problem. First note that Bt
x = At ·

∏k−1
i=1 Sxii is

the part of the product that changes for each new query. Since A and all the Si for i ∈ [k− 1] are given to the
attacker, it can compute each Bt

x on its own, and its goal is to determine whether the challenger is returning
rounded products bBt

x · Skep or uniformly random and independent values. In effect, the k-LWR problem is
therefore to solve LWR when the sampled A matrices are related by adversarially chosen subset-products of
given random matrices Si. To avoid an efficient attack (as outlined in the introduction), the distribution ψ
should be chosen so that the product of many Si ← ψ does not significantly reduce the entropy of At

∏
i Si.

It appears that restricting ψ to invertible elements is most effective for this purpose.
We also observe that 1-LWRq,p,m,ψ is just the standard LWRq,p problem given m samples, where the

secret matrix S is chosen from ψ. The problems form a hierarchy over k, that is, k-LWRq,p,m,ψ no harder than
(k − 1)-LWRq,p,m,ψ, by a reduction that just prepends 0 to all queries, and withholds S1 from the attacker.

Theorem 5.10. Endow the family F from Definition 5.2 with the distribution where each Si is drawn from
some distribution ψ. Then, assuming that k-LWRq,p,m,ψ problem is hard, the family F is pseudorandom.

Unlike our inductive proof of Theorem 5.6, which transitions from the PRF family to a random function
by “dropping” the secret key components Si from i = 1 to k, the proof of Theorem 5.10 drops them from
i = k down to 1. This prevents the error terms from growing with k (because the errors are not compounded
by multiplication with other Si), which is what allows us to use a small modulus q if we so desire. However,
this style of proof also seems to require an interactive assumption, so that a simulator can answer queries
involving the component Si that is being dropped between adjacent games.

Proof of Theorem 5.10. We prove this by induction over k. For k = 0, the claim follows trivially by
construction. For k ≥ 1, we again proceed via a series of games.

Game H0. This is the real PRF attack game against the family F : we choose an F ← F , and the attacker
has oracle access to F (·).

Game H1. We choose F ← F . For attacker queries of the form x = x1 . . . xk−11, we return uniformly
random and independent value (consistent with prior answers), and for queries of the form x = x1 . . . xk−10,
we return F (x) =

⌊
At ·

∏k−1
i=1 Sxii

⌉
p
.
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We claim that H0
c
≈ H1 by a straightforward reduction assuming the hardness of k-LWR. As proof, we

construction a simulator S that interacts with an oracle O that implements one of the two games from the
k-LWR problem, and emulates either H0 or H1 respectively. The simulator is first given some matrices A
and Si for i ∈ [k− 1]. It then answers attacker queries x = (x′, 0) ∈ {0, 1}k by returning bAt ·

∏k−1
i=1 Sxii ep,

and answers queries x = (x′, 1) ∈ {0, 1}k by returning O(x′) to the attacker. It is clear by inspection that
the behavior of S is as claimed.

Game H2. We lazily choose a uniformly random function U : {0, 1}k → Zm×np and give the attacker
oracle access to U(·).

We claim that H1
c
≈ H2 by the inductive hypothesis. This is because in game H1, queries ending in 1

are already answered uniformly, while queries ending in 0 are answered according to a function drawn from
the family F of degree (k − 1). This family is pseudorandom by the inductive hypothesis, and the fact that
(k − 1)-LWR is no easier than k-LWR.

This completes the induction and the proof.

Acknowledgments. We thank Oded Regev for interesting discussions.
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Abstract

The security of contemporary homomorphic encryption schemes over cyclotomic number field relies
on fields of very large dimension. This large dimension is needed because of the large modulus-to-noise
ratio in the key-switching matrices that are used for the top few levels of the evaluated circuit. However, a
smaller modulus-to-noise ratio is used in lower levels of the circuit, so from a security standpoint it is
permissible to switch to lower-dimension fields, thus speeding up the homomorphic operations for the
lower levels of the circuit. However, implementing such field-switching is nontrivial, since these schemes
rely on the field algebraic structure for their homomorphic properties.

A basic ring-switching operation was used by Brakerski, Gentry and Vaikuntanathan, over rings of the
form Z[X]/(X2n + 1), in the context of bootstrapping. In this work we generalize and extend this tech-
nique to work over any cyclotomic number field, and show how it can be used not only for bootstrapping
but also during the computation itself (in conjunction with the “packed ciphertext” techniques of Gentry,
Halevi and Smart).

1 Introduction

The last few years have seen a rapid advance in the state of fully homomorphic encryption, yet despite
these advances, the existing schemes are still too expensive for many practical purposes. In this paper we
make another step forward in making such schemes more efficient. In particular, we present a technique for
reducing the dimension of the ciphertexts involved in the homomorphic computation of the lower levels of a
circuit. Our techniques apply to homomorphic encryption schemes over number fields, such as the schemes
of Brakerski et al. [4, 5, 3], as well as the variants due to López-Alt et al. [14] and Brakerski [2].

The most efficient variants of these schemes work over number fields of the form Q(ζ) ∼= Q[X]/F (X),
and in all of them the field dimension n, which is the degree of F (X), must be set large enough to ensure
security: to support homomorphic evaluation of depth-L circuits with security parameter λ, the schemes
require n = Ω̃(L · polylog(λ)), even under the strongest plausible hardness assumptions for their underlying
computational problems (e.g., ring-LWE [15]).1 In practice, the field dimension for moderately deep circuits
can easily be many thousands. For example, to be able to evaluate AES homomorphically, Gentry et al. [13]
used circuits of depth L ≥ 50, with a corresponding field dimension of over 50,000.

1The schemes from [3, 2] can also obtain security by using high-dimensional vectors over low-dimensional number fields. But
their most efficient variants use low-dimensional vectors over high-dimensional fields, since the runtime of certain operations is
cubic in the dimension of the vectors.
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As homomorphic operations are performed, the ratio of noise to modulus in the ciphertexts grows.
Consequently, it becomes permissible to use lower-dimension fields, which can speed up further homomorphic
computations. However, since we must start with ciphertexts from a high-dimensional field, we need a
method for transforming them into small-field ciphertexts that encrypt the same (or related) messages.
Such a “field switching” procedure was described by Brakerski et al. [3], in the context of reducing the
ciphertext size prior to bootstrapping. The procedure in [3], however, is specific to number fields of the
form K2k = Q[X]/(X2k−1

+ 1), i.e., cyclotomic number fields with power-of-2 index. Moreover, by itself it
cannot be combined with the “packed evaluation” techniques from [18, 11]. (These techniques use Chinese-
remainder encoding to “pack” many plaintext values into each ciphertext, and then each homomorphic
operation is applied to all these values at once. For our purposes, we must consider the effect of the field-
switching operation on all these plaintext values.) Extending and improving the field switching procedure is
the goal of our work.

1.1 Our Contribution

We present a general field-switching transformation that can be applied to any cyclotomic number field
K = Q(ζm) ∼= Q[X]/Φm(X) for arbitrary m (where Φm(X) ∈ Z[X] is the mth cyclotomic polynomial),
and works well in conjunction with packed ciphertexts. For any divisor m′ of m, our procedure takes as input
a “big-field ciphertext” c over K that encrypts many plaintext values, and outputs a “small-field ciphertext”
c′ over K ′ = Q(ζm′) ∼= Q[X]/Φm′(X) ⊆ K that encrypts a certain subset of the input plaintext values.2

Our transformation relies heavily on the algebraic properties of the cyclotomic number fields K, K ′

and their respective rings of algebraic integers R, R′. In particular, we use the interpretation of K as an
extension field of K ′, and relationships between their various embeddings into the complex numbers C; the
factorization of integer primes in R and R′; and the trace function TrK/K′ that maps elements in K to the
subfield K ′. With these tools in hand, the transformation itself is quite simple, and consists of the following
three steps:

1. We first apply a key-switching operation to obtain a big-field ciphertext over K with respect to a
small-field secret key s′ ∈ K ′ ⊂ K. Proving the security of this operation relies on a novel way of
embedding the ring-LWE problem over K ′ into K, which may be of independent interest.

2. Next, we multiply the resulting ciphertext by a certain element of the ring R ⊂ K, which depends only
on the subset (or other function) of the plaintext values that we want to include in the output ciphertext.

3. Finally, we take the trace of the K-elements in the ciphertext, thus obtaining an output ciphertext over
the subfield K ′, which decrypts under the secret key s′ ∈ K ′ to the desired plaintext values.

We note that in addition to being simpler and more general than the transformation from [3], our transformation
is also more efficient even when applied in the special case of K2k : when switching from K2k to K2k′ , the
transformation from [3] includes a step where the size of the ciphertext (and hence the time that it takes to
perform operations) is expanded by a factor of 2k−k

′
. Our transformation does not need that extra step, hence

saving this extra factor in performance.
In Section 2 below we recall the algebraic concepts needed for our transformation, and then the transfor-

mation itself it described in Section 3.
2More generally, the output ciphertext can even encrypt certain linear functions of the input plaintext values.

2
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Notations Description

p, Fpd The (prime) modulus of the cryptosystem’s native plaintext space, and the
finite field of order pd.

m,m′,
n = ϕ(m), n′ = ϕ(m′)

The indices of the cyclotomic fields, where m′|m. We switch from the mth
to them′th cyclotomic number field, which are of degree n, n′ (respectively)
over the rationals.

m̄, d, e, f ,
m̄′, d′, e′, f ′

m̄ is the largest divisor of m that is coprime with p; d is the order of p in
Z∗m̄; e = ϕ(m)/ϕ(m̄); and f = ϕ(m̄)/d. Similarly for m̄′, d′, e′, f ′.

ζm, ζm′ Abstract elements of order m,m′ (respectively) over the rationals.

K = Q(ζm), K ′ = Q(ζm′),
R = Z[ζm], R′ = Z[ζm′ ]

The cyclotomic number fields and their rings of integers.

σ : K → Cn
σ′ : K ′ → Cn′

The canonical embeddings of K,K ′, which endow the number fields with
a geometry.

TrK/K′ : K → K ′ The trace function, which is the sum of the automorphisms of K that fix K ′

pointwise.

R∨, (R′)∨ The codifferent (or dual) fractional ideals of R and R′ (respectively), de-
fined as R∨ = {a : TrK/Q(aR) ⊆ Z} and similarly for (R′)∨.

G = Z∗m̄/〈p〉,
G′ = Z∗m̄′/〈p〉

The multiplicative quotient groups that characterize the prime-ideal factor-
izations of pR, pR′, respectively.

g : G→ G′ The (f/f ′)-to-1 homomorphism defined via i 7→ i mod m̄′.

Table 1: Summary of the main algebraic notations.

2 Preliminaries

This work uses a number of algebraic concepts and notations; to assist the reader we summarize the most
important ones in Table 1. For any positive integer u we let [u] = {0, . . . , u − 1}. Throughout this work,
for a coset z ∈ Zq = Z/qZ we let [z]q ∈ Z denote its canonical representative in Z ∩ [−q/2, q/2). One
can also view [·]q as the operation that takes an arbitrary integer z and reduces it modulo q into the interval
[−q/2, q/2).

2.1 Algebraic Background

Recall that an ideal I in a commutative ringR is a nontrivial (i.e., I 6= ∅ and I 6= {0}) additive subgroup which
is closed under multiplication by R. For ideals I, J , their sum is the ideal I + J = {a+ b : a ∈ I, b ∈ J},
and their product IJ is the ideal consisting of all sums of terms ab for a ∈ I, b ∈ J . An R-ideal p is prime
if ab ∈ p (for some a, b ∈ R) implies a ∈ p or b ∈ p (or both). All the rings we work with have unique
factorization of ideals into powers of prime ideals, and a Chinese Remainder Theorem.

A fractional ideal is, informally, an ideal with a denominator. Formally, letting K be the field of fractions
of R, a fractional ideal of R is a subset I ⊆ K for which there exists a denominator d ∈ R such that dI ⊆ R
is an ideal in R. For an R-ideal I , the quotient ring RI = R/I consists of the residue classes a+ I for all

3
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a ∈ R, with the ring operations induced by R. More generally, for a (possibly fractional) ideal I and an ideal
J ⊆ R, the quotient IJ = I/IJ is an additive group, and an R-module, with addition and multiplication
operations induced by R. We often write a mod I instead of a+ I to denote the residue classes a+ I , and
we write a = b (mod I) to denote that a, b belong to the same residue class, i.e., a+ I = b+ I .

For computational purposes, all of the rings and fields we work with have efficient representations of
their elements, and efficient (i.e., polynomial time in the bit length of the arguments) algorithms for all the
operations we use. For quotientsA/B, cosets are represented using a fixed set of distinguished representatives.
In this work we largely ignore the details of concrete representations and algorithms, and refer to [16] for
fast, specialized algorithms for working with the cyclotomic fields and rings that we use in this work.

2.1.1 Cyclotomic Fields and Rings

For a positive integer m, letK = Q(ζm) be themth cyclotomic number field, where ζm is an abstract element
of orderm. (In particular, we do not view ζm as any particular root of unity in C.) The minimal polynomial of
ζm is the mth cyclotomic polynomial Φm(X) =

∏
i∈Z∗m(X−ηim) ∈ Z[X], where ηm = exp(2π

√
−1/m) ∈

C is the principal mth complex root of unity, and the roots ηim ∈ C range over all the primitive complex
mth roots of unity. Therefore, K is a field extension of degree n = ϕ(m) over Q, and is isomorphic to the
polynomial ring Q[X]/Φm(X) by identifying ζm with X . (There are other representations of K as well, and
nothing in this work depends on a particular choice of representation.) The ring of (algebraic) integers in K,
called the mth cyclotomic ring, is R = Z[ζm], which is isomorphic to Z[X]/Φm(X).

The field extension K/Q has n automorphisms τi : K → K that fix Q pointwise, which are charac-
terized by τi(ζm) = ζim for i ∈ Z∗m. (Equivalently, τi(a(X)) = a(Xi) mod Φm(X) when viewing K as
Q[X]/Φm(X).) Because K/Q is Galois (i.e., the number of automorphisms equals the dimension of the
extension), the Q-linear3 (field) trace TrK/Q : K → Q can be defined as the sum of the automorphisms:
TrK/Q(a) =

∑
i∈Z∗m τi(a) ∈ Q. (See below for another formulation.)

Similarly to the automorphisms τi (which map K to itself), there are n concrete ways of viewing K
as a subfield of the complex numbers C. Namely, there are n injective ring homomorphisms from K to C
that fix Q pointwise, called embeddings, which are denoted σi : K → C for i ∈ Z∗m and characterized by
σi(ζm) = ηim. The embeddings may be seen as the compositions of the abstract automorphisms τi with the
complex embedding that identifies ζm ∈ K with ηm ∈ C. Therefore, the field trace can also be written as the
sum of the embeddings, as TrK/Q(a) =

∑
i∈Z∗m σi(a) ∈ Q. The canonical embedding σ : K → Cn is the

concatenation of all the complex embeddings, i.e., σ(a) = (σi(a))i∈Z∗m , and it endows K with a canonical
geometry. In particular, define the Euclidean (`2) and `∞ norms on K as

‖a‖ := ‖σ(a)‖ =

√∑
i

|σi(a)|2 and ‖a‖∞ := ‖σ(a)‖∞ = max
i
|σi(a)|,

respectively. Note that ‖a · b‖ ≤ ‖a‖∞ · ‖b‖ and ‖a · b‖∞ ≤ ‖a‖∞ · ‖b‖∞ for any a, b ∈ K, because the σi
are ring homomorphisms.

2.1.2 Towers of Cyclotomics

For any positive integer m′ dividing m, let K ′ = Q(ζm′) and R′ = Z[ζm′ ] be the m′th cyclotomic field
and ring (of dimension n′ = ϕ(m′) over Q and Z), respectively. As above, the field extension K ′/Q has

3A function f is S-linear if f(a+ b) = f(a) + f(b) and f(s · a) = s · f(a) for all s ∈ S and all a, b.

4
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n′ = ϕ(m′) automorphisms τ ′i′ : K
′ → K ′ and n′ complex embeddings σ′i′ : K

′ → C (for i′ ∈ Z∗m′), the
latter of which define the canonical embedding σ′ : K ′ → Cn′ .

We will use extensively the fact that K is a field extension of K ′, and R is a ring extension of R′, both of
dimension n/n′ (because K/Q and K ′/Q have dimensions n and n′, respectively). That is, K ′ and R′ may
respectively be seen as a subfield of K = K ′(ζm) and a subring of R = R′[ζm], under the ring embedding
that identifies ζm′ with ζm/m

′
m . Moreover, the field extension K/K ′ is Galois, i.e., it has n/n′ automorphisms

that fix K ′ pointwise, which are precisely those τi for which i = 1 (mod m′). This follows from the fact that

τi(ζm′) = τi(ζ
m/m′
m ) = ζ(m/m′)i mod m

m = ζi mod m′
m′ , (2.1)

and that reducing modulo m′ induces an (n/n′)-to-1 mapping from Z∗m to Z∗m′ . The K ′-linear (intermediate)
trace function TrK/K′ : K → K ′ may be defined as the sum of these automorphisms:

TrK/K′(a) =
∑

i=1 (mod m′)

τi(a).

A standard fact from field theory is that the intermediate trace satisfies TrK/Q = TrK′/Q ◦TrK/K′ . Another
standard fact is that TrK/K′ is a “universal” K ′-linear function, in that any such function L : K → K ′ can be
expressed as L(a) = TrK/K′(r · a) for some fixed r ∈ K.

Similarly to Equation (2.1), for any i ∈ Z∗m the embedding σi coincides with σ′i mod m′ on the subfield K ′.
Using this fact we get the following relation between the intermediate trace and the complex embeddings
of K and K ′.

Lemma 2.1. For any a ∈ K and i′ ∈ Z∗m′ ,

σ′i′(TrK/K′(a)) =
∑

i=i′ (mod m′)

σi(a).

In matrix form, σ′(TrK/K′(a)) = P · σ(a), where P is the ϕ(m′)-by-ϕ(m) matrix (with rows indexed by
i′ ∈ Z∗m′ and columns by i ∈ Z∗m) whose (i′, i)th entry is 1 if i = i′ (mod m′), and is 0 otherwise.

Proof. Fix an arbitrary k ∈ Z∗m such that k = i′ (mod m′). Then because σ′i′ coincides with σk on K ′, and
by definition of TrK/K′ and linearity of σk, we have

σ′i′(TrK/K′(a)) = σk

( ∑
j=1 (mod m′)

τj(a)

)
=

∑
j=1 (mod m′)

σk(τj(a)) =
∑

i=i′ (mod m′)

σi(a),

where for the last equality we have used σk ◦ τj = σk·j and k ∈ Z∗m, so i = k · j ∈ Z∗m runs over all indices
congruent to i′ modulo m′ when j ∈ Z∗m runs over all indices congruent to 1 modulo m′.

An immediate corollary is that the intermediate trace maps short elements of K to short elements of K ′.

Corollary 2.2. For any a ∈ K, we have ‖TrK/K′(a)‖ ≤ ‖a‖ ·
√
n/n′.

Proof. By Lemma 2.1, we have σ′(TrK/K′(a)) = P · σ(a). The rows of P are orthogonal (since each
column of P has exactly one nonzero entry), and each has Euclidean norm exactly

√
n/n′.

5
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2

p′1

p1 p15 p22

p′3

p3 p17 p31

Figure 1: Factorization of 2 ∈ Z into distinct prime ideals p′i′ in R′ = Z[ζ7], and pi in R = Z[ζ91]. The
displayed subscripts indicate a choice of representatives from the cosets of the multiplicative subgroups
〈2〉 ⊆ Z∗7 and 〈2〉 ⊆ Z∗91, which have orders d′ = 3 and d = 12, respectively.

2.1.3 Prime Splitting and Plaintext Arithmetic

We now describe the factorization (“splitting”) of prime integers in cyclotomic rings, how it allows for encod-
ing and operating on several finite-field elements, and the particular functions induced by the (intermediate)
trace function TrK/K′ . Further details and proofs can be found in many texts on algebraic number theory,
e.g., [19].

Prime splitting. Let p ∈ Z be a prime integer. In the mth cyclotomic ring R = Z[ζm] (which has degree
n = ϕ(m) over Z), pR is often not a prime ideal, but instead factors into prime ideals. To describe how, we
first need to introduce some notation. Divide out all the factors of p from m, writing m = m̄ · pk where
p - m̄. Let e = ϕ(pk), and let d be the multiplicative order of p modulo m̄ (i.e., in Z∗m̄); note that d divides
ϕ(m̄) = n/e. (The values d, e are respectively called the inertial degree and ramification index of p in R.)
Let G = Z∗m̄/〈p〉, the multiplicative quotient group Z∗m̄ modulo the order-d subgroup generated by p, so G
has order f = ϕ(m̄)/d = n/(de). For an element i ∈ G of this group, we sometimes write i〈p〉 to emphasize
that it is a coset, and (slightly abusing notation) also let i ∈ Z∗m̄ denote some element of the coset. The ideal
pR factors as

pR =
∏
i∈G

pei , (2.2)

where the pi are distinct prime ideals in R, all having norm |R/pi| = pd. These are called the prime ideals
lying over p in R. Each quotient ring R/pi is therefore isomorphic to the finite field Fpd . (In fact there are
exactly d isomorphisms between them, because Fpd has d automorphisms.)

Concretely, the prime ideals pi, and the isomorphisms between R/pi and (some canonical representation
of) Fpd , are as follows. Let ωm̄ denote some arbitrary element of order m̄ in Fpd ; such an element exists
because the multiplicative group F∗

pd
is cyclic and has order pd − 1 = 0 (mod m̄). For any i〈p〉 ∈ G,

the prime ideal pi is the kernel of the ring homomorphism hi : R → Fpd defined by hi(ζm) = ωim̄. It is
immediate that this kernel is an ideal; furthermore, it is invariant under the choice of representative i from the
coset i〈p〉, because hip(r) = hi(r)

p for any r ∈ R (since (a+ b)p = ap + bp for any a, b ∈ Fpd). Because pi
is the kernel of hi, we have the induced isomorphism hi : R/pi → Fpd ; indeed, we have d distinct such
isomorphisms, one for each element of the coset i〈p〉.

Looking ahead, the isomorphisms hi (for appropriate choices of representatives i) will be used to define
several “plaintext slots” in a homomorphic cryptosystem, i.e., an encoding of f plaintext elements of Fpd as a
single element of the cryptosystem’s plaintext ring R/2R.

6
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Splitting in cyclotomic towers. Of course, the above derivation also applies to the ideals that lie over p in
R′ = Z[ζm′ ] ⊆ R. For each such ideal p′, we next describe the factorization of p′R into prime ideals in R.
These are the prime ideals that lie over p′ in R, and since “lying over” is an associative property, they also lie
over p (as illustrated in Figure 1).

Let m̄, d, e, f,G and the prime ideals pi for i ∈ G be as above for R, and define m̄′, d′, e′, f ′, G′ =
Z∗m̄′/〈p〉 and prime ideals p′i′ for i′ ∈ G′ similarly for R′. Note that d′|d, e′|e, and f ′|f , and that the natural
homomorphism g : G→ G′ defined via i 7→ i mod m̄′ is surjective and (f/f ′)-to-1. Then for every i′ ∈ G′,
the factorization of p′i′R is

p′i′R =
∏

i∈g−1(i′)

p
e/e′

i =
∏

i=i′ (mod m̄)

p
e/e′

i .

Therefore, there are f/f ′ prime ideals of R lying over each p′i′ , and taken over all i′ ∈ G′ they partition the
prime ideals of R lying over p.

Plaintext encoding. Let F = Fpd and F′ = Fpd′ ⊆ F. By the above and the Chinese Remainder Theorem,
the natural ring homomorphisms yield the following (where ∼= denotes a ring isomorphism):

R′/pR′ → R′/
( ∏
i′∈G′

p′i′
) ∼= ⊕

i′∈G′
R′/p′i′

∼= F′f
′

R/pR→ R/
(∏
i∈G

pi
)

= R/
( ∏
i′∈G′

∏
i∈g−1(i′)

pi
) ∼= ⊕

i′∈G′

⊕
i∈g−1(i′)

R/pi ∼= (Ff/f
′
)f
′
.

(Note that the first homomorphism in each line is surjective, but not necessarily an isomorphism, due to
possible ramification.) Following [18, 3, 11, 12, 13], in the context of homomorphic encryption the above
morphisms allow for encoding a vector of f ′ individual elements of F′ (respectively, f elements of F) into the
plaintext ring R′p = R/pR′ (resp., Rp = R/pR), so that a single homomorphic addition and multiplication
acts component-wise on the underlying vectors of field elements.

Trace operations. As mentioned in the introduction, our field-switching technique is built around applying
the trace function TrK/K′ to the elements of a big-field ciphertext, thus obtaining a related small-field
ciphertext. Since we use “packed” ciphertexts that encrypt arrays of elements in F via the above isomorphisms,
we need to understand the effect of the trace function on those F-elements.

The remainder of this subsection is therefore devoted to characterizing the functions (Ff/f ′)f ′ → F′f ′

that can be induced by TrK/K′ . More specifically, we determine exactly which functions

L : R/(
∏
i∈G

pi)→ R′/(
∏
i′∈G′

p′i′)

can be expressed as L(a) = TrK/K′(r · a) for some fixed r ∈ K. It turns out that by fixing an appropriate
choice of isomorphisms between the quotient rings and finite fields above, we can obtain the concatenation
of any f ′ individual F′-linear functions Ff/f ′ → F′ (see Corollary 2.5 for a precise statement).4

As already noted, the isomorphisms between the quotient rings and finite fields are not necessarily
unique; they are determined by the choice of representatives i′, i of the cosets i′〈p〉 ⊆ Z∗m̄′ and i〈p〉 ⊆ Z∗m̄
(respectively), and roots of unity ωm̄′ ∈ F′ and ωm̄ ∈ F. For our purposes, it is important to choose

4Note that any F′-linear function L : Ff/f ′
→ F′ can always be expressed as L(~a) = TrF/F′(〈~d,~a〉) for some fixed ~d ∈ Ff/f ′

,
where 〈·, ·〉 is the usual inner product and TrF/F′ denotes the (F′-linear) trace of the field extension F/F′.

7
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these in a “consistent” fashion, as follows. First, given ωm̄, let ωm̄′ = ω
m̄/m̄′

m̄ ∈ F′. (Note that all ϕ(m̄′)
elements of order m̄′ in F are indeed in the subfield F′.) Next, let ` ≥ 0 be the integer exponent such
that m/m′ = (m̄/m̄′) · p`. Then given representative i′ of i′〈p〉 ∈ G′, choose representative i for each
i〈p〉 ∈ g−1(i′) so that p` · i = i′ (mod m̄′). Note that such i always exists, by definition of the quotient
group G and the mapping g. As explained above, these choices fix particular isomorphisms

hi : R/pi → F (for i〈p〉 ∈ G) and h′i′ : R
′/p′i′ → F′ (for i′〈p〉 ∈ G′),

which are characterized by hi(ζm) = ωim̄ and h′i′(ζm′) = ωi
′
m̄′ .

Next, for each i′ ∈ G′ denote the product of prime ideals lying over p′i′ in R (called the radical of p′i′R)
by p̃i′ =

∏
i∈g−1(i′) pi, and define the ring isomorphism

h̃i′ : R/p̃i′ → Ff/f
′
, h̃i′(a) =

(
hi(a mod pi)

)
i∈g−1(i′)

,

where Ff/f ′ denotes the product ring with coordinate-wise operations.
In Lemma 2.4 below, we show that under the above isomorphisms, the F′-linear functions L̄ : Ff/f ′ → F′

correspond bijectively with the R′-linear functions L : R/p̃i′ → R′/p′i′ , for all i′ ∈ G′. Recall that any
function of the latter type can be expressed as L(a) = TrK/K′(r · a) for some fixed r ∈ K. Conversely,
every function L (with domain and range as above) that can be expressed as L(a) = TrK/K′(r · a) is clearly
R′-linear, so it always induces an F′-linear function. The heart of Lemma 2.4 is the following fact.

Lemma 2.3. Let p′i′ for some i′ ∈ G′ be a prime ideal lying over p in R′, and let p̃i′ be the radical of pi′R.
Let r′ ∈ R′ ⊆ R be arbitrary, and let s = h′i′(r

′ mod p′i′) ∈ F′ ⊆ F. Then

h̃i′(r
′ mod p̃i′) = (s, s, . . . , s) ∈ F′f/f

′
,

i.e., every entry of h̃i′(r′ mod p̃i′) is equal to h′i′(r
′ mod p′i′).

Proof. Recall that under our choice of isomorphisms, ωm̄′ = ω
m̄/m̄′

m̄ ∈ F′ is of order m̄′, and p` · i =
i′ mod m̄′, where ` ≥ 0 is the integer satisfying m/m′ = (m̄/m̄′) · p`. Also recall that

h̃i′(r
′ mod p̃i′) =

(
hi(r

′ mod pi)
)
i∈g−1(i′)

.

For the representative i of each coset i〈p〉 ∈ g−1(i′), the entry hi(r′ mod pi) is obtained by mapping ζm to

ωim̄, and hence also mapping ζm′ = ζ
m/m′
m = ζ

(m̄/m̄′)·p`
m to

ω
(m̄/m̄′)·p`·i
m̄ = ωp

`·i
m̄′ = ωi

′
m̄′ ∈ F′,

which is exactly the mapping done by h′i′ . Since r′ ∈ R′ = Z[ζm′ ], this proves the claim.

Lemma 2.4. Let i′ ∈ G′ be arbitrary, and let p′ = p′i′ and p̃ = p̃i′ . Then under the isomorphisms h′ = h′i′
and h̃ = h̃i′ defined above, the F′-linear functions L̄ : Ff/f ′ → F′ are in bijective correspondence with the
R′-linear functions L : R/p̃→ R′/p′.

Proof. For any F′-linear function L̄, we claim that L = h′−1 ◦ L̄ ◦ h̃ is the corresponding R′-linear function.
To see this, note that by Lemma 2.3 and the fact that h̃ is a ring homomorphism, for any r′ ∈ R′ and a ∈ R/p̃
we have

h̃(r′ · a) = h̃(r′ mod p̃)� h̃(a) = h′(r′ mod p′) · h̃(a) ∈ Ff/f
′
,

8
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where multiplication � in F′f ′ and Ff is coordinate-wise. By F′-linearity of L̄ and the fact that h′ is a ring
homomorphism, we have

L(r′ · a) = h′
−1

(L̄(h̃(r′ · a))) = h′
−1(

h′(r′ mod p′) · L̄(h̃(a))
)

= r′ · L(a) ∈ R′/p′,

as desired. The other direction proceeds essentially identically, with L̄ = h′ ◦ L ◦ h̃−1.

An application of the Chinese Remainder Theorem with the prime ideals p̃i′ in R, combined with
Lemma 2.4, immediately yields the following corollary.

Corollary 2.5. Let p′ =
∏
i′∈G′ p

′
i′ and p =

∏
i′∈G′ p̃i be the radicals of pR′ and pR, respectively. Then

under the isomorphisms {hi′}i′∈G′ and {h̃i′}i′∈G′ defined above, the R′-linear functions L : R/p→ R′/p′

are in bijective correspondence with the functions L̄ : (Ff/f ′)f ′ → F′f ′ of the form

L̄
(

(~ai′
)
i′∈G′

)
=
(
L̄i′(~ai′)

)
i′∈G′ ,

where every L̄i′ : Ff/f
′ → F′ is F′-linear.

We note that given a function L̄ : (Ff/f ′)f ′ → F′f ′ as in Corollary 2.5, we can efficiently find anR′-linear
function L̂ : R → R′ that induces the corresponding L: first, fix an arbitrary R′-basis B = {bj} of R.
Then, using the isomorphisms h′i′ and h̃i′ , the values of L(bj mod p) ∈ R′/p′ are determined by L̄, and
uniquely define L by R′-linearity. We can then define each L̂(bj) ∈ R′ to be an arbitrary representative of
L(bj mod p); these choices uniquely determine L̂, by R′-linearity. Finally, we can represent L̂ explicitly
in trace form as L̂(a) = TrK/K′(r · a) for some r ∈ K: recalling that K is a vector space over K ′ with
K ′-basis B, we have a full-rank system of linear equations L̂(bj) = TrK/K′(r · bj) ∈ K ′, which we can
solve to obtain r ∈ K.

Looking ahead, in our application to homomorphic computation we will have certain linear functions that
we want to evaluate (e.g., projection functions), and we will do so by finding the corresponding constant r,
then multiplying by r and taking the trace (see Section 3.3 for further details). To apply these steps in the
context of a homomorphic encryption scheme, we need the notion of the dual of the ring of integers, described
next.

2.1.4 Duality

An important and useful object in K is the dual of R (also known as the codifferent of K), defined as

R∨ = {a ∈ K : TrK/Q(aR) ⊆ Z} ⊇ R.

Because TrK/Q = TrK′/Q ◦TrK/K′ , it is easy to verify that also R∨ = {a ∈ K : TrK/K′(aR) ⊆ R′∨}.
Therefore, we have the convenient equation

TrK/K′(R
∨) = R′∨. (2.3)

Note that by contrast, frequently TrK/K′(R) does not equal R′, but is instead some proper ideal of it.5 Many
other algebraic and geometric advantages of working with R∨ instead of R are discussed in [15, 16].

5This is easily seen, e.g., for R = Z[ζ2k ] and R′ = Z, where Tr(R) = 2k−1R′ because Tr(1) = 2k−1 and Tr(ζj
2k

) = 0 for
j = 1, . . . , 2k−1 − 1.
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The codifferent is a principal fractional ideal, i.e., R∨ = t−1R for some t ∈ R (which is not unique).
Therefore, division by t induces a bijection from R to R∨, and from any quotient ring Rp = R/p to
R∨p = R∨/pR∨. Although the target objects are not rings (because R∨ · R∨ 6⊆ R∨), they are R-modules,
and the bijections are R-module isomorphisms.

Of course, we also have R′∨ = t′−1R′ for some t′ ∈ R′. By Equation (2.3) and K ′-linearity of the trace,
for any ideal p in R′, we have

TrK/K′(R
∨
p ) = TrK/K′(R

∨/pR∨) = R′∨/pR′∨ = R′∨p .

In the previous subsection we considered R′-linear functions L : R → R′ (or their induced functions
Rp → R′p), which can always be expressed as L(a) = TrK/K′(r

∨ · a) for some fixed r∨ ∈ K. Typically, r∨

is not in R because TrK/K′(R) 6= R′, but it is easy to see that r∨ ∈ t′R∨ always, because if not, then
TrK/K′(r

∨R) 6⊆ t′R′∨ = R′. For the purposes of our field-switching procedure, it will be more convenient
to instead work with corresponding R′-linear functions from R∨ to R′∨, which can be represented in trace
form by elements of R. Namely, for an R′-linear function L : R→ R′, where L(a) = TrK/K′(r

∨ · a) for
some r∨ ∈ t′R∨, we will consider the corresponding function

L∨ : R∨ → R′∨, L∨(a∨) = L(t · a∨)/t′ = TrK/K′((t/t
′)r∨ · a∨) = TrK/K′(r · a∨),

which is represented by r = (t/t′)r∨ ∈ R.
Following [16], we extend the operation [·]q to R∨p by fixing a particular Z-basis of R∨ (and Zq-basis

of R∨q ), called the decoding basis, and representing the argument as a Zq-combination of the basis vectors and
applying the [·]q operation to each of its coefficients. It is shown in [16, Section 6.2] that every sufficiently
short (as always, under the canonical embedding) e ∈ R∨ is indeed the “canonical” representative of its coset
modulo qR∨. Specifically, if ‖e‖ < q/(2

√
n) then [e mod qR∨]q = e.

2.1.5 Good Bases of R and R∨

We now have almost all the ingredients we need to describe the homomorphic cryptosystem and our field-
switching transformation. The final background material we need concerns the geometry of R as a module
over R′ (respectively, R∨ as a module over R′∨). Specifically, we construct certain “good” bases of the
ring R and its dual R∨ in terms of R′ and R′∨ (respectively), and prove some of their useful geometrical
properties. This (somewhat technical) material is used only in Section 3.1, where we prove the hardness of
ring-LWE over K with secret in R′, assuming its hardness over K ′ with secret in R′.

Since K is a vector space of dimension n/n′ over K ′, the field K has a K ′-basis (which is not unique),
i.e., a set of n/n′ elements of K that are linearly independent over K ′, so that every element of K can be
represented uniquely as a K ′-linear combination of the basis elements. Similarly, an R′-basis of R is a set of
n/n′ elements in R, such that every element of R can be represented uniquely as an R′-linear combination of
the basis elements. An R′∨-basis of R∨ is defined analogously.

We wish to construct an R′-basis of R, and a corresponding dual R′∨-basis of R∨ (any of which are
K ′-bases of K), which are “good” in the following sense: for any vector of K ′-coefficients (with respect
to the basis) which are short under σ′, the corresponding K-element is also short under σ. More formally,
represent an ordered K ′-basis of K as a vector ~b = (bj) ∈ Kn/n′ , and similarly for an arbitrary vector
of K ′-coefficients ~a = (aj) ∈ K ′(n/n

′), which defines the K-element a = 〈~a,~b〉 =
∑

j aj · bj . Then by

linearity, the basis~b induces a matrix B ∈ Cn×n such that

σ(a) = B · σ′(~a), where σ′(~a) =
(
σ′(aj)

)
j
. (2.4)

10

Approved for Public Release; Distribution Unlimited. 
148 



We seek an R′-basis~b of R for which B (nearly) preserves Euclidean norms up to some scaling factor, i.e.,
all of its singular values are (nearly) equal.

In addition, for any K ′-basis ~b = (bj) of K, its dual K ′-basis ~b ∨ = (b∨j ) ⊆ K is uniquely defined by
the linear constraints TrK/K′(bj · b∨j′) = 1 if j = j′, and 0 otherwise. It is a straightforward exercise to

verify that if~b is an R′-basis of R, then~b ∨ is an R′∨-basis of R∨. Moreover, the matrix B∨ induced by~b ∨ is
B∨ = B−T , so its singular values are simply the inverses of those of B.

Lemma 2.6. Let m̂ = m/2 if m is even and m′ is odd, otherwise m̂ = m, and let r = rad(m)/ rad(m′) be
the product of all primes that divide m but not m′. There exists an efficiently computable R′-basis~b of R, for
which the corresponding matrix B has largest and smallest singular values

s1(B) =
√
m̂/m′ and sn(B) =

√
m/(rm′),

respectively. In particular, if r ∈ {1, 2} then B is a unitary matrix scaled by a
√
m̂/m′ factor.

Lemma 2.6 implies that for any ~a ∈ K ′(n/n′) defining a = 〈~a,~b〉 ∈ K and a∨ = 〈~a,~b ∨〉 ∈ K,

‖σ(a)‖ ≤
√
m̂/m′ · ‖σ′(~a)‖ and ‖σ(a∨)‖ ≤

√
rm′/m · ‖σ′(~a)‖. (2.5)

More generally, if the aj are independent and have Gaussian distributions over (the canonical embedding
of) K ′, then a and a∨ also have (possibly non-spherical) Gaussian distributions over K.6 Since we are not
too concerned with the exact distributions, we omit a precise calculation, which is standard. However, one
particular case of interest is when the aj are all i.i.d. according to a spherical Gaussian of parameter s, and
r ∈ {1, 2} so that B (respectively, B∨) is a scaled unitary matrix. Then because spherical Gaussians are
invariant under unitary transformations, a (resp., a∨) is distributed according to a spherical Gaussian of
parameter s

√
m̂/m′ (resp., s

√
m′/m̂).

The remainder of this subsection is devoted to proving Lemma 2.6. We denote the k-dimensional identity
matrix by Ik, we use ⊗ to denote the Kronecker (or tensor) product of vectors and matrices, and we apply
functions to vectors and matrices component-wise.

Following the treatment given in [16], let m =
∏
`m` be the prime-power factorization of m, i.e., the

m` > 1 are powers of distinct primes. The ring R = Z[ζm] has the following Z-basis ~p, which is called the
“powerful” basis:

~p =
⊗

`
~pm`

, where ~pm`
=
(
ζjm`

)
j∈[ϕ(m`)]

.

The set ~pm`
is called the “power” Z-basis of Z[ζm`

] = Z[ζ
m/m`
m ] ⊆ R.

Similarly, let m′ =
∏
`m
′
` where each m′` divides m`, i.e., they are both powers of the same prime

(though possibly m′` = 1). Then the powerful Z-basis of R′ is defined as ~p ′ =
⊗

` ~pm′` , where the power
bases ~pm′` are defined as above. Notice that when m′` > 1, there is a bijective correspondence between
j ∈ [ϕ(m`)] and (j′, k) ∈ [ϕ(m′`)] × [m`/m

′
`], via j = (m`/m

′
`)j
′ + k. Therefore, the power bases ~pm`

factor as

~pm`
= ~pm′` ⊗

~b`, where~b` =

{(
ζkm`

)
k∈[m`/m

′
`]

if m′` > 1

~pm`
if m′` = 1.

Hence, using the commutativity of the Kronecker product (up to some permutation) we can factor the
powerful basis ~p of R as

~p = ~p ′ ⊗~b, where~b =
⊗

`
~b`. (2.6)

6To be completely formal, the Gaussians should be over continuous spaces of the form K ⊗Q R; see [16].
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Because ~p ′ is a Z-basis of R′, it follows that~b is an R′-basis of R. We next calculate the matrix B ∈ Cn×n
induced by~b, and verify that it indeed satisfies the claims in the lemma statement.

Following [16, Section 3], for any prime power m̃ we define CRTm̃ to be the complex ϕ(m̃)-by-ϕ(m̃)
matrix with ωi·jm̃ in its ith row and jth column, for i ∈ Z∗m̃ and j ∈ [ϕ(m̃)]. Using the prime-power
factorizations of our m,m′, we define CRTm =

⊗
` CRTm`

and CRTm′ =
⊗

` CRTm′`
. Then up to a

permutation of the rows (determined by the CRT correspondence between Z∗m and
∏
` Z∗m`

), we have

σ(~p T ) = CRTm,

i.e., the columns of CRTm are σ(pj) for each entry pj of the row vector ~p T . In particular, σ(〈~c, ~p〉) =
CRTm · ~c for any ~c ∈ Qn. Similarly, σ′((~p ′)T ) = CRTm′ up to a row permutation.

We now claim that, up to some permutations of B’s rows and columns,

B = CRTm ·
(
CRT−1

m′ ⊗ In/n′
)

=
⊗

`

(
CRTm`

·
(
CRT−1

m′`
⊗ Iϕ(m`)/ϕ(m′`)

))
, (2.7)

where the second equality follows by the mixed-product property and the commutativity (up to row and
column permutations) of the Kronecker product. To see the first equality, notice that for any ~a ∈ K ′(n/n′)
defining a = 〈~a,~b〉 ∈ K, the matrix (CRT−1

m′ ⊗ I) maps from (a suitable permutation of) the concatenated
embeddings σ′(~a), to a vector ~c ∈ Zn of coefficients such that ~a = 〈~c, ~p ′ ⊗ In/n′〉. In addition,

a = 〈~a,~b〉 = ~c T · (~p ′ ⊗ In/n′) ·~b = 〈~c, ~p ′ ⊗~b〉 = 〈~c, ~p〉.

Therefore, σ(a) = CRTm · ~c = CRTm · (CRT−1
m′ ⊗ I) · σ′(~a), as desired.

Now, by the last expression in Equation (2.7), and because singular values are multiplicative under
the Kronecker product, from now on we drop all the ` subscripts, and assume without loss of generality
that m and m′ are powers of the same prime p (where possibly m′ = 1). We analyze the singular values
of CRTm(CRT−1

m′ ⊗ I), for the cases m′ = 1 and m′ > 1. In the first case, clearly CRTm′ = I1, and it is
shown in [16, Section 4] that the largest singular value of CRTm is

√
m/2 if m is even and

√
m otherwise,

and its smallest singular value is
√
m/p.

For the case m′ > 1, it follows from the decompositions given in [16, Section 3] that, up to some row
permutation,

CRTm =
√
m/p ·Q · (CRTp ⊗ Im/p)

for some unitary matrix Q, and similarly for CRTm′ . Then a routine calculation using elementary properties
of the Kronecker product reveals that CRTm(CRT−1

m′ ⊗ I) is some unitary matrix scaled by a
√
m/m′ factor,

so all its singular values are
√
m/m′. This completes the proof of Lemma 2.6.

2.2 Homomorphic Cryptosystems

In ring-LWE-based cryptosystems for arbitrary cyclotomics [16] (generalizing those of [15, 4, 3]), the
plaintext space is Rp for some integer p ≥ 2 that is coprime with all the odd primes dividing m. We assume
that p is prime, which is without loss of generality by the Chinese Remainder Theorem. Ciphertexts are
elements of (R∨q )2 for some integer q that is coprime with p, and the secret key is some s ∈ R. A ciphertext
c = (c0, c1) ∈ (R∨q )2 that encrypts a plaintext b ∈ Rp with respect to s satisfies the decryption relation

c0 + c1 · s = e (mod qR∨) (2.8)
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for some sufficiently short e ∈ R∨ such that t · e = b (mod pR). (Recall that R∨ = t−1R for some t ∈ R,
so t · e ∈ R.) We refer to e as the noise of the ciphertext. Throughout this work we implicitly assume that the
modulus q is large enough relative to ‖e‖, so that [c0 +c1 ·s]q = e ∈ R∨ (see Section 2.1.4 above). Therefore,
the decryption algorithm can simply compute e and output t · e mod pR. As shown in [4, 3, 16], this system
(augmented by some additional public values, for greater efficiency) supports additive and multiplicative
homomorphisms.

3 The Field-Switching Procedure

Our procedure performs the following operation. Given a big-field ciphertext c ∈ (R∨q )2 that encrypts a
plaintext b ∈ Rp with respect to a big-ring secret key s ∈ R, and a description of an R′-linear function
L : Rp → R′p to apply to the plaintext (where recall that p and p′ are the radicals of p inR andR′, respectively),
it outputs a small-field ciphertext c′ ∈ (R′∨q )2 that encrypts b′ = L(b) ∈ R′p′ with respect to some small-ring
secret key s′ ∈ R′. (Recall that Corollary 2.5 characterizes how L corresponds to the induced function
L̄ : Ff → F′f ′ that is applied to the vector of finite field elements encoded by b.)

The procedure consists of the following three steps:

1. Switch to a small-ring secret key. We use the key-switching method from [5, 3, 16] to produce a
ciphertext which is still over the big field K and encrypts the same plaintext b ∈ Rp, but with respect
to a secret key s′ ∈ R′ ⊆ R belonging to the small subring.

2. Multiply by an appropriate (short) scalar. We multiply the components of the resulting ciphertext
by a short element r ∈ R that corresponds to the desired R′-linear function to be applied to the input
plaintext b.

3. Map to the small field. We map the resulting big-field ciphertext (over R∨q ) to a small-field ciphertext
(over R′∨q ) simply by taking the trace TrK/K′ of its two components. The resulting ciphertext will still
be with respect to the small-ring secret key s′ ∈ R′, but will encrypt the plaintext b′ = L(b) ∈ R′p′ .

Note that Steps 2 and 3 can be repeated multiple times on the same ciphertext (from Step 1), to apply
several different R′-linear functions. In this way, the entire input plaintext can be preserved, but in a
decomposed form.

3.1 Step 1: Switching to a Small-Ring Secret Key

To switch to a small-field secret key, we publish a “key-switching hint,” which essentially encrypts the
big-ring secret key s ∈ R under the small-ring key s′ ∈ R′, using ciphertexts over the big field. Note that
encrypting s under a small-ring secret key s′ has security implications, since the dimension of the underlying
RLWE problem is smaller. In our case, though, the ultimate goal is to switch to a ciphertext over the smaller
field, so we will not lose any additional security by publishing the hint. Indeed, we show below that assuming
the hardness of the decision RLWE problem in the small field, the key-switching hint reveals nothing about
the big-ring secret key. The essence of that claim is Lemma 3.1 below, which says (informally) that RLWE in
the big field, with secret chosen in the small ring R′ ⊆ R, is no easier than RLWE in the small field.

Ring-LWE. The ring-LWE (RLWE) problem [15] (in K) with continuous error is parameterized by a
modulus q, a “secret distribution” υ over R, and an “error distribution” ψ over K, which is usually a
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Gaussian (in the canonical embedding) and is therefore concentrated on short elements.7 For s ∈ R, define
the distribution As,ψ that is sampled by choosing α ∈ R∨q uniformly at random, choosing ε ← ψ, and
outputting the pair (α, β = α · s+ ε mod qR∨) ∈ R∨q ×K/qR∨. One equivalent form of the (average-case)
decision RLWEq,ψ,υ problem (in K) is, given some ` pairs (αi, βi) ∈ R∨q ×K/qR∨, distinguish between the
following two cases: in one case, the pairs are chosen independently from As,ψ for a random s← υ (which
remains the same for all samples); in the other case, the pairs are all independent and uniformly random over
R∨q ×K/qR∨. For appropriate parameters q, ψ, υ and `, solving this decision problem with non-negligible
distinguishing advantage is as hard as approximating the shortest vector problem on ideal lattices in R, via a
quantum reduction. See [15, 16] for precise statements and further details.

Let~b ∨ = (b∨j )j∈[n/n′] be any R′∨-basis of R∨, and hence a K ′-basis of K. Then for any error distribu-
tion ψ′ over K ′, we can define an error distribution ψ over K as ψ = 〈ψ′(n/n′),~b ∨〉, i.e., a sample from ψ is
generated by choosing independent εj ← ψ′ (for j ∈ [n/n′]) and outputting ε =

∑
j εjb

∨
j ∈ K.

Lemma 3.1. Let ψ′ be an error distribution over K ′, and let ψ = 〈ψ′(n/n′),~b ∨〉 be the error distribution
over K as described above. If the decision RLWEq,ψ′,υ′ problem (in K ′) is hard for some distribution υ′

over R′ ⊆ R, then the decision RLWEq,ψ,υ′ problem (in K) is also hard.

Although the lemma holds for any R′∨-basis of R∨, it is most useful with a basis having “good geometric
properties.” Specifically, in our case we need the property that if ψ′ is concentrated on short elements of
K ′, then ψ is similarly concentrated on short elements of K. Such a basis~b ∨ is constructed in Lemma 2.6
of Section 2.1.5. For example, if ψ′ is a continuous (spherical) Gaussian with parameter s and r =
rad(m)/ rad(m′) = 1, then ψ′ is a spherical Gaussian with parameter s

√
m′/m = s

√
n′/n.8

Proof. It suffices to give an efficient, deterministic reduction that takes n/n′ pairs (αj , βj) ∈ R′∨q ×K ′/qR′∨
and outputs a single pair (α, β) ∈ R∨ × K/qR∨, with the following properties: if the pairs (αj , βj) are
i.i.d. according to As′,ψ′ for some s′ ∈ R′, then (α, β) is distributed according to As,ψ; and if the pairs
(αj , βj) are independent and uniformly random, then (α, β) is uniformly random. The reduction simply
outputs (α = 〈~α,~b ∨〉, β = 〈~β,~b ∨〉), where ~α = (αj)j and ~β = (βj)j .

Since~b ∨ is an R′∨-basis of R∨ and hence an R′∨q -basis of R∨q , it is immediate that the reduction maps
the uniform distribution to the uniform distribution. On the other hand, if the samples (αjβj) are drawn from
As′,ψ′ , i.e, βj = αj · s′ + εj mod qR′∨ for εj ← ψ, then α is still uniformly random, and

β = 〈~β,~b ∨〉 = 〈~α,~b ∨〉 · s′ + 〈~ε,~b ∨〉 = α · s′ + ε (mod qR∨),

where ~ε = (εj)j and ε has distribution ψ. This completes the proof.

Key switching. In [5, 3, 16] it is shown how, given an s ∈ R and sufficiently many RLWE samples (overK)
with short noise and any secret s′ ∈ R, it is possible to generate a “key-switching hint” with the following
functionality: given the hint and any valid ciphertext c (over K) encrypted under s and with sufficiently short
noise, it is possible to efficiently generate a ciphertext c′ (also over K) with short noise encrypted under s′.
Moreover, the hint is indistinguishable from uniformly random over its domain (even given s), assuming that
the RLWE samples are.

7Again, to be completely formal, a Gaussian should be defined over KR; see Footnote 6.
8Note that the factor

√
n′/n ≤ 1 does not really amount to any effective decrease in the noise, because the “sparsity” of R′∨

versus R∨ is greater by a corresponding factor.
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For our transformation, we apply Lemma 3.1 using the “good basis”~b ∨ from Lemma 2.6, thus obtaining
RLWE samples over K relative to the secret s′ ∈ R′ ⊆ R, with noise distribution ψ which is concentrated on
short vectors, and with security based on the hardness of RLWEq,ψ′,υ′ problem in K ′. We then construct the
key-switching hint from these samples as described in [16, Section 8.3],

3.2 Steps 2 and 3: Mapping to the Small Field

Our goal now is to transform a valid big-field ciphertext c = (c0, c1) ∈ (R∨q )2, which encrypts some b ∈ Rp

with respect to some secret key s′ ∈ R′ ⊆ R, into a small-field ciphertext c′ = (c′0, c
′
1) ∈ (R′∨q )2 that

encrypts the related plaintext b′ = L(b) with respect to the same secret key s′, where L : Rp → R′p′ is any
desired R′-linear function.

The process works as follows:

1. Since L is R′-linear, by the discussion at the end of Section 2.1.3 and in Section 2.1.4, we can find
some r∨ ∈ t′R∨ such that L(a) = TrK/K′(r

∨ · a) mod p′.

2. We then find a short representative r ∈ (t/t′)r∨ + pR ∈ Rp, using a “good” basis of pR (i.e., one that
has small singular values under σ, e.g., the “powerful” basis as constructed in Section 2.1.5).

The chosen r defines the R′-linear function L∨ : R∨ → R′∨ of the form L∨(a∨) = TrK/K′(r · a∨),
whose induced function from R∨p to R′∨p′ satisfies

t′ · L∨(a∨) = L(t · a∨) (mod p′). (3.1)

3. We obtain our small-field ciphertext by applying L∨ (or more precisely, the induced function from R∨q
to R′∨q ) to c0, c1, setting

c′i = L∨(ci) = TrK/K′(r · ci) ∈ R′∨q , i = 0, 1.

Lemma 3.2. The ciphertext c′ = (c′0, c
′
1) is an encryption of b′ = L(b) ∈ R′p′ under secret key s′ ∈ R′,

with noise e′ = L∨(e) ∈ R′∨ of length ‖e′‖ ≤ ‖e‖ · ‖r‖∞ ·
√
n/n′, where e is the noise in the original

ciphertext c.

We note that the factor
√
n/n′ in the bound on ‖e′‖ does not actually amount to any effective increase in

the noise, because the dimension has decreased by a corresponding factor, and hence the size of e′ relative
toR′∨ remains the same as that of e relative toR∨. More precisely, the original ciphertext c decrypts correctly
if q > 2

√
n‖e‖, whereas c′ decrypts correctly if q > 2

√
n′‖e′‖ (see Section 2.1.4). Therefore, the only

practical increase in the noise is due solely to ‖r‖∞.

Proof. We need to show three things: that ‖e′‖ is bounded as claimed, that c′0 + c′1 · s = e′ (mod qR′∨), and
that t′ · e′ = b′ = L(b) (mod p′).

1. The first claim follows immediately by Corollary 2.2 and the inequality ‖r · e‖ ≤ ‖r‖∞ · ‖e‖.

2. For the second claim, recall that c0 + c1 · s = e (mod qR∨). Then because the induced function
L∨ : R∨q → R′∨q is R′-linear and s′ ∈ R′, we have

c′0 + c′1 · s′ = L∨(c0 + c1 · s′) = L∨(e) = e′ (mod R′∨q ).

3. For the last claim, because t · e = b mod pR and by Equation (3.1), we have

t′ · e′ = t′ · L∨(e) = L(t · e) = L(b) (mod p′).
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3.3 Applying the Field-Switching Procedure

A typical application of the field-switching procedure during homomorphic evaluation of some circuit will
begin with a big-field ciphertext that encrypts an array of plaintext values in the subfield F′, as embedded
in F.9 The above procedure is then applied to decompose the ciphertext into a number of small-field
ciphertexts, each encrypting a subset of the plaintext values. Since big-field ciphertexts have room for f
plaintext elements, but small-field ciphertexts can only hold f ′ elements, we may need up to f/f ′ small-field
ciphertexts to hold all the plaintext values that we are interested in. That is, we apply our field-switching
transformation using the f ′-fold concatenations L̄f

′

i of the F′-linear selection functions L̄i : Ff/f
′ → F′,

i ∈ [f/f ′], where L̄i just selects the ith value (in F′).10

Referring to Figure 1 for an example, the big-field ciphertext holds (up to) six plaintext values, and each
small-field ciphertext can hold two values, with the big-field plaintext “slots” corresponding to p1, p15, p22

lying over the small-field plaintext slot of p′1, and the big-field slots corresponding to p3, p17, p31 lying over
the small-field plaintext slot of p′3. Then we can produce three small-field ciphertexts, using the three selection
functions

(x1, x15, x22, x3, x17, x31) 7→ ( x1 , x3 ),
(x1, x15, x22, x3, x17, x31) 7→ (x15 , x17),
(x1, x15, x22, x3, x17, x31) 7→ (x22 , x31).
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Abstract 
Accellerating the development of a practical Fully 
Homomorphic Encryption (FHE) scheme is the goal of the 
DARPA PROCEED program. For the past year, this 
program has had as its focus the acceleration of various 
aspects of the FHE concept toward practical 
implementation and use. FHE would be a game-changing 
technology to enable secure, general computation on 
encrypted data, e.g., on untrusted off-site hardware. 
However, FHE will still require several orders of magnitude 
improvement in computation before it will be practical for 
widespread use.  

Recent theoretical breakthroughs demonstrated the 
existence of FHE schemes [1, 2], and to date much progress 
has been made in both algorithmic and implementation 
improvements. Specifically our contribution to the Proceed 
program has been the development of FPGA based 
hardware primitives to accelerate the computation on 
encrypted data using FHE based on lattice techniques [3]. 
Our project, SIPHER, has been using a state of the art tool-
chain developed by Mathworks to implement VHDL code 
for FPGA circuits directly from Simulink models. Our 
baseline Homomorphic Encryption prototypes are 
developed directly in Matlab using the fixed point toolbox 
to perform the required integer arithmetic. Constant 
improvements in algorithms require us to be able to quickly 
implement them in a high level language such as Matlab. 
We reported on our initial results at HPEC 2011 [4]. In the 
past year, increases in algorithm complexity have 
introduced several new design requirements for our FPGA 
implementation. This report presents new Simulink 
primitives that had to be developed to deal with these new 
requirements. 

A review of Fully and Somewhat 
Homomorphic Encryption 
Fully Homomorphic Encryption (FHE) holds the promise to 
securely run arbitrary computations over encrypted data on 
untrusted computation hosts [2].  The general FHE concept 
of operations is that sensitive data is encrypted with a 
public key, then sent to an untrusted computation host, 
which can perform arbitrary computations on the encrypted 
data without first needing to decrypt it.  It has been shown 
to be theoretically possible to evaluate arbitrary programs 
using just two special purpose FHE operations, EvalAdd 
and EvalMult, which at the simplest level, roughly 
correspond to bitwise XOR and AND gates operating on 
encrypted bits.  A sequence of these operations is run 
against the encrypted data, resulting in an encryption of the 

output of the original program run on the unencrypted data. 
This encrypted result can then be sent back to the original 
client, who decrypts the result using its secret key.  The 
encrypted data is protected at all times with reasonable 
security guarantees based on computational hardness 
results.   

A ‘Fully’ Homomorphic Encryption scheme allows and 
unlimited number of these Eval operations to be performed. 
All known FHE schemes are based on computationally hard 
stochastic lattice theory problems, which add some noise 
with each operation and require a very computationally 
expensive “recryption” operation that is periodically run on 
intermediate ciphertexts to keep the noise at a level that still 
permits decryption. A ‘Somewhat’ Homomorphic scheme, 
on the other hand, supports several (but not unlimited) 
EvalMult and EvalAdd operations while preserving the 
correctness of decryption. In other words, SHE can schemes 
support secure computation for only a small subset of 
programs.  By focusing on an SHE scheme, we can direct 
our research towards the implementation of efficient 
hardware primitives, while the FHE community develops 
more efficient recryption algorithms.  

Recent Developments in the SIPHER SHE 
Scheme 
Our current SHE scheme relies on operations that are 
generally inefficient to implement on standard CPU 
architectures (i.e. modular arithmetic with a large modulus). 
The EvalAdd and EvalMult operations for example are 
element wise vector adds and multiplies taken modulo some 
particular prime integer q.  These are trivial to express 
using Matlab:  c = mod(a+b, q) and c = mod(a.*b, q).   

For convenience most of the previously published SHE and 
FHE implementations have used standard tools such as the 
GNU  Multiple Precision Arithmetic Library (GMP) [5], 
which enable researchers to code operations using very 
large integers. This limits their focus to operations on CPUs 
and does not allow them to take advantage of specialized 
parallel computation hardware like FPGAs which provide 
highly cost-effective parallelism. Our approach to 
developing the FPGA code for implementing EvalAdd and 
EvalMult is to develop arithmetic circuits that will achieve 
high throughput by using parallelism and pipelining on the 
FPGA. 

We initially develop prototype descriptions in Matlab that 
we re-implement in a stream-oriented hardware 
implementable manner in Simulink. The results of the 
implementations are compared to verify correctness. A 
conversion from Simulink to VHDL is done in a completely 
automated fashion using Mathwork’s HDL coder.  This tool 
chain provides us the means to develop our primitives, 
including cyclic VHDL based FPGA prototyping, much 

Sponsored by Air Force Research Laboratory (AFRL) Contract No. 
FA8750-11-C-0098. The views expressed are those of the authors and 
do not reflect the official policy or position of the Department of 
Defense or the U.S. Government. Distribution Statement “A”

Approved for Public Release; Distribution Unlimited.
157



faster than traditional methods. Some examples of 
efficiency are: 

1. The Matlab and Simulink Models are driven with 
the same fixed point data variables, and generate 
the same format output, simplifying test and 
comparison 

2. The bit width of the circuits is specified at compile 
time by specifying the bit width of the input data. 
The sizing of intermediate mathematical 
operations is done automatically by the fixed point 
toolbox. Thus many of the same models can be 
used for 8 bit or 64 bit inputs.  

3. The resulting VHDL is vendor independent. This 
allows for rapid benchmarking on multiple 
architectures. However, hand optimization of 
VHDL may be required for optimum performance 
in order to take advantage of vendor specific IP. 

Implementing fast modulo add, subtract and 
multiply in Simulink for HDL generation 
Software implementations of modulus usually use some 
form of trial division to determine the remainder operation. 
Implementing modulus integers with large numbers of bits 
in an efficient manner requires the use of special numerical 
algorithms that have been developed, such as the 
Montgomery Reduction [6]. These algorithms avoid 
division by q, but rather scale the integers so that many of 
the divisions can be performed by a power of 2, requiring 
only simple bit shifts. Our SHE requires circuits for fast 
modulo addition and multiplication (to directly implement 
the EvalAdd and EvalMult mentioned above). In addition, 
our scheme relies heavily on the Chinese Remainder 
Transform (CRT), which can be implemented as an 
EvalMult, followed by an FFT [7] that uses modulo integer 
instead of complex arithmetic. The implementation of the 
FFT requires us to perform a standard radix 2 ‘Butterfly’ 
operation, which uses one addition, one subtraction and one 
multiply, all modulo q. Thus we need to implement a 
modulo subtraction as well as addition. 

Initially, our selection of lattice based HE led to looking at 
relatively modest sized modulus, on the order of twenty 
bits. An implementation of Montgomery Reduction based 
arithmetic would be relatively efficient, requiring hardware 

multipliers on the order of 40 bits. However, later research 
showed that for any reasonable security requirements our 
SHE scheme would need O(64) bits for our modulus.  Our 
implementation of Montgomery arithmetic in Simulink 
required us to double our bit width to represent intermediate 
values represented in Montgomery form. We found that 
there is an intrinsic limitation of 128 bit width in Simulink 
even when using the fixed point toolbox. This meant that 
we could not compile our multipliers for bit widths on the 
order of 64 bits.  

Additionally, our early arithmetic models were all designed 
for a single value of modulus q to be used for all operations.  
During the development of our SHE scheme we found that 
using multiple values of related moduli resulted in more 
efficient implementations. Thus our circuits would need to 
operate with multiple (but not unlimited) values of q. As a 
response to this we eliminated Montgomery arithmetic and 
take a simpler approach to modulo addition and subtraction. 

 Figure 1 shows the Matlab code and resulting Simulink 
block for performing a streaming EvalAdd when the inputs 
are constrained to be less than a given modulus q.  The 
model can operate on one pair of inputs every clock cycle. 
The model shown does not have any additional pipeline 
registers for simplicity, but they can be added to the model 
in order to increase the maximum clock speed of the 
resulting VHDL, at a cost of additional pipeline stages. In 
our applications we expect to process streams of input on 
the order of several thousand entries, so this additional 
pipeline latency is trivial.   

Figure 2 shows the Matlab and resulting Simlink block for 
modulo subtraction. The same comments about pipelining 
the circuit apply. 

Modulo multiplication is a much more complicated 
operation, even if the input multiplier and multiplicand are 
bounded by q.  Furthermore, we determined in our earlier 
work that the VHDL code generated by Simulink for large 
multiplications is not automatically pipelined, so the 
resulting multiplies severely restrict the resulting clock 
rates of the circuits. To address these two constraints, we 
adopted a recently developed interleaved modular 
multiplication based on a generalized Barrett reduction [8].  
This multiplier has the following properties: 

1) Long words of bit length L can be represented by n 

 
Figure 1: Internal Structure of Simulink HDL ready Modulo Add primitive. 
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smaller words of bit length S (i.e. four 16 bit 
words to represent a 64 bit modulus). 

2) The multiplication is performed in n stages, where
each stage performs one modulo multiplication
that is L+S bits long. The stage can be pipelined to
perform one modulo multiply per clock cycle.

3) Each stage has a Barrett modulus performed on the
partial product, which reduces overall bit growth
of the partial products to L+S. Each stage requires
3 multiplies, and all divisions required by the
Barrett algorithm are implemented as simple bit
shifts.

4) One circuit can support multiple moduli. All
parameters that are specific to a given modulus can
be stored in a table and indexed.

Figure 3 shows the structure of our resulting multiplier for a 
two stage operation (i.e. L = 2S). Figure 4 shows the model 
for a single stage in the pipeline. All stages use the same 
model.  Again, internal pipelining in the stage is not shown. 

Implementing fast CRT in Simulink for HDL 

generation 
As mentioned earlier, our scheme uses the CRT, which 
relies heavily on modulo arithmetic. We have developed a 
Simulink model for performing a fast CRT, based on the 
primitives discussed above.  We implemented one of the 
standard pipeline decimation in frequency FFT 
architectures, known as the Radix 2, Multiplath Delay 
Commutator [7].  The fundamental structure of the model is 
identical for a complex version that computes the standard 
FFT, and the modulo arithmetic version that computes the 
FFT portion of our CRT. The only difference is in the 
Simulink Model that implements the radix 2 butterfly. 

Figure 3 shows the structure of this pipelined CRT. The 
design trades off area for processing speed. For an N point 
transform, log2(N) radix 2 Butterflies are required (though 
the last butterfly does not require multiplies). Additionally, 
3/2N-2 delay elements are required. The data needs to be 
presented to the circuit in two parallel streams, and the 
resulting output is in bit reverse order. 

We are currently in the process of analyzing the 
performance of this circuit, and determining the size CRT 
operation that can be fit into our candidate FPGA 
architecture.  Our analysis has shown that for high security 
applications we may need to perform CRT operations on 
vectors of up to 214 in length. For such large vector sizes, an 
alternative design approach may be necessary in order to fit 
the circuit within the FGPA. 

Interim Results 
Our presentation will include examples of our primitives 
coded in Matlab and Simulink and examples of VHDL code 
generated by the HDL coder. We will also be able to show 
timing results from Modelsim based simulations of the 
resulting code., as well as actual timings using a Virtex 6 on 
the Xilinx ML605  evaluation board 
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Abstract

We provide the first constructions of identity-based (injective) trapdoor functions. Furthermore,
they are lossy. Constructions are given both with pairings (DLIN) and lattices (LWE). Our lossy
identity-based trapdoor functions provide an automatic way to realize, in the identity-based setting,
many functionalities previously known only in the public-key setting. In particular we obtain the first
deterministic and efficiently searchable IBE schemes and the first hedged IBE schemes, which achieve
best possible security in the face of bad randomness. Underlying our constructs is a new definition,
namely partial lossiness, that may be of broader interest.
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2 Horst Görtz Institut für IT-Sicherheit, Ruhr-Universität Bochum, D-44780 Bochum. Email: eike.kiltz@rub.de.
URL: http://www.cits.rub.de/personen/kiltz.html.

3 School of Computer Science, College of Computing, Georgia Institute of Technology, 266 Ferst Drive, Atlanta, GA
30332-0765. Email: cpeikert@cc.gatech.edu. URL: http://www.cc.gatech.edu/~cpeikert/.

4 Department of Computer Science, University of Texas at Austin, 1616 Guadalupe, Suite 2.408, Austin, TX 78701.
Email: bwaters@cs.utexas.edu. URL: http://userweb.cs.utexas.edu/~bwaters/.

Approved for Public Release; Distribution Unlimited.
161



1 Introduction

A trapdoor function F specifies, for each public key pk , an injective, deterministic map Fpk that can be
inverted given an associated secret key (trapdoor). The most basic measure of security is one-wayness.
The canonical example is RSA [55].

Suppose there is an algorithm that generates a “fake” public key pk∗ such that Fpk∗ is no longer
injective but has image much smaller than its domain and, moreover, given a public key, you can’t tell
whether it is real or fake. Peikert and Waters [52] call such a TDF lossy. Intuitively, Fpk is close to a
function Fpk∗ that provides information-theoretic security. Lossiness implies one-wayness [52].

Lossy TDFs have quickly proven to be a powerful tool. Applications include IND-CCA [52], de-
terministic [16], hedged [8] and selective-opening secure public-key encryption [10]. Lossy TDFs can be
constructed from DDH [52], QR [35], DLIN [35], DBDH [24], LWE [52] and HPS (hash proof systems) [40].
RSA was shown in [44] to be lossy under the Φ-hiding assumption of [26], leading to the first proof of
security of RSA-OAEP [13] without random oracles.

Lossy TDFs and their benefits belong, so far, to the realm of public-key cryptography. The purpose
of this paper is to bring them to identity-based cryptography, defining and constructing identity-based
TDFs (IB-TDFs), both one-way and lossy. We see this as having two motivations, one more theoretical,
the other more applied, yet admittedly both foundational, as we discuss before moving further.

Theoretical angle. Trapdoor functions are the primitive that began public key cryptography [31, 55].
Public-key encryption was built from TDFs. (Via hardcore bits.) Lossy TDFs enabled the first DDH
and lattice (LWE) based TDFs [52].

It is striking that identity-based cryptography developed entirely differently. The first realizations of
IBE [21, 30, 58] directly used randomization and were neither underlain by, nor gave rise to, any IB-TDFs.

We ask whether this asymmetry between the public-key and identity-based worlds (TDFs in one
but not the other) is inherent. This seems to us a basic question about the nature of identity-based
cryptography that is worth asking and answering.

Application angle. Is there anything here but idle curiosity? IBE has already been achieved without
IB-TDFs, so why go backwards to define and construct the latter? The answer is that losssy IB-TDFs
enable new applications that we do not know how to get in other ways.

Stepping back, identity-based cryptography [59] offers several advantages over its public-key coun-
terpart. Key management is simplified because an entity’s identity functions as their public key. Key
revocation issues that plague PKI can be handled in alternative ways, for example by using identity+date
as the key under which to encrypt to identity [21]. There is thus good motivation to go beyond ba-
sics like IBE [21, 30, 58, 17, 18, 62, 36] and identity-based signatures [11, 32] to provide identity-based
counterparts of other public-key primitives.

Furthermore we would like to do this in a systematic rather than ad hoc way, leading us to seek
tools that enable the transfer of multiple functionalities in relatively blackbox ways. The applications of
lossiness in the public-key realm suggest that lossy IBTDFs will be such a tool also in the identity-based
realm. As evidence we apply them to achieve identity-based deterministic encryption and identity-
based hedged encryption. The first, the counterpart of deterministic public-key encryption [7, 16], allows
efficiently searchable identity-based encryption of database entries while maintaining the maximal possible
privacy, bringing the key-management benefits of the identity-based setting to this application. The
second, counterpart of hedged symmetric and public-key encryption [56, 8], makes IBE as resistant as
possible in the face of low-quality randomness, which is important given the widespread deployment of
IBE and the real danger of bad-randomness based attacks evidenced by the ones on the Sony Playstation
and Debian Linux. We hope that our framework will facilitate further such transfers.

We clarify that the solutions we obtain are not practical but they show that the security goals can be
achieved in principle, which was not at all clear prior to our work. Allowed random oracles, we can give
solutions that are much more efficient and even practical.

1
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Contributions in brief. We define IB-TDFs and two associated security notions, one-wayness and
lossiness, showing that the second implies the first.

The first wave of IBE schemes was from pairings [21, 58, 17, 18, 62, 61] but another is now emerging
from lattices [36, 29, 2, 3]. We aim accordingly to reach our ends with either route and do so successfully.
We provide lossy IB-TDFs from a standard pairings assumption, namely the Decision Linear (DLIN)
assumption of [19]. We also provide IB-TDFs based on Learning with Errors (LWE) [53], whose hardness
follows from the worst-case hardness of certain lattice-related problems [53, 50]. (The same assumption
underlies lattice-based IBE [36, 29, 2, 3] and public-key lossy TDFs [52].) None of these results relies on
random oracles.

Existing work brought us closer to the door with lattices, where one-way IB-TDFs can be built by
combining ideas from [36, 29, 2]. Based on techniques from [50, 45] we show how to make them lossy.
With pairings, however it was unclear how to even get a one-way IB-TDF, let alone one that is lossy. We
adapt the matrix-based framework of [52] so that by populating matrix entries with ciphertexts of a very
special kind of anonymous IBE scheme it becomes possible to implicitly specify per-identity matrices
defining the function. No existing anonymous IBE has the properties we need but we build one that does
based on methods of [23]. Our results with pairings are stronger because the lossy branches are universal
hash functions which is important for applications.

Public-key lossy TDFs exist aplenty and IBE schemes do as well. It is natural to think one could
easily combine them to get IB-TDFs. We have found no simple way to do this. Ultimately we do draw
from both sources for techniques but our approaches are intrusive. Let us now look at our contributions
in more detail.

New primitives and definitions. Public parameters pars and an associated master secret key having
been chosen, an IB-TDF F associates to any identity a map Fpars ,id , again injective and deterministic,
inversion being possible given a secret key derivable from id via the master secret key. One-wayness means
Fpars ,id∗ is hard to invert on random inputs for an adversary-specified challenge identity id∗. Importantly,
as in IBE, this must hold even when the adversary may obtain, via a key-derivation oracle, a decryption
key for any non-challenge identity of its choice [21]. This key-derivation capability contributes significantly
to the difficulty of realizing the primitive. As with IBE, security may be selective (the adversary must
specify id∗ before seeing pars) [28] or adaptive (no such restriction) [21].

The most direct analog of the definition of lossiness from the public-key setting would ask that there
be a way to generate “fake” parameters pars∗, indistinguishable from the real ones, such that Fpars∗,id∗ is
lossy (has image smaller than domain). In the selective setting, the fake parameter generation algorithm
Pg∗ can take id∗ as input, making the goal achievable at least in principle, but in the adaptive setting it
is impossible to achieve, since, with id∗ not known in advance, Pg∗ is forced to make Fpars∗,id lossy for
all id , something the adversary can immediately detect using its key-derivation oracle.

We ask whether there is an adaptation of the definition of lossiness that is achievable in the adaptive
case while sufficing for applications. Our answer is a definition of δ-lossiness, a metric of partial lossiness
parameterized by the probability δ that Fpars∗,id∗ is lossy. The definition is unusual, involving an adversary
advantage that is the difference, not of two probabilities as is common in cryptographic metrics, but of
two differently weighted ones. We will achieve selective lossiness with degree δ = 1, but in the adaptive
case the best possible is degree 1/poly with the polynomial depending on the number of key-derivation
queries of the adversary, and this what we will achieve. We show that lossiness with degree δ implies
one-wayness, in both the selective and adaptive settings, as long as δ is at least 1/poly.

In summary, in the identity-based setting (ID) there are two notions of security, one-wayness (OW)
and lossiness (LS), each of which could be selective (S) or adaptive (A), giving rise to four kinds of IB-
TDFs. The left side of Figure 1 shows how they relate to each other and to the two kinds of TDFs —OW
and LS— in the public-key setting (PK). The un-annotated implications are trivial, ID-LS-A → ID-LS-S
meaning that δ-lossiness of the first type implies δ-lossiness of the other for all δ. It is not however via
this implication that we achieve ID-LS-S, for, as the table shows, we achieve it with degree higher than
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ID-LS-A ID-OW-A

ID-LS-S ID-OW-S

PK-LS PK-OW

Th 3.2

Th 3.2

[52]

Primitive δ Achieved under

ID-LS-A 1/ poly DLIN, LWE
ID-LS-S 1 DLIN, LWE

Figure 1: Types of TDFs based on setting (PK=Public-key, ID=identity-based), security (OW=one-way, LS=loss)
and whether the latter is selective (S) or adaptive (A). An arrow A → B in the diagram on the left means that
TDF of type B is implied by (can be constructed from) TDF of type A. Boxed TDFs are the ones we define and
construct. The table on the right shows the δ for which we prove δ-lossiness and the assumptions used. In both
the S and A settings the δ we achieve is best possible and suffices for applications.

ID-LS-A.

Closer Look. One’s first attempt may be to build an IB-TDF from an IBE scheme. In the random
oracle (RO) model, this can be done by a method of [9], namely specify the coins for the IBE scheme by
hashing the message with the RO. It is entirely unclear how to turn this into a standard model construct
and it is also unclear how to make it lossy.

To build ID-TDFs from lattices we consider starting from the public-key TDF of [52] (which is already
lossy) and trying to make it identity-based, but it is unclear how to do this. However, Gentry, Peikert and
Vaikuntanathan (GPV) [36] showed that the function gA : Bn+m

α → Z
n
q defined by gA(x, e) = AT · x+ e

is a TDF for appropriate choices of the domain and parameters, where matrix A ∈ Z
n×m
q is a uniformly

random public key which is constructed together with a trapdoor as for example in [4, 5, 46]. We
make this function identity-based using the trapdoor extension and delegation methods introduced by
Cash, Hofheinz, Kiltz and Peikert [29], and improved in efficiency by Agrawal, Boneh and Boyen [2] and
Micciancio and Peikert [46]. Finally, we obtain a lossy IB-TDF by showing that this construction is
already lossy.

With pairings there is no immediate way to get an IB-TDF that is even one-way, let alone lossy. We
aim for the latter, there being no obviously simpler way to get the former. In the selective case we need
to ensure that the function is lossy on the challenge identity id∗ yet injective on others, this setup being
indistinguishable from the one where the function is always injective. Whereas the matrix diagonals in
the construction of [52] consisted of ElGamal ciphertexts, in ours they are ciphertexts for identity id∗

under an anonymous IBE scheme, the salient property being that the “anonymity” property should hide
whether the underlying ciphertext is to id∗ or is a random group element. Existing anonymous IBE
schemes, in particular that of Boyen and Waters (BW) [23], are not conducive and we create a new one.
A side benefit is a new anonymous IBE scheme with ciphertexts and private keys having one less group
element than BW but still proven secure under DLIN.

A method of Boneh and Boyen [17] can be applied to turn selective into adaptive security but the
reduction incurs a factor that is equal to the size of the identity space and thus ultimately exponential
in the security parameter, so that adaptive security according to the standard asymptotic convention
would not have been achieved. To achieve it, we want to be able to “program” the public parameters
so that they will be lossy on about a 1/Q fraction of “random-ish” identities, where Q is the number of
key-derivation queries made by the attacker. Ideally, with probability around 1/Q all of (a successful)
attacker’s queries will land outside the lossy identity-space, but the challenge identity will land inside it
so that we achieve δ-lossiness with δ around 1/Q.

This sounds similar to the approach of Waters [62] for achieving adaptively secure IBE but there are
some important distinctions, most notably that the technique of Waters is information-theoretic while
ours is of necessity computational, relying on the DLIN assumption. In the reduction used by Waters the
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partitioning of the identities into two classes was based solely on the reduction algorithm’s internal view
of the public parameters; the parameters themselves were distributed independently of this partitioning
and thus the adversary view was the same as in a normal setup. In contrast, the partitioning in our
scheme will actually directly affect the parameters and how the system behaves. This is why we must
rely on a computational assumption to show that the partitioning in undetectable. A key novel feature
of our construction is the introduction of a system that will produce lossy public parameters for about a
1/Q fraction of the identities.

Applications. Deterministic PKE is a TDF providing the best possible privacy subject to being deter-
ministic, a notion called PRIV that is much stronger than one-wayness [7]. An application is encryption
of database records in a way that permits logarithmic-time search, improving upon the linear-time search
of PEKS [20]. Boldyreva, Fehr and O’Neill [16] show that lossy TDFs whose lossy branch is a universal
hash (called universal lossy TDFs) achieve (via the LHL [15, 39]) PRIV-security for message sequences
which are blocksources, meaning each message has some min-entropy even given the previous ones, which
remains the best result without ROs. Deterministic IBE and the resulting efficiently-searchable IBE are
attractive due to the key-management benefits. We can achieve them because our DLIN-based lossy
IB-TDFs are also universal lossy. (This is not true, so far, for our LWE based IB-TDFs.)

To provide IND-CPA security in practice, IBE relies crucially on the availability of fresh, high-quality
randomness. This is fine in theory but in practice RNGs (random number generators) fail due to poor
entropy gathering or bugs, leading to prominent security breaches [37, 38, 25, 49, 48, 1, 63, 33]. Expecting
systems to do a better job is unrealistic. Hedged encryption [8] takes poor randomness as a fact of life
and aims to deliver best possible security in the face of it, providing privacy as long as the message
together with the “randomness” have some min-entropy. Hedged PKE was achieved in [8] by combining
IND-CPA PKE with universal lossy TDFs. We can adapt this to IBE and combine existing (randomized)
IBE schemes with our DLIN-based universal lossy IB-TDFs to achieved hedged IBE. This is attractive
given the widespread use of IBE in practice and the real danger of randomness failures.

Both applications are for the case of selective security. We do not achieve them in the adaptive case.

Related Work. A number of papers have studied security notions of trapdoor functions beyond
traditional one-wayness. Besides lossiness [52] there is Rosen and Segev’s notion of correlated-product
security [57], and Canetti and Dakdouk’s extractable trapdoor functions [27]. The notion of adaptive
one-wayness for tag-based trapdoor functions from Kiltz, Mohassel and O’Neill [43] can be seen as the
special case of our selective IB-TDF in which the adversary is denied key-derivation queries. Security in
the face of these queries was one of the main difficulties we faced in realizing IB-TDFs.

Organization. We define IB-TDFs, one-wayness and δ-lossiness in Section 2. We also define extended
IB-TDFs, an abstraction that will allow us to unify and shorten the analyses for the selective and adaptive
security cases. In Section 3 we show that δ-lossiness implies one-wayness as long as δ is at least 1/poly.
This allows us to focus on achieving δ-lossiness. In Section 4 we provide our pairing-based schemes and
in Appendix 5 our lattice-based schemes. In Appendix B we sketch how to apply δ-lossy IB-TDFs to
achieve deterministic and hedged IBE.

Subsequent work. Escala, Herranz, Libert and Ráfols [34] provide an alternative definition of partial
lossiness based on which they achieve deterministic, PRIV-secure IBE for blocksources, and hedged IBE,
in the adaptive case, which answers an open question from our work. They also define and construct
hierarchical identity-based (lossy) trapdoor functions.

2 Definitions

Notation and conventions. If x is a vector then |x| denotes the number of its coordiates and x[i]
denotes its i-th coordinate. Coordinates may be numbered 1, . . . , |x| or 0, . . . , |x| − 1 as convenient. A
string x is identified with a vector over {0, 1} so that |x| denotes its length and x[i] its i-th bit. The
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proc Initialize(id) // OWF,RealF

(pars ,msk )
$← F.Pg ; IS ← ∅ ; id∗ ← id

Return pars

proc GetDK(id) // OWF,RealF

IS ← IS ∪ {id}
dk ← F.Kg(pars ,msk , id)
Return dk

proc Ch(id) // OWF

id∗ ← id ; x
$← InSp

y ← F.Ev(pars , id∗, x)
Return y

proc Finalize(x′) // OWF

Return ((x′ = x) and (id∗ 6∈ IS ))

proc Initialize(id) // LossyF,LF,ℓ

(pars ,msk)
$← LF.Pg(id) ; IS ← ∅ ; id∗ ← id

Return pars

proc GetDK(id) // LossyF,LF,ℓ
IS ← IS ∪ {id}
dk ← LF.Kg(pars ,msk , id)
Return dk

proc Ch(id) // RealF,LossyF,LF,ℓ
id∗ ← id

proc Finalize(d′) // RealF
Return ((d′ = 1) and (id∗ 6∈ IS ))

proc Finalize(d′) // LossyF,LF,ℓ
Return ((d′ = 1) and (id∗ 6∈ IS ) and (λ(F.Ev(pars , id∗, ·)) ≥ ℓ))

Figure 2: Games defining one-wayness and δ-lossiness of IBTDF F with associated sibling LF.

empty string is denoted ε. If S is a set then |S| denotes its size, Sa denotes the set of a-vectors over S,
Sa×b denotes the set of a by b matrices with entries in S, and so on. The (i, j)-th entry of a 2 dimensional
matrix M is denoted M[i, j] and the (i, j, k)-th entry of a 3 dimensional matrix M is denoted M[i, j, k].
If M is a n by µ matrix then M[j, ·] denotes the vector (M[j, 1], . . . ,M[j, µ]). If a = (a1, . . . , an)
then (a1, . . . , an) ← a means we parse a as shown. Unless otherwise indicated, an algorithm may be

randomized. By y
$← A(x1, x2, . . .) we denote the operation of running A on inputs x1, x2, . . . and fresh

coins and letting y denote the output. We denote by [A(x1, x2, . . .)] the set of all possible outputs of A
on inputs x1, x2, . . .. The (Kronecker) delta function ∆ is defined by ∆(a, b) = 1 if a = b and 0 otherwise.
If a, b are equal-length vectors of reals then 〈a, b〉 = a[1]b[1]+ · · ·+a[|a|]b[|b|] denotes their inner product.
Games. A game —look at Figure 2 for an example— has an Initialize procedure, procedures to respond
to adversary oracle queries, and a Finalize procedure. To execute a game G is executed with an adversary
A means to run the adversary and answer its oracle queries by the corresponding procedures of G. The
adversary must make exactly one query to Initialize, this being its first oracle query. (This means the
adversary can give Initialize an input, an extension of the usual convention [14].) It must make exactly
one query to Finalize, this being its last oracle query. The reply to this query, denoted GA, is called the
output of the game, and we let “GA” denote the event that this game output takes value true. Boolean
flags are assumed initialized to false.

IBTDFs. An identity-based trapdoor function (IBTDF) is a tuple F = (F.Pg,F.Kg,F.Ev,F.Ev−1) of
algorithms with associated input space InSp and identity space IDSp. The parameter generation algorithm
F.Pg takes no input and returns common parameters pars and a master secret key msk . On input
pars ,msk , id , the key generation algorithm F.Kg produces a decryption key dk for identity id . For any
pars and id ∈ IDSp, the deterministic evaluation algorithm F.Ev defines a function F.Ev(pars , id , ·) with
domain InSp. We require correct inversion: For any pars , any id ∈ IDSp and any dk ∈ [F.Kg(pars , id)],
the deterministic inversion algorithm F.Ev−1 defines a function that is the inverse of F.Ev(pars , id , ·),
meaning F.Ev−1(pars , id , dk ,F.Ev(pars , id , x)) = x for all x ∈ InSp.

E-IBTDF. To unify and shorten the selective and adaptive cases of our analyses it is useful to define
and specify a more general primitive. An extended IBTDF (E-IBTDF) E = (E.Pg,E.Kg,E.Ev,E.Ev−1)
consists of four algorithms that are just like the ones for an IBTDF except that F.Pg takes an additional
auxiliary input from an auxiliary input space AxSp. Fixing a particular auxiliary input aux ∈ AxSp for
F.Pg results in an IBTDF scheme that we denote E(aux ) and call the IBTDF induced by aux . Not all

5
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these induced schemes need, however, satisfy the correct inversion requirement. If the one induced by
aux does, we say that aux grants invertibility. Looking ahead we will build an E-IBTDF and then obtain
our IBTDF as the one induced by a particular auxiliary input, the other induced schemes being the basis
of the siblings and being used in the proof.

One-wayness. One-wayness of IBTDF F = (F.Pg,F.Kg,F.Ev,F.Ev−1) is defined via game OWF of
Figure 2. The adversary is allowed only one query to its challenge oracle Ch. The advantage of such an
adversary I is Advow

F
(I) = Pr

[

OWI
F

]

.

Selective versus adaptive ID. We are interested in both these variants for all the notions we consider.
To avoid a proliferation of similar definitions, we capture the variants instead via different adversary
classes relative to the same game. To exemplify, consider game OWF of Figure 2. Say that an adversary
A is selective-id if the identity id in its queries to Initialize and Ch is always the same, and say it
is adaptive-id if this is not necessarily true. Selective-id security for one-wayness is thus captured by
restricting attention to selective-id adversaries and full (adaptive-id) security by allowing adaptive-id
adversaries. Now, adopt the same definitions of selective and adaptive adversaries relative to any game
that provides procedures called Initialize and Ch, regardless of how these procedures operate. In this
way, other notions we will introduce, including partial lossiness defined via games also in Figure 2, will
automatically have selective-id and adaptive-id security versions.

Partial lossiness. We first provide the formal definitions and later explain them and their relation
to standard definitions. If f is a function with domain a (non-empty) set Dom(f) then its image is
Im(f) = { f(x) : x ∈ Dom(f) }. We define the lossiness λ(f) of f via

λ(f) = lg
|Dom(f)|
|Im(f)| or equivalently |Im(f)| = |Dom(f)| · 2−λ(f) .

We say that f is ℓ-lossy if λ(f) ≥ ℓ. Let IBTDF F = (F.Pg,F.Kg,F.Ev,F.Ev−1) be an IBTDF with
associated input space InSp and identity space IDSp. A sibling for F is an E-IBTDF LF = (LF.Pg, LF.Kg,
F.Ev,F.Ev−1) whose evaluation and inversion algorithms, as the notation indicates, are those of F and
whose auxiliary input space is IDSp. Algorithm LF.Pg will use this input in the selective-id case and
ignore it in the adaptive-id case. Consider games RealF and LossyF,LF,ℓ of Figure 2. The first uses the
real parameter and key-generation algorithms while the second uses the sibling ones. A los-adversary A
is allowed just one Ch query, and the games do no more than record the challenge identity id∗. The
advantage of the adversary is not, as usual, the difference in the probabilities that the games return true,
but is instead parameterized by a probability δ ∈ [0, 1]and defined via

Advδ-los
F,LF,ℓ(A) = δ · Pr

[

RealAF
]

− Pr
[

LossyAF,LF,ℓ
]

. (1)

Discussion. The PW [52] notion of lossy TDFs in the public-key setting asks for an alternative “sibling”
key-generation algorithm, producing a public key but no secret key, such that two conditions hold. The
first, which is combinatorial, asks that the functions defined by sibling keys are lossy. The second, which is
computational, asks that real and sibling keys are indistinguishable. The first change for the IB setting is
that one needs an alternative parameter generation algorithm which produces not only pars but a master
secret key msk , and an alternative key-generation algorithm that, based on msk , can issue decryption keys
to users. Now we would like to ask that the function F.Ev(pars , id∗, ·) be lossy on the challenge identity
id∗ when pars is generated via LF.Pg, but, in the adaptive-id case, we do not know id∗ in advance. Thus
the requirement is made via the games.

We would like to define the advantage normally, meaning with δ = 1, but the resulting notion is not
achievable in the adaptive-id case. (This can be shown via attack.) With the relaxation, a low (close
to zero) advantage means that the probability that the adversary finds a lossy identity id∗ and then
outputs 1 is less than the probability that it merely outputs 1 by a factor not much less than δ. Roughly,
it means that a δ fraction of identities are lossy. The advantage represents the computational loss while
δ represents a necessary information-theortic loss.

6
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IBE. Recall that an IBE scheme IBE = (IBE.Pg, IBE.Kg, IBE.Enc, IBE.Dec) is a tuple of algorithms
with associated message space InSp and identity space IDSp. The parameter generation algorithm
IBE.Pg takes no input and returns common parameters pars and a master secret key msk . On in-
put pars ,msk , id , the key generation algorithm IBE.Kg produces a decryption key dk for identity id .
On input pars , id ∈ IDSp and a message M ∈ InSp the encryption algorithm IBE.Enc returns a ci-
phertext. The decryption algorithm IBE.Dec is deterministic. The scheme has decryption error ǫ if
Pr[IBE.Dec(pars , id , dk , IBE.Enc(pars , id ,M)) 6= M ] ≤ ǫ for all pars , all id ∈ IDSp, all dk ∈ [F.Kg(pars , id)]
and allM ∈ InSp. We say that IBE is deterministic if IBE.Enc is deterministic. A deterministic IBE scheme
is identical to an IBTDF.

3 Implications of Partial Lossiness

Theorem 3.2 shows that partial lossiness implies one-wayness. We discuss other applications in Ap-
pendix B. We first need a simple lemma.

Lemma 3.1 Let f be a function with non-empty domain Dom(f). Then for any adversary A

Pr[A(y) = x : x
$← Dom(f) ; y ← f(x)] ≤ 2−λ(f) .

Proof of Lemma 3.1: For y ∈ Im(f) let f−1(y) be the set of all x ∈ Dom(f) such that f(x) = y. The
probability in question is

∑

y∈Im(f)

Pr [ A(y) = x | f(x) = y ] · Pr [ f(x) = y ] ≤
∑

y∈Im(f)

1

|f−1(y)| ·
|f−1(y)|
|Dom(f)| =

|Im(f)|
|Dom(f)| = 2−λ(f)

where the probability is over x chosen at random from Dom(f) and the coins of A if any. (Since A is
unbounded, it can be assumed wlog to be deterministic.)

Theorem 3.2 [ δ-lossiness implies one-wayness ] Let F = (F.Pg,F.Kg,F.Ev,F.Ev−1) be a IBTDF with
associated input space InSp. Let LF = (LF.Pg, LF.Kg,F.Ev,F.Ev−1) be a lossy sibling for F. Let δ > 0 and
let ℓ ≥ 0. Then for any ow-adversary I there is a los-adversary A such that

Advow
F (I) ≤

Advδ-los
F,LF,ℓ(A) + 2−ℓ

δ
. (2)

The running time of A is that if I plus the time for a computation of F.Ev. If I is a selective adversary
then so is A.

In asymptotic terms, the theorem says that δ-lossiness implies one-wayness as long as δ−1 is bounded
above by a polynomial in the security parameter and ℓ is super-logarithmic. This means δ need only be
non-negligible. The last sentence of the theorem, saying that if I is selective then so is A, is important
because it says that the theorem covers both the selective and adaptive security cases, meaning selective
δ-lossiness implies selective one-wayness and adaptive δ-lossiness implies adaptive one-wayness.

Proof of Theorem 3.2: Adversary A runs I. When I makes query Initialize(id), adversary A does
the same, obtaining pars and returning this to I. Adversary A answers I’s queries to its GetDK oracle
via its own oracle of the same name. When I makes its (single) Ch query id∗, adversary A also makes
query Ch(id∗). Additionally, it picks x at random from InSp and returns y = F.Ev(pars , id∗, x) to I.
The latter eventually halts with output x′. Adversary A returns 1 if x′ = x and 0 otherwise. By design
we clearly have Pr

[

RealA
F

]

= Advow
F
(I). But game LossyF,LF,ℓ returns true only if F.Ev(pars , id∗, ·) is

ℓ-lossy, in which case the probability that x = x′ is small by Lemma 3.1. In detail, assuming wlog that I
never queries id∗ to GetDK, we have

Pr
[

LossyAF,LF,ℓ
]

= Pr
[

x = x′ | λ(F.Ev(pars , id∗, ·)) ≥ ℓ
]

· Pr [λ(F.Ev(pars , id∗, ·)) ≥ ℓ ]

≤ Pr
[

x = x′ | λ(F.Ev(pars , id∗, ·)) ≥ ℓ
]

≤ 2−ℓ ,
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the last inequality by Lemma 3.1 applied to the function f = F.Ev(pars , id∗, ·). From Equation (1) we
have

Advδ-los
F,LF,ℓ(A) = δ · Pr

[

RealAF
]

− Pr
[

LossyAF,LF,ℓ
]

≥ δ ·Advow
F (I)− 2−ℓ .

Equation (2) follows. In Section B we discuss the application to deterministic and hedged IBE.

4 IB-TDFs from pairings

In Section 3 we show that δ-lossiness implies one-wayness in both the selective and adaptive cases. We
now show how to achieve δ-lossiness using pairings.

Setup. Throughout we fix a bilinear map e: G × G → GT where G,GT are groups of prime order p.
By 1,1T we denote the identity elements of G,GT , respectively. By G

∗ = G − {1} we denote the set of
generators of G. The advantage of a dlin-adversary B is

Advdlin(B) = 2Pr[DLINB]− 1 ,

where game DLIN is as follows. The Initialize procedure picks g, ĝ at random from G
∗, s at random

from Z
∗
p, ŝ at random from Zp and X at random from G. It picks a random bit b. If b = 1 it lets

T ← Xs+ŝ and otherwise picks T at random from G. It returns (g, ĝ, gs, ĝŝ,X, T ) to the adversary B.
The adversary outputs a bit b′ and Finalize, given b′ returns true if b = b′ and false otherwise. For
integer µ ≥ 1, vectors U ∈ G

µ+1 and y ∈ Z
µ+1
p , and vector id ∈ Z

µ
p we let

id = (1, id [1], . . . , id [µ]) ∈ Z
µ+1
p and H(U, id) =

∏µ
k=0U[k]id [k] .

