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LLINAS' PHASE RESET MECHANISM DELAYS THE ONSET OF CHAOS 
IN SHARK AND DOLPHIN WALL TURBULENCE 

1.    INTRODUCTION 

Just as individual olivo-cerebellar neurons in animals appear noisy but oscillatory and their 
assemblage