H is the BB hash function [17] when µ = 1, and the Waters’ one [23] when IDSp = {0, 1}µ and an
id ∈ IDSp is viewed as a µ-vector over Zp. We also let

f(y, id) =
∑µ

k=0y[k]id [k] and f(y, id ) = f(y, id) mod p .

4.1 Overview

In the Peikert-Waters [52] design, the matrix entries are ciphertexts of an underlying homomorphic
encryption scheme, and the function output is a vector of ciphertexts of the same scheme. We begin
by presenting an IBE scheme, that we call the basic IBE scheme, such that the function outputs of our
eventual IB-TDF will be a vector of ciphertexts of this IBE scheme. Towards building the IB-TDF, the
first difficulty we run into in setting up the matrix is that ciphertexts depend on the identity and we
cannot have a different matrix for every identity. Thus, our approach is more intrusive. We will have many
matrices which contain certain “atoms” from which, given an identity, one can reconstruct ciphertexts
of the IBE scheme. The result of this intrusive approach is that security of the IB-TDF relies on more
than security of the base IBE scheme. Our ciphertext pseudorandomness lemma (Lemma 4.1) shows
something stronger, namely that even the atoms from which the ciphertexts are created look random
under DLIN. This will be used to establish Lemma 4.2, which moves from the real to the lossy setup.
The heart of the argument is the proofs of the lemmas, which are in the appendices.

We introduce a general framework that allows us to treat both the selective-id and adaptive-id cases in
as unified a way as possible. We will first specify an E-IBTDF. The selective-id and adaptive-id IB-TDFs
are obtained via different auxiliary inputs. Furthermore, the siblings used to prove lossiness also emanate
from this E-IBTDF. With this approach, the main lemmas become usable in both the selective-id and
adaptive-id cases with only minor adjustments for the latter due to artifical aborts. This saves us from
repeating similar arguments and significantly compacts the proof.
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4.2 Our basic IBE scheme

We associate to any integer µ ≥ 1 and any identity space IDSp ⊆ Z
µ
p an IBE scheme IBE[µ, IDSp] that

has message space {0, 1} and algorithms as follows:

1. Parameters: Algorithm IBE[µ, IDSp].Pg lets g
$← G

∗ ; t
$← Z

∗
p ; ĝ ← gt. It then lets H, Ĥ

$← G ; U, Û
$←

G
µ+1. It returns pars = (g, ĝ,H, Ĥ,U, Û) as the public parameters and msk = t as the master secret

key.

2. Key generation: Given parameters (g, ĝ,H, Ĥ,U, Û), master secret t and identity id ∈ IDSp, algorithm

IBE[µ, IDSp].Kg returns decryption key (D1,D2,D3,D4) computed by letting r, r̂
$← Zp and setting

D1 ←H(U, id)tr ·Htr̂ ; D2 ←H(Û, id)r · Ĥ r̂ ; D3 ← g−tr ; D4 ← g−tr̂ .

3. Encryption: Given parameters (g, ĝ,H, Ĥ,U, Û), identity id ∈ IDSp and messageM ∈ {0, 1}, algorithm
IBE[µ, IDSp].Enc returns ciphertext (C1, C2, C3, C4) computed as follows. If M = 0 then it lets s, ŝ

$←
Zp and C1 ← gs ; C2 ← ĝŝ ; C3 ←H(U, id)s ·H(Û, id)ŝ ; C4 ← HsĤ ŝ. If M = 1 it lets C1, C2, C3, C4

$←
G.

4. Decryption: Given parameters (g, ĝ,H, Ĥ,U, Û), identity id ∈ IDSp, decryption key (D1,D2,D4,D4)
for id and ciphertext (C1, C2, C3, C4), algorithm IBE[µ, IDSp].Dec returns 0 if e(C1,D1)e(C2,D2)
e(C3,D3)e(C4,D4) = 1T and 1 otherwise.

This scheme has non-zero decryption error (at most 2/p) yet our IBTDF will have zero inversion error.
This scheme turns out to be IND-CPA+ANON-CPA although we will not need this in what follows.
Instead we will have to consider a distinguishing game related to this IBE scheme and our IBTDF. In
Appendix A we give a (more natural) variant of IBE[µ, IDSp] that is more efficient and encrypts strings
rather than bits. The improved IBE scheme can still be proved IND-CPA+ANON-CPA but it cannot be
used for our purpose of building IB-TDFs.

4.3 Our E-IBTDF and IB-TDF

Our E-IBTDF E[n, µ, IDSp] is associated to any integers n, µ ≥ 1 and any identity space IDSp ⊆ Z
µ
p . It

has message space {0, 1}n and auxiliary input space Z
µ+1
p , and the algorithms are as follows:

1. Parameters: Given auxiliary input y, algorithm E[n, µ, IDSp].Pg lets g
$← G

∗ ; t
$← Z

∗
p ; ĝ ← gt ; U

$← G
∗.

It then lets H, Ĥ
$← G

n ; V, V̂
$← G

n×(µ+1) and s
$← (Z∗

p)
n ; ŝ

$← Z
n
p . It returns pars = (g, ĝ,G,

Ĝ,J,W,H, Ĥ,V, V̂, U) as the public parameters and msk = t as the master secret key where for
1 ≤ i, j ≤ n and 0 ≤ k ≤ µ:

G[i]← gs[i] ; Ĝ[i]← ĝŝ[i] ; J[i, j]← H[j]s[i]Ĥ[j]ŝ[i] ; W[i, j, k] ← V[j, k]s[i]V̂[j, k]ŝ[i]U s[i]y[k]∆(i,j) ,

where we recall that ∆(i, j) = 1 if i = j and 0 otherwise is the Kronecker Delta function.

2. Key generation: Given parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U), master secret t and identity id ∈
IDSp, algorithm E[n, µ, IDSp].Kg returns decryption key (D1,D2,D3,D4) where r

$← (Z∗
p)

n ; r̂
$← Z

n
p

and for 1 ≤ i ≤ n

D1[i]←H(V[i, ·], id )tr[i] ·H[i]t̂r[i] ; D2[i]← H(V̂[i, ·], id )r[i] · Ĥ[i]r̂[i] ; D3[i]← g−tr[i] ; D4[i]← g−t̂r[i] .

3. Evaluate: Given parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U), identity id ∈ IDSp and input x ∈
{0, 1}n, algorithm E[n, µ, IDSp].Ev returns (C1, C2,C3,C4) where for 1 ≤ j ≤ n

C1 ←
∏n

i=1G[i]x[i] ; C2 ←
∏n

i=1Ĝ[i]x[i] ; C3[j]←
∏n

i=1

∏µ
k=0W[i, j, k]x[i]id [k] ; C4[j]←

∏n
i=1J[i, j]

x[i]

4. Invert: Given parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U), identity id ∈ IDSp, decryption key (D1,
D2,D3,D4) for id and output (ciphertext) (C1, C2,C3,C4), algorithm E[n, µ, IDSp].Ev−1 returns x ∈
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{0, 1}n where for 1 ≤ j ≤ n it sets x[j] = 0 if e(C1,D1[j])e(C2,D2[j])e(C3[j],D3[j])e(C4[j],D4[j]) =
1T and 1 otherwise.

Invertibility. We observe that if parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U) were generated with
auxiliary input y and (C1, C2,C3,C4) = E[n, µ, IDSp].Ev((g, ĝ,G, Ĝ,J,W), id , x) then for 1 ≤ j ≤ n

C1 =
∏n

i=1g
s[i]x[i] = g〈s,x〉 (3)

C2 =
∏n

i=1ĝ
ŝ[i]x[i] = ĝ〈̂s,x〉 (4)

C3[j] =
∏n

i=1

∏µ
k=0V[j, k]s[i]x[i]id [k]V̂[j, k]ŝ[i]x[i]id[k]U s[i]x[i]y[k]id[k]∆(i,j)

=
∏n

i=1H(V[j, ·], id )s[i]x[i]H(V̂[j, ·], id )ŝ[i]x[i]U s[i]x[i]f(y,id)∆(i,j)

= H(V[j, ·], id )〈s,x〉H(V̂[j, ·], id )〈̂s,x〉U s[j]x[j]f(y,id) (5)

C4[j] =
∏n

i=1H[j]s[i]x[i]Ĥ[j]ŝ[i]x[i] = H[j]〈s,x〉Ĥ[j]〈̂s,x〉 . (6)

Thus if x[j] = 0 then (C1, C2,C3[j],C4[j]) is an encryption, under our base IBE scheme, of the mes-
sage 0, with coins 〈s, x〉 mod p, 〈̂s, x〉 mod p, parameters (g, ĝ,H[j], Ĥ[j],V[j, ·], V̂[j, ·]) and identity id .
The inversion algorithm will thus correctly recover x[j] = 0. On the other hand suppose x[j] =
1. Then e(C1,D1[j])e(C2,D2[j])e(C3[j],D3[j])e(C4[j],D4[j]) = e(U s[j]x[j]f(y,id),D3[j]). Now suppose
f(y, id) mod p 6= 0. Then U s[j]x[j]f(y,id) 6= 1 because we chose s[j] to be non-zero modulo p and D3[j] 6= 1
because we chose r[j] to be non-zero modulo p. So the result of the pairing is never 1T , meaning the
inversion algorithm will again correctly recover x[j] = 1. We have established that auxiliary input y
grants invertibility, meaning induced IBTDF E[n, µ, IDSp](y) satisfies the correct inversion condition, if
f(y, id) mod p 6= 0 for all id ∈ IDSp.

Our IBTDF. We associate to any integers n, µ ≥ 1 and any identity space IDSp ⊆ Z
µ
p the IBTDF

scheme induced by our E-IBTDF E[n, µ, IDSp] via auxiliary input y = (1, 0, . . . , 0) ∈ Z
µ+1
p , and denote

this IBTDF scheme by F[n, µ, IDSp]. This IBTDF satisfies the correct inversion requirement because
f(y, id) = id [0] = 1 6≡ 0 (mod p) for all id . We will show that this IBTDF is selective-id secure when
µ = 1 and IDSp = Zp, and adaptive-id secure when IDSp = {0, 1}µ. In the first case, it is fully lossy
(i.e. 1-lossy) and in the second it is δ-lossy for appropriate δ. First we prove two technical lemmas that
we will use in both cases.

4.4 Ciphertext pseudorandomness lemma

Consider games ReC,RaC of Figure 3 associated to some choice of IDSp ⊆ Z
µ
p . The adversary provides

the Initialize procedure with an auxiliary input y ∈ Z
µ+1
p . Parameters are generated as per our base

IBE scheme with the addition of U . The decryption key for id is computed as per our base IBE scheme
except that the games refuse to provide it when f(y, id) = 0. The challenge oracle, however, does not
return ciphertexts of our IBE scheme. In game ReC, it returns group elements that resemble diagonal
entries of the matrices in the parameters of our E-IBTDF, and in game RaC it returns random group
elements. Notice that the challenge oracle does not take an identity as input. (Indeed, it has no input.)
As usual it must be invoked exactly once. The following lemma says the games are indistinguishable
under DLIN. The proof is in Section 4.7.

Lemma 4.1 Let µ ≥ 1 be an integer and IDSp ⊆ Z
µ
p . Let P be an adversary. Then there is an adversary

B such that

Pr
[

ReCP
]

− Pr
[

RaCP
]

≤ (µ + 2) ·Advdlin(B) . (7)

The running time of B is that of P plus some overhead.
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proc Initialize(y) // ReC,RaC

(pars ,msk)
$← IBE[µ, IDSp].Pg

(g, ĝ,H, Ĥ,U, Û)← pars

U
$← G

∗

Return (g, ĝ,H, Ĥ,U, Û, U)

proc GetDK(id) // ReC,RaC

If f(y, id) = 0 then dk ← ⊥
Else dk ← IBE[µ, IDSp].Kg(pars ,msk , id)
Return dk

proc Ch() // ReC

s
$← Z

∗
p ; ŝ

$← Zp ; G← gs ; Ĝ← ĝŝ ; S ← HsĤ ŝ

For k = 0, . . . , µ do Z[k]← (Uy[k]U[k])sÛ[k]ŝ

Return (G, Ĝ, S,Z)

proc Ch() // RaC

G, Ĝ, S
$← G ; Z

$← G
µ+1

Return (G, Ĝ, S,Z)

proc Finalize(d′) // ReC,RaC

Return (d′ = 1)

Figure 3: Games ReC (“Real Ciphertexts”) and RaC (“Random Ciphertexts”) associated to IDSp ⊆ Z
µ
p .

proc Initialize(id)

y0
$← Aux(id) ; y1 ← (1, 0, . . . , 0) ; Win← true

g
$← G

∗ ; t
$← Z

∗
p ; ĝ ← gt ; U

$← G
∗

H, Ĥ
$← G

n ; V, V̂
$← G

n×(µ+1) ; s
$← (Z∗

p)
n ; ŝ

$← Z
n
p

For i = 1, . . . , n do

G[i]← gs[i] ; Ĝ[i]← ĝŝ[i]

For j = 1, . . . , n do

J[i, j]← H[j]s[i]Ĥ[j]ŝ[i]

For k = 0, . . . , µ do

If (i = j and i ≤ l) then W[i, j, k]
$← G

Else W[i, j, k] ← V[j, k]s[i]V̂[j, k]ŝ[i]U s[i]yb[k]∆(i,j)

pars ← (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U) ; msk ← t
IS ← ∅ ; id∗ ← id
Return pars

proc GetDK(id)

IS ← IS ∪ {id}
If f(y0, id) = 0 then Win← false ; dk ← ⊥
Else dk ← E[n, µ, IDSp].Kg(pars ,msk , id)
Return dk

proc Ch(id)

id∗ ← id
If f(y0, id) 6= 0 then Win← false

proc Finalize(d′)

Return ((d′ = 1) and (id∗ 6∈ IS ) and Win)

Figure 4: Games RLl,b (0 ≤ l ≤ n and b ∈ {0, 1}) associated to n, µ, IDSp,Aux for proof of Lemma 4.2.

4.5 Proof of Lemma 4.2

Consider the games of Figure 4. Game RLl,b makes the diagonal entries of W (namely all the µ + 1
entries with i = j) random for i ≤ l and otherwise makes them using yb. Game RL0,1 is the same as
game RL0 and game RL0,0 is the same as game RLn. Games RLn,0,RLn,1 are identical: both make all
diagonal entries of W (meaning, i = j) random, and when i 6= j we have ∆(i, j) = 0 so yb(k) has no
impact on W[i, j, k] in the Else statement. Thus we have

Pr[RLA
0 ]− Pr[RLA

n ] =
(

Pr[RLA
0,1]− Pr[RLA

n,1]
)

+
(

Pr[RLA
n,0]− Pr[RLA

0,0]
)

.

We will design adversaries P0, P1 so that

Pr[ReCP0 ]− Pr[RaCP0 ] =
1

n
·
(

Pr[RLA
n,0]− Pr[RLA

0,0]
)

(8)

Pr[ReCP1 ]− Pr[RaCP1 ] =
1

n
·
(

Pr[RLA
0,1]− Pr[RLA

n,1]
)

. (9)

Adversary P picks b
$← {0, 1} and runs Pb. This yields Equation (10). Now we present adversary Pb

(b ∈ {0, 1}). It runs adversary A, responding to its oracle queries as follows.
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When A makes query Initialize(id), adversary Pb begins with

l
$← {1, . . . , n} ; y0

$← Aux(id) ; y1 ← (1, 0, . . . , 0) ; WinA ← true ; ISA ← ∅
(g, ĝ,H, Ĥ,U, Û, U)

$← Initialize(yb) ; (G, Ĝ, S,Z)
$← Ch().

Here Pb has called its own Initialize procedure with input yb and then called its Ch procedure. Now it
creates parameters pars for A as follows:

h, ĥ
$← Z

n
p ; v, v̂

$← Z
n×(µ+1)
p ; s

$← (Z∗
p)

n ; ŝ
$← Z

n
p

For i = 1, . . . , n do

If (i = l) then H[i]← H ; Ĥ[i]← Ĥ ; G[i]← G ; Ĝ[i]← Ĝ

If (i 6= l) then H[i]← gh[i] ; Ĥ[i]← ĝĥ[i] ; G[i]← gs[i] ; Ĝ[i]← ĝŝ[i]

For k = 0, . . . , µ do

If (i = l) then V[i, k] ← U[k] ; V̂[i, k]← Û[k]

If (i 6= l) then V[i, k] ← gv[i,k] ; V̂[i, k]← ĝv̂[i,k]

For i = 1, . . . , n do
For j = 1, . . . , n do

If (i = l and j = i) then J[i, j]← S

If (i = l and j 6= i) then J[i, j]← Gh[j]Ĝĥ[j]

If (i 6= l) then J[i, j] ← H[j]s[i]Ĥ[j]ŝ[i]

For k = 0, . . . , µ do

If (i = j and i ≤ l − 1) then W[i, j, k]
$← G

If (i = j and i = l) then W[i, j, k] ← Z[k]

Else W[i, j, k] ← V[j, k]s[i]V̂[j, k]ŝ[i]U s[i]yb[k]∆(i,j)

pars ← (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U)

It returns pars to A.

When adversary A makes query GetDK(id), adversary Pb proceeds as follows. In this code, GetDK is
Pb’s own oracle:

ISA ← ISA ∪ {id}
If f(y0, id) = 0 then WinA ← false ; dk ← ⊥
Else

(D1,D2,D3,D4)
$← GetDK(id)

r′
$← (Z∗

p)
n ; r̂′

$← Z
n
p

For i = 1, . . . , n do
If i = l then (D1[i],D2[i],D3[i],D4[i])← (D1,D2,D3,D4)
Else

D1[i]←H(V[i, ·], id )r′[i]H[i]r̂
′[i] ; D2[i]← gf(v̂,id)r

′[i]gĥ[i]̂r[i]

D3[i]← g−r′[i] ; D4[i]← g−r̂′[i]

dk ← (D1,D2,D3,D4)

It returns dk to A. Notice that Pb’s invocation of GetDK will never return ⊥. In the case b = 1 this is
true because f(y1, ·) = 1 6= 0. In the case b = 0 it is true because the case f(y0, id) = 0 was excluded by
the If statement. To justify the above simulation, define r, r̂ by r[i] = r′[i]/t and r̂[i] = r̂′[i]/t for i 6= l
and r[l], r̂[l] as the randomness underlying (D1,D2,D3,D4). Then think of r, r̂ as the randomness used
by the real key generation algorithm. Here t is the secret key, so that ĝ = gt.

When adversary A makes query Ch(id), adversary Pb proceeds as follows:

id∗ ← id
If f(y0, id) 6= 0 then WinA ← false.

12
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proc Initialize(id) // RL0

y0
$← Aux(id) ; y1 ← (1, 0, . . . , 0)

(pars ,msk )
$← E[n, µ, IDSp].Pg(y1)

IS ← ∅ ; id∗ ← id ; Win← true
Return pars

proc Initialize(id) // RLn

y0
$← Aux(id) ; y1 ← (1, 0, . . . , 0)

(pars ,msk )
$← E[n, µ, IDSp].Pg(y0)

IS ← ∅ ; id∗ ← id ; Win← true
Return pars

proc GetDK(id) // RL0,RLn

IS ← IS ∪ {id}
If f(y0, id) = 0 then Win← false ; dk ← ⊥
Else dk ← E[n, µ, IDSp].Kg(pars ,msk , id)
Return dk

proc Ch(id) // RL0,RLn

id∗ ← id
If f(y0, id) 6= 0 then Win← false

proc Finalize(d′) // RL0,RLn

Return ((d′ = 1) and (id∗ 6∈ IS ) and Win)

Figure 5: Games RL0,RLn (“Real-to-Losssy”) associated to n, µ, IDSp ⊆ Z
µ
p and auxiliary input generator

algorithm Aux.

Finally, A halts with output d′. Adversaries P0, P1 compute their output differently. Adversary P1 returns
1 if

(d′ = 1) and id∗ 6∈ ISA and WinA

and 0 otherwise. Adversary P0 does the opposite, returning 0 if the above condition is true and 1
otherwise. We obtain Equations (8), (9) as follows:

Pr[ReCP1 ]− Pr[RaCP1 ] =
1

n

n
∑

l=1

Pr[RLA
l−1,1]− Pr[RLA

l,1]

= Pr[RLA
0,1]− Pr[RLA

n,1]

Pr[ReCP0 ]− Pr[RaCP0 ] =
1

n

n
∑

l=1

(1− Pr[RLA
l−1,0])− (1− Pr[RLA

l,0])

=
1

n

n
∑

l=1

Pr[RLA
l,0]− Pr[RLA

l−1,0]

= Pr[RLA
n,0]− Pr[RLA

0,0] .

4.6 Real-to-lossy lemma

Consider games RL0,RLn of Figure 5 associated to some choice of n, µ, IDSp ⊆ Z
µ
p and auxiliary input

generator Aux for E[n, µ, IDSp]. The latter is an algorithm that takes input an identity in IDSp and returns
an auxiliary input in Z

µ+1
p . Game RL0 obtains an auxiliary input y0 via Aux but generates parameters

exactly as E[n, µ, IDSp].Pg with the real auxiliary input y1. The game will return true under the same
condition as game Real but additionally requiring that f(y0, id) 6= 0 for all GetDK(id) queries and
f(y0, id) = 0 for the Ch(id) query. Game RLn generates parameters with the auxiliary input provided
by Aux but is otherwise identical to game RL0. The following lemma says it is hard to distinguish these
games. We will apply this by defining Aux in such a way that its output y0 results in a lossy setup. The
proof of the following is in Section 4.5.

Lemma 4.2 Let n, µ ≥ 1 be integers and IDSp ⊆ Z
µ
p . Let Aux be an auxiliary input generator for

E[n, µ, IDSp] and A an adversary. Then there is an adversary P such that

Pr[RLA
0 ]− Pr[RLA

n ] ≤ 2n ·
(

Pr
[

ReCP
]

− Pr
[

RaCP
])

. (10)
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proc Initialize(y) // PC,PCl

(pars ,msk)
$← IBE[µ, IDSp].Pg

(g, ĝ,H, Ĥ,U, Û)← pars

U
$← G

∗

Return (g, ĝ,H, Ĥ,U, Û, U)

proc GetDK(id) // PC,PCl

If f(y, id) = 0 then dk ← ⊥
Else dk ← IBE[µ, IDSp].Kg(pars ,msk , id)
Return dk

proc Ch() // PC

s
$← Z

∗
p ; ŝ

$← Zp ; G← gs ; Ĝ← ĝŝ ; S ← HsĤ ŝ

For k = 0, . . . , µ do Z[k]← (Uy[k]U[k])sÛ[k]ŝ

Return (G, Ĝ, S,Z)

proc Ch() // PCl

s
$← Z

∗
p ; ŝ

$← Zp ; G← gs ; Ĝ← ĝŝ ; S
$← G

For k = 0, . . . , l − 1 do Z[k]
$← G

For k = l, . . . , µ do Z[k]← (Uy[k]U[k])sÛ[k]ŝ

Return (G, Ĝ, S,Z)

proc Finalize(d′) // PC,PCl

Return (d′ = 1)

Figure 6: Games PC,PCl (0 ≤ l ≤ µ+ 1) associated to IDSp ⊆ Z
µ+1
p for the proof of Lemma 4.1.

The running time of P is that of A plus some overhead. If A is selective-id then so is P .

The last statement allows us to use the lemma in both the selective-id and adaptive-id cases.

4.7 Proof of Lemma 4.1

Consider the games of Figure 6. Game PC is the same as game ReC. Game PCl (0 ≤ l ≤ µ + 1) makes
S random and also makes the first l − 1 entries of Z random and the rest real. Thus PCµ+1 is the same
as RaC. We will design adversaries B1, B2 so that

Advdlin(B1) = Pr[PCP ]− Pr[PCP
0 ] (11)

Advdlin(B2) =
1

µ+ 1

(

Pr[PCP
0 ]− Pr[PCP

µ+1]
)

(12)

Adversary B will run B1 with probability 1/(µ+2) and B2 with probability (µ+1)/(µ+2). This yields
Equation (7).

On input (g, ĝ, gs, ĝŝ,H, T ) where T is either Hs+ŝ or random, adversary B1 runs adversary P , responding
to its oracle queries as follows. When P makes query Initialize(y), adversary B1 lets

u, û
$← Z

µ+1
p ; u, v

$← Zp ; Ĥ ← Hĝv ; U ← ĝu

For k = 0, . . . , µ do U[k]← U−y[k]gu[k] ; Û[k]← ĝû[k]

It returns (g, ĝ,H, Ĥ,U, Û, U) to P . When P makes its (single) Ch() query, adversary B1 lets

S ← T ĝvŝ

For k = 0, . . . , µ do Z[k]← gsu[k]ĝŝû[k]

It returns (gs, ĝŝ, S,Z) to P . Notice that for 0 ≤ k ≤ µ

Z[k] = gsu[k]ĝŝû[k] = (Uy[k]−y[k]gu[k])sĝŝû[k] = (Uy[k]U[k])sÛ[k]ŝ .

Also if T = Hs+ŝ then S = T ĝvŝ = Hs(Hĝv)ŝ = HsĤ ŝ as in PC while if T is random, so is S, as in PC0.
When P makes query GetDK(id), adversary B1 does the following:

If f(y, id) = 0 then dk ← ⊥

14
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Else

r′, r̂′
$← Zp

D1 ← g−f(y,id)ur′gf(u,id)r
′

H−f(u,id)r̂′/f(y,id) ; D2 ← gf(û,id)r
′

H−f(u,id)r̂′/f(y,id)Ĥur̂′

D3 ← H r̂′/f(y,id)g−r′ ; D4 ← ĝ−ur̂′ ; dk ← (D1,D2,D3,D4)

It returns dk to P . We now show this key is properly distributed. Let h be such that H = gh and let

r =
r′

t
− hr̂′

tf(y, id)
mod p and r̂ = ur̂′ mod p .

Since t, f(y, uid) are non-zero modulo p and r′, r̂′ are random, r, r̂ are random as well. The following
computes the correct secret key components with the above randomness and shows that they are the ones
of the simulation:

H(U, id)trHtr̂ = U[0]tr
(

∏µ
k=1U[k]id [k]tr

)

Htr̂

= U−y[0]trgu[0]tr
(

∏µ
k=1U

−y[k]id[k]trgu[k]id [k]tr
)

Htr̂

= U−f(y,id)trgf(u,id)trHtr̂

= U−f(y,id)(r′−hr̂′/f(y,id))gf(u,id)(r
′−hr̂′/f(y,id))Htur̂′

= ĝ−hur̂′g−f(y,id)ur′gf(u,id)r
′

g−f(u,id)hr̂′/f(y,id)ghtur̂
′

= g−f(y,id)ur′gf(u,id)r
′

H−f(u,id)r̂′/f(y,id) = D1

H(Û, id)rĤ r̂ = Û[0]r
(

∏µ
k=1Û[k]id [k]r

)

Ĥ r̂ = ĝû[0]r
(

∏µ
k=1ĝ

û[k]id[k]r
)

Ĥ r̂

= ĝf(û,id)rĤ r̂ = gf(û,id)trĤ r̂

= gf(û,id)(r
′−hr̂′/f(y,id))Ĥur̂′ = gf(û,id)r

′

H−f(u,id)r̂′/f(y,id)Ĥur̂′ = D2

g−tr = ghr̂
′/f(y,id)−r′ = H r̂′/f(y,id)g−r′ = D3

g−tr̂ = g−tur̂′ = ĝ−ur̂′ = D4 .

Finally adversary P outputs d′. Adversary B1 also outputs d′, so we have Equation (11).

On input (g, ĝ, gs, ĝŝ, Û , T ) where T is either Û s+ŝ or random, adversary B2 runs adversary P , responding
to its oracle queries as follows. When P makes query Initialize(y), adversary B1 lets

l
$← {0, . . . , µ} ; u, û $← Z

µ+1
p ; u, h, ĥ

$← Zp ; H ← ĝh ; Ĥ ← ĝĥ ; U ← gu

For k = 0, . . . , µ do U[k]← Û∆(l,k)gu[k] ; Û[k]← Û∆(l,k)ĝû[k]

It returns (g, ĝ,H, Ĥ,U, Û, U) to P . When P makes its (single) Ch() query, adversary B2 lets

S
$← G

For k = 0, . . . , l − 1 do Z[k]
$← G

For k = l, . . . , µ do Z[k]← (gs)uy[k]+u[k](ĝŝ)û[k]T∆(l,k)

It returns (gs, ĝŝ, S,Z) to P . Notice that for l + 1 ≤ k ≤ µ

Z[k] = (gs)uy[k]+u[k](ĝŝ)û[k] = U sy[k]U[k]sÛ[k]ŝ = (Uy[k]U[k])sÛ[k]ŝ .

If T = Û s+ŝ then

Z[l] = (gs)uy[l]+u[l](ĝŝ)û[l]T = U sy[l](Û−1U[l])s(Û−1Û[l])ŝÛ sÛ ŝ = (Uy[l]U[l])sÛ[l]ŝ

as in game PCl. On the other hand if T is random then so is Z[l], as in game PCl+1. When P makes
query GetDK(id), adversary B2 does the following:

15
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If f(y, id) = 0 then dk ← ⊥
Else

r, r̂′
$← Zp

D1 ← ĝf(u,id)rĝhr̂
′

; D2 ← gf(u,id)rÛ id [l]rgĥr̂
′

Û−ĥid [l]r/h

D3 ← ĝ−r ; D4 ← Û id [l]r/hg−r̂′ ; dk ← (D1,D2,D3,D4)

It returns dk to P . We now show this key is properly distributed. Let û be such that Û = gû and let

r̂ =
r̂′

t
− id [l]ûr

th
mod p .

Since t is non-zero modulo p and r̂′ is random, r̂ is random as well. The following computes the correct
secret key components with the above randomness and shows that they are the ones of the simulation:

H(U, id)trHtr̂ = U[0]tr
(

∏µ
k=1U[k]id [k]tr

)

Htr̂

= gu[0]tr
(

∏µ
k=1Û

id [k]tr∆(l,k)gu[k]id[k]tr
)

ĝhtr̂

= gf(u,id)trÛ id [l]trĝhtr̂ = gf(u,id)trÛ id [l]trĝh(r̂
′−id[l]ûr/h)

= ĝf(u,id)rÛ id [l]trĝhr̂
′

ĝ−id [l]ûr = ĝf(u,id)rgid [l]ûrtĝhr̂
′

ĝ−id [l]ûr

= ĝf(u,id)rĝhr̂
′

= D1

H(Û, id)rĤ r̂ = Û[0]r
(

∏µ
k=1Û[k]id [k]r

)

Ĥ r̂ = gû[0]r
(

∏µ
k=1Û

id[k]r∆(l,k)gû[k]id[k]r
)

ĝĥr̂

= gf(û,id)rÛ id [l]rgtĥr̂ = gf(û,id)rÛ id [l]rgĥ(r̂
′−id[l]ûr/h)

= gf(û,id)rÛ id [l]rgĥr̂
′

g−ĥid [l]ûr/h = gf(u,id)rÛ id [l]rgĥr̂
′

Û−ĥid [l]r/h = D2

g−tr = ĝ−r = D3

g−tr̂ = gûrid [l]/h−r̂′ = Û id [l]r/hg−r̂′ = D4 .

Finally adversary P outputs d′. Adversary B2 also outputs d′. So

Advdlin(B2) =
1

µ+ 1

µ
∑

l=0

Pr[PCP
l ]− Pr[PCP

l+1]

=
1

µ+ 1
Pr[PCP

0 ]− Pr[PCP
µ+1]

and we have Equation (12).

4.8 Selective-id security

We consider IBTDF F[n, 1,Zp], the instance of our construction with µ = 1 and IDSp = Zp. We show
that this IBTDF is selective-id δ-lossy for δ = 1, meaning fully selective-id lossy, and hence selective-id
one-way. To do this we define a sibling LF[n, 1,Zp]. It preserves the key-generation, evaluation and
inversion algorithms of F[n, 1,Zp] and alters parameter generation to

Algorithm LF[n, 1,Zp].Pg(id)

y← (−id , 1) ; (pars ,msk)
$← E[n, 1,Zp].Pg(y) ; Return (pars ,msk)

The following says that our IBTDF is 1-lossy under the DLIN assumption with lossiness ℓ = n− 2 lg(p).

16
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Theorem 4.3 Let n > 2 lg(p) and let ℓ = n − 2 lg(p). Let F = F[n, 1,Zp] be the IBTDF associated by
our construction to parameters n, µ = 1 and IDSp = Zp. Let LF = LF[n, 1,Zp] be the sibling associated
to it as above. Let δ = 1 and let be A a selective-id adversary. Then there is an adversary B such that

Advδ-los
F,LF,ℓ(A) ≤ 2n(µ+ 2) ·Advdlin(B) . (13)

The running time of B is that of A plus overhead.

Proof of Theorem 4.3: On input id , let algorithm Aux return (−id , 1). Let RL0,RLn be the games
of Figure 5 with µ = 1, IDSp = Zp and this Aux. Then we claim

Pr
[

RealAF
]

= Pr
[

RLA
0

]

and Pr
[

LossyAF,LF,ℓ
]

= Pr
[

RLA
n

]

. (14)

To justify this let id∗ be the identity queried by A to both Initialize and Ch. (These queries are the
same because A is selective-id.) Then y0 = (−id∗, 1) so f(y0, id) = id − id∗. This is 0 iff id = id∗.
This means that the conjunct (id∗ 6∈ IS ) ∧Win is always true. The claim of Equation (14) is now true
because game RL0 generates parameters with the real auxiliary input y1 = (1, 0) ∈ Z

2
p that, via E[n, 1,Zp],

defines F. However game RLn generates parameters with auxiliary input y0. Since f(y0, id
∗) = 0, the

dependency of C3[j] on x[j] in Equation (5) vanishes when id = id∗. Examing equations (3), (4), (5),
(6), we now see that with pars fixed, the values 〈s, x〉, 〈̂s, x〉 determine the ciphertext (C1, C2,C3,C4).
Thus there are at most p2 possible ciphertexts when id = id∗, and 2n possible inputs. This means that
λ(F.Ev(pars , id∗, ·)) ≥ n − lg(p2) = ℓ, which justifies the second claim of Equation (14). Recalling that
δ = 1, Equation (13) follows from Equation (1), Equation (14), Lemma 4.2 and Lemma 4.1.

4.9 Adaptive-id Security

We consider IBTDF F[n, µ, {0, 1}µ ], the instance of our construction with IDSp = {0, 1}µ ⊂ Z
µ
p . We show

that this IBTDF is adaptive-id δ-lossy for δ = (4(µ + 1)Q)−1 where Q is the number of key-derivation
queries of the adversary. By Theorem 3.2 this means F[n, µ, {0, 1}µ] is adaptive-id one-way. To do this
we define a sibling LFQ[n, µ, {0, 1}µ]. It preserves the key-generation, evaluation and inversion algorithms
of F[n, µ, {0, 1}µ ] and alters parameter generation to LF[n, µ, {0, 1}µ].Pg(id) defined via

y← Aux ; (pars ,msk )
$← E[n, µ, {0, 1}µ].Pg(y) ; Return (pars ,msk ) .

where algorithm Aux is defined via

y′[0]
$← {0, . . . , 2Q− 1} ; ℓ $← {0, . . . , µ+ 1} ; y[0]← y′[0]− 2ℓQ

For i = 1 to µ do y[i]
$← {0, . . . , 2Q− 1}

Return y ∈ Z
µ+1
p

The following says that our IBTDF is δ-lossy under the DLIN assumption with lossiness ℓ = n− 2 lg(p).

Theorem 4.4 Let n > 2 lg(p) and let ℓ = n−2 lg(p). Let F = F[n, µ, {0, 1}µ] be the IBTDF associated by
our construction to parameters n, µ and IDSp = {0, 1}µ. Let A be an adaptive-id adversary that makes
a maximal number of Q < p/(3m) queries and let δ = (4(µ + 1)Q)−1. Let LF = LFQ[n, µ, {0, 1}µ] be the
sibling associated to F, A as above. Then there is an adversary B such that

Advδ-los
F,LF,ℓ(A) ≤ 2n(µ+ 2) ·Advdlin(B) . (15)

The running time of B is that of A plus O(µ2ρ−1((µQρ)−1)) overhead, where ρ = 1
2 ·Advδ-los

F,LF,ℓ(A).

Proof of Theorem 4.4: Our proof uses a simulation technique due to Waters [62]. We used a slightly
improved analysis from [42]. Let Q be the number of queries made by A and let algorithm Aux be defined
as above. Let RL0,RLn be the games of Figure 5 with IDSp = {0, 1}µ and this Aux. Let E(IS , id∗) denote
the event that when procFinalize(d′) is called in RLA

0 the flag Win ← false is set and id∗ 6∈ IS . (Note
that η(IS , id∗) only depends on IS , id∗ since y0 is exclusively used to set Win← false.) Let η(IS , id∗) be
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the probability that E(IS , id∗) happens. In [42, Lemma 6.2], it was shown (using purely combinatorial
arguments) that λlow := 1

4(µ+1)Q ≤ η(IS , id∗) ≤ 1
2Q := λup. Since RLA

0 and RealA
F

are only different

when E(IS , id∗) happens, one would like to argue that λlow · Pr
[

RealA
F

]

= Pr
[

RLA
0

]

but this is not

true since E(IS , id∗) and RealA
F

may not be independent. To get rid of this unwanted dependence we
consider a modification of RL0 and RLn which adds some artificial abort such that in total it always sets
Win ← false with probability around 1 − λlow, independent of the view of the adversary. (Since, given
IS , id∗, the exact value of η(IS , id∗) cannot be computed efficiently, it needs to be approximated using
sampling.) Concretely, games R̂L0 and R̂Ln are defined as RL0 and RLn, respectively, the only difference
being Finalize which is defined as follows.

proc Finalize(d′) // R̂L0, R̂Ln

Compute an approximation η′(IS , id∗) of η(IS , id∗)
If η′(IS , id∗) > λlow then set Win← false with probability 1− λlow/η

′(IS , id∗)
Return ((d′ = 1) and (id∗ 6∈ IS ) and Win)

We refer to [42] on details how to compute the approximation η′(IS , id∗). Using [42, Lemma 6.3], one
can show that if we use O(µ2ρ−1((µQρ)−1)) samples to compute approximation η′(IS , id∗), then

Pr
[

RealA
F

]

− λ−1
low · Pr

[

R̂L
A
0

]

= ρ. (16)

Setting ρ = 1
2 · Pr

[

RealA
F

]

we obtain

δ · Pr
[

RealAF
]

= Pr
[

R̂L
A
0

]

, (17)

where δ = λlow/2 is as in the theorem statement. As in the proof of Theorem 4.3, we can show that

Pr
[

LossyA
F,LF,ℓ

]

= Pr
[

R̂L
A
n

]

. (18)

Now Equation (15) follows from Equations (1), (17), (18), Lemma 4.2 and (a version incorporating the
artificial abort of) Lemma 4.1.

We remark that we could use the proof technique of [12] which avoids the artificial abort but this increases
the value of δ, making it dependent on the adversary advantage. The proof technique of [41] could be
used to strengthen δ in Theorem 4.4 to O(

√
mQ)−1 which is close to the optimal value Q−1.

5 IB-TDFs from Lattices

Here we give a construction of a lossy IB-TDF from lattices, specifically, the LWE assumption. We note
that a one-way IB-TDF can already be derived by applying methods from [29, 2] to the LWE-based
injective (not identity-based) trapdoor function from [36].

LWE is a particular type of average-case BDD/GapSVP problem. It has been recognized since [50]
that GapSVP (and BDD [45]) induces a form of lossiness. So there is folklore that the GPV LWE-based
TDF can be made to satisfy some meaningful notion of lossiness (specifically, for an appropriate input
distribution, the output does not reveal the entire input statistically) by replacing its normally uniformly
random key with an LWE (BDD/GapSVP) instance. However, a full construction and proof according
to the standard notion of lossiness (which compares the domain and images sizes of the function) have
not yet appeared in the literature, and there are many quantitative issues to address.

In this section we construct an (ID-based) TDF that is lossy for a natural (uniform) input distribution.
We favor simplicity of analysis at the expense of tight bounds, so our construction is highly unoptimized
and should be seen mainly as a proof of feasibility. Much tighter constructions and bounds can be
achieved using more sophisticated machinery from the literature.

18
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5.1 Background

For a real matrix X, we let s1(X) denote its largest singular value (also known as spectral norm), i.e.,
s1(X) = maxy 6=0 ‖Xy‖/‖y‖. It is easy to verify that the spectral norm satisfies the triangle inequality
s1(X + Y) ≤ s1(X) + s1(Y) and s1(XY) ≤ s1(X)s1(Y). Throughout this section we let n be the
main security parameter, and let ω(

√
log n) denote a fixed function that grows asymptotically faster than√

log n.

Probability distributions. The discrete Gaussian distribution with parameter s > 0 over the integers
Z, written DZ,s, assigns probability proportional to exp(−πx2/s2) to each x ∈ Z (and probability zero
elsewhere). It is extended to a product distribution over Zn in the natural way, i.e., DZn,s = Dn

Z,s.

We say that a random variable X over R is subgaussian with parameter s if for all t ≥ 0, we
have Pr[|X| ≥ t] ≤ 2 exp(−πt2/s2). More generally, we say that a random vector x (respectively, a
random matrix X) or its distribution is subgaussian of parameter s if all its one-dimensional marginals
〈x,u〉 (respectively, utXv) for unit vectors u,v are subgaussian of parameter s. The concatenation of n
independent subgaussian variables with common parameter s, interpreted as either a vector or matrix, is
also subgaussian with parameter s. It is also known that DZ,s is subgaussian with parameter s (see [46,
Lemma 2.8]). We need the following standard fact from random matrix theory (see, e.g., [60]).

Lemma 5.1 For a random matrix X ∈ R
h×w that is subgaussian with parameter s, we have s1(X) =

s ·O(
√
h+
√
w) except with probability 2−Ω(h+w).

Lattices and LWE. Throughout the remainder of this section we let q = q(n) denote a prime, and Zq

denote the ring of integers modulo q. It is possible to generalize our constructions to moduli of other forms
(e.g., prime powers) using known facts from the literature (see, e.g., [46]), but this somewhat complicates
the constructions and the statements of the bounds we use, so we stick with prime moduli for simplicity.

As in many recent papers, we work with a family of “q-ary” lattices (and their cosets), represented by
parity-check matrices A ∈ Z

n×m
q . The precise definition of these lattices will not be needed in this work,

so we omit it and refer the interested reader to, e.g., [36] for details. The following lemma is special case
of [36, Lemma 5.3] and [46, Lemma 2.4], and the properties of the “smoothing parameter” (see [47, 36]).

Lemma 5.2 For prime q and integer b ≥ 2, let m̄ ≥ n logb q + ω(log n). With overwhelming proba-
bility over the uniformly random choice of Ā ∈ Z

n×m̄
q , the following holds: for r ← Dm̄

Z,b·ω(
√
logn)

, the

distribution of Ar ∈ Z
n
q is negl(n)-far from uniform.

Note that by the triangle inequality for statistical distance, the above statement also holds where r is
replaced by R← Dm̄×w

Z,b·ω(
√
logn)

, and Ar ∈ Z
n
q with AR ∈ Z

n×w
q , for any w = poly(n).

The (decisional) learning with errors (LWE) problem [54] in dimension n with error rate α ∈ (0, 1),
stated in matrix form, is: given an input (A,b) ∈ Z

n×m
q ×Zm

q (for any m = poly(n)) whereA is uniformly

random, and b is either of the form bt = xt
[

Im
A

]

mod q for x ← Dm+n
Z,αq , or is uniformly random and

independent of A, distinguish which is the case with non-negligible advantage.1 By a routine hybrid
argument, replacing x with a matrix X having any number w = poly(n) of independent columns (each
drawn from Dm+n

Z,αq ), and replacing bt with either Bt = Xt
[

I
A

]

mod q or a uniformly random B of the
same dimension, yields an equivalent problem (up to a w factor in the adversary’s advantage). When
αq > 2

√
n, this decision problem is at least as hard as approximating several problems on n-dimensional

lattices in the worst case to within Õ(n/α) factors with a quantum algorithm [54], or via a classical
algorithm for a subset of these problems [50].

1This is actually the “normal form” of the LWE problem, which is equivalent to the one from [54] in which the portion
of x that is multiplied by A

t is uniformly random in Z
n
q ; see, e.g., [6]. In addition, for simplicity of analysis we use a true

discrete Gaussian error distribution DZ,αq instead of a “rounded” continuous Gaussian as in [54]; hardness for this error
distribution is implied by the results of [51].
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Trapdoors for lattices. We recall the notion and efficient construction of a (strong) trapdoor for q-ary
lattices, due recently to Micciancio and Peikert [46]. This construction uses a public “gadget” matrix G
over Zq, defined as

G = In ⊗ [1, b, b2, . . . , bw−1] ∈ Z
n×nw
q (19)

for some integer base b ≥ 2 and w = ⌈logb q⌉. (Note that [46] mainly focuses on the case b = 2; in our
constructions we will need to take b to be larger, but still constant.)

Following [46], we say that an integer matrix R ∈ Z
(m−nw)×nw is a trapdoor with tag H ∈ Z

n×n
q for

A ∈ Z
n×m
q if A

[

R
I

]

= H ·G. In our constructions, H will always be either an invertible matrix, or the
zero matrix. The trapdoor generation algorithm of [46] works for any m ≥ n(logb q + w) + ω(log n) and
generates a nearly uniform A ∈ Z

n×m
q , together with a trapdoor R (with a desired tag H) for A. Letting

m̄ = m−nw ≥ n logb q+ω(log n), it chooses Ā ∈ Z
n×m̄
q uniformly at random, chooses R← Dm̄×nw

Z,b·ω(
√
logn)

,

and lets A = [Ā | H ·G− ĀR]. It is clear by inspection that R is a trapdoor for A, and by Lemma 5.2
the distribution of A is negl(n)-far from uniform.

We recall two of the main operations enabled by a trapdoor: inversion of the (injective) LWE function
gA(x) := xt

[

I
A

]

mod q for “short” integer vectors x, and delegation of a trapdoor for an extended parity-
check matrix.

Lemma 5.3 ([46]) Let R be a trapdoor with any invertible tag H ∈ Z
n×n
q for A ∈ Z

n×m
q , using a gadget

matrix G with base b ≥ 2. There are efficient algorithms Invert and DelTrap that do the following:

1. For bt = gA(x) := xt
[

Im
A

]

mod q where x ∈ Z
m+n is such that ‖x‖ ≤ q/Θ(b · s1(R)), the algorithm

Invert(R,A,b) outputs x.

2. For any invertible tag H′, matrix A′ ∈ Z
n×nw
q , and any sufficiently large s = Ω(b·s1(R))·ω(√log n),

the algorithm DelTrap(R, [A | A′],H′, s) outputs a trapdoor R′ with tag H′ for [A | A′], where R′

has the same distribution (up to negl(n) statistical distance) for any trapdoor R satisfying the above
bound on s1(R), and s1(R

′) = O(
√
m) with overwhelming probability.

5.2 Our basic trapdoor function

Let c > 1 and integer base b ≥ 2 be constants to be determined later in the analysis, and let n̂ = cn,
m ≥ n̂ logb q = cn logb q be integers. Define Iβ = {0, 1, . . . , β−1} and Iγ similarly for some positive integers
β ≥ γ to be determined later. (The analysis also goes through unchanged for Iβ = [−β, . . . , β − 1) and
Iγ defined similarly.)

1. Parameters: The public parameter pars is a matrix A ∈ Z
n̂×m
q (which will be close to uniform, either

statistically or computationally), and the trapdoormsk is a trapdoorR (for any invertible tagH) forA
with bounded s1(R). For a sufficiently large m = Ω(n̂ logb q), these can be created using the trapdoor
generation algorithm described above, or via the DelTrap algorithm from Item 2 of Lemma 5.3.

2. Evaluate: Given parameter A and input x ∈ Im+n
β × I n̂−n

γ , algorithm LWE.Ev outputs

bt = gA(x) := xt

[

Im
At

]

mod q.

3. Invert: Given parameter A, trapdoor R and output b, algorithm LWE.Ev−1 returns x using the
inversion algorithm from Item 1 of Lemma 5.3.

The next lemma shows that when A has a particular non-uniform structure (without a trapdoor R),
the function gA is lossy when the parameters are set appropriately; we show how to do so after the proof.

Lemma 5.4 Suppose that A ∈ Z
n̂×m
q is such that

[

Im
A

]

=

[

Im+n

Et

] [

Im
Ā

]

20

Approved for Public Release; Distribution Unlimited. 
181 



for some Ā ∈ Z
n×m
q and Et ∈ Z

(n̂−n)×(m+n). Then for x ∈ Im+n
β × I n̂−n

γ , the number of distinct output

values gA(x) is at most O(β + γ · s1(E))m+n.

In particular, for large enough γc−1 ≥ 2Ω(m/n) and β ≥ γ · s1(E), the function gA is Ω(m)-lossy.

Proof: Notice that

gA(x) = xt

[

Im
A

]

= (xt

[

Im+n

Et

]

)

[

Im
Ā

]

mod q.

It therefore suffices to bound the number of possible values of the form xt
[

I
Et

]

∈ Z
m+n. By the triangle

inequality, we have

∥

∥xt
[

I
Et

] ∥

∥ ≤ β
√
m+ n+ s1(E) · γ

√
n̂− n ≤

√
m+ n · (β + γ · s1(E)).

Define Nd(r) to be the number of integer points in a d-dimensional Euclidean ball of radius r. For r ≥
√
d,

from the volume of the ball and Stirling’s approximation, we have Nd(r) = O(r/
√
d)d. Therefore, the

number of possible values of the form xt
[

I
Et

]

∈ Z
m+n is O(β + γ · s1(E))m+n, as claimed.

For lossiness, observe that for our choice of γ, the base-2 logarithm of the domain size of gA is

(m+ n) lg β + n lg γc−1 ≥ (m+ n) lg β +Ω(m).

Whereas by the above, for β ≥ γ · s1(E) the base-2 logarithm of the image size of gA is at most

(m+ n) lgO(β + γ · s1(E)) = (m+ n) lg β +O(m).

By choosing a sufficiently large universal constant in the above Ω(·) expression, we have that the two
quantities above differ by Ω(m), as desired.

We now discuss the constraints on the parameters and show how they can be instantiated. The
constant c, base b, and integer γ are chosen based on the relationship between m and n. First, we
need γc−1 ≥ 2Ω(m/n) as required by Lemma 5.4. In order to generate A with a trapdoor, we will have
m = Θ(n̂ logb q) = Θ(cn logb q), so we need γ ≥ qΘ(1/ log b)·c/(c−1). For any desired constant C > 1, we can
choose constants c > 1 and b ≥ 2 so that γ ≤ q1/C . Next, we choose β: to accommodate both the upper
bound that suffices for invertibility (Item 1 of Lemma 5.3), and the lower bound on β that suffices for
Ω(m)-lossiness (Lemma 5.4), it suffices to take

q1/C · s1(E) ≤ β ≤ q/Θ(s1(R) · √m). (20)

These constraints can be satisfied for sufficiently large

q1−1/C ≥ Ω(s1(R) · s1(E) · √m). (21)

In all our instantiations, we will have (with 1 − negl(n) probability) s1(R) = poly(n) by the use of
the trapdoor generation or delegation algorithms, and s1(E) = poly(n) by the use of LWE with error
distribution DZ,αq for αq = Θ(

√
n) to generate a pseudorandom matrix A. Because 1 − 1/C > 0 is a

constant (which may even be chosen arbitrarily close to 1), we can choose a sufficiently large q = poly(n)
so as to satisfy Equation (21), and can use an error rate of α = Θ(

√
n)/q = 1/poly(n).

Remark 5.5 As a concrete (but non-identity-based) instantiation, consider a matrix A having the form
described in Lemma 5.4, where Ā ∈ Z

n×m
q is uniformly random and the entries of E are chosen inde-

pendently from DZ,αq, where αq = Θ(
√
n) so that we can invoke known worst-case hardness results for

LWE. Then we have s1(R) = O(
√
m) · ω(√log n) = Õ(

√
n) and s1(E) = O(

√
mn) = Õ(n) with over-

whelming probability, by subgaussianity of DZ,αq and Lemma 5.1. Moreover, under the LWE assumption
(in dimension n) with noise rate α, such an A is indistinguishable from uniform, which makes the lossy
function gA indistinguishable from an invertible one.
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Remark 5.6 Our constructions of ID-based lossy TDFs below involve two small variations on the above
example. First, the trapdoor D(id) for an identity will be delegated (using the DelTrap algorithm) from
a trapdoor R(id), derived from the master trapdoor R, for which s1(R(id)) ≤ poly(n). So we will still
have s1(D(id)) ≤ s1(R(id)) · poly(n) = poly(n). Second, in the lossy case, the hidden matrix E in the
structured matrix A will no longer be Gaussian itself, but will be the product of some Gaussian E′ (of
parameter αq) and another matrix X with s1(X) = poly(n), so we will still have s1(E) = poly(n) and
can still instantiate all the parameters so that q, 1/α = poly(n).

5.3 Our id-based lossy trapdoor function

Setup. As above, let c > 1 and integer base b ≥ 2 be constants to be determined later, and let
n̂ = cn, m̄ = n̂ logb q + ω(log n), and m = m̄ + 2n̂w where w = ⌈logb q⌉. For integer µ ≥ 1, let
C : IDSp → Z

n̂×n̂
q × {0, 1}µ denote an injective encoding of identities that will be instantiated for a

specific scheme.
Our E-IBTDF. Our E-IBTDF L[µ, IDSp,C] is associated with an integer µ ≥ 1, an identity space IDSp
and an injective encoding C. It has domain InSp = Im+n

β × I n̂−n
γ and auxiliary input space (Zn̂×n̂

q )µ, and
is given by the following algorithms.

1. Parameters: Given input A ∈ Z
n̂×m̄
q and auxiliary input H = (H[1], . . . ,H[µ]) ∈ (Zn̂×n̂

q )µ, algorithm

L[µ, IDSp,C].Pg chooses R = (R[1], . . . ,R[µ]) ← (Dm̄×n̂w
Z,b·ω(

√
logn)

)µ, and lets U = (U[1], . . . ,U[µ]) ∈
(Zn̂×n̂w

q )µ, where
U[i] := H[i] ·G−AR[i].

It also chooses R′ ← Dm̄×n̂w
Z,b·ω(

√
logn)

and lets A′ = AR′. It returns pars = (A,A′,U) as the public

parameters and msk = (R,H) as the master secret key.
Note that R[i] is a trapdoor with tag H[i] for [A | U[i]]. Moreover, since each R[i] is subgaussian

with parameter b · ω(√log n), we have (by Lemma 5.1) s1(R[i]) = O(b
√
m) · ω(√log n) for all i, with

overwhelming probability.
For pars = (A,A′,U) and a user identity id with C(id) = (H[0], c ∈ {0, 1}µ), define

A(id) :=
[

A | H[0] ·G+

µ
∑

i=1

c[i]U[i]
]

.

For U as constructed by L[µ, IDSp,C].Pg, we have

A(id) =
[

A | (H[0] +

µ
∑

i=1

c[i]H[i]) ·G−A ·
µ
∑

i=1

c[i]R[i]
]

. (22)

Define
R(id) :=

∑

i

c[i]R[i] and H(id) := H[0] +
∑

i

c[i]H[i],

and note that R(id) is a trapdoor with tag H(id) for A(id). Moreover, by the above bound on
s1(R[i]) and the triangle inequality, we have s1(R(id)) = O(µb

√
m) · ω(√log n) = poly(n) for all id ,

with overwhelming probability. In what follows we assume that this bound holds.

2. Key generation: Given public parameters pars = (A,A′,U), master secret (R,H) and identity id ∈
IDSp with C(id) = (H[0], c ∈ {0, 1}µ), algorithm L[µ, IDSp,C].Kg proceeds as follows. It computes
A(id), R(id), and H(id) as defined above. Define

A′(id) := [A(id) | A′].

If H(id) is invertible, it runs DelTrap(R(id),A′(id),H′ = I, s) from Item 2 of Lemma 5.3 to generate
a trapdoor D(id) with tag I for A′(id), for a sufficiently large s = Θ(µb2

√
m) · ω(√log n)2.
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proc Initialize(id) // RL1

H1
$← Aux1(id) ; Win← true

Ā
$← Z

n×m̄
q ; Et $← D

(n̂−n)×(m̄+n)
Z,αq ;

[

I
A

]

=
[

I
Et

] [

I
Ā

]

(pars ,msk )
$← L[µ, IDSp,C].Pg(A,H1)

IS ← ∅ ; id∗ ← id
Return pars

proc Initialize(id) // Ri (i ∈ {0, 1})
H0

$← Aux0(id) ; H1
$← Aux1(id) ; Win← true

A
$← Z

n̂×m̄
q

(pars ,msk )
$← L[µ, IDSp,C].Pg(A,Hi)

IS ← ∅ ; id∗ ← id
Return pars

proc GetDK(id) // RL1,R0,R1

IS ← IS ∪ {id}
If either H0(id) or H1(id) is not invertible

then Win← false ; dk ← ⊥
Else dk ← L[µ, IDSp,C].Kg(pars ,msk , id)
Return dk

proc Ch(id) // RL1,R0,R1

id∗ ← id
If H0(id) 6= 0n̂×n̂ or H1(id) 6= 0n̂×n̂

then Win← false

proc Finalize(d′) // RL1,R0,R1

Return ((d′ = 1) and (id∗ 6∈ IS ) and Win)

Figure 7: Games RL1 (“Real-to-Losssy”) and R0,R1 associated to n, µ, IDSp and auxiliary input generator
algorithms Aux0 and Aux1.

Note that s = Ω(b · s1(R(id))) ·ω(√log n) as required by Lemma 5.3, and that with overwhelming
probability,

s1(D(id)) = s ·O(
√
m) = O(µb2m) · ω(

√

log n)2 = poly(n).

3. Evaluate: Given public parameters pars = (A,A′,U), identity id ∈ IDSp and input x ∈ Im+n
β × I n̂−n

γ ,

algorithm L[µ, IDSp,C].Ev computes A′(id) = [A(id) | A′] as above, and outputs y = gA′(id)(x).

4. Invert: Given parameters (A,A′,U) and identity id ∈ IDSp determining A′(id) as above, trapdoor
Did (with tag I) for A′(id), and value y = gA′(id)(x) as above, algorithm L[µ, IDSp,C].Ev−1 returns x
using the inversion algorithm from Item 1 of Lemma 5.3.

Key generation, invertibility, and lossiness. The choice of auxiliary input H determines the
ability to generate keys for identities, i.e., the induced IBTDF L[µ, IDSp,C](H) can generate a key Did

for any id such that H(id) is invertible. By the upper bound on β from Equation (20), inversion is correct
as long as β ≤ q/Θ(s1(Did ) ·

√
m).

By contrast, suppose that the A ∈ Z
n̂×m̄
q given to L[µ, IDSp,C].Pg is such that

[

I
A

]

=
[

I
Et

] [

I
Ā

]

for

some Ā ∈ Z
n×m̄
q and Et = [Et

1 | Et
2] ∈ Z

(n̂−n)×m̄×Z
(n̂−n)×n. (I.e., A is a structured matrix that satisfies

the hypothesis of Lemma 5.4.) Then if H(id) = 0, it can be verified that A(id) is such that

[

Im̄+n̂w

A(id)

]

=









Im̄
In̂w

In
Et

1 −Et
1 ·R(id) Et

2













Im̄
In̂w

Ā −Ā ·R(id)



 ,

which satisfies the hypothesis of Lemma 5.4 with [Ā | −A·R(id)] in place of Ā and Ẽt = [Et
1 | −Et

1·R(id) |
Et

2] in place of Et. Observe that by the triangle inequality, s1(Ẽ) ≤ s1(E)(1+s1(R(id))) ≤ s1(E) poly(n).
In particular, if we have a known poly(n) upper bound on s1(E), then as described in the analysis
following the proof of Lemma 5.4, we can instantiate the parameters to have correct inversion when
H(id) is invertible, and Ω(m)-lossiness when H(id) = 0.

In what follows we show security of the scheme in the selective-id and adaptive models, under the
LWE assumption.
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5.4 Real-to-lossy lemma

Consider game RL1 which is defined as in Figure 7, where A is such that
[

I
A

]

=
[

I
Et

] [

I
Ā

]

for uni-

formly random Ā ∈ Z
n×m̄
q and Et ← D

(n̂−n)×(m̄+n)
Z,αq . Games R0 and R1 are defined similarly, where the

distribution of A is uniformly random.
The following lemma says it is hard to distinguish game R0 from RL1. We will apply this by defining

Aux0 and Aux1 in such a way that the output of Aux0 results in the real scheme and the output of Aux1
results in a lossy setup.

Lemma 5.7 Let n, µ ≥ 1 be integers and IDSp. Let Aux0 and Aux1 be auxiliary input generators for
L[µ, IDSp,C] and A an adversary. Then there is an adversary B such that

Pr[RA
0 ]− Pr[RLA

1 ] ≤ Advlwe
n,α(B) + negl(n) . (23)

The running time of B is that of A plus some overhead. If A is selective-id then so is B.

The last statement allows us to use the lemma in both the selective-id and adaptive-id cases.

Proof: By Remark 5.5 we have that

Pr[RA
1 ]− Pr[RLA

1 ] ≤ Advlwe
n,α(B) . (24)

We claim that in R0 and R1 (where A is uniformly random) the values H0 and H1 are statistically hidden
from A’s view. By Lemma 5.2, the tuple (A,AR[1], . . . ,AR[µ]) is negl(n)-far from uniformly random.
Hence the public parameters (Ā,A′,U) are negl(n)-far from uniform for any fixed choice of the auxiliary
input H. Since the execution of the remaining game is independent of whether H comes from Aux0 or
Aux1, we obtain

Pr[RA
0 ]− Pr[RA

1 ] ≤ negl(n) . (25)

which concludes the proof.

5.5 Selective-id Security

We consider IBTDF L[µ = 1,Zn̂
q \{0},C′

FRD], the instance of our construction with identity space IDSp =

Z
n̂
q \ {0}, uniformly random input A ∈ Z

n̂×m̄
q , auxiliary input H0 = H0[1] = −CFRD(0) ∈ Z

n̂×n̂
q , and

identity encoding C′
FRD(id) = (CFRD(id), 1) ∈ Z

n̂×n̂
q × {0, 1}, where CFRD : Zn̂

q → Z
n̂×n̂
q is an “invertible

differences” encoding as constructed in [2]. (I.e., for each x 6= x′, the matrix CFRD(x) − CFRD(x
′) is

invertible over Zq.)
Note that our scheme satisfies the correct inversion requirement becauseH0(id) = CFRD(id)−CFRD(0)

is invertible for all id ∈ IDSp = Z
n̂
q \ {0}. We show that this IBTDF is selective-id δ-lossy for δ = 1,

meaning fully selective-id lossy, and hence selective-id one-way. To do this we define a sibling LF[µ =
1,Zn̂

q \ {0},C′
FRD]. It preserves the key-generation, evaluation and inversion algorithms of L[1,Zn̂

q \
{0},C′

FRD] and alters parameter generation to

Algorithm LF[1,Zn̂
q \ {0},C′

FRD].Pg(id) :

Ā
$← Z

n×m̄
q ; Et $← D

(n̂−n)×(m̄+n)
Z,αq ;

[

I
A

]

=
[

I
Et

] [

I
Ā

]

H1[1] = −CFRD(id) ; (pars ,msk )
$← L[1,Zn̂

q \ {0},C′
FRD].Pg(A,H1) ; Return (pars ,msk ) .

The following says that our IBTDF is 1-lossy with lossiness Ω(m), under the LWE assumption.

Theorem 5.8 Let m = c2n > c1n = n̂ and ℓ = 2m. Let L = L[1,Zn̂
q \ {0},C′

FRD] be the IBTDF

associated by our construction to parameters µ = 1 and IDSp = Z
n̂
q \ {0}. Let LF = LF[1,Zn̂

q \ {0},C′
FRD]

be the sibling associated to it as above. Let δ = 1 and let be A a selective-id adversary. Then there is an
adversary B such that

Advδ-los
L,LF,ℓ(A) ≤ Advlwe

n,α(B) + negl . (26)
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The running time of B is that of A plus overhead.

Proof: On input id , let algorithm Aux0 return −CFRD(0) and algorithm Aux1 return −CFRD(id). Let
R0,RL1 be the games of Figure 7 with µ = 1, IDSp = Z

n̂
q \ {0} and auxiliary input generators Aux0 and

Aux1, respectively. Then we claim

Pr
[

RealAL
]

= Pr
[

RA
0

]

and Pr
[

LossyAL,LF,ℓ
]

= Pr
[

RLA
1

]

. (27)

To justify this let id∗ be the identity queried by A to both Initialize and Ch. (These queries are the
same because A is selective-id.) Then H1 = −CFRD(id

∗) so H1(id) = CFRD(id)−CFRD(id
∗). Since CFRD

is an encoding with invertible differences, this is invertible iff id 6= id∗. This means that the conjunct
(id∗ 6∈ IS ) ∧Win is always true. The claim of Equation (27) is now true because game R0 generates
parameters with uniform A and auxiliary input H0 = −CFRD(0) ∈ Z

n̂×n̂
q that, via L[1,Zn̂

q \ {0},C′
FRD],

defines L. However game RL1 generates parameters with auxiliary input H1. Since H1(id
∗) = 0, the

function gA′(id) is Ω(m)-lossy, as argued immediately following the description of the scheme.

5.6 Full Security

We consider IBTDF L[µ, {0, 1}µ,C′], the instance of our construction with IDSp = {0, 1}µ, uniformly
random input A ∈ Z

n̂×m̄
q , auxiliary input H0 = (H0[1], . . . ,H0[µ]) := (0n̂×n̂, . . . ,0n̂×n̂) and C′(id) =

(1n̂×n̂,Cf (id)), where Cf : {0, 1}µ → Z
n̂×n̂
q maps x ∈ {0, 1}µ into a vector X of matrices such that

X[i] = (−1)x[i] · 1n̂×n̂ ∈ Z
n̂×n̂
q .

Note that our scheme satisfies the correct inversion requirement because H0(id) = 1n̂×n̂ is invertible
for all id ∈ IDSp. We show that this IBTDF is adaptive-id δ-lossy for δ = (8Q)−1 where Q is the number
of key-derivation queries of the adversary. By Theorem 3.2 this means L[µ, {0, 1}µ ,C′] is adaptive-id
one-way. To do this we define a sibling LFQ[µ, {0, 1}µ,C′]. It preserves the key-generation, evaluation
and inversion algorithms of L[µ, {0, 1}µ,Cf ] and alters parameter generation to

Algorithm LFQ[µ, {0, 1}µ ,C′].Pg(id) :

Ā
$← Z

n×m̄
q ; Et $← D

(n̂−n)×(m̄+n)
Z,αq ;

[

I
A

]

=
[

I
Et

] [

I
Ā

]

H1
$← Aux1 ; (pars ,msk)

$← L[µ, {0, 1}µ,C′].Pg(A,H1) ; Return (pars ,msk ) .

where Aux1 is a randomized algorithm from [2, 22] that generates H1 ∈ (Zn̂×n̂
q )µ such that the image of

H1(·) is either 0n̂×n̂ or invertible andH1(·) is “pairwise independent”, i.e, for all id 6= id ′, PrAux1 [H1(id) =
0n̂×n̂ | H1(id

′) = 0n̂×n̂] = 1/(2Q). The following says that our IBTDF is δ-lossy under the LWE
assumption with lossiness ℓ = 2m.

Theorem 5.9 Let m = c2n > c1n = n̂ and ℓ = 2m. Let L = L[µ, {0, 1}µ,C′] be the IBTDF associated
by our construction to parameters µ and IDSp = {0, 1}µ. Let A be an adaptive-id adversary that makes
a maximal number of Q queries and let δ = (8Q)−1. Let LF = LFQ[µ, {0, 1}µ,C′] be the sibling associated
to L as above. Then there is an adversary B such that

Advδ-los
L,LF,ℓ(A) ≤ Advlwe

n,α(B) + negl(n) . (28)

The running time of B is that of A plus polynomial overhead.

Proof: (Sketch) Let Q be the number of queries made by A and let algorithm Aux be defined as above.
Let R0,RL1 be the games of Figure 7 with IDSp = {0, 1}µ and this Aux0 and Aux1. Let E(IS , id

∗) denote
the event that when Finalize(d′) is called in RA

0 the flag Win ← false is set and id∗ 6∈ IS . (Note that
η(IS , id∗) only depends on IS , id∗.) Let η(IS , id∗) be the probability that E(IS , id∗) happens. In [2],
it was shown that λlow := 1

4Q ≤ η(IS , id∗) ≤ 1
2Q := λup. Since RA

0 and RealA
L

are only different when

E(IS , id∗) happens, one would like to argue that λlow · Pr
[

RealA
L

]

= Pr
[

RA
0

]

but this is not true since

E(IS , id∗) and RealA
L

may not be independent. To get rid of this unwanted dependence we consider a
modification of R0 and RL1 which adds some artificial abort such that in total it always sets Win← false
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with probability around 1 − λlow, independent of the view of the adversary. (Since, given IS , id∗, the
exact value of η(IS , id∗) cannot be computed efficiently, it needs to be approximated using sampling.)
Concretely, games R̂0 and R̂L1 are defined as R0 and RL1, respectively, the only difference being Finalize
which is defined as follows.

proc Finalize(d′) // R̂0, R̂L1

Compute an approximation η′(IS , id∗) of η(IS , id∗)
If η′(IS , id∗) > λlow then set Win← false with probability 1− λlow/η

′(IS , id∗)
Return ((d′ = 1) and (id∗ 6∈ IS ) and Win)

One can again show that with a polynomial number of samples to compute approximation η′(IS , id∗),

δ · Pr
[

RealAL
]

= Pr
[

R̂A
0

]

, (29)

where δ = λlow/2 is as in the theorem statement. Similar to the proof of Theorem 5.8, we can show that

Pr
[

LossyAL,LF,ℓ
]

= Pr
[

R̂L
A
1

]

. (30)

Now Equation (28) follows from Equation (1), Equation (29), Equation (30) and Lemma 5.7.
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A Anonymous IBE

In this section we describe an IBE scheme that is similar to IBE from Section 4 with the difference that
it encrypts group elements (rather than bits) and it is slightly more efficient. We associate to any integer
µ ≥ 1 and any identity space IDSp ⊆ Z

µ
p an IBE scheme IBE′[µ, IDSp] that has message space G

∗
T and

algorithms as follows:

1. Parameters: Algorithm IBE[µ, IDSp].Pg lets g
$← G

∗ ; t, z
$← Z

∗
p ; ĝ ← gt ; Z ← e(g, g)z . It then lets

H, Ĥ, U
$← G ; U

$← G
µ+1. It returns pars = (g, ĝ,H,U, Ĥ,U, Z) as the public parameters and

msk = (t, z) as the master secret key.

2. Key generation: Given parameters (g, ĝ,H,U,U, Z), master secret (t, z) and identity id ∈ IDSp, al-

gorithm IBE′[µ, IDSp].Kg returns decryption key (D1,D2,D3,D4) computed by letting r, r̂
$← Zp and

setting

D1 ← gz · H(U, id)tr ·Htr̂ ; D2 ← U r ·H r̂ ; D3 ← g−tr ; D4 ← g−tr̂ .

3. Encryption: Given parameters (g, ĝ,H,U,U, Z), identity id ∈ IDSp and message M ∈ G
∗
T , algorithm

IBE[µ, IDSp].Enc returns ciphertext (C1, C2, C3, C4, C5) computed as follows. It lets s, ŝ
$← Zp and

C1 ← gs ; C2 ← ĝŝ ; C3 ←H(U, id)s · U ŝ ; C4 ← Hs+ŝ ; C5 ← Z−s ·M .

4. Decryption: Given parameters (g, ĝ,H,U,U, Z), identity id ∈ IDSp, decryption key (D1,D2,D4,D4)
for id and ciphertext (C1, C2, C3, C4, C5), algorithm IBE[µ, IDSp].Dec returns

M = e(C1,D1)e(C2,D2)e(C3,D3)e(C4,D4)C5 .

Compared to IBE[µ, IDSp] from Section 4 , the efficiency improvement consists of replacing H(Û, id) by
U in the computation of D2 and C3 and of setting Ĥ := H. Using the techniques of the ciphertext
pseudorandomness lemma (Lemma 4.1) one can show that the elements (C1, C2, C3, C4) of the ciphertext
are pseudorandom. (Here the reduction knows the secret z.) In a final similar hybrid step one can also
show that, under the Bilinear Diffie-Hellman assumption (which is implied by the DLIN assumption), the
element C5 is also pseudorandom. (Here is reduction knows the secret t.) As our main ID-based TDF
result uses anonymous IBE techniques, the main ideas of this systems security is implicit in our main
proof. A formal proof of the above stand alone system is deferred to the full version.

B Applications

We expand first on the application to achieving deterministic IBE and then on achieving hedged IBE.
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D-PKE. Deterministic PKE (D-PKE) cannot achieve IND-CPA security. Bellare, Boldyreva and
O’Neill [7] defined a target notion PRIV for it that captures the best possible security under the condition
that encryption is deterministic. D-PKE provides a way to do fast (logarithmic time) search on encrypted
data. PEKS [20] offers higher security but takes linear time, and trading some security for a significant
increase in searching speed is attractive for large databases.

Achieving PRIV for D-PKE has been (and remains) a challenge. It is possible in the RO model [7].
The best results without ROs are due to Boldyreva, Fehr and O’Neill [16], who show how to achieve
PRIV without random oracles for message sequences which are blocksources, meaning each message has
some min-entropy even given the previous ones. Using the Leftover Hash Lemma (LHL) [15, 39], they
show that any LTDF is a D-PKE scheme that is PRIV-secure for blocksources as long as the lossy branch
is a universal hash function.

D-IBE. We introduce deterministic IBE (D-IBE). The PRIV definition is easily extended to this setting.
D-IBE offers, over D-PKE, the same advantages that IBE offers over PKE, for example that there are no
certificates and encryption depends only on the identity of the receiver. Again, D-IBE can be achieved
in the RO model by setting the coins of an IBE scheme to the RO-hash of the message. (This is how
PKE is turned into D-PKE in the RO model in [9, 7].) We ask what can be done without ROs.

We show that our constructions of DLIN-based lossy IB-TDFs have the properties necessary to obtain
PRIV-secure D-IBE schemes for blocksources under the paradigm of [16] in the selective case. We start
by observing that the lossy branches are universal hash functions. This can be seen from Equations (3),
(4), (5) and (6). In the lossy case, f(y, id) = 0, and the function has a range R of size p2. Now if x1, x2
are distinct inputs, then the outputs of the function on them collide exactly when (〈s, x1〉, 〈̂s, x1〉) =
(〈s, x2〉, 〈̂s, x2〉). The probability that this happens when s, ŝ are chosen at random from Z

n
p is 1/p2 =

1/|R|.
Hedged IBE. The definitions and methods of [8] can be extended to the identity-based setting in
a straightforward way in the selective setting once we have universal lossy IB-TDFs. There are two
approaches. One is generic composition of an IBE scheme with a IB-TDF. The other is to first pad the
message with randomness and then apply the IB-TDF.

Adaptive setting. It remains open to achieve deterministic or hedged IBE in the adaptive security
setting.
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Abstract

Recent advances in lattice cryptography, mainly stemming from the development of ring-based
primitives such as ring-LWE, have made it possible to design cryptographic schemes whose efficiency is
competitive with that of more traditional number-theoretic ones, along with entirely new applications
like fully homomorphic encryption. Unfortunately, realizing the full potential of ring-based cryptography
has so far been hindered by a lack of practical algorithms and analytical tools for working in this context.
As a result, most previous works have focused on very special classes of rings such as power-of-two
cyclotomics, which significantly restricts the possible applications.

We bridge this gap by introducing a toolkit of fast, modular algorithms and analytical techniques that
can be used in a wide variety of ring-based cryptographic applications, particularly those built around
ring-LWE. Our techniques yield applications that work in arbitrary cyclotomic rings, with no loss in their
underlying worst-case hardness guarantees, and very little loss in computational efficiency, relative to
power-of-two cyclotomics. To demonstrate the toolkit’s applicability, we develop a few illustrative appli-
cations: two variant public-key cryptosystems, and a “somewhat homomorphic” symmetric encryption
scheme. Both apply to arbitrary cyclotomics, have tight parameters, and very efficient implementations.

1 Introduction

The past few years have seen many exciting developments in lattice-based cryptography. Two such trends
are the development of schemes whose efficiency is competitive with traditional number-theoretic ones
(e.g., [Mic02] and follow-ups), and the breakthrough work of Gentry [Gen09b, Gen09a] (followed by
others) on fully homomorphic encryption. While these two research threads currently occupy opposite
ends of the efficiency spectrum, they are united by their use of algebraically structured ideal lattices arising
from polynomial rings. The most efficient and advanced systems in both categories rely on the ring-LWE
problem [LPR10], an analogue of the standard learning with errors problem [Reg05]. Informally (and a
bit inaccurately), in a ring R = Z[X]/(f(X)) for monic irreducible f(X) of degree n, and for an integer
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modulus q defining the quotient ring Rq := R/qR = Zq[X]/(f(X)), the ring-LWE problem is to distinguish
pairs (ai, bi = ai · s+ ei) ∈ Rq ×Rq from uniformly random pairs, where s ∈ Rq is a random secret (which
stays fixed over all pairs), the ai ∈ Rq are uniformly random and independent, and the error (or “noise”)
terms ei ∈ R are independent and “short.”

In all applications of ring-LWE, and particularly those related to homomorphic encryption, a main
technical challenge is to control the sizes of the noise terms when manipulating ring-LWE samples under
addition, multiplication, and other operations. For correct decryption, q must be chosen large enough so that
the final accumulated error terms do not “wrap around” modulo q and cause decryption error. On the other
hand, the error rate (roughly, the ratio of the noise magnitude to the modulus q) of the original published
ring-LWE samples and the dimension n trade off to determine the theoretical and concrete hardness of
the ring-LWE problem. Tighter control of the noise growth therefore allows for a larger initial error rate,
which permits a smaller modulus q and dimension n, which leads to smaller keys and ciphertexts, and faster
operations for a given level of security.

Regarding the choice of ring, the class of cyclotomic rings R ∼= Z[X]/Φm(X), where Φm(X) is
the mth cyclotomic polynomial (which has degree n = ϕ(m) and is monic and irreducible over the
rationals), has many attractive features that have proved very useful in cryptography. For example, the
search/decision equivalence for ring-LWE in arbitrary cyclotomics [LPR10] relies on their special algebraic
properties, as do many recent works that aim for more efficient fully homomorphic encryption schemes
(e.g., [SV11, BGV12, GHS12a, GHS12b, GHPS12]). In particular, power-of-two cyclotomics, i.e., where
the index m = 2k for some k ≥ 1, are especially nice to work with, because (among other reasons)
n = m/2 is also a power of two, Φm(X) = Xn + 1 is maximally sparse, and polynomial arithmetic modulo
Φm(X) can be performed very efficiently using just a slight tweak of the classical n-dimensional FFT
(see, e.g., [LMPR08]). Indeed, power-of-two cyclotomics have become the dominant and preferred class of
rings in almost all recent ring-based cryptographic schemes (e.g., [LMPR08, LM08, Lyu09, Gen09b, Gen10,
LPR10, SS11, BV11b, BGV12, GHS12a, GHS12b, Lyu12, BPR12, MP12, GLP12, GHPS12]), often to the
exclusion of all other rings.

While power-of-two cyclotomic rings are very convenient to use, there are several reasons why it is
essential to consider other cyclotomics as well. The most obvious, practical reason is that powers of two are
sparsely distributed, and the desired concrete security level for an application may call for a ring dimension
much smaller than the next-largest power of two. So restricting to powers of two could lead to key sizes and
runtimes that are at least twice as large as necessary. A more fundamental reason is that certain applications,
such as the above-mentioned works that aim for more efficient (fully) homomorphic encryption, require
the use of non-power-of-two cyclotomic rings. This is because power-of-two cyclotomics lack the requisite
algebraic properties needed to implement features like SIMD operations on “packed” ciphertexts, or plaintext
spaces isomorphic to finite fields of characteristic two (other than F2 itself). A final important reason is
diversification of security assumptions. While some results are known [GHPS12] that relate ring-LWE in
cyclotomic rings when one index m divides the other, no other connections appear to be known. So while we
might conjecture that ring-LWE and ideal lattice problems are hard in every cyclotomic ring (of sufficiently
high dimension), some rings might turn out to be significantly easier than others.

Unfortunately, working in non-power-of-two cyclotomics is rather delicate, and the current state of
affairs is unsatisfactory in several ways. Unlike the special case where m is a power of two, in general the
cyclotomic polynomial Φm(X) can be quite “irregular” and dense, with large coefficients. While in principle,
polynomial arithmetic modulo Φm(X) can still be done in O(n log n) scalar operations (on high-precision
complex numbers), the generic algorithms for achieving this are rather complex and hard to implement, with
large constants hidden by the O(·) notation.
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Geometrically, the non-power-of-two case is even more problematic. If one views Z[X]/(Φm(X)) as
the set of polynomial residues of the form a0 + a1X + · · · + an−1X

n−1, and uses the naïve “coefficient
embedding” that views them as vectors (a0, a1, . . . , an−1) ∈ Zn to define geometric quantities like the
`2 norm, then both the concrete and theoretical security of cryptographic schemes depend heavily on the
form of Φm(X). This stems directly from the fact that multiplying two polynomials with small norms can
result in a polynomial residue having a much larger norm. The growth can be quantified by the “expansion
factor” [LM06] of Φm(X), which unfortunately can be very large, up to nΩ(logn) in the case of highly
composite m [Erd46]. Later works [GHS12a] circumvented such large expansion by using tricks like lifting
to the larger-dimensional ring Z[X]/(Xm − 1), but this still involves a significant loss in the tolerable noise
rates as compared with the power-of-two case.

In [PR07, LPR10] a different geometric approach was used, which avoided any dependence on the form
of the polynomial modulus Φm(X). In these works, the norm of a ring element is instead defined according to
its canonical embedding into Cn, a classical concept from algebraic number theory. This gives a much better
way of analyzing expansion, since both addition and multiplication in the canonical embedding are simply
coordinate-wise. Working with the canonical embedding, however, introduces a variety of practical issues,
such as how to efficiently generate short noise terms having appropriate distributions over the ring. More
generally, the focus of [LPR10] was on giving an abstract mathematical definition of ring-LWE and proving
its hardness under worst-case ideal lattice assumptions; in particular, it did not deal with issues related to
practical efficiency, bounding noise growth, or designing applications in non-power-of-two cyclotomics.

1.1 Contributions

Our main contribution is a toolkit of modular algorithms and analytical techniques that can be used in a wide
variety of ring-based cryptographic applications, particularly those built around ring-LWE. The high-level
summary is that using our techniques, one can design applications to work in arbitrary cyclotomic rings, with
no loss in their underlying worst-case hardness guarantees, and very little loss in computational efficiency,
relative to the best known techniques in power-of-two cyclotomics. In fact, our analytical techniques even
improve the state of the art for the power-of-two case.

In more detail, our toolkit includes fast, specialized algorithms for all the main cryptographic operations
in arbitrary cyclotomic rings. Among others, these include: addition, multiplication, and conversions among
various useful representations of ring elements; generation of noise terms under probability distributions
that guarantee both worst-case and concrete hardness; and decoding of noise terms as needed in decryption
and related operations. Our algorithms’ efficiency and quality guarantees stem primarily from our use of
simple but non-obvious representations of ring elements, which differ from their naïve representations as
polynomial residues modulo Φm(X). (See the second part of Section 1.2 for more details.) On the analytical
side, we give tools for tightly bounding noise growth under operations like addition, multiplication, and
round-off/discretization. (Recall that noise growth is the main factor determining an application’s parameters
and noise rates, and hence its key sizes, efficiency, and concrete security.)
Some attractive features of the toolkit include:

• All the algorithms for arbitrary cyclotomics are simple, modular, and highly parallel, and work by
elementary reductions to the (very simple) prime-index case. In particular, they do not require any
polynomial reductions modulo Φm(X) – in fact, they never need to compute Φm(X) at all! The
algorithms work entirely on vectors of dimension n = ϕ(m), and run in O(n log n) or even O(nd)
scalar operations (with small hidden constants), where d is the number of distinct primes dividing m.
With the exception of continuous noise generation, all scalar operations are low precision, i.e., they
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involve small integers. In summary, the algorithms are very amenable to practical implementation.
(Indeed, we have implemented all the algorithms from scratch, which will be described in a separate
work.)

• Our algorithm for decoding noise, used primarily in decryption, is fast (requiring O(n log n) or fewer
small-integer operations) and correctly recovers from optimally large noise rates. (See the last part
of Section 1.2 for details.) This improves upon prior techniques, which in general have worse noise
tolerance by anywhere between m/2 and super-polynomial nω(1) factors, and are computationally
slower and more complex due to polynomial reduction modulo Φm(X), among other operations.

• Our bounds on noise growth under ring addition and multiplication are exactly the same in all
cyclotomic rings; no ring-dependent “expansion factor” is incurred. (For discretizing continuous noise
distributions, our bounds are the same up to very small 1 + o(1) factors, depending on the primes
dividing m.) This allows applications to use essentially the same underlying noise rate as a function
of the ring dimension n, and hence be based on the same worst-case approximation factors, for all
cyclotomics. Moreover, our bounds improve upon the state of the art even for power-of-two cyclotomics:
e.g., our (average-case, high probability) expansion bound for ring multiplication improves upon the
(worst-case) expansion-factor bound by almost a

√
n factor.

To illustrate the toolkit’s applicability, in Section 8 we develop the following illustrative applications:

1. A simple adaptation of the “dual” LWE-based public-key cryptosystem of [GPV08], which can serve
as a foundation for (hierarchical) identity-based encryption. (See Section 8.1.)

2. An efficient and compact public-key cryptosystem, which is essentially the “two element” system
outlined in [LPR10], but generalized to arbitrary cyclotomics, and with tight parameters. (See Sec-
tion 8.2.)

3. A “somewhat homomorphic” symmetric encryption scheme, which follows the template of the
Brakerski-Vaikuntanathan [BV11a] and Brakerski-Gentry-Vaikuntanathan [BGV12] schemes in power-
of-two cyclotomics, but generalized to arbitrary cyclotomics and with much tighter noise analysis. This
application exercises all the various parts of the toolkit more fully, especially in its modulus-reduction
and key-switching procedures. (See Section 8.3.)

A final contribution of independent interest is a new “regularity lemma” for arbitrary cyclotomics, i.e.,
a bound on the smoothing parameter of random q-ary lattices over the ring. Such a lemma is needed for
porting many applications of standard LWE (and the related “short integer solution” SIS problem) to the ring
setting, including SIS-based signature schemes [GPV08, CHKP10, Boy10, MP12], the “primal” [Reg05] and
“dual” [GPV08] LWE cryptosystems (as in Section 8.1), chosen ciphertext-secure encryption schemes [Pei09,
MP12], and (hierarchical) identity-based encryption schemes [GPV08, CHKP10, ABB10]. In terms of
generality and parameters, our lemma essentially subsumes a prior one of Micciancio [Mic02] for the ring
Z[X]/(Xn − 1), and an independent one of Stehlé et al. [SSTX09] for power-of-two cyclotomics. See
Section 7 for further discussion.

Following the preliminary publication of this work, our toolkit has also been used centrally in the
“ring-switching” technique for homomorphic encryption [GHPS12], and to give efficient “bootstrapping”
algorithms for fully homomorphic encryption [AP13].
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1.2 Techniques

The tools we develop in this work involve several novel applications of classical notions from algebraic
number theory. In summary, our results make central use of: (1) the canonical embedding of a number field,
which endows the field (and its subrings) with a nice and easy-to-analyze geometry; (2) the decomposition of
arbitrary cyclotomics into the tensor product of prime-power cyclotomics, which yields both simpler and
faster algorithms for computing in the field, as well as geometrically nicer bases; and (3) the “dual” ideal R∨

and its “decoding” basis d, for fast noise generation and optimal noise tolerance in decryption and related
operations. We elaborate on each of these next.

The canonical embedding. As in the previous works [PR07, LPR10], our analysis relies heavily on using
the canonical embedding σ : K → Cn (rather than, say, the naïve coefficient embedding) for defining
all geometric quantities, such as Euclidean norms and inner products. For example, under the canonical
embedding, the “expansion” incurred when multiplying by an element a ∈ K is characterized exactly by
‖σ(a)‖∞, its `∞ norm under the canonical embedding; no (worst-case) ring-dependent “expansion factor”
is needed. So in the average-case setting, where the multiplicands are random elements from natural noise
distributions, for each multiplication we get at least a Ω̃(

√
n) factor improvement over using the expansion

factor in all cyclotomics (including those with power-of-two index), and up to a super-polynomial nω(1)

factor improvement in cyclotomics having highly composite indices. In our analysis of the noise tolerance of
decryption, we also get an additional Ω̃(

√
n) factor savings over more simplistic analyses that only use norm

information, by using the notion of subgaussian random variables. These behave under linear transformations
in essentially the same way as Gaussians do, and have Gaussian tails. (Prior works that use subgaussianity in
lattice cryptography include [AP09, MP12].)

Tensorial decomposition. An important fact at the heart of this work is that the mth cyclotomic number
field K = Q(ζm) ∼= Q[X]/(Φm(X)) may instead be viewed as (i.e., is isomorphic to) the tensor product of
prime-power cyclotomics:

K ∼=
⊗

`
K` = Q(ζm1 , ζm2 , . . .),

where m =
∏
`m` is the prime-power factorization of m and K` = Q(ζm`

). Equivalently, in terms of
polynomials we may view K as the multivariate field

K ∼= Q[X1, X2, . . .]/(Φm1(X1),Φm2(X2), . . .), (1.1)

where there is one indeterminant X` and modulus Φm`
(X`) per prime-power divisor of m. Similar decompo-

sitions hold for the ring of integers R ∼= Z[X]/Φm(X) and other important objects in K, such as the dual
ideal R∨ (described below).

Adopting the polynomial interpretation of K from Equation (1.1) for concreteness, notice that a natural
Q-basis is the set of multinomials

∏
`X

j`
` for each choice of 0 ≤ j` < ϕ(m`). We call this set the

“powerful” basis of K (and of R). Interestingly, for non-prime-power m, under the field isomorphism with
Q[X]/(Φm(X)) that maps each X` → Xm/m` , the powerful basis does not coincide with the standard
“power” basis 1, X,X2, . . . , Xϕ(m)−1 usually used to represent the univariate field. It turns out that in
general, the powerful basis has much nicer computational and geometric properties than the power basis, as
we outline next.

Computationally, the tensorial decomposition of K (with the powerful basis) allows us to modularly
reduce operations in K (or R, or powers of R∨) to their counterparts in much simpler prime-power cyclo-
tomics (which themselves easily reduce to the prime-index case). We can therefore completely avoid all the
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many algorithmic complications associated with working with polynomials modulo Φm(X). In particular,
we obtain novel, simple and fast algorithms, similar to the FFT, for converting between the multivariate
“polynomial” representation (i.e., the powerful basis) and the “evaluation” or “Chinese remainder” representa-
tion, in which addition and multiplication are essentially linear time. Similarly, we obtain linear-time (or
nearly so) algorithms for switching between the polynomial representation and the “decoding” representation
used in decryption (described below), and for generating noise terms in the decoding representation. A final
advantage of the tensorial representation is that it yields trivial linear-time algorithms for computing the trace
function to cyclotomic subfields of K.

The tensorial representation also comes with important geometrical advantages. In particular, under
the canonical embedding the powerful basis is better-conditioned than the power basis, i.e., the ratio of its
maximal and minimal singular values can be much smaller. This turns out to be important when bounding
the additional error introduced when discretizing (rounding off) field elements in noise-generation and
modulus-reduction algorithms, among others.

The dual ideal R∨ and its decoding basis. Under the canonical embedding, the cyclotomic ring R of
index m embeds as a lattice which, unlike Zn, is in general not self-dual. Instead, its dual lattice corresponds
to a fractional ideal R∨ ⊂ K satisfying R ⊆ R∨ ⊆ m−1R, where the latter inclusion is nearly an equality.
(In fact, R∨ is a scaling of R exactly when m is a power of two, in which case R = (m/2)R∨.) In [LPR10]
it is shown that the “right” definition of the ring-LWE distribution, which arises naturally from the worst-case
to average-case reduction, involves the dual ideal R∨: the secret belongs to the quotient R∨q = R∨/qR∨ (or
just R∨), and ring-LWE samples are of the form (a, b = a · s+ e mod qR∨) for uniformly random a ∈ Rq
and error e which is essentially spherical in the canonical embedding.

While it is possible [DD12] to simplify the ring-LWE distribution by replacing every instance of R∨

withR, while retaining essentially spherical error (but scaled up by aboutm, corresponding to the approximate
ratio of R to R∨), in this work we show that it is actually advantageous to retain R∨ and expose it in
applications.1 The reason is that in general, R∨ supports correct bounded-distance decoding—which is the
main operation performed in decryption—under a larger error rate than R does.2 In fact, the error tolerance
of R∨ is optimal for the simple, fast lattice decoding algorithm used implicitly in essentially all decryption
procedures, namely Babai’s “round-off” algorithm [Bab85]. The reason is that when decoding a lattice Λ
using some basis {bi}, the error tolerance depends inversely on the Euclidean lengths of the vectors dual
to {bi}. For R∨, there is a particular “decoding” basis whose dual basis is optimally short (relative to the
determinant of R), whereas for R no such basis exists in general.3 In fact, the decoding basis of R∨ is simply
the dual of the (conjugate of the) powerful basis described above!

In addition to its optimal error tolerance, we also show that the decoding basis has good computational
properties. In particular, there are linear-time (or nearly so) algorithms for converting to the decoding basis
from the other bases of R∨ or R∨q that are more appropriate for other computational tasks. And Gaussian
errors, especially spherical ones, can be sampled in essentially linear time in the decoding basis.

1This is unless m is a power of two, in which case nothing is lost by simply scaling up by exactly m/2 to replace R∨ with R.
2By “error rate” here we mean the ratio of the error (in, say, `2 norm) to the dimension-normalized determinant det(Λ)1/n of the

lattice Λ, so exact scaling has no effect on the error rate.
3We note that decoding by “lifting” R to the larger-dimensional ring Z[X]/(Xm − 1), as done in [GHS12a], still leads to at

least an m/2 factor loss in error tolerance overall, because some inherent loss is already incurred when replacing R∨ with R, and a
bit more is lost in the lifting procedure.

6
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Notation Description See

m, n = ϕ(m), m̂ The cyclotomic index, a positive integer having prime-power factorization
m =

∏
`m`, so that n =

∏
` ϕ(m`). Also, m̂ = m/2 if m is even,

otherwise m̂ = m.

K = Q(ζm)
∼= Q[X]/(Φm(X))
∼=
⊗

`Q(ζm`
)

The mth cyclotomic number field, where ζm denotes an abstract element
having order m over Q. (Here Φm(X) ∈ Z[X] is the mth cyclotomic
polynomial, the minimal polynomial of ζm, which has degree n.) It is
best viewed as the tensor product of the cyclotomic subfields Q(ζm`

).

§2.5.1

σ : K → Cn The canonical embedding of K, which endows K with a geometry, e.g.,
‖a‖2 := ‖σ(a)‖2 for a ∈ K. Both addition and multiplication in K
correspond to their coordinate-wise counterparts in Cn, yielding tight
bounds on “expansion” under ring operations.

§2.5.2

R = Z[ζm]
∼= Z[X]/(Φm(X))
∼=
⊗

` Z[ζm`
]

The ring of integers ofK. It is best viewed as a tensor product of subrings
R` = Z[ζm`

].
§2.5.3

R∨ = 〈t−1〉,
g, t ∈ R

The dual fractional ideal of R, generated by t−1 = g/m̂, so R ⊆ R∨ ⊆
m̂−1R. Each of R∨, g, and t can be seen as the tensor products of their
counterparts in the subfields Q(ζm`

).

§2.5.4

p ⊂ R The “powerful” Z-basis of R, defined as the tensor product of the power
Z-bases of each Z[ζm`

]. For non-prime-power m, it differs from the
power Z-basis {ζ0

m, ζ
1
m, . . . , ζ

n−1
m } often used to represent Z[ζm], and

has better computational and geometric properties.

§4

c ⊂ Rq The “Chinese remainder” (CRT) Zq-basis of Rq = R/qR, for any prime
q = 1 mod m. It yields linear-time addition and multiplication in Rq,
and there is an O(n log n)-time algorithm for converting between c and p
(as a Zq-basis of Rq).

§2.5.5,
§5

d ⊂ R∨ The “decoding” Z-basis of R∨, defined as the dual of the (conjugate
of the) powerful basis p. It is used for optimal decoding of R∨ and its
powers, and for efficiently sampling Gaussians.

§6

Figure 1: Dramatis Personæ.

1.3 Organization

We draw the reader’s attention to Figure 1, which provides a glossary of the main algebraic objects and
notation used in this work, and pointers to further discussion of their properties. The rest of the paper is
organized as follows:

Section 2 Covers background on our (unusual, but useful) notation for vectors, matrices and tensors;
Gaussian and subgaussian random variables; lattices and basic decoding/discretization algorithms;
algebraic number theory; and ring-LWE. For the reader with some background in algebraic number
theory, we draw attention to the lesser-known material in Section 2.5.1 on the tensorial decomposition
into prime-power cyclotomics, and Section 2.5.4 on duality (R∨, dual bases, etc.).
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Section 3 Recalls a “sparse decomposition” of the discrete Fourier transform (DFT) matrix, and develops a
novel sparse decomposition for a closely related one that we call the “Chinese remainder transform,”
which plays a central role in many of our fast algorithms.

Section 4 Defines the “powerful” Z-basis p of R and describes its algebraic and geometric properties.

Section 5 Defines the “Chinese remainder” Zq-basis c of Rq, gives its connection to the powerful basis, and
describes how it enables fast ring operations.

Section 6 Defines the “decoding” basis d of R∨, gives its connection to the powerful basis, describes how it
is used for decoding with optimal noise tolerance, and shows how to efficiently generate (continuous)
Gaussians as represented in the decoding basis.

Section 7 Gives a regularity lemma for random lattices over arbitrary cyclotomics. This is needed for only
one of our applications, as well as for adapting prior signature schemes and LWE-based (hierarchical)
identity-based encryption schemes to the ring setting.

Section 8 Gives some applications of the toolkit: two basic public-key encryption schemes, and a “somewhat
homomorphic” symmetric-key encryption scheme.

Acknowledgments. We thank Markus Püschel for his help with the sparse decomposition of the “Chinese
remainder transform,” and Damien Stehlé for useful discussions.

2 Preliminaries

For a positive integer k, we let [k] denote the set {0, . . . , k − 1}. For any ā ∈ R/Z, we let JāK ∈ R denote
the unique representative a ∈ (ā+ Z) ∩ [−1/2, 1/2). Similarly, for ā ∈ Zq = Z/qZ we let JāK denote the
unique representative a ∈ (ā + qZ) ∩ [−q/2, q/2). We extend J·K entrywise to vectors and matrices. The
radical of a positive integer m, denoted rad(m), is the product of all primes dividing m.

For a vector x over R or C, define the `2 norm as ‖x‖2 = (
∑

i|xi|
2)1/2, and the `∞ norm as ‖x‖∞ =

maxi|xi|. For an n-by-n matrix M we denote by s1(M) its largest singular value (also known as the spectral
or operator norm), and by sn(M) its smallest singular value.

2.1 Vectors, Matrices, and Tensors

Throughout this paper, the entries of a vector over a domain D are always indexed (in no particular order)
by some finite set S, and we write DS to denote the set of all such vectors. When the domain is Zq or a
subset of the complex numbers, we usually denote vectors using bold lower-case letters (e.g., a), otherwise
we use arrow notation (e.g., a). Similarly, the rows and columns of an “R-by-C matrix” over D are indexed
by some finite sets R and C, respectively. We write DR×C for the set of all such matrices, and typically
use upper-case letters to denote individual matrices (e.g., A). The R-by-R identity matrix IR has 1 as its
(i, i)th entry for each i ∈ R, and 0 elsewhere. All the standard matrix and vector operations are defined in the
natural way, for objects having compatible domains and index sets.

In particular, the Kronecker (or tensor) product M = A⊗B of an R0-by-C0 matrix A with an R1-by-C1

matrix B is the (R0 × R1)-by-(C0 × C1) matrix M with entries M(i0,i1),(j0,j1) = Ai0,j0 · Bi1,j1 . The
Kronecker product of two vectors, or of a matrix with a vector, is defined similarly. For positive integers
n0, n1, we often implicitly identify the index set [n0]× [n1] with [n0n1], using the bijective correspondence
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(i0, i1) ↔ i = i0n1 + i1; note that this matches the traditional Kronecker product for ordered rows and
columns. Similarly, when m =

∏
`m` for a set of pairwise coprime positive integers m`, we often identify

the index sets Z∗m and
∏
` Z∗m`

via the bijection induced by the Chinese remainder theorem. In other settings
we reindex a set using another correspondence, which will be described in context.

An important fact about the Kronecker product is the mixed-product property: (A ⊗ B)(C ⊗ D) =
(AC)⊗ (BD). Using the mixed-product property, a tensor product A =

⊗
`A` of several matrices can be

written as
A =

∏
`

(I ⊗ · · · ⊗ I ⊗A` ⊗ I ⊗ · · · ⊗ I), (2.1)

where the identity matrices have the appropriate induced index sets. In particular, if each A` is a square
matrix of dimension n`, then A is square of dimension n =

∏
` n`, and multiplication by A reduces to n/n`

parallel multiplications by A`, in sequence for each value of ` (in any order).

2.2 The Space H

When working with cyclotomic number fields and ideal lattices under the canonical embedding (see Sec-
tion 2.5.2 below), it is convenient to use a subspace H ⊆ CZ∗m (for some integer m ≥ 2), defined as

H = {x ∈ CZ∗m : xi = xm−i, ∀ i ∈ Z∗m}.

Letting n = ϕ(m), it is not difficult to verify that H (with the inner product induced on it by CZ∗m) is
isomorphic to R[n] as an inner product space. For m = 2 this is trivial, and for m > 2 this can be seen via
the Z∗m-by-[n] unitary basis matrix B = 1√

2

(
I
√
−1J

J −
√
−1I

)
of H , where the Z∗m-indexed rows are shown in

increasing order according to their representatives in {1, . . . ,m− 1}, the [n]-indexed columns are shown in
increasing order by index, I is the identity matrix, and J is the reversal matrix (obtained by reversing the
columns of I).

We equip H with the `2 and `∞ norms induced on it from CZ∗m . Namely, for x ∈ H we have ‖x‖2 =∑
i(|xi|

2)1/2 =
√
〈x,x〉, and ‖x‖∞ = maxi|xi|.

Gram-Schmidt orthogonalization. For an ordered set B = {bj}j∈[n] ⊂ H of linearly independent

vectors, the Gram-Schmidt orthogonalization B̃ = {b̃j} is defined iteratively as follows: b̃0 = b0, and for
j = 1, 2, . . . , n− 1, b̃j is the component of bj orthogonal to the linear span of b0, . . . ,bj−1:

b̃j = bj −
∑
k∈[j]

b̃k · 〈bj , b̃k〉/〈b̃k, b̃k〉.

Viewing B as a matrix whose columns are the vectors bj , its orthogonalization corresponds to the unique
factorization B = QDU , where Q is unitary with columns b̃j/‖b̃j‖2; D is real diagonal with positive
diagonal entries ‖b̃j‖2 > 0; and U is real upper unitriangular with entries wk,j = 〈bj , b̃k〉/〈b̃k, b̃k〉.4 The
Gram-Schmidt orthogonalization is B̃ = QD, and so B = B̃U . The real positive definite Gram matrix of B
is B∗B = UTD2U . Because U is upper unitriangular, this is exactly the Cholesky decomposition of B∗B,
which is unique; it therefore determines the matrices D,U in the Gram-Schmidt orthogonalization of B. One
can also verify from the definitions that D2 and U are both rational if the Gram matrix is rational.

4This is often referred to as the “QR” factorization, though here we have also factored out the diagonal entries of the upper-
triangular matrix R into D, making U unitriangular.
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2.3 Gaussians and Subgaussian Random Variables

For s > 0, define the Gaussian function ρs : H → (0, 1] as ρs(x) = exp(−π〈x,x〉/s2) = exp(−π‖x‖22/s2).
By normalizing this function we obtain the continuous Gaussian probability distribution Ds of parameter s,
whose density is given by s−n · ρs(x).

For much of our analysis it is convenient to use the standard notion of subgaussian random variables,
relaxed slightly as in [MP12]. (For further details and full proofs, see, e.g., [Ver11].) For any δ ≥ 0, we say
that a random variable X (or its distribution) over R is δ-subgaussian with parameter s > 0 if for all t ∈ R,
the (scaled) moment-generating function satisfies

E[exp(2πtX)] ≤ exp(δ) · exp(πs2t2).

Notice that the exp(πs2t2) term on the right is exactly the (scaled) moment-generating function of the
one-dimensional Gaussian distribution of parameter s over R. It is easy to see that if X is δ-subgaussian with
parameter s, then cX is δ-subgaussian with parameter |c|s for any real c. In addition, by Markov’s inequality,
the tails of X are dominated by those of a Gaussian of parameter s, i.e., for all t ≥ 0,

Pr[|X| ≥ t] ≤ 2 exp(δ − πt2/s2). (2.2)

Using the inequality cosh(x) ≤ exp(x2/2), it can be shown that any B-bounded centered random variable X
(i.e., E[X] = 0 and |X| ≤ B always) is 0-subgaussian with parameter B

√
2π.

The sum of independent subgaussian variables is easily seen to be subgaussian. Here we observe that the
same holds even in a martingale-like setting.

Claim 2.1. Let δi, si ≥ 0 and Xi be random variables for i = 1, . . . , k. Suppose that for every i, when
conditioning on any values of X1, . . . , Xi−1, the random variable Xi is δi-subgaussian with parameter si.
Then

∑
Xi is (

∑
δi)-subgaussian with parameter (

∑
s2
i )

1/2.

Proof. It suffices to prove the claim for k = 2; the general case follows by induction, since Xk is subgaussian
conditioned on any value of

∑k−1
i=1 Xi. Indeed,

E
[
exp(2πt(X1 +X2))

]
= EX1

[
exp(2πtX1)EX2

[
exp(2πtX2) | X1

]]
≤ exp(δ1 + δ2) exp(π(s2

1 + s2
2)t2).

We also have the following bound on the tail of a sum of squares of independent subgaussian variables.

Lemma 2.2. Let X be a δ-subgaussian random variable with parameter s. Then, for any t ∈ (0, 1/(2s2)),

E
[
exp(2πtX2)

]
≤ 1 + 2 exp(δ)

(
1

2ts2
− 1

)−1

.

Moreover, if X1, . . . , Xk are random variables, each of which is δ-subgaussian with parameter s conditioned
on any values of the previous ones, then for any r > k′s2/π where k′ = 2k exp(δ) we have that

Pr
[∑

i

X2
i > r

]
≤ exp

(
k′
(

2
( πr

k′s2

)1/2
− πr

k′s2
− 1
))
.

In particular, using the inequality 2α1/2 − α − 1 ≤ −α/4 valid for all α ≥ 4, we obtain that for any
r ≥ 4k′s2/π,

Pr
[∑

i

X2
i > r

]
≤ exp

(
− πr

4s2

)
.
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Proof. Using integration by parts and (2.2),

E
[
exp(2πtX2)

]
= 1 +

∫ ∞
0

Pr[|X| ≥ r] · 4πtr exp(2πtr2)dr

≤ 1 + 8πt exp(δ)

∫ ∞
0

r exp(−πr2/s2 + 2πtr2)dr

= 1 + 2 exp(δ)
( 1

2ts2
− 1
)−1

≤ exp
(

2 exp(δ)
( 1

2ts2
− 1
)−1)

,

where the last equality uses that for every a > 0,
∫∞

0 r exp(−ar2)dr = (2a)−1. This completes the first part
of the lemma. For the second part, notice that by the above, if X1, . . . , Xk are as in the statement, we have
for any t ∈ (0, 1/(2s2)),

E
[
exp(2πt

∑
i

X2
i )
]
≤ exp

(
2k exp(δ)

( 1

2ts2
− 1
)−1)

,

and hence by Markov’s inequality, for all r > 0 and t ∈ (0, 1/(2s2)),

Pr
[∑

i

X2
i > r

]
≤ exp

(
2k exp(δ)

( 1

2ts2
− 1
)−1
− 2πtr

)
.

Letting x = 2s2t ∈ (0, 1) and A = πr/(s2k′) > 1, the expression inside the exponent is

2k exp(δ)
((1

x
− 1
)−1
−Ax

)
.

The lemma follows using the fact that for any A > 1, the minimum over x ∈ (0, 1) of the expression inside
the parenthesis is 2

√
A−A− 1 (obtained at 1− 1/

√
A).

We extend the notion of subgaussianity to random vectors in Rn (or equivalently, in H). Specifically,
we say that a random vector X in Rn is δ-subgaussian with parameter s if for all unit vectors u ∈ Rn, the
random variable 〈X,u〉 is δ-subgaussian with parameter s. It follows from Claim 2.1 that if the coordinates
of a random vector in Rn are independent, and each is δ-subgaussian with parameter s, then the random
vector is nδ-subgaussian with the same parameter s.

Sums of subgaussian random vectors are again easily seen to be subgaussian, even in the martingale
setting as in Claim 2.1 above. We summarize this in the following corollary, which considers the more general
setting in which we apply a (possibly different) linear transformation to each subgaussian random vector.

Corollary 2.3. Let δi, si ≥ 0 and Xi be random vectors in Rn (or in H), and let Ai be n × n matrices
for i = 1, . . . , k. Suppose that for every i, when conditioning on any values of X1, . . . , Xi−1, the random
vector Xi is δi-subgaussian with parameter si. Then

∑
AiXi is (

∑
δi)-subgaussian with parameter

λmax(
∑
s2
iAiA

T
i )1/2, where λmax denotes the largest eigenvalue.

Proof. For any vector u ∈ Rn,〈∑
i

AiXi,u
〉

=
∑
i

〈AiXi,u〉 =
∑
i

〈Xi, A
T
i u〉,
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which is a sum of random variables satisfying that for each i, the ith variable is δi-subgaussian with parameter
si‖ATi u‖2 conditioned on any value of the previous ones. By Claim 2.1, this sum is (

∑
δi)-subgaussian with

parameter (∑
i

s2
i ‖ATi u‖

2
2

)1/2
=
(
uT
(∑

i

s2
iAiA

T
i

)
u
)1/2

,

whose maximum over all unit vectors u is λmax(
∑

i s
2
iAiA

T
i )1/2.

By applying Corollary 2.3 with the linear transformation induced by coordinate-wise multiplication in
H ⊂ CZ∗m we obtain the following.

Claim 2.4. If X is a δ-subgaussian with parameter s in H , and z ∈ H is any element, then the coordinate-
wise multiplication z � X ∈ H is δ-subgaussian with parameter ‖z‖∞ · s. More generally, if Xj ∈ H
are random vectors satisfying the property in Corollary 2.3 for some δj , sj ≥ 0 (respectively), then for any
zj ∈ H , we have that

∑
j zj �Xj ∈ H is (

∑
δj)-subgaussian with parameter maxi∈Z∗m(

∑
j s

2
j |(zj)i|2)1/2.

2.4 Lattice Background

We define a lattice as a discrete additive subgroup of H . We deal here exclusively with full-rank lattices,
which are generated as the set of all integer linear combinations of some set of n linearly independent basis
vectors B = {bj} ⊂ H:

Λ = L(B) =
{∑

j
zjbj : zj ∈ Z

}
.

Two bases B,B′ generate the same lattice if and only if there exists a unimodular matrix U (i.e., integer
matrix with determinant ±1) such that BU = B′. The determinant of a lattice L(B) is defined as |det(B)|,
which is independent of the choice of basis B. The minimum distance λ1(Λ) of a lattice Λ (in the Euclidean
norm) is the length of a shortest nonzero lattice vector: λ1(Λ) = min06=x∈Λ‖x‖2.

The dual lattice of Λ ⊂ H is defined as Λ∨ = {y ∈ H : ∀ x ∈ Λ, 〈x,y〉 =
∑

i xiyi ∈ Z}. Notice that
this is actually the complex conjugate of the dual lattice as usually defined in Cn; our definition corresponds
more naturally to the notion of duality in algebraic number theory (see Section 2.5.4). All of the properties of
the dual lattice that we use also hold for the conjugate dual. In particular, det(Λ∨) is det(Λ)−1.

It is easy to see that (Λ∨)∨ = Λ. If B = {bj} ⊂ H is a set of linearly independent vectors (i.e., an
R-basis of H), its dual basis D = {dj} is characterized by 〈bj ,dk〉 = δjk, where δjk is the Kronecker delta.
It is easy to verify that L(D) = L(B)∨.

Micciancio and Regev [MR04] introduced a lattice quantity called the smoothing parameter, and related
it to various lattice quantities.

Definition 2.5. For a lattice Λ and positive real ε > 0, the smoothing parameter ηε(Λ) is the smallest s such
that ρ1/s(Λ

∨\{0}) ≤ ε.

Lemma 2.6 ([MR04, Lemma 3.2]). For any n-dimensional lattice Λ, we have η2−2n(Λ) ≤
√
n/λ1(Λ∨).5

Lemma 2.7 ([Reg05, Claim 3.8]). For any lattice Λ, real ε > 0 and s ≥ ηε(Λ), and c ∈ H , we have
ρs(Λ + c) ∈ [1± ε] · sn det(Λ)−1.

5Note that we are using ε = 2−2n instead of 2−n as in [MR04], but the stronger bound holds by the same proof.
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For a lattice coset Λ + c and real s > 0, define the discrete Gaussian probability distribution over Λ + c
with parameter s as

DΛ+c,s(x) =
ρs(x)

ρs(Λ + c)
∀ x ∈ Λ + c. (2.3)

It is known to satisfy the following concentration bound.

Lemma 2.8 ([Ban93, Lemma 1.5(i)]). For any n-dimensional lattice Λ and s > 0, a point sampled from
DΛ,s has Euclidean norm at most s

√
n, except with probability at most 2−2n.

Gentry, Peikert, and Vaikuntanathan [GPV08] showed how to efficiently sample from a discrete Gaussian,
using any lattice basis consisting of sufficiently short orthogonalized vectors.

Lemma 2.9 ([GPV08, Theorem 4.1]). There is an efficient algorithm that samples to within negl(n) statis-
tical distance of DΛ+c,s, given c ∈ H , a basis B of Λ, and a parameter s ≥ maxj‖b̃j‖ · ω(

√
log n), where

B̃ = {b̃j} is the Gram-Schmidt orthogonalization of B.

We make a few remarks on the implementation of the algorithm from Lemma 2.9. It is a randomized
variant of Babai’s “nearest plane” algorithm [Bab85] (a related variant was also considered by Klein [Kle00]
for a different problem). On input c ∈ H , and a basisB and parameter s satisfying the above constraint, it does
the following: for j = n− 1, . . . , 0, let c← c− zjbj , where zj ← c′j +DZ−c′j ,sj for c′j = 〈c, b̃j〉/〈b̃j , b̃j〉
and sj = s/‖b̃j‖2. Output the final value of c.

In practice, the above algorithm is usually invoked on a fixed basis B whose Gram matrix B∗B is
rational. It is best implemented by precomputing the rational matrices D2, U associated with B̃ and B∗B
(see Section 2.2), and by representing the input and intermediate values c using rational coefficient vectors
with respect to B. Then each value c′j = 〈c, b̃j〉/〈b̃j , b̃j〉 can be computed simply as the inner product of c’s
coefficient vector with the jth row of U .

2.4.1 Decoding

In many applications we need to perform the following algorithmic task, which is essentially a bounded-
distance decoding. Let Λ be a known fixed lattice, and let x ∈ H be an unknown short vector. The goal is to
recover x, given t = x mod Λ. Although there are several possible algorithms for this task, here we focus
on a slight extension of the so-called “round-off” algorithm originally due to Babai [Bab85]. This is due to
its high efficiency and because for our purposes it performs optimally (or nearly so). The algorithm is very
simple: let {vi} be a fixed set of n linearly independent (and typically short) vectors in the dual lattice Λ∨.
Denote the dual basis of {vi} by {bi}, and let Λ′ ⊇ Λ be the superlattice generated by {bi}. Given an input
t = x mod Λ, we express t mod Λ′ in the basis {bi} as

∑
i cibi, where ci ∈ R/Z (so ci = 〈x,vi〉 mod 1),

and output
∑

iJciKbi ∈ H .

Claim 2.10. Let Λ ⊂ H be a lattice, let {vi} ⊂ Λ∨ be a set of n linearly independent vectors in its dual, and
let {bi} ⊂ Λ denote the dual basis of {vi}. The above round-off algorithm, given input x mod Λ, outputs x
if and only if all the coefficients ai = 〈x,vi〉 ∈ R in the expansion x =

∑
i aibi are in [−1/2, 1/2).

We remark that in Babai’s round-off algorithm one often assumes that {vi} is a basis of Λ∨ (and hence
{bi} is a basis of Λ), whereas here we consider the more general case where {vi} can be an arbitrary set of
linearly independent vectors in Λ∨. For some lattices (including those appearing in our applications) this can
make a big difference. Consider for instance the lattice of all points in Zn whose coordinates sum to an even
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number. The dual of this lattice is Zn ∪ (Zn + (1, . . . , 1)/2), and clearly any basis of this dual must contain
a vector of length at least

√
n/2. As a result, when limited to using a basis, the round-off algorithm can fail

for vectors of length greater than 1/
√
n. However, the dual lattice clearly has a set of n linearly independent

vectors of length 1, allowing us to decode up to length 1/2.

2.4.2 Discretization

We now consider another algorithmic task related to the one in the previous subsection. This task shows up in
applications, such as when converting a continuous Gaussian into a discrete Gaussian-like distribution. Given
a lattice Λ = L(B) represented by a “good” basis B = {bi}, a point x ∈ H , and a point c ∈ H representing
a lattice coset Λ + c, the goal is to discretize x to a point y ∈ Λ + c, written y← bxeΛ+c, so that the length
(or subgaussian parameter) of y − x is not too large. To do this, we sample a relatively short offset vector f
from the coset Λ + c′ = Λ + (c− x) in one of a few natural ways described below, and output y = x + f .
We require that the method used to choose f be efficient and depend only on the desired coset Λ + c′, not on
the particular representative used to specify it; we call such a procedure (or the induced discretization) valid.

Note that for a valid discretization, bz + xeΛ+c and z + bxeΛ+c are identically distributed for any z ∈ Λ.
Therefore, for any sublattice Λ′ ⊆ Λ, a valid discretization also induces a well-defined discretization from
any coset x̄ = Λ′ + x to ȳ = x̄ + f = Λ′ + y, where y ∈ Λ + c.

There are several valid ways of sampling f , offering tradeoffs between efficiency and output guarantees:

• A particularly simple and efficient method is “coordinate-wise randomized rounding:” given a coset
Λ + c′, we represent c′ in the basis B as c′ =

∑
i aibi mod Λ for some coefficients ai ∈ [0, 1), then

randomly and independently choose each fi from {ai − 1, ai} to have expectation zero, and output
f =

∑
i fibi ∈ Λ + c′. The validity of this procedure is immediate, since any representative of Λ + c′

induces the same ai values. Because each fi has expectation zero and is bounded by 1 in magnitude, it
is 0-subgaussian with parameter

√
2π (see Section 2.3), and hence so is the entire vector of fi values.

By Corollary 2.3 (applied with just one random vector), we conclude that f is 0-subgaussian with
parameter

√
2π · s1(B).

• In some settings we can use a deterministic version of the above method, where we instead compute
coefficients ai ∈ [−1/2, 1/2) and simply output f =

∑
i aibi. When, for example, x comes from a

sufficiently wide continuous Gaussian, this method yields y = x + f having a (very slightly) better
subgaussian parameter than the randomized method. However, the analysis is a bit more involved, and
we omit it.

• If x has a continuous or discrete Gaussian distribution, then using more sophisticated rounding methods
it is possible to make y also be distributed according to a true discrete Gaussian (of some particular
covariance), which is needed in some applications (though not any we develop in this paper). By [Pei10,
Theorem 3.1], under mild conditions it suffices for f to be distributed as a discrete Gaussian over Λ+c′,
and the covariance parameter of y will be the sum of those of x and f . Using the algorithm from
Lemma 2.9, we can sample a discrete Gaussian f with parameter bounded by maxj‖b̃j‖ · ω(

√
log n).

Alternatively, a simpler and more efficient randomized round-off algorithm obtains a parameter bounded
by s1(B) · ω(

√
log n) [Pei10]. Both of these methods are easily seen to be valid, though note that they

yield slightly worse Gaussian parameters than the two simpler methods described above.
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2.5 Algebraic Number Theory Background

Algebraic number theory is the study of number fields. Here we review the necessary background, specialized
to the case of cyclotomic number fields, which are the only kind we use in this work. More background and
complete proofs can be found in any introductory book on the subject, e.g., [Ste04, Lan94], and especially
the latter reference for material related to the tensorial decomposition.

2.5.1 Cyclotomic Number Fields and Polynomials

For a positive integer m, the mth cyclotomic number field is a field extension K = Q(ζm) obtained by
adjoining an element ζm of order m (i.e., a primitive mth root of unity) to the rationals. (Note that we
view ζm as an abstract element, and not, for example, as any particular value in C.) The minimal polynomial
of ζm is the mth cyclotomic polynomial

Φm(X) =
∏
i∈Z∗m

(X − ωim) ∈ Z[X], (2.4)

where ωm ∈ C is any primitive mth root of unity in C, e.g., ωm = exp(2π
√
−1/m). Therefore,

there is a natural isomorphism between K and Q[X]/(Φm(X)), given by ζm 7→ X . Since Φm(X)
has degree n = |Z∗m| = ϕ(m), we can view K as a vector space of degree n over Q, which has
(ζjm)j∈[n] = (1, ζm, . . . , ζ

n−1
m ) ∈ K [n] as a basis. This is called the power basis of K.

We recall two useful facts about cyclotomic polynomials, which can be verified by examining the roots of
both sides of each equation.

Fact 2.11. For any m, we have Xm − 1 =
∏
d|m Φd(X), where d runs over all the positive divisors of m.

In particular, Φp(X) = 1 +X +X2 + · · ·+Xp−1 for any prime p.

Fact 2.12. For any m, we have Φm(X) = Φrad(m)(X
m/ rad(m)), where recall that rad(m) is the product of

all distinct primes dividing m. In particular, if m is a power of a prime p, then Φm(X) = Φp(X
m/p).

For instance, Φ8(X) = 1 +X4 and Φ25(X) = 1 +X5 +X10 +X15 +X20.
For any m′ dividing m, it is often convenient to view K ′ = Q(ζm′) as a subfield of K = Q(ζm), by

identifying ζm′ with ζm/m
′

m .

Non-prime-power cyclotomics. Not all cyclotomic polynomials are “regular”-looking or have 0-1 (or
even small) coefficients. Generally speaking, the irregularity and range of coefficients grows with the number
of prime divisors of m. For example, Φ6(X) = X2 −X + 1; Φ3·5·7(X) has 33 monomials with coefficients
−2,−1, and 1; and Φ3·5·7·11·13(X) has coefficients of magnitude up to 22. Fortunately, the form of Φm(X)
for non-prime-powerm will never be a concern in this work, due to an alternative way of viewingK = Q(ζm)
by reducing to the case of prime-power cyclotomics.

To do this we first need to briefly recall the notion of a tensor product of fields. Let K,L be two field
extensions of Q. Then the field tensor product K ⊗ L is defined as the set of all Q-linear combinations of
pure tensors a⊗ b for a ∈ K, b ∈ L, where ⊗ is Q-bilinear and satisfies the mixed-product property, i.e.,

(a1 ⊗ b) + (a2 ⊗ b) = (a1 + a2)⊗ b
(a⊗ b1) + (a⊗ b2) = a⊗ (b1 + b2)

e(a⊗ b) = (ea)⊗ b = a⊗ (eb)

(a1 ⊗ b1)(a2 ⊗ b2) = (a1a2)⊗ (b1b2)
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for all e ∈ Q. These properties define addition and multiplication in K ⊗ L, and though the result is not
always a field (because it may lack multiplicative inverses), it will always be one whenever we take the
tensor product of two cyclotomic fields in this work. It is straightforward to verify that if A,B are Q-bases
of K,L respectively, then the Kronecker product A⊗B is a Q-basis of K ⊗ L. Later on we also consider
tensor products of rings, or more generally of Z-modules. These are defined in the same way, except that
they are made up of only the Z-linear combinations of pure tensors. This always yields a ring or Z-module,
respectively, with Z-bases obtained by tensoring Z-bases of the original objects.

A key fact from algebraic number theory is the following.

Proposition 2.13. Let m have prime-power factorization m =
∏
`m`, i.e., the m` are powers of distinct

primes. Then K = Q(ζm) is isomorphic to the tensor product
⊗

`K` of the fields K` = Q(ζm`
), via the

correspondence
∏
` a` ↔ (⊗` a`), where on the left we implicitly embed each a` ∈ K` into K.

2.5.2 Embeddings and Geometry

Here we describe the embeddings of a cyclotomic number field, which induce a ‘canonical’ geometry on it.
The mth cyclotomic number field K = Q(ζm) of degree n = ϕ(m) has exactly n ring homomorphisms

(embeddings) σi : K → C that fix every element of Q. Concretely, for each i ∈ Z∗m there is an embedding σi
defined by σi(ζm) = ωim, where ωm ∈ C is some fixed primitive mth root of unity. Clearly, the embeddings
come in pairs of complex conjugates, i.e., σi = σm−i. The canonical embedding σ : K → CZ∗m is defined as

σ(a) = (σi(a))i∈Z∗m .

Due to the conjugate pairs, σ actually maps into H ⊂ CZ∗m , defined in Section 2.2. Note that σ is a ring
homomorphism from K to H , where multiplication and addition in H are both component-wise.

By identifyingK with its canonical embedding intoH , we endowK with a canonical geometry. Recalling
that norms on H are just those induced from CZ∗m , we see that for any a ∈ K, the `2 norm of a is simply
‖a‖2 = ‖σ(a)‖2 = (

∑
i|σi(a)|2)1/2, and the `∞ norm is maxi|σi(a)|. Because multiplication of embedded

elements is component-wise, for any a, b ∈ K we have

‖a · b‖ ≤ ‖a‖∞ · ‖b‖, (2.5)

where ‖·‖ denotes either the `2 or `∞ norm (or indeed, any `p norm). Thus the `∞ norm acts as an “absolute
value” for K that bounds how much an element expands any other by multiplication. For example, note that
for any power ζ of ζm, each σi(ζ) must be a root of unity in C, and hence ‖ζ‖2 =

√
n and ‖ζ‖∞ = 1.

The trace Tr = TrK/Q : K → Q can be defined as the sum of the embeddings: Tr(a) =
∑

i σi(a).
Clearly, the trace is Q-linear: Tr(a + b) = Tr(a) + Tr(b) and Tr(c · a) = c · Tr(a) for all a, b ∈ K and
c ∈ Q. Also notice that

Tr(a · b) =
∑
i

σi(a)σi(b) = 〈σ(a), σ(b)〉,

so Tr(a · b) is a symmetric bilinear form akin to the inner product of the embeddings of a and b. The (field)
norm N = NK/Q : K → Q can be defined as the product of all the embeddings: N(a) =

∏
i σi(a). Clearly,

the norm is multiplicative: N(a · b) = N(a) ·N(b).
When taking K ∼=

⊗
`K` as in Proposition 2.13, it follows directly from the definitions that σ is the

tensor product of the canonical embeddings σ(`) of K`, i.e.,

σ(⊗` a`) =
⊗

`
σ(`)(a`). (2.6)
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(Here the index set of σ is
∏
` Z∗m`

, which corresponds bijectively to Z∗m via the Chinese remainder theorem.)
This decomposition of σ in turn implies that the trace decomposes as

TrK/Q(⊗` a`) =
∏

`
TrK`/Q(a`). (2.7)

Using the canonical embedding also allows us to think of the Gaussian distribution Dr over H as a
distribution over K, or more accurately, over the field tensor product KR = K ⊗ R, which is isomorphic as
a real vector space to H via σ. For our purposes it is usually helpful to ignore the distinction between K
and KR, and to approximate the latter by the former using sufficient precision.

2.5.3 Ring of Integers and Its Ideals

Let R ⊂ K denote the set of all algebraic integers in a number field K. This set forms a ring (under the usual
addition and multiplication operations in K), called the ring of integers of K. Note that the trace and norm of
an algebraic integer are rational integers (i.e., in Z), so we have the induced functions Tr,N: R→ Z.

For the mth cyclotomic number field K = Q(ζm) of degree n = ϕ(m), the ring of integers happens to
be R = Z[ζm] ∼= Z[X]/Φm(X), and hence has the power basis {ζjm}j∈[n] as a Z-basis. Alternatively—and
this is the view we adopt throughout the paper—we can view R ∼=

⊗
`R` as a tensor product of the rings of

integers R` in K` = Q(ζm`
), where m =

∏
`m` is the prime-power factorization of m.

The (absolute) discriminant ∆K of K is a measure of the geometric sparsity of its ring of integers,
defined as ∆K = det(σ(R))2, the squared determinant of the lattice σ(R).6 The discriminant of the mth
cyclotomic number field is

∆K =

(
m∏

prime p|m

p1/(p−1)

)n
≤ nn, (2.8)

where the product in the denominator runs over all primes p dividing m. The above inequality is tight exactly
when m is a power of two.

An (integral) ideal I ⊆ R is a nontrivial (i.e., I 6= ∅ and I 6= {0}) additive subgroup that is closed under
multiplication by R, i.e., r · a ∈ I for any r ∈ R and a ∈ I.7 A principal ideal I is one that is generated
by a single element, i.e., I = uR for some u ∈ R which is unique up to multiplication by units in R; we
sometimes write I = 〈u〉. An ideal I always has a Z-basis of cardinality n, which is not unique; if I = 〈u〉
and B is any Z-basis of R, then uB is a Z-basis of I. A fractional ideal I ⊂ K is a set such that dI ⊆ R is
an integral ideal for some d ∈ R, and is principal if it equals uR for some u ∈ K. Any fractional ideal I
embeds under σ as a lattice σ(I) in H , which we call an ideal lattice. We identify I with this lattice and
associate with I all the usual lattice quantities (determinant, minimum distance, etc.).

The norm of an ideal I is its index as an additive subgroup of R, i.e., N(I) = |R/I|. This notion of norm
generalizes the field norm, in that N(〈a〉) = |N(a)| for any a ∈ R, and N(IJ ) = N(I) N(J ). The norm of
a fractional ideal I is defined as N(I) = N(dI)/|N(d)|, where d ∈ R is such that dI ⊆ R. It follows that
the determinant of an ideal lattice I is

det(σ(I)) = N(I) ·
√

∆K . (2.9)

The following lemma gives upper and lower bounds on the minimum distance of an ideal lattice. The
upper bound is an immediate consequence of Minkowski’s first theorem; the lower bound follows from the
arithmetic mean/geometric mean inequality, and the fact that |N(a)| ≥ N(I) for any nonzero a ∈ I.

6Some texts define the discriminant as a signed quantity, but in this work we only care about its magnitude.
7Some texts also define the trivial set {0} as an ideal, but in this work it is more convenient to exclude it.
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Lemma 2.14. For any fractional ideal I in a number field K of degree n,

√
n ·N1/n(I) ≤ λ1(I) ≤

√
n ·N1/n(I) ·

√
∆

1/n
K .

The sum I + J of two ideals is the set of all a+ b for a ∈ I , b ∈ J , and the product ideal IJ is the set
of all finite sums of terms ab for a ∈ I , b ∈ J . Multiplication extends to fractional ideals in the obvious way,
and the set of fractional ideals forms a group under multiplication; in particular, every fractional ideal I has a
(multiplicative) inverse ideal, written I−1.

Two ideals I,J ⊆ R are coprime if I + J = R. An ideal p ( R is prime if whenever ab ∈ p for some
a, b ∈ R, then a ∈ p or b ∈ p (or both). An ideal p is prime if and only if it is maximal, i.e., if the only proper
superideal of p is R itself, which implies that the quotient ring R/p is a finite field. The ring R has unique
factorization of ideals, i.e., every ideal I can be expressed uniquely as a product of powers of prime ideals.

2.5.4 Duality

Here we recall the notion of a dual ideal and explain its close connection to both the inverse ideal and the
dual lattice. For more details, see [Con09] as an accessible reference.

For any fractional ideal I in K, its dual is defined as

I∨ = {a ∈ K : Tr(aI) ⊆ Z}.

It is easy to verify that (I∨)∨ = I , that I∨ is a fractional ideal, and that I∨ embeds under σ as the (conjugate)
dual lattice of I, as defined in Section 2.4.

For any Q-basis B = {bj} of K, we denote its dual basis by B∨ = {b∨j }, which is characterized by
Tr(bi · b∨j ) = δij , the Kronecker delta. It is immediate that (B∨)∨ = B, and if B is a Z-basis of some
fractional ideal I, then B∨ is a Z-basis of its dual ideal I∨. An important fact is that if a =

∑
j aj · bj for

aj ∈ R is the unique representation of a ∈ KR in basis B, then aj = Tr(a · b∨j ) by linearity of trace.
Suppose that K ∼=

⊗
`K` as in Proposition 2.13. Then by linearity and the tensorial decomposition

of the trace (Equation (2.7)), taking the dual commutes with tensoring, i.e., (
⊗

`B`)
∨ =

⊗
`B
∨
` for any

Q-bases B` of K`. In particular, this implies that (
⊗

` I`)∨ =
⊗

` I∨` for any fractional ideals I` in K`.
Except in the trivial number field K = Q, the ring of integers R is not self-dual, nor are an ideal and

its inverse dual to each other. However, an ideal and its inverse are related by multiplication with the dual
ideal R∨ of the ring: for any fractional ideal I, its dual is I∨ = I−1 ·R∨. The factor R∨ is often called the
codifferent, and its inverse (R∨)−1 the different, which is in fact an ideal in R. By Equation (2.9) and the fact
that det(σ(R)) = det(σ(R∨))−1, we have

N(R∨) = ∆−1
K . (2.10)

The codifferent R∨ plays an important role in ring-LWE and its applications. The following material
shows that R∨ is a principal ideal with a particularly simple generator, and that (R∨)−1 ⊆ R is an integral
ideal. We include proofs for completeness. We start with a useful lemma characterizing the traces of the
powers of ζm.

Lemma 2.15. Let m be a power of a prime p and m′ = m/p, and j be an integer. Then

Tr(ζjm) =


ϕ(p) ·m′ if j = 0 mod m

−m′ if j = 0 mod m′, j 6= 0 mod m

0 otherwise.
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Proof. The first case is immediate, since ζjm = 1. Otherwise, let d = gcd(j,m) and m̃ = m/d, so
Tr(ζjm) = d · TrQ(ζm̃)/Q(ζ

j/d
m̃ ). Because j/d is coprime with m̃, the latter trace is the sum of all complex

primitive m̃th roots of unity, which is −1 when m̃ = p, and 0 otherwise.

Lemma 2.16. Let m be a power of a prime p and m′ = m/p, and let g = 1 − ζp ∈ R = Z[ζm]. Then
R∨ = 〈g/m〉; p/g ∈ R; and 〈g〉 and 〈p′〉 are coprime for every prime integer p′ 6= p.

Proof. To prove the first claim, we first show that g/m ∈ R∨. Since the power basis is a Z-basis of R, it is
necessary and sufficient to show that Tr(ζjm · g/m) = Tr(ζjm− ζj+m

′
m )/m is an integer for every j ∈ [ϕ(m)].

By Lemma 2.15, it is (ϕ(p) + 1)m′/m = 1 for j = 0, and 0 for all other j. Now to show that R∨ = 〈g/m〉,
it suffices to show that N(g/m) = N(R∨), the latter of which is pm/p/mϕ(m) by Equations (2.10) and (2.8).
Now N(m) = mϕ(m), and N(1− ζp) = NQ(ζp)/Q(1− ζp)m/p. Because the roots of Φp(X) are exactly the
complex primitive pth roots of unity, the latter norm is exactly Φp(1) = p, as desired.

To prove that p/g ∈ R, using 1 + ζp + ζ2
p + · · ·+ ζp−1

p = 0 one may verify that

p = (1− ζp)
(
(p− 1) + (p− 2)ζp + · · ·+ ζp−2

p

)
.

To prove the third claim, recall again that the norm of 〈g〉 is a power of p. Therefore, the norm of
〈g〉+ 〈p′〉, being a divisor of both a power of p and of p′, must be 1, implying that 〈g〉 and 〈p′〉 are coprime.

Definition 2.17. For R = Z[ζm], define g =
∏
p(1− ζp) ∈ R, where p runs over all odd primes dividing m.

Also define t = m̂/g ∈ R, where m̂ = m/2 if m is even, otherwise m̂ = m.

Notice that m̂/g ∈ R because (1 − ζ2) = 2, so m̂/g = m/
∏
p(1 − ζp) ∈ R, where here p runs over all

primes dividing m.

Corollary 2.18. Adopt the notation from Definition 2.17. Then R∨ = 〈g/m̂〉 = 〈t−1〉, and 〈g〉 is coprime
with 〈p′〉 for every prime integer p′ except those odd primes dividing m.

Proof. Letting m =
∏
`m` be the prime-power factorization of m, where each m` is a power of some

prime p`, and using the ring isomorphism R ∼=
⊗

`R` where R` = Z[ζm`
], we can equivalently express g as

g = (m̂/m)(⊗` g`), where g` = (1− ζp`). Then by Lemma 2.16,(⊗
`
R`

)∨
=
⊗

`
(R∨` ) =

⊗
`
(g`/m`)R` = (g/m̂) ·

(⊗
`
R`

)
,

as desired.
For the coprimality claim, the norm of g is a product of powers of the odd primes dividing m, and the

claim follows by the same reasoning as in Lemma 2.16.

2.5.5 Prime Splitting and Chinese Remainder Theorem

For an integer prime p ∈ Z, the factorization of the principal ideal 〈p〉 ⊂ R = Z[ζm] is as follows. Let d ≥ 0
be the largest integer such that pd divides m, let h = ϕ(pd), and let f ≥ 1 be the multiplicative order of p
modulo m/pd. Then 〈p〉 = ph1 · · · phg , where g = n/(hf) and the pi are distinct prime ideals each of norm pf .

A particular case of interest for us is the factorization of an integer prime q = 1 mod m, and the form
of its prime ideal factors. Here the order of q modulo m is 1, and so 〈q〉 “splits completely” into n distinct
prime ideals of norm q. Notice that the field Zq has a primitive root of unity ωm, because the multiplicative
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group of Zq is cyclic with order q − 1. Indeed, there are n = ϕ(m) distinct such roots of unity ωim ∈ Zq, for
i ∈ Z∗m, and the prime ideal factors of 〈q〉 are simply qi = 〈q〉+ 〈ζm − ωim〉. Therefore, each quotient ring
R/qi is isomorphic to the field Zq, via the map ζm 7→ ωim.

The Chinese Remainder Theorem says that if pi are pairwise coprime ideals in R, then the natural ring
homomorphism from R/

∏
i pi to the product ring

∏
i(R/pi) is in fact an isomorphism. To support efficient

operations in Rq = R/qR, we will use the following special case, which we use to define a special Zq-basis
of Rq (see Section 5 for details).

Lemma 2.19. Let q = 1 mod m be prime, and let ωm ∈ Zq and ideals qi be as above. Then the natural
ring homomorphism R/〈q〉 →

∏
i∈Z∗m(R/qi) ∼= (Zq)n is an isomorphism.

2.6 Ring-LWE

We now provide the formal definition of the ring-LWE problem and describe the worst-case hardness result
shown in [LPR10]. We remark that our definition here differs very slightly from the one used in [LPR10]: we
scale the b component by a factor of q, so that it is an element of KR/qR

∨ and not KR/R
∨ as in [LPR10].

This is done for convenience when later discretizing the b component, and the two definitions are easily seen
to be equivalent.

Definition 2.20 (Ring-LWE Distribution). For a “secret” s ∈ R∨q (or just R∨) and a distribution ψ
over KR, a sample from the ring-LWE distribution As,ψ over Rq × (KR/qR

∨) is generated by choosing
a← Rq uniformly at random, choosing e← ψ, and outputting (a, b = a · s+ e mod qR∨).

Definition 2.21 (Ring-LWE, Average-Case Decision). The average-case decision version of the ring-LWE
problem, denoted R-DLWEq,ψ, is to distinguish with non-negligible advantage between independent samples
from As,ψ, where s← R∨q is uniformly random, and the same number of uniformly random and independent
samples from Rq × (KR/qR

∨).

Theorem 2.22. Let K be the mth cyclotomic number field having dimension n = ϕ(m) and R = OK be
its ring of integers. Let α = α(n) > 0, and let q = q(n) ≥ 2, q = 1 mod m be a poly(n)-bounded prime
such that αq ≥ ω(

√
log n). Then there is a polynomial-time quantum reduction from Õ(

√
n/α)-approximate

SIVP (or SVP) on ideal lattices in K to the problem of solving R-DLWEq,ψ given only ` samples, where ψ is
the Gaussian distribution Dξq for ξ = α · (n`/ log(n`))1/4.

Note that the above worst-case hardness result deteriorates with the number of samples `. Since most
applications only require a small (or even a constant) number of samples, this is not a serious issue. In cases
where a large number of samples is needed, one can use two alternative hardness theorems proven in [LPR10].
The first assumes hardness of the search problem for spherical Gaussian error, which as yet lacks a reduction
from a worst-case problem. The second is a reduction from a worst-case problem, and it allows an arbitrary
number of samples without any deterioration in the approximation factor; it does, however, require the error
distribution to be non-spherical and chosen in a specific way, which makes it somewhat less convenient in
implementations. We refer to [LPR10] for additional information.

In applications it is often useful to work with a version of ring-LWE whose error distribution is discrete.
This leads naturally to a definition of As,χ for a discrete error distribution χ over R∨, with b being an element
of R∨q . We similarly modify Definition 2.21 by letting R-DLWEq,χ be the problem of distinguishing between
As,χ and uniform samples from Rq ×R∨q . As we show next, for a wide family of discrete error distributions,
the hardness of the discrete version follows from that of the continuous one. In more detail, the lemma
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below implies that if R-DLWEq,ψ is hard with some number ` of samples, then so is R-DLWEq,χ with the
same number of samples, where the error distribution χ is bp · ψew+pR∨ for some integer p coprime to q,
b·e is any valid discretization to (cosets of) pR∨, and w is an arbitrary element in R∨p that can vary from
sample to sample (even adaptively and adversarially). In particular, for p = 1 we get hardness with error
distribution bψeR∨ .

Lemma 2.23. Let p and q be positive coprime integers, and b·e be a valid discretization to (cosets of) pR∨.
There exists an efficient transformation that on inputw ∈ R∨p and a pair in (a′, b′) ∈ Rq×KR/qR

∨, outputs a
pair (a = pa′ mod qR, b) ∈ Rq×R∨q with the following guarantees: if the input pair is uniformly distributed
then so is the output pair; and if the input pair is distributed according to the ring-LWE distribution As,ψ for
some (unknown) s ∈ R∨ and distribution ψ over KR, then the output pair is distributed according to As,χ,
where χ = bp · ψew+pR∨ .

Proof. Given w and a sample (a′, b′) ∈ Rq × KR/qR
∨, the transformation discretizes pb′ ∈ KR/pqR

∨

to bpb′ew+pR∨ ∈ (w + pR∨) + pqR∨. It then lets a = pa′ mod qR and b = bpb′ew+pR∨ mod qR∨, and
outputs the sample (a, b) ∈ Rq ×R∨q .

If the distribution of (a′, b′) is As,ψ, then pb′ = (pa′) · s + pe′ mod pqR∨ for e′ ← ψ. Because
(pa′) · s ∈ pR∨/pqR∨, by validity of the discretization we have that bpb′ew+pR∨ and (pa′) · s+ bpe′ew+pR∨

are identically distributed. Because p and q are coprime, a = pa′ mod qR is uniformly random over Rq, so
(a, b) has distribution As,χ.

On the other hand, if (a′, b′) is uniformly random, then a is uniform over Rq. Moreover, since the
uniform distribution over KR/pqR

∨ is invariant under shifts by pR∨, then by validity so is the distribution of
b = bpb′ew+pR∨ mod qR∨, for any w ∈ R∨. Then because p and q are coprime, b is uniformly random over
R∨q and independent of a, as desired.

Finally, another important variant of ring-LWE, known as the “normal form,” is the one in which the
secret, instead of being uniformly distributed, is chosen from the error distribution (discretized to R∨, or
a coset of pR∨ as in Lemma 2.23 above). This modification makes the secret short, which is very useful
in some applications. We now show that this variant of ring-LWE is as hard as the original one, closely
following the technique of [ACPS09].

Lemma 2.24. Let p and q be positive coprime integers, b·e be a valid discretization to (cosets of) pR∨,
and w be an arbitrary element in R∨p . If R-DLWEq,ψ is hard given some number ` of samples, then so is the
variant of R-DLWEq,ψ in which the secret is sampled from χ := bp · ψew+pR∨ , given `− 1 samples.

Proof. We show how to solve the former problem given an oracle for the latter. Start by drawing one sample
from the unknown distribution and apply the transformation from Lemma 2.23 (with p, w, and b·e) to it.
Let (a0, b0) ∈ Rq × R∨q be the result. If a0 is not in R∗q , abort and reject. Otherwise, let a−1

0 ∈ R∗q denote
its inverse. Draw `− 1 additional samples (ai, bi) ∈ Rq ×KR/qR

∨ (i = 1, . . . , `− 1) from the unknown
distribution, and return the oracle’s output when applied to the pairs

(a′i = −a−1
0 ai , b

′
i = bi + a′ib0) ∈ Rq ×KR/qR

∨.

To prove this gives a valid distinguisher, notice first that by Claim 2.25 below, it suffices to show a
noticeable distinguishing gap conditioned on a0 being invertible. Next, observe that if the input distribution
is uniform, then so is the distribution of the pairs (a′i, b

′
i). Finally, if the input distribution is As,ψ for
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some s ∈ R∨, then we have b0 = a0 · s + e0 where e0 is distributed according to χ. Therefore, for each
i = 1, . . . , `− 1,

b′i = (ai · s+ ei)− a−1
0 ai(a0 · s+ e0) = ei + a′ie0,

where the ei are distributed according to ψ, and so the input to the oracle consists of independent samples
from Ae0,ψ, as required.

Claim 2.25. Consider the mth cyclotomic field of degree n = ϕ(m) for some m ≥ 2. Then for any q ≥ 2,
the fraction of invertible elements in Rq is at least 1/poly(n, log q).

When q = 1 mod m is a prime (as in Theorem 2.22), we have by Lemma 2.19 that the fraction of invertible
elements in Rq is (1− 1/q)n ≥ (1− 1/(n+ 1))n ≥ e−1. This uses the inequality 1− 1/(α+ 1) ≥ e−1/α

for α > 0, which we will use again in the proof below.

Proof. We first observe that for any integer r ≥ 1 and prime ideal p, an element a ∈ R is invertible modulo pr

if and only if a 6= 0 mod p, and therefore the fraction of uninvertible elements in R/pr is 1/N(p). One
direction is obvious: if a = 0 mod p, then so is a · b for any b ∈ R, so a is uninvertible (because 1 6∈ p). For
the other direction, if a 6= 0 mod p, then p - 〈a〉, and so 〈a〉, pr are coprime, i.e., 〈a〉+ pr = R. Therefore,
there exists b ∈ R such that ab ∈ 1 + pr.

Using the factorization of the ideals 〈p〉 given in Section 2.5.5 and the Chinese remainder theorem, we
get that the fraction of invertible elements in Rq is∏

prime p|q

(1− p−fp)n/(fpϕ(pdp )) ≥
∏

prime p|q

(1− p−fp)n/ϕ(pdp ), (2.11)

where dp is the largest integer such that pdp divides m and fp is the multiplicative order of p modulo m/pdp .
For any prime p we clearly have pfp > m ≥ m/pdp , and therefore

(1− p−fp)n/ϕ(pdp ) = (1− p−fp)ϕ(m/pdp )

≥ (1− p−fp)m/p
dp ≥ e−1.

As a result, the product in (2.11), restricted to primes p dividing m, of which there are at most log2m, is at
least 1/poly(m). It therefore suffices to bound from below the product in (2.11) restricted to primes p not
dividing m. For such primes p we have dp = 0, and the expression simplifies to∏

p|q,p-m

(1− p−fp)n, (2.12)

where fp is the multiplicative order of p modulo m. Notice that the values pfp are distinct for distinct p.
Moreover, they are all 1 modulo m. Therefore, since the product in (2.12) includes at most log2 q terms, we
can bound it from below by

log2 q∏
k=1

(
1− 1

km+ 1

)n
≥

log2 q∏
k=1

e−n/km ≥
log2 q∏
k=1

e−1/k ≥ e−1

log2 q∏
k=2

(
1− 1

k

)
= (e · log2 q)

−1.
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3 Sparse Decompositions of DFT and CRT

Here we give structured (or “sparse”) decompositions of two important linear transformations, which lead to
fast algorithms for applying them. We follow the algebraic framework of [PM08].

Definition 3.1. Letm be a prime power and letR denote any commutative ring containing some element ωm
of multiplicative order m, i.e., a primitive mth root of unity.

• The discrete Fourier transform DFTm overR is the Zm-by-Zm matrix whose (i, j)th entry is ωijm.

• The Chinese remainder transform CRTm over R is the (square) submatrix of DFTm obtained by
restricting to the rows indexed by Z∗m and the columns indexed by [ϕ(m)].

For an arbitrary positive integer m having prime-power factorization m =
∏
`m`, whereR has an mth root

of unity (and hence has primitive m`th roots of unity for each m`), the DFT and CRT matrices are

DFTm =
⊗

`
DFTm`

and CRTm =
⊗

`
CRTm`

.

We identify the matrices DFTm and CRTm with the linear transforms they represent.

For a prime power m, applying DFTm corresponds with evaluating a polynomial inR[X] of degree less
than m (represented by its vector of coefficients in the natural order) at all the mth roots of unity ωim ∈ R
for i ∈ [m]. Similarly, CRTm corresponds with evaluating a polynomial of degree less than ϕ(m) at all
the primitive mth roots of unity ωim for i ∈ Z∗m. (This interpretation, and its connection with Lemma 2.19,
explains our choice of the name “Chinese remainder transform.”)

For m with prime-power factorization m =
∏
`m`, it can be shown using the Good-Thomas decompo-

sition that DFTm again corresponds with polynomial evaluation at all mth roots of unity, but under some
permutations of the input and output vectors. For CRTm, the correspondence with polynomial evaluation
is different, because the columns of CRTm typically do not correspond to powers 0, . . . , ϕ(m) − 1 of a
primitive mth root of unity ωm. Instead, CRTm corresponds with evaluation of a multivariate polynomial
(with one variable per factor m`) at all input tuples in which the `th element is a primitive m`th root of unity.
We adopt the tensorial form of CRTm because it corresponds directly with the tensorial (or multivariate)
decomposition of the mth cyclotomic number field, and admits a finer-grained decomposition and more
efficient algorithms than the univariate perspective.

Decomposition of DFTm. Letm be a power of some prime p, and letm′ = m/p. Using the Cooley-Tukey
decomposition we can express DFTm in terms of smaller DFTs of dimensions p and m′, and by iterating,
in terms of DFTp alone. Reindex the columns of DFTm by pairs (j0, j1) ∈ [p]× [m′], using the standard
correspondence j = m′j0 + j1 ∈ [m]. Similarly, reindex the rows by pairs (i0, i1) ∈ [p] × [m′], this time
using the (nonstandard) correspondence i = pi1 + i0 ∈ [m].8 We then have the decomposition

DFTm = (I[p] ⊗DFTm′) · Tm · (DFTp ⊗ I[m′]), (3.1)

where all three terms are ([p]× [m′])-by-([p]× [m′]) matrices, and Tm is the diagonal “twiddle” matrix having
entry ωi0i1m in its (i0, i1)th diagonal entry. Therefore, applying DFTm reduces to m′ parallel applications
of DFTp, followed by m parallel scalar multiplications by twiddle factors, followed by p parallel applications

8This relabeling corresponds with the “bit-reversal” or related “stride” output permutation in the standard decimation-in-frequency
FFT algorithm. In an implementation, the permutation can be omitted because the output does not need to be in any particular order.
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of DFTm′ . Of course, each DFTm′ can be further decomposed in the same way, down to the DFTp base
case. Using any of the Rader, Winograd, or Bluestein FFT algorithms, we can apply such base cases in
O(p log p) time, which implies that DFTm can be applied in O(n log n) time, where n = ϕ(m).

To verify Equation (3.1), it suffices by linearity to compare the action of both sides on the standard basis
vectors. Take any (j0, j1) ∈ [p]× [m′] and consider the vector with 1 in location (j0, j1) and zero elsewhere.
Applying DFTp⊗ I[m′] to it yields the vector that is ωi0j0p in locations (i0, j1) for i0 ∈ [p] and zero elsewhere.
The matrix Tm changes these nonzero entries to ωi0j0p ωi0j1m , and finally, I[p] ⊗DFTm′ yields the vector with

ωi0j0p · ωi0j1m · ωi1j1m′ = ωm
′i0j0+i0j1+pi1j1

m = ω(pi1+i0)(m′j0+j1)
m

in any location (i0, i1) ∈ [p]× [m′], as required.

Decomposition of CRTm. Lettingm, p, andm′ be as above, notice that ϕ(m) = ϕ(p)·m′. Moreover, with
the above reindexing of rows and columns, CRTm is the submatrix of DFTm restricted to rows Z∗p × [m′]
and columns [ϕ(p)] × [m′]. By appropriately restricting the matrices in Equation (3.1), we obtain the
decomposition (which can be verified in the same way as above)

CRTm = (IZ∗p ⊗DFTm′) · T̂m · (CRTp ⊗ I[m′]), (3.2)

where T̂m is the diagonal twiddle matrix Tm from above, restricted to the rows and columns indexed by
Z∗p × [m′]. Applying CRTm therefore reduces to m′ parallel applications of CRTp, followed by ϕ(m)
parallel scalar multiplications by twiddle factors, followed by ϕ(p) parallel applications of DFTm′ .

Inversion. Using the inversion rules for matrix multiplication and the Kronecker product, the inverse DFT
and CRT decompose as

DFT−1
m = (DFT−1

p ⊗ I[m′]) · T−1
m · (I[p] ⊗DFT−1

m′ ) (3.3)

CRT−1
m = (CRT−1

p ⊗ I[m′]) · (T̂m)−1 · (IZ∗p ⊗DFT−1
m′ ), (3.4)

and can be applied at exactly the same cost as their forward counterparts. Note that the row and column index
sets of CRTm are different (as they are for CRTp and T̂m as well), so CRT−1

m ·CRTm and CRTm ·CRT−1
m

are “different” matrices, although they are both still identity matrices over the appropriate index sets.

Arbitrary m. For m that may have more than one prime divisor, the tensorial form of CRTm leads
immediately to a fast algorithm. Specifically, if m has prime-power factorization m =

∏
`m`, then by

the mixed-product property, applying CRTm =
⊗

` CRTm`
reduces to ϕ(m/m`) parallel applications

of CRTm`
, in sequence for each ` (see the end of Section 2.1). Since each CRTm`

can be applied in
O(m` logm`) time and O(logm`) parallel depth, the total runtime and parallel depth are O(m logm) and
O(logm), respectively.

4 The Powerful Basis

In this section (and Section 6) we study certain Z-bases of certain fractional ideals I in K = Q(ζm), which
are therefore Zq-bases of the quotients Iq = I/qI for any positive integer q. Fixing such a basis b and
viewing it as a (column) vector over I, we can represent any a ∈ I (respectively, a ∈ Iq) uniquely as
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a = 〈b,a〉 = bT · a for some coefficient vector a over Z (respectively, Zq) having the same index set as
b. Our algorithms simply store and operate on these coefficient vectors, while also keeping track of the
corresponding basis, which will be one of the few we define below. Notice that by linearity, if we have some
a ∈ I represented by coefficient vector a in basis b, then a is also the representation of ra ∈ rI in the basis
rb for any r ∈ K, so we can switch between the two values at essentially no cost.

Here we define a certain useful Z-basis of R, and hence Q-basis of K. We call it the “powerful” basis,
due to its decomposition in terms of the power bases of prime-power cyclotomics, and the fast algorithms
associated with it.9

Definition 4.1. The powerful basis p of K = Q(ζm) and R = Z[ζm] is defined as follows:

• For a prime power m, define p to be the power basis (ζjm)j∈[ϕ(m)], treated as a vector over R ⊂ K.

• For m having prime-power factorization m =
∏
`m`, define p =

⊗
` p`, the tensor product of the

power(ful) bases p` of each K` = Q(ζm`
).

For any power I = (R∨)k of R∨ = 〈t−1〉, define the powerful basis of I to be t−k · p.

By definition of the tensor product, p is a vector with index set
∏
`[ϕ(m`)]. So to specify an entry of p

we need one index j` ∈ [ϕ(m`)] per prime divisor of m, and the specified entry is p(j`) =
∏
` ζ

j`
m` . Note

that because ζm`
= ζ

m/m`
m ∈ K, it is possible to “flatten” the index set to a size-ϕ(m) subset of [m], where

index tuple (j`) maps to j =
∑

`(m/m`)j` mod m, and pj = ζjm. We note that unless m is a prime power,
the flattened index set is not equal to [ϕ(m)], so the powerful basis differs from the power basis, although
it still consists of powers of ζm. For instance, for m = 15 and ζ = ζ15, the powerful basis consists of
ζ0, ζ3, ζ5, ζ6, ζ8, ζ9, ζ11, and ζ14. Because the flattened indices tend to be a somewhat irregular subset of [m],
it is usually preferable to maintain the structured index set.

Observe that pT is a row vector (over K) with columns indexed by
∏
`[ϕ(m`)]. Applying the canonical

embedding σ entry-wise to obtain column vectors indexed by Z∗m (or equivalently,
∏
` Z∗m`

), by Equation (2.6)
we obtain the complex matrix σ(pT ) = CRTm. With this fact in mind, we now prove two basic facts about
the geometry of the powerful basis. The first says that all its elements are short (and in fact, by Lemma 2.14
they are shortest nonzero elements of R), and the second statement says essentially that the elements are
close to orthogonal.

Claim 4.2. The length of each element pj of p in `∞ norm is ‖pj‖∞ = 1, and in `2 norm is ‖pj‖2 =√
ϕ(m) =

√
n.

Proof. Each entry in the CRTm matrix is a root of unity, hence it has magnitude 1, and so the `∞ and `2
norms of each column are 1 and

√
ϕ(m), respectively.

Lemma 4.3. The largest singular value of σ(pT ) (or equivalently, of CRTm) is s1(p) =
√
m̂, and the

smallest singular value is sn(p) =
√
m/ rad(m).

Notice that the ratio of s1(p) to
√
ϕ(m) (i.e., the `2 norm of each basis element) is just

√
m̂/ϕ(m) =

(
∏
p p/(p− 1))1/2 = O(

√
log logm), where the product runs over all odd primes dividing m.

9Although we define the powerful basis in a different way, it can be seen that it coincides with what Bosma [Bos90] calls the
“canonical” basis of R. Bosma’s work is the only one we know of that explicitly considers this basis.
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Proof. It suffices to prove the statement when m is a prime power, due to the tensor structure of CRTm, and
the fact that the vector of singular values of A⊗B is the tensor product of the two vectors of singular values
of A and B. So let m be a power of a prime p, and let m′ = m/p. By Equation (3.2),

CRTm = (
√
m′Q) · (CRTp ⊗ I[m′])

for some unitary matrix Q, because DFTm′/
√
m′ is unitary for any m′, and so is the twiddle matrix T̂m. The

lemma then follows immediately from the fact that the ϕ(p) = p− 1 eigenvalues of the Gram matrix

CRT∗p · CRTp = (pI[ϕ(p)] − 1 · 1T ) (4.1)

are p, . . . , p (p−2 times) and 1, where the asterisk denotes the conjugate transpose, 1 ∈ R[ϕ(p)] is the all-ones
vector, and the equality is by the fact that CRTp is obtained by removing the all-1s row and one column from
DFTp, which is a unitary matrix scaled up by a

√
p factor.

We conclude this section by characterizing the Gram-Schmidt orthogonalization C̃RTm of the powerful
basis (under the canonical embedding), in Lemma 4.4 below. This orthogonalization is used in the nearest-
plane [Bab85] and Klein/GPV [GPV08] algorithms (see Lemma 2.9), which we use for sampling from discrete
Gaussians over R. The lemma implies that the orthogonalization is structured so that these algorithms can be
executed in substantially less time, and using much less precision, than is required for an arbitrary basis. This
is because the U matrix associated with the orthogonalization is block diagonal with m/ rad(m) identical
square blocks of dimension rad(m), which allows an implementation to make m/ rad(m) parallel and
independent calls to a quadratic-time subroutine on dimension rad(m), for O(m rad(m)) scalar operations
in total. Moreover, each row of U has a small (common) denominator, allowing an implementation to compute
inner products with the rows of U using low-precision integers (see the discussion following Lemma 2.9).

Recalling from Section 2.2 the matrix form of the Gram-Schmidt orthogonalization, it follows by the
mixed-product property that Ã⊗B = Ã ⊗ B̃. By the tensor structure of CRTm, it therefore suffices to
consider the case where m is a prime power.

Lemma 4.4. Let m be a power of a prime p and m′ = m/p. Then

CRTm = Qm · (
√
m′Dp ⊗ I[m′]) · (Up ⊗ I[m′]),

where Qm is unitary, Dp is the real diagonal [ϕ(p)]-by-[ϕ(p)] matrix with
√

(p− 1)− j/(p− j) in its jth
diagonal entry, and Up is the upper unitriangular [ϕ(p)]-by-[ϕ(p)] matrix with −1/(p− i− 1) in its (i, j)th
entry, for 0 ≤ i < j < ϕ(p).

Proof. By Equation (3.2) and the fact that T̂m and DFTm′/
√
m′ are unitary matrices, we have

CRTm =
√
m′Q′ · (CRTp ⊗ I[m′])

for some unitary Q′. Thus it suffices to show that CRTp = Qp ·Dp · Up for some unitary Qp.
Let G = CRT∗p · CRTp be the Gram matrix of CRTp and recall from Equation (4.1) that G has diagonal

entries p − 1, and −1 entries elsewhere. As discussed in Section 2.2, by the uniqueness of the Cholesky
decomposition it suffices to show that

G = UTp ·D2
p · Up.
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This equality can be verified by an elementary calculation, as follows. For k ≥ 1, define

T (k) :=
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(k − 1) · k
.

It is easy to see (by induction, or by noticing that adding 1/k to the above collapses the sum) that T (k) =
1− 1/k . For any i ∈ [ϕ(p)], the ith diagonal entry in UTp ·D2

p · Up is

p− 1− i

p− i
+

i−1∑
k=0

1

(p− k − 1)2

(
p− 1− k

p− k

)
.

The summation in the above expression is

p
i−1∑
k=0

1

(p− k)(p− k − 1)
= p
(
T (p)− T (p− i)

)
= p
(

1− 1

p
− 1 +

1

p− i

)
=

i

p− i
,

and so the ith diagonal entry is p− 1, as required. The off-diagonal entries are calculated in essentially the
same way.

5 The Chinese Remainder Basis and Fast Ring Operations

When working in K or R, we can perform ring operations efficiently by representing elements under the
canonical embedding σ. Recall that σ is the ring embedding from K = Q(ζm) into the product ring
H ⊂ CZ∗m that maps ζm to each power ωim ∈ C for i ∈ Z∗m, where ωm is a primitive complex mth root of
unity. Under the canonical embedding, addition and multiplication simply apply coordinate-wise on each
complex coordinate. Converting to the embedding representation from the powerful basis p is done simply by
multiplying (with sufficient precision) by the complex matrix CRTm = σ(pT ), i.e., if a = 〈p,a〉 ∈ K for
some rational vector a then σ(a) = CRTm · a.

In ring-LWE and its applications, we often work in Rq and R∨q , and sometimes in Iq for I = (R∨)k,
where q is a prime integer congruent to 1 modulo m.10 While using the canonical embedding as above lets us
perform ring operations relatively efficiently in these quotients (by using an arbitrary set of representatives),
here we describe more efficient and practical algorithms that only use arithmetic in Zq, rather than on
high-precision complex numbers. These algorithms are facilitated by what we call the Chinese remainder
(CRT) basis for Iq, defined next.

Recalling that R ∼=
⊗

`R` where m =
∏
`m` is the prime-power factorization of m and R` is the m`th

cyclotomic ring, it is easy to verify that the quotient ring Rq ∼=
⊗

`(R`/qR`). Therefore we may focus on
the case of prime-power m. Also recall from Section 2.5.5 the prime ideal factorization 〈q〉 =

∏
i∈Z∗m qi

in R, where qi = 〈q〉+ 〈ζm − ωim〉 is prime in R and ωm is some fixed element of order m in Zq.

Definition 5.1. For a positive integer m, the Chinese remainder (or CRT) Zq-basis c of Rq is as follows:

• For a prime power m, c = (ci)i∈Z∗m is characterized by ci = 1 mod qi and ci = 0 mod qj for i 6= j.
(Its existence is guaranteed by Lemma 2.19, the Chinese remainder theorem.)

10The modulus q may also be a product of several primes qi = 1 mod m, in which case we can use the Chinese Remainder
Theorem to decompose Rq into the product of rings Rqi .
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• For m having prime-power factorization m =
∏
`m`, define c =

⊗
i c`, the tensor product of the CRT

bases c` of each R`/qR`.

For any power I = (R∨)k of R∨ = 〈t−1〉, the CRT Zq-basis of Iq is t−k · c.

Note that c is a vector over Rq having as its index set the Cartesian product
∏
` Z∗m`

, which may be
flattened to the set Z∗m using the bijective correspondence (j`) ↔ j =

∑
`(m/m`) · j` ∈ Z∗m. But for our

purposes it is usually more convenient to retain the structured index set.
Working in the CRT basis yields very fast arithmetic operations. Suppose that m is a prime power.

Since c2
i = ci ∈ Rq and ci · ci′ = 0 ∈ Rq for distinct i, i′ ∈ Z∗m, the CRT basis has the property that

if a, b ∈ Rq have coefficient vectors a,b (respectively) over Zq in the CRT basis—i.e., a = 〈c,a〉 and
b = 〈c,b〉—then the coefficient vector of a · b ∈ Rq is the componentwise product a� b over Zq. (Addition
is componentwise as well, by linearity.) Moreover, this extends immediately to powers of R∨: if a,b are the
respective coefficient vectors of a ∈ (R∨)k1

q , b ∈ (R∨)k2
q in the respective CRT bases t−k1 · c and t−k2 · c,

then a� b is the coefficient vector of a · b ∈ (R∨)kq in the CRT basis t−k · c, where k = k1 + k2.
Still treating m as a prime power, using the field isomorphisms R/qi ∼= Zq given by ζm 7→ ωim, we see

that the CRT basis c and powerful basis p = (ζjm)j∈[ϕ(m)] of Rq are related by

pT = cT · CRTm, (5.1)

where the matrix CRTm is over Zq. So if a ∈ Rq has coefficient vector a ∈ Z[ϕ(m)]
q in the powerful basis—i.e.,

a = 〈p,a〉—then its coefficient vector in the CRT basis is CRTm · a ∈ ZZ∗m
q —i.e., a = 〈c,CRTm · a〉—and

similarly for Iq by linearity. Using the sparse decomposition of CRTm and its inverse from Section 3, we
can therefore switch efficiently between the power and Chinese remainder bases.

Finally, for arbitrary m, by the tensorial decomposition of Rq, multiplication is still componentwise in
the CRT basis. Moreover, by the definitions of p, c, and CRTm as tensor products and the mixed-product
property, it immediately follows that Equation (5.1) holds as well.

6 The Decoding Basis of R∨

When working with ring-LWE we need to perform a variety of operations over R∨ = 〈t−1〉 or R∨q . For
certain operations it is best to use a certain Z-basis of R∨ (and Zq-basis of R∨q ), defined below.

Let τ be the automorphism (and involution) of K that maps ζm to ζ−1
m = ζm−1

m . We refer to τ
as the conjugation map, since under the canonical embedding it corresponds to complex conjugation:
σ(τ(a)) = σ(a). Notice that for any m′ dividing m, τ also maps ζm′ = ζ

m/m′
m to ζ−1

m′ = ζ
−m/m′
m . Also note

that τ(p) is a Z-basis of R, since τ is an automorphism and hence fixes R.

Definition 6.1. The decoding basis of R∨ is d = τ(p)∨, the dual of the conjugate of the powerful basis p.11

The decoding basis therefore has the same index set as p. When m is a prime power, d is simply the dual
of the conjugate power basis τ(p) = (ζ−jm )j∈[ϕ(m)] of R. For general m, because τ(p) is the tensor product

11Note that unlike the powerful and CRT bases, we do not define a decoding basis for any other power of R∨; see Section 6.2 for
discussion. Also, there is some flexibility in the choice of d, and other definitions may be nearly as good, e.g., d = p∨ (without
conjugation). We adopt the above definition because it corresponds to the adjoint of σ(pT ), and yields a particularly simple
connection between d and the powerful basis t−1p of R∨ (see Lemma 6.3).
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of the conjugate power bases for prime-power cyclotomics R`, and (a⊗ b)∨ = (a∨ ⊗ b∨), it follows that d is
the tensor product of the decoding bases for each R∨` .

We start with some basic facts about the decoding basis. Any a ∈ KR can be represented in the decoding
basis as a = 〈d,a〉 for some vector a of real coefficients, given by

aj = Tr(a · d∨j ) = Tr(a · τ(pj)) = 〈σ(a), σ(pj)〉 ⇐⇒ a = CRT∗m · σ(a). (6.1)

Since d is the dual basis of τ(p), which embeds as σ(τ(pT )) = CRTm over C, we have that d embeds as

σ(dT ) = (CRT∗m)−1.

Lemma 4.3, and the fact that complex conjugation leaves singular values unchanged, implies the following
geometric fact about the decoding basis.

Lemma 6.2. The spectral norm of d is s1(d) =
√

rad(m)/m.

We point out that s1(d) can be as large as 1 (in the extreme case where m is square free), which, unlike
for p (see Lemma 4.3), is much larger than the normalized determinant det(R∨)1/n = ∆

−1/(2n)
K ≈ 1/

√
n.

Fortunately, the decoding basis is still always a good choice for discretizing a continuous ring-LWE error
distribution (while increasing the subgaussian parameter only slightly), because the input error distribution
needs to have Gaussian parameter at least ω(

√
log n) for provable worst-case hardness (see Theorem 2.22).

We also point out that if d were instead defined as the dual of the power basis (or its conjugate), then its
spectral norm could be much larger: e.g., for m = 1155 = 3 · 5 · 7 · 11 we would have s1(d) ≈ 22.6.

In the next few subsections, we prove several important and useful properties of the decoding basis,
summarized as follows:

• There are very fast linear transformations (requiring O(nd) scalar operations with small hidden
constant, where d is the number of prime divisors of m) for converting between the decoding basis d
and the powerful basis t−1p of R∨ (see Section 6.1).

• Short elements (as always, in the sense of the canonical embedding) of K have optimally small
coefficients with respect to d, making it a best choice for decoding R∨. Moreover, d also yields (nearly)
optimal decoding in higher powers of R∨. (See Section 6.2.)

• Continuous Gaussians (especially spherical ones) as represented in the decoding basis can be sampled
very simply and efficiently (see Section 6.3).

The first fact, combined with the fast CRT transformation, means that we can efficiently convert among the
decoding, power, and CRT bases of R∨ (or R∨q ) as needed. The latter two facts mean that the decoding
basis is an excellent choice for generating and decoding error terms (e.g., in encryption and decryption,
respectively). By contrast, the power basis and other natural bases of R or R∨ do not typically enjoy the
above properties (except when m is a power of 2), and while they can in principle be used for all the same
tasks, it would come at a potentially large loss in tightness and/or computational efficiency.

6.1 Relation to the Powerful Basis

Recall that both d and t−1p are Z-bases of R∨, so there is a unimodular transformation that relates them,
which is given in the following lemma.
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Lemma 6.3. Let m be a power of a prime p and let m′ = m/p, so ϕ(m) = ϕ(p) ·m′. Then

dT = t−1pT · (Lp ⊗ I[m′]), (6.2)

where Lp ∈ Z[ϕ(p)]×[ϕ(p)] is the lower-triangular matrix with 1s throughout its lower-left triangle, i.e., its
(i, j)th entry is 1 for i ≥ j, and 0 otherwise.

Proof. First reindex the conjugate power basis using index set [ϕ(p)] × [m′], as τ(p(j0,j1)) = ζ−j0p · ζ−j1m ,
and reindex d similarly. Equation (6.2) may then be rewritten equivalently as

d(j0,j1) = t−1 ·
(
ζj0p + ζj0+1

p + · · ·+ ζp−2
p

)
· ζj1m = 1

m

(
ζj0p − ζp−1

p

)
· ζj1m , (6.3)

where recall from Definition 2.17 that t−1 = (1 − ζp)/m. To verify the above equation, observe that the
product of the right-hand expression with τ(p(j′0,j

′
1)) for any (j′0, j

′
1) ∈ [ϕ(p)]× [m′] is

1
m

(
ζ
j0−j′0
p − ζp−1−j′0

p

)
· ζj1−j

′
1

m .

By Lemma 2.15, the trace of this is 0 if j1 6= j′1 (because j1 − j′1 6= 0 mod m′); otherwise it is 0 if j0 6= j′0
(because both j0 − j′0, p− 1− j′0 6= 0 mod p); otherwise, it is 1, as desired.

Observe that multiplication by Lp can be done inO(ϕ(p)) scalar operations via partial sums, and similarly
for L−1

p via successive differences. Therefore, multiplication by Lm = (Lp ⊗ I[m′]) or L−1
m can be done in a

linear number of scalar operations. Finally, for arbitrary m having prime-power factorization m =
∏
`m`,

by the definitions of p, d, and t as tensor products and the mixed-product property, we also have

dT = t−1pT · Lm, where Lm =
⊗

`
Lm`

. (6.4)

By the discussion at the end of Section 2.1, we can therefore multiply by Lm or L−1
m in O(nd) scalar

operations, where d is the number of distinct prime divisors of m and n = ϕ(m).

6.2 Decoding R∨ and Its Powers

Recall from Section 2.4.1 the “round-off” decoding procedure, which uses short linearly independent vectors
in a dual lattice Λ∨ to recover a sufficiently short x, given x mod Λ. To decode K/R∨, we apply the
procedure using the decoding basis d of R∨, whose dual basis in (R∨)∨ = R is the conjugate powerful
basis τ(p). By Claim 2.10, the distance (or subgaussian parameter) that the procedure successfully decodes
from depends inversely on the maximum length of the dual elements, and by Claim 4.2, every pj in the
powerful basis has ‖τ(pj)‖2 =

√
n. From this we get corresponding bounds on the decoding operation, as

summarized below in Lemmas 6.5 and 6.6. We remark that the decoding basis is an optimal choice here: by
Lemma 2.14, every nonzero element of R has length at least

√
n, hence no shorter set of dual elements exists.

In some applications (e.g., homomorphic encryption), we need to solve the more general problem of
decoding K/I, where I = (R∨)k = 〈t−k〉 for some (usually small) k ≥ 1. The naïve way to do this would
be to apply the round-off procedure with the Z-basis t1−kd of I. This, however, turns out to be highly
suboptimal for many values of m, because the elements of the dual basis tk−1τ(p) might be much longer
than the shortest nonzero elements of I∨ = 〈tk−1〉.12

12This can be seen already when k = 2 and m is a moderately large prime: using the equality t = m/g and noticing that some of
the embeddings of g = 1− ζm are very close to zero, we see that the length of t is a rather large Ω(m2).
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Instead, in the round-off algorithm we use the scaled decoding basis m̂1−kd, which generates the
superideal J = m̂1−kR∨ = t−kg1−k ⊇ I, and whose dual elements are m̂k−1τ(p) ⊂ I∨. (Recall from
Definition 2.17 that m̂ = t · g for some g ∈ R, where m̂ = m/2 if m is even and m̂ = m otherwise.)
The lengths of the dual elements are therefore m̂k−1√n, from which one gets the bounds summarized in
Lemma 6.6 below.

We point out that the use of m̂1−kd for decoding K/I is either optimal or nearly so. Indeed, by
Lemma 2.14 and Equation (2.10), the minimum distance of I∨ = (R∨)1−k is at least

√
n ·N(R∨)(1−k)/n =

√
n ·∆(k−1)/n

K , so by Equation (2.8), the dual elements m̂k−1τ(p) ⊂ I∨ are nearly as short as possible:

‖m̂k−1τ(p)‖2
λ1(I∨)

=
m̂k−1√n
λ1(I∨)

≤
( ∏

odd prime p|m

p1/(p−1)
)k−1

,

which for almost all choices of m and small k is quite small. (For example, the term inside the parentheses is
only ≈ 6.73 when taking all odd primes up to 17, which corresponds to m ≥ 255,255.) Moreover, the above
lower bound on λ1(I∨) may not be tight; we suspect that in most cases of interest the minimum distance
of I∨ is exactly m̂k−1√n, which would imply that the scaled decoding basis is optimal.

We summarize the above discussion in the following definition and lemmas. As it will be more convenient
for applications, we consider a “scaled up and discretized” version of the decoding procedure, where we
decode from Iq to I for some q ≥ 1. So the unknown short element is guaranteed to be in I but is given
modulo qI , and the output is also expected to be in I . The only difference this makes (apart from the scaling
by q) is that for k ≥ 2, since the scaled decoding basis m̂1−kd may generate a strict superideal J ⊃ I, the
round-off procedure might output an element that is not in I . In such a case we just consider the output to be
undefined. Lemmas 6.5 and 6.6 show that as long as the unknown element in I is short enough (or has a
small enough subgaussian parameter), the decoding procedure correctly outputs it.

Definition 6.4 (Decoding Iq to I). Let I = (R∨)k for some k ≥ 1, and define the decoding function
J·K : Iq → I as follows. For input ā ∈ Iq, write ā = 〈m̂1−kd, ā〉 mod qJ for some vector ā over Zq, where
J = m̂1−kR∨ ⊇ I. Define JāK := 〈m̂1−kd, JāK〉 if this value is in I, otherwise JāK is undefined.
(Recall that JāK is a vector over Z, as defined in the beginning of Section 2.)

Lemma 6.5. Let I = (R∨)k for some k ≥ 1, let a ∈ I and write a = 〈m̂1−kd,a〉 for some integral
coefficient vector a, and let q ≥ 1 be an integer. If every coefficient aj ∈ [−q/2, q/2), then Ja mod qIK = a.
In particular, if every aj is δ-subgaussian with parameter s, then Ja mod qIK = a except with probability at
most 2n exp(δ − πq2/(2s)2).

Proof. The first part is by Claim 2.10. The second part is by the tail bound on subgaussian random variables
(Equation (2.2)), and the union bound.

Lemma 6.6. Let I = (R∨)k for some k ≥ 1, and let a ∈ I.

• Writing a = 〈m̂1−kd,a〉 for some integral vector a, we have that every |aj | ≤ m̂k−1√n · ‖a‖2.

• If a is δ-subgaussian with parameter s, and b ∈ (R∨)` for some ` ≥ 0 is arbitrary, then writing
a · b = 〈m̂1−k−`d, c〉 for some integral vector c, we have that every cj is δ-subgaussian with parameter
m̂k+`−1‖b‖2 · s.

We remark that the second item above gives a bound that is a
√
n factor tighter than what we would

obtain by treating a · b as δ-subgaussian with parameter s‖b‖2. The tighter bound results from using the
particular properties of the powerful basis, namely, that all its elements have `∞ norm 1.
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Proof. The dual elements of m̂1−kd are m̂k−1τ(p), which all have `2 norm m̂k−1√n. The first item then
follows by the Cauchy-Schwarz inequality.

For the second item, notice that the coefficient cj of a · b in the scaled decoding basis m̂1−k−`d is

cj = Tr(m̂k+`−1τ(pj) · ab) = m̂k+`−1 Tr((τ(pj) · b) · a),

which by definition and by Claim 4.2 is δ-subgaussian with parameter

m̂k+`−1‖τ(pj) · b‖2 · s ≤ m̂
k+`−1‖τ(pj)‖∞ · ‖b‖2 · s = m̂k+`−1‖b‖2 · s.

6.2.1 Implementation Notes

We conclude this subsection by outlining an efficient implementation of the decoding operation from
Definition 6.4. As usual, we wish to use only (nearly) linear time operations, and avoid high-precision
quantities. Recall that our goal is to recover an unknown element a ∈ I given ā = a mod qI, where
I = (R∨)k for some k ≥ 1. We assume that the input ā ∈ Iq is given in the form of a coefficient vector ā
over Zq satisfying ā = 〈t1−kb, ā〉 mod qI, where b is some Zq-basis of R∨q . The output will be given as a
coefficient vector a over Z with respect to the decoding basis t1−kd of I.

The case k = 1 can be implemented straightforwardly. Suppose the basis b used to specify the input
ā ∈ R∨q is the decoding basis, i.e., ā = 〈d, ā〉 mod qR∨. We then simply output the integer coefficient
vector a = JāK also relative to the decoding basis, i.e., a = 〈d,a〉 ∈ R∨. The number of operations is clearly
linear. If the input is represented in a different basis b, we first convert to the decoding basis, which is very
efficient for all bases we consider.

The case k > 1 is more interesting, and consists of three efficient steps:

1. compute the representation of ā′ = ā mod qJ in the Zq-basis m̂1−kb of Jq (where recall that
J = m̂1−kR∨ ⊇ I);

2. decode it as in the case k = 1 to an element a′ ∈ J (which will equal a if decoding was successful);

3. compute the representation of a′ in the Z-basis t1−kd of I.

We next explain each of the three steps in detail.
The first step, it turns out, is equivalent to multiplication by gk−1 ∈ R, where recall from Definition 2.17

that m̂ = g · t. Indeed, by factoring out gk−1 from the modulus and both sides of the equality, we have

gk−1 · ā = 〈t1−kb, ā〉 mod qI ⇐⇒ ā = 〈m̂1−kb, ā〉 mod qJ ,

i.e., the desired coefficients of ā mod qJ in basis m̂1−kb are exactly those of gk−1ā in basis t1−kb. Typically
the input basis b at this stage would be the CRT basis, and for efficiency one could precompute the CRT
coefficients of gk−1, making this step linear time. In addition, multiplication by g in the powerful and
decoding bases is also (nearly) linear time, as described below.

The second step is essentially identical to the case k = 1. Take the output ā′ of the first step, convert it (if
needed) to a representation in the scaled decoding basis m̂1−kd, so that ā′ = 〈m̂1−kd, ā′〉 for some ā′ over Zq,
and then output the coefficient vector Jā′K over Z, which represents the element a′ = 〈m̂1−kd, Jā′K〉 ∈ J .
The element a′ is exactly the output of the decoding procedure as in Definition 6.4, except that it might not
be in I (in which case decoding failed).

32

Approved for Public Release; Distribution Unlimited. 
224 



Finally, in the third step, we convert the representation of a′ in the Z-basis m̂1−kd of J to a representation
in a Z-basis of I, namely t1−kd. This conversion might be impossible if a′ /∈ I, which indicates decoding
failure. Assuming a′ ∈ I, it is immediate to see that this conversion is equivalent to division by gk−1:

g1−k · a′ = 〈m̂1−kd,a〉 ∈ J ⇐⇒ a′ = 〈t1−kd,a〉 ∈ I,

i.e., the desired coefficients of a′ in the Z-basis t1−kd of I are exactly those of g1−k · a′ in basis m̂1−kd.
Division by gk−1 can be performed somewhat efficiently using the CRT transform over C, but this

requires Ω(n log n) time and high-precision operations (since in contrast with the first step, here we are
working with Z-bases, and not modulo q). A better way follows from noticing that multiplication and division
by g have nice forms in the decoding basis, i.e., g · dT = dT ·A for some integral matrix A that is efficient to
multiply and divide by. By the tensorial decompositions of d and of g, it suffices to consider the case where m
is a power of a prime p. Using Equation (6.3) and letting m′ = m/p, one can verify that multiplication and
division by g = 1− ζp in the decoding basis are given, respectively, by the [n]-by-[n] matrices

A =


2 1 1 1 1
−1 1

−1 1
. . .
−1 1

⊗ I[m′], A−1 =
1

p


1 2− p 3− p · · · −1
1 2 3− p · · · −1
1 2 3 · · · −1
...

...
...

. . .
...

1 2 3 · · · p− 1

⊗ I[m′].

It is easy to see that left-multiplication by A can be performed in time linear in n. Moreover, multiplication
by A−1 can also be done in linear time, because every row differs from each of its adjacent rows in just one
entry. Note that to avoid rational arithmetic, one would actually multiply by the integer matrix pA−T and
then evenly divide the result by p. If the latter step is not possible, that indicates decoding failure.

Lastly, we also note that multiplication by g in the powerful basis is given by JATJ , where J = J[n] is
the [n]-by-[n] reversal matrix, obtained by reversing the columns of the identity matrix I[n] (so J = J−1 and
J[n] = J[ϕ(p)] ⊗ J[m′]). Therefore, in the powerful basis we can also multiply and divide by g in linear time
per prime-power divisor of m.

6.3 Sampling Gaussians in the Decoding Basis

We now describe how to efficiently sample continuous Gaussians over KR, as represented in the decoding
basis. In order to obtain the real coefficient vector a of some Gaussian-distributed a ∈ KR, by Equation (6.1)
it suffices to sample σ(a) from the continuous Gaussian distribution over H and then left-multiply by CRT∗m.
The latter step is best done using the sparse decomposition given in Section 3. Recalling the definition of H
and its unitary basis matrix B = 1√

2

(
I
√
−1J

J −
√
−1I

)
∈ CZ∗m×[ϕ(m)] from Section 2.2, we see that sampling σ(a)

amounts to sampling n independent real Gaussians used as coefficients for the columns of B, or equivalently,
sampling the first n/2 complex coordinates as independent complex Gaussians, and completing the remaining
n/2 coordinates using the conjugate symmetry of H .

While the above is already quite efficient, here we show that a significantly faster algorithm exists when
rad(m)� m. The basic idea is to notice that multiplication by the matrix CRT∗m, with its decomposition as
in Equation (3.2), starts with multiplication by two scaled unitary matrices: a (typically high-dimensional)
DFT tensored with identity, and a twiddle matrix. Since spherical Gaussians are invariant under unitary
transformations, we can effectively skip these two multiplications, and we only need to multiply by the (often
much lower-dimensional) CRT∗p matrices for those primes p dividing m. Details follow.
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Using Equation (3.2), for any m` that is a power of a prime p`, letting m′` = m`/p` we have

CRT∗m`
= (CRT∗p` ⊗ I[m′`]

) ·
√
m′` ·Q`

for some unitary Q`, because the twiddle matrix T̂m`
and scaled Fourier matrix DFTm′`

/
√
m′` are both

unitary. Therefore, by the mixed-product property we have

CRT∗m =
⊗

`
CRT∗m`

=
⊗

`
(CRT∗p` ⊗ I[m′`]

) ·
√
m/ rad(m)

⊗
`
Q`.

Since Q =
⊗

`Q` is unitary, it sends a spherical Gaussian distribution over H ⊂ CZ∗m to a spherical
Gaussian distribution (of the same parameter) over the subspace H ′ = QH ⊂ CZ∗m .13 Therefore, to
sample a continuous Gaussian of parameter s in the decoding basis, it suffices to generate a Gaussian of
parameter s

√
m/ rad(m) over H ′ and then left-multiply the result by

C∗ :=
⊗

`
(CRT∗p` ⊗ I[m′`]

) = CRT∗rad(m) ⊗ I[m/ rad(m)].

The latter requires n/ϕ(p`) parallel applications of CRT∗p` , in sequence for each `, which can be done in a
total of O(n log(rad(m))) scalar operations.

It remains to explain how to sample a spherical Gaussian from H ′. For this it suffices to give a unitary
basis matrix B′ of H ′, which allows us to generate a Gaussian over H ′ as B′c, where c is real Gaussian.
Now, observe that the subspace H ′ is

H ′ = {x ∈ CZ∗m : C∗x ∈ R[ϕ(m)]},

because H ′ is a real vector space of dimension n, and C∗H ′ = R[ϕ(m)]. So it suffices to give a unitary
matrix B′ such that C∗B′ is real. By the mixed-product property, such a matrix is

B′ =
⊗

`
(B′p` ⊗ I[m′`]

),

where B′p` = 1√
2

(
I
√
−1J

J −
√
−1I

)
for p` > 2, and is the scalar identity for p` = 2. Clearly, multiplication by B′

is a simple linear-time operation in the dimension.
Finally, we remark that because the final vector of decoding basis coefficients is C∗B′c for a real

Gaussian c, it is possible to generate these coefficients using just real arithmetic as Dc, where D =⊗
`(Dp` ⊗ I[m′`]

) and Dp` = CRT∗p` ·B
′
p`

is a real ϕ(p`)-by-ϕ(p`) matrix.

7 Regularity

In this section we prove a certain “regularity lemma” that is useful in cryptographic applications, such as
when adapting the “primal” [Reg05] and “dual” [GPV08] LWE-based cryptosystems, and the identity-based
versions of the latter scheme, to ring-LWE. (See Section 8.1 for such an adaptation of the dual cryptosystem.)
Independently, a closely related statement, specialized to power-of-2 cyclotomics, was recently shown
in [SS11] with a different style of proof.

The theorem says the following. Assume we are working with the mth cyclotomic of degree n = ϕ(m),
and let q ≥ 1 be a prime integer. Let a1, . . . , a`−1 be chosen uniformly and independently from Rq. Then,

13Here and in what follows, we identify the index set Z∗m with the set
∏

`(Z
∗
p` × [m′`]) as in the decomposition of CRTm, and

similarly identify [ϕ(m)] with
∏

`[ϕ(m`)].
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with high probability over the choice of the ai, the distribution of b0 +
∑`−1

i=1 biai is within statistical distance
2−Ω(n) of uniform, where the bi are chosen from a discrete Gaussian distribution on R of width essentially
n · q1/` (in the canonical embedding). Equivalently, the lemma says that if a0 is any fixed invertible element
of Rq and a1, . . . , a`−1 are uniformly and independently chosen from Rq, then

∑`−1
i=0 biai is within 2−Ω(n)

of uniform, where the bi are chosen as before. The equivalence follows by simply dividing by a0. (The
lemma we prove is actually more general, and applies to the joint distribution of k ≥ 1 sums as above; see
Theorem 7.4 and Corollary 7.5 for the exact statement.)

This regularity statement is already interesting and non-trivial when ` is as small as 2, and is close to
being tight: for instance, when m is a power of 2, a width of at least

√
nq1/` is required just for entropy

reasons. To see this, recall that R is a rotation of
√
nZn, so roughly speaking, a discrete Gaussian of width t

covers (t/
√
n)n points.

One might wonder about the significance of the b0 term, and why we do not analyze the regularity of∑`−1
i=0 biai when all the ai are chosen uniformly from Rq. In fact, a regularity lemma for exactly such sums

was shown by Micciancio [Mic02]. (His work is specialized to the ring R = Z[x]/〈xn − 1〉, but can be
extended to other rings, as observed in [SSTX09].) Unfortunately, such sums have a much worse regularity
property, and in particular require super-constant ` to get negligible distance to uniformity. To see why this
is the case, assume that q is a prime satisfying q = 1 mod m, so that 〈q〉 splits completely into n ideals of
norm q each. Letting q denote one of these prime factors, notice that with probability q−`, all the ai are in q.
In this case,

∑m
i=1 biai is in q with certainty, and its distribution is therefore very far from uniform. By adding

the b0 term we avoid this “common divisor” problem and get much better regularity, providing exponentially
small distance to uniformity already for ` as small as 2. It is also worth mentioning that including the b0 term
(or equivalently, requiring a0 to be uniform) corresponds to the “normal form” of ring-LWE and ring-SIS.

We start with a technical claim on the Gaussian weight on a lattice.

Claim 7.1. For any n-dimensional lattice Λ and ε, r > 0,

ρ1/r(Λ) ≤ max

(
1,

(
ηε(Λ

∨)

r

)n)
(1 + ε).

Proof. For r ≥ ηε(Λ
∨), the claim follows from Definition 2.5. For r < η = ηε(Λ

∨), it follows from the
Poisson summation formula (see [MR04, Lemma 2.8]) that

ρ1/r(Λ) = (det Λ)−1 · r−n · ρr(Λ∨) < (det Λ)−1 · r−n · ρη(Λ∨) = (η/r)n · ρ1/η(Λ),

and the claim follows from the previous case.

Using Lemma 2.6 and Lemma 2.14 we have

η2−2n(I∨) ≤
√
n/λ1(I) ≤ (N(I))−1/n,

which implies the following corollary.

Corollary 7.2. For any ideal I and r > 0,

ρ1/r(I) ≤ max
(
1,N(I)−1 r−n

)
(1 + 2−2n).

We will also need the following algebraic claim.
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Claim 7.3. In the mth cyclotomic number field of degree n, for any q, k ≥ 1,∑
J |〈q〉

N(J )k ≤ exp(c)qkn ≤ qkn+2,

where c is the number of distinct prime integer divisors of q.

Proof. The second inequality is clear. For the first inequality, it suffices to consider the case of a prime power
q = pe. Indeed, if q1 and q2 are coprime then∑

J |〈q1q2〉

N(J )k =

( ∑
J |〈q1〉

N(J )k
)( ∑
J |〈q2〉

N(J )k
)
.

Next, recall from Section 2.5.5 that for any integer prime p, the ideal 〈p〉 factors as ph1 · · · phg where h = ϕ(pd),
d ≥ 0 is the largest integer such that pd divides m, each pi is of norm pf where f ≥ 1 is the multiplicative
order of p modulo m/pd, and g = n/(hf). Therefore, 〈q〉 = peh1 · · · pehg , and

∑
J |〈q〉

N(J )k =

g∏
i=1

(1 + N(pi)
k + · · ·+ N(pi)

ehk)

=
(

1 + pfk + · · ·+ pehfk
)g

≤ pehfkg(1− p−fk)−g

≤ qnk exp(g · p−fk).

Next, observe that pf is greater than m/pd (since it is greater than 1 and equals 1 modulo m/pd) and that
g ≤ n/ϕ(pd) = ϕ(m/pd), hence

g · p−fk ≤ g · p−f ≤ 1,

which completes the proof.

The following is the regularity theorem. Here, for a matrix A ∈ R[k]×[`]
q we define

Λ⊥(A) = {z ∈ R[`] : Az = 0 mod qR},

which we identify with a lattice in H`. Its dual lattice (which is again a lattice in H`) is denoted by Λ⊥(A)∨.

Theorem 7.4. Let R be the ring of integers in the mth cyclotomic number field K of degree n, and q ≥ 2 an
integer. For positive integers k ≤ ` ≤ poly(n), let A = [I[k] | Ā] ∈ (Rq)

[k]×[`], where I[k] ∈ (Rq)
[k]×[k] is

the identity matrix and Ā ∈ (Rq)
[k]×[`−k] is uniformly random. Then for all r > 2n,

EĀ
[
ρ1/r

(
Λ⊥(A)∨

)]
≤ 1 + 2(r/n)−n`qkn+2 + 2−Ω(n).

In particular, if r > 2n · qk/`+2/(n`) then EĀ[ρ1/r(Λ
⊥(A)∨)] ≤ 1 + 2−Ω(n), and so by Markov’s inequality,

η2−Ω(n)(Λ⊥(A)) ≤ r except with probability at most 2−Ω(n).

Using Lemma 2.7, and the fact thatA contains an identity submatrix I[k] and so the columns ofA generate

all of R[k]
q , we obtain the following corollary, which is often more useful in applications.
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Corollary 7.5. Let R, n, q, k, and ` be as in Theorem 7.4. Assume that A = [I[k] | Ā] ∈ (Rq)
[k]×[`] is

chosen as in Theorem 7.4. Then, with probability 1 − 2−Ω(n) over the choice of Ā, the distribution of
Ax ∈ R[k]

q where each coordinate of x ∈ R[`]
q is chosen from a discrete Gaussian distribution of parameter

r > 2n · qk/`+2/(n`) over R, satisfies that the probability of each of the qnk possible outcomes is in the
interval (1± 2−Ω(n))q−nk (and in particular is within statistical distance 2−Ω(n) of the uniform distribution
over R[k]

q ).

Proof of Theorem 7.4. Observe that for any A ∈ (Rq)
[k]×[`], the dual lattice of Λ⊥(A) is

Λ⊥(A)∨ = (R∨)[`] +
{

1
qA

T s : s ∈ (R∨q )[k]
}
.

We therefore have

EĀ
[
ρ1/r

(
Λ⊥(A)∨

)]
=

∑
s∈(R∨q )[k]

EĀ
[
ρ1/r

(
(R∨)[`] + 1

qA
T s
)]

=
∑

s∈(R∨q )[k]

ρ1/r

(
(R∨)[k] + 1

q s
)
· Ea

[
ρ1/r

(
R∨ + 1

q 〈a, s〉
)]`−k

, (7.1)

where a is chosen uniformly from R
[k]
q . For any s = (s1, . . . , sk) ∈ (R∨q )[k], define the ideal Is =

s1R+ · · ·+ skR+ qR∨ ⊆ R∨; this is the “greatest common divisor” ideal of all the si and qR∨. Note that
〈a, s〉 is uniformly random over Is/qR∨, and so the expectation above is∣∣Is/qR∨∣∣−1 · ρ1/r(

1
qIs).

Therefore, if we let T denote the set of all ideals J satisfying qR∨ ⊆ J ⊆ R∨, we can write (7.1) as∑
J∈T
|J /qR∨|−(`−k) · ρ1/r(

1
qJ )`−k

∑
s s.t. Is=J

ρ1/r

(
(R∨)[k] + 1

q s
)

≤ ρ1/r(R
∨)` +

∑
J∈T\{qR∨}

|J /qR∨|−(`−k) · ρ1/r(
1
qJ )`−k ·

(
ρ1/r(

1
qJ )k − 1

)
≤ ρ1/r(R

∨)` +
∑

J∈T\{qR∨}

|J /qR∨|−(`−k) ·
(
ρ1/r(

1
qJ )` − 1

)
= 1 +

∑
J∈T
|J /qR∨|−(`−k) ·

(
ρ1/r(

1
qJ )` − 1

)
, (7.2)

where in the first inequality we used the fact that for every J ∈ T \ {qR∨}, the sets (R∨)[k] + 1
q s for all s

satisfying Is = J are disjoint, and their union is contained in (1
qJ )[k] \ {0}. Next, using Corollary 7.2, we

see that

ρ1/r(
1
qJ )` ≤ max

(
1, (|J /qR∨| ·∆Kr

−n)`
)
(1 + 2−2n)`

≤ 1 + `21−2n + 2(|J /qR∨| ·∆Kr
−n)`.

This, together with Claim 7.3 and (2.8), allows us to bound (7.2) by

1 + 2−Ω(n) + 2∆`
Kr
−n`

∑
J∈T
|J /qR∨|k

≤ 1 + 2−Ω(n) + 2(r/n)−n`qkn+2,

and the theorem follows.

37

Approved for Public Release; Distribution Unlimited.
229



8 Cryptosystems

Here we give three example applications of our toolkit, which all work in arbitrary cyclotomic rings:

• In Section 8.1, we give a simple adaptation of the “dual” LWE-based public-key cryptosystem
of [GPV08], which uses our regularity lemma of Section 7, and which can serve as a foundation
for (hierarchical) identity-based encryption;

• In Section 8.2, we give a public-key cryptosystem with more compact public keys and ciphertexts (of
only two ring elements each), analogous to the ones of [LPS10, LP11];

• In Section 8.3, we describe a symmetric-key “somewhat homomorphic” cryptosystem and associated
“modulus reduction” and “key switching” algorithms.

We emphasize that throughout this section, the cryptosystems and associated operations are defined
almost entirely in an implementation- and basis-independent manner, using just abstract mathematical objects
and operations (e.g., ring addition and multiplication, cosets of ideals and probability distributions over them,
etc.). All of the operations can be performed very efficiently using the algorithms described earlier in the
paper.

In particular, our cryptosystems need to sample from subgaussian distributions over cosets of R∨ (or a
scaling of it). For this purpose we can use any valid discretization b·e as described in Section 2.4.2, applied
to any continuous error distribution ψ over KR. The choice of discretization affects only the resulting
subgaussian parameter of the sample. For example, we can use the “coordinate-wise randomized rounding”
method with the decoding basis d of R∨, which gives good subgaussian bounds (see Lemma 6.2).

8.1 Dual-Style Cryptosystem

In this section we present the ring-based variant of what is commonly called “dual” LWE encryption, first
introduced in [GPV08] for the purposes of constructing identity-based encryption schemes. (The name
“dual” refers to the fact that the system has dual properties to Regev’s first LWE-based cryptosystem [Reg05],
namely, the public key is statistically close to uniform, whereas ciphertexts are only pseudorandom and have
unique encryption randomness.)

Let R denote the mth cyclotomic ring (of degree n = ϕ(m)) and let p and q be coprime integers, where p
defines the message space Rp and q is the ring-LWE modulus. Let ψ be a continuous LWE error distribution
over KR, and let b·e denote a valid discretization to (cosets of) R∨ or pR∨. In the key-generation algorithm
we need to sample from the discrete Gaussian distribution DR,r for some r ≥

√
n · ω(

√
log n); we can do so

using the algorithm from Lemma 2.9 with the powerful basis p of R, since by Claim 4.2 its (Gram-Schmidt
orthogonalized) elements have maximum length

√
n. We also let ` ≥ 2 be a parameter.

The cryptosystem is defined as follows.

• Gen: choose a0 = −1 ∈ Rq and uniformly random and independent a1, . . . , a`−1 ∈ Rq, and
independent x0, . . . , x`−1 ← DR,r. Output a = (a1, . . . , a`−1, a` = −

∑
i∈[`] aixi) ∈ R

{1,...,`}
q as the

public key, and x = (x1, . . . , x`−1, x` = 1) ∈ R{1,...,`} as the secret key. Note that 〈a, x〉 = x0 ∈ Rq,
by construction.

• Enca(µ ∈ Rp): choose independent e0, e1, . . . , e`−1 ← bp · ψepR∨ , and e` ← bp · ψet−1µ+pR∨ . Let
e = (e1, . . . , e`) ∈ (R∨){1,...,`}. Output ciphertext c = e0 · a+ e ∈ (R∨q ){1,...,`}.
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• Decx(c): compute d = J〈c, x〉K ∈ R∨ (see Definition 6.4), and output µ = t · d mod pR.

Lemma 8.1. If r > 2n · q1/`+2/(n`), then the above cryptosystem is IND-CPA secure assuming the hardness
of R-DLWEq,ψ given `+ 1 samples.

Proof. By Corollary 7.5 (with k = 1), the public key a is within statistical distance 2−Ω(n) of the uniform
distribution over R{1,...,`}q . By Lemma 2.23 and Lemma 2.24, it follows that for any message µ (chosen
adversarially given a), the ciphertext c = e0 · a+ e is computationally indistinguishable from uniform and
independent of the public key, under the hardness assumption.

Lemma 8.2. Suppose that for any c ∈ R∨p , bp · ψec+pR∨ is δ-subgaussian with parameter s for some
δ = O(1/`), and q ≥ s

√
(r2`+ 1)n · ω(

√
log n). Then decryption is correct with probability 1− negl(n)

over all the randomness of key generation and encryption.

In particular, if ψ is a continuous Gaussian with parameter s′ ≥ 1, and we use coordinate-wise randomized
rounding in the decoding basis for discretization, then by the discussion in Section 2.4.2 and the equality
s1(d) =

√
rad(m)/m from Lemma 6.2, we have that bp · ψec+pR∨ is 0-subgaussian with parameter

s = p
√
s′2 + 2π rad(m)/m = O(ps′).

Proof. By construction, 〈c, x〉 = e0x0+〈e, x〉 = 〈e′, x′〉 mod qR∨, where e′ = (e0, e1, . . . , e`) ∈ (R∨)[`+1]

and x′ = (x0, x1, . . . , x` = 1) ∈ R[`+1]. Furthermore, 〈e′, x′〉 = t−1µ mod pR∨, so decryption is correct as
long as J〈e′, x′〉 mod qR∨K = 〈e′, x′〉 ∈ R∨. We next show that this holds with probability 1− negl(n) over
the choice of e′, x′.

By Lemma 2.8, for each i ∈ [`] we have ‖xi‖2 ≤ r
√
n except with probability at most 2−n = negl(n),

and ‖x`‖2 = ‖1‖2 =
√
n. Then by Item 6.6 of Lemma 6.6 (with k = 1, ` = 0), for every i ∈ [`] each

coefficient of eixi when represented in the decoding basis is δ-subgaussian with parameter sr
√
n, and each

one of e`x` is δ-subgaussian with parameter s
√
n. Since the ei are mutually independent, each decoding-basis

coefficient of 〈e′, x′〉 is δ(` + 1)-subgaussian with parameter s
√

(r2`+ 1)n. Since δ(` + 1) = O(1), the
claim follows by Lemma 6.5.

8.2 Compact Public-Key Cryptosystem

As in the previous subsection, let R denote the mth cyclotomic ring and let p, q be coprime integers, where
the message space is Rp. We also require q to be coprime with every odd prime dividing m. Also let ψ be a
continuous LWE error distribution over KR, and let b·e denote a valid discretization to (cosets of) R∨ or pR∨.
The cryptosystem is defined as follows.

• Gen: choose a uniformly random a← Rq. Choose x← bψeR∨ and e← bp · ψepR∨ .

Output (a, b = m̂(a · x+ e) mod qR) ∈ Rq ×Rq as the public key, and x as the secret key.

(Note that because m̂ = t · g, R∨ = 〈t−1〉, and a ·x+ e ∈ R∨/qR∨, we have m̂(a ·x+ e) ∈ gR/gqR,
which is then reduced mod qR to obtain b ∈ Rq.)

• Enc(a,b)(µ ∈ Rp): choose z ← bψeR∨ , e′ ← bp · ψepR∨ , and e′′ ← bp · ψet−1µ+pR∨ .

Let u = m̂(z · a+ e′) mod qR and v = z · b+ e′′ ∈ R∨q . Output (u, v) ∈ Rq ×R∨q .

• Decx(u, v): compute v−u ·x = m̂(e ·z−e′ ·x)+e′′ mod qR∨, and decode it to d = Jv−u ·xK ∈ R∨
(see Definition 6.4). Output µ = t · d mod pR.
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Lemma 8.3. The above cryptosystem is IND-CPA secure assuming the hardness of R-DLWEq,ψ.

Proof. The security proof follows from two applications of the ring-LWE assumption in its normal form (see
Lemma 2.24), with secret drawn from bψeR∨ . First, we claim that the public key is indistinguishable from
uniform. Using the transformation from Lemma 2.23 withw = 0, we see that the pair (a, a·x+e) ∈ Rq×R∨q ,
where a, x, e are sampled as in the Gen procedure, is indistinguishable from uniform. Now consider
the transformation that multiplies the second component by m̂ and reduces the result modulo qR. This
transformation maps pairs (a, a · x+ e) distributed as before, to pairs in Rq ×Rq distributed as the output of
the Gen procedure. Moreover, since 〈g〉 and 〈q〉 are coprime by Corollary 2.18, and recalling that m̂R∨ = gR,
we see that this transformation maps the uniform distribution over Rq ×R∨q to the uniform distribution over
Rq ×Rq. This completes the proof of the first claim.

It remains to show that if the public key (a, b) is uniformly random in Rq ×Rq, then for any message
µ ∈ Rp, the joint distribution of the public key together with Enc(a,b)(µ) is computationally indistinguishable
from uniform. To see this, consider a reduction that is given access to a distribution over Rq ×KR/qR

∨

which is either Az,ψ (for z ← bψeR∨) or uniform. It obtains two samples (a′, u′′) and (b′, v′) from the
distribution, and applies the transformation from Lemma 2.23 with w = 0 to (a′, u′′) to obtain (a, u′), and
with w = t−1µ ∈ R∨p to (b′, v′) to obtain (b, v). The reduction then outputs (a, b) as the public key, and
(u = m̂u′ mod qR, v) ∈ Rq ×R∨q as the encryption of µ.

If the unknown distribution was uniform, then it follows that (a, b, u, v) is uniform inR[3]
q ×R∨q . (Showing

that u is uniform in Rq is done as above, in the proof of the first claim.) On the other hand, if the unknown
distribution is Az,ψ, then (a, b) has uniform distribution, and it can be verified that (u, v) has the same
distribution as generated by Enc(a,b)(µ). This completes the proof.

We finally show that under suitable parameters, decryption is correct with overwhelming probability.

Lemma 8.4. Suppose that bψeR∨ outputs elements having `2 norm bounded by ` with 1−negl(n) probability,
that bp · ψec+pR∨ (for any coset c+ pR∨) is δ-subgaussian with parameter s for some δ = O(1), and that
q ≥ s

√
2(m̂`)2 + n · ω(

√
log n). Then decryption is correct with probability 1 − negl(n) over all the

randomness of key generation and encryption.

In particular, and just as in the previous subsection, if ψ is a continuous Gaussian with parameter s′ ≥ 1,
and we use coordinate-wise randomized rounding in the decoding basis for discretization, then bp · ψec+pR∨
is 0-subgaussian with parameter s = p

√
s′2 + 2π rad(m)/m = O(ps′). Moreover, by the fact that ψ has

1− 2−Ω(n) of its mass on vectors of length at most s′
√
n, and because discretization increases lengths by at

most s1(d)
√
n (by the triangle inequality), we have that bψeR∨ outputs elements having norm bounded by

` := (s′ +
√

rad(m)/m)
√
n = O(s′

√
n), except with negl(n) probability.

Proof. By construction, e, e′ ∈ pR∨ and x, z ∈ R∨, so m̂(e · z − e′ · x) ∈ pR∨. Therefore, E :=
m̂(e ·z−e′ ·x)+e′′ ∈ R∨ satisfies E = µ mod pR∨ when e′′ is chosen as when encrypting µ, so decryption
is correct as long as JE mod qR∨K = E. We next show that this holds with probability 1− negl(n).

By assumption, ‖x‖2, ‖z‖2 ≤ ` with probability 1− negl(n), and e, e′, and e′′ are δ-subgaussian with
parameter s. Then by Item 2 of Lemma 6.6 (with k = 1, ` = 0), each coefficient of m̂ ·ez, m̂ ·e′x ∈ R∨ when
represented in the decoding basis is δ-subgaussian with parameter sm̂`, and those of e′′ are δ-subgaussian
with parameter s

√
n. Since e, e′, e′′ are mutually independent, each decoding-basis coefficient of E is

3δ-subgaussian with parameter s
√

2(m̂`)2 + n. The claim follows by Lemma 6.5.
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8.3 Symmetric-Key Homomorphic Cryptosystem

Here we define a symmetric-key cryptosystem that is “somewhat homomorphic,” i.e., it supports limited
additive and multiplicative homomorphic operations. It is essentially the Brakerski-Vaikuntanathan sys-
tem [BV11b] based on ring-LWE, but with improved parameters and generalized to arbitrary cyclotomics,
which introduces several technical challenges. We also describe generalized “key switching” (also known
as degree reduction) and “modulus reduction” procedures akin to those first described for standard LWE
in [BV11a], and for ring-LWE in power-of-2 cyclotomics in [BGV12]. (The techniques developed here can
also be adapted to work with the “scale free” perspective adopted in [Bra12].) The scheme can also be made
to support unbounded homomorphic operations using Gentry’s “bootstrapping” technique [Gen09b, Gen09a],
and also can be efficiently adapted to a public-key system using the regularity lemma from Section 7.

Description of the scheme. Let R denote the mth cyclotomic ring (of degree n = ϕ(m)) and let p and q
be coprime integers, where p defines the message space Rp and q is the ring-LWE modulus. To support
“degree reduction” (see Section 8.3.2 below), we also require 〈p〉, 〈g〉 ⊆ R to be coprime ideals, which is the
case if and only if p is coprime with all odd primes dividing m (see Corollary 2.18).

The secret key is a ring element s ∈ R chosen from a certain distribution (specifically, t times the LWE
error distribution over R∨; see below). We say that a ciphertext of degree k ≥ 1 is a polynomial c = c(S) of
degree at most (and usually equal to) k in an indeterminate S, having coefficients in Iq where I = (R∨)k.
(Fresh ciphertexts produced by the encryption algorithm will have degree k = 1, whereas those produced by
the homomorphic operations may have larger degree.) A ciphertext c(S) encrypting a message µ ∈ Rp under
secret key s ∈ R satisfies the relation

c(s) = e mod qI

for some sufficiently “short” e ∈ I such that e = t−k · µ mod pI (where “short” can refer to the `2 norm,
`∞ norm, or subgaussian parameter as needed). Therefore, given the secret key s ∈ R one can compute
e = Jc(s)K ∈ I and recover the message as tk · e mod pR. We refer to e as the “noise” in the ciphertext, and
its subgaussian parameter or `2 norm determines the size of q needed to ensure correct decryption with high
probability, and the underlying hardness assumption. For each operation supported by the system, we give
(nearly) tight bounds on the growth or shrinkage of the noise’s subgaussian parameter and `2 norm; these
bounds can be combined in a modular way to calculate appropriate parameters for a particular application.

Throughout this subsection, let ψ be a continuous LWE error distribution over KR, and let b·e denote
any valid discretization to cosets of some scaling of R∨ (e.g., using the decoding basis d of R∨). The
cryptosystem is defined formally as follows.

• Gen: choose s′ ← bψeR∨ , and output s = t · s′ ∈ R as the secret key.

• Encs(µ ∈ Rp): choose e ← bp · ψet−1µ+pR∨ . Let c0 = −c1 · s + e ∈ R∨q for uniformly random
c1 ← R∨q , and output the ciphertext c(S) = c0 + c1S. The “noise” in c(S) is defined to be e.

• Decs(c(S)) for c of degree k: compute c(s) ∈ (R∨)kq , and decode it to e = Jc(s)K ∈ (R∨)k. Output
µ = tk · e mod pR.

The homomorphic operations are defined as follows. For ciphertexts c, c′ of arbitrary degrees k, k′

(respectively), their homomorphic product is the degree-(k+ k′) ciphertext c(S)� c′(S) = c(S) · c′(S) (i.e.,
standard polynomial multiplication). The noise in the result is defined to be the product of the noise terms
of c, c′. Similarly, for ciphertexts c, c′ of equal degree k, their homomorphic sum is defined as the degree-k
ciphertext c(S) � c′(S) = c(S) + c′(S), and the noise in the resulting ciphertext is the sum of those of c, c′.
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(Observe that any degree-k ciphertext resulting from these operations has coefficients in (R∨)kq , as required.)
To homomorphically add two ciphertexts of different degrees, we must first homomorphically multiply the
one having smaller degree by a fixed public encryption of 1 ∈ Rp enough times to match the larger degree.14

It is easy to verify that if the noise terms in all the ciphertexts are correctly decoded by the decryption
algorithm, then its output is correct:

Decs(Encs(µ)) = µ,

Decs(c� c′) = Decs(c) + Decs(c
′) mod pR,

Decs(c� c′) = Decs(c) · Decs(c′) mod pR.

The following lemma gives a sufficient condition for correct decoding to occur, and follows directly from
Lemmas 6.5 and 6.6.

Lemma 8.5. Suppose the noise e in a degree-k ciphertext c is δ-subgaussian with parameter r for some
δ = O(1), and q ≥ r · m̂k−1√n ·ω(

√
log n). Then Decs(c) correctly recovers e with probability 1−negl(n).

Alternatively, if q > 2‖e‖2m̂k−1√n, then Decs(c) recovers e with certainty.

The next two lemmas give (nearly) tight bounds on the subgaussian parameter of the noise under the
homomorphic operations. They follow directly from the definition of the noise term, the properties of
subgaussian random variables (described in Section 2.3), and the triangle inequality.

Lemma 8.6. If the noise terms in ciphertexts ci are independent and δi-subgaussian with parameters ri
(respectively), then the noise in the ciphertext �i ci is (

∑
i δi)-subgaussian with parameter (

∑
i r

2
i )

1/2.
Moreover, it is always the case that the `2 and `∞ norms of the noise terms in �i ci are at most the sums of
those in the ci.

Lemma 8.7. Let e, e′ be the noise terms in ciphertexts c, c′, respectively. Then the noise e ·e′ in the ciphertext
c � c′ satisfies ‖e · e′‖ ≤ ‖e‖ · ‖e′‖∞, where ‖·‖ denotes either the `2 or `∞ norm. Moreover, if e is
δ-subgaussian with parameter r, then the noise e · e′ is δ-subgaussian with parameter r · ‖e′‖∞. In particular,
if e′ is δ-subgaussian with parameter r′ and is independent of e, then e · e′ is within negl(n) statistical
distance of a δ-subgaussian with parameter r · r′ · ω(

√
log n).

Proof. The first claim follows directly from Equation (2.5), and the second one by the first part of Claim 2.4.
For the last claim, by subgaussianity we have ‖e′‖∞ ≤ r′ · ω(

√
log n), except with negl(n) probability.

Lemma 8.8. The above cryptosystem is IND-CPA secure assuming the hardness of R-DLWEq,ψ.

Proof. We describe a reduction that is given access to either an LWE distribution As′,ψ or the uniform
distribution over Rq×KR/qR

∨. In the former case we can assume that the distribution is in normal form, i.e.,
the secret s′ ∈ R∨ is distributed according to bψeR∨ (see Lemma 2.24). The reduction simulates an encryption
oracle that in the former case implements the encryption algorithm Encs for secret key s = t ·s′ ∈ R (which is
distributed according to the output of Gen), and in the latter case simply returns ciphertexts that are uniformly
random and independent of the queried messages. This suffices to prove IND-CPA security.

To respond to an encryption query on message µ ∈ Rp, the reduction draws a sample (a′, b′) ∈
Rq ×KR/qR

∨ from the unknown distribution. It then applies the transformation from Lemma 2.23 with

14In particular, we can just multiply c(S) by (an appropriate power of) t−1 = g/m̂ ∈ R∨. By definition of g, this element has `∞
norm ‖t−1‖∞ ≤ 2`/m̂ ≤ 1, where ` is the number of odd primes dividing m, so multiplication by t−1 does not increase the `2
norm or subgaussian parameter of the noise.
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w = t−1µ ∈ R∨p to obtain (a, b) ∈ Rq×R∨q . It lets c1 = −t−1a ∈ R∨q and c0 = b, and outputs the ciphertext
c(S) = c0 + c1S.

Suppose that the unknown distribution is the ring-LWE distribution As′,ψ for s′ ∈ R∨, and let s = t · s′ ∈
R. Then by Lemma 2.23, the pair (a, b) is such that a is uniformly random in Rq, and b = a · s′ + e =
(t−1a)s + e mod qR∨, where e ← bp · ψet−1µ+pR∨ . Therefore, c1 = −t−1a is uniformly random in R∨q ,
and c0 = b = −c1 · s+ e, so c(S) is distributed exactly according to Encs(µ).

On the other hand, if the unknown distribution is the uniform distribution, then by Lemma 2.23 the pair
(a, b) is uniformly random and independent of µ, and therefore so are the coefficients of the ciphertext c(S).

8.3.1 Modulus Reduction

The modulus reduction procedure changes the ciphertext modulus from q to some q′ < q (where q′ is
coprime with p), and outputs a ciphertext that encrypts (essentially) the same message, and whose noise term
shrinks nearly proportionately. The procedure works best and is simplest to describe in the case of degree-1
ciphertexts, which can always be obtained via the key switching procedure described below in Section 8.3.2.

The following operation is central to the modulus reduction procedure. Let J be an ideal and let q, q′, p
be integers with both q and q′ coprime to p. Let v ∈ Zp be v = q′ · q−1 mod p. Define a randomized
function FJ : Jq → K in the following way: given x ∈ Jq and some good basis of J , sample a short
(subgaussian) element from the coset (v − q′/q) · x + pJ using one of the valid methods described in
Section 2.4.2, and let FJ (x) be the result. Note that the coset (v − q′/q) · x+ pJ is well defined because
(v− q′/q)(qJ ) = (vq− q′)J ⊆ pJ . Also observe that for all x ∈ Jq, we have (q′/q)x+FJ (x) ∈ Jq′ and
qFJ (x) ∈ pJ with certainty.

We now describe the modulus reduction procedure. Let c(S) = c0 + c1S be an input ciphertext, with
c0, c1 ∈ R∨q . Let f0 ← FR∨(c0) and f1 ← t−1 · FR(t · c1), where we use coordinate-wise randomized
rounding with the decoding basis d of R∨ for the former, and with the powerful basis p of R for the latter.
The output is the ciphertext c′(S) = c′0 + c′1S, where

c′0 =
q′

q
c0 + f0 mod q′R∨, c′1 =

q′

q
c1 + f1 mod q′R∨.

Notice that by the first of the above properties, we have c′0, c
′
1 ∈ R∨q′ as required. Notice also that if

s = t · s′ ∈ R is the secret key and e is the noise in c(S), so that c0 + c1s = e mod qR∨, then

c′0 + c′1s =
q′

q
(c0 + c1s) + (f0 + f1s) =

q′

q
e+ (f0 + (tf1) · s′) mod q′R∨. (8.1)

Accordingly, we define the noise in the ciphertext c′(S) to be e′ = (q′/q)e + (f0 + f1s), which is in R∨

because c′0, c
′
1 ∈ R∨q′ .

The following lemma describes the procedure’s effect on the noise and plaintext. It says that the error
is scaled by a factor of q′/q, plus a modulus-independent amount that depends only on the `∞ norm of
s′ = t−1s ∈ R∨ (which was chosen from bψeR∨ and hence is short). It also shows that the procedure
implicitly introduces a factor of v = q′ · q−1 ∈ Rp into the message, which can be kept track of and removed
upon decryption, because q′ is coprime with p by assumption. In general, this extra factor seems inherent
to modulus reduction, though it can be avoided by always using q′ = q mod p, which always holds in the
common case p = 2.
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Lemma 8.9. If the noise in the input ciphertext is e ∈ R∨, then the noise e′ ∈ R∨ in the output ciphertext
satisfies e′ = q′ · q−1 · e mod pR∨. Moreover, e′ equals (q′/q)e plus a random variable f that, for any value
of e, is 0-subgaussian with parameter

p
√

2π
(

rad(m)/m+ m̂‖t−1s‖2∞
)1/2

,

and for which ‖f‖2 ≤ p
√
n
(√

rad(m)/m+
√
m̂‖t−1s‖∞

)
always.

In particular, if e is δ-subgaussian then by Claim 2.1 so is e′, although it may not be independent of e.

Proof. Since both e, e′ ∈ R∨ and q is coprime with p, showing that e′ = v · e mod pR∨ is equivalent to
showing that qe′ − q′e ∈ pR∨. The latter follows immediately from the definition of e′ and the fact that
qFJ (x) ∈ pJ always.

The subgaussianity claim on e′ = (q′/q)e+ (f0 + f1s) follows by the fact that for any values of c0, c1,
the terms f0 and tf1 are 0-subgaussian with respective parameters p

√
2πs1(d) and p

√
2πs1(p); the bounds

on s1(d) and s1(p) given in Lemmas 6.2 and 4.3 respectively; and Claim 2.1. Similarly, the claim on ‖f‖2
follows from the fact that coordinate-wise randomized rounding to a coset of pR∨ (respectively, pR) using
basis p · d (resp., p · p) always yields an element having `2 norm bounded by p

√
ns1(d) (resp., p

√
ns1(p));

by Equation (2.5); and by the triangle inequality.

8.3.2 Key Switching/Degree Reduction

The key-switching procedure (also known as “degree reduction”) converts any degree-k ciphertext c(S)
encrypted under a secret key s ∈ R, to a degree-1 ciphertext c′(S′) encrypted under a key s′ ∈ R (which may
or may not be the same as s). Notice that when decrypting c(S), the evaluation c(s) is simply a linear function
in the powers s0, s1, . . . , sk ∈ R. The main idea behind the key-switching method introduced in [BV11a] is
to homomorphically apply this linear function to suitable encryptions (under s′) of these powers; we refer
to these ciphertexts as the key-switching “hint.” Implementing this idea requires some care in our setting,
however, due to the different powers of R∨ involved in the operations and their homomorphic counterparts.

Rewriting the decryption relation. Let I = (R∨)k and d = k + 1, let s = (s0, . . . , sk) ∈ R[d], and let
c ∈ I [d]

q be the coefficient vector of a valid degree-k ciphertext c(S). Then for a degree-k ciphertext c, we
have the decryption relation

〈c, s〉 = e mod qI

for some short (subgaussian) e ∈ t−kµ+ pI. We first put this relation in a more convenient form, viewing
the ciphertext in the slightly “denser” quotient m̂1−kR∨q (because m̂1−kR∨ ⊇ I), and then scaling it up by a
m̂k−1 factor.15 We also multiply and divide c and s (respectively) by t, yielding

〈t · m̂k−1c︸ ︷︷ ︸
y∈R[d]

q

, t−1s〉 = m̂k−1e mod qR∨.

We write the relation in this way so that t−1s is over R∨, which is the appropriate domain for encrypting it in
the key-switching hint, and so that y is over Rq, which will be needed for decomposing it into short elements
of R as part of the key-switching operation.

15This is essentially the same idea used in decoding Iq to I, as described in Section 6.2.

44

Approved for Public Release; Distribution Unlimited. 
236 



We finally make one more important change to the decryption relation. Let ` = dlog2 qe and define

g = (1, 2, 4, . . . , 2`−1) ∈ Z[`]
q and G = I[d] ⊗ gT ∈ Z[d]×[d`]

q . (8.2)

Then for any x ∈ R[d`] such that Gx = y ∈ R[d]
q , we have

〈x , t−1GT s〉 = 〈Gx , t−1s〉 = m̂k−1e mod qR∨. (8.3)

The hint will consist essentially of an encryption of t−1GT s, and the key-switching operation will homo-
morphically compute its inner product with a short (subgaussian) x so as to keep the error in the resulting
ciphertext small. The need for a short x is why we arranged for y to be over Rq, because we always have a
good basis for R (namely, the powerful basis) that has nearly optimal spectral norm s1(p) =

√
m̂, whereas

we do not always have such a good basis of I = (R∨)k for k ≥ 1.

Alternative relations. As an optimization, we can actually omit the constant term 1 from s. This decreases
the dimension d by one, thereby reducing the size of the hint and the amount of extra noise introduced by
the key-switching procedure. For ciphertext c(S) =

∑k
i=0 ciS

i we then define c = (c1, . . . , ck), so that
the main decryption relation becomes c0 + 〈c, s〉 = e mod qI. The hint-generation and key-switching
procedures then work exactly as described below, with the additional step that we add the constant term
m̂k−1c0 mod qR∨ to the output ciphertext c′(S′). This works because the key-switching procedure ensures
that c′(s′) ≈ m̂k−1〈c, s〉 = m̂k−1(e− c0) mod qR∨.

Similarly, when the original and target secret keys are equal, i.e., s′ = s, we can omit both 1 and s from s,
define c = (c2, . . . , ck), and write the decryption relation as (c0 + c1s) + 〈c, s〉 = e mod qI. We can then
apply the procedures below, adding the linear polynomial m̂k−1(c0 + c1S) mod qR∨ to the output ciphertext
c′(S) of the key-switching procedure.

Finally, the vector g need not contain only powers of 2, but may be defined with respect to a larger integer
base (thereby decreasing the dimension `), or may even consist of other exponentially increasing sequences.
The particular choice of g mainly affects the length (or subgaussian parameter) of the decomposition x ∈ R[d`].
See [MP12] for further discussion.

Constructing the hint. The hint is a collection of independent degree-1 ciphertexts hi(S′) for each i ∈ [d`],
prepared as

hi(S
′)← Encs′(0) + t−1(GT s)i mod qR∨,

i.e., we generate degree-1 encryptions of 0 and simply add entries of t−1GT s to their constant terms. Notice
that by construction,

hi(s
′) = fi + t−1(GT s)i mod qR∨

for some short (subgaussian) fi ∈ pR∨ having distribution bp ·ψepR∨ . Note also that hi(S′) may not actually
be a well-formed encryption of any particular message, because hi(s′) may not be congruent modulo qR∨ to
any short enough element of R∨; however, this does not matter for the key-switching application.

To the vector f = (fi)i∈[d`] of noise terms in the hint we associate a measure of quality F , defined as

F := max
i∈Z∗m

( d∑̀
j=1

|σi(fj)|2
)1/2

, (8.4)

and bound it as follows.
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Claim 8.10. If the entries fj ∈ R∨ of f are all δ-subgaussian with parameter s for some δ = O(1), then

F ≤ Cs ·max(
√
d`, ω(

√
log n))

except with negl(n) probability, for some universal constant C > 0.

Proof. Write

max
i∈Z∗m

( d∑̀
j=1

|σi(fj)|2
)

= max
i∈Z∗m

( d∑̀
j=1

<(σi(fj))
2 +

d∑̀
j=1

=(σi(fj))
2
)

≤ 2 max
i∈Z∗m

max
{ d∑̀
j=1

<(σi(fj))
2,

d∑̀
j=1

=(σi(fj))
2
}
.

Each of the 2n sums is a sum of squares of d` independent δ-subgaussian variables with parameter s/
√

2.
The claim now follows by applying Lemma 2.2 to each of the sums and applying the union bound.

The key-switching procedure. The procedure takes as input c ∈ I [d]
q , computes y = t · m̂k−1c ∈ R[d]

q ,
and generates, as described below, a short (subgaussian) x ∈ R[d`] such that Gx = y. It then outputs the
degree-1 ciphertext

c′(S′) =
∑
i∈[d`]

xi · hi(S′).

Notice that by (8.3), evaluating c′(S′) at S′ = s′ gives

c′(s′) =
∑
i∈[d`]

xi(fi + t−1(GT s)i) = 〈x, f〉+ 〈x, t−1GT s〉 = 〈x, f〉+ m̂k−1e mod qR∨.

Accordingly, we define the noise term in c′ to be e′ = 〈x, f〉 + m̂k−1e ∈ R∨. Notice that the noise is
congruent to m̂k−1e modulo pR∨, because each fi ∈ pR∨ by construction of the hint. The noise is also
relatively short: the m̂k−1 factor of e is exactly offset by switching from modulus qI = q(R∨)k to qR∨, and
〈x, f〉 is short because both x and f are. (See Lemma 8.11 for a precise analysis.)

Also note that while decrypting the original ciphertext c(S) would yield the message tke = µ mod pR,
the resulting degree-1 ciphertext c′(S′) decrypts to the message t ·m̂k−1e = gk−1µ mod pR. This means that
an implementation must keep track of the “true” underlying degree of each ciphertext (and limit homomorphic
additions to ciphertexts of equal “true” degree), even if its degree as a polynomial has been reduced via
key switching. Upon final decryption, the extra gk−1 factor in the message can be removed as long as g is
invertible modulo p, which by Corollary 2.18 is the case because we have assumed that p is coprime with
every odd prime dividing m.

The next lemma says that the key-switching procedure introduces into the ciphertext some subgaussian
error, proportional to the quality F of the noise vector f in the hint.

Lemma 8.11. Fix an arbitrary vector f and let F be as defined in Equation (8.4). Assume that for some
δ = O(1), every entry xj ∈ R of x is δ-subgaussian with parameter s′, conditioned on any values of the
ciphertext c and x1, . . . , xj−1. Then for any value of the original noise term e, the additional noise term
〈x, f〉 is (d`)δ-subgaussian with parameter Fs′. In particular, if e is δ-subgaussian with parameter s′′ then
the new noise term e′ = 〈x, f〉+ m̂k−1e is (d`+ 1)δ-subgaussian with parameter

√
(Fs′)2 + (m̂k−1s′′)2.

Proof. The subgaussianity claim on 〈x, f〉 follows directly from Claim 2.4. The claim on e′ is immediate by
Claim 2.1.
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Choosing x. In the key-switching procedure we need to sample a subgaussian x ∈ R[d`] such that Gx = y

for a given y ∈ R[d]
q , where G ∈ Z[d]×[d`]

q is as defined in Equation (8.2). To start, define the R-module

Λ⊥(G) = {z ∈ R[d`] : Gz = 0 ∈ R[d]
q },

which may also be seen as a lattice in H [d`]. The set of all solutions x to Gx = y is then a coset of this
module. (A solution always exists, because G contains the identity I[d] as a submatrix.) Given a high-quality
Z-basis of Λ⊥(G), we can use any of the methods described in Section 2.4.2 for subgaussian sampling over
the desired lattice coset, e.g., coordinate-wise randomized rounding. As usual, the relevant measures of basis
quality are the largest singular value and the maximum length of the Gram-Schmidt orthogonalized vectors.

Lemma 8.12. There is an efficiently computable Z-basis Z ∈ R[d`]×[d`n] of Λ⊥(G) satisfying the following
bounds, where ‖Z̃‖2 denotes the largest `2 norm of the Gram-Schmidt orthogonalized vectors Z̃. If q is a
power of 2, then s1(Z) ≤ 3

√
m̂ and ‖Z̃‖2 = 2

√
n; otherwise, s1(Z) ≤

√
(9 + wt2(q))m̂ and ‖Z̃‖2 =

√
5n,

where wt2(q) denotes the number of 1s in the binary expansion of q.

The remainder of this section is dedicated to a proof of the lemma. We first recall that Micciancio and
Peikert [MP12, Section 4] constructed good bases for the integer lattices

L⊥(G) = {z ∈ Z[d`] : Gz = 0 ∈ Z[d]
q },

which we now briefly summarize (see that work for further details and full proofs). Recalling that G =

I[d] ⊗ gT ∈ Z[d]×[d`]
q where g = (1, 2, 4, . . . , 2`−1) ∈ Z[`]

q and ` = dlog2 qe, define Sg ∈ Z[`]×[`] as

Sg =


2
−1 2

−1
. . .

2
−1 2

 if q = 2`, otherwise Sg =



2 q0

−1 2 q1

−1 q2

. . .
...

2 q`−2

−1 q`−1


,

where q = (q`−1 · · · q1q0)2 =
∑

i∈[`] qi2
i for qi ∈ {0, 1} is the binary representation of q. It is clear by

inspection that the columns of Sg are all in the lattice L⊥(gT ); moreover, as shown in [MP12], they are
indeed a basis of the lattice. (This can be seen by verifying that the determinants of Sg and L⊥(gT ) are
equal.) It immediately follows that S = I[d] ⊗ Sg ∈ Z[d`]×[d`] is a basis for the lattice L⊥(G).

In [MP12] it is shown that ‖S̃‖2 = ‖S̃g‖2 = 2 if q = 2` (where we orthogonalize from right to left),
and is

√
5 otherwise (where we orthogonalize from left to right). It also directly follows from the triangle

inequality and Pythagorean theorem that s1(S) = s1(Sg) ≤ 3 if q = 2`, and is at most
√

9 + wt2(q)
otherwise.

We now claim that
Z = S ⊗ pT = I[d] ⊗ Sg ⊗ pT ∈ R[d`]×[d`n]

is a Z-basis of Λ⊥(G) satisfying the bounds in Lemma 8.12, where p is the powerful basis of R. For
the bounds, observe that by Lemma 4.3, the fact that the longest Gram-Schmidt orthogonalized vector of
σ(pT ) = CRTm has length

√
n, and the properties of singular values and orthogonalization under the tensor

product, we have

s1(Z) = s1(S) · s1(p) = s1(S) ·
√
m̂ and ‖Z̃‖2 = ‖S̃‖2 · ‖C̃RTm‖2 = ‖S̃‖2 ·

√
n,

47

Approved for Public Release; Distribution Unlimited.
239



which when combined with the above bounds from [MP12] yields the claim. It only remains to show that Z
is a Z-basis of Λ⊥(G), which is a consequence of the following simple lemma.

Lemma 8.13. Let A ∈ Z[h]×[k]
q for some h, k ≥ 1 be arbitrary. If B is any Z-basis of L⊥(A) ⊆ Z[k] and b

is any Z-basis of R, then B ⊗ bT is a Z-basis of Λ⊥(A) ⊆ R[k].

Proof. Clearly, every element of B ⊗ bT is in Λ⊥(A). To show that it is a basis, let z ∈ Λ⊥(A) be arbitrary,
so Az = 0 ∈ R[h]

q . Then we can uniquely write z =
∑

j bj · zj for some vectors zj ∈ Z[k]. By linearity

and uniqueness with respect to b, this implies that Azj = 0 ∈ Z[h]
q for every j, so each zj ∈ L⊥(A) can be

written uniquely as a Z-linear combination of elements in B. It follows that z can be expressed uniquely as a
Z-linear combination of elements in B ⊗ bT .
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Classical Hardness of Learning with Errors

Zvika Brakerski∗ Adeline Langlois† Chris Peikert‡ Oded Regev§ Damien Stehlé¶

Abstract

We show that the Learning with Errors (LWE) problem isclassicallyat least as hard as standard
worst-case lattice problems, even with polynomial modulus. Previously this was only known under
quantumreductions.

Our techniques capture the tradeoff between the dimension and the modulus of LWE instances, lead-
ing to a much better understanding of the landscape of the problem. The proof is inspired by techniques
from several recent cryptographic constructions, most notably fully homomorphic encryption schemes.

1 Introduction

Over the last decade, lattices have emerged as a very attractive foundation for cryptography. The appeal of
lattice-based primitives stems from the fact that their security can be based onworst-casehardness assump-
tions, that they appear to remain secure even againstquantumcomputers, that they can be quite efficient,
and that, somewhat surprisingly, for certain advanced tasks such as fully homomorphic encryption no other
cryptographic assumption is known to suffice.

Virtually all recent lattice-based cryptographic schemes are based directly upon one of two natural
average-case problems that have been shown to enjoy worst-case hardness guarantees: theshort integer so-
lution (SIS) problem and thelearning with errors(LWE) problem. The former dates back to Ajtai’s ground-
breaking work [Ajt96], who showed that it is at least as hard as approximating several worst-case lattice
problems, such as the (decision version of the) shortest vector problem, known asGapSVP, to within a poly-
nomial factor in the lattice dimension. This hardness result was tightened in followup work (e.g., [MR04]),
leading to a somewhat satisfactory understanding of the hardness of theSIS problem. TheSIS problem
has been the foundation for one-way [Ajt96] and collision-resistant hash functions [GGH96], identification
schemes [MV03, Lyu08, KTX08], and digital signatures [GPV08, CHKP10, Boy10, MP12, Lyu12].
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Our focus in this paper is on the latter problem, learning with errors. In this problem our goal is to
distinguish with some non-negligible advantage between the following two distributions:

((ai, 〈ai, s〉+ ei mod q))i and ((ai, ui))i ,

wheres is chosen uniformly fromZn
q and so are theai ∈ Z

n
q , ui are chosen uniformly fromZq, and

the “noise”ei ∈ Z is sampled from some distribution supported on small numbers, typically a (discrete)
Gaussian distribution with standard deviationαq for α = o(1).

TheLWE problem has proved to be amazingly versatile, serving as the basis for a multitude of crypto-
graphic constructions: secure public-key encryption under both chosen-plaintext [Reg05, PVW08, LP11]
and chosen-ciphertext [PW08, Pei09, MP12] attacks, oblivious transfer [PVW08], identity-based encryp-
tion [GPV08, CHKP10, ABB10a, ABB10b], various forms of leakage-resilient cryptography (e.g., [AGV09,
ACPS09, GKPV10]), fully homomorphic encryption [BV11, BGV12, Bra12] (following the seminal work
of Gentry [Gen09]), and much more. It was also used to show hardness of learning problems [KS06].

Contrary to theSIS problem, however, the hardness ofLWE is not sufficiently well understood. The main
hardness reduction forLWE [Reg05] is similar to the one forSIS mentioned above, except that it isquantum.
This means that the existence of an efficient algorithm forLWE, even a classical (i.e., non-quantum) one,
only implies the existence of an efficientquantumalgorithm for lattice problems. This state of affairs is quite
unsatisfactory: even though one might conjecture that efficient quantum algorithms for lattice problems do
not exist, our understanding of quantum algorithms is still at its infancy. It is therefore highly desirable to
come up with aclassicalhardness reduction forLWE.

Progress in this direction was made by [Pei09] (with some simplifications in the followup by Lyuba-
shevsky and Micciancio [LM09]). The main result there is thatLWE with exponentialmodulus is as hard
as some standard lattice problems using a classical reduction. As that hardness result crucially relies on
the exponential modulus, the open question remained as to whetherLWE is hard for smaller moduli, in par-
ticular polynomial moduli. In addition to being an interesting question in its own right, this question is of
special importance since many cryptographic applications, as well as the learning theory result of Klivans
and Sherstov [KS06], are instantiated in this setting. Some additional evidence that reducing the modulus is
a fundamental question comes from the Learning Parity with Noise (LPN) problem, which can be seen as
LWE with modulus2 (albeit with a different error distribution), and whose hardness is a long-standing open
question. We remark that [Pei09] does include a classical hardness ofLWE with polynomial modulus, albeit
one based on a non-standard lattice problem, whose hardness is arguably as debatable as that of theLWE
problem itself.

To summarize, prior to our work, the existence of an efficient algorithm forLWE with polynomial mod-
ulus was only known to imply an efficientquantumalgorithm for lattice problems, or an efficient classical
algorithm for a non-standard lattice problem. While both consequences are unlikely, they are arguably not
as earth-shattering as an efficient classical algorithm for lattice problems. Hence, some concern about the
hardness ofLWE persisted, tainting the plethora of cryptographic applications based on it.

Main result. We provide the first classical hardness reduction ofLWE with polynomial modulus. Our
reduction is the first to show that the existence of an efficient classical algorithm forLWE with any subex-
ponential modulus would indeed have earth-shattering consequences: it would imply an efficient algorithm
for worst-case instances of standard lattice problems.

Theorem 1.1 (Informal). Solvingn-dimensionalLWE with poly(n) modulus implies an equally efficient
solution to a worst-case lattice problem in dimension

√
n.
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As a result, we establish the hardness of all known applications of polynomial-modulus LWE based on
classical worst-case lattice problems, previously only known under a quantum assumption.

Techniques. Even though our main theorem has the flavor of a statement in computational complexity, its
proof crucially relies on a host of ideas coming from recent progress in cryptography, most notably recent
breakthroughs in the construction of fully homomorphic encryption schemes.

At a high level, our main theorem is a “modulus reduction” result: we show a reduction fromLWE
with large modulusq and dimensionn to LWE with (small) modulusp = poly(n) and dimensionn log2 q.
Theorem 1.1 now follows from the main result in [Pei09], which shows that the former problem withq = 2n

is as hard asn-dimensionalGapSVP. We note that the increase in dimension fromn to n log2 q is to be
expected, as it essentially preserves the number of possible secrets (and hence the running time of the naive
brute-force algorithm).

Very roughly speaking, the main idea in modulus reduction is to mapZq into Zp through the naive
mapping that sends anya ∈ {0, . . . , q − 1} to ⌊pa/q⌋ ∈ {0, . . . , p − 1}. This basic idea is confounded by
two issues. The first is that if carried out naively, this transformation introduces rounding artifacts intoLWE,
ruining the distribution of the output. We resolve this issue by using a more careful Gaussian randomized
rounding procedure (Section 3). A second serious issue is that in order for the rounding errors not to be
amplified when multiplied by theLWE secrets, it is essential to assume thats has small coordinates. A major
part of our reduction (Section 4) is therefore dedicated to showing a reduction fromLWE (in dimensionn)
with arbitrary secret inZn

q to LWE (in dimensionn log2 q) with a secret chosen uniformly over{0, 1}. This
follows from a careful hybrid argument (Section 4.3) combined with a hardness reduction to the so-called
“extended-LWE” problem, which is a variant ofLWE in which we have some control over the error vector
(Section 4.2).

We stress that even though our proof is inspired by and has analogues in the cryptographic literature,
the details of the reductions are very different. In particular, the idea of modulus reduction plays a key role
in recent work on fully homomorphic encryption schemes, giving a way to control the noise growth during
homomorphic operations [BV11, BGV12, Bra12]. However, since the goal there is merely to preserve the
functionality of the scheme, their modulus reduction can be performed in a rather naive way similar to
the one outlined above, and so the output of their procedure does not constitute a validLWE instance. In
our reduction we need to perform a much more delicate modulus reduction, which we do using Gaussian
randomized rounding, as mentioned above.

The idea of reducingLWE to have a{0, 1} secret also exists already in the cryptographic literature:
precisely such a reduction was shown by Goldwasser et al. [GKPV10] who were motivated by questions
in leakage-resilient cryptography. Their reduction, however, incurred a severe blow-up in the noise rate,
making it useless for our purposes. In more detail, not being able to faithfully reproduce theLWE distribution
in the output, they resort to hiding the faults in the output distribution under a huge independent fresh noise,
in order to make it close to the correct one. The trouble with this “noise flooding” approach is that the
amount of noise one has to add depends on the running time of the algorithm solving the target{0, 1}-
LWE problem, which in turn forces the modulus to be equally big. So while in principle we could use
the reduction from [GKPV10] (and shorten our proof by about a half), this would lead to a qualitatively
much weaker result: the modulus and the approximation ratio for the worst-case lattice problem would both
grow with the running time of the{0, 1}-LWE algorithm. In particular, we would not be able to show that
for some fixed polynomial modulus,LWE is a hard problem; instead, in order to capture all polynomial
time algorithms, we would have to take a super-polynomial modulus, and rely on the hardness of worst-
case lattice problem to within super-polynomial approximation factors. In contrast, with our reduction, the
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modulus and the approximation ratio both remain fixed independently of the target{0, 1}-LWE algorithm.
As mentioned above, our alternative to the reduction in [GKPV10] is based on a hybrid argument com-

bined with a new hardness reduction for the “extended LWE” problem, which is a variant ofLWE in which
in addition to the LWE samples, we also get to see the inner product of the vector of error terms with a
vectorz of our choosing. This problem has its origins in the cryptographic literature, namely in the work
of O’Neill, Peikert, and Waters [OPW11] on (bi)deniable encryption and the later work of Alperin-Sheriff
and Peikert [AP12] on key-dependent message security. The hardness reductions included in those papers
are not sufficient for our purposes, as they cannot handle large moduli or error terms, which is crucial in
our setting. We therefore provide an alternative reduction which is conceptually much simpler, and essen-
tially subsumes both previous reductions. Our reduction works equally well with exponential moduli and
correspondingly long error vectors, a case earlier reductions could not handle.

Broader perspective. As a byproduct of the proof of Theorem 1.1, we obtain several results that shed
new light on the hardness ofLWE. Most notably, our modulus reduction result in Section 3 is actually far
more general, and can be used to show a “modulus expansion/dimension reduction” tradeoff. Namely, it
shows a reduction fromLWE in dimensionn and modulusp to LWE in dimensionn/k and moduluspk

(see Corollary 3.4). Combined with our modulus reduction, this has the following interesting consequence:
the hardness ofn-dimensionalLWE with modulusq is a function of the quantityn log2 q. In other words,
varyingn andq individually while keepingn log2 q fixed essentially preserves the hardness ofLWE.

Although we find this statement quite natural (sincen log2 q represents the number of bits in the secret),
it has some surprising consequences. One is thatn-dimensionalLWE with modulus2n is essentially as
hard asn2-dimensionalLWE with polynomial modulus. As a result,n-dimensionalLWE with modulus2n,
which was shown in [Pei09] to be as hard asn-dimensional lattice problems using a classical reduction, is
actually as hard asn2-dimensional lattice problems using a quantum reduction. The latter is presumably a
much harder problem, requiringexp(˜Ω(n2)) time to solve. This corollary highlights an inherent quadratic
loss in the classical reduction of [Pei09] (and as a result also our Theorem 1.1) compared to the quantum
one in [Reg05].

A second interesting consequence is that1-dimensionalLWE with modulus2n is essentially as hard
asn-dimensionalLWE with polynomial modulus. The1-dimensional version ofLWE is closely related
to the Hidden Number Problem of Boneh and Venkatesan [BV96]. It is also essentially equivalent to the
Ajtai-Dwork-type [AD97] cryptosystem in [Reg03], as follows from simple reductions similar to the one
in the appendix of [Reg10a]. Moreover, the1-dimensional version can be seen as a special case of the
Ring-LWE problem introduced in [LPR10] (for ring dimension 1, i.e., ring equal toZ). This allows us,
via the ring switching technique from [GHPS12], to obtain the first hardness proof of Ring-LWE, with
arbitrary ring dimension and exponential modulus, under the hardness of problems on general lattices (as
opposed to just ideal lattice problems). In addition, this leads to the first hardness proof for the Ring-SIS
problem [LM06, PR06] with exponential modulus under the hardness of general lattice problems, via the
standardLWE-to-SIS reduction. (We note that since both results are obtained by scaling up from a ring of
dimension1, the hardness does not improve as the ring dimension increases.)

A final interesting consequence of our reductions is that (the decision form of)LWE is hard with an
arbitrary huge modulus, e.g., a prime; see Corollary 3.3. Previous results (e.g., [Reg05, Pei09, MM11,
MP12]) required the modulus to besmooth, i.e., all its prime divisors had to be polynomially bounded.

Open questions. As mentioned above, our Theorem 1.1 inherits from [Pei09] a quadratic loss in the
dimension, which does not exist in the quantum reduction [Reg05] nor in the known hardness reductions
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for SIS. At a technical level, this quadratic loss stems from the fact that the reduction in [Pei09] is not
iterative. In contrast, the quantum reduction in [Reg05] as well as the reductions forSIS are iterative, and as
a result do not incur the quadratic loss. We note that an additional side effect of the non-iterative reduction
is that the hardness in Theorem 1.1 and [Pei09] is based only on the worst-case lattice problemGapSVP
(and the essentially equivalentBDD anduSVP [LM09]), and not on problems likeSIVP, which the quantum
reduction of [Reg05] and the hardness reductions forSIS can handle. One case where this is very significant
is when dealing with ideal lattices, as in the hardness reduction for Ring-LWE, sinceGapSVP turns out to
be an easy problem there.

We therefore believe that it is important to understand whether there exists a classical reduction that
does not incur the quadratic loss inherent in [Pei09] and in Theorem 1.1. In other words, isn-dimensional
LWE with polynomial modulus classically as hard asn-dimensional lattice problems (as opposed to

√
n-

dimensional)? This would constitute the first full dequantization of the quantum reduction in [Reg05].
While it is natural to conjecture that the answer to this question is positive, a negative answer would be

quite tantalizing. In particular, it is conceivable that there exists a (classical) algorithm forLWE with poly-
nomial modulus running in time2O(

√
n). Dueto the quadraticexpansion in Theorem 1.1, this would not

lead to a faster classical algorithm for lattice problems; it would, however, lead to a2O(
√
n)-time quantum

algorithm for lattice problems using the reduction in [Reg05]. The latter would be a major progress in quan-
tum algorithms, yet is not entirely unreasonable; in fact, a2O(

√
n)-time quantum algorithm for a somewhat

related quantum task was discovered by Kuperberg [Kup05] (see also [Reg02]).

2 Preliminaries

Let T = R/Z denote the cycle, i.e., the additive group of reals modulo1. We also denote byTq its cyclic
subgroup of orderq, i.e., the subgroup given by{0, 1/q, . . . , (q − 1)/q}.

For two probability distributionsP,Q over some discrete domain, we define their statistical distance as
∑ |P (i)−Q(i)|/2 wherei ranges over the distribution domain, and extend this to continuous distributions
in the obvious way. We recall the following easy fact (see, e.g., [AD87, Eq. (2.3)] for a proof).

Claim 2.1. If P andQ are two probability distributions such thatP (i) ≥ (1 − ε)Q(i) holds for alli, then
the statistical distance betweenP andQ is at mostε.

We will use the following immediate corollary of the leftover hash lemma [HILL99].

Lemma 2.2. Letk, n, q ≥ 1 be integers, andε > 0 be such thatn ≥ k log2 q+2 log2(1/ε). ForH← T
k×n
q ,

z← {0, 1}n, u← T
k
q , the distributions of(H,Hz) and(H,u) are within statistical distance at mostε.

A distinguishing problemP is defined by two distributionsP0 andP1, and a solution to the problem is
the ability to distinguish between these distributions. Theadvantageof an algorithmA with binary output
onP is defined as

Adv[A] = |Pr[A(P0)]− Pr[A(P1)]| .
A reduction from a problemP to a problemQ is an efficient (i.e., polynomial-time) algorithmAB that
solvesP given access to an oracleB that solvesQ. Most of our reductions (in fact all except the one in
Lemma 2.15) are what we call “transformation reductions:” these reductions perform some transformation
to the input and then apply the oracle to the result.

5
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2.1 Lattices

An n-dimensional (full-rank) latticeΛ ⊆ R
n is the set of all integer linear combinations of some set ofn

linearly independentbasisvectorsB = {b1, . . . ,bn} ⊆ R
n,

Λ = L(B) =
{

∑

i∈[n]
zibi : z ∈ Z

n
}

.

Thedual latticeof Λ ⊂ R
n is defined asΛ∗ = {x ∈ R

n : 〈Λ,x〉 ⊆ Z}.
The minimum distance(or first successive minimum) λ1(Λ) of a latticeΛ is the length of a shortest

nonzero lattice vector, i.e.,λ1(Λ) = min0 6=x∈Λ‖x‖. For an approximation ratioγ = γ(n) ≥ 1, the
GapSVPγ is the problem of deciding, given a basisB of ann-dimensional latticeΛ = L(B) and a number
d, between the case whereλ1(L(B)) ≤ d and the case whereλ1(L(B)) > γd. We refer to [Kho10, Reg10b]
for a recent account on the computational complexity ofGapSVPγ .

2.2 Gaussian measures

For r > 0, then-dimensional Gaussian functionρr : Rn → (0, 1] is defined as

ρr(x) := exp(−π‖x‖2/r2).

We extend this definition to sets, i.e.,ρr(A) =
∑

x∈A ρr(x) ∈ [0,+∞] for anyA ⊆ R
n. The (spherical)

continuous Gaussian distributionDr is the distribution with density function proportional toρr. More
generally, for a matrixB, we denote byDB the distribution ofBx wherex is sampled fromD1. WhenB
is nonsingular, its probability density function is proportional to

exp(−πxT (BBT )−1x).

A basic fact is that for any matricesB1,B2, the sum of a sample fromDB1
and an independent sample

from DB2
is distributed likeDC for C = (B1B

T
1 +B2B

T
2 )

1/2.
For ann-dimensional latticeΛ and a vectoru ∈ R

n, we define thediscrete Gaussian distributionDΛ+u,r

as the discrete distribution with support on the cosetΛ+ u whose probability mass function is proportional
to ρr. There exists an efficient procedure that samples within negligible statistical distance of any (not too
narrow) discrete Gaussian distribution ([GPV08, Theorem 4.1]; see also [Pei10]). In the next lemma, proved
in Section 5, we modify this sampler so that the output is distributed exactly as a discrete Gaussian. This
also allows us to sample from slightly narrower Gaussians. Strictly speaking, the lemma is not needed for
our results, and we could use instead the original sampler from [GPV08]. Using our exact sampler leads
to slightly cleaner proofs as well as a (miniscule) improvement in the parameters of our reductions, and we
include it here mainly in the hope that it finds further applications in the future.

Lemma 2.3. There is a probabilistic polynomial-time algorithm that, given a basisB of ann-dimensional
lattice Λ = L(B), c ∈ R

n, and a parameterr ≥ ‖˜B‖ ·
√

ln(2n+ 4)/π, outputs a sample distributed
according toDΛ+c,r.

Here,˜B denotes the Gram-Schmidt orthogonalization ofB, and‖˜B‖ is the length of the longest vector
in it. We recall the definition of thesmoothing parameterfrom [MR04].

Definition 2.4. For a latticeΛ and positive realε > 0, the smoothing parameterηε(Λ) is the smallest real
s > 0 such thatρ1/s(Λ

∗ \ {0}) ≤ ε.

6

Approved for Public Release; Distribution Unlimited. 
249 



Lemma 2.5 ([GPV08, Lemma 3.1]).For anyε > 0 andn-dimensional latticeΛ with basisB,

ηε(Λ) ≤ ‖˜B‖
√

ln(2n(1 + 1/ε))/π.

We now collect some known facts on Gaussian distributions and lattices.

Lemma 2.6 ([MR04, Lemma 4.1]). For anyn-dimensional latticeΛ, ε > 0, r ≥ ηε(Λ), the distribution of
x mod Λ wherex← Dr is within statistical distanceε/2 of the uniform distribution on cosets ofΛ.

Lemma 2.7 ([Reg05, Claim 3.8]).For anyn-dimensional latticeΛ, ε > 0, r ≥ ηε(Λ), andc ∈ R
n, we

haveρr(Λ + c) ∈ [1−ε
1+ε , 1] · ρr(Λ).

Lemma 2.8 ([Reg05, Claim 3.9]). LetΛ be ann-dimensional lattice, letu ∈ R
n be arbitrary, letr, s > 0

and lett =
√
r2 + s2. Assume thatrs/t = 1/

√

1/r2 + 1/s2 ≥ ηε(Λ) for someε < 1/2. Consider the
continuous distributionY onR

n obtained by sampling fromDΛ+u,r and then adding a noise vector taken
fromDs. Then, the statistical distance betweenY andDt is at most4ε.

Lemma 2.9 ([Reg05, Corollary 3.10]).LetΛ be ann-dimensional lattice, letu, z ∈ R
n be arbitrary, and

let r, α > 0. Assume that(1/r2 + (‖z‖/α)2)−1/2 ≥ ηε(Λ) for someε < 1/2. Then the distribution of
〈z,v〉+ e wherev← DΛ+u,r ande← Dα, is within statistical distance4ε ofDβ for β =

√

(r‖z‖)2 + α2.

Lemma 2.10 (Special case of [Pei10, Theorem 3.1]).Let Λ be a lattice andr, s > 0 be such thats ≥
ηε(Λ) for someε ≤ 1/2. Then if we choosex from the continuous GaussianDr and then choosey from the
discrete GaussianDΛ−x,s thenx+y is within statistical distance8ε of the discrete GaussianDΛ,(r2+s2)1/2 .

2.3 Learning with Errors

For integersn, q ≥ 1, an integer vectors ∈ Z
n, and a probability distributionφ on R, let Aq,s,φ be the

distribution overTn
q ×T obtained by choosinga ∈ T

n
q uniformly at random and an error terme from φ, and

outputting the pair(a, b = 〈a, s〉+ e) ∈ T
n
q × T.

Definition 2.11. For integersn, q ≥ 1, an error distributionφ over R, and a distributionD over Zn,
the (average-case) decision variant of theLWE problem, denotedLWEn,q,φ(D), is to distinguish given
arbitrarily many independent samples, the uniform distribution overT

n
q×T fromAq,s,φ for a fixeds sampled

from D. The variant where the algorithm only gets a bounded number of samplesm ∈ N is denoted
LWEn,m,q,φ(D).

Notice that the distributionAq,s,φ only depends ons mod q, and so one can assume without loss of
generality thats ∈ {0, . . . , q − 1}n. Moreover, using a standard random self-reduction, for any distribution
over secretsD, one can reduceLWEn,q,φ(D) to LWEn,q,φ(U({0, . . . , q − 1}n)), and we will occasionally
useLWEn,q,φ to denote the latter (as is common in previous work). When the noise is a Gaussian with
parameterα > 0, i.e.,φ = Dα, we use the shorthandLWEn,q,α(D). Since the case whenD is uniform
over{0, 1}n plays an important role in this paper, we will denote it bybinLWEn,q,φ (and bybinLWEn,m,q,φ

when the algorithm only getsm samples). Finally, as we show in the following lemma, one can efficiently
reduceLWE to the case in which the secret is distributed according to the (discretized) error distribution
and is hence somewhat short. This latter form ofLWE, known as the “normal form,” was first shown hard
in [ACPS09] for the case of primeq. Here we observe that the proof extends to non-primeq, the new
technical ingredient being Claim 2.13 below.

7

Approved for Public Release; Distribution Unlimited. 
250 



Lemma 2.12. For any q ≥ 25, n,m ≥ 1, α > 0, ε < 1/2 and s ≥
√

ln(2n(1 + 1/ε)/π)/q, there is an
efficient (transformation) reduction fromLWEn,m,q,α to LWEn,m′,q,α(D) wherem′ = m− (16n+ 4 ln ln q)
andD = D

Zn,q(α2+s2)1/2 , that turns advantageζ into an advantage of at least(ζ − 8ε)/4. In particular,

assumingα ≥
√

ln(2n(1 + 1/ε)/π)/q, we can takes = α, in which caseD = D
Zn,

√
2qα.

Proof. Consider the first 16n + 4 ln ln q samples(a, b). Using Claim 2.13, with probability at least1 −
2e−1 ≥ 1/4, we can efficiently find a subsequence of the samples such that the matrixA0 ∈ Z

n×n
q whose

columns are formed by thea in the subset (scaled up byq) has an inverseA−1
0 ∈ Z

n×n
q moduloq. If we

cannot find such a subsequence, we abort. Letb0 ∈ T
n be the vector formed by the correspondingb in the

subsequence. Let alsob′
0 ∈ T

n
q beb0 + x wherex is chosen fromDq−1Zn−b0,s. (Notice that the coset

q−1
Z
n−b0 is well defined becauseb0 is a coset ofZn ⊆ q−1

Z
n.) From each of the remainingm′ samples

(a, b) ∈ T
n
q × T we produce a pair

(

a′ = A−1
0 a, b′ = b− 〈A−1

0 · qa,b′
0〉
)

∈ T
n
q × T.

We then apply the givenLWE oracle to the resultingm′ pairs and output its result.
We now analyze the reduction. First notice that the construction ofA0 depends only on thea component

of the input samples, and hence the probability of finding it is the same in case the input is uniform and in
case it consists ofLWE samples. It therefore suffices in the following to show that there is a distinguishing
gap conditioned on successfully finding anA0. To that end, first observe that if the input samples(a, b) are
uniform in T

n
q × T then so are the output samples(a′, b′). Next consider the case that the input samples

are distributed according toAq,s,Dα for somes ∈ Z
n. Then sinces ≥ ηε(q

−1
Z) by Lemma 2.5, using

Lemma 2.10 we get thatb′
0 = q−1AT

0 s + e0 wheree0 is distributed within statistical distance8ε from
Dq−1Zn,(α2+s2)1/2 . Therefore, for each output sample(a′, b′) we have

b′ = b− 〈A−1
0 · qa,b′

0〉 = 〈a, s〉+ e− 〈a, s〉 − 〈A−1
0 qa, e0〉 = 〈−qe0,a′〉+ e,

wheree is an independent error fromDα. Therefore, the output samples are distributed according to
Aq,−qe0,Dα , completing the proof.

Claim 2.13. For any q ≥ 25, n ≥ 1, and t1 ≥ 4, t2 ≥ 1, given a sequence oft1n + t2 ln ln q vectors
a1,a2, . . . chosen uniformly and independently fromZn

q , except with probabilitye−t1n/16 + e−t2/4, there
exists a subsequence ofn vectors such that then × n matrix they form is invertible moduloq. Moreover,
such a subsequence can be found efficiently.

Proof. We consider the following procedure. Letk be a counter, initialized to0, indicating the number
of vectors currently in the subsequence, and letA ∈ Z

n×k
q be the matrix whose columns are formed by

the current subsequence. We also maintain a unimodular matrixU ∈ Z
n×n, initially set to the identity,

satisfying the invariant thatU ·A ∈ Z
n×k
q has the following form: its topk×k submatrix is upper triangular

with each diagonal coefficient coprime withq; its bottom(n − k) × k submatrix is zero. The procedure
considers the vectorsai one by one. For each vectora, if it is such that the gcd of the lastn − k entries
of Ua, call it g, is coprime withq, then it does the following: it addsa to the subsequence, computes (using,
say, the extended GCD algorithm) a unimodular matrixV that acts as identity on the firstk coordinates and
for which the lastn− k coordinates ofV Ua are(g, 0, . . . , 0), replacesU with V U , and incrementsk.

It is easy to see that the procedure’s output is correct if it reachesk = n. It therefore suffices to analyze
the probability that this event happens. For this we use the following two facts to handle the casesk < n−1

8
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andk = n− 1, respectively. First, the probability that the gcd of two uniformly random numbers moduloq
is coprime withq is

∏

p|q, p prime

(1− p−2) ≥
∏

p prime

(1− p−2) = ζ(2)−1 ≈ 0.61,

whereζ is the Riemann zeta function. Second, the probability that one uniformly random number moduloq
is coprime withq isϕ(q)/q, whereϕ is Euler’s totient function. By [BS96, Theorem 8.8.7], this probability
is at least(eγ ln ln q + 3/(ln ln q))−1 whereγ is Euler’s constant, which forq ≥ 25 is at least(4 ln ln q)−1.

Using the (multiplicative) Chernoff bound, the first fact, and the fact thatUa is uniform inZn
q sinceU

is unimodular, we see that the probability thatk < n − 1 after consideringt1n vector is at moste−t1n/16.
Moreover, oncek = n− 1, using the second fact we get that the probability that after consideringt2 ln ln q
additional vectors we still havek = n− 1 is at moste−t2/4.

Unknown (Bounded) Noise Rate. We also consider a variant of LWE in which the amount of noise is
some unknownβ ≤ α (as opposed to exactlyα), with β possibly depending on the secrets. As the
following lemma shows, this does not make the problem significantly harder.

Definition 2.14. For integersn, q ≥ 1 andα ∈ (0, 1), LWEn,q,≤α is the problem of solvingLWEn,q,β for
anyβ = β(s) ≤ α.

Lemma 2.15. LetA be an algorithm forLWEn,m,q,α with advantage at leastε > 0. Then there exists an
algorithmB for LWEn,m′,q,≤α using oracle access toA and with advantage at least1/3, where bothm′ and
its running time arepoly(m, 1/ε, n, log q).

The proof is standard (see, e.g., [Reg05, Lemma 3.7] for the analogous statement for the search version
of LWE). The idea is to use Chernoff bound to estimateA’s success probability on the uniform distribution,
and then add noise in small increments to our given distribution and estimateA’s behavior on the resulting
distributions. If there is a gap between any of these and the uniform behavior, the input distribution is
deemed non-uniform. The full proof is omitted.

Relation to Lattice Problems. Regev [Reg05] and Peikert [Pei09] showed quantum and classical reduc-
tions (respectively) from the worst-case hardness of theGapSVP problem to the search version ofLWE.
(We note that the quantum reduction in [Reg05] also shows a reduction fromSIVP.) As mentioned in the
introduction, the classical reduction only works when the modulusq is exponential in the dimensionn. This
is summarized in the following theorem, which is derived from [Reg05, Theorem 3.1] and [Pei09, Theo-
rem 3.1].

Theorem 2.16. Let n, q ≥ 1 be integers and letα ∈ (0, 1) be such thatαq ≥ 2
√
n. Then there exists a

quantum reduction from worst-casen-dimensionalGapSVP
Õ(n/α)

to LWEn,q,α. If in addition q ≥ 2n/2

then there is also a classical reduction between those problems.

In order to obtain hardness of thedecisionversion ofLWE, which is the one we consider throughout
the paper, one employs a search-to-decision reduction. Several such reductions appear in the literature
(e.g., [Reg05, Pei09, MP12]). The most recent reduction by Micciancio and Peikert [MP12], which essen-
tially subsumes all previous reductions, requires the modulusq to be smooth. Below we give the special
case when the modulus is a power of2, which suffices for our purposes. It follows from our results that (de-
cision)LWE is hard not just for a smooth modulusq, as follows from [MP12], but actually for all moduliq,
including prime moduli, with only a small deterioration in the noise (see Corollary 3.3).

9
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Theorem 2.17 (Special case of [MP12, Theorem 3.1]).Let q be a power of2, andα satisfy 1/q < α <
1/ω(

√
log n). Then there exists an efficient reduction from searchLWEn,q,α to (decision)LWEn,q,α′ for

α′ = α · ω(log n).

3 Modulus-Dimension Switching

The main results of this section are Corollaries 3.2 and 3.4 below. Both are special cases of the following
technical theorem. We say that a distributionD overZn is (B, δ)-bounded for some realsB, δ ≥ 0 if the
probability thatx← D has norm greater thanB is at mostδ.

Theorem 3.1. Letm,n, n′, q, q′ ≥ 1 be integers, letG ∈ Z
n′×n be such that the latticeΛ = 1

q′G
T
Z
n′

+Z
n

has a known basisB, and let D be an arbitrary(B, δ)-bounded distribution overZn. Letα, β > 0 andε ∈
(0, 1/2) satisfy

β2 ≥ α2 + (4/π) ln(2n(1 + 1/ε)) · (max{q−1, ‖˜B‖} · B)2.

Then there is an efficient (transformation) reduction fromLWEn,m,q,≤α(D) to LWEn′,m,q′,≤β(G · D) that
reduces the advantage by at mostδ + 14εm.

Here we use the notation‖˜B‖ from Lemma 2.3. We also note that if needed, the distribution on secrets
produced by the reduction can always be turned into the uniform distribution onZ

n′

q′ , as mentioned after
Definition 2.11. Also, we recall that there exists an elementary reduction fromLWEn′,q′,≤β to LWEn′,q′,β

(see Lemma 2.15).
Here we state two important corollaries of the theorem. The first corresponds to just modulus reduction

(theLWE dimension is preserved), and is obtained by lettingn′ = n, G = I be then-dimensional identity
matrix, andB = I/q′. For example, we can takeq ≥ q′ ≥

√

2 ln(2n(1 + 1/ε)) · (B/α) andβ =
√
2α,

whichcorresponds to reducing an arbitrary modulus to almostB/α, while increasing the initial error rateα
by just a small constant factor.

Corollary 3.2. For anym,n ≥ 1, q ≥ q′ ≥ 1, (B, δ)-bounded distributionD overZn, α, β > 0 andε ∈
(0, 1/2) such that

β2 ≥ α2 + (4/π) ln(2n(1 + 1/ε)) · (B/q′)2,

there is an efficient reduction fromLWEn,m,q,≤α(D) to LWEn,m,q′,≤β(D) that reduces the advantage by at
mostδ + 14εm.

In particular, by using the normal form ofLWE (Lemma 2.12), in which the secret has distributionD =
D

Zn,
√
2αq, we can switch to a power-of-2 modulus with only a small loss in the noise rate, as described in the

following corollary. Together with the known search-to-decision reduction (Theorem 2.17), this extends the
known hardness of (decision)LWE to anymodulusq. Here we use thatD = DZn,r is (Cr

√

n log(n/δ), δ)-
bounded for some universal constantC > 0, which follows by taking union bound over then coordinates.
(Alternatively, one could use that it is(r

√
n, 2−n)-bounded, as follows from [Ban93, Lemma 1.5], leading

to a slightly tighterstatement for largen.)

Corollary 3.3. Let δ ∈ (0, 1/2), m ≥ n ≥ 1, q′ ≥ 25. Let alsoq ∈ [q′, 2q′) be the smallest power of2
not smaller thanq′ andα ≥

√

ln(2n(1 + 16/δ)/π)/q. There exists an efficient (transformation) reduction
fromLWEn,m,q,α to LWEn,m′,q′,≤β wherem′ = m− (16n + 4 ln ln q) and

β = Cα
√
n
√

log(n/δ) log(m/δ)

for some universal constantC > 0, that turns advantage ofζ into an advantage of at least(ζ − δ)/4.

10

Approved for Public Release; Distribution Unlimited.
253



Another corollary illustrates a modulus-dimension tradeoff. Assumen = kn′ for somek ≥ 1, and
let q′ = qk. LetG = In′ ⊗ g, whereg = (1, q, q2, . . . , qk−1)T ∈ Z

k. We then haveΛ = q−kGT
Z
n′

+ Z
n.

A basis ofΛ is given by

B = In′ ⊗











q−1 q−2 · · · q−k

q−1 · · · q1−k

.. .
...

q−1











∈ R
n×n;

this is since the column vectors ofB belong toΛ and the determinants match. Orthogonalizing from left
to right, we have˜B = q−1I and so‖˜B‖ = q−1. We therefore obtain the following corollary, showing
that we can trade off the dimension against the modulus, holdingn log q = n′ log q′ fixed. For example,
lettingD = DZn,αq (corresponding to a secret in normal form, see Lemma 2.12), which is(αq

√
n, 2−n)-

bounded, the reduction increases the error rate by about a
√
n factor.

Corollary 3.4. For anyn,m, q ≥ 1, k ≥ 1 that dividesn, (B, δ)-bounded distributionD overZn,α, β > 0,
andε ∈ (0, 1/2) such that

β2 ≥ α2 + (4/π) ln(2n(1 + 1/ε)) · (B/q)2,

there is an efficient reduction fromLWEn,m,q,≤α(D) to LWEn/k,m,qk,≤β(G · D) that reduces the advantage

by at mostδ + 14εm, whereG = In/k ⊗ (1, q, q2, . . . , qk−1)T .

Theorem 3.1 follows immediately from the following lemma.

Lemma 3.5. Adopt the notation of Theorem 3.1, and let

r ≥ max{q−1, ‖˜B‖} ·
√

2 ln(2n(1 + 1/ε))/π.

There is an efficient mapping fromTn
q × T toT

n′

q′ × T, which has the following properties:

• If the input is uniformly random, then the output is within statistical distance4ε from the uniform
distribution.

• If the input is distributed according toAq,s,Dα for somes ∈ Z
n with ‖s‖ ≤ B, then the output

distribution is within statistical distance10ε fromAq′,Gs,Dα′
, where(α′)2 = α2 + r2(‖s‖2 +B2) ≤

α2 + 2(rB)2.

Proof. The main idea behind the reduction is to encodeT
n
q into T

n′

q′ , so that the mod-1 inner products

between vectors inTn
q and a short vectors ∈ Z

n, and between vectors inTn′

q′ andGs ∈ Z
n′

, are nearly
equivalent. In a bit more detail, the reduction will map its input vectora ∈ T

n
q (from the given LWE-or-

uniform distribution) to a vectora′ ∈ T
n′

q′ , so that

〈a′,Gs〉 = 〈GTa′, s〉 ≈ 〈a, s〉 mod 1

for any (unknown)s ∈ Z
n. To do this, it randomly samplesa′ so thatGTa′ ≈ a mod Z

n, where the
approximation error will be a discrete Gaussian of parameterr.

We can now formally define the reduction, which works as follows. On an input pair(a, b) ∈ T
n
q ×T, it

does the following:

11
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• Choose f ← DΛ−a,r using Lemma 2.3 withbasisB, and letv = a + f ∈ Λ/Zn. (The cosetΛ − a

is well defined sincea = ā + Z
n is some coset ofZn ⊆ Λ.) Choose a uniformly random solution

a′ ∈ T
n′

q′ to the equationGTa′ = v mod Z
n. This can be done by computing a basis of the solution

setGTa′ = 0 mod Z
n, and adding a uniform element from that set to an arbitrary solution to the

equationGTa′ = v mod Z
n.

• Choosee′ ← DrB and letb′ = b+ e′ ∈ T.

• Output(a′, b′).

We now analyze the reduction. First, if the distribution of the input is uniform, then it suffices to show
that a′ is (nearly) uniformly random, because bothb ande′ are independent ofa′, andb ∈ T is uniform.
To prove this claim, notice that it suffices to show that the cosetv ∈ Λ/Zn is (nearly) uniformly random,
because eachv has the same number of solutionsa′ to GTa′ = v mod Z

n. Next, observe that for any
ā ∈ T

n
q andf̄ ∈ Λ− ā, we have by Lemma 2.7 (using thatr ≥ ηε(Λ) by Lemma 2.5) that

Pr[a = ā ∧ f = f̄ ] = q−n · ρr(f̄)/ρr(Λ− ā)

∈ C
[

1, 1+ε
1−ε

]

· ρr(f̄). (3.1)

whereC = q−n/ρr(Λ) is a normalizing value that does not depend onā or f̄ . Therefore, by summing over
all ā, f̄ satisfyingā+ f̄ = v̄, we obtain that for anȳv ∈ Λ/Zn,

Pr[v = v̄] ∈ C
[

1, 1+ε
1−ε

]

· ρr(q−1
Z
n + v̄).

Sincer ≥ ηε(q
−1

Z
n) (by Lemma 2.5), Lemma 2.7 implies thatPr[v = v̄] ∈

[

1−ε
1+ε ,

1+ε
1−ε

]

C ′ for a constantC ′

that is independent of̄v. By Claim 2.1, this shows thata′ is within statistical distance1−((1−ε)/(1+ε))2 ≤
4ε of the uniform distribution.

It remains to show that the reduction mapsAq,s,Dα to Aq′,Gs,Dβ
. Let the input sample from the former

distribution be(a, b = 〈a, s〉 + e), wheree ← Dα. As argued above, the outputa′ is (nearly) uniform
overTn′

q′ . So condition now on any fixed valuea′ ∈ T
n′

q′ of a′, andlet v̄ = GTa′ mod Z
n. Wehave

b′ = 〈a, s〉+ e+ e′ = 〈a′,Gs〉 + e+ 〈−f , s〉+ e′ mod 1.

By Claim 2.1 and (3.1) (and noting that iff = f̄ then a = v̄ − f̄ mod Z
n), the distribution of−f is

within statistical distance1−(1−ε)/(1+ε) ≤ 2ε of Dq−1Zn−v̄,r. By Lemma 2.9 (usingr ≥
√
2ηε(q

−1
Z
n)

and‖s‖ ≤ B), the distribution of 〈−f , s〉+e′ is within statistical distance6ε fromDt, wheret2 = r2(‖s‖2+
B2). It therefore follows thate+〈−f , s〉+e′ is within statistical distance6ε fromD(t2+α2)1/2 , as required.

4 Hardness of LWE with Binary Secret

The following is the main theorem of this section.

Theorem 4.1. Let k, q ≥ 1, andm ≥ n ≥ 1 be integers, and letε ∈ (0, 1/2), α, δ > 0, be such thatn ≥
(k + 1) log2 q + 2 log2(1/δ), α ≥

√

ln(2n(1 + 1/ε))/π/q. There exist three (transformation) reductions
fromLWEk,m,q,α to binLWEn,m,q,≤

√
10nα, such that for any algorithm for the latter problem with advantage

ζ, at least one of the reductions produces an algorithm for the former problem with advantage at least

(ζ − δ)/(3m) − 41ε/2 −
∑

p|q, p prime

p−k−1 . (4.1)

12
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By combining Theorem 4.1 with the reduction in Corollary 3.2 (and noting that{0, 1}n is (
√
n, 0)

bounded), we can replace thebinLWE problem above withbinLWEn,m,q′,β for anyq′ ≥ 1 andξ > 0 where

β :=

(

10nα2 +
4n

πq′2
ln(2n(1 + 1/ξ))

)1/2

,

while decreasing the advantage in (4.1) by14ξm. Recalling thatLWE of dimensionk =
√
n and modulus

q = 2k/2 (assumek is even) isknown to be classically as hard as
√
n-dimensional lattice problems (Theo-

rems 2.16 and 2.17),this gives a formal statement of Theorem 1.1. The modulusq′ can be taken almost as
small as

√
n.

For most purposes thesum over prime factors ofq in (4.1) is negligible. For instance, in deriving
the formal statement of Theorem 1.1 above, we used aq that is a power of2, in which case the sum is
2−k−1 = 2−

√
n−1, which is negligible. If needed, one can improve this by applying the modulus switching

reduction (Corollary 3.3) before applying Theorem 4.1 in order to makeq prime. (Strictly speaking, one
also needs to apply Lemma 2.15 to replace the “unknown noise” variant ofLWE given by Corollary 3.3 with
the fixed noise variant.) This improves the advantage loss toq−

√
n−1 which is roughly2−n.

In a high level, the proof of the theorem follows by combining three main steps. The first, given in Sec-
tion 4.1, reducesLWE to a variant in which the first equation is errorless. The second, given in Section 4.2,
reduces the latter to the intermediate problemextLWE, another variant ofLWE in which some information
on the noise elements is leaked. Finally, in Section 4.3, we reduceextLWE to LWE with {0, 1} secret. We
note that the first reduction is relatively standard; it is the other two that we consider as the main contribution
of this section. We now proceed with more details (see also Figure 1).

Proof. First, sincem ≥ n, Lemma 4.3 provides a transformation reduction fromLWEk,m,q,α to first-is-
errorlessLWEk+1,n,q,α, while reducing the advantage by at most2−k+1. Next, Lemma 4.7 withZ = {0, 1}n,
which is of qualityξ = 2 by Claim 4.6, reduces the latter problem toextLWEk+1,n,q,

√
5α,{0,1}n while reduc-

ing the advantage by at most33ε/2. Then, Lemma 4.8 reduces the latter problem toextLWEm
k+1,n,q,

√
5α,{0,1}n ,

while losing a factor ofm in the advantage. Finally, Lemma 4.9 provides three reductions tobinLWEn,m,q,≤
√
10nα:

two from the latter problem, and one fromLWEk+1,m,q,
√
5nα, guaranteeing thatthe sum of advantages is

at least the original advantage minus4mε + δ. Together with the trivial reduction fromLWEk,m,q,α to
LWEk+1,m,q,

√
5nα (which incurs no loss in advantage), this completes the proof.

4.1 First-is-errorless LWE

We first define a variant of LWE in which the first equation is given without error, and then show in
Lemma 4.3 that it is still hard.

Definition 4.2. For integersn, q ≥ 1 and an error distributionφ overR, the “first-is-errorless” variant
of theLWE problem is to distinguish between the following two scenarios. In the first, the first sample is
uniform overTn

q × Tq and the rest are uniform overTn
q × T. In the second, there is an unknown uniformly

distributeds ∈ {0, . . . , q − 1}n, the first sample we get is fromAq,s,{0} (where{0} denotes the distribution
that is deterministically zero) and the rest are fromAq,s,φ.

Lemma 4.3. For any n ≥ 2, m, q ≥ 1, and error distributionφ, there is an efficient (transformation)
reduction fromLWEn−1,m,q,φ to the first-is-errorless variant ofLWEn,m,q,φ that reduces the advantage by
at most

∑

p p
−n, with the sum going over all prime factors ofq.

13

Approved for Public Release; Distribution Unlimited. 
256 



binLWEn,m,q,≤
√
10nα

LWEk+1,m,q,
√
5nα

extLWEm
k+1,n,q,

√
5α,{0,1}n

extLWEk+1,n,q,
√
5α,{0,1}n

1st errorlessLWEk+1,n,q,α

LWEk,m,q,α

Lemma4.8

Lemma 4.7

Lemma 4.3

Lemma4.9

Figure 1: Summary of reductions used in Theorem 4.1

Notice that ifq is prime the loss in advantage is at mostq−n. Alternatively, for any numberq we can bound
it by

∑

k≥2

k−n ≤ 2−n +

∫ ∞

2
t−ndt ≤ 2−n+2,

which might be good enough whenn is large.

Proof. The reduction starts by choosing a vectora′ uniformly at random from{0, . . . , q− 1}n. Let r be the
greatest common divisor of the coordinates ofa′. If it is not coprime toq, we abort. The probability that
this happens is at most

∑

p prime, p|q
p−n.

Assuming we do not abort, we proceed by finding a matrixU ∈ Z
n×n that is invertible moduloq and

whose leftmost column isa′. Such a matrix exists, and can be found efficiently. For instance, using the
extended GCD algorithm, we find ann × n unimodular matrixR such thatRa′ = (r, 0, . . . , 0)T . Then
R−1 · diag(r, 1, . . . , 1) is the desired matrix. We also pick a uniform elements0 ∈ {0, . . . , q − 1}. The
reduction now proceeds as follows. The first sample it outputs is(a′/q, s0/q). The remaining samples are
produced by taking a sample(a, b) from the given oracle, picking a fresh uniformly randomd ∈ Tq, and
outputting(U(d|a), b + (s0 · d)) with the vertical bar denoting concatenation. It is easy to verify correct-
ness: given uniform samples, the reduction outputs uniform samples (with the first sample’sb component
uniform overTq), up to statistical distance2−n+1; and given samples fromAq,s,φ, the reduction outputs
one sample fromAq,s′,{0} and the remaining samples fromAq,s′,φ, up to statistical distance2−n+1, where
s′ = (U−1)T (s0|s) mod q. This proves correctness sinceU, being invertible moduloq, induces a bijection
onZ

n
q , and sos′ is uniform in{0, . . . , q − 1}n.

4.2 Extended LWE

We next define the intermediate problemextLWE. (This definition is of an easier problem than the one
considered in previous work [AP12], which makes our hardness result stronger.)

14
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Definition 4.4. For n,m, q, t ≥ 1, Z ⊆ Z
m, and a distribution χ over 1

qZ
m, theextLWEt

n,m,q,χ,Z problem
is as follows. The algorithm gets to choosez ∈ Z and then receives a tuple

(A, (bi)i∈[t], (〈ei, z〉)i∈[t]) ∈ T
n×m
q × (Tm

q )t × (1qZ)
t.

Its goal is to distinguish between the following two cases. In the first,A ∈ T
n×m
q is chosen uniformly,

ei ∈ 1
qZ

m are chosen fromχ, andbi = AT si+ei mod 1 wheresi ∈ {0, . . . , q−1}n are chosen uniformly.
The second case is identical, except that thebi are chosen uniformly inTm

q independently of everything else.

When t = 1, we omit the superscriptt. Also, whenχ is Dq−1Zm,α for someα > 0, we replace the
subscriptχ by α. We note that a discrete version ofLWE can be defined as a special case ofextLWE by
settingZ = {0m}. We next define a measure of quality of setsZ.

Definition 4.5. For a realξ > 0 and a setZ ⊆ Z
m we say thatZ is of quality ξ if given anyz ∈ Z, we can

efficiently find a unimodular matrixU ∈ Z
m×m such that ifU′ ∈ Z

m×(m−1) is the matrix obtained fromU
by removing its leftmost column then all of the columns ofU′ are orthogonal toz and its largest singular
value is at mostξ.

The idea in this definition is that the columns ofU′ form a basis of the lattice of integer points that are
orthogonal toz, i.e., the lattice{b ∈ Z

m : 〈b, z〉 = 0}. The quality measures how “short” we can make this
basis.

Claim 4.6. The setZ = {0, 1}m is of quality2.

Proof. Let z ∈ Z and assume without loss of generality that its firstk ≥ 1 coordinates are1 and the
remainingm − k are0. Then consider the upper bidiagonal matrixU whose diagonal is all1s and whose
diagonal above the main diagonal is(−1, . . . ,−1, 0, . . . , 0) with −1 appearingk − 1 times. The matrix is
clearly unimodular and all the columns except the first one are orthogonal toz. Moreover, by the triangle
inequality, we can bound the operator norm ofU by the sum of that of the diagonal1 matrix and the
off-diagonal matrix, both of which clearly have norm at most1.

Lemma 4.7. LetZ ⊆ Z
m be of qualityξ > 0. Then for anyn, q ≥ 1, ε ∈ (0, 1/2), andα, r ≥ (ln(2m(1 +

1/ε))/π)1/2/q, there is a (transformation) reduction from the first-is-errorless variant ofLWEn,m,q,α to
extLWEn,m,q,(α2ξ2+r2)1/2,Z that reduces the advantage by at most33ε/2.

Proof. We first describe the reduction. Assume we are asked to provide samples for somez ∈ Z. We
compute a unimodularU ∈ Z

m×m for z as in Definition 4.5, and letU′ ∈ Z
m×(m−1) be the matrix

formed by removing the first column ofU. We then takem samples from the given distribution, resulting in
(A,b) ∈ T

n×m
q × (Tq × T

m−1). We also sample a vectorf from them-dimensional continuous Gaussian
distributionDα(ξ2I−U′U′T )1/2 , which is well defined sinceξ2I−U′U′T is a positive semidefinite matrix by
our assumption onU. The output of the reduction is the tuple

(A′ = AUT ,b′ + c, 〈z, f + c〉) ∈ T
n×m
q × T

m
q × 1

qZ, (4.2)

whereb′ = Ub+f , andc is chosen from the discrete Gaussian distributionDq−1Zm−b′,r (using Lemma 2.3).
We now prove the correctness of the reduction. Consider first the case that we get valid LWE equations,

i.e.,A is uniform inTn×m
q andb = AT s + e ∈ T

m wheres ∈ {0, . . . , q − 1}n is uniformly chosen, the
first coordinate ofe ∈ R

m is 0, and the remainingm − 1 coordinates are chosen fromDα. SinceU is

15
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unimodular,A′ = AUT is uniformly distributed inTn×m
q as required. From now on we condition on an

arbitraryA′ and analyze the distribution of the remaining two components of (4.2). Next,

b′ = Ub+ f = A′T s+Ue+ f .

SinceUe is distributed as a continuous GaussianDαU′ , the vectorUe + f is a distributed as aspherical
continuous GaussianDαξ. Moreover, sinceA′T s ∈ T

m
q , the cosetq−1

Z
m − b′ is identical toq−1

Z
m −

(Ue + f), so we can seec as being chosen fromDq−1Zm−(Ue+f),r. Therefore, by Lemma 2.10 and using
that r ≥ ηε(q

−1
Z
m) by Lemma 2.5, the distribution ofUe + f + c is within statistical distance8ε of

Dq−1Zm,(α2ξ2+r2)1/2 . This shows that the second component in (4.2) is also distributed correctly. Finally,
for the third component, by our assumption onU and the fact that the first coordinate ofe is zero,

〈z, f + c〉 = 〈z,Ue+ f + c〉,

and so the third component gives the inner product of the noise withz, as desired.
We now consider the case where the input is uniform, i.e., thatA is uniform inT

n×m
q andb is inde-

pendent and uniform inTq × T
m−1. We first observe that by Lemma 2.6, sinceα ≥ ηε/m(q−1

Z) (by
Lemma 2.5), the distribution of(A,b) is within statistical distanceε/2 of the distribution of(A, e′ + e)
wheree′ is chosen uniformly inTm

q , the first coordinate ofe is zero, and its remainingm − 1 coordinates
are chosen independently fromDα. So from now on assume our input is(A, e′ + e). The first component
of (4.2) is uniform inTn×m

q as before, and moreover, it is clearly independent of the other two. Moreover,
sinceb′ = Ue′ +Ue+ f andUe′ ∈ T

m
q , the cosetq−1

Z
m − b′ is identical toq−1

Z
m − (Ue+ f), and so

c is distributed identically to the case of a valid LWE equation, and in particular is independent ofe′. This
establishes that the third component of (4.2) is correctly distributed; moreover, sincee′ is independent of
the first and third components, andUe′ is uniform inTm

q (sinceU is unimodular), we get that the second
component is uniform and independent of the other two, as desired.

Weend this section by stating the standard reduction to the multi-secret (t ≥ 1) case ofextended LWE.

Lemma 4.8. Let n,m, q, χ,Z be as in Definition 4.4 withχ efficiently sampleable, and lett ≥ 1 be an
integer. Then there is an efficient (transformation) reduction fromextLWEn,m,q,χ,Z to extLWEt

n,m,q,χ,Z that
reduces the advantage by a factor oft.

The proof is by a standard hybrid argument. We bring it here for the sake of completeness. We note that
the distribution of the secret vectors needs to be sampleable but otherwise it plays no role in the proof. The
lemma therefore naturally extends to any (sampleable) distribution ofs.

Proof. LetA be an algorithm forextLWEt
n,m,q,χ,Z , let z be the vector output byA in the first step (note that

this is a random variable) and letHi denote the distribution
(

A, {b1, . . . ,bi,ui+1, . . . ,ut}, z, {〈z, ei〉}i∈[t]
)

,

whereui+1, . . . ,ut are sampled independently and uniformly inT
m
q . Then by definitionAdv[A] = |Pr[A(H0)]−

Pr[A(Ht)]|.
We now describe an algorithmB for extLWEn,m,q,χ,Z : First,B runsA to obtainz and sends it to the

challenger as its ownz. Then, given an input(A,d, z, y) for extLWEn,m,q,χ,Z , the distinguisherB samples
i∗ ← [t], and in additions1, . . . , si∗−1 ← Z

n
q , e1, . . . , ei∗−1, ei∗+1, . . . , et ← χm, ui∗+1, . . . ,ut ← T

m
q . It

setsbi = AT · si + ei (mod 1), and sends the following toA:

(A, {b1, . . . ,bi∗−1,d,ui∗+1, . . . ,ut}, z, {〈z, e1〉, . . . , 〈z, ei∗−1〉, y, 〈z, ei∗+1〉, . . . , 〈z, et〉}) .
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Finally, B outputs the same output asA did.
Note that when the input toB is distributed asP0 = (A,b, z, zT ·e) with b = AT ·s+e (mod 1), then

B feedsA with exactly the distributionHi∗ . On the other hand, if the input toB is P1 = (A,u, z, zT · e)
with u← T

m
q , thenB feedsA with Hi∗−1.

Sincei∗ is uniform in [t], we get that

tAdv[B] = t |Pr[B(P0)]− Pr[B(P1)]|

=

∣

∣

∣

∣

∑

i∗∈[t]
Pr[A(Hi∗)]−

∑

i∗∈[t]
Pr[A(Hi∗−1)]

∣

∣

∣

∣

= |Pr[A(Ht)]− Pr[A(H0)]|
= Adv[A] ,

and the result follows.

4.3 Reducing to binary secret

Lemma 4.9. Let k, n,m, q ∈ N, ε ∈ (0, 1/2), andδ, α, β, γ > 0 be such thatn ≥ k log2 q + 2 log2(1/δ),
β ≥

√

2 ln(2n(1 + 1/ε))/π/q, α =
√
2nβ, γ =

√
nβ. Then there exist three efficient (transformation)

reductions tobinLWEn,m,q,≤α from extLWEm
k,n,q,β,{0,1}n, LWEk,m,q,γ, andextLWEm

k,n,q,β,{0n}, such that if
B1, B2, andB3 are the algorithms obtained by applying these reductions (respectively) to an algorithmA,
then

Adv[A] ≤ Adv[B1] + Adv[B2] + Adv[B3] + 4mε+ δ .

Pointing out the trivial (transformation) reduction fromextLWEm
k,n,q,β,{0,1}n to extLWEm

k,n,q,β,{0n}, the
lemma implies the hardness ofbinLWEn,m,q,≤α based on the hardness ofextLWEm

k,n,q,β,{0,1}n andLWEk,m,q,γ.
We note that our proof is actually more general, and holds for any binary distribution of min-entropy at

leastk log2 q + 2 log2(1/δ), and not just a uniform binary secret as in the definition ofbinLWE.

Proof. The proof follows by a sequence of hybrids. Letk, n,m, q, ε, α, β, γ be as in the lemma statement.
We considerz ← {0, 1}n ande ← Dm

α′ for α′ =
√

β2‖z‖2 + γ2 ≤
√
2nβ = α. In addition, we let

A← T
n×m
q , u← T

m, and defineb:=AT · z+ e (mod 1). We consider an algorithmA that distinguishes
between(A,b) and(A,u).

We letH0 denote the distribution(A,b) andH1 the distribution

H1 = (A,AT z−NT z+ ê mod 1),

whereN← Dn×m
q−1Z,β

andê← Dm
γ . Using‖z‖ ≤ √n and thatβ ≥

√
2ηε(Z

n)/q (by Lemma 2.5), it follows

by Lemma 2.9 that the statistical distance between−NTz+ ê andDm
α′ is at most4mε. It thus follows that

|Pr[A(H0)]− Pr[A(H1)]| ≤ 4mε . (4.3)

We define a distributionH2 as follows. LetB ← T
k×m
q andC ← T

k×n
q . Let Â:=qCT · B + N

(mod 1). Finally,
H2 = (Â, ÂT · z−NT z+ ê) = (Â, qBT ·C · z+ ê) .

We now argue that there exists an adversaryB1 for problemextLWEm
k,n,q,β,{0,1}n, such that

Adv[B1] = |Pr[A(H1)]− Pr[A(H2)]| . (4.4)
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This is becauseH1,H2 can be viewed as applying the same efficient transformation on the distributions
(C,A,NT z) and (C, Â,NT z) respectively. Since distinguishing the latter distributions is exactly the
extLWEm

k,n,q,β,{0,1}n problem (where the columns ofq · B are interpreted as them secret vectors), the
distinguisherB1 follows by first applying the aforementioned transformation and then applyingA.

For the next hybrid, we defineH3 = (Â,BT · s+ ê), for s← Z
k
q . It follows that

|Pr[A(H2)]− Pr[A(H3)]| ≤ δ (4.5)

by the leftover hash lemma (see Lemma 2.2), sinceH2,H3 can be derived from(C, qC · z) and (C, s)
respectively, whose statistical distance is at mostδ.

Our next hybrid makes the second component uniform:H4 = (Â,u). There exists an algorithmB2 for
LWEk,m,q,γ such that

Adv[B2] = |Pr[A(H3)]− Pr[A(H4)]| , (4.6)

sinceH3,H4 can be computed efficiently from(B,BT s+ ê), (B,u).
Lastly, we changêA back to uniform:H5 = (A,u). There exists an algorithmB3 for extLWEm

k,n,q,β,{0n}
such that

Adv[B3] = |Pr[A(H4)]− Pr[A(H5)]| . (4.7)

Eq. (4.7) is derived very similarly to Eq. (4.4): We notice thatH4, H5 can be viewed as applying the same
efficient transformation on the distributions(C, Â) and(C,A) respectively. Since distinguishing the latter
distributions is exactly theextLWEm

k,n,q,β,{0n} problem (where the columns ofq ·B are interpreted as them
secret vectors), the distinguisherB3 follows by first applying the aforementioned transformation and then
applyingA.

Putting together Eq. (4.3), (4.4), (4.5), (4.6), (4.7), the lemma follows.

5 Exact Gaussian Sampler

In this section we prove Lemma 2.3. As in [GPV08], the proof consists of two parts. In the first we consider
the one-dimensional case, and in the second we use it recursively to sample from arbitrary lattices. Our
one-dimensional sampler is based on rejection sampling, just like the one in [GPV08]. Unlike [GPV08], we
use the continuous normal distribution as the source distribution which allows us to avoid truncation, and as
a result obtain an exact sample. Our second part uses the same recursive routine as in [GPV08], but adds a
rejection sampling step to it in order to take care of the deviation of its output from the desired distribution.

5.1 The one-dimensional case

Here we show how to sample from the discrete Gaussian distribution on arbitrary cosets of one-dimensional
lattices. We use a standard rejection sampling procedure (see, e.g. [Dev86, Page 117] for a very similar
procedure).

By scaling, we can restrict without loss of generality to the latticeZ, i.e., we consider the task of
sampling fromDZ+c,r for a given coset representativec ∈ [0, 1) and parameterr > 0. The sampling
procedure is as follows. LetZ0 =

∫∞
c ρr(x)dx, andZ1 =

∫ c−1
−∞ ρr(x)dx. These two numbers can be

computed efficiently by expressing them in terms of the error function. LetZ = Z0+Z1+ρr(c)+ρr(c−1).
The algorithm repeats the following until it outputs an answer:

• With probabilityρr(c)/Z it outputsc;
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• With probability ρr(c− 1)/Z it outputsc− 1;

• With probability Z0/Z it choosesx from the restriction of the continuous normal distributionDr to
the interval[c,∞). Let y be the smallest element inZ + c that is larger thanx. With probability
ρr(y)/ρr(x) outputy, and otherwise repeat;

• With probabilityZ1/Z it choosesx from the restriction of the continuous normal distributionDr to
the interval(−∞, c− 1]. Let y be the largest element inZ+ c that is smaller thanx. With probability
ρr(y)/ρr(x) outputy, and otherwise repeat.

Consider now one iteration of the procedure. The probability of outputtingc is ρr(c)/Z, that of out-
puttingc− 1 is ρr(c− 1)/Z, that of outputtingc+ k for somek ≥ 1 is

Z0

Z
· 1

Z0

∫ c+k

c+k−1
ρr(x) ·

ρr(c+ k)

ρr(x)
dx =

ρr(c+ k)

Z
,

and similarly, that of outputtingc−1−k for somek ≥ 1 isρr(c−1−k)/Z. From this it follows immediately
that conditioned on outputting something, the output distribution has support onZ+ c and probability mass
function proportional toρr, and is therefore the desired discrete Gaussian distributionDZ+c,r. Moreover,
the probability of outputting something is

ρr(Z+ c)

Z
=

ρr(Z+ c)

Z0 + Z1 + ρr(c) + ρr(c− 1)
≥ ρr(Z+ c)

ρr(Z+ c) + ρr(c) + ρr(c− 1)
≥ 1

2
.

Therefore at each iteration the procedure has probability of at least1/2 to terminate. As a result, the proba-
bility that the number of iterations is greater thant is at most2−t, and in particular, the expected number of
iterations is at most2.

5.2 The general case

For completeness, we start by recalling theSampleD procedure described in [GPV08]. This is a recursive
procedure that gets as input a basisB = (b1, . . . ,bn) of ann-dimensional latticeΛ = L(B), a parameter
r > 0, and a vectorc ∈ R

n, and outputs a vector inΛ + c whose distribution is close to that ofDΛ+c,r.

Let˜b1, . . . , ˜bn be the Gram-Schmidt orthogonalization ofb1, . . . ,bn, and letb1, . . . ,bn be thenormalized
Gram-Schmidt vectors, i.e.,bi = ˜bi/‖ ˜bi‖. Theprocedure is thefollowing.

1. Letcn ← c. For i← n, . . . , 1, do:

(a) Choosevi from D‖b̃i‖Z+〈ci,bi〉,r using the exact one-dimensional sampler.

(b) Letci−1 ← ci + (vi − 〈ci,bi〉) · bi/‖ ˜bi‖ − vibi.

2. Outputv :=
∑n

i=1 vibi.

It is easy to verify that the procedure always outputs vectors in the cosetΛ+c. Moreover, the probability
of outputting anyv ∈ Λ + c is

n
∏

i=1

ρr(vi)

ρr(‖ ˜bi‖Z + 〈ci,bi〉)
=

ρr(v)
∏n

i=1 ρr(‖ ˜bi‖Z + 〈ci,bi〉)
,
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whereci are the values computed in the procedure when it outputsv. Notice that by Lemma2.5 and our
assumption onr, we have thatr ≥ η1/(n+1)(‖ ˜bi‖Z) for all i. Therefore, by Lemma 2.7, we have that for all
c ∈ R,

ρr(‖ ˜bi‖Z + c) ∈
[

1− 2

n+ 2
, 1

]

ρr(‖ ˜bi‖Z).

In order to get an exact sample, we combine the above procedure with rejection sampling. Namely, we
applySampleD to obtain some vectorv. We then outputv with probability

∏n
i=1 ρr(‖ ˜bi‖Z+ 〈ci,bi〉)

∏n
i=1 ρr(‖ ˜bi‖Z)

∈
((

1− 2

n+ 2

)n

, 1

]

⊆ (e−2, 1], (5.1)

and otherwise repeat. This probability can be efficiently computed, as we will show below. As a result, in
any given iteration the probability of outputting the vectorv ∈ Λ+ c is

ρr(v)
∏n

i=1 ρr(‖ ˜bi‖Z)
.

Since the denominator is independent ofv, we obtain that in any given iteration, conditioned on outputting
something, the output is distributed according to the desired distributionDΛ+c,r, and therefore this is also
the overall output distribution of our sampler. Moreover, by (5.1), the probability of outputting something
in any given iteration is at leaste−2, and therefore, the probability that the number of iterations is greater
thant is at most(1− e−2)t, and in particular, the expected number of iterations is at moste2.

It remains to show how to efficiently compute the probability in (5.1). By scaling, it suffices to show
how to compute

ρr(Z + c) =
∑

k∈Z
exp(−π(k + c)2/r2)

for anyr > 0 andc ∈ [0, 1). If r < 1, the sum decays very fast, and we can achieve any desiredt bits of
accuracy in timepoly(t), which agrees with our notion of efficiently computing a real number (following,
e.g., the treatment in [Lov86, Section 1.4]). Forr ≥ 1, we use the Poisson summation formula (see,
e.g., [MR04, Lemma 2.8]) to write

ρr(Z+ c) = r ·
∑

k∈Z
exp(−πk2r2 + 2πick) = r ·

∑

k∈Z
exp(−πk2r2) cos(2πck),

which again decays fast enough so we can compute it to within any desiredt bits of accuracy in timepoly(t).

Acknowledgments: We thank Elette Boyle, Adam Klivans, Vadim Lyubashevsky, Sasha Sherstov, Vinod
Vaikuntanathan and Gilles Villard for useful discussions.
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How to Share a Lattice Trapdoor:
Threshold Protocols for Signatures and (H)IBE

Rikke Bendlin∗ Sara Krehbiel† Chris Peikert‡

Abstract

We develop secure threshold protocols for two important operations in lattice cryptography, namely,
generating a hard lattice Λ together with a “strong” trapdoor, and sampling from a discrete Gaussian
distribution over a desired coset of Λ using the trapdoor. These are the central operations of many crypto-
graphic schemes: for example, they are exactly the key-generation and signing operations (respectively)
for the GPV signature scheme, and they are the public parameter generation and private key extraction
operations (respectively) for the GPV IBE. We also provide a protocol for trapdoor delegation, which is
used in lattice-based hierarchical IBE schemes. Our work therefore directly transfers all these systems to
the threshold setting.

Our protocols provide information-theoretic (i.e., statistical) security against adaptive corruptions in
the UC framework, and they are private and robust against an optimal number of semi-honest or malicious
parties. Our Gaussian sampling protocol is both noninteractive and efficient, assuming either a trusted
setup phase (e.g., performed as part of key generation) or a sufficient amount of interactive but offline
precomputation, which can be performed before the inputs to the sampling phase are known.
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1 Introduction

A threshold cryptographic scheme [DF89] is one that allows any quorum of h out of ` trustees to jointly
perform some privileged operation(s) by following a specified protocol, and remains correct and secure even if
up to some t < h of the parties deviate from the protocol adversarially. For example, in a threshold signature
scheme any h trustees can sign an agreed-upon message, and no t malicious players (who may even pool their
knowledge and coordinate their actions) can prevent the signature from being produced, nor forge a valid
signature on a new message. Similarly, a threshold encryption scheme requires at least h trustees to decrypt
a ciphertext. Threshold cryptography is very useful for both distributing trust and increasing robustness in
systems that perform high-value operations, such as certificate authorities (CAs) or private-key generators in
identity-based encryption (IBE) systems.

Desirable efficiency properties in a threshold system include: (1) efficient local computation by the
trustees; (2) low interaction—e.g., one broadcast message from each party—when performing the privileged
operations; and (3) key sizes and public operations that are independent of the number of trustees. For
example, while it might require several parties to sign a message, it is best if the signature can be verified
without even being aware that it was produced in a distributed manner.

Over the years many elegant and rather efficient threshold systems have been developed. To name just a few
representative works, there are simple variants of the ElGamal cryptosystem, Canetti and Goldwasser’s [CG99]
version of the CCA-secure Cramer-Shoup cryptosystem [CS98], and Shoup’s [Sho00] version of the RSA
signature scheme. These systems, along with almost all others in the literature, are based on number-theoretic
problems related to either integer factorization or the discrete logarithm problem in cyclic groups. As is
now well-known, Shor’s algorithm [Sho97] would unfortunately render all these schemes insecure in a
“post-quantum” world with large-scale quantum computers.

Lattice-based cryptography. Recently, lattices have been recognized as a viable foundation for quantum-
resistant cryptography, and the past few years have seen the rapid growth of many rich lattice-based systems.
A fruitful line of research, starting from the work of Gentry, Peikert and Vaikuntanathan (GPV) [GPV08],
has resulted in secure lattice-based hash-and-sign signatures and (hierarchical) identity-based encryption
schemes [CHKP10, ABB10], along with many more applications (e.g., [GKV10, BF11b, BF11a, AFV11]).
All these schemes rely at heart on two nontrivial algorithms: the key-generation algorithm produces a lattice Λ
together with a certain kind of “strong” trapdoor (e.g., a short basis of Λ) [Ajt99, AP09], while the signing/key-
extraction algorithms use the trapdoor to randomly sample a short vector from a discrete Gaussian distribution
over a certain coset Λ + c, which is determined by the message or identity [GPV08]. Initially, both tasks
were rather complicated algorithmically, and in particular the Gaussian sampling algorithm involved several
adaptive iterations, so it was unclear whether either task could be efficiently and securely distributed among
several parties. Recently, however, both key generation and Gaussian sampling have been simplified and made
more efficient and parallel [Pei10, MP12]. This is the starting point for our work.

Our results. We give threshold protocols for the main nontrivial operations in lattice-based signature and
(H)IBE schemes, namely: (1) generating a lattice Λ together with a strong trapdoor of the kind recently
proposed in [MP12], (2) sampling from a discrete Gaussian distribution over a desired coset of Λ, and
(3) delegating a trapdoor for a higher-dimensional extension of Λ. Since these are the only secret-key
operations used in the signature and (H)IBE schemes of [GPV08, CHKP10, ABB10, MP12] and several other
related works, our protocols can be plugged directly into all those schemes to distribute the signing algorithms
and the (H)IBE private-key generators. In Section 4 we show how this is (straightforwardly) done for the
simplest of these applications, namely, the GPV signature scheme [GPV08]; the GPV IBE scheme and other
applications work similarly.
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Our protocols have several desirable properties:

• They provide information-theoretic (i.e., statistical) security for adaptive corruptions. By information-
theoretic security, we mean that the security of the key-generation and sampling protocols themselves
relies on no computational assumption—instead, the application alone determines the assumption
(usually, the Short Integer Solution assumption [Ajt96, MR04] for digital signatures, and Learning With
Errors [Reg05] for identity-based encryption). We work in a version of the universal composability
(UC) framework [Can01], specialized to the threshold setting, and as a result also get strong security
guarantees for protocols under arbitrary composition.

• They are secure for an optimal threshold of semi-honest or active (malicious) parties, which is deter-
mined by the precise communication model and setup assumption. For example, we can tolerate h− 1
semi-honest parties assuming trusted setup (see below), or t = h− 1 malicious parties in a model with
both broadcast and private channels, using the verifiable secret sharing scheme of [RB89]. (Recall
that h is the number of (semi-)honest parties the protocol requires to execute successfully, and the
robustness threshold t is an upper bound on the number of malicious parties.)

• The public key and trapdoor “quality” (i.e., the width of the discrete Gaussian that can be sampled
using the trapdoor; smaller width means higher quality) are essentially the same as in the standalone
setting. In particular, their sizes are independent of the number of trustees; the individual shares of the
trapdoor are the same size as the trapdoor itself; and the protocols work for the same lattice parameters
as in the standalone setting, up to small constant factors.

• They have noninteractive and very efficient online phases (corresponding to the signing or key-extraction
operations), assuming either (1) a setup phase in which certain shares are distributed by a trusted party
(e.g., as part of key generation), or (2) the parties themselves perform a sufficient amount of interactive
precomputation in an offline phase (without relying on any trusted party). We provide protocols for
these two settings in Section 3 and Appendix A, respectively.

Regarding the final item, the trusted setup model is the one used by Canetti and Goldwasser [CG99]
for constructing threshold chosen ciphertext-secure threshold cryptosystems: as part of the key-generation
process, a trusted party also distributes shares of some appropriately distributed secrets to the parties, which
they can later use to perform an a priori bounded number of noninteractive threshold operations. Or, in lieu of
a trusted party, the players can perform some interactive precomputation (offline, before the desired coset is
known) to generate the needed randomness. The downside is that this precomputation is somewhat expensive,
since the only solution we have for one important step (namely, sampling shares of a Gaussian-distributed
value over Z) is to use somewhat generic information-theoretic multiparty computation tools. On the plus
side, the circuit for this sampling task is rather shallow, with depth just slightly super-constant ω(1), so the
round complexity of the precomputation is not very high. We emphasize that the expensive precomputation is
executed offline, before the applications decides which lattice cosets will be sampled from, and that the online
protocols remain efficient and non-interactive.

Our protocols rely on the very simple form of the new type of strong trapdoor recently proposed in [MP12],
and the parallel and offline nature of recent standalone Gaussian sampling algorithms [Pei10, MP12].1 A key
technical challenge is that the security of the sampling algorithms from [Pei10, MP12] crucially relies on
the secrecy of some intermediate random variables known as “perturbations.” However, in order to obtain a
noninteractive protocol we need the parties to publicly reveal certain information about these perturbations.
Fortunately, we can show that the leaked information is indeed simulatable, and so security is unharmed. See
Section 3 and in particular Lemma 3.2 for further details.

1In particular, it appears very difficult to implement, in a noninteractive threshold fashion, iterative sampling algorithms like those
from [Kle00, GPV08] which use the classical trapdoor notion of a short basis.
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Open problems. In addition to simple, non-interactive protocols for discrete Gaussian sampling with
trusted setup, in Appendix A we give efficient protocols for discrete Gaussian sampling that avoid both trusted
setup and online interaction by using (offline) access to a functionality FSampZ, which produces shares of
Gaussian-distributed values over the integers Z (see Appendix A.1 for details). We show how to instantiate
FSampZ using a (somewhat inefficient) interactive protocol using generic MPC techniques. It remains an
interesting open problem to design discrete Gaussian sampling protocols without trusted setup whose offline
precomputation is efficient and/or non-interactive as well. An efficient realization of FSampZ would yield such
a solution, but there may be other routes as well.

Another intriguing problem is to give a simple and noninteractive threshold protocol for inverting the LWE
function gA(s, e) = stA + et mod q (for short error vector e) using a shared trapdoor. We find it surprising
that, while in the standalone setting this inversion task is conceptually and algorithmically much simpler than
Gaussian sampling, we have not yet been able to find a simple threshold protocol for it.2 Such a protocol
could, for example, be useful for obtaining threshold analogues of the chosen ciphertext-secure cryptosystems
from [Pei09, MP12], without going through a generic IBE-to-CCA transformation [BCHK07].

Related work in threshold lattice cryptography. A few works have considered lattice cryptography in
the threshold setting. For encryption schemes, Bendlin and Damgård [BD10] gave a threshold version of
Regev’s CPA-secure encryption scheme based on the learning with errors (LWE) problem [Reg05]. Related
work by Myers et al. [MSs11] described threshold decryption for fully homomorphic cryptosystems. Xie et
al. [XXZ11] gave a threshold CCA-secure encryption scheme from any lossy trapdoor function (and hence
from lattices/LWE [PW08]), though its public key and encryption runtime grow at least linearly with the
number of trustees. For signatures, Feng et al. [FGM10] gave a threshold signature scheme where signing
proceeds sequentially through each trustee, making the scheme highly interactive; also, the scheme is based
on NTRUSign, which has been broken [NR06]. Cayrel et al. [CLRS10] gave a lattice-based threshold ring
signature scheme, in which at least t trustees are needed to create an anonymous signature. In that system, each
trustee has its own public key, and verification time grows linearly with the number of trustees. In summary,
lattice-based threshold schemes to date have either been concerned with distributing the decryption operation
in public-key cryptosystems, and/or have lacked key efficiency properties typically asked of threshold systems
(which our protocols do enjoy). Also, other important applications such as (H)IBE have yet to be realized in a
threshold manner.

Organization. The remainder of the paper is organized as follows. In Section 2 we overview the relevant
background on lattices, secret sharing, and the UC framework. In Section 3 we review the standalone
key-generation and discrete Gaussian sampling algorithms of [MP12], present our functionalities for these
algorithms in the threshold setting, and show how these functionalities can be implemented efficiently
and noninteractively using trusted setup. At the end of Section 3 we additionally provide a functionality
and protocol for trapdoor delegation. Finally, in Section 4 we detail a simple example application of our
protocols, namely, a threshold version of the GPV signature scheme [GPV08] realizing the threshold signature
functionality of [ADN06]. In the appendix, we remove the trusted setup assumption and show how to instead
use offline interaction to implement all our functionalities.

2 Preliminaries

We denote the reals by R and the integers by Z. For a positive integer `, we let [`] = {1, . . . , `}.
2We note that it is possible to give a threshold protocol using a combination of Gaussian sampling and trapdoor delega-

tion [CHKP10, MP12], but it is obviously no simpler than Gaussian sampling alone.
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A square symmetric real matrix Σ is positive definite, written Σ > 0, if xtΣx > 0 for all nonzero x.
Positive definiteness defines a partial ordering on symmetric matrices: we say that Σ1 > Σ2 if (Σ1−Σ2) > 0.
For any nonsingular matrix B ∈ Rn×n, the symmetric matrix Σ = BBt is positive definite. We say that
B is a square root of Σ > 0, written B =

√
Σ, if BBt = Σ. Every Σ > 0 has a square root; moreover,

the square root is unique up to right-multiplication by an orthogonal matrix, i.e., B′ =
√

Σ if and only if
B′ = BQ for some orthogonal matrix Q. A square root can be computed efficiently using, e.g., the Cholesky
decomposition. The largest singular value (also called spectral norm or operator norm) of a real matrix X is
defined as s1(X) = maxu6=0‖Xu‖/‖u‖. For convenience, we sometime write a scalar s to mean the scaled
identity matrix sI, whose dimension will be clear from context.

2.1 Continuous Gaussians

The n-dimensional Gaussian function ρ : Rn → (0, 1] is defined as

ρ(x)
∆
= exp(−π · ‖x‖2) = exp(−π · 〈x,x〉).

Applying a linear transformation given by a nonsingular real matrix B yields the Gaussian function

ρB(x) := ρ(B−1x) = exp
(
−π ·

〈
B−1x,B−1x

〉)
= exp

(
−π · xtΣ−1x

)
,

where Σ = BBt > 0. Because ρB is distinguished only up to Σ, we usually refer to it as ρ√Σ.
Normalizing ρ√Σ by its total measure

∫
Rn ρ√Σ(x) dx =

√
det Σ over Rn, we obtain the probability

distribution function of the (continuous) Gaussian distribution D√Σ. It is easy to check that a random
variable x having distribution D√Σ can be written as

√
Σ · z, where z has spherical Gaussian distribution D1.

Therefore, the random variable x has covariance

E
x∼D√Σ

[
x · xt

]
=
√

Σ · E
z∼D1

[
z · zt

]
·
√

Σ
t

=
√

Σ · I

2π
·
√

Σ
t

=
Σ

2π
,

by linearity of expectation. (The I/(2π) covariance of z ∼ D1 arises from the independence of its entries,
which are each distributed as D1 in one dimension, and therefore have variance 1/(2π).) For convenience, in
this paper we implicitly scale all covariance matrices by a 2π factor, and refer to Σ as the covariance matrix
of D√Σ.

2.2 Lattices and Discrete Gaussians

A lattice Λ is a discrete additive subgroup of Rm for some m ≥ 0. In this work we are only concerned with
full-rank integer lattices, which are additive subgroups of Zm with finite index. Most recent cryptographic
applications use a particular family of so-called q-ary integer lattices, which contain qZm as a sublattice for
some integer q, which in this work will always be bounded by poly(n). For positive integers n and q, let
A ∈ Zn×mq be arbitrary, and define the full-rank m-dimensional q-ary lattice

Λ⊥(A) = {z ∈ Zm : Az = 0 mod q}.

For any u ∈ Znq admitting an integral solution x ∈ Zm to Ax = u mod q, define the coset (or shifted lattice)

Λ⊥u (A) = Λ⊥(A) + x = {z ∈ Zm : Az = u mod q}.

Note that for n,m, q ≤ 2 and m > Cn log q for some fixed constant C > 1, the columns of a uniformly
random matrix A ∈ Zn×mq generate all of Znq with all but negl(n) probability.
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Let Λ ⊂ Rm be a lattice, let c ∈ Rm, and let Σ > 0 be a positive definite matrix. The discrete Gaussian
distribution DΛ+c,

√
Σ is simply the Gaussian distribution D√Σ restricted so that its support is the coset Λ + c.

That is, for all x ∈ Λ + c,

DΛ+c,
√

Σ(x) =
ρ√Σ(x)

ρ√Σ(Λ + c)
∝ ρ√Σ(x).

A discrete Gaussian is said to be spherical with parameter s > 0 if its covariance matrix is s2I.
We recall an important definition and some useful properties of discrete Gaussian distributions on lattices.

For ε > 0, the smoothing parameter [MR04] ηε(Λ) of a lattice Λ is defined as the smallest s > 0 such that
ρ1/s(Λ

∗ \ {0}) ≤ ε, where Λ∗ is the dual lattice (whose precise definition we will not need here). Here we
generalize the smoothing parameter to non-spherical Gaussians; note that this definition is consistent with the
partial ordering on positive definite matrices.

Definition 2.1 (Smoothing parameter). Let Σ > 0 be any positive definite matrix. We say that
√

Σ ≥ ηε(Λ)

if ηε(
√

Σ
−1 · Λ) ≤ 1, or equivalently, if ρ√

Σ−1(Λ∗\{0}) ≤ ε.

The following lemma is a slight generalization of [Reg05, Claim 3.8] (see also [MR04, Lemma 4.1]) to
non-spherical Gaussians, obtained by applying a linear transformation to the Gaussian function and lattice.
Informally, it says that every coset of Λ has essentially the same mass under ρ√Σ, when

√
Σ exceeds the

smoothing parameter of Λ. The corollary then follows by a routine calculation.

Lemma 2.2. For any m-dimensional lattice Λ, real ε > 0, r ≥ ηε(Λ), and c ∈ Rm, we have ρ√Σ(Λ + c) ∈
[1± ε] · ZΛ,r, where ZΛ,r depends only on Λ and r (not c).

Corollary 2.3. Let Λ′ ⊆ Λ be full-rank lattices, and let
√

Σ ≥ ηε(Λ′) for some ε > 0. For x← DΛ,
√

Σ, the
marginal distribution of c = x mod Λ′ is within statistical distance ε/2 from uniform over Λ/Λ′, and the
conditional distribution of x given c is DΛ′+c,

√
Σ.

The following special case of [MP12, Lemma 2.4] says that for uniformly random A and appropriate
parameters, the lattice Λ⊥(A) has small smoothing parameter with very high probability.

Lemma 2.4. Let n,m, q ≥ 2 be positive integers and C > 1 be a fixed constant such that m > Cn log q,
and let A ∈ Zn×mq be uniformly random. For any fixed ωn = ω(

√
log n) there exists some ε = negl(n) such

that ηε(Λ⊥(A)) ≤ ωn except with probability 2−Ω(n).

Finally, we need the “convolution lemma” of [Pei10, Theorem 3.1].

Lemma 2.5. Let Σ1,Σ2 > 0 be positive definite matrices, with Σ = Σ1 +Σ2 > 0 and Σ−1 = Σ−1
1 +Σ−1

2 >
0. Let Λ1,Λ2 be lattices such that

√
Σ1 ≥ ηε(Λ1) and

√
Σ2 ≥ ηε(Λ2) for some positive ε ≤ 1/2, and let

c1, c2 ∈ Rm be arbitrary. In the following experiment:

choose x2 ← DΛ2+c2,
√

Σ2
, then choose x1 ← x2 +DΛ1+c1−x2,

√
Σ1

,

the marginal distribution of x1 is within statistical distance 8ε of DΛ1+c1,
√

Σ.

Throughout the paper we often attach a factor ωn = ωn(n) = ω(
√

log n), which represents an arbitrary
fixed function that grows asymptotically faster than

√
log n, to Gaussian parameters

√
Σ (or ω2

n to covariance
matrices Σ). In exposition we usually omit reference to these factors, but we always retain them where needed
in formal expressions.
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2.3 Secret Sharing for Additive Groups

In this work we will need to distribute secret lattice points among multiple players, so that any sufficiently
large number of players is able to reconstruct the points, but smaller subsets collectively get no information
about the secret. Because a lattice Λ is an infinite additive group (and in particular is not a field), it is not
immediately amenable to standard secret-sharing techniques like those of [Sha79]. Fortunately, for our
purposes it will suffice to share elements of a suitable finite quotient group G = Λ/Λ̄, where the sublattice
Λ̄ ⊆ Λ is “sparse” enough in Λ that an element of G identifies an element of Λ with enough specificity
for our applications. There is a rich theory of secret sharing for arbitrary additive groups and modules,
e.g., [DF94, Feh98]. Here we recall the relevant material in enough generality for our purposes.

Let G be a finite abelian (additive) group with identity element 0. The exponent of G, denoted e(G), is
the smallest positive integer m such that mg = g + g + · · ·+ g = 0 for every g ∈ G. We have that G is a
module over the ring R = Ze(g), which gives the following form of Shamir’s (t+ 1)-out-of-` secret-sharing
scheme [Sha79]. Let t < ` be positive integers, where t denotes a bound on the number of corrupt players
out of ` total. Suppose that G is an R-module for some ring R which has efficiently computable operations
and `+ 1 known elements U = {r0 = 0, r1, . . . , r`} ⊆ R such that ri − rj is invertible in R (i.e., a unit) for
every i 6= j. For example, in our protocols we will have e(G) = qd for some public integers q ≥ 2 and d ≥ 1,
so we can take R = Zqd and ri = i mod qd, as long as ` is smaller than every prime divisor of q. When this
condition does not hold, we can use an extension ring instead, as described below.

To share a value g ∈ G, one chooses a formal polynomial f(X) =
∑t

j=0 fjX
j ∈ G[X] of degree at

most t, where f0 = g and the fi ∈ G for i ≥ 1 are uniformly random and independent. Player i ∈ [`] is
publicly associated with the value ri ∈ R, and gets the share si = f(ri) =

∑t−1
j=0 r

j
i fj ∈ G. Usually we let f

be implicit, denoting the ith player’s share as JgKi and the tuple of all shares by JgK. Note that the product
group Gk is also an additive group with exponent e(G), so we can share vectors or matrices with entries in G
as above, using the same ring Ze(G). (Equivalently, this is just an independent entry-wise sharing.)

The above scheme has several important properties (whose proofs are straightforward; see, e.g., [Feh98]):

• It is ideal: the shares si ∈ G belong to the same set as the shared value g ∈ G.

• It is perfectly secret: for any shared value g ∈ G, any tuple of up to t shares si is distributed uniformly.

• It is perfectly correct and robust: any t+ 1 shares si of g (along with their corresponding evaluation
points ri) can be used to efficiently recover f(X), and hence g = f0 = f(0), by interpolation.

Moreover, given at least 3t+ 1 values s′i (along with the corresponding evaluation points ri), where at
least 2t+ 1 are correct shares s′i = f(ri) of g and the remaining t may be arbitrary, one can efficiently
recover f(X) and hence g = f0 using, e.g., the Welch-Berlekamp algorithm for unambiguous decoding
of Reed-Solomon codes. (The algorithm is usually described for codes defined over finite fields, but its
proof of correctness goes through without modification in our setting.)

• It is homomorphic: if g, g′ ∈ G have respective shares si = f(ri), s
′
i = f ′(ri) for i ∈ [`], then

si + s′i = (f + f ′)(ri) and rsi = (rf)(ri) are respective shares of g + g′ and rg for any r ∈ R.
Moreover, let G′ ⊆ G be a subgroup; then s̄i = si mod G′ are shares of ḡ = g mod G′, via the
polynomial f̄(X) = f(X) mod G′[X]. Additionally, if g ∈ G′, then si − s̄i ∈ G′ are shares of g.

Secret sharing with extension rings. The above scheme works when the number of parties ` is less than
every prime divisor of e(G). When this is not the case (e.g., when using q = 2k, which is a convenient
choice for the trapdoor construction described in Section 3.1), we can instead share elements from the vector
groupGk, which is a module over a certain extension ring of Ze(G) that has a suitable set U of size pk, where p
is the smallest prime divisor of e(G). By choosing k ≥ logp(`+ 1), we can share elements of G among `
players using shares in Gk, or even amortize the sharing of up to k elements in G at a time.

6
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In brief, we use the extension ring R = Ze(G)[X]/F (X) for any monic degree-k polynomial F (X) =∑k
i=0 FiX

i ∈ Ze(G)[X] that is irreducible modulo every prime dividing e(G). Then it can be verified
that Gk is an R-module, where multiplication R × Gk → Gk is defined by the rule X · (g0, . . . , gk−1) =
(0, g0, . . . , gk−2)− (F0 · gk−1, . . . , Fk−1 · gk−1). An element of R is a unit if and only if it is nonzero modulo
every prime integer divisor of e(G), so letting p be the smallest such divisor, the polynomial residues in R
with coefficients in {0, . . . , p− 1} give us pk elements ri ∈ R such that ri − rj is a unit for all i 6= j, as
needed. See, for example, [DF94] or [Feh98, Chapter 3] for full details.

Verifiable secret sharing. To recover a shared value, our protocols instruct honest parties to broadcast
their respective shares and then reconstruct the value from the announced shares. As mentioned above, the
Welch-Berlekamp algorithm efficiently reconstructs the shared value given at least 2t+ 1 correct shares and
up to t incorrect ones (which may come from malicious parties), which means we can tolerate any t < `/3
malicious parties. Assuming appropriate communication channels, it is possible to improve this threshold to
any t < `/2 malicious parties by using a verifiable secret sharing (VSS) protocol, e.g., the one of [RB89].
The share-distribution and reconstruction steps of our protocols can be straightforwardly modified to use VSS,
but we omit these modifications for simplicity of exposition.

2.4 UC Framework

We frame our results in the Universal Composability (UC) framework [Can00, Can01]. In the UC framework,
security is defined by considering a probabilistic polynomial-time (PPT) machine Z , called the environment.
In coordination with an adversary that may corrupt some of the players, Z chooses inputs and observes
the outputs of a protocol executed in one of two worlds: a “real” world in which the parties interact with
each other in some specified protocol π while a dummy adversary A (controlled by Z) corrupts players and
controls their interactions with honest players, and an “ideal” world in which the players interact directly
with a functionality F, while a simulator S (communicating with Z) corrupts players and controls their
interactions with F. The views of the environment in these executions are respectively denoted REALπ,A,Z
and IDEALF,S,Z , and the protocol is said to realize the functionality if these two views are indistinguishable. In
this work we are concerned solely with statistical indistinguishability (which is stronger than the computational
analogue), denoted by the relation

s
≈.

Definition 2.6. A protocol π statistically realizes a functionality F (or alternatively, is a UC-secure imple-
mentation of F) if for any probabilistic polynomial-time (PPT) adversary A, there exists a PPT simulator S
such that for all PPT environments Z , we have IDEALF,S,Z

s
≈ REALπ,A,Z .

The universal composition theorem [Can01] informally states that any UC-secure protocol remains
secure under concurrent general composition. This allows for the modular design of functionalities and
protocols which can be composed to produce secure higher-level protocols. Our functionalities implicitly use
standard conventions like delayed public and private outputs, corruptions, etc, which are addressed in detail
in [Can00, Can01].

UC framework for threshold protocols. We consider a specialized case of the UC framework that is
appropriate for modeling threshold protocols. All of our functionalities are called with a session ID of the
form sid = (P, sid′), where P is a set of ` parties representing the individual trustees in the threshold
protocol. We prove security against adversaries that may adaptively corrupt a certain bounded number of
the parties over the entire lifetime of a protocol, and consider both the semi-honest case (in which corrupted
parties still execute the protocol faithfully) and the malicious case. At the time of corruption, the entire
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view of the player to that point (and beyond) is revealed to the adversary; in particular, we do not assume
secure erasures. For robustness, we additionally require that when the environment issues a command to a
functionality/protocol, it always does so for at least h honest parties in the same round.

Many of our protocols require the parties to maintain and use consistent local states, corresponding to
certain shared random variables that are consumed by the protocols. We note that synchronizing their local
states may be nontrivial, if not every party is involved with executing every command. For this reason we
assume some mechanism for coordinating local state, such as hashing as suggested in [CG99], which deals
with similar synchronization issues.

3 Threshold Key Generation, Gaussian Sampling, and Trapdoor Delegation

In this section, we present UC functionalities and protocols for generating a lattice with a shared trapdoor,
for sampling from a coset of that lattice, and for securely delegating a trapdoor of a higher-dimensional
extension of the lattice. As an example application of these functionalities, in Section 4 we describe
threshold variants of the GPV signature and IBE schemes of [GPV08]; other signature and (H)IBE schemes
(e.g., [CHKP10, ABB10, MP12]) can be adapted similarly (where delegation is needed for HIBE).

We start in Section 3.1 by recalling the recent standalone (non-threshold) key generation and discrete
Gaussian sampling algorithms of [MP12], which form the basis of our protocols. In Section 3.2 we present the
two main functionalities FKG (key generation) and FGS (Gaussian sampling) corresponding to the standalone
algorithms.

• Since key generation tends to be rare in applications, FKG can be realized using trusted setup; alterna-
tively, in Appendix A we realize FKG via an interactive protocol without trusted setup.

• To realize FGS, we define two lower-level “helper” functionalities FPerturb and FCorrect, and give in
Section 3.3 an efficient noninteractive protocol that realizes FGS using access to them. Section 3.2
realizes the helper functionalities noninteractively using trusted setup, and Appendix A realizes them
using offline precomputation (instead of trusted setup).

• Finally, in Section 3.4 we give a functionality FDelTrap and protocol for trapdoor delegation.

3.1 Trapdoors and Standalone Algorithms

We recall the notion of a (strong) lattice trapdoor and associated algorithms recently introduced by Micciancio
and Peikert [MP12] (see that paper for full details and proofs). Let n and q be positive integers and k = dlg qe.
Define the “gadget” vector g = (1, 2, 4, . . . , 2k−1) ∈ Zkq and matrix

G := In ⊗ gt =


· · ·gt · · ·

· · ·gt · · ·
. . .
· · ·gt · · ·

 ∈ Zn×nkq .

The k-dimensional lattice Λ⊥(gt) ⊂ Zk, and hence also the nk-dimensional lattice Λ⊥(G), has smoothing
parameter bounded by sg · ωn, where sg ≤

√
5 is a known constant. There are efficient algorithms that, given

any desired syndrome u ∈ Zq, sample from a discrete Gaussian distribution over the coset Λ⊥u (gt) for any
given parameter s ≥ sg · ωn. Since Λ⊥(G) ⊂ Znk is the direct sum of n copies of Λ⊥(gt), discrete Gaussian
sampling over a desired coset Λ⊥u (G) (with parameter s ≥ sg · ωn) can be accomplished by concatenating n
independent samples over appropriate cosets of Λ⊥(gt).

8
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Definition 3.1 ([MP12]). Let m ≥ nk be an integer and define m̄ = m− nk. For A ∈ Zn×mq , we say that
R ∈ Zm̄×nkq is a trapdoor for A with tag H∗ ∈ Zn×nq if A

[
R
I

]
= H∗ ·G. The quality of the trapdoor is

defined to be the spectral norm s1(R).

Note that H∗ is uniquely determined and efficiently computable from R, because G contains the n-by-n
identity as a submatrix. Note also that if R is a trapdoor for A with tag H∗, then it is also a trapdoor for
AH := A− [0 | HG] with tag H∗ −H ∈ Zn×nq .

The key-generation algorithm of [MP12] produces a parity-check matrix A ∈ Zn×mq together with a
trapdoor R having desired tag H∗. It does so by choosing (or being given) a uniformly random Ā ∈ Zn×m̄q

and a random R ∈ Zm̄×nk having small s1(R), and outputs A = [Ā | H∗ ·G− ĀR]. For sufficiently large
m ≥ Cn lg q (where C is a universal constant) and appropriate distribution of R, the output matrix A is
uniformly random, up to negl(n) statistical distance.

The discrete Gaussian sampling algorithm of [MP12] is an instance of the “convolution” approach
from [Pei10]. It works in two phases:

1. In the offline “perturbation” phase, it takes as input a parity-check matrix A, a trapdoor R for A with
some tag H∗ ∈ Zn×nq , and a Gaussian parameter s ≥ Cs1(R) (where C is some universal constant).
It chooses one or more Gaussian perturbation vectors p ∈ Zm (one for each future call to the online
sampling step) having non-spherical covariance Σp that depends only on s and the trapdoor R.

2. In the online “syndrome correction” phase, it is given a syndrome u ∈ Znq and a tag H ∈ Zn×nq . As
long as H∗ −H ∈ Zn×nq is invertible, it chooses z ∈ Znk having Gaussian distribution with parameter
sg · ωn over an appropriate coset of Λ⊥(G), and outputs x = p +

[
R
I

]
z ∈ Λ⊥u (AH), where p is a

fresh perturbation from the offline step.

Informally, the perturbation covariance Σp of p is carefully designed to cancel out the trapdoor-revealing
covariance of y =

[
R
I

]
z, so that their sum has a (public) spherical Gaussian distribution. More formally,

the output x has distribution within negl(n) statistical distance of DΛ⊥u (AH),s·ωn
, and in particular does not

reveal any information about the trapdoor R (aside from an upper bound s on s1(R), which is public).
We emphasize that for security, it is essential that none of the intermediate values p, z or y =

[
R
I

]
z be

revealed, otherwise they could be correlated with x to leak information about the trapdoor R that could lead
to an attack like the one given in [NR06].

3.2 Functionalities for Threshold Sampling

Here we present ideal functionalities corresponding to the above two algorithms. The key-generation and
Gaussian sampling functionalities FKG and FGS are specified in Figure 1 and Figure 2, respectively; they
internally execute the standalone algorithms described above.

To realize FKG, in the trusted setup model (as used in [CG99]) we can simply let the trusted party play
the role of FKG, because key generation is a one-time setup. To realize FGS, for the purpose of modularity we
define two lower-level functionalities FPerturb and FCorrect (Figures 3 and 4), which generate the perturbation
and syndrome-correction components, respectively, as in the standalone sampling algorithm. The FGS,
FPerturb, and FCorrect functionalities are all initialized with a bound B on the number of Gaussian samples
that they will produce in their lifetimes. This is because the trusted setup (or offline precomputation) phases
of our protocols need to prepare sufficient randomness so that the online phases can be noninteractive. (If
the bound B is reached, then the parties can just initialize new copies of FGS, FPerturb, and FCorrect using the
same arguments from FKG.)

9
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Functionality FKG

Generate: Upon receiving (gen, sid, Ā ∈ Zn×m̄
q ,H∗ ∈ Zn×n

q , z) from at least h honest parties in P:

• Choose R← Dm̄×nk
Z,z·ωn

and compute a sharing JRK over Zq . Let A = [Ā | H∗ ·G− ĀR].

• Send (gen, sid,A, JRKi) to each party i in P , and (gen, sid,A,H∗, z) to the adversary.

Figure 1: Key generation functionality

Functionality FGS

Initialize: Upon receiving (init, sid,A, JRKi,H∗, s, B) from at least h honest parties i in P:

• Reconstruct R and store sid, A, R, H∗, s, and B.
• Send (init, sid) to each party in P , and (init, sid,A,H∗, s, B) to the adversary.

Sample: Upon receiving (sample, sid,H ∈ Zn×n
q ,u ∈ Zn

q ) from at least h honest parties in P , if H∗ −H ∈
Zn×n
q is invertible and fewer than B calls to sample have already been made:

• Sample x← DΛ⊥u (AH),s·ωn
using the algorithm from [MP12] with trapdoor R.

• Send (sample, sid,x) to all parties in P , and (sample, sid,H,u,x) to the adversary.

Figure 2: Gaussian sampling functionality

We next describe the helper functionalities FPerturb and FCorrect, and describe how they can be realized
efficiently and noninteractively using trusted setup.

3.2.1 Perturbation

Our perturbation functionalityFPerturb (Figure 3) corresponds to the offline perturbation phase of the standalone
sampling algorithm. The perturb command does not take any inputs, so its results can be precomputed offline,
before the command is actually invoked. The possibility of precomputation introduces one subtlety in the
definition of the functionality, however. Notice that the functionality asks the adversary for share values JpKi

for the corrupted parties, then generates shares for the honest parties that are consistent with those shares;
clearly this does not affect the secrecy of p. This formulation is needed for proving security of a protocol that
precomputes shares of perturbations before any real calls to perturb are made (we give such a protocol in
Appendix A.4). It allows the simulator to choose shares on its own when simulating the precomputation, and
ensures that the functionality later distributes shares that are consistent with the simulation. Observe that with
trusted setup, FPerturb can be trivially realized by just precomputing and distributing shares of B samples in
the initialization phase, which the parties then consume in the online phase.

Note that FPerturb distributes shares JpKi of a perturbation p to the players, which themselves do not reveal
any information about p to the adversary, just as in the standalone Gaussian sampling algorithm. However, in
order for the perturbation to be useful in the later syndrome-correction phase, the parties will need to know
(and so FPerturb reveals) some partial information about p, namely, the syndromes w̄ = [Ā | −ĀR] · p ∈ Znq
and w = [0 | G] · p ∈ Znq . This is the main significant difference with the standalone setting, in which these
same syndromes are calculated internally but never revealed. Informally, Lemma 3.2 below shows that the
syndromes are uniformly random (up to negligible error), and hence can be simulated without knowing p.
Furthermore, p will still be a usable perturbation even after w̄,w are revealed, because it has an appropriate
(non-spherical) Gaussian parameter which sufficiently exceeds the smoothing parameter of an appropriate
lattice. This fact will be used later in the proof of security for our FGS realization.

10
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Functionality FPerturb

Initialize: Upon receiving (init, sid,A−H∗ = [Ā | −ĀR], JRKi, s, B) from at least h honest parties i in P:

• Reconstruct R to compute covariance matrix Σp = s2 − s2
g [ RI ] [ Rt I ] and store sid, A−H∗ , and Σp.

• Send (init, sid) to all parties in P and (init, sid,A−H∗ , s, B) to the adversary.

Perturb: Upon receiving (perturb, sid) from at least h honest parties in P , if fewer than B calls to perturb have
already been made:

• Choose p← DZm,
√

Σp·ωn
.

• Compute w̄ = A−H∗ · p ∈ Zn
q and w = [0 | G] · p ∈ Zn

q .

• Send (perturb, sid, w̄,w) to the adversary, and receive back shares JpKi ∈ Zm
q for each currently

corrupted party i in P .
• Generate a uniformly random sharing JpK consistent with the shares received in the previous step.
• Send (perturb, sid, JpKi, w̄,w) to each party i in P .

Figure 3: Perturbation functionality

Lemma 3.2. Let Ā ∈ Zn×m̄q be uniformly random for m̄ = m− nk ≥ n lg q + ω(log n), let

B =

[
Ā −ĀR

G

]
= (Ā⊕G)

[
I −R

I

]
∈ Z2n×(m̄+nk)

q

(where ⊕ denotes the direct sum), and let Λ = Λ⊥(B). Then with all but negl(n) probability over the choice
of Ā, we have ηε(Λ⊥(B)) ≤

√
5(s1(R) + 1) · ωn for some ε = negl(n).

In particular, for p ← DZm,
√

Σp
where

√
Σp ≥ 6(s1(R) + 1) · ωn ≥ 2ηε(Λ

⊥(B)), the syndrome

u = (w̄,w) = Bp ∈ Z2n
q is negl(n)-far from uniform, and the conditional distribution of p given u is

D
Λ⊥u (B),

√
Σp

.

Proof. By Lemma 2.4, we have ηε′(Λ⊥(Ā)) ≤ 2 ·ωn (with overwhelming probability) for some ε′ = negl(n).
Also as shown in [MP12], we have ηε′(Λ⊥(G)) ≤

√
5 · ωn (see Section 3.1). This implies that

ηε(Λ
⊥(Ā⊕G)) ≤

√
5 · ωn

where (1 + ε) = (1 + ε′)2, and in particular ε = negl(n).
Since T =

[
I −R

I

]
is unimodular with inverse T−1 =

[
I R

I

]
, it is easy to verify that Λ⊥(B) =

T−1 · Λ⊥(Ā⊕G), and hence

ηε(Λ
⊥(B)) ≤ s1(T−1) · ηε(Λ⊥(Ā⊕G)) ≤

√
5(s1(R) + 1) · ωn.

3.2.2 Syndrome Correction

Our functionality FCorrect (Figure 4) corresponds to the syndrome-correction step of the standalone sampling
algorithm. Because its output y must lie in a certain coset Λ⊥v (A), where v depends on the desired final
syndrome u, the functionality must be invoked online. As indicated in the overview, the standalone algorithm
samples z← Λ⊥v (G) and defines y =

[
R
I

]
z. The functionality does the same, but outputs only shares of y

to their respective owners. This ensures that no information about y is revealed to the adversary. (Note that
the input syndrome v itself is not revealed in the standalone algorithm, but in our setting v is determined
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Functionality FCorrect

Initialize: Upon receiving (init, sid, JRKi, B) from at least h honest parties i in P:

• Reconstruct R and store sid, R, and B.
• Send (init, sid) to all parties in P and (init, sid,B) to the adversary.

Correct: Upon receiving (correct, sid,v) from at least h honest parties in P , if fewer than B calls to correct
have already been made:

• Sample z← DΛ⊥v (G),sg·ωn
and compute y = [ RI ] z.

• Send (correct, sid,v) to the adversary, receive shares JyKi ∈ Zm
q for each currently corrupted party i,

and generate a uniformly random sharing JyK consistent with these shares.
• Send (correct, sid, JyKi) to each party i in P .

Figure 4: Syndrome correction functionality

entirely by public information, so it is known to the adversary.) Also, just like FPerturb, the functionality asks
the simulator for shares for the corrupted parties, to make precomputation simulatable.

Realizing FCorrect with a noninteractive protocol relies crucially on the parallel and offline nature of the
corresponding step in the standalone algorithm. In particular, we use the fact that without knowing v in
advance, the algorithm can precompute partial samples for each of the q = poly(n) scalar values v ∈ Zq,
and then linearly combine n such partial samples to answer a query for a full syndrome v ∈ Znq .

In the trusted setup model, the protocol realizing FCorrect is as follows.

1. In the offline phase, a trusted party uses the trapdoor R (with tag H∗) to distribute shares as follows.
For each j ∈ [n] and v ∈ Zq, the party initializes queues Qij,v for each party i, does the following B
times, and then gives each of the resulting queues Qij,v to party i.

• Sample zj,v ← DΛ⊥v (gt),sg·ωn
.

• Compute yj,v =
[
R
I

]
(ej ⊗ zj,v), where ej ∈ Zn denotes the jth standard basis vector. Note that

AH · yj,v = (H∗ −H)G · (ej ⊗ zj,v) = (H∗ −H)(v · ej),

where as always, AH = A− [0 | HG] for any H ∈ Zn×nq .

• Generate a sharing for yj,v, and add Jyj,vKi to queue Qij,v for each party i ∈ P .

2. In the online phase, upon receiving (correct, sid,v), each party i dequeues an entry Jyj,vj Ki from
Qj,vj for each j ∈ [n], and locally outputs JyKi =

∑
j∈[n]Jyj,vj K

i. Note that by linearity and the
homomorphic properties of secret sharing, the shares JyKi recombine to y =

[
R
I

]
z ∈ Zm for some

Gaussian-distributed z of parameter sg · ωn, such that AH · y = (H∗ −H) · v ∈ Znq .

Without trusted setup, we give in Appendix A.3 an efficient protocol for FCorrect that operates in a
similar way, populating the local queues Qij,v during the offline phase in a distributed manner using standard
share-blinding and multiplication functionalities, among others.

3.2.3 Legal Uses of the Functionalities

Putting the key-generation and Gaussian sampling operations into separate functionalities FKG and FGS (and
FDelTrap for delegation, in Section 3.4 below), and realizing FGS using the helper functionalities FPerturb and
FCorrect, aids modularity and simplifies the analysis of our protocols. However, as a side effect it also raises a
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technical issue in the UC framework, since environments can in general provide functionalities with arbitrary
inputs, even on behalf of honest users. The issue is that the functionalities are all designed to be initialized
with some common, valid state—namely, shares of a trapdoor R for a matrix A as produced by FKG on valid
inputs—but it might be expensive or impossible for the corresponding protocols to check the consistency and
validity those shares. Moreover, such checks would be unnecessary in the typical case where an application
protocol, such as a threshold signature scheme, initializes the functionalities as intended.3

Therefore, we prove UC security for a restricted class of environments Z that always initialize our
functionalities with valid arguments. In particular, environments in Z can instruct parties to instantiate FKG
only with appropriate arguments Ā, z. Similarly, FGS (and FDelTrap) can be initialized only with a matrix A,
tag H∗, and shares of a trapdoor R matching those of a prior call to the gen command of FKG, and with a
sufficiently large Gaussian parameter s ≥ Cs1 · ωn, where s1 is a high-probability upper bound on s1(R) for
the trapdoor R generated by FKG. The functionalities FPerturb and FCorrect (which in any case are not intended
for direct use by applications) also must be initialized using a prior output of FKG.

More formally, an environment Z is said to be in the class Z if it satisfies the following conditions
specific to our functionalities:

• When Z instructs honest parties to run the gen command of FKG, the input matrix Ā ∈ Zn×m̄q

and parameter z must correspond with a statistically secure instantiation of the trapdoor generator
from [MP12]. Concretely, Ā must be statistically close to uniformly random, and the Gaussian
parameter z and dimension m̄ must jointly be sufficiently large. As shown in [MP12], one valid
instantiation is to let z ≥ 2ωn and m̄ ≥ Cn lg q for any fixed constant C > 1.

• When Z instructs honest parties to run the init commands of FGS, FPerturb, or FCorrect, the matrix A,
tag H∗, and shares JRKi provided as the parties’ inputs must match those of a prior call to FKG.gen. In
addition, these init commands must all use the same Gaussian parameter s, which must be sufficiently
large relative to the Gaussian parameter z and dimension m̄ used in that call to FKG.gen. Specifically,
we require s ≥ Cz(

√
m̄+

√
n log q) · ωn for a certain universal constant C. By the results of [MP12],

this guarantees that with overwhelming probability over the choice of R, we have s ≥ C ′s1(R) · ωn
for some universal constant C ′, which ensures that our πGS protocol produces the proper distribution.

We emphasize that these restrictions on the environment are not actually limiting in any meaningful way,
since our functionalities are only intended to serve as subroutines in higher-level applications, e.g. threshold
signatures and (H)IBE. When designing a protocol φ that uses these functionalities (see, e.g., Section 4) one
simply needs to ensure that φ does so in a manner consistent with the above conditions. Then composing φ
with our protocols πKG, πGS, πPerturb, and πCorrect (which we prove secure against environments in Z ) will
yield a secure protocol against any t-limited environment.

3.3 Gaussian Sampling Protocol

Figure 5 defines a protocol πGS that realizes the Gaussian sampling functionality FGS in the (FPerturb,FCorrect)-
hybrid model. Its sample command simply makes one call to each of the main commands of FPerturb and
FCorrect, adjusting the requested syndrome as necessary to ensure that the syndrome of the final output is
the desired one. (This is done exactly as in the standalone algorithm.) The shares of the perturbation p and
syndrome-correction term y are then added locally and announced, allowing the players to reconstruct the
final output x = p + y. The security of πGS is formalized in Theorem 3.3, and proved via the simulator SGS
in Figure 6.

3This issue is not limited to our setting, and can arise any time the key-generation and secret-key operations of a threshold scheme
are put into separate functionalities. We note that using “joint state” [CR03] does not appear to resolve the issue, because it only
allows multiple instances of the same protocol to securely share some joint state.
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An essential point is that given the helper functionalities, the protocol πGS is completely noninteractive,
i.e., no messages are exchanged among the parties, except when broadcasting their shares of the final output.
Similarly, recall that our realizations of FPerturb and FCorrect are also noninteractive, either when using trusted
setup or offline precomputation (see Appendix A). In other words, in the fully realized sampling protocol, the
parties can sample from any desired coset using only local computation, plus one broadcast of the final output
shares. We emphasize that this kind of noninteractivity is nontrivial, because the number of possible cosets is
exponentially large.

Protocol πGS in the (FPerturb, FCorrect)-hybrid model

Initialize: On input (init, sid,A, JRKi,H∗, s, B), party i stores H∗, calls FPerturb(init, sid,A−H∗ , JRKi, s, B)
and FCorrect(init, sid, JRKi, B), and outputs (init, sid).

Sample: On input (sample, sid,H,u), if H∗−H ∈ Zn×n
q is invertible, and if fewer than B calls to sample have

already been made, then party i does:

• Call FPerturb(perturb, sid) and receive (perturb, sid, JpKi, w̄,w).
• Compute v = (H∗ −H)−1(u− w̄)−w ∈ Zn

q .

• Call FCorrect(correct, sid,v) and receive (correct, sid, JyKi).
• Broadcast JxKi = JpKi + JyKi and reconstruct x = p + y from the announced shares.
• Output (sample, sid,x).

Figure 5: Gaussian sampling protocol

Simulator SGS

Initialize: Upon receiving (init, sid,A,H∗, s, B) from FGS, reveal to Z (init, sid) as outputs of both FPerturb
and FCorrect to each currently corrupted party and any party that is corrupted in the future.

Sample: Upon receiving (sample, sid,H,u,x) from FGS:

• Choose uniform and independent w̄,w ∈ Zn
q and compute v = (H∗ −H)−1(u− w̄)−w ∈ Zn

q .

• On behalf of FPerturb, send (perturb, sid, w̄,w) to Z and receive back shares JpKi for each currently
corrupted party i in P . Generate a uniformly random sharing JpK of p = 0 consistent with these
shares. Send (perturb, sid, JpKi, w̄,w) to each corrupted party i in P on behalf of FPerturb.

• On behalf of FCorrect, send (correct, sid,v) to Z and receive back shares JyKi for each currently
corrupted party i in P . Generate a uniformly random sharing JyK of y = x consistent with these
shares. Send (correct, sid, JyKi) to each corrupted party i in P on behalf of FCorrect.

• Broadcast JxKi = JpKi + JyKi on behalf of each honest party i.

Corruption: When Z requests to corrupt party i, for each previous call to sample, reveal the corresponding
messages (perturb, sid, JpKi, w̄,w) and (correct, sid, JyKi) to party i on behalf of FPerturb and FCorrect,
respectively.

Figure 6: Simulator for πGS

Theorem 3.3. Protocol πGS statistically realizes FGS in the (FPerturb, FCorrect)-hybrid model for t-limited
environments in Z .

Proof sketch. The simulator SGS in Figure 6 maintains consistent sharings of p = 0 and y = x for each call
to sample, and it releases player i’s shares of these values (on behalf of FPerturb and FCorrect) upon corruption
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of player i. The fact that p and y in SGS are from incorrect distributions is not detectable (even statistically)
by the environment Z , because it sees at most t shares of each, and the shares are consistent with announced
shares of x = p + y.

The only other significant issues relate to (1) the syndromes w̄,w output publicly by FPerturb in the
(FPerturb,FCorrect)-hybrid world, versus the simulator’s choices of those values on behalf of FPerturb in the
ideal world; and (2) the distribution (conditioned on any fixed w̄,w) of the final output x in both worlds.
For item (1), as proved in Lemma 3.2, in the hybrid world the syndromes w̄,w are jointly uniform and
independent (up to negligible statistical distance) over the choice of p by FPerturb, just as they are when
produced by the simulator. Moreover, conditioned on any fixed values of w̄,w, the distribution of p in the
hybrid world is a discrete Gaussian with covariance Σp over a certain lattice coset Λ⊥u (B), and the actual
value of p from this distribution is perfectly hidden by the secret-sharing scheme.

For item (2), the above facts imply that in the hybrid world, x = p + y has spherical discrete Gaussian
distribution DΛ⊥u (AH),s, just as the output x of FGS does in the ideal world (up to negligible statistical error
in both cases). The proof is essentially identical to that of the “convolution lemma” from [MP12], which
guarantees the correctness of the standalone sampling algorithm (as run by FGS in the ideal world). The only
slight difference is that in the hybrid world, p’s distribution (conditioned on any fixed values of w̄,w) is
a discrete Gaussian with parameter

√
Σp over a coset of Λ⊥(B), instead of over Zm as in the standalone

algorithm. Fortunately, Lemma 3.2 says that
√

Σp ≥ 2ηε(Λ
⊥(B)), and this is enough to adapt the proof

from [MP12] to the different distribution of p.
Finally, by the homomorphic properties of secret sharing, the shares JpKi + JyKi announced by the honest

parties are jointly distributed exactly as a fresh sharing of x as produced by the simulator. We conclude that
the hybrid and real views are statistically indistinguishable, as desired.

3.4 Trapdoor Delegation

The trapdoor delegation functionality FDelTrap given in Figure 7 corresponds to the algorithm DelTrap for
delegating a lattice trapdoor in [MP12], which is used in hierarchical IBE schemes. The functionality is
initialized with shares of a trapdoor R for some A ∈ Zn×mq . For an extended matrix A′ = [AH|A1] ∈
Zn×(m+nk)
q (where AH = A − [0 | HG]) and tag H′ ∈ Zn×nq , FDelTrap outputs shares of a trapdoor R′

for A′ with tag H′, where the distribution of R′ is Gaussian and in particular is independent of R.
A realization of FDelTrap in the FGS-hybrid model is given by πDelTrap in Figure 8. It is entirely straight-

forward, since the standalone algorithm from [MP12] just draws several Gaussian samples over appropriate
(publicly computable) cosets of Λ⊥(A), so we omit the proof of security.

4 Threshold Signatures and IBE

Here we apply our protocols in a straightforward manner to give threshold versions of the signature and identity-
based encryption schemes from [GPV08]. Other signature and (H)IBE schemes that use key-generation and
Gaussian sampling as “black boxes” can be similarly adapted to the threshold setting.

The GPV schemes. For security parameter n, modulus q and message spaceM, the GPV signature scheme
uses a hash function H : M→ Znq , which is modeled as a random oracle, and two algorithms GenTrap and
SampleD. At a high level, GenTrap(n, q,m) generates a nearly uniform matrix A ∈ Zn×mq together with
a trapdoor R. Using these, SampleD(A,R,u, s) generates a Gaussian sample (for any sufficiently large
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Functionality FDelTrap

Initialize: Upon receiving (init, sid,A, JRKi,H∗, s, B) from at least h honest parties in P:

• Reconstruct trapdoor R and its invertible tag H for A, and store sid, A, R, H∗ and s.

• Send (init, sid) to each party in P , and (init, sid,A, s, B) to the adversary.

Delegate: Upon receiving (delegate, sid,H,A1,H
′) from at least h honest parties in P:

• If H∗ −H ∈ Zn×n
q is invertible, using the Gaussian sampling algorithm from [MP12] with trapdoor

R, sample each column of R′ independently from a discrete Gaussian with parameter s over the
appropriate coset of Λ⊥(AH), so that AH ·R′ = H′ ·G−A1.

• Compute a sharing JR′K over Zq, and send (delegate, sid, JR′Ki) to each party i, and
(delegate, sid,H,A1,H

′) to the adversary.

Figure 7: Functionality for delegating a lattice trapdoor

Protocol πDelTrap in the FGS-hybrid model

Initialize: On input (init, sid,A, JRKi,H∗, s, B), call FGS(init, sid,A, JRKi,H∗, s, Bnk).

Delegate: On input (delegate, sid,H,A1,H
′), party i does the following:

• For each j = 1, . . . , nk, call FGS(sample, sid,H,u) where u is the jth column of H′G−A1; receive
(sample, sid, r′j) from FGS and let r′j be the jth column of R′.

• Output (sample, sid,R′).

Figure 8: Protocol for delegating a lattice trapdoor

parameter s) over the lattice coset Λ⊥u (A). Ignoring the exact selection of parameters, the stateful version of
the signature scheme consists of the following three algorithms:

• KeyGen(1n): Let (A,R) ← GenTrap(n, q,m) and output verification key vk = A and signing key
sk = R.

• Sign(sk, µ ∈ M): If (µ, σ) is already in local storage, output the signature σ. Otherwise, let x ←
SampleD(A,R, H(µ), s) and store (µ, σ). Output the signature σ = x.

• Verify(vk, µ, σ = x): If Ax = H(m) and x is sufficiently short, then accept; otherwise, reject.

See [GPV08] for the proof of (strong) unforgeability under worst-case lattice assumptions.
In the GPV identity-based encryption scheme, the setup algorithm is the same as KeyGen above, and

the master public and secret keys are simply the verification and signing keys above. The secret key for an
individual identity is a signature on that identity. Since we are concerned only with thresholdizing the signing
and key-extraction algorithms, the details of the encryption and decryption algorithms are unchanged and
irrelevant here, so we need only give threshold version of KeyGen and Sign.

Thresholdizing. In order to obtain a threshold signature scheme, KeyGen and Sign must be done in a
distributed way, so that the signing key sk = R is distributed among the participating parties and a valid
signature σ can only be produced by a quorum of participating parties. In Figure 9 we recall (from [ADN06])
a formal functionality for threshold signatures. (Recall that P is the set of trustees, or parties authorized to
receive shares of the signing key.)
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Functionality FTSig

Generate: Upon receiving (gen, sid,B) from at least h honest parties in P , send (gen, sid,B) to the adversary,
receive and record verification key v, and send (gen, sid, v) to each party in P .

Sign: Upon receiving (sign, sid,m) from at least h honest parties in P , if fewer than B calls to sign have already
been made:

• Send (sign, sid,m) to the adversary and receive signature σ.

• If there is no record of (m,σ, v, 0), record (m,σ, v, 1) and send (sign, sid,m, σ) to each party in P .

Verify: Upon receiving (ver, sid,m, σ, v′) from any party p ∈ P:

• Send (ver, sid,m, σ, v′) to the adversary and receive (ver, sid,m, φ).

• If v′ = v and (m,σ, v, 1) is recorded, then send (ver, sid,m, 1) to p.

• If v′ = v and there is no recorded (m,σ′, v, 1), then record (m,σ, v, 0) and send (ver, sid,m, 0) to p.

• If some (m,σ, v′, 1) is recorded, then send (ver, sid,m, 1) to p.

• If some (m,σ, v′, 0) is recorded, then send (ver, sid,m, 0) to p.

• Otherwise, record (m,σ, v′, φ) and send (ver, sid,m, σ, φ) to p.

Figure 9: Threshold signature functionality

To construct a protocol for threshold GPV signatures we need threshold analogues of GenTrap and
SampleD; these are the functionalities FKG and FGS (from Section 3), respectively. FKG produces A as
usual, but each party i receives a share JRKi of the trapdoor. To produce a signature, each party i in a
quorum of signers simply calls FGS.sample with his share JRKi, and this allows them to collectively produce
a signature σ.

In Figure 10 we present a protocol for threshold GPV signatures in the (FKG,FGS)-hybrid model. Note
that it obeys all the constraints on the usage of FKG and FGS described in Section 3.2.3. Its security is easily
proved using the correspondence between FKG and KeyGen, and FGS and Sign, so we state Theorem 4.1
without proof.

Theorem 4.1. The protocol πThreshGPV securely realizes FTSig, assuming the unforgeability of the GPV
signature scheme (with the same parameters) under chosen-message attacks.
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A Protocols Without Trusted Setup

Here we show how to realize threshold key generation FKG and discrete Gaussian sampling FGS without
relying on any trusted setup. Given the protocol in Section 3.3, for FGS it suffices to realize FCorrect and
FPerturb. The rest of the section is organized as follows:

• In Section A.1 we formalize three low-level utility functionalities FBlind, FMult, and FSampZ used by
several of our protocols, and we describe how these functionalities are realized.

• In Section A.2 we give a protocol realizing FKG using the utility functionalities. This simple protocol
and security analysis are representative of the techniques we use (in more complex ways) in later
protocols as well.

• In Section A.3 we give a realization of FCorrect that uses an additional utility functionality FGadget,
which we define and realize there.

• Finally, in Section A.4 we realize FPerturb using a simple extension of FSampZ, which we also realize
there.

A.1 Utility Functionalities

We first present the low-level utility functionalities.

Blinding. The blinding functionalityFBlind (Figure 11) simply accepts shares of some value over an arbitrary
additive group G, and distributes fresh shares of the same value. Our later protocols will use blinding and the
homomorphic properties of secret sharing to reveal the values of shared secrets modulo lattices, and nothing
more.

Realizations of FBlind in various communication models are standard. For example, to realize it against
semi-honest corruptions with private channels is very simple: simply add sufficiently many player-generated
sharings of 0 to the original shares. For malicious corruptions one can use, e.g., subprotocols of the
BGW [BGW88, ALR11] or RB [RB89] protocols, which run in a constant number of rounds. We leave the
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Functionality FBlind

Blind: Upon receiving (blind, sid, JxKi ∈ G) from at least h honest parties in P:

• Reconstruct x and generate a fresh sharing JyK (over G) of y = x.

• Send (blind, sid, JyKi) to each party i in P , and (blind, sid,G) to the adversary.

Figure 11: Blinding functionality

implementation of FBlind unspecified and simply work in the FBlind-hybrid model where needed. We remark
that our protocols use FBlind only during initialization, so the interaction required to implement it is limited to
the offline phase.

Multiplication. The multiplication functionality FMult (Figure 12) takes shares of two values x, y in a ring
Zqd and returns fresh shares of their product x · y (modulo qd) to the respective parties. By the homomorphic
properties of secret sharing, this generalizes immediately (via local computation alone) to products of vectors
and/or matrices X,Y, so we write the functionality to support this more general capability. To realize FMult
one can use any statistically secure protocol, such as the constant-round protocols of [BGW88, RB89, ALR11];
we leave this choice unspecified and simply work in the FMult-hybrid model where needed.

Functionality FMult

Multiply: Upon receiving (mult, sid, JXKi ∈ Zh×`
qd

, JYKi ∈ Z`×w
qd

) from at least h honest parties i in P:

• Reconstruct X, Y from the shares JXKi, JYKi, respectively.

• Generate a fresh sharing JZK of Z = X ·Y ∈ Zh×w
qd

.

• Send (mult, sid, JZKi) to each party i in P , and (mult, sid, h× `, `× w, d) to the adversary.

Figure 12: Multiplication functionality

Sampling integers. Several of our protocols rely on a low-level functionality FSampZ (Figure 13) for
sampling discrete Gaussians over the integers Z. At a high level, the sample command produces shares of
a discrete Gaussian variable x ∈ Z with a given parameter, where the sharing is over the additive group
Zqd , (i.e., with d digits of precision), and distributes these shares JxKi to the respective parties. Later on in
Section A.4.1 we will extend FSampZ with some additional commands, but for now we only need the sample
command.

Functionality FSampZ

Sample: Upon receiving (sample, sid, h× w, z, d) from at least h honest parties in P:

• Sample X← Dh×w
Z,z·ωn

and generate a fresh sharing JXK over Zqd .

• Send (sample, sid, JXKi) to each party i in P and (sample, sid, h× w, z, d) to the adversary.

Figure 13: Simplified integer sampling functionality

Because we do not know of any highly efficient algorithms for sampling discrete Gaussians, our realization
uses the general “inverse transform” sampling algorithm, and implements it securely using multiparty
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computation tools. Recall that inverse sampling involves a close approximation of the cumulative distribution
function. To sample, one chooses a uniformly random u ∈ [0, 1) and looks up the corresponding output value
in the table. An arithmetic circuit implementing this algorithm can be written as an AND of several interval
tests on the input u, so the depth of the circuit is roughly the precision (number of digits) of the entries in
the lookup table, and the width of the circuit is roughly the number of entries in the table. (Other trade-offs
between depth and width are possible as well.)

Importantly, we can implement the inverse sampling method for discrete Gaussians using a table of
size proportional to q = poly(n) for very large parameters z, even though the distribution has support
size proportional to z. This is because for z ∈ [qj , qj+1), the discrete Gaussian of parameter z can be
decomposed using Lemma 2.5 as a convolution of j discrete Gaussians over qjZ, qj−1Z, . . . ,Z having
respective parameters roughly z, z/q, . . . , z/qj . (Note that each parameter can be chosen to be larger than
the smoothing parameter of the respective lattice.) Each of these distributions is highly concentrated on only
poly(n) outputs.

Finally, we emphasize that our higher-level protocols use FSampZ only in their key-generation or initializa-
tion phases, and only with fixed, public Gaussian parameters, so any inefficiencies in a realization of FSampZ
are limited to the offline phase.

A.2 Realizing FKG

The protocol πKG (Figure 14) realizing FKG in the (FBlind,FSampZ)-hybrid model is straightforward, given
the homomorphic properties of the secret-sharing scheme and the simple operation of the standalone trapdoor
generator, which just multiplies a public uniform matrix Ā with a secret Gaussian-distributed matrix R. The
parties first get shares of a Gaussian-distributed trapdoor R using FSampZ, then announce blinded shares of
A1 = −ĀR mod q and reconstruct A1 to determine the public key A = [Ā | A1]. The blinding is needed so
that the announced shares reveal only A1, and nothing more about the honest parties’ shares JRKi themselves.

Protocol πKG in the (FBlind,FSampZ)-hybrid model

Generate: On input (gen, sid, Ā ∈ Zn×m̄
q ,H∗ ∈ Zn×n

q , z), party i does:

• Call FSampZ(sample, sid, m̄× nk, z, 1) and receive (sample, sid, JRKi).

• Call FBlind(blind, sid,−ĀJRKi) and receive (blind, sid, JA1Ki).

• Broadcast JA1Ki and reconstruct A1 = −ĀR from the announced shares.

• Output (gen, sid,A = [Ā | H∗ ·G + A1], JRKi).

Figure 14: Key generation protocol

A simulator SKG for demonstrating the security of πKG is provided in Figure 15. Essentially, security boils
down to the fact that the announced blinded shares −ĀJRKi in the protocol πKG form a uniformly random,
and independent of the honest parties’ outputs JRKi, sharing of A1 = −ĀR, which is exactly what SKG
constructs to simulate the broadcast messages. A full proof is a straightforward application of this observation,
and of the privacy, robustness, and homomorphic properties of the secret-sharing scheme, so we omit it.

Theorem A.1. Protocol πKG statistically realizes FKG in the (FBlind,FSampZ)-hybrid model for t-limited
environments in Z .
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Simulator SKG

Generate: Upon receiving (gen, sid,A = [Ā | H∗ ·G + A1],H∗, z) from FKG:

• Generate a fresh sharing of A1 over Zq .

• For all currently corrupted parties i, and whenever Z later requests to corrupt a party i, receive the
share JRKi from FKG, and reveal to Z the following functionality outputs to party i:

– (sample, sid, JRKi) on behalf of FSampZ;
– (blind, sid, JA1Ki) on behalf of FBlind.

• Broadcast JA1Ki on behalf of each honest party i.

Figure 15: Simulator for πKG

A.3 Realizing FCorrect

Recall that FCorrect samples and distributes shares of a (non-spherical Gaussian) vector y from a desired coset
of Λ⊥(A). Section 3.2.2 describes how to realize FCorrect with trusted setup, partly by precomputing shares
of samples from each coset of Λ⊥(gt). We next describe how these shares can be obtained from a utility
functionality called FGadget (Figure 16), and how it can easily be realized.

A.3.1 Gadget Functionality

The functionality FGadget (Figure 16) relates to the special gadget vector g and lattice Λ⊥(gt), as defined
in [MP12] and reviewed in Section 3.1. Recall that we have a fixed public vector gt = [1, 2, 4, . . . , 2k−1] ∈
Z1×k
q for k = dlg qe, which defines a full-rank lattice Λ⊥(gt) ⊂ Zk of determinant q whose smoothing

parameter is bounded by sg · ωn, where sg ≤
√

5 is a known constant. The functionality generates shares of a
discrete Gaussian over the coset Λ⊥v (gt) for any desired v ∈ Zq, by running any of the efficient algorithms
described in [MP12].

Functionality FGadget

Sample coset: Upon receiving (cosetsample, sid, v ∈ Zq) from at least h honest parties in P:

• Sample z← DΛ⊥v (gt),sg·ωn
and generate a uniformly random sharing JzK.

• Send (cosetsample, sid, JzKi) to each party i in P , and send (cosetsample, sid, v) to the adversary.

Figure 16: Functionality for operations related to the gadget lattice Λ⊥(gt)

Realizing FGadget is straightforward in the (FSampZ,FBlind)-hybrid model, using the homomorphic proper-
ties of secret sharing: essentially, the parties request shares of a Gaussian-distributed z ∈ Zk from FSampZ,
then broadcast blinded shares of the syndrome u = 〈g, z〉 mod q and recover u, repeating until u = v. (The
blinding is needed so that nothing more than the syndrome is revealed about z.) Implemented naively as in
Figure 17, the expected number of trials (which may be performed in parallel) is almost exactly q = poly(n),
because the syndrome u is negligibly far from uniform since z’s Gaussian parameter is at least the smoothing
parameter of Λ⊥(gt). Alternatively, shares of samples having the wrong syndrome can be stored away and
used as needed later on. Note that in any case, FGadget is only ever called in the offline phase of πCorrect
(Figure 19), so efficiency is not a top priority here.

A simulator SGadget for demonstrating the security of our protocol is provided in Figure 18. For a t-limited
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Protocol πGadget in the (FSampZ,FBlind)-hybrid model

Sample coset: On input (cosetsample, sid, v ∈ Zq), party i does:

• Call FSampZ(sample, sid, k × 1, sg, 1) and receive (sample, sid, JzKi).

• Call FBlind(blind, sid, 〈g, JzKi〉 mod q) and receive (blind, sid, JuKi).

• Broadcast JuKi and reconstruct u = 〈g, z〉 from the broadcast shares.

• If u = v, output (cosetsample, sid, JzKi). Otherwise, repeat.

Figure 17: Protocol for gadget operations

Simulator SGadget

Sample coset: Upon receiving (cosetsample, sid, v) from FGadget:

• Choose a uniformly random u ∈ Zq , and generate fresh sharings of u and of z = 0 ∈ Zk
q .

• For each currently corrupted party i, reveal to Z the following functionality outputs to party i:

– (sample, sid, JzKi) on behalf of FSampZ;
– (blind, sid, JuKi) on behalf of FBlind.

• Broadcast JuKi on behalf of all honest parties i.

• Unless u = v, repeat.

Corruption: When Z requests to corrupt party i, for each previous call to cosetsample, reveal the corresponding
messages (sample, sid, JzKi) and (blind, sid, JuKi) to party i on behalf of FSampZ and FBlind, respectively.

Figure 18: Simulator for πGadget

adversary, the value of z = 0 and honest parties’ shares remain information theoretically hidden. The
announced (blinded) shares of u in the protocol πGadget form a uniformly random (and independent of the
honest parties’ outputs JzKi) sharing of the (nearly) uniformly random syndrome u = 〈g, z〉, which is exactly
what SGadget constructs to simulate the broadcast messages. A full proof is a straightforward application of
these observations and of the privacy, robustness, and homomorphic properties of secret sharing.

A.3.2 Protocol and Security Analysis

The protocol πCorrect in the (FMult,FGadget)-hybrid model is defined formally in Figure 19. In the initialization
step, for each j ∈ [n] and v ∈ Zq the parties populate each of their local queues Qj,v with at least B entries,
in the following way: each party i uses FGadget, its shares of the trapdoor R, and FMult to obtain a share
of yj,v =

[
R
I

]
(ej ⊗ zj,v) for Gaussian-distributed zj,v ∈ Λ⊥v (gt), and places the share in a queue Qj,v.

(Regarding the arguments to the call to FMult, note that
[

JRKi
I

]
is a valid ith share of

[
R
I

]
, via a constant

sharing polynomial for I, and ej,v ⊗ JzjKi is similarly a valid ith share of ej ⊗ zj,v.) To later answer a correct
request for syndrome v ∈ Znq , each party just draws a share from each of Q1,v1 , . . . , Qn,vn and sums these
shares. By the homomorphic properties of secret sharing, this yields a share of y =

∑
j∈[n] yj,vj =

[
R
I

]
z for

Gaussian z = (z1, . . . , zn) ∈ Λ⊥v (G), as desired.

Theorem A.2. Protocol πCorrect statistically realizesFCorrect in the (FMult,FGadget)-hybrid model for t-limited
environments in Z .
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Protocol πCorrect in the (FMult,FGadget)-hybrid model

Initialize: On input (init, sid, JRKi, B), party i does:

• Locally store (sid, JRKi) and initialize local queues Qj,v for each j ∈ [n] and v ∈ Zq .
• For each j ∈ [n], while there exists some v ∈ Zq such that Qj,v has fewer than B entries:

– Call FGadget(cosetsample, sid, v) and receive (cosetsample, sid, Jzj,vKi).

– Call FMult(mult, sid,
[

JRKi

I

]
, ej ⊗ Jzj,vKi) and receive (mult, sid, Jyj,vKi), where yj,v =

[ RI ] (ej ⊗ zj,v).
– Place Jyj,vKi in local queue Qj,v .

• Output (init, sid).

Correct: On input (correct, sid,v), if fewer than B calls to correct have already been made, party i does:

• For each j ∈ [n], dequeue an entry Jyj,vKi from Qj,vj
.

• Locally compute JyKi =
∑

j∈[n]Jyj,vKi.

• Output (correct, sid, JyKi).

Figure 19: Syndrome correction protocol

Simulator SCorrect

Initialize: Upon receiving (init, sid,B) from FCorrect:

• Initialize empty lists Qj,v for each j ∈ [n] and v ∈ Zq .

• For each j ∈ [n], while there exists some v ∈ Zq such that Qj,v has fewer than B unused entries:

– Generate a fresh sharing Jzj,vK of zj,v = 0 ∈ Zk
q , and send (cosetsample, sid, Jzj,vKi) on behalf

of FGadget to each currently corrupted party i in P .
– Generate a fresh sharing Jyj,vK for yj,v = 0 ∈ Zm

q , and send (mult, sid, Jyj,vKi) on behalf of
FMult to each currently corrupted i in P .

– Store (Jzj,vK, Jyj,vK) as an unused entry at the end of list Qj,v .

Correct: Upon receiving (correct, sid,v) from FCorrect:

• For each j ∈ [n], look up the next unused entry (Jzj,vj K, Jyj,vj K) from Qj,vj , and mark it as used for
this call to correct. For each currently corrupted party i in P , send JyKi =

∑
j∈[n]Jyj,vKi to FCorrect

as the desired share for party i.

Corruption: When Z requests to corrupt party i,

• Receive party i’s share JyKi for each previous call of the form (correct, sid,v). Look up the n
corresponding (used) entries (Jzj,vj

K, Jyj,vj
K) in Qj,vj

, and update the value Jyn,vnKi so that JyKi =∑
j∈[n]Jyj,vj Ki.

• For all entries (Jzj,vK, Jyj,vK), both used and unused, in each list Qj,v, reveal to Z the messages
(cosetsample, sid, Jzj,vKi) and (mult, sid, Jyj,vKi) to party i on behalf of FGadget and FMult, respec-
tively.

Figure 20: Simulator for πCorrect

Proof sketch. A simulator SCorrect for demonstrating the security of πCorrect is provided in Figure 20. The
only subtlety lies in the fact that outputs from helper functionalities during precomputation must be simulated
before knowing which parties will be corrupted when the corresponding correct calls are made later on. As
mentioned in Section 3.2.2, this is why we designed FCorrect to ask the adversary for shares for the corrupted
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parties: the simulator generates its own shares when simulating the precomputation, and provides them to the
functionality upon request. Then security boils down to the fact that even though yj,vj =

[
R
I

]
(ej ⊗ zj,vj ),

all shares of zj,vj (that the adversary sees) are uniform and independent of the corresponding shares of yj,vj
since FMult blinds its output, so the queuing strategy employed by πCorrect indeed produces shares of y with
the desired distribution.

A.4 Realizing FPerturb

Recall that FPerturb (Figure 3) distributed shares of of perturbations p drawn from the discrete Gaussian
distribution DZm,

√
Σp

, where the covariance Σp depends on the trapdoor R. In the standalone setting, this is

straightforward: first generate a continuous Gaussian p′ ∈ Rm with covariance Σp − I · ω2
n, then randomly

round each coordinate of p′ to a nearby integer (see [Pei10] for details). In the threshold setting, generating a
good perturbation seems quite a bit more difficult, because neither p nor its covariance Σp can be revealed,
since they leak the trapdoor R. Fortunately, we can give a distributed protocol that emulates the standalone
rounding procedure up to sufficient precision.

A.4.1 Extending FSampZ

We first extend the functionality FSampZ (originally defined in Section A.1) with two additional commands,
cosetsample and rround, which support randomized rounding of a shared value x ∈ q−jZ to the integers Z.
Note that while cosetsample and rround are defined for (scalings of) the integer lattice Z, the commands
immediately generalize to vectors and matrices, component-wise. (This is simply because spherical Gaussians
over cosets of Zh×w are just product distributions of Gaussians over cosets of Z.) This extended functionality
is defined formally in Figure 21.

Functionality FSampZ

Sample: Upon receiving (sample, sid, h× w, z, d) from at least h honest parties in P:

• Sample X← Dh×w
Z,z·ωn

and generate a fresh sharing JXK over Zqd .

• Send (sample, sid, JXKi) to each party i in P and (sample, sid, h× w, z, d) to the adversary.

Sample coset: Upon receiving (cosetsample, sid, v ∈ q−jZ/q−j+1Z, z ≥ q−j+1) from at least h honest parties
in P:

• Sample x← Dq−j+1Z+v,z·ωn
and let c = x mod Z.

• Generate a fresh sharing JxK over q−jZ/qZ.

• Send (cosetsample, sid, JxKi, c) to each party i in P , and (cosetsample, sid, c, z) to the adversary.

Randomized round: Upon receiving (rround, sid, JxKi ∈ q−dZ/qZ) from at least h honest parties in P:

• Reconstruct x and let c = x mod Z. Sample an integer z ← x+DZ−c,d·ωn
.

• Generate a fresh sharing JzK over Zq, and send (rround, sid, JzKi, c) to each party i in P , and
(rround, sid, c) to the adversary.

Figure 21: Full integer sampling functionality (which replaces Figure 13)

A protocol πSampZ realizing FSampZ in the FBlind-hybrid model is given in Figure 22. We elaborate
informally on the implementation of the two additional commands, noting that implementation of the sample
command was discussed in Section A.1. We omit a formal security proof for πSampZ, but we remark that while
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the protocol is somewhat more complicated than the key-generation protocol of Section A.2, its security is
based straightforwardly on the same main observations, plus Lemma 2.5.

Coset sampling. The cosetsample command (which exists mainly to support the randomized-rounding
command, described next) generates a discrete Gaussian variable x with given parameter z ≥ q−j+1 over
the (possibly very dense) lattice q−jZ, such that x’s least significant base-q digit is a specified v. It then
distributes shares JxKi to the respective parties, along with the value c = x mod Z, which also goes to the
adversary.

Naı̈vely implementing cosetsample in our protocol is very simple: the parties just use sample to generate
a Gaussian value qjx ∈ Z with parameter qjz · ωn, shared over Zqj+1 , then reveal their blinded shares
x mod Z to reconstruct c, repeating until the least-significant digit is v. Because z ≥ q−j+1 is large enough,
x’s least significant digit is nearly uniform by Corollary 2.3, and the expected number of trials is almost
exactly q = poly(n). Of course, this procedure throws away many samples; a more efficient implementation
would precompute many trials and store the results according to least-significant digit, so that the online phase
of the command becomes just a noninteractive table lookup. For simplicity, we formally define only the naive
implementation.

Randomized rounding. The rround command takes shares of a value x ∈ q−dZ (represented modulo qZ)
and rounds it to an integer z ∈ Z using Gaussian rounding. It returns shares JzKi to the respective parties,
along with the coset c = x mod Z of the original input, which also goes to the adversary. In our protocol,
the parties broadcast their blinded shares of c = x mod Z to reconstruct c, then use d calls to cosetsample to
round x one digit at a time, from least- to most-significant digit. Note that each call to cosetsample alters the
more-significant digits of x mod Z, but these changes are public.

A.4.2 Protocol and Security Analysis

In brief, our perturbation protocol starts by generating a sharing of a sufficiently high-precision approximation
P ≈

√
Σp with some d digits of precision in its fractional part (i.e., the entries of P are in q−dZ). The

sharing of P can be precomputed as part of the key-generation phase, using general multiparty computation.
To generate a perturbation vector p, the protocol first generates a sharing of a high-precision Gaussian random
variable p′ ∈ q−dZm having covariance PPt ≈ Σp. It does this by invoking FSampZ to generate shares of a
Gaussian-distributed z ∈ Zm, and then invoking FMult to get a fresh sharing of p′ = Pz. The parties then
randomize-round their shared p′ ∈ q−dZm to a shared final perturbation vector p ∈ Zm, using the rround
command of FSampZ. (Recall from A.4.1 that this command reveals c = p′ mod Zm publicly.) Finally, using
the secret-sharing homomorphisms the parties also reconstruct the two syndromes w̄ and w̄. (Recall that
these are eventually needed by the full Gaussian sampling protocol πGS.) Note that once the sharing of P is
computed once and for all, the only trapdoor-dependent work is the relatively efficient call to FMult.

For analyzing security, the essence of the argument is that the public residue c = p′ mod Zm returned by
FSampZ.rround is (nearly) uniformly random, and hence simulatable without knowing p′, because p′ is drawn
from a Gaussian whose parameter exceeds the smoothing parameter of Zm. All the remaining functionalities
simply return independent and properly blinded shares of intermediate values to their respective owners, and
so are trivial to simulate. Therefore, we omit a formal simulator and security proof for πPerturb, which are
tedious (though straightforward given the above intuition).
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Protocol πSampZ in the FBlind-hybrid model

Sample: On input (sample, sid, h× w, z, d), party i does:

• With the other parties, run an inverse sampling protocol (see A.1 for elaboration) to generate private
output JXKi, where X← Dh×w

Z,z·ωn
.

• Output (sample, sid, JXKi).

Sample coset: On input (cosetsample, sid, v ∈ q−jZ/q−j+1Z, z ≥ q−j+1), party i does:

• Call (sample, sid, 1× 1, qjz, j + 1) and receive (sample, sid, qjJxKi) with x ∈ q−jZ.

• Call FBlind(blind, sid, JxKi mod Z) and receive (blind, sid, JcKi).

• Announce JcKi and reconstruct c from other parties’ announced shares.

• If c mod q−j+1 = v, output (cosetsample, sid, JxKi). Otherwise, repeat.

Randomized round: On input (rround, sid, JxKi ∈ q−dZ/qZ), party i does:

• Call FBlind(blind, sid, JxKi mod Z) and receive a fresh share JcKi of c = x mod Z. Broadcast JcKi.

• Reconstruct c ∈ q−dZ/Z from the announced shares.

• Let v = c and JzKi = JxKi. For j = d, . . . , 1:

– Call (cosetsample, sid,−v mod q−j+1Z,
√
d) as a subroutine, and receive back

(cosetsample, sid, Jx′Ki ∈ q−jZ/qZ, c′ ∈ q−jZ/Z).
– Let v ← v + c′ ∈ q−j+1Z/Z and JzKi ← JzKi + Jx′Ki ∈ q−jZ/qZ, which is an ith share of
z + x′ ∈ q−j+1Z/qZ.

– Truncate JzKi to lie in q−j+1Z/qZ (without changing the underlying shared value) as described
in Section 2.3, i.e., let JzKi ← JzKi − (JzKi mod q−j+1).

• Output (rround, sid, JzKi, c).

Figure 22: Integer sampling protocol
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Protocol πPerturb in the (FBlind,FMult,FSampZ)-hybrid model

In what follows, define the quotient ring Gd = q−dZ/qZ.

Initialize: On input (init, sid,A−H∗ , JRKi, s, B), party i does:

• With the other parties, run a statistically secure multiparty computation protocol to compute (as a
private output) JPKi shared over Gd, where Σp = s2 − s2

g [ RI ] [ Rt I ], and P ≈
√

Σp − d2 · ω2
n

• Locally store sid, A−H∗ , and JPKi, and initialize a local queue Q.

• While Q has fewer than B entries:

– Call FSampZ(sample, sid,m× 1, 1, d+ 1) and receive (sample, sid, JzKi) for some z← Dm
Z,ωn

that is shared over Zqd+1 .
– Call FMult(mult, sid, qd · JPKi, JzKi) and receive (mult, sid, qd · Jp′Ki) where p′ = Pz ∈ Gm

d .
(Above we are multiplying and dividing shares by qd simply to compute an isomorphism between
Gd and Zqd+1 , because FMult expects to receive and return shares over the latter ring.)

– Call FSampZ(rround, sid, Jp′Ki) and receive (rround, sid, JpKi ∈ Zm
q , c = p′ mod Zm), where

p has distribution p +DZm−p′,d·ωn
∈ Zm.

– Call FBlind(blind, sid, [0 | G] · JpKi) and FBlind(blind, sid,A−H∗ · JpKi) and receive back JwKi
and Jw̄Ki, respectively. Broadcast these shares.

– Reconstruct w and w̄ from the announced shares, and put (JpKi, w̄,w) in local queue Q.

• Output (init, sid).

Perturb: On input (perturb, sid), if fewer than B calls to perturb have already been made, party i does:

• Dequeue (JpKi,w, w̄) from local queue Q.

• Output (perturb, sid, JpKi,w, w̄).

Figure 23: Perturbation protocol
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Practical Bootstrapping in Quasilinear Time

Jacob Alperin-Sheriff∗ Chris Peikert†
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Abstract

Gentry’s “bootstrapping” technique (STOC 2009) constructs a fully homomorphic encryption (FHE)
scheme from a “somewhat homomorphic” one that is powerful enough to evaluate its own decryption
function. To date, it remains the only known way of obtaining unbounded FHE. Unfortunately, bootstrap-
ping is computationally very expensive, despite the great deal of effort that has been spent on improving
its efficiency. The current state of the art, due to Gentry, Halevi, and Smart (PKC 2012), is able to
bootstrap “packed” ciphertexts (which encrypt up to a linear number of bits) in time only quasilinear
Õ(λ) = λ · logO(1) λ in the security parameter. While this performance is asymptotically optimal up to
logarithmic factors, the practical import is less clear: the procedure composes multiple layers of expensive
and complex operations, to the point where it appears very difficult to implement, and its concrete runtime
appears worse than those of prior methods (all of which have quadratic or larger asymptotic runtimes).

In this work we give simple, practical, and entirely algebraic algorithms for bootstrapping in quasilin-
ear time, for both “packed” and “non-packed” ciphertexts. Our methods are easy to implement (especially
in the non-packed case), and we believe that they will be substantially more efficient in practice than
all prior realizations of bootstrapping. One of our main techniques is a substantial enhancement of the
“ring-switching” procedure of Gentry et al. (SCN 2012), which we extend to support switching between
two rings where neither is a subring of the other. Using this procedure, we give a natural method for
homomorphically evaluating a broad class of structured linear transformations, including one that lets us
evaluate the decryption function efficiently.
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1 Introduction

Bootstrapping, a central technique from the breakthrough work of Gentry [Gen09b, Gen09a] on fully homo-
morphic encryption (FHE), converts a sufficiently powerful “somewhat homomorphic” encryption (SHE)
scheme into a fully homomorphic one. (An SHE scheme can support a bounded number of homomorphic
operations on freshly generated ciphertexts, whereas an FHE scheme has no such bound.) In short, boot-
strapping works by homomorphically evaluating the SHE scheme’s decryption function on a ciphertext that
cannot support any further homomorphic operations. This has the effect of “refreshing” the ciphertext, i.e., it
produces a new one that encrypts the same message and can handle more homomorphic operations. Boot-
strapping remains the only known way to achieve unbounded FHE, i.e., a scheme that can homomorphically
evaluate any efficient function using keys and ciphertexts of a fixed size.1

In order to be “bootstrappable,” an SHE scheme must be powerful enough to homomorphically evaluate
its own decryption function, using whatever homomorphic operations it supports. For security reasons, the
key and ciphertext sizes of all known SHE schemes grow with the depth and, to a lesser extent, the size of
the functions that they can homomorphically evaluate. For instance, under plausible hardness conjectures,
the key and ciphertext sizes of the most efficient SHE scheme to date [BGV12] grow quasilinearly in both
the supported multiplicative depth d and the security parameter λ, i.e., as Õ(d · λ). Clearly, the runtime of
bootstrapping must also grow with the sizes of the keys, ciphertexts, and decryption function. This runtime is
perhaps the most important measure of efficiency for FHE, because bootstrapping is currently the biggest
bottleneck by far in instantiations, both in theory and in practice.

The past few years have seen an intensive study of different forms of decryption procedures for SHE
schemes, and their associated bootstrapping operations [Gen09b, Gen09a, vDGHV10, GH11b, BV11a,
GH11a, BGV12, GHS12b]. The first few bootstrapping methods had moderate polynomial runtimes in the
security parameter λ, e.g., Õ(λ4). Brakerski, Gentry, and Vaikuntanathan [BGV12] gave a major efficiency
improvement, reducing the runtime to Õ(λ2). They also gave an amortized method that bootstraps Ω̃(λ)
ciphertexts at once in Õ(λ2) time, i.e., quasilinear runtime per ciphertext. However, these results apply only
to “non-packed” ciphertexts, i.e., ones that encrypt essentially just one bit each, which combined with the
somewhat large runtimes makes these methods too inefficient to be used very much in practice. Most recently,
Gentry, Halevi, and Smart [GHS12a] achieved bootstrapping for “packed” ciphertexts (i.e., ones that encrypt
up to Ω̃(λ) bits each) in quasilinear Õ(λ) runtime, which is asymptotically optimal in space and time, up to
polylogarithmic factors. For this they relied on a general “compiler” from another work of theirs [GHS12b],
which achieved SHE/FHE for sufficiently wide circuits with polylogarithmic multiplicative “overhead,” i.e.,
cost relative to evaluating the circuit “in the clear.”

Bootstrapping and FHE in quasi-optimal time and space is a very attractive and powerful theoretical result.
However, the authors of [GHS12b, GHS12a] caution that their constructions may have limited potential for
use in practice, for two main reasons: first, the runtimes, while asymptotically quasilinear, include very large
polylogarithmic factors. For realistic values of the security parameter, these polylogarithmic terms exceed
the rather small (but asymptotically worse) quasilinear overhead obtained in [BGV12]. The second reason
is that their bootstrapping operation is algorithmically very complex and difficult to implement (see the
next paragraphs for details). Indeed, while there are now a few working implementations of bootstrapping
(e.g., [GH11b, CCK+13]) that follow the templates from [Gen09b, Gen09a, vDGHV10, BGV12], we are
not aware of any attempt to implement any method having subquadratic runtime.

1This stands in contrast with leveled FHE schemes, which can homomorphically evaluate a function of any a priori bounded
depth, but using keys and ciphertexts whose sizes depend on the bound. Leveled FHE can be constructed without resorting to
bootstrapping [BGV12].
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Is quasilinear efficient? The complexity and large practical overhead of the constructions in [GHS12b,
GHS12a] arise from two kinds of operations. First, the main technique from [GHS12b] is a way of homomor-
phically evaluating any sufficiently shallow and wide arithmetic circuit on a “packed” ciphertext that encrypts
a high-dimensional vector of plaintexts in multiple “slots.” It works by first using ring automorphisms
and key-switching operations [BV11a, BGV12] to obtain a small, fixed set of “primitive” homomorphic
permutations on the slots. It then composes those permutations (along with other homomorphic operations)
in a log-depth permutation network, to obtain any permutation. Finally, it homomorphically evaluates the
desired circuit by combining appropriate permutations with relatively simple homomorphic slot-selection and
ring operations.

In the context of bootstrapping, one of the key observations from [GHS12a] is that a main step of the
decryption procedure can be evaluated using the above technique. Specifically, they need an operation
that moves the coefficients of an encrypted plaintext polynomial, reduced modulo a cyclotomic polynomial
Φm(X), into the slots of a packed ciphertext (and back again). Once the coefficients are in the slots, they
can be rounded in a batched (SIMD) fashion, and then mapped back to coefficients of the plaintext. The
operations that move the coefficients into slots and vice-versa can be expressed as O(log λ)-depth arithmetic
circuits of size O(λ log λ), roughly akin to the classic FFT butterfly network. Hence they can be evaluated
homomorphically with polylogarithmic overhead, using [GHS12b]. However, as the authors of [GHS12a]
point out, the decryption circuit is quite large and complex – especially the part that moves the slots back to
the coefficients, because it involves reduction modulo Φm(X) for an m having several prime divisors. This
modular reduction is the most expensive part of the decryption circuit, and avoiding it is one of the main
open problems given in [GHS12a]. However, even a very efficient decryption circuit would still incur the
large polylogarithmic overhead factors from the techniques of [GHS12b].

1.1 Our Contributions

We give a new bootstrapping algorithm that runs in quasilinear Õ(λ) time per ciphertext with small poly-
logarithmic factors, and is algorithmically much simpler than previous methods. It is easy to implement,
and we believe that it will be substantially more efficient in practice than all prior methods. We provide
a unified bootstrapping procedure that works for both “non-packed” ciphertexts (which encrypt integers
modulo some p, e.g., bits) and “packed” ciphertexts (which encrypt elements of a high-dimensional ring), and
also interpolates between the two cases to handle an intermediate concept we call “semi-packed” ciphertexts.

Our procedure for non-packed ciphertexts is especially simple and efficient. In particular, it can work very
naturally using only cyclotomic rings having power-of-two index, i.e., rings of the form Z[X]/(1 +X2k),
which admit very fast implementations. This improves upon the method of [BGV12], which achieves
quasilinear amortized runtime when bootstrapping Ω̃(λ) non-packed ciphertexts at once. Also, while that
method can also use power-of-two cyclotomics, it can only do so by emulating Z2 (bit) arithmetic within Zp
for some moderately large prime p, which translates additions in Z2 into much more costly multiplications in
Zp. By contrast, our method works “natively” with any plaintext modulus.

For packed ciphertexts, our procedure draws upon high-level ideas from [GHS12b, GHS12a], but our
approach is conceptually and technically very different. Most importantly, it completely avoids the two main
inefficiencies from those works: first, unlike [GHS12b], we do not use permutation networks or any explicit
permutations of the plaintext slots, nor do we rely on a general-purpose compiler for homomorphically
evaluating arithmetic circuits. Instead, we give direct, practically efficient procedures for homomorphically
mapping the coefficients of an encrypted plaintext element into slots and vice-versa. In particular, our
procedure does not incur the large cost or algorithmic complexity of homomorphically reducing modulo
Φm(X), which was the main bottleneck in the decryption circuit of [GHS12a].

2
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At a higher level, our bootstrapping method has two other attractive and novel features: first, it is entirely
“algebraic,” by which we mean that the full procedure (including generation of all auxiliary data it uses)
can be described as a short sequence of elementary operations from the “native instruction set” of the SHE
scheme. By contrast, all previous methods at some point invoke rather generic arithmetic circuits, e.g., for
modular addition of values represented as bit strings, or reduction modulo a cyclotomic polynomial Φm(X).
Of course, arithmetic circuits can be evaluated using the SHE scheme’s native operations, but we believe
that the distinction between “algebraic” and “non-algebraic” is an important qualitative one, and it certainly
affects the simplicity and concrete efficiency of the bootstrapping procedure.

The second nice feature of our method is that it completely decouples the algebraic structure of the
SHE plaintext ring from that which is needed by the bootstrapping procedure. In previous methods that use
amortization (or “batching”) for efficiency (e.g., [SV11, BGV12, GHS12a]), the ring and plaintext modulus
of the SHE scheme must be chosen so as to provide many plaintext slots. However, this structure may not
always be a natural match for the SHE application’s efficiency or functionality requirements. For example, the
lattice-based pseudorandom function of [BPR12] works very well with a ring Rq = Zq[X]/(Xn + 1) where
both q and n are powers of two, but for such parameters Rq has only one slot. Our method can bootstrap even
for this kind of plaintext ring (and many others), while still using batching to achieve quasilinear runtime.

1.2 Techniques

At the heart of our bootstrapping procedure are two novel homomorphic operations for SHE schemes over
cyclotomic rings: for non-packed (or semi-packed) ciphertexts, we give an operation that isolates the message-
carrying coefficient(s) of a high-dimensional ring element; and for (semi-)packed ciphertexts, we give an
operation that maps coefficients to slots and vice-versa.

Isolating coefficients. Our first homomorphic operation is most easily explained in the context of non-
packed ciphertexts, which encrypt single elements of the quotient ring Zp for some small modulus p, using
ciphertexts over some cyclotomic quotient ring Rq = R/qR of moderately large degree d = deg(R/Z) =
Õ(λ). We first observe that a ciphertext to be bootstrapped can be reinterpreted as an encryption of an
Rq-element, one of whose Zq-coefficients (with respect to an appropriate basis of the ring) “noisily” encodes
the message, and whose other coefficients are just meaningless noise terms. We give an simple and efficient
homomorphic operation that preserves the meaningful coefficient, and maps all the others to zero. Having
isolated the message-encoding coefficient, we can then homomorphically apply an efficient integer “rounding”
function (see [GHS12a] and Appendix B) to recover the message from its noisy encoding, which completes
the bootstrapping procedure. (Note that it is necessary to remove the meaningless noise coefficients first,
otherwise they would interfere with the correct operation of the rounding function.)

Our coefficient-isolating procedure works essentially by applying the trace function TrR/Z : R → Z
to the plaintext. The trace is the “canonical” Z-linear function from R to Z, and it turns out that for the
appropriate choice of Z-basis of R used in decryption, the trace simply outputs (up to some scaling factor)
the message-carrying coefficient we wish to isolate. One simple and very efficient way of applying the trace
homomorphically is to use the “ring-switching” technique of [GHPS12], but unfortunately, this requires the
ring-LWE problem [LPR10] to be hard over the target ring Z, which is clearly not the case. Another way
follows from the fact that TrR/Z equals the sum of all d automorphisms of R; therefore, it can be computed
by homomorphically applying each automorphism and summing the results. Unfortunately, this method takes
at least quadratic Ω(λ2) time, because applying each automorphism homomorphically takes Ω(λ) time, and
there are d = Ω(λ) automorphisms.
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So, instead of inefficiently computing the trace by summing all the automorphisms at once, we consider
a tower of cyclotomic rings Z = R(0) ⊆ R(1) ⊆ · · · ⊆ R(r) = R, usually written as R(r)/ · · · /R(1)/R(0).
Then TrR/Z is the composition of the individual trace functions TrR(i)/R(i−1) : R(i) → R(i−1), and these
traces are equal to the sums of all automorphisms of R(i) that fix R(i−1) pointwise, of which there are exactly
di = deg(R(i)/R(i−1)) = deg(R(i)/Z)/deg(R(i−1)/Z). We can therefore compute each TrR(i)/R(i−1)

in time linear in λ and in di; moreover, the number of trace functions to apply is at most logarithmic in
d = deg(R/Z) = Õ(λ), because each one reduces the degree by a factor of at least two. Therefore, by
ensuring that the degrees of R(r), R(r−1), . . . , R(0) decrease gradually enough, we can homomorphically
apply the full TrR/Z in quasilinear time. For example, a particularly convenient choice is to let R(i) be
the 2i+1st cyclotomic ring Z[X]/(1 + X2i) of degree 2i, so that every di = 2, and there are exactly
log2(d) = O(log λ) trace functions to apply.

More generally, when bootstrapping a semi-packed ciphertext we start with a plaintext value in Rq that
noisily encodes a message in Sp, for some subring S ⊆ R. (The case S = Z corresponds to a non-packed
ciphertext.) We show that applying the trace function TrR/S to the Rq-plaintext yields a new plaintext in Sq
that noisily encodes the message, thus isolating the meaningful part of the noisy encoding and vanishing
the rest. We then homomorphically apply a rounding function to recover the Sp message from its noisy Sq
encoding, which uses the technique described next.

Mapping coefficients to slots. Our second technique, and main technical innovation, is in bootstrapping
(semi-)packed ciphertexts. We enhance the recent “ring-switching” procedure of [GHPS12], and use it to
efficiently move “noisy” plaintext coefficients (with respect to an appropriate decryption basis) into slots
for batch-rounding, and finally move the rounded slot values back to coefficients. We note that all previous
methods for loading plaintext data into slots used the same ring for the source and destination, and so required
the plaintext to come from a ring designed to have many slots. In this work, we use ring-switching to go from
the SHE plaintext ring to a different ring having many slots, which is used only temporarily for batch-rounding.
This is what allows the SHE plaintext ring to be decoupled from the rings used in bootstrapping, as mentioned
above.

To summarize our technique, we first recall the ring-switching procedure of [GHPS12]. It was originally
devised to provide moderate efficiency gains for SHE/FHE schemes, by allowing them to switch ciphertexts
from high-degree cyclotomic rings to subrings of smaller degree (once enough homomorphic operations have
been performed to make this secure). We generalize the procedure, showing how to switch between two
rings where neither ring need be a subring of the other. The procedure has a very simple implementation,
and as long as the two rings have a large common subring, it is also very efficient (i.e., quasilinear in the
dimension). Moreover, it supports, as a side effect, the homomorphic evaluation of any function that is linear
over the common subring. However, the larger the common subring is, the more restrictive this condition on
the function becomes.

We show how our enhanced ring-switching can move the plaintext coefficients into the slots of the target
ring (and back), which can be seen as just evaluating a certain Z-linear function. Here we are faced with
the main technical challenge: for efficiency, the common subring of the source and destination rings must
be large, but then the supported class of linear functions is very restrictive, and certainly does not include
the Z-linear one we want to evaluate. We solve this problem by switching through a short sequence of
“hybrid” rings, where adjacent rings have a large common subring, but the initial and final rings have only
the integers Z in common. Moreover, we show that for an appropriately chosen sequence of hybrid rings,
the Z-linear function we want to evaluate is realizable by a sequence of allowed linear functions between
adjacent hybrid rings. Very critically, this decomposition requires the SHE scheme to use a highly structured
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basis of the ring for decryption. The usual representation of a cyclotomic ring as Z[X]/Φm(X) typically
does not correspond to such a basis, so we instead rely on the tensorial decomposition of the ring and its
corresponding bases, as recently explored in [LPR13]. At heart, this is what allows us to avoid the expensive
homomorphic reduction modulo Φm(X), which is one of the main bottlenecks in previous work [GHS12a].2

Stepping back a bit, the technique of switching through hybrid rings and bases is reminiscent of standard
“sparse decompositions” for linear transformations like the FFT, in that both decompose a complicated high-
dimensional transform into a short sequence of simpler, structured transforms. (Here, the simple transforms
are computed merely as a side-effect of passing through the hybrid rings.) Because of these similarities, we
believe that the enhanced ring-switching procedure will be applicable in other domain-specific applications
of homomorphic encryption, e.g., signal-processing transforms or statistical analysis.

Organization. Section 2.1 recalls the extensive algebraic background required for our constructions, and
Section 2.2 recalls a standard ring-based SHE scheme and some of its natural homomorphic operations.
Section 3 defines the general bootstrapping procedure. Sections 4 and 5 respectively fill in the details of the
two novel homomorphic operations used in the bootstrapping procedure. Appendix A documents a folklore
transformation between two essentially equivalent ways of encoding messages in SHE schemes. Appendix B
describes an integer rounding procedure that simplifies the one given in [GHS12a], and Appendix C gives
some concrete choices of rings that our method can use in practice.

Acknowledgments. We thank Oded Regev for helpful discussions during the early stages of this research,
and the anonymous CRYPTO’13 reviewers for their thoughtful comments.

2 Preliminaries

For a positive integer k, we let [k] = {0, . . . , k − 1}. For an integer modulus q, we let Zq = Z/qZ
denote the quotient ring of integers modulo q. For integers q, q′, we define the integer “rounding” function
b·eq′ : Zq → Zq′ as bxeq′ = b(q′/q) · xe mod q′.

2.1 Algebraic Background

Throughout this work, by “ring” we mean a commutative ring with identity. For two rings R ⊆ R′, an
R-basis of R′ is a set B ⊂ R′ such that every r ∈ R′ can be written uniquely as an R-linear combination
of elements of B. For two rings R,S with a common subring E, an E-linear function L : R → S is one
for which L(r + r′) = L(r) + L(r′) for all r, r′ ∈ R, and L(e · r) = e · L(r) for all e ∈ E, r ∈ R. It is
immediate that such a function is defined uniquely by its values on any E-basis of R.

2.1.1 Cyclotomic Rings

For a positive integer m called the index, let Om = Z[ζm] denote the mth cyclotomic ring, where ζm is an
abstract element of orderm over Q. (In particular, we do not view ζm as any particular complex root of unity.)
The minimal polynomial of ζm over Q is themth cyclotomic polynomial Φm(X) =

∏
i∈Z∗m(X−ωim) ∈ Z[X],

where ωm = exp(2π
√
−1/m) ∈ C is the principal mth complex root of unity, and the roots ωim ∈ C range

2The use of more structured representations of cyclotomic rings in [LPR13] was initially motivated by the desire for simpler and
more efficient algorithms for cryptographic operations. Interestingly, these representations yield moderate efficiency improvements
for computations “in the clear,” but dramatic benefits for their homomorphic counterparts!
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over all the primitive complex mth roots of unity. Therefore, Om is a ring extension of degree n = ϕ(m)
over Z. (In particular, O1 = O2 = Z.) Clearly, Om is isomorphic to the polynomial ring Z[X]/Φm(X) by
identifying ζm with X , and has the “power basis” {1, ζm, . . . , ζn−1

m } as a Z-basis. However, for non-prime-
power m the power basis can be somewhat cumbersome and inefficient to work with. In Section 2.1.4 we
consider other, more structured bases that are essential to our techniques.

If m|m′, we can view the mth cyclotomic ringOm as a subring ofOm′ = Z[ζm′ ], via the ring embedding
(i.e., injective ring homomorphism) that maps ζm to ζ

m′/m
m′ . The ring extension Om′/Om has degree

d = ϕ(m′)/ϕ(m), and also d automorphisms τi (i.e., automorphisms of Om′ that fix Om pointwise),
which are defined by τi(ζm′) = ζim′ for each i ∈ Z∗m′ such that i = 1 (mod m). The trace function
Tr = TrOm′/Om

: Om′ → Om can be defined as the sum of these automorphisms:

TrOm′/Om
(a) =

∑
i

τi(a) ∈ Om.

Notice that Tr is Om-linear by definition. If Om′′/Om′/Om is a tower of ring extensions, then the trace
satisfies the composition property TrOm′′/Om

= TrOm′/Om
◦TrOm′′/Om′

.
An important element in the mth cyclotomic ring is

g :=
∏

odd prime p|m

(1− ζp) ∈ Om. (2.1)

Also define m̂ = m/2 if m is even, otherwise m̂ = m, for any cyclotomic index m. It is known that g|m̂
(see, e.g., [LPR13, Section 2.5.4]). The following lemma shows how the elements g in different cyclotomic
rings, and the ideals they generate, are related by the trace function.

Lemma 2.1. Let m|m′ be positive integers and let g ∈ R = Om, g′ ∈ R′ = Om′ and m̂, m̂′ be as defined
above. Then TrR′/R(g′R′) = (m̂′/m̂) · gR, and in particular, TrR′/R(g′) = (m̂′/m̂) · g.

Later on we use the scaled trace function (m̂/m̂′) TrR′/R, which by the above lemma maps the ideal g′R
to gR, and g′ to g.

Proof. Let Tr = TrR′/R. To prove the first claim, we briefly recall certain properties of R∨, the fractional
ideal “dual” to R; see [LPR13, Section 2.5.4] for further details. First, R∨ = (g/m̂)R, and similarly
(R′)∨ = (g′/m̂′)R′. It also follows directly from the definition of the dual ideal that Tr((R′)∨) = R∨; see
for example [GHPS12, Equation 2.2]. Therefore, Tr(g′R′) = (m̂′/m̂) · gR.

For the second claim, we first show the effect of the trace on g′ when m′ = m · p for some prime p.
If p divides m, then m̂′/m̂ = m′/m = p, the degree of R′/R is ϕ(m′)/ϕ(m) = p, and g′ = g ∈ R, so
Tr(g′) = Tr(g) = p · g. Now suppose p does not divide m. If p = 2, then m is even and m′ is odd, so
m̂′/m̂ = (m′/2)/m = 1, the degree of R′/R is 1, and g′ = g ∈ R, so Tr(g′) = g. Otherwise p is odd, so
m̂′/m̂ = m′/m = p and g′ = (1− ζp)g. Therefore Tr(g′) = Tr(1− ζp) · g = p · g, where the final equality
follows from Tr(1) = p− 1 and Tr(ζp) = ζ1

p + ζ2
p + · · · ζp−1

p = −1.
The general case follows from the composition property of the trace, by iteratively applying the above

case to any cyclotomic tower R(r)/R(r−1)/ · · · /R(0), where R(r) = R′ and R(0) = R, and the ratio of the
indices of R(i), R(i−1) is prime for every i = 1, . . . , r.
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2.1.2 Tensorial Decomposition of Cyclotomics

An important fact from algebraic number theory, used centrally in this work (and in [LPR13]), is the tensorial
decomposition of cyclotomic rings (and their bases) in terms of subrings. Let Om1 ,Om2 be cyclotomic
rings. Then their largest common subring is Om1 ∩ Om2 = Og where g = gcd(m1,m2), and their smallest
common extension ring, called the compositum, is Om1 + Om2 = Ol where l = lcm(m1,m2). When
considered as extensions ofOg, the ringOl is isomorphic to the ring tensor product ofOm1 andOm2 , written
as (sometimes suppressing Og when it is clear from context)

Ol/Og ∼= (Om1/Og)⊗ (Om2/Og).

On the right, the ring tensor product is defined as the set of allOg-linear combinations of pure tensors a1⊗a2,
with ring operations defined by Og-bilinearity:

(a1 ⊗ a2) + (b1 ⊗ a2) = (a1 + b1)⊗ a2,

(a1 ⊗ a2) + (a1 ⊗ b2) = a1 ⊗ (a2 + b2),

c(a1 ⊗ a2) = (ca1)⊗ a2 = a1 ⊗ (ca2)

for any c ∈ Og, and the mixed-product property (a1 ⊗ a2) · (b1 ⊗ b2) = (a1b1)⊗ (a2b2). The isomorphism
with Ol/Og then simply identifies a1 ⊗ a2 with a1 · a2 ∈ Ol. Note that any a1 ∈ Om1 corresponds to the
pure tensor a1 ⊗ 1, and similarly for any a2 ∈ Om2 .

The following simple lemma will be central to our techniques.

Lemma 2.2. Let m1,m2 be positive integers and g = gcd(m1,m2), l = lcm(m1,m2). Then for any
Og-linear function L̄ : Om1 → Om2 , there is an (efficiently computable) Om2-linear function L : Ol → Om2

that coincides with L̄ on the subring Om1 ⊆ Ol.

Proof. WriteOl ∼= Om1 ⊗Om2 , where the common base ringOg is implicit. Let L : (Om1 ⊗Om2)→ Om2

be the Og-linear function uniquely defined by L(a1 ⊗ a2) = L̄(a1) · a2 ∈ Om2 for all pure tensors a1 ⊗ a2.
Then because (a1 ⊗ a2) · b2 = a1 ⊗ (a2b2) for any b2 ∈ Om2 by the mixed-product property, L is also
Om2-linear. Finally, for any a1 ∈ Om1 we have L(a1 ⊗ 1) = L̄(a1) by construction.

2.1.3 Ideal Factorization and Plaintext Slots

Here we recall the unique factorization of prime integers into prime ideals in cyclotomic rings, and, fol-
lowing [SV11], how the Chinese remainder theorem can yield several plaintext “slots” that embed Zq as a
subring, even for composite q. Similar facts for composite moduli are presented in [GHS12a], but in terms of
p-adic approximations and Hensel lifting. Here we give an ideal-theoretic interpretation using the Chinese
remainder theorem, which we believe is more elementary, and is a direct extension of the case of prime
moduli.

Let p ∈ Z be a prime integer. In themth cyclotomic ringR = Om = Z[ζm] (which has degree n = ϕ(m)
over Z), the ideal pR factors into prime ideals as follows. First writem = m̄ ·pk where p - m̄. Let e = ϕ(pk),
and let d be the multiplicative order of p modulo in Z∗m̄, and note that d divides ϕ(m̄) = n/e. The ideal pR
then factors into the product of eth powers of ϕ(m̄)/d = n/(de) distinct prime ideals pi, i.e.,

pR =
∏

pei .
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Each prime ideal pi has norm |R/pi| = pd, so each quotient ring R/pi is isomorphic to the finite field Fpd .
In particular, it embeds Zp as a subfield. (Although we will not need this, the prime ideals are concretely
given by pi = pR + Fi(ζm)R, where Φm̄(X) =

∏
i Fi(X) (mod p) is the mod-p factorization of the m̄th

cyclotomic polynomial into ϕ(m̄)/d distinct irreducible polynomials of degree d.)
We now see how to obtain quotient rings ofR that embed the ring Zq, where q = pr for some integer r ≥ 1.

(The case of arbitrary integer modulus q follows immediately from the Chinese remainder theorem.) Here we
have the factorization qR =

∏
i p
re
i , and it turns out that each quotient ring R/prei embeds Zq as a subring.

One easy way to see this is to notice that q is the smallest power of p in prei , so the integers {0, . . . , q − 1}
representing Zq are distinct modulo prei .

By the Chinese Remainder Theorem (CRT), for q = pr the natural ring homomorphism from Rq to
the product ring

⊕
i(R/p

re
i ) is an isomorphism. When the natural plaintext space of a cryptosystem is Rq,

we refer to the ϕ(m̄)/d quotient rings R/prei as the plaintext “Zq-slots” (or just “slots”), and use them to
store vectors of Zq-elements via the CRT isomorphism. With this encoding, ring operations in Rq induce
“batch” (or “SIMD”) component-wise operations on the corresponding vectors of Zq elements. We note
that the CRT isomorphism is easy to compute in both directions. In particular, to map from a vector of
Zq-elements to Rq just requires knowing a fixed mod-q CRT set C = {ci} ⊂ R for which ci = 1 (mod prei )
and ci = 0 (mod prej ) for all j 6= i. Such a set can be precomputed using, e.g., a generalization of the
extended Euclidean algorithm.

Splitting in cyclotomic extension rings. Now consider a cyclotomic extension R′/R where R′ = Om′ =
Z[ζm′ ] for some m′ divisible by m. Then for each prime ideal pi ⊂ R dividing pR, the ideal piR′ factors into
equal powers of the same number of prime ideals p′i,i′ ⊂ R′, where all the p′i,i′ are distinct. The ideal p′i,i′
is said to “lie over” pi (and pi in turns lies over p). Since p′i,i′ are also the prime ideals appearing in the
factorization pR′, we can determine their number and multiplicity exactly as above. Letting m̄′, e′ and d′

be defined as above for R′, we known that pR′ =
∏
i,i′(p

′
i,i′)

e′ , where there are a total of ϕ(m̄′)/d′ distinct
prime ideals p′i,i′ . Therefore, each pi splits into exactly (ϕ(m̄′) · d)/(ϕ(m̄) · d′) ideals each; this number is
sometimes called the “relative splitting number” of p in R′/R.

2.1.4 Product Bases

Our bootstrapping technique relies crucially on certain highly structured bases and CRT sets, which we call
“product bases (sets),” that arise from towers of cyclotomic rings. Let Om′′/Om′/Om be such a tower, let
B′′ = {b′′j′′} ⊂ Om′′ be any Om′-basis of Om′′ , and let B′ = {b′j′} ⊂ Om′ be any Om-basis of Om′ . Then it
follows immediately that the product set B′′ ·B′ := {b′′j′′ · b′j′} ⊂ Om′′ is an Om-basis of Om′′ .3 Of course,
for a tower of several cyclotomic extensions and relative bases, we can obtain product bases that factor with a
corresponding degree of granularity.

Factorization of the powerful and decoding bases. An important structured Z-basis of Om, called
the “powerful” basis in [LPR13], was defined in that work as the product of all the power Z-bases
{ζ0, ζ1, . . . , ζϕ(pe)−1} of Ope (where ζ = ζpe), taken over all the maximal prime-power divisors pe of m.
In turn, it is straightforward to verify that the power Z-basis of Ope can be obtained from the tower
Ope/Ope−1/ · · · /Z, as the product of all the power Opi−1-bases {ζ0

pi
, . . . , ζdi−1

pi
} of Opi for i = 1, . . . , e,

where di = ϕ(pi)/ϕ(pi−1) ∈ {p − 1, p} is the degree of Opi/Opi−1 . Therefore, the powerful basis has a

3Formally, this basis is a Kronecker product of the bases B′′ and B′, which is typically written using the ⊗ operator. We instead
use · to avoid confusion with pure tensors in a ring tensor product, which the elements of B′′ ·B′ may not necessarily be.
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“finest possible” product structure. (This is not the case for other commonly used bases of Om, such as the
power Z-basis, unless m is a prime power.)

Similarly, [LPR13] defines the “decoding” Z-basis D of a certain fractional ideal O∨m = (g/m̂)Om,
which is the “dual ideal” ofOm, to be the dual basis of the conjugate powerful basis. Unlike the powerful basis,
the decoding basis has optimal noise tolerance (see [LPR13, Section 6.2]) and is therefore a best choice to use
in decryption, when using the dual ideal O∨m appropriately in a cryptosystem. For simplicity, our formulation
of the cryptosystem (see Section 2.2) avoids using O∨m by “scaling up” to (m̂/g)O∨m = Om, and so we are
interested in factorizations of the scaled-up Z-basis (m̂/g)D of Om. As shown in [LPR13, Lemma 6.3], this
basis is very closely related to the powerful basis, and has a nearly identical product structure arising from the
towersOpe/Ope−1/ · · · /Z for the maximal prime-power divisors pe ofm. The only difference is in the choice
of the lowest-level Z-bases of eachOp/Z, which are taken to be {ζjp + ζj+1

p + · · ·+ ζp−2
p }j∈{0,...,p−2} instead

of the power basis. In summary, the preferred Z-basis of Om used for decryption also has a finest-possible
product structure.

Factorization of CRT sets. Using the splitting behavior of primes and prime ideals, we can also define
CRT sets having a finest-possible product structure. First consider any cyclotomic extension Om′/Om, and
suppose that prime integer p splits in Om into distinct prime ideals pi. In turn, each pi splits in Om′ into the
same number k of prime ideals p′i,i′ , which are all distinct. For simplicity, assume for now that p does not
divide m or m′, so none of the ideals occur with multiplicity.

A mod-p CRT set C = {ci} for Om satisfies ci = 1 (mod pi) and ci = 0 (mod pj) for j 6= i; therefore,
ci = 1 (mod p′i,i′) and ci = 0 (mod p′j,i′) for all i′ and all j 6= i. We can choose a set S = {si′} ⊂ Om′
of size k such that C ′ = S · C is a mod-p CRT set for Om′ , as follows: partition the ideals p′i,i′ arbitrarily
according to i′, and define si′ ∈ Om′ to be congruent to 1 modulo all those ideals p′i,i′ in the i′th component
of the partition, and 0 modulo all the other ideals p′j,j′ . Then it is immediate that each product ci · si′
is 1 modulo p′i,i′ , and 0 modulo all other p′j,j′ . Therefore, C ′ = S · C is a mod-p CRT set for Om′ . The
generalization of this process to the case where p factors into powers of the ideals, and to moduli q = pr, is
immediate.

For an arbitrary cyclotomic index m, consider any cyclotomic tower Om/ · · · /Z. Then a mod-q CRT set
with corresponding product structure can be obtained by iteratively applying the above procedure at each
level of the tower. A finest-possible product structure is obtained by using tower of maximal length (i.e., one
in which the ratio of indices at adjacent levels is always prime).

2.2 Ring-Based Homomorphic Cryptosystem

Here we recall a somewhat-homomorphic encryption scheme whose security is based on the ring-LWE
problem [LPR10] in arbitrary cyclotomic rings. For our purposes we focus mainly on its decryption function,
though below we also recall its support for “ring switching” [GHPS12]. For further details on its security
guarantees, various homomorphic properties, and efficient implementation, see [LPR10, BV11b, BGV12,
GHS12c, GHPS12, LPR13].

Let R = Om ⊆ R′ = Om′ be respectively the mth and m′th cyclotomic rings, where m|m′. The
plaintext ring is the quotient ring Rp for some integer p; ciphertexts are made up of elements of R′q for some
integer q, which for simplicity we assume is divisible by p; and the secret key is some s ∈ R′. The case
m = 1 corresponds to “non-packed” ciphertexts, which encrypt elements of Zp (e.g., single bits), whereas
m = m′ corresponds to “packed” ciphertexts, and 1 < m < m′ corresponds to what we call “semi-packed”
ciphertexts. Note that without loss of generality we can treat any ciphertext as packed, since R′p embeds Rp.
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But the smaller m is, the simpler and more practically efficient our bootstrapping procedure can be. Since
our focus is on refreshing ciphertexts that have large noise rate, we can think of m′ as being somewhat small
(e.g., in the several hundreds) via ring-switching [GHPS12], and q also as being somewhat small (e.g., in the
several thousands) via modulus-switching. Our main focus in this work is on a plaintext modulus p that is a
power of two, though for generality we present all our techniques in terms of arbitrary p.

A ciphertext encrypting a message µ ∈ Rp under secret key s′ ∈ R′ is some pair c′ = (c′0, c
′
1) ∈ R′q×R′q

satisfying the relation
c′0 + c′1 · s′ =

q

p
· µ+ e′ (mod qR′) (2.2)

for some error (or “noise”) term e′ ∈ R′ such that e′ · g′ ∈ g′R′ is sufficiently “short,” where g′ ∈ R′ is as
defined in Equation (2.1).4 Informally, the “noise rate” of the ciphertext is the ratio of the “size” of e′ (or
more precisely, the magnitude of its coefficients in a suitable basis) to q/p.

We note that Equation (2.2) corresponds to what is sometimes called the “most significant bit” (msb)
message encoding, whereas somewhat-homomorphic schemes are often defined using “least significant
bit” (lsb) encoding, in which p and q are coprime and c′0 + c′1s

′ = e′ (mod qR′) for some error term
e′ ∈ µ + pR′. For our purposes the msb encoding is more natural, and in any case the two encodings are
essentially equivalent: when p and q are coprime, we can trivially switch between the two encodings simply by
multiplying by p or p−1 modulo q (see Appendix A). When p divides q, we can use homomorphic operations
for the msb encoding due to Brakerski [Bra12]; alternatively, we can switch to and from a different modulus
q′ that is coprime with p, allowing us to switch between lsb and msb encodings as just described. In practice,
it may be preferable to use homomorphic operations for the lsb encoding, because they admit optimizations
(e.g., the “double-CRT representation” [GHS12c]) that may not be possible for the msb operations (at least
when p divides q).

2.2.1 Decryption

At a high level, the decryption algorithm works in two steps: the “linear” step simply computes v′ =
c′0 + c′1 · s′ =

q
p · µ+ e′ ∈ R′q, and the “non-linear” step outputs bv′ep ∈ Rp using a certain “ring rounding

function” b·ep : R′q → Rp. As long as the error term e′ is within the tolerance of the rounding function, the
output will be µ ∈ Rp. This is all entirely analogous to decryption in LWE-based systems, but here the
rounding is n-dimensional, rather than just from Zq to Zp.

Concretely, the ring rounding function b·ep : R′q → Rp is defined in terms of the integer rounding function
b·ep : Zq → Zp and a certain “decryption” Z-basis B′ = {bj} of R′, as follows.5 Represent the input v′ ∈ R′q
in the decryption basis as v′ =

∑
j v
′
j · b′j for some coefficients v′j ∈ Zq, then independently round the

coefficients, yielding an element
∑
bv′jep · b′j ∈ R′p that corresponds to the message µ ∈ Rp (under the

standard embedding of Rp into R′p).

4Quantitatively, “short” is defined with respect to the canonical embedding of R′, whose precise definition is not needed in this
work. The above system is equivalent to the one from [LPR13] in which the message, error term, and ciphertext components are all
taken over the “dual” fractional ideal (R′)∨ = (g′/m̂′)R′ in the m′th cyclotomic number field, and the error term has an essentially
spherical distribution over (R′)∨. In that system, decryption is best accomplished using a certain Z-basis of (R′)∨, called the
decoding basis, which optimally decodes spherical errors. The above formulation is more convenient for our purposes, and simply
corresponds with multiplying everything in the system of [LPR13] by an m̂′/g′ factor. This makes e′ · g′ ∈ g′R′ = m̂′(R′)∨) short
and essentially spherical in our formulation. See [LPR10, LPR13] for further details.

5In our formulation, the basis B′ is (m̂′/g′) times the decoding basis of (R′)∨. See Section 2.1.4 and Footnote 4.

10

Approved for Public Release; Distribution Unlimited.
307



2.2.2 Changing the Plaintext Modulus

We use two operations on ciphertexts that alter the plaintext modulus p and encrypted message µ ∈ Rp. The
first operation changes p to any multiple p′ = dp, and produces an encryption of some µ′ ∈ R′p′ such that
µ′ = µ (mod pR′). To do this, it simply “lifts” the input ciphertext c′ = (c′0, c

′
1) ∈ (R′q)

2 to an arbitrary
c′′ = (c′′0, c

′′
1) ∈ (R′q′)

2 such that c′′j = c′j (mod qR′), where q′ = dq. This works because

c′′0 + c′′1 · s′ ∈ c′0 + c′1 · s′ + qR′ =
(q
p
· µ+ e′

)
+ qR′ =

q′

p′
(µ+ pR′) + e′ (mod q′R′).

Notice that this leaves the noise rate unchanged, because the noise term is still e′, and q′/p′ = q/p.
The second operation applies to an encryption of a message µ ∈ Rp that is known to be divisible by some

divisor d of p, and produces an encryption of µ/d ∈ Rp/d. The operation actually leaves the ciphertext c′

unchanged; it just declares the associated plaintext modulus to be p/d (which affects how decryption is
performed). This works because

c′0 + c′1 · s′ =
q

p
µ+ e′ =

q

p/d
· (µ/d) + e′ (mod qR′).

Notice that the noise rate of the ciphertext has been divided by d, because the noise term is still e′ but
q/p′ = d(q/p).

2.2.3 Ring Switching

We rely heavily on the cryptosystem’s support for switching ciphertexts to a cyclotomic subring S′ of R′,
which as a side-effect homomorphically evaluates any desired S′-linear function on the plaintext. Notice
that the linear function L is applied to the plaintext as embedded in R′p; this obviously applies the induced
function on the true plaintext space Rp.

Proposition 2.3 ([GHPS12], full version). Let S′ ⊆ R′ be cyclotomic rings. Then the above-described
cryptosystem supports the following homomorphic operation: given any S′-linear function L : R′p → S′p
and a ciphertext over R′q encrypting (with sufficiently small error term) a message µ ∈ R′p, the output is a
ciphertext over S′q encrypting L(µ) ∈ S′p.

The security of the procedure described in Proposition 2.3 is based on the hardness of the ring-LWE
problem in S′, so the dimension of S′ must be sufficiently large. The procedure itself is quite simple and
efficient: it first switches to a secret key that lies in the subring S′, then it multiplies the resulting ciphertext
by an appropriate fixed element of R′ (which is determined solely by the function L). Finally, it applies to the
ciphertext the trace function TrR′/S′ : R

′ → S′. All of these operations are quasi-linear time in the dimension
of R′/Z, and very efficient in practice. In particular, the trace is a trivial linear-time operation when elements
are represented in any of the bases we use. The ring-switching procedure increases the effective error rate of
the ciphertext by a factor of about the square root of the dimension of R′, which is comparable to that of a
single homomorphic multiplication. See [GHPS12] for further details.

3 Overview of Bootstrapping Procedure

Here we give a high-level description of our bootstrapping procedure. We present a unified procedure for
non-packed, packed, and semi-packed ciphertexts, but note that for non-packed ciphertexts, Steps 3a and 3c
(and possibly 1c) are null operations, while for packed ciphertexts, Steps 1b, 1c, and 2 are null operations.
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Recalling the cryptosystem from Section 2.2, the plaintext ring is Rp and the ciphertext ring is R′q, where
R = Om ⊆ R′ = Om′ are cyclotomic rings (so m|m′), and q is a power of p. The procedure also uses a
larger cyclotomic ring R′′ = Om′′ ⊇ R′ (so m′|m′′) to work with ciphertexts that encrypt elements of the
original ciphertext ring R′q. To obtain quasilinear runtimes and exponential hardness (under standard hardness
assumptions), our procedure imposes some mild conditions on the indices m, m′, and m′′:

• The dimension ϕ(m′′) of R′′ must be quasilinear, so we can represent elements of R′′ efficiently.

• For Steps 2 and 3, all the prime divisors of m and m′ must be small (i.e., polylogarithmic).

• For Step 3, m and m′′/m must be coprime, which implies that m and m′/m must be coprime also.
Note that the former condition is always satisfied for non-packed ciphertexts (where m = 1). For
packed ciphertexts (where m = m′), the latter condition is always satisfied, which makes it easy
to choose a valid m′′. For semi-packed ciphertexts (where 1 < m < m′), we can always satisfy
the latter condition either by increasing m (at a small expense in practical efficiency in Step 3; see
Section 5.1.3), or by effectively decreasingm slightly (at a possible improvement in practical efficiency;
see Section 3.2).

For example, when m = 1, both m′ and m′′ can be powers of two.
The input to the procedure is a ciphertext c′ = (c′0, c

′
1) ∈ (R′q)

2 that encrypts some plaintext µ ∈ Rp
under a secret key s′ ∈ R′, i.e., it satisfies the relation

v′ = c′0 + c′1 · s′ =
q

p
· µ+ e′ (mod qR′)

for some small enough error term e′ ∈ R′. The procedure computes a new encryption of bv′ep = µ (under
some secret key, not necessarily s′) that has substantially smaller noise rate than the input ciphertext. It
proceeds as follows (explanatory remarks appear in italics):

1. Convert c′ to a “noiseless” ciphertext c′′ over a large ring R′′Q that encrypts a plaintext (g′/g)u′ ∈ R′q′ ,
where g′ ∈ R′, g ∈ R and m̂, m̂′ ∈ Z are as defined in (and following) Equation (2.1), q′ = (m̂′/m̂)q,
and u′ = v′ (mod qR′). This proceeds in the following sub-steps (see Section 3.1 for further details).

Note that g′/g ∈ R′ by definition, and that it divides m̂′/m̂.

(a) Reinterpret c′ as a noiseless encryption of v′ = q
p · µ+ e′ ∈ R′q as a plaintext, noting that both

the plaintext and ciphertext rings are now taken to be R′q.
This is purely a conceptual change in perspective, and does not involve any computation.

(b) Using the procedure described in Section 2.2.2, change the plaintext (and ciphertext) modulus to
q′ = (m̂′/m̂)q, yielding a noiseless encryption of some u′ ∈ R′q′ such that u′ = v′ (mod qR′).
Note that this step is a null operation if the original ciphertext was packed, i.e., if m = m′.
We need to increase the plaintext modulus because homomorphically computing TrR′/R in Step 2
below introduces an m̂′/m̂ factor into the plaintext, which we will undo by scaling the plaintext
modulus back down to q. (See Section 3.2 for an alternative choice of q′.)

(c) Multiply the ciphertext from the previous step by g′/g ∈ R′, yielding a noiseless encryption of
plaintext (g′/g)u′ ∈ R′q′ .
The factor (g′/g) ∈ R′ is needed when we homomorphically compute TrR′/R in Step 2 below.
Note that g′/g = 1 if and only if every odd prime divisor of m′ also divides m, e.g., if m = m′.
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(d) Convert to a noiseless ciphertext c′′ that still encrypts (g′/g)u′ ∈ R′q′ , but using a large enough
ciphertext ring R′′Q for some R′′ = Om′′ ⊇ R′ and modulus Q� q′.
A larger ciphertext ring R′′Q is needed for security in the upcoming homomorphic operations, to
compensate for the low noise rates that will need to be used. These operations will expand the
initial noise rate by a quasipolynomial λO(log λ) factor in total, so the dimension of R′′ and the
bit length of Q can be Õ(λ) and Õ(1), respectively.

The remaining steps are described here only in terms of their effect on the plaintext value and ring. Using
ring- and modulus-switching, the ciphertext ring R′′ and modulus Q may be made smaller as is convenient,
subject to the security and functionality requirements. (Also, the ciphertext ring implicitly changes during
Steps 3a and 3c.)

2. Homomorphically apply the scaled trace function (m̂/m̂′) TrR′/R to the encryption of (g′/g)u′ ∈ R′q′ ,
to obtain an encryption of plaintext

u =
m̂

m̂′
· TrR′/R

(g′
g
· u′
)

=
q

p
· µ+ e ∈ Rq

for some suitably small error term e ∈ R. See Section 4 for further details.

This step changes the plaintext ring from R′q′ to Rq, and homomorphically isolates the noisy Rq-
encoding of µ. It is a null operation if the original ciphertext was packed, i.e., if m = m′.

3. Homomorphically apply the ring rounding function b·ep : Rq → Rp, yielding an output ciphertext that
encrypts buep = µ ∈ Rp. This proceeds in three sub-steps, all of which are applied homomorphically
(see Section 5 for details):

(a) Map the coefficients uj of u ∈ Rq (with respect to the decryption basis B of R) to the Zq-slots
of a ring Sq, where S is a suitably chosen cyclotomic.
This step changes the plaintext ring from Rq to Sq. It is a null operation if the original ciphertext
was non-packed (i.e., if m = 1), because we can let S = R = Z.

(b) Batch-apply the integer rounding function b·e : Zq → Zp to the Zq-slots of Sq, yielding a
ciphertext that encrypts the values µj = bujep ∈ Zp in its Zp-slots.
This step changes the plaintext ring from Sq to Sp. It constitutes the only non-linear operation on
the plaintext, with multiplicative depth dlg pe · (logp(q)− 1) ≈ log(q), and as such is the most
expensive in terms of runtime, noise expansion, etc.

(c) Reverse the map from the step 3a, sending the values µj from the Zp-slots of Sp to coefficients
with respect to the decryption basis B of Rp, yielding an encryption of µ =

∑
j µjbj ∈ Rp.

This step changes the plaintext ring from Sp to Rp. Just like step 3a, it is a null operation for
non-packed ciphertexts.

3.1 Obtaining a Noiseless Ciphertext

Step 1 of our bootstrapping procedure is given as input a ciphertext c′ = (c′0, c
′
1) over R′q that encrypts

(typically with a high noise rate) a message µ ∈ Rp under key s′ ∈ R′, i.e., v′ = c′0 + c′1 ·s′ =
q
p ·µ+e′ ∈ R′q

for some error term e′. We first change our perspective and view c′ as a “noiseless” encryption (still under s′)
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of the plaintext value v′ ∈ R′q, taking both the plaintext and ciphertext rings to be R′q. This view is indeed
formally correct, because

c′0 + c′1 · s′ =
q

q
· v′ + 0 (mod qR′).

Next, in preparation for the upcoming homomorphic operations we increase the plaintext (and ciphertext)
modulus to q′, and multiply the resulting ciphertext by g′/g. These operations clearly preserve noiselessness.
Finally, we convert the ciphertext ring to R′′Q for a sufficiently large cyclotomic R′′ ⊇ R′ and modulus Q� q
that is divisible by q. This is done by simply embedding R′ into R′′ and introducing extra precision, i.e.,
scaling the ciphertext up by a Q/q factor. It is easy to verify that these operations also preserve noiselessness.

3.2 Variants and Optimizations

Our basic procedure admits a few minor variants and practical optimizations, which we discuss here.

Smaller temporary modulus q′. In Step 1b we increase the plaintext modulus from q to q′ = rq where
r = m̂′/m̂, and at the end of Step 2 we reduce the modulus back to q because the plaintext is divisible by r.
The net effect of this, versus using a modulus q throughout, is that the modulus Q is larger by an r factor, as
are the error rates used for key-switching in Step 2. This does not affect the asymptotic cost of bootstrapping,
but it may have a small impact in practice. Instead, we can increase the modulus to only q′ = (r/d)q, where d
is the largest divisor of r coprime with q. Then in Step 2 we can remove an (r/d) factor from the plaintext by
scaling the modulus back down to q, and keep track of the remaining d factor and remove it upon decryption.
(We could also remove the d factor by multiplying the ciphertext by d−1 mod q, but this would increase the
noise rate by up to a q/2 factor, which is typically much larger than the m̂′/m̂ factor we were trying to avoid
in the first place.)

Using a smaller index m in Steps 2 and 3. Steps 3a and 3c can be much more costly in practice than
Step 2, because they require working with rings that have at least ϕ(m) Zq-slots. As the number of needed
slots increases, the indices of such rings tend to grow quickly, and involve more prime divisors of larger
size (though asymptotically the indices remain quasilinear); see Appendix C for some examples. So, in
practice it may be faster to invoke Step 3 a few times to evaluate the rounding function over a smaller ring
R̃ = Om̃ ⊂ R, for some proper divisor m̃ of m. Our procedure can be adapted to work in this way, even if
the original plaintext µ is an arbitrary element of the plaintext space Rp.

The main facts we use are that the decryption basis B of R factors as B = B′ · B̃, where B̃ is the
decryption basis of R̃, and in particular B′ is an optimally short R̃-basis of R. (See Section 2.1.4.) Moreover,
applying the ring rounding function on any u ∈ Rq is equivalent to independently applying the ring rounding
function on each of u’s R̃q-coefficients with respect to B′. Lastly, the R̃q-coefficients of u can be individually
extracted using the trace function TrR/R̃ on certain fixed (short) multiples of u. (This all just generalizes the

case R̃ = Z in the natural way.) Using these facts, in Step 2 we can homomorphically apply TrR/R̃ several

times to obtain encryptions of the R̃q-coefficients of the noisy encoding u ≈ (q/p) · µ, then use Step 3 to
homomorphically round those coefficients to get the R̃p-coefficients of µ ∈ Rp, and finally reassemble the
pieces by homomorphically multiplying by the short basis elements in B′, and summing the results.

Note that the above method requires evaluating TrR/R̃ a total of ϕ(m)/ϕ(m̃) times in Step 2, and the

same goes for the R̃q rounding function in Step 3. Because each evaluation takes quasilinear time no matter
what m̃ is, the asymptotic performance can only worsen as m̃ decreases. However, in practice there may be
benefits in choosing m̃ to be slightly smaller than m.
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4 Homomorphic Trace

Here we show how to perform Step 2 of our bootstrapping procedure, which homomorphically evaluates the
scaled trace function (m̂/m̂′) TrR′/R on an encryption of (g′/g)u′ ∈ R′q′ , where recall that: g′ ∈ R′, g ∈ R
are as defined in Equation (2.1), and (g′/g) divides (m̂′/m̂); the plaintext modulus is q′ = (m̂′/m̂)q; and

u′ = v′ =
q

p
· µ+ e′ (mod qR′),

where e′ · g′ ∈ g′R′ is sufficiently short. Our goal is to show that:

1. the scaled trace of the plaintext (g′/g)u′ is some u = q
p · µ+ e ∈ Rq, where e · g ∈ gR is short, and

2. we can efficiently homomorphically apply the scaled trace on a ciphertext c′′ over some larger ring
R′′ = Om′′ ⊇ R′.

4.1 Trace of the Plaintext

We first show the effect of the scaled trace on the plaintext (g′/g)u′ ∈ R′q′ . By the above description of
u′ ∈ R′q′ and the fact that (g′/g)q divides q′ = (m̂′/m̂)q, we have

(g′/g)u′ = (g′/g)v′ = (g′/g)

(
q

p
· µ+ e′

)
(mod (g′/g)qR′).

Therefore, letting Tr = TrR′/R, by R-linearity of the trace and Lemma 2.1, we have

Tr((g′/g)u′) = Tr(g′/g) · q
p
· µ+ Tr(e′ · g′)/g

=
m̂′

m̂

(
q

p
· µ+ e

)
(mod q′R),

where e = (m̂/m̂′) Tr(e′ · g′)/g ∈ R. Therefore, after scaling down the plaintext modulus q′ by an m̂′/m̂
factor (see Section 2.2.2), the plaintext is q

p · µ+ e ∈ Rq.
Moreover, e · g = (m̂/m̂′) Tr(e′ · g′) ∈ gR is short because e′ · g′ ∈ g′R′ is short; see, e.g., [GHPS12,

Corollary 2.2]. In fact, by basic properties of the decoding/decryption basis (as defined in [LPR13]) under
the trace, the coefficient vector of e with respect to the decryption basis of R is merely a subvector of the
coefficient vector of e′ with respect to the decryption basis of R′. Therefore, e is within the error tolerance of
the rounding function on Rq, assuming e′ is within the error tolerance of the rounding function on R′q.

4.2 Applying the Trace

Now we show how to efficiently homomorphically apply the scaled trace function (m̂/m̂′) TrR′/R to an
encryption of any plaintext in R′q′ that is divisible by (g′/g). Note that this condition ensures that the output
of the trace is a multiple of m̂/m̂′ in Rq′ (see Lemma 2.1), making the scaling a well-defined operation that
results in an element of Rq.

First recall that TrR′/R is the sum of all ϕ(m′)/ϕ(m) automorphisms of R′/R, i.e., automorphisms
of R′ that fix R pointwise. Therefore, one way of homomorphically computing the scaled trace is to
homomorphically apply the proper automorphisms, sum the results, and scale down the plaintext and its
modulus. While this “sum-automorphisms” procedure yields the correct result, computing the trace in this way
does not run in quasilinear time, unless the number ϕ(m′)/ϕ(m) of automorphisms is only polylogarithmic.
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Instead, we consider a sufficiently fine-grained tower of cyclotomic rings

R(r)/ · · · /R(1)/R(0),

where R′ = R(r), R = R(0), and each R(i) = Omi , where mi is divisible by mi−1 for i > 0; for the
finest granularity we would choose the tower so that every mi/mi−1 is prime. Notice that the scaled trace
function (m̂/m̂′) TrR′/R is the composition of the scaled trace functions (m̂i−1/m̂i) TrR(i)/R(i−1) , and that
g′/g is the product of all g(i)/g(i−1) for i = 1, . . . , r, where g(i) ∈ R(i) is as defined in Equation (2.1). So,
another way of homomorphically applying the full scaled trace is to apply the corresponding scaled trace
in sequence for each level of the tower, “climbing down” from R′ = R(r) to R = R(0). In particular, if
we use the above sum-automorphisms procedure with a tower of finest granularity, then there are at most
log2(m′/m) = O(log λ) levels, and since we have assumed that every prime divisor of m′/m is bounded by
polylogarithmic in the security parameter λ, the full procedure will run in quasilinear Õ(λ) time.

For technical reasons related to the analysis of noise terms under automorphisms, we actually use the sum-
automorphisms procedure only on levels R(i)/R(i−1) = Omi/Omi−1 of the tower where every odd prime
dividing mi also divides mi−1. Otherwise, we instead apply the scaled trace via an alternative procedure
using ring-switching, which has essentially the same runtime (see Section 4.2.2 below for details). In fact,
the alternative procedure can actually be used for any level of the tower, but it has the slight disadvantage of
requiring the index of the ciphertext ring to be divisible by at least one prime that does not divide mi; this is
why we prefer not to use it when, e.g., mi is a power of two.

4.2.1 Details of the Sum-Automorphisms Procedure

Here we specify the procedure for homomorphically applying the scaled trace by summing automorphisms, as
sketched above. Let R′/R = Om′/Om be a cyclotomic extension, where here m,m′ are just dummy indices,
not necessarily the ones from above. As already mentioned, we require that every odd prime dividing m′

also divides m. The procedure takes as input a ciphertext c′′ over some R′′ ⊇ R′ that encrypts a plaintext
w′ ∈ R′q′ under secret key s′′ ∈ R′′, where q′ = (m̂′/m̂)q and w′ is divisible by (g′/g). It proceeds as
follows:

1. Compute ciphertexts τi(c′′) over R′′ for a certain set of automorphisms τi of R′′/R that induce the
automorphisms of R′/R. These ciphertexts will respectively encrypt τi(w′) ∈ R′q′ under secret
key τi(s′′). Then key-switch [BV11a, BGV12] these to ciphertexts c(i) encrypting τi(w′) under a
common secret key s̃. See below for further details.

2. Sum the ciphertexts c(i) (component-wise) to get a new ciphertext c̃ that encrypts (under secret key s̃)
the plaintext TrR′/R(w′) =

∑
i τi(w

′) ∈ Rq′ , which is divisible by m̂′/m̂.

3. Using the procedure from Section 2.2.2, reduce the plaintext modulus to q, resulting in a ciphertext
that encrypts the scaled trace (m̂/m̂′) TrR′/R(w′) ∈ Rq under s̃.

The correctness of Steps 2 and 3 is immediate, so we just need to give the details of Step 1. We need to
choose automorphisms τi of R′′/R that induce the automorphisms of R′/R. Recall that the latter are defined
by τj(ζm′) = ζjm′ for all j ∈ Z∗m′ such that j = 1 (mod m). For each such j, we choose an i ∈ Z∗m′′ such
that i = j (mod m′) and such that i is 1 modulo every prime p that divides m′′ but not m′; this is possible
by the Chinese Remainder Theorem. Then τi(ζm′′) = ζim′′ is an automorphism of R′′/R that induces τj ,
because i = 1 (mod m) and

τi(ζm′) = ζ
(m′′/m′)i
m′′ = ζjm′ .
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Also, by our assumption on m,m′, each i we use is 1 modulo every prime that divides m′′, because every
such prime either divides m, or does not divide m′, or is 2.

To complete the details of Step 1, we need to show why the ciphertext τi(c′′) encrypts τi(w′) ∈ R′q′ under
secret key τi(s′′). This follows from the decryption relation for c′′, and the fact that τi is a ring homomorphism
that induces an automorphism of R′ and fixes Z ⊆ R pointwise:

τi(c
′′
0) + τi(c

′′
1) · τi(s′′) =

q

p
· τi(µ) + τi(e

′′),

where the error term e′′ ∈ R′′ of c′′ is such that e′′ · g′′ is short (under the canonical embedding of R′′).
The only subtlety is that we need τi(e′′) · g′′ to be short. We show below that g′′ = τi(g

′′), from which it
follows that τi(e′′) · g′′ = τi(e

′′ · g′′), which is short because the automorphisms of R′′ simply permute the
coordinates of the canonical embedding, and hence preserve norms (see, e.g., [LPR10, Lemma 5.6]). To see
that g′′ = τi(g

′′), recall that i ∈ Z∗m′′ is 1 modulo every prime p that divides m′′. Therefore, τi fixes every ζp
and hence also fixes g′′.6

Lastly, we briefly analyze the efficiency of the procedure. Applying automorphisms to the ciphertext ring
elements is a trivial linear-time operation in the dimension, when the element is represented in any of the
structured bases we consider (and also in the so-called “Chinese remainder” basis). Similarly, key-switching
is quasilinear time in the bit length of the ciphertext, which itself is quasilinear in our context.

4.2.2 Applying the Trace via Ring-Switching

Here we describe the alternative procedure for applying the scaled trace, which uses the ring-switching
technique from [GHPS12] (see Proposition 2.3). Let R′/R = Om′/Om be an arbitrary cyclotomic extension,
wherem,m′ are again dummy variables. For this procedure, we require that the ciphertext ringR′′ = Om′′ ⊇
R′ be such that m′′/m′ is coprime with m′, but otherwise we can choose m′′ however we like. As before, the
input is a ciphertext c′′ over R′′ that encrypts a plaintext w′ ∈ R′q′ , where w′ is divisible by (g′/g).

The main idea is that since m′ and m′′/m′ are coprime, we can write R′′ ∼= R′ ⊗ U where U = Om′′/m′
and the tensor product is over the largest common base ring Z. Then the R-linear function TrR′/R is induced
by the (R ⊗ U)-linear function L : (R′ ⊗ U) → (R ⊗ U) defined by L(a′ ⊗ u) = TrR′/R(a′) ⊗ u for all
a′ ∈ R′, u ∈ U . So, using the ring-switching procedure from Proposition 2.3, we can homomorphically
evaluate L on ciphertext c′′, yielding an encryption of TrR′/R(w′), and then scale down the plaintext and its
modulus as usual. One nice fact we highlight is that using ring-switching to evaluate the function TrR′/R
does not incur any multiplicative increase in the noise rate, only a small additive one from the key-switching
step. This is because the factor associated with the function TrR′/R that is applied to the ciphertext in the
ring-switching procedure is simply 1.

One very important point is that ring-switching requires ring-LWE to be hard over the target ring
Om′′·m/m′ ∼= R⊗ U , so its dimension must be sufficiently large, but at the same time we cannot make the
dimension of R′′ = Om′′ too large, for efficiency reasons. Therefore, we only use the procedure when m′/m
is small, and for sufficiently large m′′. Note that if the m′′ associated with a given input ciphertext is too
small, we can trivially increase it by embedding into a larger cyclotomic ring.

6If, contrary to our assumption, m′ was divisible by one or more primes that did not divide m, then the error term τi(e
′′ · g′′)

appearing in the ciphertext would be accompanied by a factor of g′′/τi(g′′). The expansion associated with this term can be bounded
and is not excessive, but it depends on the number and sizes of the primes dividing m′ and not m. By contrast, the alternative
procedure described in Section 4.2.2 incurs no multiplicative increase in the noise rate.
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5 Homomorphic Ring Rounding

In this section we describe how to efficiently homomorphically evaluate the “ring rounding function”
b·ep : Rq → Rp, where R = Om is the mth cyclotomic ring. Conceptually, we follow the high-level
strategy from [GHS12a], but instantiate it with very different technical components. Recall from Section 2.2.1
that the rounding function expresses its input u in the “decryption” Z-basis B = {bj} of R, as u =

∑
j uj · bj

for uj ∈ Zq, and outputs buep :=
∑

jbujep · bj ∈ Rp. Unlike with integer rounding from Zq to Zp, it is
not clear whether this rounding function has a low-depth arithmetic formula using just the ring operations
of R. One difficulty is that there are an exponentially large number of values in Rq that map to a given
value in Rp, which might be seen as evidence that a corresponding arithmetic formula must have large depth.
Fortunately, we show how to circumvent this issue by using an additional homomorphic operation, namely,
an enhancement of ring-switching. In short, we reduce the homomorphic evaluation of the ring rounding
function (from Rq to Rp) very simply and efficiently to that of several parallel (batched) evaluations of the
integer rounding function (from Zq to Zp).

5.1 Overview

Suppose we choose some cyclotomic ring S = O` having a mod-q CRT set C = {cj} ⊂ S of cardinality
exactly |B|. That is, we have a ring embedding from the product ring Z|B|q into Sq, given by u 7→

∑
j uj · cj .

Note that the choice of the ring S is at our convenience, and need not have any relationship to the plaintext
ring Rq. We express the rounding function Rq → Rp as a sequence of three steps:

1. Map u =
∑

j uj · bj ∈ Rq to
∑

j uj · cj ∈ Sq, i.e., send the Zq-coefficients of u (with respect to the
decryption basis B) to the Zq-slots of Sq.

2. Batch-apply the integer rounding function from Zq to Zp to the slot values uj , to get
∑

jbujep ·cj ∈ Sp.

3. Invert the map from the first step to obtain buep =
∑

jbujep · bj ∈ Rp.

Using batch/SIMD operations [SV11], the second step is easily achieved using the fact that Sq embeds the
product of several copies of the ring Zq, via the CRT elements cj . That is, we can simultaneously round all
the coefficients uj to Zp, using just one evaluation of an arithmetic procedure over S corresponding to one
for the integer rounding function from Zq to Zp.

We now describe one way of expressing the first and third steps above, in terms of operations that can
be evaluated homomorphically. The first simple observation is that the function mapping u =

∑
j uj · bj to∑

j uj · cj is induced by a Z-linear function L̄ : R→ S. Specifically, L̄ simply maps each Z-basis element bj
to cj . Now suppose that we choose S so that its largest common subring with R is Z, i.e., the indices m, ` are
coprime. Then letting T = R+ S = Om` ∼= R⊗ S be the compositum ring, Lemma 2.2 yields an S-linear
function L : T → S that coincides with L̄ on R ⊆ T , and in particular on u. The ring-switching procedure
from Proposition 2.3 can homomorphically evaluate any S-linear function from T to S, and in particular, the
function L. Therefore, by simply embedding R into T , we can homomorphically evaluate L̄(x) = L(x) by
applying the ring-switching procedure with L.

Unfortunately, there is a major problem with the efficiency of the above approach: the dimension (over Z)
of the compositum ring T is the product of those of R and S, which are each at least linear in the security
parameter. Therefore, representing and operating on arbitrary elements in T requires at least quadratic time.
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5.1.1 Efficiently Mapping from B to C

In hindsight, the quadratic runtime of the above approach should not be a surprise, because we treated
L̄ : R → S as an arbitrary Z-linear transformation, and B,C as arbitrary sets. To do better, L̄, B, and C
must have some structure we can exploit. Fortunately, they can—if we choose them carefully. We now
describe a way of expressing the first and third steps above in terms of simple operations that can be evaluated
homomorphically in quasilinear time.

The main idea is as follows, and is summarized in Figure 1. Instead of mapping directly from R to S,
we will express L̄ as a sequence of linear transformations L̄1, . . . , L̄r through several “hybrid” cyclotomic
rings R = H(0), H(1), . . . ,H(r) = S. For sets B and C with an appropriate product structure, these
transformations will respectively map A0 = B ⊂ H(0) to some structured subset A1 ⊂ H(1), then A1 to
some structured subset A2 ⊂ H(2), and so on, finally mapping Ar−1 to Ar = C ⊂ H(r). In contrast to
the inefficient method described above, the hybrid rings will be chosen so that each compositum T (i) =
H(i−1) +H(i) of adjacent rings has dimension just slightly larger (by only a polylogarithmic factor) than that
of R. This is achieved by choosing the indices of H(i−1), H(i) to have large greatest common divisor, and
hence small least common multiple. For example, the indices can share almost all the same prime divisors
(with multiplicity), and have just one different prime divisor each. Of course, other tradeoffs between the
number of hybrid rings and the dimensions of the compositums are also possible.

The flip side of this approach is that using ring-switching, we can homomorphically evaluate only E(i)-
linear functions L̄i : H(i−1) → H(i), where E(i) = H(i−1) ∩H(i) is the largest common subring of adjacent
hybrid rings. Since each E(i) is large by design (to keep the compositum T (i) small), this requirement is
quite strict, yet we still need to construct linear functions L̄i that sequentially map B = A0 to C = Ar. To
achieve this, we construct all the sets Ai to have appropriate product structure. Specifically, we ensure that
for each i = 1, . . . , r, we have factorizations

Ai−1 = Aout
i−1 · Zi, Ai = Ain

i · Zi (5.1)

for some set Zi ⊂ E(i), where bothAout
i−1 andAin

i are linearly independent overE(i). (Note that for 1 ≤ i < r,
each Ai needs to factor in two ways over two subrings E(i−1) and E(i), which is why we need two sets Ain

i

and Aout
i .) Then, we simply define L̄i to be an arbitrary E(i)-linear function that bijectively maps Aout

i−1 to Ain
i .

(Note that Aout
i−1 and Ain

i have the same cardinality, because Ai−1 and Ai do.) It immediately follows that L̄i
bijectively maps Ai−1 to Ai, because

L̄i(Ai−1) = L̄i(A
out
i−1 · Zi) = L̄i(A

out
i−1) · Zi = Ain

i · Zi

by E(i)-linearity and the fact that Zi ⊂ E(i).

Summarizing the above discusion, we have the following theorem.

Theorem 5.1. Suppose there exists a sequence of cyclotomic rings R = H(0), H(1), . . . ,H(r) = S and
sets Ai ⊂ H(i) such that for all i = 1, . . . , r, we have Ai−1 = Aout

i−1 · Zi and Ai = Ain
i · Zi for some sets

Zi ⊂ E(i) = H(i−1) ∩H(i) and Aout
i−1, A

in
i that are each E(i)-linearly independent and of equal cardinality.

Then there is a sequence of E(i)-linear maps L̄i : H(i−1) → H(i), for i = 1, . . . , r, whose composition
L̄r ◦ · · · ◦ L̄1 bijectively maps A0 to Ar.

5.1.2 Applying the Map Homomorphically

So far we have described how our desired map between plaintext rings R and S can be expressed as a
sequence of linear maps through hybrid plaintext rings. In the context of bootstrapping, for security these
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B ⊂ R = H(0)

T (1)

E(1)

H(1)

T (2)

E(2)

H(2) = S ⊃ C

em
be

d
H (1)-linear

E(1)-linear
(induced)

em
bed

H (2)-linear
E(2)-linear
(induced)

Figure 1: An example mapping from B ⊂ R to C ⊂ S, via a sequence of hybrid rings. Each E(i) =
H(i−1) ∩H(i) is a largest common subring, and each T (i) = H(i−1) + H(i) is a compositum, of adjacent
hybrid rings. For any E(i)-linear function from H(i−1) to H(i), there is a corresponding H(i)-linear function
from T (i) to H(i) that coincides with it on H(i−1) (see Lemma 2.2).

plaintext rings typically need to be embedded in some larger ciphertext rings, because the dimensions of
R,S are not large enough to securely support the very small noise used in bootstrapping. For example,
following Step 2 of our bootstrapping procedure (Section 3), we have a ciphertext over the ring R′′ where
R′′ = Om′′ ⊇ R for some m′′ of our choice that is divisible by m. We need to choose the sequence of hybrid
ciphertext rings so that they admit linear functions (over the respective largest common subrings) that induce
the desired ones on the underlying plaintext rings. This turns out to be very easy to do, as we now explain.

LetH,H ′ be adjacent hybrid plaintext rings having largest common subringE = H∩H ′ and compositum
T = H +H ′. Then we want the corresponding ciphertext rings to be H̃ ∼= H ⊗ U , H̃ ′ ∼= H ′ ⊗ U ′ for some
cyclotomic rings U,U ′, and the largest common subring and compositum of H̃, H̃ ′ to be Ẽ ∼= E ⊗ (U ∩ U ′)
and T̃ ∼= T ⊗ (U + U ′), respectively (where all the tensor products are over the common base ring Z).
Then any E-linear function L : H → H ′ is induced by any Ẽ-linear function L̃ : H̃ → H̃ ′ satisfying
L̃(h⊗ 1) = L(h)⊗ 1, which is the function we actually apply when switching between ciphertext rings.

To satisfy the above conditions, it is sufficient (and in fact necessary) to choose the respective indices u, u′

of U,U ′ so that lcm(u, u′) is coprime with lcm(h, h′), where h, h′ are the respective indices of H,H ′. Then
the ciphertext rings H̃, H̃ ′ have indices hu and h′u′, and their compositum has index lcm(h, h′) · lcm(u, u′),
which must be quasilinear for asymptotic efficiency. In typical instantiations, in order to get enough additional
slots in each successive ring, h′/h will be moderately large and lcm(h, h′) ≈ h′. So to ensure that all the
ciphertext rings are about the same size, we can choose u/u′ ≈ h′/h and lcm(u, u′) ≈ u.

5.1.3 Mapping Selected Coefficients

In some settings we may only need to map certain coefficients into slots, i.e., map a particular portion of B to
a CRT set of appropriate size. For example, when bootstrapping a semi-packed ciphertext over R′ = Om′
with plaintext over R̃ = Om̃, we may need to artificially expand our view of the plaintext ring to some
R = Om, so that m is coprime with m′/m (see the constraints listed at the start of Section 3). In such a
case, the decryption basis B of R factors as B = B′ · B̃, where B̃ is the decryption basis of R̃ and B′ ⊂ R
is a particular R̃-basis of R. Since the true message is really only over R̃, it can be shown that the only
coefficients we need to recover the message are associated with the subset b′ · B̃ ⊆ B for a particular fixed
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b′ ∈ B′. Therefore, when designing the hybrid rings and CRT sets we only need |B̃| slots in total. When
initially switching from R through the hybrid rings, we do so in a way that maps b′ to one entry of a CRT set
and all the other elements of B′ to zero, then continue by mapping all of B̃ to a CRT set as usual. Note that
we still need to go through just as many hybrid rings to map from R to S, but the size of S can be significantly
smaller because it needs fewer CRT slots.

5.2 Construction

By Theorem 5.1 and the ring-switching procedure, in order to map B ⊂ R to a CRT set C of some ring S
of our choice in a way that can be efficiently evaluated homomorphically, we just need to construct hybrid
cyclotomic rings R = H(0), H(1), . . . ,H(r) = S and sets Ai ⊂ H(i) (where A0 = B and Ar = C) to satisfy
the following two properties for each i = 1, . . . , r:

1. Each compositum T (i) = H(i−1) +H(i) is not too large, i.e., its dimension is quasilinear.

2. The sets Ai−1, Ai factor as described in Equation (5.1).

The remainder of this subsection is dedicated to providing such a construction.

5.2.1 Decomposition of R and Basis B ⊂ R

For our given ring R = Om and its Z-basis B used in decryption, we consider a tower of cyclotomic rings

R(r)/R(r−1)/ · · · /R(1)/R(0),

where R(r) = R and R(0) = O1 = Z, and each R(i) has index mi, which is divisible by mi−1 for i > 0. For
example, in a finest-grained decomposition, r is the number of prime divisors (with multiplicity) of m, and
the ratios mi/mi−1 are all these prime divisors in some arbitrary order. A coarser-grained decomposition
may be used as well, but will tend to make the compositum rings T (i) larger.

We need Z-bases Bi of the rings R(i) that have a product structure induced by the tower. Specifically, for
each i = 1, . . . , r we need to have the factorization

Bi = B′i ·Bi−1 ⊂ R(i) (5.2)

for some set B′i ⊂ R(i) that is linearly independent over R(i−1). We also need the basis B(r) of R = R(r)

to be the one used for decryption. As shown in Section 2.1.4, the scaled-up “decoding” basis of R has a
finest-possible factorization, so we can use it as B for any choice of the tower.

We mention that the power basis {1, ζm, ζ2
m, . . . , ζ

ϕ(m)−1
m } of R, which is implicitly the one used when

representing R as the polynomial ring Z[X]/Φm(X), does not have the required product structure when m
is divisible by two or more odd primes, but that it does coincide with the scaled-up decoding basis when m is
a power of 2. (See [LPR13] for details.)

5.2.2 Ring S and CRT Set C ⊂ S.

We next design S = O` so that it also yields a tower of cyclotomic rings S(r)/S(r−1)/ · · · /S(1)/S(0), where
S(r) = S and S(0) = Z, and each S(i) has index `i. As described in Sections 2.1.3 and 2.1.4, there are
structured mod-q CRT sets C̃i of S(i) that factor as

C̃i = C̃ ′i · C̃i−1,
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where C̃ ′i ⊂ S(i) is an S(i−1)-linearly independent set whose cardinality is the “relative splitting number”
of p in S(i)/S(i−1), i.e., the number of distinct prime ideals in S(i) lying over any prime ideal divisor of p
in S(i−1).

We need to choose the ring S and its tower so that for all i = 1, . . . , r,

• the respective indices mr−i+1, `i of R(r−i+1), S(i) are coprime (certainly it suffices for m and ` to be
coprime, but this is not always necessary);

• the dimension ϕ(mr−i+1 · `i) is not too large (specifically, it is quasi-linear in the security parameter);

• the relative splitting number |C̃ ′i| ≥ |B′r−i+1|.

We can then easily define structured CRT sets Ci ⊂ C̃i ⊂ S(i) of the appropriate cardinality, and in
particular C = Cr, as follows. Define C0 = {1} ⊂ Z = S(0). Then for each i = 1, . . . , r, let C ′i ⊆ C̃ ′i be an
arbitrary subset having cardinality exactly |B′r−i+1|, and define

Ci = C ′i · Ci−1 ⊂ C̃i. (5.3)

5.2.3 Hybrid Rings H(i) and Sets Ai ⊂ H(i)

Informally, with each successive hybrid ring we remove another level from the R-tower and add on another
level to the S-tower, and similarly with the corresponding components of the structured sets B and C.
Formally, for i = 0, 1, . . . , r we define

H(i) = Omr−i `i
∼= R(r−i) ⊗ S(i), (5.4)

Ai = Br−i · Ci ⊂ H(i),

where the tensor product in Equation (5.4) applies to the rings as extensions of Z, and the isomorphism holds
because gcd(mr−i, `i) ≤ gcd(mr−i+1, `i) = 1 by design. Note that H(0) = Omr = R, H(r) = O`r = S,
and A0 = Br = B, Ar = Cr = C, as required.

For each i = 1, . . . , r, because mr−i+1 and `i are coprime, it is straightforward to verify that the largest
common subring E(i) = H(i−1) ∩H(i) and compositum T (i) = H(i−1) +H(i) are

E(i) = Omr−i `i−1
∼= R(r−i) ⊗ S(i−1)

T (i) = Omr−i+1 `i
∼= R(r−i+1) ⊗ S(i),

where the tensor products above are over the common base ring Z. Note that the dimension of T (i)/Z is
ϕ(mr−i+1 · `i), which is quasi-linear in the security parameter by construction.

Lemma 5.2. The sets Ai−1, Ai factor as in Equation (5.1), i.e., Ai−1 = Aout
i−1 · Zi and Ai = Ain

i · Zi for
some sets Zi ⊂ E(i) and Aout

i−1, A
in
i that are each E(i)-linearly independent and of equal cardinality.

Proof. Define Zi = Br−i · Ci−1 ⊂ E(i). Recall from Equation (5.2) that Br−i+1 = B′r−i+1 · Br−i,
where B′r−i+1 ⊂ R(r−i+1) is linearly independent over R(r−i) ⊂ H(i−1), and hence also over E(i) ∼=
R(r−i)⊗S(i−1) (because it corresponds to the set of pure tensors B′r−i+1⊗{1} ⊂ R(r−i+1)⊗S(i−1)). Then

Ai−1 = (B′r−i+1 ·Br−i) · Ci−1 = B′r−i+1 · Zi
is the desired factorization. Similarly, recall from Definition (5.3) that Ci = C ′i ·Ci−1, where C ′i ⊆ C̃ ′i ⊂ S(i)

is linearly independent over S(i−1), and hence also over E(i). Then we have the desired factorization

Ai = Br−i · (C ′i · Ci−1) = C ′i · Zi.

Finally, we have |Aout
i−1| = |B′r−i+1| = |C ′i| = |Ain

i | by design of C ′i.
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A Transformation Between LSB and MSB Encodings

Here we describe a folklore transformation between the “least significant bit” and “most significant bit”
message encodings for (ring-)LWE-based cryptosystems.

Let plaintext modulus p and ciphertext modulus q be coprime, fix integers cp, cq such that cpp+ cqq = 1,
and observe that cp = p−1 (mod q) and cq = q−1 (mod p).

• An lsb encoding of a value µ ∈ Zp is any v ∈ Zq such that v = e (mod q) for some integer
e ∈ [−q/2, q/2) where e = µ (mod p).

• An msb encoding of µ is any w ∈ Zq such that bwep := bw · (p/q)e = µ (mod p).

If v ∈ Zq is an lsb encoding of µ ∈ Zp, then we claim that p−1 · v ∈ Zq is an msb encoding of
−q−1 · µ ∈ Zp. Indeed, since v = e (mod q) for some e ∈ (µ+ pZ) ∩ [−q/2, q/2), we have

bp−1 · vep =
⌊

1−cqq
p · e · pq

⌉
=
⌊
(1
q − cq) · e

⌉
= −cq · e = −q−1 · µ (mod p).

In the other direction, if w ∈ Zq is an msb encoding of µ ∈ Zp, then we claim that p ·w is an lsb encoding
of −q · µ ∈ Zp. Indeed, by assumption we have

bwep = bw · (p/q)e = w · (p/q)− f = µ (mod p)

for some f ∈ 1
qZ ∩ [−1/2, 1/2). Multiplying by q and letting e = q · f ∈ Z ∩ [−q/2, q/2), we have

p · w − e = q · µ (mod pq).

Reducing this modulo q, we get p · w = e (mod q), and reducing it modulo p, we have e = −q · µ (mod p).
The above facts make it possible to convert between lsb and msb representations of (ring-)LWE ciphertexts,

simply by multiplying the ciphertext by p or p−1 modulo q. This works because decryption recovers a Zq-
encoding of the message simply as a linear function of the ciphertext, so the p or p−1 factor simply “passes
through” the ciphertext to the encoding. (In the ring setting, the encoding of plaintext ring elements is
coefficient-wise in a certain basis, so the same reasoning applies.) If q = −1 (mod p), then the above
transformations preserve the message exactly. In other cases, we can just keep track of the factors of −q or
−q−1 introduced by the conversions (which may be affected by other homomorphic operations), and remove
them upon decryption.

B Integer Rounding Procedure

Here we recall (a close variant of) the efficient arithmetic procedure from [GHS12a] for computing the “most
significant bit” function msbq : Zq → Z2 for q = 2` ≥ 4, defined as msbq(x) = bx/(q/2)c. Note that
the integer rounding function b·e2 : Zq → Z2 is simply bxe2 = msbq(x + q/4). The multiplicative depth
and cost (in number of operations) of the msbq procedure are not precisely analyzed in [GHS12a], and the
procedure as written turns out to be suboptimal in depth and number of operations by log2(q) factors, because
it (homomorphically) raises ciphertexts to large powers in an inner loop. So for completeness, here we
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present a simplified and optimized version of the procedure, and an analysis of its depth and cost. It uses the
standard ring operations of Z2j , as well as division by 2 of values that are guaranteed to be even. All of these
operations can be evaluated homomorphically for the cryptosystem described in Section 2.2, as explained in
Section 2.2.2. The procedure also easily generalizes to any prime base.

Algorithm 1 Arithmetic procedure for computing msbq : Zq → Z2 [GHS12a]

Input: Element x ∈ Zq, where q = 2` for some positive integer `
Output: msbq(x) ∈ Z2

1: w0 ← x // w0 ∈ Zq
2: for i← 1, . . . , `− 1 do
3: y ← x // y ∈ Zq, y = x (mod 2i+1)
4: for j ← 0, . . . , i− 1 do
5: wj ← w2

j // now wj = lsb(bx/2jc) (mod 2i−j+1)

6: y ← (y − wj)/2 mod (q/2j+1) // now y ∈ Zq/2j+1 , y = bx/2j+1c (mod 2i−j)

7: wi ← y // wi ∈ Zq/2i , wi = bx/2ic (mod 2)

8: return w`−1 ∈ Z2

Correctness follows from [GHS12a, Lemma 2]. The main idea is that when initially assigned, each wj
has the same least-significant bit as bx/2jc, i.e., wj = bx/2jc (mod 2) (but its other bits may not agree
with x’s). Each time wj is squared in Step 5, its least-significant bit remains the same, but an additional
more-significant bit is set to zero. That is, after t squarings, wj = lsb(bx/2jc) (mod 2t+1). Therefore, in
iteration i, the inner loop “shifts away” the i least-significant bits of x, leaving the (i+ 1)st bit intact in the
least significant position (but possibly changing the others), at which point we can assign wi and maintain the
invariant.

We now briefly analyze the homomorphic evaluation of the procedure, in terms of its induced noise
growth and runtime cost. The most important observation is that although it is written using a doubly nested
loop, the procedure actually has multiplicative depth exactly `− 1 = log2(q/2). This is because in the inner
loop, each wj for j = 0, . . . , i− 1 can be squared in parallel (Step 5). Each squaring of the plaintext value
wj ∈ Zq/2j induces the usual small polynomial expansion (q/2j) · nc (where c ≈ 1) in the noise rate of the
associated ciphertext. The iterated subtractions and divisions by 2 (Step 6) cause no growth at all in the noise
rate: each subtraction sums (at worst) the noise rates of the associated ciphertexts, and division by 2 halves
the noise rate.

In the ith iteration, the procedure performs i homomorphic multiplications and i subtractions (and also i
divisions by 2, but these are trivial as homomorphic operations). Therefore, the procedure uses a total of
`(`− 1)/2 homomorphic multiplications and subtractions each.

C Concrete Choices of Rings

Here, for p = 2 and several values of the original cyclotomic index m, we give some workable values for the
target cyclotomic index `, along with the indices of the intermediate “hybrid” rings, the dimensions of the
compositum rings, etc. Note that when mr−i+1 = 2, then the ring Rr−i+1 has dimension 1, and so we can
move directly from mr−i+1 = 2 to mr−i+1 = 1. In the tables below, and following the notation in Section 5:

• mr−i+1 is the index of the ring Rr−i+1 at step i;
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• `i is the index of the ring Si at step i;

• ϕ(mr−i+1 · `i) is the dimension of the compositum ring at step i;

• |B′r−i+1| is the dimension of the intermediate ring extension R(r−i+1)/R(r−i);

• |C̃ ′i| is the “relative splitting number” of p = 2 in the extension S(i)/S(i−1).

• r denotes the number of hybrid rings Rr−i+1, i ∈ [r]

All the indices are lower bounds needed to support the functionality of the ring-rounding technique on
the plaintext space (Section 5). Larger ciphertext indices may be required to ensure adequate security for all
the homomorphic operations; see Section 5.1.2.

Table 1: Concrete choices for mr = 1024, ϕ(mr) = 512

Step i mr−i+1 `i |B′r−i+1| |C̃ ′i| ϕ(mr−i+1 · `i)

1 1024 17 2 2 8192

2 512 221 = 17 · 13 4 4 49152

3 128 1547 = 221 · 7 4 6 73728

4 32 7735 = 1547 · 5 4 4 73728

5 8 23205 = 7735 · 3 2 2 36864

6 4 69615 = 23205 · 3 2 3 55296

7 1 69615 55296

Table 2: Concrete choices for mr = 512, ϕ(mr) = 256

Step i mr−i+1 `i |B′r−i+1| |C̃ ′i| ϕ(mr−i+1 · `i)

1 512 17 2 2 4096

2 256 221 = 17 · 13 4 4 24576

3 64 1547 = 221 · 7 4 6 36864

4 16 7735 = 1547 · 5 4 4 36864

5 4 23205 = 7735 · 3 2 2 18432

6 1 23205 18432
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Table 3: Concrete choices for mr = 256, ϕ(mr) = 128

Step i mr−i+1 `i |B′r−i+1| |C̃ ′i| ϕ(mr−i+1 · `i)

1 256 17 2 2 2048

2 128 221 = 17 · 13 4 4 12288

3 32 1105 = 221 · 5 4 4 12288

4 8 3315 = 1105 · 3 2 2 6144

5 4 9945 = 3315 · 3 2 3 9216

6 1 9945 9216

Table 4: Concrete choices for mr = 128, ϕ(mr) = 64

Step i mr−i+1 `i |B′r−i+1| |C̃ ′i| ϕ(mr−i+1 · `i)

1 128 17 2 2 2048

2 64 119 = 17 · 7 2 2 3072

3 32 595 = 119 · 5 4 4 6144

4 8 1785 = 595 · 3 2 2 3072

5 4 5355 = 1785 · 3 2 3 4608

6 1 5355 4608
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Hardness of SIS and LWE with Small Parameters

Daniele Micciancio∗ Chris Peikert†

February 13, 2013

Abstract

The Short Integer Solution (SIS) and Learning With Errors (LWE) problems are the foundations for
countless applications in lattice-based cryptography, and are provably as hard as approximate lattice
problems in the worst case. A important question from both a practical and theoretical perspective is how
small their parameters can be made, while preserving their hardness.

We prove two main results on SIS and LWE with small parameters. For SIS, we show that the problem
retains its hardness for moduli q ≥ β · nδ for any constant δ > 0, where β is the bound on the Euclidean
norm of the solution. This improves upon prior results which required q ≥ β ·

√
n log n, and is essentially

optimal since the problem is trivially easy for q ≤ β. For LWE, we show that it remains hard even when
the errors are small (e.g., uniformly random from {0, 1}), provided that the number of samples is small
enough (e.g., linear in the dimension n of the LWE secret). Prior results required the errors to have
magnitude at least

√
n and to come from a Gaussian-like distribution.

1 Introduction

In modern lattice-based cryptography, two average-case computational problems serve as the foundation
of almost all cryptographic schemes: Short Integer Solution (SIS), and Learning With Errors (LWE). The
SIS problem dates back to Ajtai’s pioneering work [1], and is defined as follows. Let n and q be integers,
where n is the primary security parameter and usually q = poly(n), and let β > 0. Given a uniformly
random matrix A ∈ Zn×mq for some m = poly(n), the goal is to find a nonzero integer vector z ∈ Zm
such that Az = 0 mod q and ‖z‖ ≤ β (where ‖·‖ denotes Euclidean norm). Observe that β should be
set large enough to ensure that a solution exists (e.g., β >

√
n log q suffices), but that β ≥ q makes the

problem trivially easy to solve. Ajtai showed that for appropriate parameters, SIS enjoys a remarkable
worst-case/average-case hardness property: solving it on the average (with any noticeable probability) is at
least as hard as approximating several lattice problems on n-dimensional lattices in the worst case, to within
poly(n) factors.
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daniele@cs.ucsd.edu. This material is based on research sponsored by DARPA under agreement number FA8750-11-C-0096
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The LWE problem was introduced in the celebrated work of Regev [24], and has the same parameters n
and q, along with a “noise rate” α ∈ (0, 1). The problem (in its search form) is to find a secret vector
s ∈ Znq , given a “noisy” random linear system A ∈ Zn×mq , b = AT s + e mod q, where A is uniformly
random and the entries of e are i.i.d. from a Gaussian-like distribution with standard deviation roughly αq.
Regev showed that as long as αq ≥ 2

√
n, solving LWE on the average (with noticeable probability) is at

least as hard as approximating lattice problems in the worst case to within Õ(n/α) factors using a quantum
algorithm. Subsequently, Peikert [21] gave a classical reduction for a subset of the lattice problems and the
same approximation factors, but under the additional condition that q ≥ 2n/2 (or q ≥ 2

√
n/α based on some

non-standard lattice problems).
A significant line of research has been devoted to improving the tightness of worst-case/average-case

connections for lattice problems. For SIS, a series of works [1, 7, 14, 19, 12] gave progressively better
parameters that guarantee hardness, and smaller approximation factors for the underlying lattice problems.
The state of the art (from [12], building upon techniques introduced in [19]) shows that for q ≥ β·ω(

√
n log n),

finding a SIS solution with norm bounded by β is as hard as approximating worst-case lattice problems to
within Õ(β

√
n) factors. (The parameter m does not play any significant role in the hardness results, and

can be any polynomial in n.) For LWE, Regev’s initial result remains the tightest, and the requirement that
q ≥
√
n/α (i.e., that the errors have magnitude at least

√
n) is in some sense optimal: a clever algorithm

due to Arora and Ge [2] solves LWE in time 2Õ(αq)2 , so a proof of hardness for substantially smaller errors
would imply a subexponential time (quantum) algorithm for approximate lattice problems, which would be a
major breakthrough. Interestingly, the current modulus bound for LWE is in some sense better than the one
for SIS by a Ω̃(

√
n) factor: there are applications of LWE for 1/α = Õ(1) and hence q = Õ(

√
n), whereas

SIS is only useful for β ≥
√
n, and therefore requires q ≥ n according to the state-of-the-art reductions.

Further investigating the smallest parameters for which SIS and LWE remain provably hard is important
from both a practical and theoretical perspective. On the practical side, improvements would lead to
smaller cryptographic keys without compromising the theoretical security guarantees, or may provide greater
confidence in more practical parameter settings that so far lack provable hardness. Also, proving the hardness
of LWE for non-Gaussian error distributions (e.g., uniform over a small set) would make applications easier
to implement. Theoretically, improvements may eventually shed light on related problems like Learning
Parity with Noise (LPN), which can be seen as a special case of LWE for modulus q = 2, and which is
widely used in coding-based cryptography, but which has no known proof of hardness.

1.1 Our Results

We prove two complementary results on the hardness of SIS and LWE with small parameters. For SIS, we
show that the problem retains its hardness for moduli q nearly equal to the solution bound β. For LWE, we
show that it remains hard even when the errors are small (e.g., uniformly random from {0, 1}), provided that
the number m of noisy equations is small enough. This qualification is necessary in light of the Arora-Ge
attack [2], which for large enough m can solve LWE with binary errors in polynomial time. Details follow.

SIS with small modulus. Our first theorem says that SIS retains its hardness with a modulus as small as
q ≥ β · nδ, for any δ > 0. Recall that the best previous reduction [12] required q ≥ β ·ω(

√
n log n), and that

SIS becomes trivially easy for q ≤ β, so the q obtained by our proof is essentially optimal. It also essentially
closes the gap between LWE and SIS, in terms of how small a useful modulus can be. More precisely, the
following is a special case of our main SIS hardness theorem; see Section 3 for full details.
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Theorem 1.1 (Corollary of Theorem 3.8). Let n and m = poly(n) be integers, let β ≥ β∞ ≥ 1 be reals,
let Z = {z ∈ Zm : ‖z‖2 ≤ β and ‖z‖∞ ≤ β∞}, and let q ≥ β · nδ for some constant δ > 0. Then solving
(on the average, with non-negligible probability) SIS with parameters n,m, q and solution set Z \ {0} is
at least as hard as approximating lattice problems in the worst case on n-dimensional lattices to within
γ = max{1, β · β∞/q} · Õ(β

√
n) factors.

Of course, the `∞ bound on the SIS solutions can be easily removed simply setting β∞ = β, so that
‖z‖∞ ≤ ‖z‖2 ≤ β automatically holds true. We include an explicit `∞ bound β∞ ≤ β in order to obtain
more precise hardness results, based on potentially smaller worst-case approximation factors γ. We point out
that the bound β∞ and the associated extra term max{1, β · β∞/q} in the worst-case approximation factor
is not present in previous results. Notice that this term can be as small as 1 (if we take q ≥ β · β∞, and in
particular if β∞ ≤ nδ), and as large as β/nδ (if β∞ = β). This may be seen as the first theoretical evidence
that, at least when using a small modulus q, restricting the `∞ norm of the solutions may make the SIS
problem qualitatively harder than just restricting the `2 norm. There is already significant empirical evidence
for this belief: the most practically efficient attacks on SIS, which use lattice basis reduction (e.g., [11, 8]),
only find solutions with bounded `2 norm, whereas combinatorial attacks such as [5, 25] (see also [20]) or
theoretical lattice attacks [9] that can guarantee an `∞ bound are much more costly in practice, and also
require exponential space. Finally, we mention that setting β∞ � β is very natural in the usual formulations
of one-way and collision-resistant hash functions based on SIS, where collisions correspond (for example)
to vectors in {−1, 0, 1}m, and therefore have `∞ bound β∞ = 1, but `2 bound β =

√
m. Similar gaps

between β∞ and β can easily be enforced in other applications, e.g., digital signatures [12].

LWE with small errors. In the case of LWE, we prove a general theorem offering a trade-off among
several different parameters, including the size of the errors, the dimension and number of samples in the
LWE problem, and the dimension of the underlying worst-case lattice problems. Here we mention just one
instantiation for the case of prime modulus and uniformly distributed binary (i.e., 0-1) errors, and refer the
reader to Section 4 and Theorem 4.6 for the more general statement and a discussion of the parameters.

Theorem 1.2 (Corollary of Theorem 4.6). Let n and m = n · (1+Ω(1/ log n)) be integers, and q ≥ nO(1)

a sufficiently large polynomially bounded (prime) modulus. Then solving LWE with parameters n,m, q and
independent uniformly random binary errors (i.e., in {0, 1}) is at least as hard as approximating lattice
problems in the worst case on Θ(n/ log n)-dimensional lattices within a factor γ = Õ(

√
n · q).

We remark that our results (see Theorem 4.6) apply to many other settings, including error vectors e ∈ X
chosen from any (sufficiently large) subset X ⊆ {0, 1}m of binary strings, as well as error vectors with
larger entries. Interestingly, our hardness result for LWE with very small errors relies on the worst-case
hardness of lattice problems in dimension n′ = O(n/ log n), which is smaller than (but still quasi-linear
in) the dimension n of the LWE problem; however, this is needed only when considering very small error
vectors. Theorem 4.6 also shows that if e is chosen uniformly at random with entries bounded by nε (which
is still much smaller than

√
n), then the dimension of the underlying worst-case lattice problems (and the

number m− n of extra samples, beyond the LWE dimension n) can be linear in n.
The restriction that the number of LWE samples m = O(n) be linear in the dimension of the secret can

also be relaxed slightly. But some restriction is necessary, because LWE with small errors can be solved
in polynomial time when given an arbitrarily large polynomial number of samples. We focus on linear
m = O(n) because this is enough for most (but not all) applications in lattice cryptography, including
identity-based encryption and fully homomorphic encryption, when the parameters are set appropriately.
(The one exception that we know of is the security proof for pseudorandom functions [3].)
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1.2 Techniques and Comparison to Related Work

Our results for SIS and LWE are technically disjoint, and all they have in common is the goal of proving
hardness results for smaller values of the parameters. So, we describe our technical contributions in the
analysis of these two problems separately.

SIS with small modulus. For SIS, as a warm-up, we first give a proof for a special case of the problem
where the input is restricted to vectors of a special form (e.g., binary vectors). For this restricted version of
SIS, we are able to give a self-reduction (from SIS to SIS) which reduces the size of the modulus. So, we can
rely on previous worst-case to average-case reductions for SIS as “black boxes,” resulting in an extremely
simple proof. However, this simple self-reduction has some drawbacks. Beside the undesirable restriction on
the SIS inputs, our the reduction is rather loose with respect to the underlying worst-case lattice approximation
problem: in order to establish the hardness of SIS with small moduli q (and restricted inputs), one needs
to assume the worst-case hardness of lattice problems for rather large polynomial approximation factors.
(By contrast, previous hardness results for larger moduli [19, 12] only assumed hardness for quasi-linear
approximation factors.) We address both drawbacks by giving a direct reduction from worst-case lattice
problems to SIS with small modulus. This is our main SIS result, and it combines ideas from previous
work [19, 12] with two new technical ingredients:

• All previous SIS hardness proofs [1, 7, 14, 19, 12] solved worst-case lattice problems by iteratively
finding (sets of linearly independent) lattice vectors of shorter and shorter length. Our first new
technical ingredient (inspired by the pioneering work of Regev [24] on LWE) is the use a different
intermediate problem: instead of finding progressively shorter lattice vectors, we consider the problem
of sampling lattice vectors according to Gaussian-like distributions of progressively smaller widths.
To the best of our knowledge, this is the first use of Gaussian lattice sampling as an intermediate
worst-case problem in the study of SIS, and it appears necessary to lower the SIS modulus below n.
We mention that Gaussian lattice sampling has been used before to reduce the modulus in hardness
reductions for SIS [12], but still within the framework of iteratively finding short vectors (which in [12]
are used to generate fresh Gaussian samples for the reduction), which results in larger moduli q > n.

• The use of Gaussian lattice sampling as an intermediate problem within the SIS hardness proof yields
linear combinations of several discrete Gaussian samples with adversarially chosen coefficients. Our
second technical ingredient, used to analyze these linear combinations, is a new convolution theorem
for discrete Gaussians (Theorem 3.3), which strengthens similar ones previously proved in [22, 6].
Here again, the strength of our new convolution theorem appears necessary to obtain hardness results
for SIS with modulus smaller than n.

Our new convolution theorem may be of independent interest, and might find applications in the analysis of
other lattice algorithms.

LWE with small errors. We now move to our results on LWE. For this problem, the best provably hard
parameters to date were those obtained in the original paper of Regev [24], which employed Gaussian errors,
and required them to have (expected) magnitude at least

√
n. These results were believed to be optimal due

to a clever algorithm of Arora and Ge [2], which solves LWE in subexponential time when the errors are
asymptotically smaller than

√
n. The possibility of circumventing this barrier by limiting the number of LWE

samples was first suggested by Micciancio and Mol [17], who gave “sample preserving” search-to-decision
reductions for LWE, and asked if LWE with small uniform errors could be proved hard when the number
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of available samples is sufficiently small. Our results provide a first answer to this question, and employ
concepts and techniques from the work of Peikert and Waters [23] (see also [4]) on lossy (trapdoor) functions.
In brief, a lossy function family is an indistinguishable pair of function families F ,L such that functions in
F are injective and those in L are lossy, in the sense that they map their common domain to much smaller
sets, and therefore lose information about the input. As shown in [23], from the indistinguishability of F and
L, it follows that the families F and L are both one-way.

In Section 2 we present a generalized framework for the study of lossy function families, which does not
require the functions to have trapdoors, and applies to arbitrary (not necessarily uniform) input distributions.
While the techniques we use are all standard, and our definitions are minor generalizations of the ones given
in [23], we believe that our framework provides a conceptual simplification of previous work, relating the
relatively new notion of lossy functions to the classic security definitions of second-preimage resistance and
uninvertibility.

The lossy function framework is used to prove the hardness of LWE with small uniform errors and
(necessarily) a small number of samples. Specifically, we use the standard LWE problem (with large
Gaussian errors) to set up a lossy function family F ,L. (Similar families with trapdoors were constructed
in [23, 4], but not for the parameterizations required to obtain interesting hardness results for LWE.) The
indistinguishability of F and L follows directly from the hardness of the underlying LWE problem. The
new hardness result for LWE (with small errors) is equivalent to the one-wayness of F , and is proved by
a relatively standard analysis of the second-preimage resistance and uninvertibility of certain subset-sum
functions associated to L.

Comparison to related work. In an independent work that was submitted concurrently with ours, Döttling
and Müller-Quade [10] also used a lossyness argument to prove new hardness results for LWE. (Their work
does not address the SIS problem.) At a syntactic level, they use LWE (i.e., generating matrix) notation and
a new concept they call “lossy codes,” while here we use SIS (i.e., parity-check matrix) notation and rely
on the standard notions of uninvertible and second-preimage resistant functions. By the dual equivalence of
SIS and LWE [15, 17] (see Proposition 2.9), this can be considered a purely syntactic difference, and the
high-level lossyness strategy (including the lossy function family construction) used in [10] and in our work
are essentially the same. However, the low-level analysis techniques and final results are quite different. The
main result proved in [10] is essentially the following.

Theorem 1.3 ([10]). Let n, q,m = nO(1) and r ≥ n1/2+ε · m be integers, for an arbitrary small con-
stant ε > 0. Then the LWE problem with parameters n,m, q and independent uniformly distributed errors in
{−r, . . . , r}m is at least as hard as (quantumly) solving worst-case problems on (n/2)-dimensional lattices
to within a factor γ = n1+ε ·mq/r.

The contribution of [10] over previous work is to prove the hardness of LWE for uniformly distributed
errors, as opposed to errors that follow a Gaussian distribution. Notice that the magnitude of the errors used
in [10] is always at least

√
n ·m, which is substantially larger (by a factor of m) than in previous results. So,

[10] makes no progress towards reducing the magnitude of the errors, which is the main goal of this paper.
By contrast, our work shows the hardness of LWE for errors smaller than

√
n (indeed, as small as {0, 1}),

provided the number of samples is sufficiently small.
Like our work, [10] requires the number of LWE samples m to be fixed in advance (because the error

magnitude r depends on m), but it allows m to be an arbitrary polynomial in n. This is possible because
for the large errors r �

√
n considered in [10], the attack of [2] runs in at least exponential time. So, in

principle, it may even be possible (and is an interesting open problem) to prove the hardness of LWE with
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(large) uniform errors as in [10], but for an unbounded number of samples. In our work, hardness of LWE
for errors smaller than

√
n is proved for a much smaller number of samples m, and this is necessary in order

to avoid the subexponential time attack of [2].
While the focus of our work in on LWE with small errors, we remark that our main LWE hardness result

(Theorem 4.6) can also be instantiated using large polynomial errors r = nO(1) to obtain any (linear) number
of samples m = Θ(n). In this setting, [10] provides a much better dependency between the magnitude of the
errors and the number of samples (which in [10] can be an arbitrary polynomial). This is due to substantial
differences in the low-level techniques employed in [10] and in our work to analyze the statistical properties
of the lossy function family. For these same reasons, even for large errors, our results seem incomparable to
those of [10] because we allow for a much wider class of error distributions.

2 Preliminaries

We use uppercase roman letters F,X for sets, lowercase roman for set elements x ∈ X , bold x ∈ Xn

for vectors, and calligraphic letters F ,X , . . . for probability distributions. The support of a probability
distribution X is denoted [X ]. The uniform distribution over a finite set X is denoted U(X).

Two probability distributions X and Y are (t, ε)-indistinguishable if for all (probabilistic) algorithms D
running in time at most t,

|Pr[x← X : D(x) accepts]− Pr[y ← Y : D(y) accepts]| ≤ ε.

2.1 One-Way Functions

A function family is a probability distribution F over a set of functions F ⊆ (X → Y ) with common
domain X and range Y . Formally, function families are defined as distributions over bit strings (function
descriptions) together with an evaluation algorithm, mapping each bitstring to a corresponding function, with
possibly multiple descriptions associated to the same function. In this paper, for notational simplicity, we
identify functions and their description, and unless stated otherwise, all statements about function families
should be interpreted as referring to the corresponding probability distributions over function descriptions.
For example, if we say that two function families F and G are indistinguishable, we mean that no efficient
algorithm can distinguish between function descriptions selected according to either F or G, where F and
G are probability distributions over bitstrings that are interpreted as functions using the same evaluation
algorithm.

A function family F is (t, ε) collision resistant if for all (probabilistic) algorithms A running in time at
most t,

Pr[f ← F , (x, x′)← A(f) : f(x) = f(x′) ∧ x 6= x′] ≤ ε.

Let X be a probability distribution over the domain X of a function family F . We recall the following
standard security notions:

• (F ,X ) is (t, ε)-one-way if for all probabilistic algorithms A running in time at most t,

Pr[f ← F , x← X : A(f, f(x)) ∈ f−1(f(x))] ≤ ε.

• (F ,X ) is (t, ε)-uninvertible if for all probabilistic algorithms A running in time at most t,

Pr[f ← F , x← X : A(f, f(x)) = x] ≤ ε.

6
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• (F ,X ) is (t, ε)-second preimage resistant if for all probabilistic algorithmsA running in time at most t,

Pr[f ← F , x← X , x′ ← A(f, x) : f(x) = f(x′) ∧ x 6= x′] ≤ ε.

• (F ,X ) is (t, ε)-pseudorandom if the distributions {f ← F , x ← X : (f, f(x))} and {f ← F , y ←
U(Y ) : (f, y)} are (t, ε)-indistinguishable.

The above probabilities (or the absolute difference between probabilities, for indistinguishability) are
called the advantages in breaking the corresponding security notions. It easily follows from the definition
that if a function family is one-way with respect to any input distribution X , then it is also uninvertible with
respect to the same input distribution X . Also, if a function family is collision resistant, then it is also second
preimage resistant with respect to any efficiently samplable input distribution.

All security definitions are immediately adapted to the asymptotic setting, where we implicitly consider
sequences of finite function families indexed by a security parameter. In this setting, for any security definition
(one-wayness, collision resistance, etc.) we omit t, and simply say that a function is secure if for any t that is
polynomial in the security parameter, it is (t, ε)-secure for some ε that is negligible in the security parameter.
We say that a function family is statistically secure if it is (t, ε)-secure for some negligible ε and arbitrary t,
i.e., it is secure even with respect to computationally unbounded adversaries.

The composition of function families is defined in the natural way. Namely, for any two function families
with [F ] ⊆ X → Y and [G] ⊆ Y → Z, the composition G ◦ F is the function family that selects f ← F and
g ← G independently at random, and outputs the function (g ◦ f) : X → Z.

2.2 Lossy Function Families

Lossy functions, introduced in [23], are usually defined in the context of trapdoor function families, where
the functions are efficiently invertible with the help of some trapdoor information, and therefore injective (at
least with high probability over the choice of the key). We give a more general definition of lossy function
families that applies to non-injective functions and arbitrary input distributions, though we will be mostly
interested in input distributions that are uniform over some set.

Definition 2.1. Let L,F be two probability distributions (with possibly different supports) over the same set
of (efficiently computable) functions F ⊆ X → Y , and let X be an efficiently sampleable distribution over
the domain X . We say that (L,F ,X ) is a lossy function family if the following properties are satisfied:

• the distributions L and F are indistinguishable,

• (L,X ) is uninvertible, and

• (F ,X ) is second preimage resistant.

The uninvertibility and second preimage resistance properties can be either computational or statistical.
(The definition from [23] requires both to be statistical.) We remark that uninvertible functions and second
preimage resistant functions are not necessarily one-way. For example, the constant function f(x) = 0 is
(statistically) uninvertible when |X| is super-polynomial in the security parameter, and the identity function
f(x) = x is (statistically) second preimage resistant (in fact, even collision resistant), but neither is one-way.
Still, if a function family is simultaneously uninvertible and second preimage resistant, then one-wayness
easily follows.

Lemma 2.2. Let F be a family of functions computable in time t′. If (F ,X ) is both (t, ε)-uninvertible and
(t+ t′, ε′)-second preimage resistant, then it is also (t, ε+ ε′)-one-way.

7
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Proof. Let A be an algorithm running in time at most t and attacking the one-wayness property of (F ,X ).
Let f ← F and x ← X be chosen at random, and compute y ← A(f, f(x)). We want to bound the
probability that f(x) = f(y). We consider two cases:

• If x = y, then A breaks the uninvertibility property of (F ,X ).

• If x 6= y, then A′(f, x) = A(f, f(x)) breaks the second preimage property of (F ,X ).

By assumption, the probability of these two events are at most ε and ε′ respectively. By the union bound, A
breaks the one-wayness property with advantage at most ε+ ε′.

It easily follows by a simple indistinguishability argument that if (L,F ,X ) is a lossy function family,
then both (L,X ) and (F ,X ) are one-way.

Lemma 2.3. Let F and F ′ be any two indistinguishable, efficiently computable function families, and let X
be an efficiently sampleable input distribution. Then if (F ,X ) is uninvertible (respectively, second-preimage
resistant), then (F ′,X ) is also uninvertible (resp., second-preimage resistant). In particular, if (L,F ,X ) is a
lossy function family, then (L,X ) and (F ,X ) are both one-way.

Proof. Assume that (F ,X ) is uninvertible and that there exists an efficient algorithm A breaking the
uninvertibility property of (F ′,X ). Then F and F ′ can be efficiently distinguished by the following
algorithm D(f): choose x← X , compute x′ ← A(f, f(x)), and accept if A succeeded, i.e., if x = x′.

Next, assume that (F ,X ) is second preimage resistant, and that there exists an efficient algorithm A
breaking the second preimage resistance property of (F ′,X ). Then F and F ′ can be efficiently distinguished
by the following algorithm D(f): choose x← X , compute x′ ← A(f, x), and accept if A succeeded, i.e., if
x 6= x′ and f(x) = f(x′).

It follows that if (L,F ,X ) is a lossy function family, then (L,X ) and (F ,X ) are both uninvertible and
second preimage resistant. Therefore, by Lemma 2.2, they are also one-way.

The standard definition of (injective) lossy trapdoor functions [23], is usually stated by requiring the ratio
|f(X)|/|X| to be small. Our general definition can easily be related to the standard definition by specializing
it to uniform input distributions. The next lemma gives an equivalent characterization of uninvertible functions
when the input distribution is uniform.

Lemma 2.4. Let L be a family of functions on a common domain X , and let X = U(X) the uniform
input distribution over X . Then (L,X ) is ε-uninvertible (even statistically, with respect to computationally
unbounded adversaries) for ε = Ef←L[|f(X)|]/|X|.

Proof. Fix a function f , and choose a random input x← X . The best (computationally unbounded) attack
on the uninvertibility of (L,X ), given input f and y = f(x), outputs an x′ ∈ X such that f(x′) = y and
the probability of x′ under X is maximized. Since X is the uniform distribution over X , the conditional
distribution of x given y is uniform over f−1(y), and the attack succeeds with probability 1/|f−1(y)|. Each y
is output by f with probability |f−1(y)|/|X|. So, the success probability of the attack is

∑
y∈f(X)

|f−1(y)|
|X|

· 1

|f−1(y)|
=
|f(X)|
|X|

.

Taking the expectation over the choice of f , we get that the attacker succeeds with probability ε.

8
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We conclude this section with the observation that uninvertibility behaves as expected with respect to
function composition.

Lemma 2.5. If (F ,X ) is uninvertible and G is any family of efficiently computable functions, then (G ◦F ,X )
is also uninvertible.

Proof. Any inverter A for G ◦ F can be easily transformed into an inverter A′(f, y) for (F ,X ) that chooses
g ← G at random, and outputs the result of running A(g ◦ f, g(y))

A similar statement holds also for one-wayness, under the additional assumption that G is second preimage
resistant, but it is not needed here.

2.3 Lattices and Gaussians

An n-dimensional lattice of rank k is the set Λ of integer combinations of k linearly independent vectors
b1, . . . ,bk ∈ Rn, i.e. Λ =

{∑k
i=1 xibi | xi ∈ Z for i = 1, . . . , k

}
. The matrix B = [b1, . . . ,bk] is called

a basis for the lattice Λ. The dual of a (not necessarily full-rank) lattice Λ is the set Λ∗ = {x ∈ span(Λ) :
∀y ∈ Λ, 〈x,y〉 ∈ Z}. In what follows, unless otherwise specified we work with full-rank lattices, where
k = n.

The ith successive minimum λi(Λ) is the smallest radius r such that Λ contains i linearly independent
vectors of (Euclidean) length at most r. A fundamental computational problem in the study of lattice
cryptography is the approximate Shortest Independent Vectors Problem SIVPγ , which, on input a full-rank
n-dimensional lattice Λ (typically represented by a basis), asks to find n linearly independent lattice vectors
v1, . . . ,vn ∈ Λ all of length at most γ · λn(Λ), where γ ≥ 1 is an approximation factor and is usually a
function of the lattice dimension n. Another problem is the (decision version of the) approximate Shortest
Vector Problem GapSVPγ , which, on input an n-dimensional lattice Λ, asks to output “yes” if λ1(Λ) ≤ 1
and “no” if λ1(Λ) > γ. (If neither is the case, any answer is acceptable.)

For a matrix B = [b1, . . . ,bk] of linearly independent vectors, the Gram-Schmidt orthogonalization B̃
is the matrix of vectors b̃i where b̃1 = b1, and for each i = 2, . . . , k, the vector b̃i is the projection of bi
orthogonal to span(b1, . . . ,bi−1). The Gram-Schmidt minimum of a lattice Λ is b̃l(Λ) = minB‖B̃‖, where
‖B̃‖ = maxi ‖b̃i‖ and the minimum is taken over all bases B of Λ. Given any basis D of a lattice Λ and
any set S of linearly independent vectors in Λ, it is possible to efficiently construct a basis B of Λ such that
‖B̃‖ ≤ ‖S̃‖ (see [16]).

The Gaussian function ρs : Rm → R with parameter s is defined as ρs(x) = exp(−π‖x‖2/s2). When s
is omitted, it is assumed to be 1. The discrete Gaussian distribution DΛ+c,s with parameter s over a lattice
coset Λ + c is the distribution that samples each element x ∈ Λ + c with probability ρs(x)/ρs(Λ + c), where
ρs(Λ + c) =

∑
y∈Λ+c ρs(y) is a normalization factor.

For any ε > 0, the smoothing parameter ηε(Λ) [19] is the smallest s > 0 such that ρ1/s(Λ
∗ \ {0}) ≤ ε.

When ε is omitted, it is some unspecified negligible function ε = n−ω(1) of the lattice dimension or security
parameter n, which may vary from place to place.

We observe that the smoothing parameter satisfies the following decomposition lemma. The general case
for the sum of several lattices (whose linear spans have trivial pairwise intersections) follows immediately by
induction.

Lemma 2.6. Let lattice Λ = Λ1 + Λ2 be the (internal direct) sum of two lattices such that span(Λ1) ∩
span(Λ2) = {0}, and let Λ̃2 be the projection of Λ2 orthogonal to span(Λ1). Then for any ε1, ε2, ε > 0 such
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that 1 + ε = (1 + ε1)(1 + ε2), we have

ηε(Λ̃2) ≤ ηε(Λ) ≤ ηε(Λ1 + Λ̃2) ≤ max{ηε1(Λ1), ηε2(Λ̃2)}.

Proof. Let Λ∗, Λ∗1 and Λ̃∗2 be the dual lattices of Λ, Λ1 and Λ̃2, respectively. For the first inequality, notice
that Λ̃∗2 is a sublattice of Λ∗. Therefore, ρ1/s(Λ̃

∗
2 \ {0}) ≤ ρ1/s(Λ

∗ \ {0}) for any s > 0, and thus
ηε(Λ̃2) ≤ ηε(Λ).

Next we prove that ηε(Λ) ≤ ηε(Λ1 + Λ̃2). It is routine to verify that we can express the dual lattice Λ∗

as the sum Λ∗ = Λ̃∗1 + Λ̃∗2, where Λ̃1 is the projection of Λ1 orthogonal to span(Λ2), and Λ̃∗1 is its dual.
Moreover, the projection of Λ̃∗1 orthogonal to span(Λ̃∗2) is exactly Λ∗1. For any x̃1 ∈ Λ̃∗1, let x1 ∈ Λ∗1 denote
its projection orthogonal to span(Λ̃∗2). Then for any s > 0 we have

ρ1/s(Λ
∗) =

∑
x̃1∈Λ̃∗1

∑
x̃2∈Λ̃∗2

ρ1/s(x̃1 + x̃2)

=
∑

x̃1∈Λ̃∗1

∑
x̃2∈Λ̃∗2

ρ1/s(x1) · ρ1/s((x̃1 − x1) + x̃2)

=
∑

x̃1∈Λ̃∗1

ρ1/s(x1) · ρ1/s((x̃1 − x1) + Λ̃∗2)

≤ ρ1/s(Λ
∗
1) · ρ1/s(Λ̃

∗
2) = ρ1/s(Λ

∗
1 + Λ̃∗2) = ρ1/s((Λ1 + Λ̃2)∗),

where the inequality follows from the bound ρ1/s(Λ + c) ≤ ρ1/s(Λ) from [19, Lemma 2.9], and the last two
equalities follow from the orthogonality of Λ∗1 and Λ̃∗2. This proves that ηε(Λ) ≤ ηε(Λ1 + Λ̃2).

Finally, for s1 = ηε1(Λ1), s2 = ηε2(Λ̃2) and s = max{s1, s2}, we have

ρ1/s((Λ1 + Λ̃2)∗) = ρ1/s(Λ
∗
1) · ρ1/s(Λ̃

∗
2) ≤ ρ1/s1(Λ∗1) · ρ1/s2(Λ̃∗2) = (1 + ε1)(1 + ε2) = 1 + ε.

Therefore, ηε(Λ1 + Λ̃∗2) ≤ s.

Using the decomposition lemma, one easily obtains known bounds on the smoothing parameter. For
example, for any lattice basis B = [b1, . . . ,bn], applying Lemma 2.6 repeatedly to the decomposition into
the rank-1 lattices defined by each of the basis vectors yields η(B · Zn) ≤ maxi η(b̃i · Z) = ‖B̃‖ · ωn,
where ωn = η(Z) = ω(

√
log n) is the smoothing parameter of the integer lattice Z. Choosing a basis B

achieving b̃l(Λ) = minB ‖B̃‖ (where the minimum is taken over all bases B of Λ), we get the bound
η(Λ) ≤ b̃l(Λ) · ωn from [12, Theorem 3.1]. Similarly, choosing a set S ⊂ Λ of linearly independent vectors
of length ‖S‖ ≤ λn(Λ), we get the bound η(Λ) ≤ η(S ·Zn) ≤ ‖S̃‖ · ωn ≤ ‖S‖ ·ωn = λn(Λ) ·ωn from [19,
Lemma 3.3]. In this paper we use a further generalization of these bounds, still easily obtained from the
decomposition lemma.

Corollary 2.7. The smoothing parameter of the tensor product of any two lattices Λ1,Λ2 satisfies η(Λ1 ⊗
Λ2) ≤ b̃l(Λ1) · η(Λ2).

Proof. Let B = [b1, . . . ,bk] be a basis of Λ1 achieving maxi ‖b̃i‖ = b̃l(Λ1), and consider the natural
decomposition of Λ1 ⊗ Λ2 into the sum

(b1 ⊗ Λ2) + · · ·+ (bk ⊗ Λ2).

Notice that the projection of each sublattice bi ⊗ Λ2 orthogonal to the previous sublattices bj ⊗ Λ2 (for
j < i) is precisely b̃i⊗Λ2, and has smoothing parameter η(b̃i⊗Λ2) = ‖b̃i‖ · η(Λ2). Therefore, by repeated
application of Lemma 2.6, we have η(Λ1 ⊗ Λ2) ≤ maxi ‖b̃i‖ · η(Λ2) = b̃l(Λ1) · η(Λ2).
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The following proposition relates the problem of sampling lattice vectors according to a Gaussian
distribution to the SIVP.

Proposition 2.8 ([24], Lemma 3.17). There is a polynomial time algorithm that, given a basis for an n-
dimensional lattice Λ and polynomially many samples from DΛ,σ for some σ ≥ 2η(Λ), solves SIVPγ on
input lattice Λ (in the worst case over Λ, and with overwhelming probability over the choice of the lattice
samples) for approximation factor γ = σ

√
n · ωn.

2.4 The SIS and LWE Functions

In this paper we are interested in two special families of functions, which are the fundamental building blocks
of lattice cryptography. Both families are parametrized by three integers m,n and q, and a set X ⊆ Zm of
short vectors. Usually n serves as a security parameter and m and q are functions of n.

The Short Integer Solution function family SIS(m,n, q,X) is the set of all functions fA indexed by
A ∈ Zn×mq with domain X ⊆ Zm and range Y = Znq , defined as fA(x) = Ax mod q. The Learning
With Errors function family LWE(m,n, q,X) is the set of all functions gA indexed by A ∈ Zn×mq with
domain Znq ×X and range Y = Zmq , defined as gA(s,x) = AT s + x mod q. Both function families are
endowed with the uniform distribution over A ∈ Zn×mq . We omit the set X from the notation SIS(m,n, q)
and LWE(m,n, q) when clear from the context, or unimportant.

In the context of collision resistance, we sometimes write SIS(m,n, q, β) for some real β > 0, without
an explicit domain X . Here the collision-finding problem is, given A ∈ Zn×mq , to find distinct x,x′ ∈ Zm
such that ‖x − x′‖ ≤ β and fA(x) = fA(x′). It is easy to see that this is equivalent to finding a nonzero
z ∈ Zm of length at most ‖z‖ ≤ β such that fA(z) = 0.

For other security properties (e.g., one-wayness, uninvertibility, etc.), the most commonly used classes of
domains and input distributionsX for SIS are the uniform distribution U(X) over the setX = {0, . . . , s−1}m
or X = {−s, . . . , 0, . . . , s}m, and the discrete Gaussian distribution Dm

Z,s. Usually, this distribution is
restricted to the set of short vectors X = {x ∈ Zm : ‖x‖ ≤ s

√
m}, which carries all but a 2−Ω(m) fraction

of the probability mass of Dm
Z,s.

For the LWE function family, the input is usually chosen according to distribution U(Znq )×X , where X
is one of the SIS input distributions. This makes the SIS and LWE function families essentially equivalent,
as shown in the following proposition.

Proposition 2.9 ([15, 17]). For any n, m ≥ n+ω(log n), q, and distribution X over Zm, the LWE(m,n, q)
function family is one-way (resp. pseudorandom, or uninvertible) with respect to input distribution U(Znq )×X
if and only if the SIS(m,m− n, q) function family is one-way (resp. pseudorandom, or uninvertible) with
respect to the input distribution X .

In applications, the SIS function family is typically used with larger input domains X for which the
functions are surjective but not injective, while the LWE function family is used with smaller domains X for
which the functions are injective, but not surjective. The results in this paper are more naturally stated using
the SIS function family, so we will use the SIS formulation to establish our main results, and then reformulate
them in terms of the LWE function family by invoking Proposition 2.9. We also use Proposition 2.9 to
reformulate known hardness results (from worst-case complexity assumptions) for LWE in terms of SIS.

Assuming the quantum worst-case hardness of standard lattice problems, Regev [24] showed that the
LWE(m,n, q) function family is hard to invert with respect to the discrete Gaussian error distribution Dm

Z,σ
for any σ > 2

√
n. (See also [21] for a classical reduction that requires q to be exponentially large in n.
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Because we are concerned with small parameters in this work, we focus mainly on the implications of the
quantum reduction.)

Proposition 2.10 ([24], Theorem 3.1). For any m = nO(1), integer q and real α ∈ (0, 1) such that αq >
2
√
n, there is a polynomial time quantum reduction from sampling DΛ,σ (for any n-dimensional lattice Λ

and σ > (
√

2n/α)η(Λ)) to inverting the LWE(m,n, q) function family on input Y = DZm,αq.

Combining Propositions 2.8, 2.9 and 2.10, we get the following corollary.

Corollary 2.11. For any positive m,n such that ω(log n) ≤ m − n ≤ nO(1) and 2
√
n < σ < q, the

SIS(m,m−n, q) function family is uninvertible with respect to input distributionDm
Z,σ, under the assumption

that no (quantum) algorithm can efficiently sample from a distribution statistically close to DΛ,
√

2nq/σ.
In particular, assuming the worst-case (quantum) hardness of SIVPnωnq/σ over n-dimensional lattices,

the SIS(m,m− n, q) function family is uninvertible with respect to input distribution Dm
Z,σ.

We use the fact that LWE/SIS is not only hard to invert, but also pseudorandom. This is proved using
search-to-decision reductions for those problems. The most general such reductions known to date are given
in the following two theorems.

Theorem 2.12 ([17]). For any positive m,n such that ω(log n) ≤ m− n ≤ nO(1), any positive σ ≤ nO(1),
and any q with no divisors in the interval ((σ/ωn)m/k, σ · ωn), if SIS(m,m − n, q,Dm

Z,σ) is uninvertible,
then it is also pseudorandom.

Notice that when σ > ω
(m+k)/(m−k)
n , the interval ((σ/ωn)m/k, σ ·ωn) is empty, and Theorem 2.12 holds

without any restriction on the factorization of the modulus q.

Theorem 2.13 ([18]). Let q have prime factorization q = pe11 · · · p
ek
k for pairwise distinct poly(n)-bounded

primes pi with each ei ≥ 1, and let 0 < α ≤ 1/ωn. If LWE(m,n, q,Dm
Z,αq) is hard to invert for all

m(n) = nO(1), then LWE(m′, n, q,Dm
Z,α′q) is pseudorandom for any m′ = nO(1) and

α′ ≥ max{α, ω1+1/`
n · α1/`, ωn/p

e1
1 , . . . , ωn/p

ek
k },

where ` is an upper bound on number of prime factors pi < ωn/α
′.

In this work we focus on the use of Theorem 2.12, because it guarantees pseudorandomness for the same
value of m as for the assumed one-wayness. This feature is important for applying our results from Section 4,
which guarantee one-wayness for particular values of m (but not necessarily all m = nO(1)).

Corollary 2.14. For any positivem,n, σ, q such that ω(log n) ≤ m−n ≤ nO(1) and 2
√
n < σ < q < nO(1),

if q has no divisors in the range ((σ/ωn)1+n/k, σ · ωn), then the SIS(m,m − n, q) function family is
pseudorandom with respect to input distribution Dm

Z,σ, under the assumption that no (quantum) algorithm
can efficiently sample (up to negligible statistical errors) DΛ,

√
2nq/σ.

In particular, assuming the worst-case (quantum) hardness of SIVPnωnq/σ on n-dimensional lattices, the
SIS(m,m− n, q) function family is pseudorandom with respect to input distribution Dm

Z,σ.
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3 Hardness of SIS with Small Modulus

We first prove a simple “success amplification” lemma for collision-finding in SIS, which says that any
inverse-polynomial advantage can be amplified to essentially 1, at only the expense of a larger runtime and
value of m (which will have no ill effects on our final results). Therefore, for the remainder of this section we
implicitly restrict our attention to collision-finding algorithms that have overwhelming advantage.

Lemma 3.1. For arbitrary n, q,m and X ⊆ Zm, suppose there exists a probabilistic algorithm A that has
advantage ε > 0 in collision-finding for SIS(m,n, q,X). Then there exists a probabilistic algorithm B that
has advantage 1− (1−ε)t ≥ 1−exp(−εt) = 1−exp(−n) in collision-finding for SIS(M = t ·m,n, q,X ′),
where t = n/ε and X ′ =

⋃t
i=1({0m}i−1 ×X × {0m}t−i). The runtime of B is essentially t times that of A.

Proof. The algorithm B simply partitions its input A ∈ Zn×Mq into blocks Ai ∈ Zn×mq and invokes A (with
fresh random coins) on each of them, untilA returns a valid collision x,x′ ∈ X for some Ai. Then B returns

(0m(i−1),x, 0m(t−i)), (0m(i−1),x′, 0m(t−i)) ∈ X ′

as a collision for A. Clearly, B succeeds if any call to A succeeds. Since all t calls to A are on independent
inputs Ai and use independent coins, some call will succeed, except with (1− ε)t probability.

3.1 SIS-to-SIS Reduction

Our first proof that the SIS(m,n, q, β) function family is collision resistant for moduli q as small as n1/2+δ

proceeds by a reduction between SIS problems with different parameters. Previous hardness results based on
worst-case lattice assumptions require the modulus q to be at least β · ω(

√
n log n) [12, Theorem 9.2], and

β ≥
√
n log q is needed to guarantee that a nontrivial solution exists. For such parameters, SIS is collision

resistant assuming the hardness of approximating worst-case lattice problems to within ≈ β
√
n factors.

The intuition behind our proof for smaller moduli is easily explained. We reduce SIS with modulus qc

and solution bound βc (for any constant integer c ≥ 1) to SIS with modulus q and bound β. Then as long as
(q/β)c ≥ ω(

√
n log n), the former problem enjoys worst-case hardness, hence so does the latter. Thus we can

take q = β · nδ for any constant δ > 0, and c > 1/(2δ). Notice, however, that the underlying approximation
factor for worst-case lattice problems is ≈ βc

√
n ≥ n1/2+1/(4δ), which, while still polynomial, degrades

severely as δ approaches 0. In the next subsection we give a direct reduction from worst-case lattice problems
to SIS with a small modulus, which does not have this drawback.

The above discussion is formalized in the following proposition. For technical reasons, we prove that
SIS(m,n, q,X) is collision resistant assuming that the domain X has the property that all SIS solutions
z ∈ (X −X) \ {0} satisfy gcd(z, q) = 1. This restriction is satisfied in many (but not all) common settings,
e.g., when q > β is prime, or when X ⊆ {0, 1}m is a set of binary vectors.

Proposition 3.2. Let n, q, m, β and X ⊆ Zm be such that gcd(x − x′, q) = 1 and ‖x − x′‖ ≤ β for any
distinct x,x′ ∈ X . For any positive integer c, there is a deterministic reduction from collision-finding for
SIS(mc, n, qc, βc) to collision-finding for SIS(m,n, q,X) (in both cases, with overwhelming advantage).
The reduction runs in time polynomial in its input size, and makes fewer than mc calls to its oracle.

Proof. LetA be an efficient algorithm that finds a collision for SIS(m,n, q,X) with overwhelming advantage.
We use it to find a nonzero solution for SIS(mc, n, qc, βc). Let A ∈ Zn×m

c

qc be an input SIS instance. Partition
the columns of A into mc−1 blocks Ai ∈ Zn×mqc , and for each one, invoke A to find a collision modulo q,
i.e., a pair of distinct vectors xi,x′i ∈ X such that Aizi = 0 mod q, where zi = xi − x′i and ‖zi‖ ≤ β.
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For each i, since gcd(zi, q) = 1 and Aizi = 0 mod q, the vector a′i = (Aizi)/q ∈ Znqc−1 is uniformly

random, even after conditioning on zi and Ai mod q. So, the matrix A′ ∈ Zn×m
c−1

qc−1 made up of all these

columns is uniformly random. By induction on c, using A we can find a nonzero solution z′ ∈ Zmc−1
such

that A′z′ = 0 mod qc−1 and ‖z′‖ ≤ βc−1. Then it is easy to verify that a nonzero solution for the original
instance A is given by z = (z′1 · z1, . . . , z

′
mc−1 · zmc−1) ∈ Zmc

, and that ‖z‖ ≤ ‖z′‖ · maxi ‖zi‖ ≤ βc.
Finally, the total number of calls to A is

∑c−1
i=0 m

i < mc, as claimed.

3.2 Direct Reduction

As mentioned above, the large worst-case approximation factor associated with the use of Proposition 3.2 is
undesirable, as is (to a lesser extent) the restriction that gcd(X−X, q) = 1. To eliminate these drawbacks, we
next give a direct proof that SIS is collision resistant for small q, based on the assumed hardness of worst-case
lattice problems. The underlying approximation factor for these problems can be as small as Õ(β

√
n), which

matches the best known factors obtained by previous proofs (which require a larger modulus q). Our new
proof combines ideas from [19, 12] and Proposition 3.2, as well as a new convolution theorem for discrete
Gaussians which strengthens similar ones previously proved in [22, 6].

Our proof of the convolution theorem is substantially different and, we believe, technically simpler than
the prior ones. In particular, it handles the sum of many Gaussian samples all at once, whereas previous proofs
used induction from a base case of two samples. With the inductive approach, it is technically complex to
verify that all the intermediate Gaussian parameters (which involve harmonic means) satisfy the hypotheses.
Moreover, the intermediate parameters can depend on the order in which the samples are added in the
induction, leading to unnecessarily strong hypotheses on the original parameters.

Theorem 3.3. Let Λ be an n-dimensional lattice, z ∈ Zm a nonzero integer vector, si ≥
√

2‖z‖∞ · η(Λ),
and Λ + ci arbitrary cosets of Λ for i = 1, . . . ,m. Let yi be independent vectors with distributions DΛ+ci,si ,
respectively. Then the distribution of y =

∑
i ziyi is statistically close to DY,s, where Y = gcd(z)Λ + c,

c =
∑

i zici, and s =
√∑

i(zisi)
2.

In particular, if gcd(z) = 1 and
∑

i zici ∈ Λ, then y is distributed statistically close to DΛ,s.

Proof. First we verify that the support of y is∑
i

zi(Λ + ci) =
∑
i

ziΛ +
∑
i

zi · ci = gcd(z)Λ +
∑
i

zi · ci = Y.

So it remains to prove that each y ∈ Y has probability (nearly) proportional to ρs(y).
For the remainder of the proof we use the following convenient scaling. Define the diagonal matrices

S = diag(s1, . . . , sm) and S′ = S⊗ In, and the mn-dimensional lattice Λ′ =
⊕

i(s
−1
i Λ) = (S′)−1 · Λ⊕m,

where
⊕

denotes the (external) direct sum of lattices and Λ⊕m = Zm ⊗ Λ is the direct sum of m copies
of Λ. Then by independence of the yi, it can be seen that y′ = (S′)−1 · (y1, . . . ,ym) has discrete Gaussian
distribution DΛ′+c′ (with parameter 1), where c′ = (S′)−1 · (c1, . . . , cm).

The output vector y =
∑

i ziyi can be expressed, using the mixed-product property for Kronecker
products, as

y = (zT ⊗ In) · (y1, . . . ,ym) = (zT ⊗ In) · S′ · y′ = ((zTS)⊗ In) · y′.

So, letting Z = ((zTS)⊗ In), we want to prove that the distribution of y ∼ Z ·DΛ′+c′ is statistically close
to DY,s.
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Fix any vectors x′ ∈ Λ′ + c′ and ȳ = Zx′ ∈ Y , and define the proper sublattice

L = {v ∈ Λ′ : Zv = 0} = Λ′ ∩ ker(Z) ( Λ′.

It is immediate to verify that the set of all y′ ∈ Λ′ + c′ such that Zy′ = ȳ is (Λ′ + c′) ∩ ker(Z) = L+ x′.
Let x be orthogonal projection of x′ onto ker(Z) ⊃ L. Then we have

Pr[y = ȳ] =
ρ(L+ x′)

ρ(Λ′ + c′)
= ρ(x′ − x) · ρ(L+ x)

ρ(Λ′ + c′)
.

Below we show that η(L) ≤ 1, which implies that ρ(L+ x) is essentially the same for all values of x′, and
hence for all ȳ. Therefore, we just need to analyze ρ(x′ − x).

Since ZT is an orthogonal basis for ker(Z)⊥, each of whose columns has Euclidean norm s =
(
∑

i(zisi)
2)1/2, we have x′ − x = (ZTZx′)/s2, and

‖x′ − x‖2 = 〈x′,ZTZx′〉/s2 = ‖Zx′‖2/s2 = (‖ȳ‖/s)2.

Therefore, ρ(x′ − x) = ρs(ȳ), and so Pr[y = ȳ] is essentially proportional to ρs(ȳ), i.e., the statistical
distance between y and DY,s is negligible.

It remains to bound the smoothing parameter of L. Consider the m-dimensional integer lattice Z =
Zm ∩ ker(zT ) = {v ∈ Zm : 〈z,v〉 = 0}. Because (Z ⊗ Λ) ⊆ (Zm ⊗ Λ) and S−1Z ⊂ ker(zTS), it is
straightforward to verify from the definitions that

(S′)−1 · (Z ⊗ Λ) = ((S−1Z)⊗ Λ)

is a sublattice of L. It follows from Corollary 2.7 and by scaling that

η(L) ≤ η((S′)−1 · (Z ⊗ Λ)) ≤ η(Λ) · b̃l(Z)/min si.

Finally, b̃l(Z) ≤ min
{
‖z‖,
√

2‖z‖∞
}

because Z has a full-rank set of vectors zi · ej − zj · ei, where index
i minimizes |zi| 6= 0, and j ranges over {1, . . . ,m} \ {i}. By assumption on the si, we have η(L) ≤ 1 as
desired, and the proof is complete.

Remark 3.4. Although we will not need it in this work, we note that the statement and proof of Theorem 3.3
can be adapted to the case where the yi respectively have non-spherical discrete Gaussian distributions
DΛi+ci,

√
Σi

with positive definite “covariance” parameters Σi ∈ Rn×n, over cosets of possibly different
lattices Λi. (See [22] for a formal definition of these distributions.)

In this setting, by scaling Λi and Σi we can assume without loss of generality that z = (1, 1, . . . , 1).
The theorem statement says that y’s distribution is close to a discrete Gaussian (over an appropriate lattice
coset) with covariance parameter Σ =

∑
Σi, under mild assumptions on

√
Σi. In the proof we simply

let S′ be the block-diagonal matrix with the
√

Σi as its diagonal blocks, let Λ′ = (S′)−1 ·
⊕

i Λi, and let
Z = (zT ⊗ In) · S′ = [

√
Σ1 | · · · |

√
Σm]. Then the only technical difference is in bounding the smoothing

parameter of L.

The convolution theorem implies the following simple but useful lemma, which shows how to convert
samples having a broad range of parameters into ones having parameters in a desired narrow range.

Lemma 3.5. There is an efficient algorithm which, given a basis B of some lattice Λ, some R ≥
√

2 and
samples (yi, si) where each si ∈ [

√
2, R] · η(Λ) and each yi has distribution DΛ,si , with overwhelming

probability outputs a sample (y, s) where s ∈ [R,
√

2R] · η(Λ) and y has distribution statistically close
to DΛ,s.
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Proof. Let ωn = ω(
√

log n) satisfy ωn ≤
√
n. The algorithm draws 2n2 input samples, and works as

follows: if at least n2 of the samples have parameters si ≤ R · η(Λ)/(
√
n · ωn), then with overwhelming

probability they all have lengths bounded by R · η(Λ)/ωn and they include n linearly independent vectors.
Using such vectors we can construct a basis S such that ‖S̃‖ ≤ R ·η(Λ)/ωn, and with the sampling algorithm
of [12, Theorem 4.1] we can generate samples having parameter R · η(Λ).

Otherwise, at least n2 of the samples (yi, si) have parameters si ≥ max{R/n,
√

2} · η(Λ). Then by
summing an appropriate subset of those yi, by the convolution theorem we can obtain a sample having
parameter in the desired range.

The next lemma is the heart of our reduction. The novel part, corresponding to the properties described in
the second item, is a way of using a collision-finding oracle to reduce the Gaussian width of samples drawn
from a lattice. The first item corresponds to the guarantees provided by previous reductions.

Lemma 3.6. Let m,n be integers, S = {z ∈ Zm \ {0} | ‖z‖ ≤ β ∧‖z‖∞ ≤ β∞} for some real β ≥ β > 0,
and q an integer modulus with at most poly(n) integer divisors less than β∞. There is a probabilistic
polynomial time reduction that, on input any basis B of a lattice Λ and sufficiently many samples (yi, si)
where si ≥

√
2q · η(Λ) and yi has distribution DΛ,si , and given access to an SIS(m,n, q, S) oracle (that

finds collisions z ∈ S with nonnegligible probability) outputs (with overwhelming probability) a sample
(y, s) with min si/q ≤ s ≤ (β/q) ·max si, and y ∈ Λ such that:

• E[‖y‖] ≤ (β
√
n/q) · max si, and for any subspace H ⊂ Rn of dimension at most n − 1, with

probability at least 1/10 we have y 6∈ H .

• Moreover, if each si ≥
√

2β∞q · η(Λ), then the distribution of y is statistically close to DΛ,s

Proof. Let A be the collision-finding oracle. Without loss of generality, we can assume that whenever A
outputs a valid collision z ∈ S, we have that gcd(z) divides q. This is so because for any integer vector
z, if Az = 0 mod q then also A((g/d)z) = 0 mod q, where d = gcd(z) and g = gcd(d, q). Moreover,
(g/d)z ∈ S holds true and gcd((g/d)z) = gcd(z, q) divides q. Let d be such that A outputs, with non-
negligible probability, a valid collision z satisfying gcd(z) = d. Such a d exists because gcd(z) is bounded
by β∞ and divides q, so by assumption there are only polynomially many possible values of d. Let q′ = q/d,
which is an integer. By increasingm and using standard amplification techniques, we can make the probability
that A outputs such a collision (satisfying z ∈ S, Az = 0 (mod q) and gcd(z) = d) exponentially close
to 1.

Let (yi, si) for i = 1, . . . ,m be input samples, where yi has distribution DΛ,si . Write each yi as
yi = Bai mod q′Λ for ai ∈ Znq′ . Since si ≥ q′η(Λ) the distribution of ai is statistically close to uniform over
Znq′ . Let A = [a1 | · · · | am] ∈ Zn×mq , and choose A′ ∈ Zn×md uniformly at random. Since A is statistically
close to uniform over Zn×mq′ , the matrix A+ q′A′ is statistically close to uniform over Zn×mq . Call the oracle
A on input A+q′A′, and obtain (with overwhelming probability) a nonzero z ∈ S with gcd(z) = d, ‖z‖ ≤ β,
‖z‖∞ ≤ β∞ and (A + q′A′)z = 0 mod q. Notice that q′A′z = qA′(z/d) = 0 mod q because (z/d) is an
integer vector. Therefore Az = 0 mod q. Finally, the reduction outputs (y, s), where y =

∑
i ziyi/q and

s =
√∑

i(sizi)
2/q. Notice that ziyi ∈ qΛ + B(ziai) because gcd(z) = d, so y ∈ Λ.

Notice that s satisfies the stated bounds because z is a nonzero integer vector. We next analyze the
distribution of y. For any fixed ai, the conditional distribution of each yi is Dq′Λ+Bai,si , where si ≥√

2η(q′Λ). The claim on E[‖y‖] then follows from [19, Lemma 2.11 and Lemma 4.3] and Hölder’s inequality.
The claim on the probability that y 6∈ H was initially shown in the preliminary version of [19]; see also [24,
Lemma 3.15].
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Now assume that si ≥
√

2β∞q · η(Λ) ≥
√

2‖z‖∞ · η(q′Λ) for all i. By Theorem 3.3 the distribution of
y is statistically close to DY/q,s where Y = gcd(z) · q′Λ + B(Az). Using Az = 0 mod q and gcd(z) = d,
we get Y = qΛ. Therefore y has distribution statistically close to DΛ,s, as claimed.

Building on Lemma 3.6, our next lemma shows that for any q ≥ β · nΩ(1), a collision-finding oracle can
be used to obtain Gaussian samples of width close to 2ββ∞ · η(Λ).

Lemma 3.7. Let m,n, q, S as in Lemma 3.6, and also assume q/β ≥ nδ for some constant δ > 0. There is
an efficient reduction that, on input any basis B of an n-dimensional lattice Λ, an upper bound η ≥ η(Λ), and
given access to an SIS(m,n, q, S) oracle (finding collisions z ∈ S with nonnegligible probability), outputs
(with overwhelming probability) a sample (y, s) where

√
2β∞ · η ≤ s ≤ 2β∞β · η and y has distribution

statistically close to DΛ,s.

Proof. By applying the LLL basis reduction algorithm [13] to the basis B, we can assume without loss
of generality that ‖B̃‖ ≤ 2n · η(Λ). Let ωn be an arbitrary function in n satisfying ωn = ω(

√
log n) and

ωn ≤
√
n/2.

The main procedure, described below, produces samples having parameters in the range [1, q] ·
√

2β∞ · η.
On these samples we run the procedure from Lemma 3.5 (with R =

√
2β∞q · η) to obtain samples having

parameters in the range [
√

2, 2] · β∞q · η. Finally, we invoke the reduction from Lemma 3.6 on those samples
to obtain a sample satisfying the conditions in the Lemma statement.

The main procedure works in a sequence of phases i = 0, 1, 2, . . .. In phase i, the input is a basis Bi

of Λ, where initially B0 = B. The basis Bi is used in the discrete Gaussian sampling algorithm of [12,
Theorem 4.1] to produce samples (y, si), where si = max{‖B̃i‖ · ωn,

√
2β∞η} ≥

√
2β∞η and yi has

distribution statistically close to DΛ,si . Phase i either manages to produce a sample (y, s) with s in the
desired range [1, q] ·

√
2β∞η, or it produces a new basis Bi+1 for which ‖B̃i+1‖ ≤ ‖B̃i‖/2, which is the

input to the next phase. The number of phases before termination is clearly polynomial in n, by hypothesis
on B.

If ‖B̃i‖·ωn ≤
√

2qβ∞η, then this already gives samples with si ∈ [1, q]
√

2β∞η in the desired range, and
we can terminate the main phase. So, we may assume that si = ‖B̃i‖·ωn ≥

√
2qβ∞η. Each phase i proceeds

in some constant c ≥ 1/δ number of sub-phases j = 1, 2, . . . , c, where the inputs to the first sub-phase
are the samples (y, si) generated as described above. We recall that these samples satisfy si ≥

√
2qβ∞η.

The same will be true for the samples passed as input to all other subsequent subphases. So, each subphase
receives as input samples (y, s) satisfying all the hypotheses of Lemma 3.6, and we can run the reduction
from that lemma to generate new samples (y′, s′) having parameters s′ bounded from above by si · (β/q)j ,
and from below by

√
2β∞η. If any of the produces samples satisfies s′ ≤ q

√
2β∞η, then we can terminate

the main procedure with (y′, s′) as output. Otherwise, all samples produced during the subphase satisfy
s′ > q

√
2β∞η, and they can be passed as input to the next sub-phase. Notice that the total runtime of all

the sub-phases is poly(n)c, because each invocation of the reduction from Lemma 3.6 relies on poly(n)
invocations of the reduction in the previous sub-phase; this is why we need to limit the number of sub-phases
to a constant c.

If phase i ends up running all its sub-phases without ever finding a sample with s′ ∈ [1, q]
√

2β∞η, then it
has produced samples whose parameters are bounded by (β/q)c ≤ si ≤ si/

√
n. It uses n2 of these samples,

which with overwhelming probability have lengths all bounded by si/
√
n, and include n linearly independent

vectors. It transforms those vectors into a basis Bi+1 with ‖B̃i+1‖ ≤ si/
√
n ≤ ‖B̃‖iωn/

√
n ≤ ‖B̃i‖/2, as

input to the next phase.

We can now prove our main theorem, reducing worst-case lattice problems with max{1, ββ∞/q} ·
Õ(β
√
n) approximation factors to SIS, when q ≥ β · nΩ(1).
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Theorem 3.8. Let m,n be integers, S = {z ∈ Zm \ {0} | ‖z‖ ≤ β ∧ ‖z‖∞ ≤ β∞} for some real
β ≥ β∞ > 0, and q ≥ β · nΩ(1) be an integer modulus with at most poly(n) integer divisors less than β∞.
For some γ = max{1, ββ∞/q} ·O(β

√
n), there is an efficient reduction from SIVPηγ (and hence also from

standard SIVPγ·ωn) on n-dimensional lattices to S-collision finding for SIS(m,n, q) with non-negligible
advantage.

Proof. Given an input basis B of a lattice Λ, we can apply the LLL algorithm to obtain a 2n-approximation
to η(Λ), and by scaling we can assume that η(Λ) ∈ [1, 2n]. For i = 1, . . . , n, we run the procedure described
below for each hypothesized upper bound ηi = 2i on η(Λ). Each call to the procedure either fails, or returns
a set of linearly independent vectors in Λ whose lengths are all bounded by (γ/2) · ηi. We return the first
such obtained set (i.e., for the minimal value of i). As we show below, as long as ηi ≥ η(Λ) the procedure
returns a set of vectors with overwhelming probability. Since one ηi ∈ [1, 2) · η(Λ), our reduction solves
SIVPηγ with overwhelming probability, as claimed.

The procedure invokes the reduction from Lemma 3.7 with η = ηi to obtain samples with parameters
in the range [

√
2β∞,

√
2ββ∞] · η. On these samples we run the procedure from Lemma 3.5 with R =

max{
√

2q,
√

2ββ∞} to obtain samples having parameters in the range [R,
√

2R] · η. On such samples we
repeatedly run (using independent samples each time) the reduction from Lemma 3.6. After enough runs, we
obtain with overwhelming probability a set of linearly independent lattice vectors all having lengths at most
(γ/2) · η, as required.

4 Hardness of LWE with Small Uniform Errors

In this section we prove the hardness of inverting the LWE function even when the error vectors have very
small entries, provided the number of samples is sufficiently small. We proceed similarly to [23, 4], by using
the LWE assumption (for discrete Gaussian error) to construct a lossy family of functions with respect to
a uniform distribution over small inputs. However, the parameterization we obtain is different from those
in [23, 4], allowing us to obtain pseudorandomness of LWE under very small (e.g., binary) inputs, for a
number of LWE samples that exceeds the LWE dimension.

Our results and proofs are more naturally formulated using the SIS function family. So, we will first
study the problem in terms of SIS, and then reformulate the results in terms of LWE using Proposition 2.9.
We recall that the main difference between this section and Section 3, is that here we consider parameters
for which the resulting functions are essentially injective, or more formally, statistically second-preimage
resistant. The following lemma gives sufficient conditions that ensure this property.

Lemma 4.1. For any integers m, k, q, s and set X ⊆ [s]m, the function family SIS(m, k, q) is (statistically)
ε-second preimage resistant with respect to the uniform input distribution U(X) for ε = |X| · (s′/q)k,
where s′ is the largest factor of q smaller than s.

Proof. Let x ← U(X) and A ← SIS(m, k, q) be chosen at random. We want to evaluate the probability
that there exists an x′ ∈ X \ {x} such that Ax = Ax′ (mod q), or, equivalently, A(x − x′) = 0
(mod q). Fix any two distinct vectors x,x′ ∈ X and let z = x− x′. The vector Az (mod q) is distributed
uniformly at random in (dZ/qZ)k, where d = gcd(q, z1, . . . , zm). All coordinates of z are in the range
zi ∈ {−(s− 1), . . . , (s− 1)}, and at least one of them is nonzero. Therefore, d is at most s′ and |dZkq | =
(q/d)k ≥ (q/s′)k. By union bound (over x′ ∈ X \ {x}) for any x, the probability that there is a second
preimage x′ is at most (|X| − 1)(s′/q)k.
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We remark that, as shown in Section 3, even for parameter settings that do not fall within the range
specified in Lemma 4.1, SIS(m, k, q) is collision resistant, and therefore also (computationally) second-
preimage-resistant. This is all that is needed in the rest of this section. However, when SIS(m, k, q) is not
statistically second-preimage resistant, the one-wayness proof that follows (see Theorem 4.5) is not very
interesting: typically, in such settings, SIS(m, k, q) is also statistically uninvertible, and the one-wayness
of SIS(m, k, q) directly follows from Lemma 2.2. So, below we focus on parameter settings covered by
Lemma 4.1.

We prove the one-wayness of F = SIS(m, k, q,X) with respect to the uniform input distribution
X = U(X) by building a lossy function family (L,F ,X ) where L is an auxiliary function family that we
will prove to be uninvertible and computationally indistinguishable from F . The auxiliary family L is derived
from the following function family.

Definition 4.2. For any probability distribution Y over Z` and integer m ≥ `, let I(m, `,Y) be the prob-
ability distribution over linear functions [I | Y] : Zm → Z` where I is the ` × ` identity matrix, and
Y ∈ Z`×(m−`) is obtained choosing each column of Y independently at random from Y .

We anticipate that we will set Y to the Gaussian input distribution Y = D`
Z,σ in order to make L

indistinguishable from F under a standard LWE assumption. But for generality, we prove some of our results
with respect to a generic distribution Y .

The following lemma shows that for a bounded distribution Y (and appropriate parameters), I(m, `,Y)
is (statistically) uninvertible.

Lemma 4.3. Let Y be a probability distribution on [Y] ⊆ {−σ, . . . , σ}n, and let X ⊆ {−s, . . . , s}m. Then
I(m, `,Y) is ε-uninvertible with respect to U(X) for ε = (1 + 2s(1 + σ(m− `)))`/|X|.

Proof. Let f = [I | Y] be an arbitrary function in the support of I(m, `,Y). We know that |yi,j | ≤ σ for all
i, j. We first bound the size of the image |f(X)|. By the triangle inequality, all the points in the image f(X)
have `∞ norm at most

‖f(u)‖∞ ≤ ‖u‖∞(1 + σ(m− `)) ≤ s(1 + σ(m− `)).

The number of integer vectors (in Z`) with such bounded `∞ norm is

(1 + 2s(1 + σ(m− `)))`.

Dividing by the size of X and using Lemma 2.4, the claim follows.

Lemma 4.3 applies to any distribution Y with bounded support. When Y = D`
Z,σ is a discrete Gaussian

distribution, a slightly better bound can be obtained. (See also [4], which proves a similar lemma for a
different, non-uniform input distribution X .)

Lemma 4.4. Let Y = D`
Z,σ be the discrete Gaussian distribution with parameter σ > 0, and let X ⊆

{−s, . . . , s}m. Then I(m, `,Y) is ε-uninvertible with respect to U(X), for ε = O(σms/
√
`)`/|X|+2−Ω(m).

Proof. Again, by Lemma 2.4 it is enough to bound the expected size of f(X) when f ← I(m, `,Y) is
chosen at random. Remember that f = [I | Y] where Y ← D

`×(m−`)
Z,σ . Since the entries of Y ∈ R`×(m−`)

are independent mena-zero subgaussians with parameter σ, by a standard bound from the theory of random
matrices, the largest singular value s1(Y) = max06=x∈Rm ‖Yx‖/‖x‖ of Y is at most σ ·O(

√
`+
√
m− `) =
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σ ·O(
√
m), except with probability 2−Ω(m). We now bound the `2 norm of all vectors in the image f(X).

Let u = (u1,u2) ∈ X , with u1 ∈ Z` and u2 ∈ Zm−`. Then

‖f(u)‖ ≤ ‖u1 + Yu2‖
≤ ‖u1‖+ ‖Yu2‖

≤
(√

`+ s1(Y)
√
m− `

)
s

≤
(√

`+ σ ·O(
√
m)
√
m− `

)
s

= O(σms).

The number of integer points in the `-dimensional zero-centered ball of radius R = O(σms) can be bounded
by a simple volume argument, as |f(X)| ≤ (R+

√
`/2)nV` = O(σms/

√
`)`, where V` = π`/2/(`/2)! is the

volume of the `-dimensional unit ball. Dividing by the size of X and accounting for the rare event that s1(Y)
is not bounded as above, we get that I(m, `,Y) is ε-uninvertible for ε = O(σms/

√
`)`/|X|+ 2−Ω(m).

We can now prove the one-wayness of the SIS function family by defining and analyzing an appropriate
lossy function family. The parameters below are set up to expose the connection with LWE, via Proposi-
tion 2.9: SIS(m,m− n, q) corresponds to LWE in n dimensions (given m samples), whose one-wayness
we are proving, while SIS(` = m − n + k,m − n, q) corresponds to LWE in k ≤ n dimensions, whose
pseudorandomness we are assuming.

Theorem 4.5. Let q be a modulus and let X ,Y be two distributions over Zm and Z` respectively, where
` = m− n+ k for some 0 < k ≤ n ≤ m, such that

1. I(m, `,Y) is uninvertible with respect to input distribution X ,

2. SIS(`,m− n, q) is pseudorandom with respect to input distribution Y , and

3. SIS(m,m− n, q) is second-preimage resistant with respect to input distribution X .

Then F = SIS(m,m− n, q) is one-way with respect to input distribution X .
In particular, if SIS(`,m − n, q) is pseudorandom with respect to the discrete Gaussian distribution

Y = D`
Z,σ, then SIS(m,m− n, q) is (2ε+ 2−Ω(m))-one-way with respect to the uniform input distribution

X = U(X) over any set X ⊆ {−s, . . . , s}m satisfying

(C ′σms/
√
`)`/ε ≤ |X| ≤ ε · (q/s′)m−n,

where s′ is the largest divisor of q that is smaller than or equal to 2s, and C ′ is the universal constant hidden
by the O(·) notation from Lemma 4.4.

Proof. We will prove that (L,F ,X ) is a lossy function family, where F = SIS(m,m − n, q) and L =
SIS(`,m− n, q) ◦ I(m, `,Y). It follows from Lemma 2.3 that both F and L are one-way function families
with respect to input distribution X . Notice that F is second-preimage resistant with respect to X by
assumption. The indistinguishability of L and F follows immediately from the pseudorandomness of
SIS(`,m− n, q) with respect to Y , by a standard hybrid argument. So, in order to prove that (L,F ,X ) is
a lossy function family, it suffices to prove that L is uninvertible with respect to X . This follows applying
Lemma 2.5 to the function family I(m, `,Y), which is uninvertible by assumption. This proves the first part
of the theorem.
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Now consider the particular instantiation. Let X = U(X) be the uniform distribution over a set
X ⊆ {−s, . . . , s}m whose size satisfies the inequalities in the theorem statement, and let Y = D`

Z,σ.
Since |X|(s′/q)m−n ≤ ε, by Lemma 4.1, SIS(m,m− n, q) is (statistically) second-preimage resistant with
respect to input distribution X . Moreover, since (Cσms/

√
`)`/|X| ≤ ε, by Lemma 4.4, I(m, `,Y) is

(ε+ 2−Ω(m))-uninvertible with respect to input distribution X .

In order to conclude that the LWE function is pseudorandom (under worst-case lattice assumptions) for
uniformly random small errors, we combine Theorem 4.5 with Corollary 2.14, instantiating the parameters
appropriately. For simplicity, we focus on the important case of a prime modulus q. Nearly identical results
for composite moduli (e.g., those divisible by only small primes) are also easily obtained from Corollary 2.14,
or by using either Theorem 2.13 or Theorem 2.12.

Theorem 4.6. Let 0 < k ≤ n ≤ m − ω(log k) ≤ kO(1), ` = m − n + k, s ≥ (Cm)`/(n−k) for a large
enough universal constant C, and q be a prime such that max{3

√
k, (4s)m/(m−n)} ≤ q ≤ kO(1). For

any set X ⊆ {−s, . . . , s}m of size |X| ≥ sm, the SIS(m,m− n, q) (equivalently, LWE(m,n, q)) function
family is one-way (and pseudorandom) with respect to the uniform input distribution X = U(X), under the
assumption that SIVPγ is (quantum) hard to approximate, in the worst case, on k-dimensional lattices to
within a factor γ = Õ(

√
k · q).

A few notable instantiations are as follows. To obtain pseudorandomness for binary errors, we need s = 2
and X = {0, 1}m. For this value of s, the condition s ≥ (Cm)`/(n−k) can be equivalently be rewritten as

m ≤ (n− k) ·
(

1 +
1

log2(Cm)

)
,

which can be satisfied by taking k = n/(C ′ log2 n) and m = n(1 + 1/(c log2 n)) for any desired c > 1 and a
sufficiently large constant C ′ > 1/(1− 1/c). For these values, the modulus should satisfy q ≥ 8m/(m−n) =
8n3c = kO(1), and can be set to any sufficiently large prime p = kO(1).1

Notice that for binary errors, both the worst-case lattice dimension k and the number m− n of “extra”
LWE samples (i.e., the number of samples beyond the LWE dimension n) are both sublinear in the LWE
dimension n: we have k = Θ(n/ log n) and m − n = O(n/ log n). This corresponds to both a stronger
worst-case security assumption, and a less useful LWE problem. By using larger errors, say, bounded by
s = nε for some constant ε > 0, it is possible to make both the worst-case lattice dimension k and number
of extra samples m− n into (small) linear functions of the LWE dimension n, which may be sufficient for
some cryptographic applications of LWE. Specifically, for any constant ε < 1, one may set k = (ε/3)n and
m = (1 + ε/3)n, which are easily verified to satisfy all the hypotheses of Theorem 4.6 when q = kO(1)

is sufficiently large. These parameters correspond to (ε/3)n = Ω(n) extra samples (beyond the LWE
dimension n), and to the worst-case hardness of lattice problems in dimension (ε/3)n = Ω(n). Notice that
for ε < 1/2, this version of LWE has much smaller errors than allowed by previous LWE hardness proofs,
and it would be subject to subexponential-time attacks [2] if the number of samples were not restricted. Our
result shows that if the number of samples is limited to (1 + ε/3)n, then LWE maintains its provable security
properties and conjectured exponential-time hardness in the dimension n.

One last instantiation allows for a linear number of samples m = c · n for any desired constant c ≥ 1,
which is enough for most applications of LWE in lattice cryptography. In this case we can choose (say)

1Here we have not tried to optimize the value of q, and smaller values of the modulus are certainly possible: a close inspection of
the proof of Theorem 4.6 reveals that for binary errors, the condition q ≥ 8n3c can be replaced by q ≥ nc′ for any constant c′ > c.
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k = n/2, and it suffices to set the other parameters so that

s ≥ (Cm)2c−1 and q ≥ (4s)c/(c−1) ≥ 4c/(c−1) · (Ccn)2c+1+1/(c−1) = kO(1).

(We can also obtain better lower bounds on s and q by letting k be a smaller constant fraction of n.) This
proves the hardness of LWE with uniform noise of polynomial magnitude s = nO(1), and any linear number
of samples m = O(n). Note that for m = cn, any instantiation of the parameters requires the magnitude s
of the errors to be at least nc−1. For c > 3/2, this is more noise than is typically used in the standard LWE
problem, which allows errors of magnitude as small as O(

√
n), but requires them to be independent and

follow a Gaussian-like distribution. The novelty in this last instantiation of Theorem 4.6 is that it allows for a
much wider class of error distributions, including the uniform distribution, and distributions where different
components of the error vector are correlated.

Proof of Theorem 4.6. We prove the one-wayness of SIS(m,m − n, q) (equivalently, LWE(m,n, q) via
Proposition 2.9) using the second part of Theorem 4.5 with σ = 3

√
k. Using ` ≥ k and the primality of q,

the conditions on the size of X in Theorem 4.5 can be replaced by simpler bounds

(3C ′ms)`

ε
≤ |X| ≤ ε · qm−n,

or equivalently, the requirement that the quantities (3C ′ms)`/|X| and |X|/qm−n are negligible in k. For the
first quantity, letting C = 4C ′ and using |X| ≥ sm and s ≥ (4C ′m)`/(n−k), we get that (3C ′ms)`/|X| ≤
(3/4)−` ≤ (3/4)−k is exponentially small (in k). For the second quantity, using |X| ≤ (2s + 1)m and
q ≥ (4s)m/(m−n), we get that |X|/qm−n ≤ (3/4)m is also exponentially small.

Theorem 4.5 also requires the pseudorandomness of SIS(`,m−n, q) with respect to the discrete Gaussian
input distribution Y = D`

Z,σ, which can be based on the (quantum) worst-case hardness of SIVP on k-
dimensional lattices using Corollary 2.14. (Notice the use of different parameters: SIS(m,m − n, q) in
Corollary 2.14, and SIS(m − n + k,m − n, q) here.) After properly renaming the variables, and using
σ = 3

√
k, the hypotheses of Corollary 2.14 become ω(log k) ≤ m− n ≤ kO(1), 3

√
k < q < kO(1), which

are all satisfied by the hypotheses of the Theorem. The corresponding assumption is the worst-case hardness
of SIVPγ on k-dimensional lattices, for γ = kωkq/σ =

√
kωkq/3 = Õ(

√
kq), as claimed. This concludes

the proof of the one-wayness of LWE.
The pseudorandomness of LWE follows from the sample-preserving search-to-decision reduction of

[17].
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Accelerating Computations on Encrypted Data with an FPGA1

By David Bruce Cousins and Kurt Rohloff, Raytheon BBN Technologies

Healthcare, financial, government, and military organizations depend on encryption to secure sensitive data. Historically, this data has
had to be decrypted before it could be processed or analyzed. As a result, data processing had to be performed on secured hardware,
eliminating the possibility of using the cloud or other low-cost, third-party computing resources.

At the Symposium on the Theory of Computing in 2009, Craig Gentry of IBM presented a fully homomorphic encryption (FHE) scheme
that made it possible to send sensitive data to an unsecured server, process it there, and receive an encrypted result, without ever
decrypting the original data. While FHE was a major theoretical breakthrough, actual FHE implementations are many orders of
magnitude too slow to be of practical use, particularly for large encryption keys and ciphertexts.

As a step toward a practical FHE implementation, we have developed a somewhat homomorphic encryption (SHE) scheme that, with
modifications, can be converted into an FHE scheme. Current FHE implementations depend on complicated operations that are
inefficient when performed on a CPU, and our goal was to take advantage of the parallelism and pipelining of FPGAs using MATLAB®,
Simulink®, and HDL Coder™. Homomorphic encryption is an active area of study, and new advances are being made regularly. By using
MATLAB and Simulink instead of a lower-level programming language, we can keep pace with these developments by rapidly
implementing improvements to the algorithms.

Homomorphic Encryption Basics

FHE enables secure and private computation using encrypted data. In theory, computations can be carried out using just two
FHE operations: EvalAdd and EvalMult. These operations are similar to binary XNOR and AND operations, but they operate on
encrypted bits, and their result remains encrypted. Current FHE schemes are based on computationally intensive stochastic
lattice theory problems. Stochastics introduce noise into each EvalAdd or EvalMult operation. The amount of noise increases
rapidly with the number of operations performed. FHE schemes address this buildup of noise by periodically running a
bootstrapping algorithm on the intermediate results. One problem with this approach is that the bootstrapping algorithm is
computationally expensive. A second is that current FHE schemes entail modular arithmetic with a large modulus. The
operations required are memory-intensive and inefficient when performed on standard CPUs.

SHE schemes avoid the need for bootstrapping by limiting the number of EvalAdd and EvalMult operations that must be
performed to keep noise below an acceptable threshold. SHE schemes can be augmented with bootstrapping operations to
produce FHE schemes, provided that the additional number of operations for bootstrapping itself keeps the noise below this
threshold.

1 Sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under
Contract No. FA8750-11-C-0098. The views expressed are those of the authors and do not necessarily reflect the official policy or
position of the Department of Defense or the U.S. Government. Distribution Statement "A" (Approved for Public Release, Distribution
Unlimited.)
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Implementing Modulo Add and Multiply in MATLAB and Simulink

FHE schemes are based on EvalAdd and EvalMult, elementwise vector addition and multiplication operations performed in modulo q
arithmetic where q is a large prime integer. In MATLAB, EvalAdd is expressed simply as

c = mod(a+b, q)

and EvalMult is expressed as

c = mod(a.*b, q)

These straightforward representations make it easy to perform calculations on a CPU, but to exploit the parallelism of FPGAs we needed
to develop efficient software implementations of EvalAdd and EvalMult in VHDL®. We began by prototyping algorithms in
MATLAB—for example, the EvalAdd operation with inputs bounded by the modulus q:

c=a+b;

cgteq = (c>=q);

c(cgteq)=c(cgteq)-q;

Our initial MATLAB representation served as a reference for the Simulink model, which would be used for hardware implementation
and HDL code generation (Figure 1). With the initial MATLAB representation, we were able to explore several theoretical approaches
because MATLAB handled large complicated vector and matrix operations quickly and naturally. Additionally, we were able to use
Fixed-Point Designer™ to generate bit-accurate fixed-point solutions, including modeling rollover in our adders, with only minor
modifications to our systems.

Figure 1. Simulink model of the modulo add operation.

Once we had converged on a sound approach, a detailed Simulink model was created for HDL implementation. With Simulink, we were
able to lay out the logical components in the design and automatically generate optimized HDL code. We were also able to add
capabilities, including supporting multiple moduli and optimizing our models to use table lookups, in a controlled, incremental way.

The model can process one pair of inputs on each clock cycle.

To verify the model, we compared the results it produced with the results from our MATLAB code.

Modulo multiplication is much more complicated than modulo addition. To manage this complexity and enable more efficient
pipelining in the generated HDL, we have developed a multiple-word modulo multiply operation based on the Barrett reduction
algorithm. Figure 2 shows the structure of a pipelined, four-stage multiple-word multiplier, where each stage operates on a subword of
the large overall word.

2
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Figure 2. Simulink model of the 64-bit Barrett modulo multiply operation, showing four stages.

Figure 3 shows the detailed model of a single stage, also pipelined for efficient HDL generation. Here again, the flexibility of Simulink
enables us to specify the actual word widths at run time. The same models are used for generating 48-bit as well as 64-bit arithmetic
HDL.

Figure 3. Simulink model of a single stage of the Barrett modulo multiply operation.

Implementing the Chinese Remainder Transform

Our SHE scheme uses the Chinese remainder transform (CRT) to simplify the structure of our add and multiply operations. CRT
resembles the discrete Fourier transform (DFT), but uses modular integer arithmetic instead of complex arithmetic. We implemented the
CRT as an EvalMult operation followed by a fast numeric transform (like a fast Fourier transform [FFT] but with modulo arithmetic).

To create the Simulink model for the FFT shown in Figure 3, we started with a standard streaming FFT, reordered the inputs, and
converted from complex arithmetic to modulo arithmetic using integer fixed-point arithmetic (Figures 4a, 4b, and 4c).

Figure 4a. Streaming fast numeric transform modeled in Simulink.

3
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Figure 4b. Detail of a single stage of the fast numeric transform showing the butterfly and shuffle models.

Figure 4c. Detail of the modulo Butterfly operation of the fast numeric transform.

We were able to develop a streaming model that consisted of two basic blocks that are parameterized at run time. By cascading log2(N)
blocks together we can assemble FFTs of various power-of-2 sizes. This approach allows us to process two input samples every clock
cycle. We have implemented and benchmarked up to a 2^14 size CRT on a Xilinx® Virtex®-7 in this manner.

Moving from Floating Point to Fixed Point and from Model to VHDL

When we started prototyping in MATLAB we used floating-point math, which provided a quick, easy way to understand the
computations that we needed to support. We then used Fixed-Point Designer to transition from floating-point to fixed-point arithmetic
with varying integer bit-widths.

Our MATLAB code and Simulink models use the same fixed-point variables and produce output in the same format, simplifying
verification of test results. When running simulations, we can specify the bit-width of the input data. The intermediate mathematical
operations are automatically sized by Fixed-Point Designer, enabling us to use same models for inputs of varying bit-widths.

The transition to fixed-point math is a required step for VHDL implementation. We generated the required VHDL from our Simulink
models using HDL Coder. We simulated the VHDL using Mentor Graphics® ModelSim®, and synthesized the code on a Xilinx Virtex
FPGA. The generated VHDL can be used on FPGAs from different vendors, enabling us to benchmark across multiple platforms. We
also use HDL Verifier™ to validate and demonstrate the generated VHDL running on a Xilinx ML 605 evaluation board.

Accelerating Development

The combination of MATLAB, Simulink, Fixed-Point Designer, HDL Coder, and HDL Verifier enables us to develop, implement, and
improve our encryption scheme much faster than would be possible with traditional methods. Speed is essential to our efforts because
FHE theory is evolving so rapidly. Several times a year, innovations come to light that require a rewrite of our code and subsequent
changes to our model. We estimate that development would take two to three times longer if we were working in C, Python, or another

4
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low-level language. Without Simulink and HDL Coder, production of VHDL code would be similarly slowed because our team does not
have experience writing VHDL from scratch.

As we continue to increase the capabilities of our SHE scheme and improve its performance, rapid prototyping in MATLAB and
Simulink and automatic VHDL code generation with HDL Coder remain central to our development efforts.
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Abstract— One of the goals of the DARPA PROCEED pro-

gram has been accelerating the development of a practical Fully 

Homomorphic Encryption (FHE) scheme. For the past three 

years, this program has succeeded in accelerating various aspects 

of the FHE concept toward practical implementation and use. 

FHE is a game-changing technology to enable secure, general 

computation on encrypted data on untrusted off-site hardware, 

without the data ever being decrypted for processing. FHE 

schemes developed under PROCEED have achieved multiple 

orders of magnitude improvement in computation, but further 

means of acceleration, such as implementations on specialized 

hardware, such as an FPGA can improve the speed of computa-

tion even further.  

The current interest in FHE computation resulted from 

breakthroughs demonstrating the existence of FHE schemes [1, 

2] that allowed arbitrary computation on encrypted data. Specif-

ically, our contribution to the Proceed program has been the 

development of FPGA based hardware primitives to accelerate 

the computation on encrypted data using an FHE cryptosystem 

based on NTRU-like lattice techniques [3] with additional with 

additional support for efficient key switching and modulus re-

duction operations to reduce the frequency of bootstrapping op-

erations [4].  Cipher texts in our scheme are represented as rec-

tangular matrices of 64-bit integers. This bounding of the oper-

and sizes has allowed us to take advantage of modern code gen-

eration tools developed by Mathworks to implement VHDL code 

for FPGA circuits directly from Simulink models.  Furthermore 

the implicit parallelism of the scheme allows for large amounts of 

pipelining in the implementation in order to achieve efficient 

throughput. The resulting VHDL is integrated into an AXI4 bus 

“Soft System on Chip” using Xilinx platform studio and a Mi-

croblaze soft core processor running on aVirtex7 VC707 evalua-

tion board. This report presents new Simulink primitives that 

had to be developed to deal with these new requirements. 

Keywords—Fully Homomorphic Encryption; Co-processor; 

SIMULINK; FPGA 

I. INTRODUCTION - A QUICK REVIEW OF FULLY- AND 

SOMEWHAT- HOMOMORPHIC ENCRYPTION 

Our team recently published our work to design, implement 
and evaluate a scalable FHE scheme which addresses the 
limitations for secure arbitrary computation [4]. Our 
implementation uses a variation of a not previously 
implemented bootstrapping scheme [5] simplified for power-
of-2 rings. We also use a “double-Chinese Remainder 

Transform (CRT)” representation of cipher texts which is 
discussed in [6]. With this double-CRT representation, we can 
select parameters so that cipher texts are secure when 
represented as matrices of 64 bit integers, but still support the 
secure execution of programs on commodity computing 
devices without expending unnecessary computational 
overhead manipulating large multi-hundred-bit or even multi-
thousand-bit integers. Additionally, the parallelism implicit in 
this data representation is easily exploited to achieve 
efficiencies during implementation. 

Our implementation encrypts a plaintext bit into a two di-
mension array of 64 bit unsigned integers1. We use a residue 
number system implementation to represent cipher texts as T 
sets of length-N integer vectors. A ring in the tower entry t has 
a unique modulus qt which bounds all entries in that ring. The n 
dimension is known as the ring size, and the t dimension as the 
tower size.  This representation allows us to operate in parallel 
on the smaller bit width modulo qt values instead of on a single 

modulus q of much larger bit width, where q = q1 ∗ q2∗∗ qT 
for pairwise co-prime moduli qi.. 

As outlined in [4], our implementation requires only a few 
elementary operations to be implemented on the FPGA hard-
ware in order to achieve large run time speedups over conven-
tional CPU implementations.  These operations are: 

• RingAdd: cn,t = (an,t + bn,t) % qt

• RingSub: cn,t = (an,t  bn,t) % qt

• RingMul: cn,t = (an,t * bn,t) % qt

All three of the above operations can be parallelized or 
pipelined over both n and t .  Also required are the  

• CRT and Inverse CRT, which are implemented as a
Number Theoretic Transform [7] coupled with a pre- or post- 
RingMul with an appropriate Twiddle Vector.  

• Round: A function to perform modulo rounding using
different tower moduli (detailed below). 

In our cryptosystem, two key operations are defined: 
EvalAdd and EvalMult. When our parameters are chosen such 
that a single plaintext bit is encrypted, the resulting operations 
on the encrypted data are XOR and AND respectively. These 

1
While the actual number of bits is determined by the parameter selection of 

the cryptosystem, we select 64 as our maximum dimension for FPGA imple-

mentation. 
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two operations allow us to implement any Boolean operation of 
input cipher text 2.   

Our crypto-system, like many FHE systems, is random 
(noisy) in nature. Because of this, only a limited number of 
operations can be performed on the encrypted data before the 
noise dominates and decryption is no longer guaranteed. 
EvalAdd does not add noise to the system, so an unlimited 
number of such operations are allowed to be chained together. 
EvalMult however does add noise, and this limits the number 
of such operations that can be chained together.  The double 
CRT representation allows a very straightforward 
implementation that controls this noise. This requires the use of 
both key switching and modulus reduction whenever an 
EvalMult is performed. The combination of these three steps is 
known as a Composed EvalMult (CEM). The property of CEM 
is that for a pair of inputs of a given tower size t, the output is a 
cipher text of tower size t-1. Thus for an initial tower size of T, 
at most (T-1) CEM operations can be performed before the 
noise in the cypher-text grows beyond the point where it can be 
reliably decrypted.  An implementation that has a limit to the 
allowable number of Homomorphic operations is called 
Somewhat Homomorphic.  

The dimensions of the cryptosystem are determined 
algorithmically, and are a function of security required and the 
number of CEM operations required to implement the desired 
application. If the number of operations required by the 
application exceeds O(16), then a Bootstrapping operation will 
be required to reset the noise generated by the cryptographic 
operations.  Bootstrapping is currently on the order of 10  CEM 
equivalent operations for reasonable security parameters. 
Bootstrapping has the property of taking a cipher text of tower 
size t, and generating a new ‘refreshed’ cipher text of the 
system’s original tower size T.  Thus an unlimited number of 
operations can be performed on the data. This kind of 
implementation is called Fully Homomorphic. The remainder 
of our paper will discuss the current FPGA implementation of 
the functions required for Somewhat Homomorphic operation. 
Our planned implementation of the functions needed for Fully 
Homomorphic operation will be implemented in our final 
phase of the program this year. 

II. VHDL IMPLEMENTATIONS OF FAST MODULUS ARITHMETIC 

AND CHINESE REMAINDER TRANSFORMS (CRT) USING 

SIMULINK-BASED MODELS 

A. Optimisations and Refinements To Previous 

Implementations 

We have previously reported on our Simulink-based 
implementations of the three modulus arithmetic functions, as 
well as the forward and inverse CRT functions[8, 9]. Our 
current work has updated these implementations to allow 
VHDL code generation with a doubling of circuit clock speeds 
to 200 MHz. This was done by performing the following 
optimizations. 

2Any arbitrary Boolean function can be constructed from NAND operations. 

Since NOT(a) == XOR(a, 1), and NAND(a, b) == NOT(AND(a, b)), the two 

Homomorphic operations are a sufficient set.  

Mathworks determined that by selecting synchronous vs. 
asynchronous reset in the Simulink to HDL generation 
parameters, the resulting VHDL mapped more efficiently into 
the registers built into the DSP48E blocks on the Vertex 7 
FPGA, increasing the efficiency of the resulting mapped 
VHDL by eliminating extra routing traces. 

The previous circuits were designed to run at a minimum 
speed of 100 MHz. We determined that adding explicit 
pipelining stages in the form of delay lines to the model 
enabled the Xilinx tools to better optimize FPGA mapping 
during place and route pipelining stages. Specifically pipelines 
were added between arithmetic operations within the RingAdd 
(4 stages), RingSub (3 stages), RingMul (188 stages) models. 
Since our target ring size can be as large as 214, and all the 
towers of a variable are processed sequentially, the delay 
incurred from filling the pipeline is expected to be minimal.   

Once the models were maximally pipelined, we identified 
several large (64 by 64 bit) product blocks within our RingMul 
Barret multiplication implementation [9, 10] as being the 
slowest components, and re-implemented them as an expanded 
multiplication model consisting of four parallel 32 by 32 bit 
products, and a pipelined accumulation of partial sums. This 
further increased the achievable clock speeds.  We discovered 
that adding additional pipelines of length four, both before and 
after each resulting smaller product block further allowed the 
Xilinx optimizer to break these product blocks into multiple 
DSP48E multipliers in a distributed fashion. This allowed the 
RingMul circuit to perform at speeds in excess of 350 MHz, 
well in excess of our target 200 MHz. 

Several of our circuits utilize lookup tables, both for storing 
the moduli qi and for storing various twiddle table entries for 
the CRT and inverse CRT. Our previous direct implementation 
of the table lookup using the Simulink Lookup function block 
maps the resulting ROM directly into gate circuitry. This can 
increase the place and route drastically for very large tables, 
and also can result in less efficient circuits. Mathworks 
determined that by placing an additional delay line, with a 
“ResetType = none” HDL block property let the Xilinx 

tools map the table to block ram in the FPGA, which is a more 
efficient utilization of resources on the chip. 

B. FPGA Hardware Selection 

Our FPGA selection was driven by the need for a large 
number of hardware multipliers on the chip. Due to cost 
constraints we wanted to use a commercial off-the-shelf FPGA 
board for our experiments. Our selection of the Virtex 7 
VC707 evaluation board was driven by the following sizing 
requirements.  Our target ring size of 214 requires 1110 DSP48 
blocks for the CRT and the same number for the inverse CRT. 
The VC707 has a Virtex 7 485T chip which contains 2800 
such blocks, more than sufficient to implement our projected 
set of FHE primitives.  Additionally, we require on-board DDR 
memory for storage of encrypted variables, and high speed 
Ethernet and PCI interfaces to exchange data with the host 
computer. All these are present on the VC707. 
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C. FPGA System Architecture 

The design goal of our FPGA system was to be able to 
operate as an attached processor to accelerate the FHE 
primitive operations in way that allows one to chain together 
several operations in order to minimize the overhead due to 
data transfer. An attached processor design was developed in 
which a software programmable microcontroller would 
manage I/O communications with the host via Ethernet or PCI 
memory map, manage on board data storage in the form of an 
encrypted register file, and manage data transfer to and from 
the FHE primitive modules in as efficient manner as possible.  

We decided to use the Xilinx Platform Studio Microblaze 
soft core processor and AXI4 interconnect architecture to 
implement the attached FHE processor. Fig. 1 shows a system 
block diagram of the resulting system. The Xilinx platform 
studio enables us to implement our FHE primitives as 
streaming co-processors on the AXI bus. An AXI4 lite bus is 
used to set control parameters of our Ring operation circuits, 
such as ring size, and tower size.  

The main AXI4 interconnect is a 256 bit bus connecting the 
DDR ram with the various FHE primitives. The I/O rate into 
and out of DDR memory limits the overall processing speed of 
the system. Our RingAdd, RingSub and RingMul primitives 
each require two input streams and one output streams. Fig. 2 
shows how we currently integrate our FHE primitives with the 
AXI4 stream interconnect. Each of these three operations is 
parallelized across ring elements as well as tower indices. 
These data streams are implemented using a pair of AXI4 
DMA controllers, each handling one input and one output. 
Data is clocked in and out of the bus at 400 MHz, and streamed 
via individual AXIS buses between the DMAs to the AXI 
stream blocks where they are buffered with FIFOs and split 
into eight parallel 64 bit input data streams, and four 64 bit 
output data streams. Current implementations of these three 
functions are clocked at 100 MHz, so four parallel 
instantiations of each operation are used to keep the I/O 
pipelines full. Future implementations of these primitives are 
planned to be clocked at 200 MHz, and as such will only sup-
port two instantiations in parallel.  

 

 

The forward and inverse CRT modules require slightly 
different interfaces. CRT operations are parallelizable across 
tower entry but not across ring index. Thus CRT’s cannot be 
parallelized in the same way as the Ring operations. Currently 
we have a single CRT or inverse CRT at a time operating at 
100 MHz. Future implementations will run these two 
operations at 200 MHz, but the multiplier resources required 
for the planned ring size of 214 will prohibit mapping more than 
one forward and one inverse CRT onto the 485T chip. 

D. Microblaze Software Architecture 

The Xilinx platform studio is used to implement a Micro-
blaze soft core processor. The system architecture is based on 
the demo hardware self-test example that is provided with the 
Xilinx board. The software architecture is based on the web-
service example provided with the Xilinx Virtex 6 ML605 
evaluation kit, updated with the Xilinx SGMII 144 Ethernet 
controller. The software controlling the system on the Micro-
blaze is written in C code. The PC “host” end of the software 
interface is also written in C. The host interface currently is 
implemented in two versions. The first is a stand-alone test 
bench that can test and exercise the operation of the attached 
FHE processor. The second version interfaces with Matlab via 
a file interchange mechanism to support demonstration Ho-
momorphic Encryption application programs. The interfaces 
use either Ethernet or PCI bus I/O based on compile flags. 

The system software is multithreaded to allow the use of 
Ethernet TCP/IP socket I/O. A network thread manages socket 
level I/O between the host and the attached processor. Another 
thread reads the incoming messages from the socket, parses the 
commands received and dispatches execution to various sub-
routines. The PCI interface is written to emulate the buffer I/O 
of the Ethernet interface, allowing the same software to be used 
for both Ethernet and PCI operation. 

The DDR3 ram is partitioned into a set of register data 
structures, as well as a set of internal registers to store con-
stants used in our encryption schemes. Each register can hold 
one encrypted bit in the form of a two dimensional vector of 
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Figure 2: Integration of FHE primitives with the AXI 

stream data streams. 
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Figure 1: System block diagram showing major com-

ponents and the AXI4 interconnect. 
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unsigned long longs that are allocated out of DDR ram. One 
dimension (the fastest index) is the ring size N and is a 
compiled constant. The other dimension, the tower size, varies 
with the state of the register.  Typically registers are loaded 
into the FHE coprocessor with a fixed starting number of the 
tower elements (up to MAX_TOWER_SIZE = 32 elements). 
We eliminate the highest tower entries one by one as each 
CEM operation is performed.  

The registers are allocated out of heap in the DDR ram. 
There are three flavors of registers: Input, Output and Scratch. 
This design decision was made in order to allow us to later 
segregate I/O and scratch registers into different memory 
locations if that were to increase throughput (allowing simulta-
neous host access to the I/O registers while the FGPA was pro-
cessing with the Scratch registers. The quantity of each register 
type is software defined at compile time but there is usually a 
small numbers of Input and Output registers and as many 
Scratch registers as will utilize all the available heap space. 
Control structures mark the current tower size of each register, 
and if the register is used or not. Registers are allocated so they 
are aligned to 32 byte address boundaries in order to allow the 
AXI4 DMA engines to move the register data into and out of 
the FHE primitives. This format allows the contents of an 
entire register (all used towers) to be streamed with only one 
DMA transfer. 

The communication protocol between the PC host and the 
FPGA board is message based. The messages are in ASCII. 
Messages can span multiple socket buffers; with multiple 
socket calls made until enough text has been parsed to 
complete a message (double cr/lf indicates the end of a 
message). Each message can contain several instructions to the 
processor, separated by cr/lf).  Each processor instruction is 
then parsed. The parsing test starts with a keyword that defines 
the rest of the instruction format. The keywords are shown in 
Table 1.  The system’s assembly language has the syntax 
shown in Table 2.  

TABLE I. CONTROL PROTOCOL KEYWORDS 

Key 
word 

Function 

LOAD Transfer the contents of the message (ASCII) into a 
particular Input register.  

GET Request the contents of a particular output register to be 
loaded into an ASCII message buffer and sent back to the host. 

STATUS Generates a short report on the FPGA board console for 
debugging showing the contents of all used registers, a listing 
of the current program loaded. 

PROG Loads a sequence of operations to be performed on the 
register data, in a simple assembly language. 

RUN Starts a software Finite State Machine to run the stored 
program to completion. 

CRT, 

ICRT, 

CEM 

A single command that will LOAD two registers, perform 
a forward CRT, inverse CRT or Composed EvalMult on them 
and GET the resulting output. Used for accelerating 
applications that only require these three operations. 

RESET Resets the system to its original state. 

TABLE II.  AVALIABLE OPCODES FOR HOMOMORPHIC ENCRYPTED 

PROGRAMS 

Opcode Example Description 

LOAD R1 = LOAD(In0) Moves data from an input register 
to scratch register, all active tower 
elements are moved. 

STORE Out4 = STORE(R3) Moves data from a scratch register 
to output register, all active tower 
elements are moved. 

RADD R2 = RADD(R3, R4) Sets up DMAs of the two input and 
one output registers to the RingAdd 
circuit. All active tower elements are 
processed I one large data flow. 

RSUB R2 = RSUB(R3, R4) Same as RingAdd, except the 
RingSub circuit is the target/source of 
the I/O DMAs. 

RMUL R2 = RMUL(R3, R4) Same as RingAdd, except the 
RingMul circuit is the target/source of 
the I/O DMAs. 

CRT R3= CRT(R1, R2) Same as RingAdd, except the input 
and output registers are used as 
endpoints for pairs of DMA transfers, 
each moving one half of the ring data.  
Note second input register is used as a 
scratch register so is contents are 
destroyed. 

ICRT R2 = ICRT(R4, R5) Same as CRT except an inverse 
CRT circuit is used. 

EMULC R2 = EMULC(R3, R4) Executes a ComposedEvalMult, in 
software which in turns executes several 
Ring primitives (see below). Note that 
output register is one tower smaller than 
the input registers. 

An example simple program in now given in Table 3. The 
program first moves encrypted data from input register 0, to 
scratch register 0, then repeats the process for a second input 
variable to register 1. It then computes a RingAdd, RingSub 
and RingMul using the two inputs, and storing the result in 
scratch registers 2, 3 and 4 respectively. It then stores those 
three results in output registers 0, 1 and 2 respectively.  

Typical system operation would be for the user to execute 
two LOAD commands to load the contents of input registers 0 
and 1 with encrypted data (the encryption being done on the 
secure host). The user then executes a RUN command to allow 
the Homomorphic operations to be run on the unsecure FPGA 
processor. Then subsequent calls to GET commands will 

TABLE III. SAMPLE PROGRAM 

R0 = LOAD(In0) 

R1 = LOAD(In1) 

R2 = RADD(R0,R1) 

R3 = RSUB(R0,R1) 

R4 = RMUL(R0,R1) 

Out0 = STORE(R2) 

Out1 = STORE(R3) 

Out2 = STORE(R4) 

Approved for Public Release; Distribution Unlimited.
357



transfer the resulting encrypted result data back to the host. 
Finally decryption would be done on the secure host. 

E. Microcode Implementation of ComposedEvalMult 

As mentioned above, one of the new functions 
implemented in our system is the ComposedEvalMult (CEM) 
which is fully detailed in [4]. This function is implemented in 
our software controller as a series of C function calls, all but 
one of which are executed with previously existing primitives. 
First, a RingMul operation performs the multiply. Next a key-
switch operation is performed consisting of another RingMul 
of the product with a hint variable defined by the cryptosystem. 
Then, a modulus reduction operation is performed on the single 
highest tower entry of the result which consists of an inverse 
CRT and a new Rounding operation.  

This Rounding operation is implemented as a new 
hardware function because it contains operations not available 
in the other ring functions. Fig. 3 shows the Simulink Model 
consisting of a modified EvalMult operation (using a modified 
set of moduli qi), and a pair of operations selected by the range 
of the result which ensure the output is bounded within an 
appropriate range. The operations are performed in a pipelined 
manner as well, to allow execution at 200 MHz.   

The result of the rounding operation is a pair of new ring 
vectors that are then in turn applied to each remaining tower 
entry to reduce the noise accumulated by the initial product. 
These vectors are first processed with a series of RingAdds, 
RingSubs and a CRT using each of the corresponding ring 
moduli. The end result is that the highest tower ring is 
eliminated from the cipher text, and the overall noise of the 
system remains at a usable (i.e. de-cryptable) level. 

III. CURRENT RESULTS AND NEXT STEPS 

Our presentation will include I/O timing, run-time and chip 
utilization details of our attached processor performing the 
suite of ring primitives on various ring sizes, based on the 
implementation in our Virtex 7 VC707 evaluation board.  

Future plans for our FPGA system include adding all Ring 
primitives that will be required to accelerate the Bootstrapping 
operation described in [4]. The CRT and inverse CRT 
operations will be modified to allow the Number Theoretic 
Transform (NTT) portion [7] to be combined into one circuit, 
saving a large amount of FPGA multiplier resources. 
Additionally, multiple ring sizes will be supported by  
modifications to the NTT to support multiple power-of-two 
ring sizes. This will allow us to support the Ring Reduction 
operation in [4] for increased computational efficiency. Note 
that all of the other primitives can at arbitrary ring sizes. The 
final target ring size is 214, which will support relatively secure 
computation. 
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TRENDS IN CRYPTOGRAPHY
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Kurt Rohlo�  | New Jersey Institute of Technology

Two new cryptographic methods—linear secret sharing (LSS) and fully homomorphic encryption 
(FHE)—allow computing on sensitive data without decrypting it. LSS and FHE di� er in speed, ease of use, 
computational primitives, and cost.

U sers o� en don’t trust computing environments
such as shared clouds to perform computation on 

sensitive data. Only recently has it become possible to 
address this trust concern with general-purpose compu-
tation on encrypted data. In this article, we discuss two 
forms of such computation: linear secret sharing (LSS)1

and fully homomorphic encryption (FHE).2
In LSS, a user or group of users, each with pri-

vate data, encrypts the data and sends it to a group of 
untrusted servers. � ese servers share the computation 
without decrypting the data and return still-encrypted 
results. In FHE, a user encrypts data and sends it to a 
single untrusted server, which computes an encrypted 
answer and returns it to the user. 

Computation time for both approaches is many 
orders of magnitude slower than computation “in the 
clear.” In addition, LSS requires multiple servers to per-
form computation and signi� cant communication band-
width among them. FHE typically imposes signi� cant 
expansion in ciphertext size relative to plaintext, which 
a� ects both memory utilization and network bandwidth. 

We created prototypes including LSS- and homomor-
phic encryption (HE)–based variations of voice-over-IP 
(VoIP) teleconferencing systems using Amazon Elastic 

Cloud nodes to mix encrypted voice streams from iPhone 
handsets, an LSS-based email guard using regular expres-
sion search to determine which messages to transmit, and 
an FHE-based email guard using string comparison to � l-
ter email. 

Protocols, Adversary Models, 
and Security Guarantees
Here, we describe our secure computation systems 
as well as applicable adversary models and security 
guarantees.

Linear Secret Sharing
In LSS, multiple proxies collaboratively compute a 
function on behalf of one or more clients.1 Each client 
distributes to each proxy a share of its secret input. Each 
share is essentially random—a � xed linear function of 
the secret input and random values selected by the cli-
ent. � us, no proxies learn anything about the input. 
LSS works because its systems exhibit homomorphisms 
to mathematical structures of interest such as the inte-
gers, allowing parties holding shares to compute func-
tions of secrets by arithmetically manipulating only 
their shares of those secrets.

Computing with Data Privacy:
Steps toward Realization 
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As a simple example, suppose clients Alice and Bob 
agree to add secret inputs X and Y that they respectively 
hold. Assume X and Y are in [0 … 2n - 1] for natural 
number n. Alice computes three shares of X by choosing 
random X1 and X2 from [0 … 2n - 1], and then choos-
ing X3 such that X = (X1 + X2 + X3) mod 2n. Alice then 
distributes these three shares to the proxies over secure 
channels, such that each proxy holds one distinct share. 
Bob does the same for Y. The proxies add their shares, 
resulting in each proxy holding one of X1 + Y1, X2 + Y2, 
or X3 + Y3. Note that none of these result shares reveal 
anything about X + Y to the proxies that hold them. The 
proxies send these result shares to Alice or Bob over 
secure channels. Bob or Alice then adds them together 
to obtain X + Y.

While communication from clients to proxies in typ-
ical LSS systems is direct, we found that having mobile 
clients distribute shares directly to each proxy resulted 
in substantial loading of client Wi-Fi channels. To 
address such Wi-Fi overload, we extended our applica-
tions’ communication model to introduce an untrusted 
coordination server. Clients cryptographically combine 
all three shares they compute into a single metashare 
that’s sent to the coordination server. This server, which 
we locate in a richer bandwidth environment along with 
the proxies, distributes the metashare to all three prox-
ies, which compute their own shares from the metashare 
and preshared key material.

The core of our LSS system, ShareMonad, consists of 
a Haskell-embedded (www.haskell.org) domain- specific 
language (DSL) for expressing LSS computation, a 

compiler to transform ShareMonad code into abstract 
syntax trees suitable for interpretation, and a three-proxy 
LSS interpreter. Each proxy in a ShareMonad application 
runs this interpreter. Clients and coordination servers 
run application code that interoperates with the proxy 
code. Thus, each of our LSS applications consists of a 
composition of code running on clients, coordination 
server code, and ShareMonad code running on proxies.

Our LSS DSL provides operations including addi-
tion, subtraction, multiplication, unsigned division, com-
parisons, bitwise shift right, conversion between [0 … 
2n - 1] and bit vector representations, table lookups, and 
operations on bit vectors. ShareMonad protocols cur-
rently assume an honest but curious adversary: proxies 
are assumed to compute and communicate as agreed but 
might observe attached channels and local computations. 

As Figure 1 shows, our LSS protocols typically pro-
ceed in several steps: 

1. Each client encrypts its input with three cipher
streams, producing a metashare.

2. Each client transmits its metashare to the coordi-
nation server (not shown) over a secure channel,
which in turn distributes these metashares to the
three proxies.

3. Each proxy computes its share from each metashare 
by decrypting the metashare using one cipher stream 
(that it and the client providing the metashare both 
know), and then performs the desired computa-
tion, communicating with other proxies as needed
over secure channels.

Figure 1. Our linear secret sharing (LSS) protocol. Each client encrypts its input with three cipher streams, producing a 
metashare (step 1). Each client transmits its metashare to the coordination server (not shown) over a secure channel, 
which in turn distributes these metashares to the three proxies (step 2). Each proxy computes its share from each 
metashare by decrypting the metashare using one cipher stream (that it and the client providing the metashare both 
know), and then performs the desired computation, communicating with other proxies as needed over secure channels 
(step 3). Each proxy encrypts its result share using a distinct cipher stream it shares with the client, and then sends it to the 
coordination server, which computes the XOR of all result shares into a result metashare and forwards this to clients (step 
4). Each client decrypts the metashare to obtain the computation result (step 5).
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4. Each proxy encrypts its result share using a distinct
cipher stream it shares with the client, and then
sends it to the coordination server, which computes 
the XOR of all result shares into a result metashare
and forwards this to clients.

5. Each client decrypts the metashare to obtain the
computation result.

We compute metashares and shares as follows. We 
distribute in advance a cryptographic key between 
each client CL and each proxy A, B, and C. This key 
seeds stream ciphers used to form metashares from 
input data. To compute the metashare Xm of secret X, 
a stream cipher is used to generate a random value RA 
that undergoes bitwise XOR with X. CL repeats this 
process with the cryptographic key it shares with B and 
C, obtaining Xm = X XOR RA XOR RB XOR RC, which 
it sends to the coordination server to be forwarded to 
all three proxies. A uses the key it shares with CL to 
compute RA, which it uses to compute its share of X, X1 
= Xm XOR XA = X XOR RB XOR RC. B and C similarly 
compute their shares X2 and X3, respectively. Note that 
X can trivially be recovered from these shares: X = X1 
XOR X2 XOR X3. 

Once shares are computed, computation of the 
desired function proceeds on the proxies. In the case of 
addition, no communication among proxies is required: 
A computes result share R1 = X1 + Y1, B computes R2 = 
X2 + Y2, and C computes R3 = X3 + Y3. Once computa
tion is complete, A, B, and C send R1, R2, and R3, respec
tively, to the coordination server, which computes the 
values’ bitwise XOR, and forwards this single meta
result to the clients for final decryption. 

Note that naively following this return transmission 
protocol would reveal all shares of the computation 
result to the untrusted coordination server. We avoid 
this security lapse by having A, B, and C encrypt R1, R2, 
and R3, respectively, using keys shared between A, B, C, 
and the client to enable decryption by the client. 

Some computations, such as X × Y, require communi
cation among proxies. X × Y = (X1 + X2 + X3) × (Y1 + Y2 + 
Y3) involves not only locally computable terms such as X1 
× Y1 but also terms such as X2 × Y3. These terms require 
that each proxy communicate its share to one other 
proxy. We follow the method that Dan Bogdanov and his 
colleagues described: sharing among proxies occurs in 
symmetric rounds, and each proxy adds new entropy to 
its share before sending that share to a neighbor.5 Thus, 
even though proxies communicate their shares to other 
proxies, the communicated values don’t allow those prox
ies to gain any knowledge of the original secret.

We ensure privacy in each portion of our protocol 
in Figure 1, except those that execute on the trusted 
client platforms:

 ■ Passphrase sharing prior to computation is handled 
by wellknown asymmetric cryptographic (public
key infrastructure) protocols. The Advanced Encryp
tion Standard (AES) and the National Institute of 
Standards and Technology SP 80090 standard pro
vide cryptographically secure random numbers for 
creating shares.

 ■ Transmission of metashares Xm from client to 
co ordination server and onward to proxies is pro
tected by the entropy added during creation of Xm.

 ■ Local computation on the proxies is protected from 
observation because it’s performed only on crypto
graphic shares. We prevent accumulation of too many 
shares on a single proxy by introducing additional 
entropy during the sharing process, as we described.

 ■ Transmission from proxies to the coordination server 
is protected by encryption of result shares introduced 
by the proxies, which prevents the server from com
bining result shares to obtain the result in the clear. 
Transmission from the coordination server to the cli
ents is also protected by this encryption.

Homomorphic Encryption
Like all secure encryption schemes, secure HE schemes 
make it intractable, under certain computational 
hardness assumptions, to recover information about 
plaintext from its encrypted ciphertext.2,3 We use a 
representative approach to HE that employs a multi
dimensional lattice over a finite field. We use a vector 
basis to represent the lattice. Each plaintext input to 
the computation is encrypted to a ciphertext encoded 
as a vector— represented as a large matrix—not in the 
lattice. Security is based on the closest-vector problem: a 
known hard problem of finding the lattice vector with 
the least distance to a given vector—in our case, the 
ciphertext vector.

Computation on encrypted data proceeds by manip
ulating ciphertext matrix representations. However, 
encryption embeds noise into these representations. 
As computation proceeds, this noise grows. If too much 
noise accrues, decryption might identify the wrong 
lattice vector and thus return the wrong plaintext. We 
can decrease ciphertext noise by increasing the dimen
sionality of the ciphertext’s matrix while maintaining 
security. Increasing the dimensionality of the matrix 
allows for more computation to be performed before 
too much noise accumulates but also results in compu
tationally difficult manipulations of large matrices. Even 
with such noise reduction, noise still accumulates, ulti
mately limiting the depth of the computation available. 
FHE systems such as ours avoid this limitation by boot-
strapping—periodically performing a cryptographic 
operation that resets the noise level without compro
mising security. Craig Gentry described an early form 
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of bootstrapping and the resulting capability to perform 
arbitrary-depth secure computation.2

Figure 2 shows our FHE system’s high-level data-
flow. The key infrastructure on the upper left runs on a 
trusted host and uses the NTRU4 public-key approach 
to generate key pairs consisting of a public key Pk and 
secret key Sk. The Pk is shared with a data source (on the 
right) that encodes plaintext messages as mod p integers 
and then encrypts the data using that key to generate 
the initial ciphertext. A program source (on the lower 
right) provides a program, implemented as a Boolean 
circuit, to be evaluated over the encrypted data. The 
initial ciphertext, a public-key encryption of the corre-
sponding Sk, and the program are sent to a computation 
host (shown as a cloud, on the lower right). The result-
ing final ciphertext is sent to the client (on the lower 
left) that decrypts it using Sk to obtain the plaintext 
result. The protocols we use are secure against “honest 
but curious” adversaries such as an untrusted host per-
forming the computation honestly while seeking to dis-
cover secret inputs.

Our FHE programs comprise two computational 
primitives: EvalAdd (addition) and EvalMult (multi-
plication). We use these primitives to construct opera-
tions for encryption, decryption, and bootstrapping. 
We implement modulus reduction, ring reduction, 
and key-switching operations to enable larger depth of 

computation before bootstrapping, without decreasing 
security. (In this article, the term ring refers to a math-
ematical ring over the integers.) We also implement 
specialized primitives, such as ring addition, ring mul-
tiplication, and Chinese Remainder Theorem (CRT), 
because manipulating ciphertexts in CRT representation 
is more efficient than in power basis representations.

Some early homomorphic systems relied on encod-
ing a single bit of plaintext in each ciphertext. EvalAdd 
and EvalMult operations were thus simplified into Bool-
ean XOR and AND operations but offered no compu-
tation parallelism. Ciphertext-to-plaintext expansion in 
such systems is quite large: in one of our early examples, 
the ciphertext expansion ratio was 223. In contrast, our 
system encrypts mod p integers (p > 2) instead of single 
bits, and we leverage single-instruction, multiple data 
(SIMD) approaches to pack multiple mod p integers 
into each ciphertext, thus computing parallel operations 
on these packed integers. Although this approach offers 
more efficiency, leveraging its inherent parallelism can 
make algorithm design challenging. 

We use a variation of the double-CRT approach along 
with a residue number system (based on the CRT over 
the integers) to circumvent the problem of large cipher-
text moduli and correspondingly large ciphertext size. For 
ring dimension n, each ciphertext is represented by an n × 
t matrix of t length–n integer vectors of mod qi values for 

Figure 2. Dataflow in our fully homomorphic encryption (FHE) system. The key infrastructure (upper left) runs on a 
trusted host and uses the NTRU public-key approach to generate key pairs public key (Pk) and secret key (Sk). Pk is shared 
with a data source (on the right) that encodes plaintext messages as mod p integers and then encrypts the data using 
that key. A program source (lower right) provides a program, implemented as a Boolean circuit, to be evaluated over the 
encrypted data. The ciphertext, a public-key encryption of Sk, and the program are sent to a computation host (cloud, 
lower right). The result ciphertext is sent to the client (lower left) that decrypts it using Sk to obtain the plaintext result.
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pairwise coprime moduli qi. This contrasts with some pre-
vious FHE systems that represent ciphertexts as a single 
integer vector mod Q, where Q = q1 * • • • * qt. In our sys-
tem, the number of moduli, t, grows to support the secure 
execution of larger programs, but the number of moduli 
q1, … , qt does not. With this representation, we securely 
represent ciphertexts as matrices of 64-bit integers yet still 
execute efficiently on commodity computing hardware 
that would make computation over the multihundred-bit 
or multi thousand-bit single-vector integer representations 
used in previous systems infeasible.

The security level of lattice-based homomorphic 
encryption systems isn’t often expressed in terms of 
the work factor used to describe security in typical 
cryptosystems. Instead, security is typically expressed 
as the root Hermite factor δ, a representation of the 
hardness of the closest-vector problem. A lattice-
based encryption system becomes more secure as δ 
approaches 1. We selected the value δ = 1.007 for our 
work, which corresponds roughly to the work factor 
required to crack AES 128-bit encryption.

The maximum depth of computation d that can be 
supported between bootstraps and the ring dimension 
n, which correlates directly to the length of ciphertext 
vectors, significantly impacts both δ and performance. 
We have found that with n = 1,6384 and d = 16, we 
achieve δ = 1.007 while supporting significant compu-
tation, such as searching several pages of encrypted text 
for an encrypted keyword, between bootstraps. With 
n = 16,384 and efficient packing of ciphertexts, each 
ciphertext expands to between 103 and 106 times larger 
than the corresponding plaintext.

Our system runs in a compiled C environment 
auto-generated from Matlab implementations (www.
mathworks.com/products/matlab). We use parallel-
ism to take advantage of multicore processors in a Linux 
environment. At δ = 1.007, we encrypt ciphertexts in 
less than 100 milliseconds in such environments and 
decrypt in approximately 1 millisecond. EvalAdd on 
ciphertexts takes several milliseconds, whereas Eval-
Mult takes approximately 500 milliseconds and boot-
strapping takes approximately five minutes.

Real-World Potential for FHE  
and LSS Implementations
Here, we present our prototype applications and their 
limitations.

VoIP Teleconferencing
Typical VoIP implementations don’t provide end-to-end 
encryption. Instead, they rely on a trusted server to receive 
content from clients, decrypt that content, re encrypt it, 
and then distribute it to other clients. This trusted server 
is a weak point in securing VoIP communication. 

Our teams independently developed LSS and FHE 
VoIP audio conferencing approaches that provide end-
to-end security with performance suitable for three or 
more simultaneous users and high-quality audio. No 
prior work has demonstrated the application of these 
technologies to streaming applications such as VoIP. 
Both our prototypes use Apple iPhone 5s handsets, 
Amazon cloud-based virtual servers, and suitably modi-
fied open source VoIP client and server code. 

LSS-based VoIP. Figure 3 shows our LSS VoIP architec-
ture. Each iPhone runs a version of the Mumble VoIP 
client application (http://mumble.sourceforge.net) 
with the following modifications: Mumble audio pro-
cessing samples the microphone at 16 Kbps and loga-
rithmically compresses this to a standard 8-bit μ-LAW 
floating-point representation.6 We added encryption 
for turning each sample into a metashare by computing 
XOR of each sample with elements drawn from three 
AES 128-bit counter-mode cipher streams seeded from 
pre-placed passphrases. The network interface packs 
1,440 sample metashares (90 milliseconds of audio 
data) into each transmitted network packet.

As Figure 3 shows, each client creates and then sends 
each metashare packet via Wi-Fi (802.11ac) to an Apple 
Airport Extreme wireless access point, which forwards 
it to a virtualized coordination server in the Amazon 
Elastic Cloud Service (ECS). This virtual machine runs 
a modified version of uMurmur (https://code.google.
com/p/umurmur) to handle user session manage-
ment and audio stream routing. Our uMurmur variant 
distributes each client audio packet to each of three 
proxies, gathers result share packets from those prox-
ies after computation, computes XOR on the result 
shares together sample-wise, and sends the resulting 
metashare to clients for decryption. 

Our proxies, which are also virtual machines hosted 
in the Amazon ECS, run our ShareMonad audio pro-
cessing application. Each proxy recreates one of the 
three entropy streams and uses this to compute its share 
of each sample from the received metashares. Collec-
tively, the proxies obliviously decode each logarith-
mically compressed audio stream to a linear, integer 
representation; mix all decoded audio streams together; 
clip the resulting audio signal; and recompress the result 
for distribution. 

This computation repeats for each participating cli-
ent, omitting that client’s audio stream so users don’t 
hear their own voices. Each audio stream result share is 
sent back to the coordination server, where it undergoes 
XOR with shares from other proxies and is then sent to 
client handsets for decryption and playback.

A hand-optimized approach required 12 seconds 
of processing per 1,440-sample block for four users, 
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exceeding the 90-millisecond limit required to maintain 
processing at streaming rates. Applying an LSS index 
lookup over a public table7 of precomputed results for 
the decode-mix-clip-encode function let us reduce this 
delay to 25 milliseconds, allowing sufficient time to 
meet the 90-millisecond goal and compensate for net-
work delays between handsets and servers. With this 
optimization, we achieved streaming throughput for up 
to four voices at 16 Kbps audio rates, enabling users to 
communicate clearly. 

We used 16-core (C3 size) Amazon cloud servers as 
proxies, resulting in roughly 80 percent CPU utilization. 
In contrast, plaintext processing at this performance 
level requires only a small portion of a single CPU core. 
Memory use was small and not a constraining factor. 
Network bandwidth available in our Amazon cloud 
instances was sufficient with no special optimization. 

In the absence of collusion among the proxies, our 
solution provides two layers of AES 128-bit security at 
each proxy. Each proxy receives metashares encrypted 
with three AES 128-bit counter-mode cipher streams 
yet has access to only one of these cipher streams. Thus, 
adversaries observing from any one proxy can learn noth-
ing of the plaintext audio samples used as input. Adver-
saries observing from the coordination server can learn 

nothing about the input from the metashares it conveys, 
because that server holds none of the cipher streams used 
for encryption and decryption. Because each proxy adds 
new layers of encryption (using cipher streams to which 
the coordination server has no access) to the result shares 
it sends back to the coordination server, that server simi-
larly can learn nothing of the computation result. 

FHE-based VoIP. We developed an FHE-based approach 
to secure VoIP teleconferencing that requires only a sin-
gle proxy. This advance is built on a vocoder technology 
that takes voice samples from each client as input and 
encodes those samples as vectors of integers that are 
then encrypted. This vocoder is linear and can be used 
with an additive HE scheme to provide an encrypted 
VoIP teleconferencing capability. Encoded voice sam-
ples are encrypted at each iPhone client with the client’s 
public key, using the additive HE scheme. 

For our prototype, all clients use the same key, 
because our focus is on demonstrating the practical 
feasibility of an FHE computation rather than on well-
understood security concerns. The resulting cipher-
texts are sent to a VoIP mixer that queues and adds the 
ciphertext from the clients without decrypting the data 
or sharing keys. The resulting added ciphertext is sent 

Figure 3. LSS-based voice-over-IP (VoIP) system architecture. iPhone 5s VoIP clients sample audio input at 16 Kbps, encode 
samples to a standard 8-bit μ-LAW floating-point representation, and encrypt the resulting encoded samples using three 
Advanced Encryption Standard 128-bit counter-mode cipher streams. Clients send packets of 1,440 encrypted samples (90 
ms of audio) over Wi-Fi 802.11ac and through the Internet to proxy servers in the Amazon Elastic Cloud that decode, add, 
and clip the sample streams without decrypting them. The resulting combined audio stream is reencrypted and sent back 
to the clients for decryption and playback. 
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back to the clients. When decrypted with the clients’ 
private key using the additive homomorphic decryp-
tion scheme, decoded using our decoding scheme, and 
played back to the clients, the resulting audio is a mix of 
all the clients’ audio streams.

Our FHE-based VoIP uses a prototype architecture 
similar to the LSS-based VoIP teleconferencing capa-
bility, but with lower end-to-end latency. When we 
ran this system with a server in Virginia and clients in 
Massachusetts, the total latency was on the order of 80 
milliseconds, with the latency roughly split among com-
munication, encryption, and decryption. The mixing 
latency was nearly trivial, taking less than 1 millisecond.

With our FHE-based approach, no keys are stored 
on the teleconference server, so privacy is preserved 
even if adversaries view all communication links and 
server operations. Trust in the communication links 
or teleconference server isn’t required to provide pri-
vacy. The security level provided in the current demo 
is roughly at the level of AES 128-bit encryption, but 
parallels between the security levels of our encryption 
scheme and other current standards aren’t exact. We 
can increase our teleconference capability’s security 
level arbitrarily at the expense of bandwidth require-
ments or voice quality by modifying the sampling rate 
and dynamic range of the sampled voice data.

Email Border Guards
Providing privacy using email encryption and achiev-
ing information security using trusted-party email fil-
tering at network boundaries are mutually exclusive 
goals. Either email must be decrypted to verify com-
pliance to InfoSec policies (compromising privacy), or 
those policies must be enforced by each user prior to 
message encryption (compromising trust in filtering). 
We explored solutions to this problem by studying 
applications in which transaction throughput is impor-
tant. In our solutions, users encrypt email messages 
on their trusted computer. The messages are sent to an 
untrusted mail server for forwarding to a destination. 
This mail server also acts as a border guard, checking 
each email message for certain content and passing it 
on to its destination only if that content is absent. The 
border guard performs this content checking without 
decrypting the messages.

LSS-based regular expression search email guard. We use 
the Claws email client and a typical email server, along 
with plug-ins to each via standard APIs, to search each 
outbound encrypted email for occurrences of text that 
match a set of prespecified regular expressions, for-
warding messages that do not include such matches and 
rejecting those that do. 

Figure 4 shows our system architecture. In the LSS 
version, the mail server connects to three proxies that 
perform the LSS computation (not shown in the figure). 
When a user sends a message, a plug-in to the Claws cli-
ent computes the message’s metashare using key mate-
rial shared a priori with the proxies. The email client 
sends the metashare to the mail server, where a Milter 
(www.milter.org) plug-in distributes it to the proxies, 
each of which derives its share. The regular expression 
set is compiled into a Boolean circuit and distributed 
to the proxies in advance. The proxies collectively com-
pute the regular expression search on the message, using 
an adaptation of a mechanism that transforms regular 
expressions into finite automata.8 Each server produces 
one share of the Boolean indication of whether any 
regular expressions match against any portion of the 
encrypted message corpus. Our Milter plug-in com-
bines these shares to obtain a plaintext Boolean answer, 
which it passes to the mail server. The mail server then 
accepts and forwards the message, or it drops the mes-
sage and informs the sender’s client, as appropriate. 

We performed several experiments on this system, 
optimizing the resulting Boolean circuit to consider dif-
ferent numbers of regular expression characters. Pro-
cessing 16 message characters at a time was the point of 
diminishing returns. For a typical 1-Kbyte email ASCII 
message and a set of regular expressions that roughly 
represents classification markings that might be used in 

Figure 4. Email border guard system architecture. In the LSS version of the border 
guard, the mail server connects to three proxies (not shown in the figure). An 
email client plug-in computes a sent message’s metashare using key material 
shared a priori with the proxies and sends the metashare to the mail server, 
which distributes it to the proxies. The proxies collectively search the encrypted 
message, producing shares of a Boolean indication of a regular expression 
match. In the FHE version, the client homomorphically encrypts the message 
and sends it to a single proxy that searches the encrypted message for matches 
with a predefined set of strings, also producing a Boolean indication of a match. 
The mail server (in the LSS case) or the client (in the FHE case) receives the 
computation result and uses it to determine whether to forward the message. 
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a government setting, checking an email message took 
approximately 90 seconds using quad-core, 3-GHz Intel 
architecture blade servers as proxies. CPU utilization 
averaged approximately 90 percent during processing, 
and memory utilization was minimal.

FHE-based encrypted keyword search email guard. We 
developed a prototype FHE application that searches 
for encrypted keywords in encrypted text. This method 
relies on a homomorphic string comparison operation 
that’s repeated for all keywords in all locations of an 
encrypted message. As in the LSS method, we imported 
this technology into an email guard–type scenario to 
provide outsourced email filtering based on email cli-
ents’ keywords of interest. Because the result of the 
string comparison is only available to the mail server 
in encrypted form, our protocol sends the encrypted 
result back to the client, where it’s decrypted to reveal 
whether the message should be sent. Thus, our proto-
type assumes an honest sender and requires an extra 
round-trip between client and server. Figure 4 shows a 
sketch of this technology. 

We’re currently running this implementation at a 
low security level (δ = 1.08) to enable the email system 
to be interactive with fast response times. Our initial 
implementation uses a ring dimension of n = 512 and 
encrypts emails with a supported depth of computation 
d = 12. This results in an effective ciphertext modulus 
q represented with 430 bits. With these parameter con-
figurations, we can sort over encrypted paragraph-long 
emails with five- to six-character words in less than a 
minute. Result decryption runs in a matter of seconds.

We could tune this FHE-based email guard to an 
extremely secure setting (δ = 1.0055 or less) using our 
current implementation with a similar depth of com-
putation. We would choose a ring dimension of 16,384 
and an effective ciphertext modulus Q represented with 
521 bits. Encryption runtime at these settings is on the 
order of minutes, encrypted message filtering would 
take hours on a nonparallelized server, and decryption 
would take a matter of seconds. 

I n a world in which Bob and Alice need to work 
together but are no longer comfortable sharing their 

secrets, or where Alice needs Charlie’s help to process 
data but feels uncomfortable with Charlie (or the ever-
lurking Eve) seeing the data, secure computation holds 
promise. However, secure computation methods differ; 
each has its distinct tradeoffs, security models, and cave-
ats. Our experiments show that some practical applica-
tions are emerging, but substantive work remains to be 
done to make secure computation practical for broad 
classes of applications. 
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Scalable, Practical VoIP Teleconferencing with
End-to-End Homomorphic Encryption

K. Rohloff, D. Sumorok, D. Cousins, Raytheon BBN Tech.

Abstract—In this paper we present a practical new approach
to scalable andsecure VoIP teleconferencing where data remains
encrypted even at the VoIP teleconferencing server. Until now,
VoIP teleconferencing services have required either 1) all tele-
conferencing clients to maintain point-to-point links with other
clients or 2) a teleconferencing server which can access and
manipulate all VoIP streams unencrypted, in the clear. We present
a new approach which uses a teleconferencing server which
manipulates only encryptions of the VoIP streams, thus avoiding
the respective scalability and security issues of previous classes
of approaches. Our new approach relies on recent advances
in practical homomorphic encryption to provide end-to-end
encryption. Voice data is sampled, encoded and encrypted at the
VoIP teleconference clients, sent over a generic network such as
the open Internet to the encryption-enabled server, and mixed at
the server without decrypting the VoIP data. The encrypted result
of the mixing is sent back to the clients for decryption, decoding
and playback to the users. The homomorphic encryption basis of
our secure VoIP teleconferencing capability is a modification of
NTRU, and can provides fully homomorphic and post-quantum
features, but we only use additive homomorphic capabilities in
this work. We discuss our working prototype of this secure,
practical VoIP teleconferencing capability running on iOS clients
and the lowest-cost Amazon AWS server. Our prototype provides
full-duplex 100kbs throughput and average 90ms latency, which
is higher quality than many commercial VoIP services such
as Skype and GoToMeeting, besides being much more secure.
We present the design of our VoIP system, with a particular
focus on the VoIP encoding/decoding scheme and homomorphic
mixing operations. These encoding/decoding operations and the
encrypted homomorphic mixing, coupled with an efficient, usable
implementation compatible with commodity hardware are the
primary advance we have been able to leverage to enable secure
VoIP teleconferencing with end-to-end encryption. We present
experimental results to show the scalability, performance and
voice quality trade-offs of our design and implementations when
used over local-area, national and intercontinental distances.

I. INTRODUCTION

There has been an unmet technological need to provide
a scalable capability for multiple geographically distributed
people need to simultaneously converse as a group at the
same time over data networks. This need, until know, has
been partially served by either have physically secure dedicated
point-to-point communication links as provided by dedicated
circuits, or through physically unsecured point-to-point com-

Sponsored by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL) under Contract No. FA8750-
11-C-0098. The views expressed are those of the authors and do not necessarily
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munication links which are made secure with point-to-point
encryption technologies [1], [2].

These prior approaches to secure communication are either
not scalable or have not adequately addressed several im-
portant vulnerabilities. Physically secure communication links
are not feasible over broad geographic areas such as for
trans-continental and inter-continental communication. Point-
to-point encryption solutions do no scale because when there
are more than a handful of participants in a teleconference call,
a large number of point-to-point communication links are prac-
tically difficul to setup and maintain, often leading to latency
issues which would degrade the quality of user experiences.
For these reasons, there is a need for such a technology to
provide scalable, secure and practical teleconferencing services
which can be used to host multi-party negotiations, planning,
education and information distribution of a sensitive nature.

The needs for scalable, secure and practical teleconferenc-
ing services has been partially met with Voice over IP (VoIP)
teleconferencing technologies where users can converse with
one another by encoding data for transmissions between users
over IP data networks. VoIP provides a fundamentally scalable
and practical approach to teleconferencing, especially with
the advent of global packet-switched information networks.
Unfortunately, existing VoIP teleconferencing capabilities such
as GoToMeeting, Skype and Mumble among others have not
been both scalable and secure against data leaking to adver-
saries who wish to snoop on private or even proprietary group
communication. These technologies have been vulnerable to
man-in-the-middle attacks of various types [3].

Although modern VoIP teleconferencing technologies have
been good at protecting data in transit between clients and a
server, all bets are off when the data reaches a server where it
needs to be mixed. The majority of widely used existing VoIP
teleconferencing capabilities require a central VoIP server to
mix all of the VoIP signals from clients which are then sent
back to the clients. Until now this has required the VoIP server
to have access to unencrypted VoIP data. That is, the VoIP
mixing operation, which merges the VoIP streams from the
clients, has until now needed to be performed in the clear, on
unencrypted VoIP data. This creating a possible opportunity
for adversaries to snoop on otherwise protected VoIP data if
the adversaries gain access to the VoIP server.

The mixing of VoIP data in the clear is adequate when
the VoIP server is fully trusted by all participants. However,
VoIP teleconferencing servers are often hosted in a semi-secure
environment, such as by commodity cloud providers such as
Amazon AWS or Microsoft Azure. Some users, such as in
less technologically developed regions of the globe, might
not have access to low-cost cloud environments, requiring the
deployment of VoIP servers on local hardware which are less
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secure against compromise or seizure.

The limitation of required server trust has until now pre-
vented the use of VoIP teleconferencing technologies from
being used in less-than-fully trusted situations, such as in the
cloud where the underlying server hardware and the cloud
providers cannot be fully trusted to not leak information. This
induces an unfortunate trade-off of for this architecture of
either requiring all participants to maintain group conversations
in the clear in untrusted environments or paying a higher
cost of maintaining access to a trusted VoIP server if secure
teleconferencing is needed.

Taken together, these technological def ciencies point to a
need for a VoIP teleconferencing capability where VoIP data
can never decrypted except on the clients which have access
to decryption keys. Thus, unlike previous VoIP attack analyses
which focus on signaling attacks [4], [5] during VoIP call set-
up, we are particularly interested in protecting against man-in-
the-middle attacks which involve compromise the VoIP server.

In this paper we present a secure, scalable and practical
method to protect against the leakage of sensitive VoIP tele-
conferences even on VoIP teleconference servers that have
been fully compromised. We provide a method for parties
to have privacy-preserving teleconferences where communica-
tion privacy is maintained despite all communications of the
clients being observed during the teleconference, even at the
teleconference mixer. The basis of our approach is a method
for additive homomorphic encryption such that all clients have
a common private key. The clients encode their voice samples
with a additive encoding scheme, encrypt their encoded voice
data with an additive homomorphic encryption scheme, send
their encrypted voice samples to a mixer which performs an
encrypted homomorphic addition on the encrypted voice and
sends the results back to the clients. The clients then decrypt,
decode and play back the result. Our scheme relies on the pre-
sharing of a common private key for an additive homomorphic
encryption scheme, but it is possible in principle to practically
generalize beyond this pre-shared key design.

We implemented this scheme to run on commodity iPhone
clients and the current lowest-cost Amazon EC2 server. Our
capability provides end-to-end encryption of all VoIP data from
the VoIP clients hosted on the phones with no decryption at
the server. This implementation is secure, relying on a post-
quantum encryption scheme which protects even against quan-
tum computing attacks on the encrypted data. This capability
also provides relatively high sound quality with full-duplex
100kbs data rates. This initial implementation is intended
to be a proof-of-concept capability, with the possibility of
improving upon this technology with existing key management
technologies [6] and session initiation technologies [7] with
additional engineering investment and little or no research risk.

Our new approach relies on recent advances in practical
homomorphic encryption to provide end-to-end encryption.
With this approach, encrypted VoIP data is mixed on a VoIP
teleconference server without decrypting data at the server or
sharing decryption keys with the server. We present our work-
ing prototype of this secure, practical VoIP teleconferencing
capability running on iOS clients and the lowest-cost Amazon
AWS server and provide experimental analyses of this imple-
mentation. Our innovation is in the VoIP encoding/decoding

scheme and homomorphic mixing operations, coupled with an
eff cient, usable implementation compatible with commodity
hardware.

The paper is organized as follows. Section II discusses the
design goals of our encrypted VoIP teleconferencing system.
Section III discusses the overall design of our end-to-end en-
crypted VoIP teleconferencing capability. Section V discusses
the engineering trade-offs associated with parameter selection.
Section VI discusses how we implemented our design to
run on iOS clients and Linux servers. Section VII presents
experimental results of deploying our end-to-end encrypted
VoIP teleconferencing capability on the open Internet. Section
VIII discusses related work on relevant technologies. Section
IX presents a discussion of our capability and ongoing work.

II. DESIGN GOALS

We identif ed several design goals and metrics of perfor-
mance with which to evaluate and reason over our end-to-end
encrypted VoIP teleconferencing designs and implementations.
Our primary high-level design goals and metrics are:

1) Sound Quality: The end-to-end encrypted VoIP tele-
conferencing capability should provide sound quality
at least as good as a Public Switched Telephone
Network (PSTN), preferably with full-duplex.

2) Latency: The end-to-end encrypted VoIP teleconfer-
encing capability should provide an end-to-end la-
tency ideally of less than 100ms for trans-continental
VoIP teleconference session, a generally accepted
reasonable latency for VoIP technologies, but more
latency is acceptable for inter-continental operations.

3) Scalability: The end-to-end encrypted VoIP telecon-
ferencing capability should be able to support four
people speaking simultaneously while ten’s of partic-
ipants listen without degradation in sound quality or
latency.

4) Secure: The end-to-end encrypted VoIP teleconfer-
encing capability should provide an encryption work
factor roughly at least as good as the work factor
for AES-128. This means that the VoIP data, when
encrypted, should require at least as much computa-
tional effort to obtain the unencrypted data without
a key as is needed for AES-128, a commonly used
point-to-point secure encryption technology.

5) Resource Efficient: FHE schemes have been known
to require encrypted data which is much larger than
the original source data. Early schemes provided a
ciphertext expansion of several orders of magnitude
larger than the source data. The end-to-end encrypted
VoIP teleconferencing capability should ideally re-
quire less than an order of magnitude ciphertext
expansion.

6) Wide Geographic Area: The end-to-end encrypted
VoIP teleconferencing capability should operate with
users and the VoIP mixing server over a wide ge-
ographic area, ideally trans-continental if not inter-
continental without an unacceptable degradation in
sound quality or latency.

7) Portable: The end-to-end encrypted VoIP teleconfer-
encing capability should be easily ported to other
client and server types.
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8) Easily Deployable: The end-to-end encrypted VoIP
teleconferencing capability should be easy to deploy,
such as with small binaries.

9) Usable: The end-to-end encrypted VoIP teleconfer-
encing capability should be intuitive and easy to use.

10) Extensible: The end-to-end encrypted VoIP telecon-
ferencing capability should be easy to modify to add
additional and more advanced functionality at a later
date.

III. TELECONFERENCING ARCHITECTURE

Figure 1 shows a high level example illustrative application
of this privacy-preserving VoIP teleconferencing technology
with end-to-end encryption. Each of the clients samples users’
voice data, encodes it, encrypts it and sends the result to the
VoIP mixer. The mixer sends a result back which is then
decrypted, decoded and played back to the clients’ users. Any
encryption system could be used that supports an additive
homomorphism which could be implemented in a practical
manner. A representational scheme that supports additive ho-
momorphisms is NTRU which can be made both Somewhat
Homomorphic (SHE) and Fully Homomorphic (FHE) in addi-
tion to additive homomorphic.

Our approach uses a shared secret key, but more general
designs are possible that generalize beyond this initial shared
secret key design. Input voice streams from clients are sampled
and homomorphically encrypted using a clients public key.
The encrypted voice samples are sent to an FHE-enabled VoIP
server that does not have access to encryption keys. The VoIP
server combines and balances the encrypted audio feeds. The
combined output is then forwarded to the client handsets,
where it is decrypted and played back for the user. Our FHE-
based solution processes streaming audio at 10 kBytes/s per
voice.

The output of the processing is sent to the client, where it
is decrypted using the clients private key. No keys are stored
on the teleconference server, so privacy is preserved even if an
adversary views all communication links and operations on the
server. No trust of the communication links or teleconference
server is required to provide privacy. The level of security
provided in the current prototype is roughly at the level of
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Fig. 2: High-Level Data Client Internal Data Processing

AES-128, but parallels between the security levels of the
encryption scheme and other current standards are not exact.
We can increase the security of our teleconference capability
to be arbitrarily higher at the expense of voice quality by
decreasing sampling rate and dynamic range.

Figure 2 shows how the clients support data f ows inter-
nally. In the top of the diagram, data from the microphone is
sampled and fed to the encoder, encrypted using an additive
homomorphic encryption scheme and sent to the mixer. As
seen in the bottom of the f gure, the result returned from the
mixer is decrypted, decoded and played back over a speaker.

Figure 3 shows how the VoIP mixer takes encrypted input
from various clients and returns a common output. For a
representational VoIP system with clients (c1, c2, c3, . . . , cm),
a client ci would want (c1+c2+ . . .+ci−1+ci+1+ . . .+cm).
This summation can be performed in a tree fashion as illus-
trated in Figure 3. For our representational NTRU scheme, the
ciphertexts are vectorized in blocks of m, and all additions are
performed modulo some large integer q pre-specif ed by the
key generator.

Our encoder/decoder is additive so that we can rely on
an additive homomorphism such as the EvalAdd operation
to mix VoIP signals. Because we require only an eff cient
secure EvalAdd operation to support encrypted VoIP mixing,
our design builds on the recent eff cient FHE design and
implementation discussed in [8]. We simplif ed this prior work
such that we remove the ability to support EvalMult operations.
As such, because we only need to support much smaller
circuits, we do not need the parallelism capabilities as dis-
cussed in [8] for our VoIP application and integration with the
existing Mumble/Murmur open-source VoIP systems. We also
use much smaller parameters than the designs advocated in [8]
because we require much more greatly reduced functionality.
Thus, the basis of our encryption approach is a special limited
version of FHE called Additive Homomorphic Encryption
which allows an untrusted computation host to compute the
encrypted sum of encrypted integers.

A. Client Vocoder

We have a developed a vocoder technology which takes
voice samples from a client and encodes the voice samples as
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Fig. 3: Encrypted VoIP Server Mixing for Three Clients

vectors of integers. This vocoder is linear so that it can be used,
for example, with an additive homomorphic encryption scheme
to provide an encrypted VoIP teleconferencing capability. In
this example, the encoded voice samples are encrypted using
the additive homomorphic encryption scheme. This operations
are performed on multiple clients. The resulting ciphertexts
are sent to a VoIP mixer which queues and adds the cipher-
texts from the clients. The resulting added ciphertext can be
sent back to the clients. When decrypted with the additive
homomorphic decryption scheme, decoded using our decoding
scheme and played back to the clients, the resulting audio is
a mixing of the audio from the clients.

Our encoding goal is to convert a length-m data frame
of y-bit VoIP samples into a length-n frame of integers
with the property that Encode(input1) +Encode(input2) =
Encode(input1 + input2). As seen in the left hand side of
Figure 4, we split the length m sample input into multiple
blocks of n = 2(floor(log2(m)))-length vectors and a single
mod(m − n)-length vector if mod(m − n) > 0. The f rst
step is to shift the samples so they are centered around
0, mod 2y . For the zth block of samples, we multiply the
integers in this block by 2(y + z − 1). We also pad the
m − n block of samples with 2n − m 0s so this vector is
n samples long. As seen on the right hand side of Figure
4, we sum these vectors. These operations are all highly
eff cient as they only involve splitting vectors, multiplication
be two and bitwise concatenation, which are all extremely

eff cient to implement. This result is the encoded vector and
has the property that Encode(input1) + Encode(input2) =
Encode(input1+ input2). This encoded data is subsequently
used for encryption.

Figure 5 shows our decoding process. On the right hand
side of this f gure we take the input vector. We make copies of
this block and perform an integer division by 2(y+2∗z−1) for
the zth block. We then concatenate these vectors and return
the result. Like for the encoding operation, these operations
are all highly eff cient as they only involve splitting vectors,
multiplication be two and bitwise concatenation, which are all
extremely eff cient to implement.

IV. HOMOMORPHIC ENCRYPTION AND KEY GENERATION

In this subsection we describe the additive homomorphic
cryptosystem we use to construct the end-to-end encrypted
VoIP capability built on [8]. This cryptosystem is very similar
to the NTRU system [9], though it was not until recently
that its homomorphic properties were noticed independently
by López-Alt et al. [10] and Gentry et al. [11]. A more general
version of this cryptosystem was discussed in [8], but we
discuss here a more limited version of the cryptosystem of
[8] which is simplif ed for more eff cient end-to-end VoIP
encryption.

The discussion of this simplif ed cryptosystem has a high
degree of overlap with the more general cryptosystem. Our
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Fig. 4: Encrypted VoIP Encoding

simplif cations reside primarily in the encryption and decryp-
tion operations, but we include the full key generation and
evaluation addition operations which are also modif ed, but to
a lesser extent, for the sake of completeness. The modif cations
are primarily in the avoidance of any ciphertext decomposition
to parallelize operations when the ciphertext modulus q > 264.
We have found that we can parameterize the cryptosystem
to support the vector addition of adequately large plaintext
vectors such that requiring a larger ciphertext modulus is not
needed. As such, because we can limit ourselves to 64-bit
operations, our simplif ed cryptosystem can be implemented
to run highly eff ciently on native 64- and 32-bit processors
without the parallelism advances obtained in [8] for more
eff cient more general computations.

The simplif ed cryptosystem is based around the manipu-
lation of power-of-2 cyclotomic rings for ease and eff ciency
of implementation. For ring dimension n which is a power of
2, def ne the ring R = Z[x]/(xn+1) (i.e., integer polynomials
modulo xn + 1). For a positive integer q, def ne the quotient
ring Rq = R/qR (i.e., integer polynomials modulo xn + 1,
with coeff cients from Zq = Z/qZ).

For the cryptosystem the message space is Rp for some
integer p ≥ 2. We use a mod-q Chinese Remainder Transform
(CRT) representation of elements to provide fast addition.
These CRT representations are discussed extensively in [12]

The basic operations of the scheme are as follows:

• KeyGen: choose a short f ∈ R such that f = 1 mod p
and f is invertible modulo q, and a short g ∈ R.
Output the public key pk = h = g · f−1 mod q and
the secret key sk = f .
We choose the short elements f and g from centered
discrete Gaussians. E.g., we can let f = p · f ′ + 1
for some Gaussian-distributed f ′. Note that such an f
will have expectation (center) 1.

• Enc(pk = h, µ ∈ Rp): choose a short r ∈ R and a
short m ∈ R such that m = µ mod p. Output c =
p · r · h+m mod q.
Concretely, m can naively be chosen as m = p·m′+µ
for a Gaussian-distributed m′, but again, such an m
is not zero-centered.

• Dec(sk = f, c ∈ Rq): compute b̄ = f · c mod q, and
lift it to the integer polynomial b ∈ R with coeff cients
in [−q/2, q/2). Output µ = b mod p.

The additive homomorphic operations are def ned as follows:

• EvalAdd(c0, c1): output c = c0 + c1 mod q.

V. PARAMETER SELECTION TRADEOFFS

We need to choose parameters for both the vocoder and
the cryptosystem so that:

• VoIP signal data is encoded into VoIP plaintext.
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Fig. 5: Encrypted VoIP Decoding

• The VoIP plaintext can be securely encrypted into
VoIP ciphertext.

• The summation of multiple VoIP ciphertexts can be
successfully decrypted back into VoIP plaintext.

• The output VoIP plaintext can be decoded into an
undistorted VoIP signal.

• All these operations need to be run eff ciently on
commodity hardware, such as 64- and 32-bit ARM
and x86 processors.

Generally, these concerns mean that:

• The bitwidth of the VoIP data P needs to be suff -
ciently large so that given a VoIP integer signal vectors
from y speakers v1, v2, . . . , vy , we are guaranteed that
v1 + v2 + · · ·+ vy = (v1 + v2 + · · ·+ vymodP ).

• The number of layers in the encodings (and hence
the ring dimension n) and the plaintext modulus
p = 2x need to be suff ciently large with respect
to P so that for the encodings z1, z2, . . . , zy where
zi = encode(vi), z1+z2+ · · ·+zy = (z1+z2+ · · ·+
zymodp).

• The ciphertext modulus needs to be suff ciently small
that we can support computations on the ciphertext
eff ciently. For modern smart phones this means that

the ciphertext modulus is at most 264, so we can use
native 64-bit computations.

• The selection of parameters needs to provide a non-
trivial root Hermite factor to provide security guaran-
tees.

The selection of the ring dimension n and ciphertext
modulus q parameters depends heavily on the desired security
level and the plaintext modulus p. The plaintext modulus p
depends on the VoIP data modulus P , the number of VoIP
streams that need to be mixed without distortion y and the VoIP
data bitwidth P . We capture the primary concerns inf uencing
the selection of a ring dimension n and the modulus q at a
high level as follows:

We choose to add discrete Gaussian noise to the fresh
ciphertexts where r = 3 represents the selected probability
distribution parameter as suggested in [8]. We have found
theoretically that the smallest modulus q needs to satisfy the
expression

q > 4pr
√
nw (1)

in order to ensure successful decryption, where the param-
eter w ≈ 4 represents an “assurance” measure for correct
decryption (essentially, the probability of decryption failure is
bounded by the probability that a normally distributed variable
is more than w

√
2π standard deviations from its mean), and p·r

is the Gaussian parameter of the noise used in fresh ciphertexts.
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(Hence r is the Gaussian parameter of the underlying NTRU-
like problem.)

The most recent experimental evidence [13] suggests that
δ = 1.007 would require roughly 240 core-years on recent
Intel Xeon processors to break. Using the estimates from [14],
[15], we found that in order to achieve a security level δ for a
depth of computation d = t− 1 using the modulus q, we need
to ensure that

n ≥ lg(q)/(4 lg(δ)). (2)

VI. IMPLEMENTATION

We evaluated our end-to-end encrypted VoIP capability
by implementing our vocoder and homomorphic encryption
library and then integrating them with an existing open-source
VoIP teleconferencing capability. This activity resulted in an
end-to-end encrypted VoIP client for teleconferencing clients
running in an Apple iOS environment composed of a) the
open-source Mumble VoIP client modif ed integrated with b)
a custom linear codec of our design written in ANSI C and c)
an FHE encryption library ported from Matlab to ANSI C. We
also wrote and deployed the VoIP server capability running on
Linux computing devices to perform the homomorphic mixing
operation. We describe the implementation of this capability
in this section.

A. Codec and Homomorphic Encryption Implementation

As with the cryptosystem design, our implementation used
for an additive homomorphic encryption library is a customiza-
tion of the design introduced in [8]. We implemented our
scheme in the Mathworks Matlab environment and used the
Matlab coder toolkit [16] to generate an ANSI C library of
our implementation. We believe that additional performance
improvements could be obtained by implementing our HE
scheme natively in C.

We chose to implement our scheme in Matlab using the
Matlab f xed-point toolbox because it provides an interpreted
computation environment for rapid prototyping with native
support for vector and matrix manipulation which simplif es
implementation development. We found the Matlab syntax to
be a natural f t for writing software to support the primitive
lattice operations needed for our CRT-based NTRU-inspired
homomorphic encryption design. The Matlab f xed-point tool-
box also provides a path toward generated HDL implemen-
tations of our design that can be deployed for practical use
on highly parallel computing hardware such as FPGAs. Part
of our vision for the use of our SHE design is to develop an
FPGA implementation of FHE [17], [18].

We implemented the vocoder capability in native ANSI
C. We compiled this capability using the gcc tool to create a
vocoder library which we then integrated with the homomor-
phic encryption library and a VoIP teleconferencing substrate.

B. VoIP Teleconferencing Substrate

Rather than construct a VoIP capability from whole clothe,
we decided to construct an end-to-end encrypted VoIP telecon-
ferencing capability by integrating our additive homomorphic
encryption library and our vocoder library with an existing
open-source VoIP teleconferencing library. We selected the

Mumble VoIP library (http://mumble.sourceforge.net) for this
integration because the Mumble is mature, offers high sound
quality and runs on a variety of platforms.

We decided to implement our end-to-end encrypted VoIP
teleconferencing capability for iOS clients because the native
iOS development environment uses Objective C, a dialect of
ANSI C. However, even though we only developed iOS clients,
there is no reason our client library could not be integrated in
other environments such as for Android, Windows, Mac or
Blackberry clients.

By integrating with the Mumble library, our end-to-end
encrypted VoIP library has the same use and deploy models
as the standard Mumble capability. Notably, Mumble clients
present the user a simple, easy to use, graphical user interface
that can be easily understood with minimal training. An image
of the modif ed client running on an iPod Touch can be seen
in Figure 6 where the client is running in push-to-talk mode.
This client is indistinguishable from the standard iOS Mumble
client. The Mumble software can also be deployed through an
app store model, or as binaries which can be loaded onto iOS
devices through XCode.

Fig. 6: The Push-To-Talk Client GUI

We integrated the iOS capability so that client handsets
encrypt their audio streams using the clients public key.
The proxy server computes over that encrypted data without
decrypting the data or sharing keys. The output of the pro-
cessing is sent to the client, where it is decrypted using the
clients private key. No keys are stored on the teleconference
server, so privacy is preserved even if an adversary views all
communication links and operations on the server.

This integration was relatively straight forward with several
notable exceptions to reduce packet drops and improve sound
quality:
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1) The client application generated voice packets that
contained 480 samples at 48 KHz, or 10 ms worth of
sound. The sound driver, however, generated slightly
larger packets. As a result, the period of the sound
packets was slightly larger than 10 ms, and every
so often two sound packets were generated back to
back. The original server set a 10 ms timer and just
accepted one packet every 10 ms. We added a small
queue at the server so we did not drop packets when
we received two packets in a row very quickly.

2) We generated new frame numbers at the server as
opposed to re-using the client frame numbers. The
clients correlated the frame numbers with time. This
cut down on the time jitter with regard to frame
numbers.

3) The encryption and decryption operations for our
applications were processor intensive, and were run
in batches of several audio packets at once. We
moved the encryption and decryption operations to
a low priority thread and had the higher priority
thread accept and queue new audio packets (both
from the network, and from the microphone). This
helped prevent a situation where we audio packets
were dropped because we were too busy decrypting
or encrypting.

The goal of our changes were to reduce the drop rate of
packets which was an issue with initial prototypes. This, in
turn, allowed us to increase audio sampling rate. As a result,
we were sampling 10 bit samples at a rate of 48kHz. This
conf guration provides a sound quality substantially better than
PSTN as long as there are only a few packet drops.

After sampling the audio, we queue and encode 90ms
blocks of this data into our encoder. We designed the system
to accommodate 4 speakers, resulting in the homomorphic
mixer to add 4 10-bit integers homomorphically, resulting
in a 12-bit plaintext without the encoding layering. If we
use a ring dimension n = 1024, we are required to use
2-layer encoding and have a resulting plaintext modulus of
p = 224 = 16777216. This encoding and encryption results in
a root Hermite factor of δ = 1.006 which is currently believed
to be at least as secure as AES-128. With these parameter
settings we observed that when running on an iPhone 5s, the
encoding and encryption operation took a mean time of 9.2ms
and decryption and decoding took 4.6ms. The summation on
the VoIP server took 0.5ms. Transport of encrypted VoIP traff c
from Cambridge MA to the Northern Virginia Amazon AWS
servers took an average of 15ms. This results in a mean latency
much less than our 100ms threshold for VoIP traff c, well
within the bounds of reasonable, both in theory and in practice.

VII. EXPERIMENTAL RESULTS

We experimentally evaluated the performance of the VoIP
service by deploying our encrypted VoIP servers in each of
the Amazon AWS data centers across the world. We then
connected iPod Touch clients to each of the servers through
various connection types in the metro area of a United States
city in southern New England. These connections included
802.11n wireless enterprise gateway connected to a high-
speed enterprise Internet connection, the 4G LTE, 3G and 2G

connections over the T-mobile commercial wireless service and
an AT&T DSL connection in a rural area outside the city.

We measured the upload and download throughput of the
connections, the drop rate of VoIP packets routed through
the various server locations and the subjective quality of the
VoIP teleconference session as def ned by the experimenters.
The upload and download throughput was measured by Ookla
throughput measurement app [19] on the client devices. VoIP
drop rates were measured experimentally by modifying the
VoIP servers to measure drop rates. Voice quality was mea-
sured in comparison to PSTN voice quality where “Excellent”
means the VoIP conversation was better than PSTN, “Good”
means the VoIP conversation was comparable PSTN, “Poor”
means the VoIP conversation was worse than PSTN but still
usable for communication, and “Unusable” means the connec-
tion was useless for communication.

All of the experiments were run over a 2 hour period on
a weekday evening using 2 iPod Touch clients with servers
deployed on the Amazon AWS t1.micro instances [20]. Each of
the clients were on independent connections to the Internet at
all times, so there was low likelihood of one client contributing
substantially to congestion for the other client.

Table I shows the upload and download throughput ob-
served by each of the clients for each of the connections. Note
that the rural DSL service provided better throughput than the
2G connection and better download throughput than the 3G
connection.

TABLE I: Experimentally Measured Data Throughput in Mb/s
for Connection Types

Connection Type Upload Rate Mb/s Download Rate Mb/s
Enterprise 802.11n 38.22 36.53

4G LTE 35.82 17
3G 6.31 0.43
2G 0.2 0.16

Rural DSL 2.55 0.47

Table II shows the packet drop rates observed at each of the
servers at the various Amazon AWS locations for the various
client connection types. Note that distance between the client
and server had only a minor impact on drop rates, while the
connection type had a very large impact on drop rates. This
implies that the connection could be a bottleneck for the VoIP
service.

Table III shows the subjective VoIP teleconference quality
measurements observed through each of the servers at the
various Amazon AWS locations for the various client con-
nection types. Note that distance between the client and server
had almost no observed impact on voice quality, while the
connection type had a very large impact on voice quality.

We observed that all of the various connections supported
acceptable VoIP teleconference capabilities except for the 2G
connections. Over all of the acceptable connections, the lowest
upload or download throughput observation was on the 3G
download: 0.43Mb/s Because the VoIP download and upload
data f ows are symmetric, this implies at least a 0.43Mb/s
upload and download throughput connection is required to
support VoIP teleconferencing using our prototype.
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TABLE II: Packet Drop Rates For Various Server Locations and Client Internet Connection Types.

Server Location Client Location Enterprise 802.11n 4G LTE 3G 2G Rural DSL
N. Virginia S. New England 0% 10% 10% 66% 33%

Oregon S. New England 0% 2% 3% 71% 35%
N. California S. New England 0% 7% 8% 67% 34%

Ireland S. New England 0% 7% 7% 73% 38%
Singapore S. New England 5% 2% 2% 68% 39%

Tokyo S. New England 1% 3% 4% 69% 37%
Sydney S. New England 5% 3% 3% 67% 34%

Sao Paulo S. New England 0.30% 4% 6% 76% 34%

TABLE III: Teleconference Quality For Various Server Locations and Client Internet Connection Types.

Server Location Client Location Enterprise 802.11n 4G LTE 3G 2G Rural DSL
N. Virginia S. New England Excellent Good Good Unusable Poor

Oregon S. New England Excellent Good Good Unusable Poor
N. California S. New England Excellent Good Good Unusable Poor

Ireland S. New England Excellent Good Good Unusable Poor
Singapore S. New England Excellent Good Good Unusable Poor

Tokyo S. New England Excellent Good Good Unusable Poor
Sydney S. New England Excellent Good Good Unusable Poor

Sao Paulo S. New England Excellent Good Good Unusable Poor

In addition to our tests of connection-server pairings, we
also tested the scalability of the number of clients that could be
supported on a single server. For this experiment we connected
7 iPod Touch and/or iPhone 5s clients at various connections
on the eastern United States seaboard to a single VoIP server
in the Amazon AWS Northern Virginia data center. With these
7 connections running simultaneously with 4 people speaking
simultaneously we were able to hold as good as a conversation
possible with 4 people speaking simultaneously and no voice
distortion was observed by the 3 non-speaking client users.

VIII. RELATED WORK

Up to now, advances in secure VoIP technologies have
focused on providing security for data in transit [1], [2]
among other general security challenges such as DDoS attacks
[21], identity and key management [22] among many others
[23], [24]. These are all important challenges for secure
VoIP teleconferencing capabilities, but a reliance on point-
to-point encryption between participants has too often led to
complicated VoIP teleconferencing systems and protocols [25].
In general, the complicated layering of protection mechanisms
is often diff cult to execute in practice, leading to overly
complicated systems which are diff cult to build and maintain.
Further, these complicated systems are often diff cult to per-
form security audits on [26]–[28]. Although all of the partial
security solutions have worked very well in isolation and have
served their purposes as a rule, the at time complicated layering
of these protocols has resulted in the introduction of possible
security holes which has enabled data leakage.

To the best of our understanding, there have been no
VoIP technologies which provides end-to-end encryption. Our
solution seeks to provide a clean-slate data protection capa-
bility that is also compatible, or at least easily integrated
with existing VoIP protocols and architectures. Because we
provide end-to-end data encryption, our solution protects data
against leakage even when layered with existing VoIP pro-
tocols for signaling and transport. Besides providing security
against data leakage due to compromised servers, end-to-end
encrypted VoIP teleconferencing has the possibility for greatly

simplifying existing VoIP protocols, resulting in much simpler
implementations and designs, thus resulting in more eff cient
VoIP implementations that are easier to audit.

The basis of our design and implemented prototype for end-
to-end encrypted VoIP teleconferencing is driven by and builds
on recent recent breakthroughs in practical Fully Homomor-
phic Encryption (FHE). Recent breakthroughs in Homomor-
phic Encryption have shown that it is theoretically possible to
securely run arbitrary computations over encrypted data with-
out decrypting the data [29], [30]. There has been recent work
on designing and implementing variations of homomorphic
encryption schemes [10], [31]–[39]. These implementations
have become increasingly practical with published results on
both the runtime of isolated secure computing operations
for some implementation [34], [37], [38] and evaluations of
composite functions like AES [33], [36], [39].

Current approaches to design FHE schemes rely on a
special, highly complex and computationally diff cult operation
called bootstrapping [40] to support the encrypted execution
of arbitrary functions. As such, we use a simplif cation of the
general FHE designs called ”leveled” homomorphic encryption
or Somewhat Homomorphic Encryption (SHE) the supports
limited-depth computations, such as vector addition, which is
much more eff cient because it does not require the use of
bootstrapping.

Besides the runtime challenges of HE designs, there are
serious applications issues associated with data structures
and representations [39]. Furthermore, it has not been well
explored how to convert existing data structures and algo-
rithms into forms that can be eff ciently executed using FHE
technologies. This is because FHE provides a very different
computation model from existing RAM computing devices and
the porting of known data structures and algorithms (such as
for VoIP mixing) is non-trivial, especially for highly eff cient
encrypted execution of these algorithms over the encrypted
input data. As an example of limitations, early uses of FHE
relied on encrypting individual bits in ciphertext. These limita-
tions, in addition to the inherent computational cost of secure
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computing using known FHE schemes, has until now prevented
the practical use of FHE. Our innovation comes from designing
a set of data structures, data encoding method (which we refer
to as a vocoder) and a homomorphic mixing operation which
supports a practical implementation of end-to-end encrypted
VoIP teleconferencing.

In particular, a key innovation of ours is to go beyond
simple bit-per-ciphertext encodings by placing entire VoIP
data frames into each ciphertext. These codec designs are
in some sense much simpler than existing modern codecs,
such as the mu-law encoders [41] which are much more
common in modern VoIP systems. There have been prior
known approaches to Additive Homomorphic Encryption, such
as Paillier encryption [42], but these approaches have not
been practically employed to support encrypted VoIP mixing.
Further, there has been no prior work that has investigated the
data structures required to support end-to-end encrypted VoIP
teleconferencing with homomorphic mixing.

There have been few other approaches to providing secure
VoIP teleconferencing that approach to providing security
properties such as end-to-end encryption. Most relevant is the
work in [43] which discusses a VoIP teleconferencing approach
based on Secure Multi-Party Computation (SMC) [44]. This
prior SMC-based approach is also built by modifying the
Mumble/Murmur software and our team received implemen-
tation advice from the authors of [43]. Unlike our HE-based
approach which requires only one untrusted server for end-to-
end encrypted VoIP teleconferencing, the MPC-based approach
in [43] requires that every participant in the teleconference
have at least one trusted server.

IX. DISCUSSION AND ONGOING WORK

Given our initial design goals, our implementation and our
experimentation, our assessment is that we met our initial
design criteria. More specif cally with respect to the previously
discussed design goals:

1) Sound Quality: The end-to-end encrypted VoIP tele-
conferencing capability provide sound quality at least
as good as a Public Switched Telephone Network
(PSTN) with full-duplex capability.

2) Latency: The end-to-end encrypted VoIP teleconfer-
encing capability provides an end-to-end latency of
less than 90ms for trans-continental conversations,
better than our design goal.

3) Scalability: The end-to-end encrypted VoIP telecon-
ferencing capability should be able to supports four
people speaking simultaneously and we have exper-
imentally verif ed that participants can listen to the
audio stream without a performance impact.

4) Secure: The end-to-end encrypted VoIP teleconfer-
encing capability provides a remote Hermite factor
of 1.006 which provides an encryption work factor
at least as good as the work factor for AES-128
to the best current understanding of both of these
cryptosystems.

5) Resource Efficient: The ciphertext expansion of our
encrypted VoIP data is roughly at a factor of 5. This is
highly eff cient as compared to many other encryption
schemes, especially current homomorphic encryption
schemes.

6) Wide Geographic Area: We have tested the end-
to-end encrypted VoIP teleconferencing capability
with speakers in multiple eastern US states (Virginia
and Massachusetts) and with the server running in
the Amazon AWS cloud in Northern Virginia. We
have also tested in a similar scenario with the VoIP
server in many Amazon AWS locations and clients
on the eastern seaboard of the United States for
various connection types. In all of these situations
performance was not compromised due to geography
and the main determinant of quality was connection
throughput.

7) Portable: The end-to-end encrypted VoIP teleconfer-
encing capability is easily ported to other client and
server types. There is no reason our ANSI C libraries
could not be used to support integration with other
VoIP infrastructure, or even other kinds of clients
such as Android clients.

8) Easily Deployable: The end-to-end encrypted VoIP
teleconferencing capability is easy to deploy, at least
as easy as an iOS app.

9) Usable: The end-to-end encrypted VoIP teleconfer-
encing capability is intuitive and easy to use as it
build on the prior usability of the Mumble GUI.

10) Extensible: The end-to-end encrypted VoIP telecon-
ferencing capability is relatively easy to modify to
add additional and more advanced functionality at a
later date, inclusive of QoS management, encrypted
text message passing, amongst other capabilities.

Beyond our VoIP functionality, our HE implementation is
part of a long-term community vision to support a general,
practical and secure computing capability through a layered
services architecture. Part of our vision is to provide software
interfaces in our design for our highly optimized implementa-
tions of the basic FHE operations (KeyGen, Encrypt, EvalAdd,
EvalMult, Decrypt) for both general and specif c applications.

Although we only utilize limited-depth Somewhat and
Partially Homomorphic Encryption capabilities, our encryption
system design is a scaled-down version of a Fully Homo-
morphic Encryption (FHE) scheme design. When used in
conjunction of a variation of a not previously implemented
bootstrapping scheme [45] simplif ed for power-of-2 rings, our
design offers the possibility for a much more general VoIP
teleconferencing capability that incorporates signal detection
and noise f ltering operations on the encrypted VoIP channels.
This more general design would enable protection against
some of the more practical attacks that could be made by an
adversary such as noise injection attacks where an adversary
inserts noise into a VoIP teleconferencing session to reduce the
ability of participants to hear one another. Using more general
FHE capabilities, we could enable the untrusted cloud host
to securely f lter the encrypted VoIP signals before or after
mixing to reduce the impacts of insertion attacks.

A further aspect of our layered architecture vision is an
ability to mix-and-match a computing substrate at the server
for much larger scalability and throughput. Although not
an immediate focus of the results reported here, our FHE
design ports to other, high-performance and low-cost parallel
computing environments such as FPGAs [18] and GPUs [46]
operating as “FHE co-processors”. If ported to a dedicated
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FPGA co-processor, the runtime of our underlying SHE/FHE
implementation can be greatly improved upon as compared
to the runtime of the corresponding interpreted CPU-only
implementation which we discuss herein.

Taken together, we see our design and experimentation with
our end-to-end encrypted VoIP teleconferencing capability
as being a highly practical and extensible implementation
that protects VoIP teleconferencing users against data leakage
through a very simple but highly secure design. Our primary
path forward is to add more functionality, protection against
other kinds of attacks and increasingly leverage the inherent
parallelism of our design at multiple levels of our implemen-
tation.

ACKNOWLEDGEMENT

The authors wish to acknowledge the helpful feedback
and guidance of Prof. Chris Peikert in preparing the material
discussed in this paper.

The authors wish to acknowledge implementation advice
received from Dave Archer and Thomas DuBuisson.

REFERENCES

[1] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman,
“The secure real-time transport protocol (srtp),” 2004.

[2] P. Zimmermann, A. Johnston, and J. Callas, “Zrtp: Media path key
agreement for secure rtp,” draft-zimmermann-avt-zrtp-04 (work in
progress), 2007.

[3] R. Zhang, X. Wang, R. Farley, X. Yang, and X. Jiang, “On
the feasibility of launching the man-in-the-middle attacks on voip
from remote attackers,” in Proceedings of the 4th International
Symposium on Information, Computer, and Communications Security,
ser. ASIACCS ’09. New York, NY, USA: ACM, 2009, pp. 61–69.
[Online]. Available: http://doi.acm.org/10.1145/1533057.1533069

[4] A. Ornaghi and M. Valleri, “Man in the middle attacks,” in Blackhat
Conference Europe, 2003.

[5] M. Petraschek, T. Hoeher, O. Jung, H. Hlavacs, and W. N. Gansterer,
“Security and usability aspects of man-in-the-middle attacks on zrtp.”
J. UCS, vol. 14, no. 5, pp. 673–692, 2008.

[6] S. Capkun, L. Buttyán, and J.-P. Hubaux, “Self-organized public-key
management for mobile ad hoc networks,” Mobile Computing, IEEE
Transactions on, vol. 2, no. 1, pp. 52–64, 2003.

[7] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “Rfc 3261: Sip: session
initiation protocol,” 2003.

[8] K. Rohloff and D. B. Cousins, “A scalable implementation of fully
homomorphic encryption built on NTRU,” in Proceedings of the 2nd
Workshop on Applied Homomorphic Cryptography (WAHC), 2014.

[9] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based
public key cryptosystem,” in Algorithmic Number Theory, ser. Lecture
Notes in Computer Science, J. P. Buhler, Ed. Springer Berlin
Heidelberg, 1998, vol. 1423, pp. 267–288. [Online]. Available:
http://dx.doi.org/10.1007/BFb0054868
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Abstract

In this paper we report on our work to design, implement and evaluate a Fully Homomorphic
Encryption (FHE) scheme. Our FHE scheme is an NTRU-like cryptosystem, with additional support
for efficient key switching and modulus reduction operations to reduce the frequency of bootstrapping
operations. Ciphertexts in our scheme are represented as matrices of 64-bit integers. The basis of our
design is a layered software services stack to provide high-level FHE operations supported by lower-
level lattice-based primitive implementations running on a computing substrate. We implement
and evaluate our FHE scheme to run on a commodity CPU-based computing environment. We
implemented our FHE scheme to run in a compiled C environment and use parallelism to take
advantage of multi-core processors. We provide experimental results which show that our FHE
implementation provides at least an order of magnitude improvement in runtime as compared to
recent publicly known evaluation results of other FHE software implementations.

1 Introduction

Recent breakthroughs in Homomorphic Encryption have shown that it is theoretically possible to securely
run arbitrary computations over encrypted data without decrypting the data [10, 11]. There has been
recent work on designing and implementing variations of Somewhat Homomorphic Encryption (SHE) and
Fully Homomorphic Encryption (FHE) schemes [2, 6, 9, 12, 13, 15, 18, 23, 24, 28]. These implementations
have become increasingly practical with published results on both the runtime of isolated EvalAdd and
EvalMult operations for some implementation [12, 23, 24] and evaluations of composite functions like
AES [9, 15, 28].

Current approaches to design FHE schemes rely on bootstrapping to arbitrarily increase the size of
computation supported by an underlying SHE scheme. Many current implementations of SHE and FHE
schemes rely on the the manipulation of very large integers so that the schemes are both secure and
capable of supporting the evaluation of sufficiently large circuits. Prior SHE and FHE implementation
designs [12, 15, 23, 24], for the most part, rely on single-threaded execution on commodity CPU-type
hardware, partially due to the difficulty of or lack of native support for multi-threaded execution with
underlying software libraries [20, 25]. This, in addition to the inherent computational cost of secure
computing using known SHE and FHE schemes, prevented the practical use of SHE and FHE.

∗Sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory
(AFRL) under Contract No. FA8750-11-C-0098. The views expressed are those of the authors and do not necessarily reflect
the official policy or position of the Department of Defense or the U.S. Government. Distribution Statement “A” (Approved
for Public Release, Distribution Unlimited.)
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In this paper we report on our work to design, implement and evaluate a scalable Fully Homomor-
phic Encryption (FHE) scheme which addresses the limitations for secure arbitrary computation. Our
implementation uses a variation of a not previously implemented bootstrapping scheme [1] simplified for
power-of-2 rings. We also use a “double-CRT” representation of ciphertexts which was also discussed
in [15]. With this double-CRT representation, we can select parameters so that ciphertexts are secure
when represented as matrices of 64-bit integers, but still support the secure execution of programs on
commodity computing device without expending unnecessary computational overhead manipulating large
multi-hundred-bit or even multi-thousand-bit integers.

We implement in software specialized lattice primitives such as Ring Addition, Ring Multiplication
and the Chinese Remainder Transform (CRT). We use our primitive implementations to construct the
FHE operations of Key Generation (KeyGen), Encryption (Enc), Decryption (Dec), Evaluation Addition
(EvalAdd), Evaluation Multiplication (EvalMult) and Bootstrapping (Boot). We use supporting Modu-
lus Reduction (ModReduce), Ring Reduction (RingReduce) and Key Switching (KeySwitch) operations
to augment the EvalMult operation and support larger depth computations without bootstrapping or
decreasing the security of our scheme.

We implemented this scheme to run in a compiled C environment and use parallelism to take ad-
vantage of multi-core processors. Taken together, our implementation of these concepts points the way
to a practical implementation of FHE with a more efficient (and less frequent) use of the bootstrapping
operation. We evaluate the performance of our software library as a set of compiled executables in a com-
modity CPU-based multi-core Linux environment. The evaluated performance of our library compares
favorably with evaluations of the reported experimental CPU-based evaluation results of other recent
SHE and FHE schemes implemented in software such as in [12, 23, 24].

This paper is organized as follows. In Section 2 we discuss how we represent ciphertexts in our
implementation. In Section 3 we define our NTRU-based FHE scheme. In Section 4 we discuss parameter
selection for our NTRU-based scheme to provide practical secure computing on commodity computing
hardware. In Section 5 we discuss our experimental results from our FHE scheme implemented in Matlab.
We conclude the paper with a discussion of our insights and next steps in Section 6. Data tables
experimental runtime results can be seen in Appendix A.

2 Double-CRT Ciphertext Representation

Previous SHE/FHE designs and implementations use two primary parameters to tune the security pro-
vided and the supported depth of homomorphic computation (without resorting to bootstrapping): the
ring dimension n and the ciphertext modulus q. With these parameters, fresh ciphertexts are typically
represented as n-element integer arrays, where each array element consists of at least log2(q) bits. In
previous implementations the ring dimension n typically ranged from 512 (29) to 16384 (214) and beyond,
while several hundred to several thousand bits was typically required to represent q. In the previous im-
plementations that use this “large-q” approach, the practicality challenge derives from the difficulty of
supporting both a large ring dimension n (which provides comparatively better security) and a large q
(which increases the depth of computation supported).

The requirement of a very large q is potentially problematic, because the number of clock cycles to
support mod-q operations using naive “big integer” arithmetic grows at least linearly (and often quadrat-
ically) with the number of bits used to represent q for even the simplest operations, e.g., modular addition
and multiplication. We use a variation of the double-CRT approach discussed in [15] to circumvent this
problem using the standard technique of a “residue number system” (based on the Chinese remainder
theorem over the integers) to represent ciphertexts as t length-n integer vectors of mod-qi values instead
of a single integer vector mod q where q = q1 ∗ · · · ∗ qt for pairwise coprime moduli qi. For our ciphertext
representation we use t length-n integer vectors of mod-qi values represented as a n × t integer matrix.
With our double-CRT approach, the number of moduli (t) grows to support the secure execution of
larger programs, but more bits are not required to represent the moduli q1, · · · , qt. Our implementation
supports the secure execution of depth t− 1 programs with t moduli.

The double-CRT representation is an extension of the Chinese Remainder Transform (CRT) [19]

2

Approved for Public Release; Distribution Unlimited.
381



representation used in prior SHE and FHE implementations. Chinese remainder transforms are used
to convert ciphertexts from the natural “power basis” representation to the double-CRT representation.
This conversion can mathematically be represented as a multiplication by square n × n matrices, but
admits a fast, highly parallel evaluation procedure that is closely related to the Cooley-Tukey Fast
Fourier Transform (and others.)

As we discuss more in Section 4 below, each of the moduli q1, · · · , qt can be represented as 64-bit
integers and still support the secure execution of non-trivial programs. These 64-bit representations
greatly improve the practicality of our approach to SHE and FHE. By using 64-bit modular operations
to manipulate ciphertexts, keys, etc., we support faster low-level execution of the SHE operations on
commodity 64-bit (or even 32-bit) processors.

An advantage of our double-CRT NTRU approach is that the FHE operations can be highly paral-
lelized. Similar to the standard CRT representation, by using a double-CRT representation, the EvalAdd,
EvalMult operations and key sub-operations in Bootstrapping, Modulus Reduction, Ring Switching and
Key Switching can become t naively parallelized operations. This greatly simplifies the secure execution of
programs using our FHE implementation as compared to other, non-CRT representations of ciphertexts.

3 Cryptosystem

In this section we describe the somewhat homomorphic cryptosystem we use that is very similar to
the NTRU system [16], though it was not until recently that its homomorphic properties were noticed
independently by López-Alt et al. [18] and Gentry et al. [14].

For ease of implementation and design simplicity, we limit our description to power-of-2 cyclotomic
rings. For ring dimension n which is a power of 2, define the ring R = Z[x]/(xn + 1) (i.e., integer
polynomials modulo xn + 1). For a positive integer q, define the quotient ring Rq = R/qR (i.e., integer
polynomials modulo xn + 1, with coefficients from Zq = Z/qZ).

3.1 Basic NTRU-Type System

In this subsection we provide a mathematical description of a somewhat homomorphic NTRU-based
scheme. The message space is Rp for some integer p ≥ 2, and most arithmetic operations are performed
modulo some q ≫ p that is relatively prime with p. Fast addition and multiplication in Rq can be
performed by using the mod-q Chinese Remainder Transform (CRT) representation of elements. The
basic operations of the scheme are as follows:

• Gen: choose a short f ∈ R such that f = 1 mod p and f is invertible modulo q, and a short g ∈ R.
Output pk = h = g · f−1 mod q and sk = f .

Note that f is invertible modulo q if and only if each of its mod-q CRT coefficients is nonzero. The
CRT coefficients of f−1 (modulo q) are just the mod-q inverses of those of f .

Concretely, the short elements f and g can be chosen from discrete Gaussians. E.g., we can let
f = p ·f ′+1 for some Gaussian-distributed f ′. Note that such an f will have expectation (center) 1.
Using a zero-centered f can have some advantages, and may be chosen using a more sophisticated
sampling algorithm.

• Enc(pk = h, µ ∈ Rp): choose a short r ∈ R and a short m ∈ R such that m = µ mod p. Output
c = p · r · h+m mod q.

Concretely, m can naively be chosen as m = p · m′ + µ for a Gaussian-distributed m′, but again,
such an m is not zero-centered. It is typically better to choose m as a zero-centered random variable
congruent to µ modulo p.

• Dec(sk = f, c ∈ Rq): compute b̄ = f · c mod q, and lift it to the integer polynomial b ∈ R with
coefficients in [−q/2, q/2). Output µ = b mod p.

The homomorphic operations are defined as follows:
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• EvalAdd(c0, c1): output c = c0 + c1 mod q.

• EvalMult(c0, c1): output c = c0 · c1 mod q.

With the use of EvalMult, the decryption procedure needs to be modified. Define the “degree” of
ciphertexts as follows: a freshly generated ciphertext has degree 1, and the degree of c = EvalMult(c0, c1)
is the sum of the degrees of c0 and c1. Then decryption of a ciphertext c of degree at most d is the same
as above, except that we instead compute b̄ = fd · c mod q.

3.2 Key Switching

Key switching converts a ciphertext of degree at most d, encrypted under a secret key f1, into a degree-1
ciphertext c2 encrypted under a secret key f2 (which may or may not be the same as f1). This requires
publishing a “hint”

a1→2 = m · fd
1 · f−1

2 mod q,

for a short m ∈ R congruent to 1 modulo p. (Concretely, we can choose m = p · e + 1 for a Gaussian-
distributed e, though a zero-centered m is better.)

• KeySwitch(c1, a1→2): output c2 = a1→2 · c1 mod q.

Note that a1→2, c1, c2 can all be stored and operated upon in CRT form, so key switching is very effi-
cient: the hint is just one ring element, and the procedure involves just one coordinate-wise multiplication
of the CRT vectors. This compares quite favorably to key-switching procedures for other cryptosystems,
which typically require decomposing a ciphertext into several short ring elements and performing several
ring multiplications.

3.3 Ring Reduction

Ring reduction maps a ciphertext from ring n to smaller ring n′ = n/2a, where typically a = 1. Although
we describe a ring reduction operation for power-of-2 rings, more general ring switching approaches exist
and can be obtained from simple generalizations of the approach we describe here.

The basic ring switching operation is a Decompose algorithm, which maps a dimension n ring to
dimension n′ elements. Decompose(c) works as follows:

• Let c = (c0, ..., cn−1) be in the power basis and let w = n/n′.

• We output ciphertexts c′i for each i = 0, ..., w− 1 where c′i = (ci, cw+i, c2w+i, ..., c(m′
−1)w+i). I.e., c

′

i

just consists of those entries of c whose indices are i mod w.

Before applying Decompose we first key-switch the ciphertext to one which can be decrypted by a
“sparse” secret key sk, whose only nonzero entries in the power basis are at indices equal to 0 mod w.
We perform the ring-switching on a ciphertext c, by performing key-switching on c to get cp (encrypted
under sk), then call Decompose(cp) to get the /c′i/. The ciphertext c should only have plaintext data
only in its indices 0 mod w. Otherwise, this data is lost during the ring reduction operation.

3.4 Modulus Reduction

Modulus reduction, initially proposed in [3], converts a ciphertext from modulus q to a smaller modulus
(q/q′), where q′ divides q (and so is also relatively prime with p), while also reducing the underlying noise
by about a q′ factor.

The basic description is as follows: given a ciphertext c ∈ Rq, we add to it a small integer multiple
of p that is congruent to −c mod q′. This ensures that the underlying noise remains small, the plaintext
remains unchanged, and the resulting ciphertext is divisible by q′. Then we can divide both the ciphertext
and modulus by q′, which reduces the underlying noise term by a q′ factor as well.
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Note that the final step (of dividing by q′) implicitly multiplies the underlying message by (q′)−1 mod
p. We can either keep track of these extra factors as part of the ciphertext and correct for them as the
final step of decryption, or we can just ensure that q′ = 1 mod p, so that division by q′ does not affect
the underlying message.

The following formal procedure uses the fixed (ciphertext-independent) value v = (q′)−1 mod p, which
can be computed in advance and stored.

• ModReduce(c, q, q′):

1. compute a short d ∈ R such that d = c mod q′.

2. compute a short ∆ ∈ R such that ∆ = (vq′−1)·d mod (pq′). E.g., all of ∆’s integer coefficients
can be in the range [−pq′/2, pq′/2).

3. let d′ = c+∆ mod q. By construction, d′ is divisible by q′.

4. output (d′/q′) ∈ R(q/q′).

Following [15], the above is most efficient to implement when q = q1 · · · qt is the product of several
small, pairwise relatively prime moduli; when q′ is one of those moduli (say, q′ = qt without loss of
generality); and when c is represented in “double-CRT” form, i.e., each of c’s mod-q CRT coefficients is
itself represented in (integer) CRT form as a vector of mod-qi values, one for each i. Then the above
steps can be computed as follows:

1. Computing d is done by inverting the mod-qt CRT on the vector of mod-qt components of c (leaving
the other mod-qi components unused), and interpreting the resulting coefficients as integers in
[−qt/2, qt/2).

2. Computing ∆ is done by multiplying the coefficients of d by the fixed scalar (vqt − 1) modulo pqt.

3. Adding ∆ to c is done by computing the double-CRT representation of ∆ (i.e., applying each mod-qi
CRT to ∆), and adding it entry-wise to c’s double-CRT representation.

Note that the mod-qt CRTs of ∆ and c are just the negations of each other (by construction), so
their sum is the all-zeros vector. Therefore, there is no need to explicitly compute the mod-qt CRT
of ∆.

4. Computing d′/qt is done by dropping the mod-qt components in the double-CRT representation
of d′ (which are all zero anyway), and multiplying every mod-qi component by the fixed scalar
q−1
t mod qi. (These scalars can be computed in advance and stored.)

3.5 Composed EvalMult

We use the Key Switching, Ring Reduction and Modulus Reduction operations as supporting functions
with EvalMult to improve noise management and enable more computation between calls to the Boot-
strapping operation. Taken together, we form a composite operation, which we call ComposedEvalMult,
from the sequential execution of an EvalMult, Key Switching and Modulus Reduction operation.

Ring Reduction is called during some ComposedEvalMult operations, depending on the level of se-
curity provided by a ciphertext resulting from the result of the Ring Reduction operation. As Modulus
Reduction operations are performed the security provided by a ciphertexts increases (as described in 4.)
Ring Reduction correspondingly reduces the level of security provided by a ciphertext. We implemented
our FHE library such that a minimum level of security δ′ is provided at all times, and this level of δ′ is
a parameter selectable by the library user. If a call to a Ring Reduction operation will result in a level
of security δ ≤ δ′, then the RingReduction is performed in the ComposedEvalMult operation.

Our conception is that due to the ModReduction and RingReduction component of ComposedE-
valMult, it is feasible to coordinate the choice of the original ciphertext width t and the scheduling of
ComposedEvalMult operations so that the final ciphertext resulting from secure circuit evaluation and
which needs to be decrypted is only one column wide with respect to a single modulus q1 and provides
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a level of security at least as great as the original ciphertexts resulting from the encryption operation.
More explicitly, if we need to support a depth t− 1 computation, the initial encryptions should only be
t columns wide to ensure that the final ciphertext is 1 column wide. Whereas the runtime of Encryp-
tion, EvalAdd, ComposedEvalMul depend on the ring dimension and depth of computation supported,
the Decryption operation would hence depend only on the final ring dimension after all ring switching
has been completed. If we need to decrypt a ciphertext that has multiple columns we our double-CRT
representation, we could perform multiple ModReduction operations to reduce this t > 1 ciphertext until
we are left with a single mod-q1 column.

3.6 Bootstrapping

The basis of our bootstrapping approach comes from a new approach to homomorphic rounding. This
approach to bootstrapping is described in detail in [1]. We provide a high-level overview of this operation
here, simplified for our restriction to power-of-2 rings. This operation has the following steps:

1. Round the ciphertext: For each entry v for residue i, we output round(v ∗ q/qi), where the inner
expression is rational, and ”round” means taking the nearest integer. Generally q = 2ℓ is chosen
experimentally, but as small as possible.

2. Convert the plaintext modulus: This is no-op under our simplifying assumptions.

3. Lift the ciphertext and plaintext moduli: This is also a no-op under our simplifying assumptions.

4. Scale the ciphertext: We scale up the ciphertext by a Q/q′ factor (rounding to nearest integers in
the power basis), and embed into dimension N (new ring dimension) as well. The plaintext modulus
is still q′.

5. Compute the homomorphic trace: The following steps are performed iteratively log2(N) times:

(a) ”Lift” the ciphertext modulus to 2Q, which has the effect of making the plaintext modulus 2q.

(b) Apply the automorphism from [1], with appropriate key switching to put the result into the
same key as the original ciphertext in the iteration.

(c) Sum the original and resulting ciphertexts.

(d) Divide the ciphertexts by 2.

6. Perform a homomorphic rounding: This operation is described in Appendix B of [1].

4 Parameter Selection

The selection of n and q1, . . . , qt depends heavily on the plaintext modulus p, the depth of computation
that needs to be supported, and the desired security level. We capture the primary concerns influencing
the selection of a ring dimension n and the moduli q1, . . . , qt at a high level as follows:

• The necessary ring arithmetic should be easily supported on the computation substrate – i.e., that
mod-qi operations (for i ∈ {1, . . . , t}) require few clock cycles.

• The moduli q1, . . . , qt are sufficiently large to enable sufficient noise shrinkage via modulus reduction.

• The ring dimension n and noise parameters are sufficiently large so the scheme provides adequate
security.

• The ring dimension n is not so large that it becomes overly time-consuming and memory-intensive
to manipulate the ciphertexts.

• The plaintext modulus p and any noise added to the ciphertext during encryption is sufficiently
small that we can evaluate reasonably sized circuits with correct decryption.
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Table 1: Dependence of bit lengths of moduli qi, as a function of ring dimension for p = 2.
Ring dimension n 512 1024 2048 4096 8192 16384
Bit length log2(qi) 44 45 47 48 50 51

We choose to add discrete Gaussian noise to the fresh ciphertexts where r = 6 represents the selected
probability distribution parameter. We have found theoretically that the smallest modulus q1 needs to
satisfy the expression

q1 > 4pr
√
nw (1)

in order to ensure successful decryption, where the parameter w ≈ 6 represents an “assurance” measure
for correct decryption (essentially, the probability of decryption failure is bounded by the probability that
a normally distributed variable is more than w

√
2π standard deviations from its mean), and p · r is the

Gaussian parameter of the noise used in fresh ciphertexts. (Hence r is the Gaussian parameter of the
underlying NTRU-like problem.)

After selecting q1, we select the remaining qi ∈ {q2, . . . , qt} such that

qi > 4p2r5n1.5w5, (2)

which ensures that modulus reduction by a factor of qi sufficiently reduces the noise after a ComposedE-
valMult operation. For implementation simplicity, we set q1 to be the smallest feasible solution to
q1 > 4p2r5n1.5w5. Consequently all qi are represented by log2(qt) bits, leading to simpler implementa-
tions.

Table 1 shows how many bits are required to represent q1, . . . , qt for varying ring dimensions for p = 2.
Note that all q1, . . . , qt can be represented in less than 64 bits.

Following [5, 17, 22, 26], we use the standard “root Hermite factor” δ as the primary measure of
concrete security for a set of parameters. The most recent experimental evidence [5] suggests that
δ = 1.007 would require roughly 240 core-years on recent Intel Xeon processors to break. Using the
estimates from [17, 22], we found that in order to achieve a security level δ for a depth of computation
d = t− 1 using the t moduli q1, . . . , qt, we need to ensure that

n ≥ lg(q1 · · · qt)/(4 lg(δ)). (3)

Table 2 shows how δ varies as a function of the ring dimension and depth of computation supported.
Based on our analysis, if we impose the requirement that δ ≤ 1.007, then we would need to use ring
dimension n = 16324 to support depth d = 13 computations.

Table 2: Security level δ, as a function of depth of computation supported and ring dimension for p = 2.
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Dim.
Depth

1 3 5 7 9 11 13 15 17 19

512 1.015 1.045 1.077 1.109 1.143 1.178 1.213 1.250 1.288 1.327
1024 1.007 1.023 1.038 1.054 1.070 1.087 1.104 1.121 1.138 1.155
2048 1.004 1.012 1.020 1.028 1.036 1.044 1.053 1.061 1.069 1.078
4096 1.002 1.006 1.010 1.014 1.018 1.022 1.026 1.030 1.035 1.039
8192 1.0011 1.003 1.005 1.007 1.009 1.011 1.013 1.016 1.018 1.020
16384 1.0005 1.0016 1.003 1.003 1.005 1.006 1.007 1.008 1.009 1.010

5 Evaluation Experiments

We implemented our scheme in the Mathworks Matlab environment and used the Matlab coder toolkit
[21] to generate an ANSI C representation of our implementation. We subsequently hand-modified our
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auto-generated ANSI C to incorporate the pthreads library [4] to leverage parallelism. We compiled
this ANSI C using gcc to run as an executable in a Linux environment. We believe that additional
performance improvements could be obtained by implementing our FHE scheme natively in C.

We chose to implement our scheme in Matlab because it provides an interpreted computation envi-
ronment for rapid prototyping with native support for vector and matrix manipulation which simplifies
implementation development. We found the Matlab syntax to be a natural fit for writing software to
support the primitive lattice operations needed for our double-CRT NTRU-based SHE design.

We wrote our Matlab implementation of our double-CRT NTRU SHE scheme using the Matlab
fixed-point toolbox. The Matlab fixed-point toolbox also provides a path toward generated HDL imple-
mentations of our design that can be deployed for practical use on highly parallel computing hardware
such as FPGAs. Part of our vision for the use of our SHE design is to develop an FPGA implementation
of FHE [7, 8].

We ran our compiled implementation on a 64core server with 2.1GHz Intel Xeon processors and 1TB
of RAM in a CentOS environment. Although we had access to many resources, we used at most 10 GB
of memory and 20 cores during the evaluation of our software implementation.

We collected data on the runtime of the Encryption, EvalAdd, ComposedEvalMult, Decryption and
Bootstrapping operations over selections of depth of computation supported and ring dimension. We
ran 100 iterations of this collection procedure for each combination of t and ring dimension. We used
different randomly selected key sets, plaintexts and encryption noise on every iteration to mitigate minor
variations in performance that may arise due to these experimental random variables on every iteration.
Tables of the raw mean runtime results can be seen in Tables 3 through 7 in Appendix A.

We collected data on the runtime of the Encryption, EvalAdd and ComposedEvalMult operations
for settings of t ∈ {2, 4, 6, ..., 20} and for ring dimensions n ∈ {512, 1024, 2048, 4096, 8192, 16384}. We
collected data on the runtime of the Decryption operation of final ciphertexts, for computations with
fresh (input) ciphertexts with ring dimensions n ∈ {512, 1024, 2048, 4096, 8192, 16384} and depth of com-
putation t − 1 for t ∈ {2, 4, 6, ..., 20}. Note that due to ring switching, decryption runtime is dependent
only on the dimension of the final ciphertext, which is a function of the initial ciphertext and depth
of computation. We collected data on the runtime of the Bootstrapping operation for settings of the
“maximum” ring dimensions n ∈ {512, 1024, 2048, 4096, 8192, 16384} ciphertexts are expressed in where
the resulting ciphertext supports a depth one computation before another bootstrapping operations is
required. As discussed in [1], the depth of computation required for bootstrapping is logarithmic in
the ring dimension. We are currently exploring practical trade-offs associated with the impacts on the
scheduling of bootstrapping to enable more computation between bootstrapping calls.

Our experimental results shows that run times grow linearly with ring dimension n and the ciphertext
width t where t− 1 is the depth of computation supported before bootstrapping or decryption could still
be performed and have a high probability of recovering a correctly decrypted ciphertext. This makes intu-
itive sense because as we double either the ring dimension or the ciphertext width, we roughly double the
amount of computation that needs to be performed with every Encryption, EvalAdd and ComposedE-
valMult operation. Similar results hold for Decryption (Table 6) which shows a linear dependence of
runtime on ring dimension, but under the assumption that decryption occurs after t− 1 ModReduction
operations, including ModReduction operations bundled in ComposedEvalMult operations. Our initial
results show that Bootstrapping runtime is similarly linear with respect to the maximum ring dimen-
sion. As compared to the results reported in [12, 23, 24], our FHE software implementation provides
order-of-magnitude improvements in the runtime of the FHE operations.

6 Discussion and Looking Forward

Our FHE implementation is part of our long-term vision to support a general, practical and secure
computing capability through a layered services architecture. Part of our vision is to provide software
interfaces in our design for our highly optimized implementations of the basic FHE operations (KeyGen,
Encrypt, EvalAdd, EvalMult, Decrypt) for users to construct general applications that require secure
computation on encrypted data with automated calls to supporting operations such as Ring Switching,
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Key Switching, Modulus Reduction and Bootstrapping. Inherent to this architecture vision is our FHE
implementation of lattice-based computational primitives which form a lower layer of our envisioned
architecture. We use these primitives such as ring addition, ring multiplication, modulus operations and
the Chinese Remainder Transforms to run on commodity computing devices such as CPUs and FPGAs.
We designed this modular approach to the implementation of the SHE operations and the underlying
core primitives which allows us to 1) augment these operations with additional operations such as a
bootstrapping operation (which enables FHE), or 2) replace the implementations of a subset of the
operations or primitives as implementation advances are made.

A further aspect of our layered architecture vision is our ability to mix-and-match a computing sub-
strate at lower levels of our architecture. Although not an immediate focus of the results reported here,
the double-CRT representation, coupled with the 64-bit integer representation, simplifies parallelization
of our FHE scheme for easier porting to other, high-performance and low-cost parallel computing environ-
ments such as FPGAs [7, 8] and possibly even GPUs [27]. If ported to a dedicated FPGA co-processor,
the runtime of our underlying SHE/FHE implementation can be greatly improved upon as compared to
the runtime of the corresponding interpreted CPU-only implementation which we discuss herein.

Taken together, we see our design and experimentation with our NTRU-based FHE scheme as a
stepping-stone to a practical implementation of FHE through our layered architecture vision. Our pri-
mary path forward is to increasingly leverage the inherent parallelism of our design at multiple levels of
our implementation. At a low level we are working to port our lattice-based primitives to operate on
commodity FPGAs. This higher level parallelism offers the possibility of more practical SHE and FHE
on both multi-core CPUs or multiple parallel FPGAs operating as “FHE co-processors”.
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A Experimental Results

Table 3: Encryption Runtime (ms) vs. Depth of Computation Supported and Ring Dimension for p = 2.
❳
❳
❳
❳
❳
❳
❳

❳
❳
❳

Dim.
Depth

1 3 5 7 9 11 13 15 17 19

512 2.32 2.83 2.86 3.27 3.39 3.25 4.38 4.64 5.35 5.66
1024 3.87 5.33 5.17 5.98 5.68 5.63 6.94 8.40 9.04 9.20
2048 6.26 6.48 7.01 7.47 7.94 8.78 12.70 13.03 13.05 14.52
4096 12.08 12.27 13.04 14.87 17.38 17.65 20.73 17.46 21.57 22.13
8192 24.53 25.18 26.13 29.07 30.81 32.15 34.43 32.46 36.16 37.90
16384 52.30 55.02 58.05 59.71 60.29 61.98 63.44 64.99 69.96 72.89

Table 4: EvalAdd Runtime (ms) vs. Depth of Computation Supported and Ring Dimension for p = 2.
❳
❳
❳
❳

❳
❳
❳
❳
❳
❳

Dim.
Depth

1 3 5 7 9 11 13 15 17 19

512 0.21 0.32 0.42 0.54 0.64 0.73 1.26 2.11 2.90 3.12
1024 0.30 1.04 0.47 0.57 0.72 0.74 1.40 2.72 2.85 2.93
2048 0.37 0.45 0.55 0.67 0.80 1.00 1.97 3.00 3.04 3.24
4096 0.56 0.65 0.74 0.91 1.92 2.07 2.25 2.43 3.73 3.54
8192 0.89 1.01 1.20 1.36 2.46 2.70 3.69 3.23 5.05 5.44
16384 1.58 1.82 2.12 2.39 3.99 4.19 4.27 4.77 7.16 7.29

Table 5: ComposedEvalMult Runtime (ms) vs. Depth of Computation and Ring Dim. for p = 2.
❳
❳
❳
❳
❳
❳
❳

❳
❳
❳

Dim.
Depth

1 3 5 7 9 11 13 15 17 19

512 16.03 22.73 23.32 22.65 22.87 22.96 24.35 25.24 25.37 25.78
1024 29.15 37.85 39.05 39.11 38.79 39.24 39.49 39.59 39.52 39.68
2048 49.17 66.31 66.77 67.41 67.15 68.38 68.22 69.27 69.45 71.09
4096 99.56 140.42 140.71 141.42 141.26 142.75 143.52 145.51 144.61 148.31
8192 196.83 279.37 280.42 284.40 283.98 285.69 289.59 286.55 292.69 295.69
16384 463.92 623.19 622.74 628.87 630.43 633.37 639.52 642.80 651.20 659.88
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Table 6: Decryption Runtime (ms) vs. Depth of Computation Supported and Initial Ring Dim. for p = 2.
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Dim.
Depth

1 3 5 7 9 11 13 15 17 19

512 0.40 0.26 0.13 0.14 0.10 0.10 0.06 0.06 0.06 0.06
1024 0.87 0.38 0.18 0.11 0.11 0.11 0.11 0.11 0.05 0.05
2048 1.92 0.84 0.38 0.38 0.22 0.22 0.22 0.22 0.12 0.12
4096 3.36 1.70 0.84 0.86 0.37 0.39 0.38 0.22 0.22 0.21
8192 7.22 3.43 1.67 1.72 0.85 0.87 0.86 0.87 0.39 0.40
16384 15.36 7.18 3.37 3.37 1.67 1.67 1.67 1.73 0.87 0.85

Table 7: Bootstrapping Runtime (s) vs. Ring Dimension for p = 2.
Ring Dimension 512 1024 2048 4096 8192 16384
Runtime (s) 5.8 13 26 60 125 275
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9 LIST OF ABBREVIATONS AND ACRONYMS 

2G 

3G 

4G LTE 

AES 

AND 

ANSI C 

ASCII 

AWS 

AXI 

AXI4 

BRAM 

CEM 

CPU 

CRT 

DDoS 

DDR3 

DMA 

DSL 

EC2 

EKWS 

FFT 

FHE 

FHEPU 

2nd generation Wireless Telecommunications 

3rd generation Wireless Telecommunications 

4th generation Long‐Term Evolution Wireless Telecommunications 

Advanced Encryption Standard  

logical And operation 

American National Standards Institute Standard for the C programming language. 

American Standard Code for Information Interchange is a character‐encoding 

scheme. 

Amazon Web Services (Cloud Computing Service) 

Advanced eXtensible Interface 4th generation.  An open standard hardware 

interconnection bus used in FPGA designs. 

Advanced eXtensible Interface.   An open standard hardware interconnection bus 

used in FPGA designs. 

Block RAM (in an FPGA) 

composed Eval Mult 

Central Processing Unit 

Chinese Remainder Transform 

Distributed Denial of Service Computer Network Attack 

Double data rate type three synchronous dynamic random‐access memory Direct 

Memory Access (controller) 

Digital subscriber line computer communications over telephone lines 

Amazon  Elastic Compute Cloud (Cloud Computing Service) 

encrypted keyword search 

Fast Fourier Transform 

Fully Homomorphic Encryption  

Fully Homomorphic Encryption Processing Unit 

Field Programmable Gate Array
Gigabytes
GNU C Compiler
Generation
GNU Multiple Precision Arithmetic Library
Open source software consorti: Gnu's Not Unix
General Purpose Graphical Processing unit
General Public License
Graphical Processing Unit
Hardware Design language (i.e. Verilog or VHDL)
Homomorphic Encryption

FPGA
GB
gcc
Gen

HE
HDL
GPU

GPL
GPGPU
GNU
GMP
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 I/O
ICRT
iOS 
IP 
kbs 
KHz 
KWS 
LTV 
Mb/sec 
MOD or mod

HELib 

mSec 
NAND 
NOT 
NTRU 

NTT 
OR 
PC 
PCI 
PCIe 
PSTN 
RAM 

ROM 

SGMII 
SHE 

SMC 
TCP/IP 
VHDL 
VHSIC 
VOIP / VoIP 
XOR 

SIPHER 

Homomorphic Encryption Library (originally) from Shai Halevi and Victor Shoup 

Input / Output 

Inverse Chinese Remainder Transform 

iPhone Operating System 

In an FPGA context: Intellectual property, in a network context: Internet Protocol 

kilo‐bits per second 

kilohertz 

keyword search 

López‐Alt, Tromer and Vaikuntanathan crypto scheme 

megabit per second 

modulo operation 

Multi Party Computation 

milliSecond 

logical Nand Function (Not(And)) 

logical Not Function 

NTRU is a patented and open source public‐key cryptosystem that uses lattice‐

based cryptography to encrypt and decrypt data. Also “Number Theoretics R Us” 

Number Theoretic Transform 

logical Or operation 

Personal Computer 

Peripheral Component Interconnect 

Peripheral Component Interconnect  Express 

Public Switched Telephone Network  

Random Access Memory 

Read Only Memory 

serial gigabit media‐independent interface (Gigabit Ethernet Physical Layer)  

Somewhat Homomorphic Encryption 

Scalable Implementation of Primitives for Homomorphic EncRyption  

Secure Multiparty Computation 

Transmission Control Protocol/Internet Protocol 

VHSIC Hardware Description Language 

Very High Speed Integrated Circuit 

voice over Internet Protocol
logical exclusive Or operation

MPC
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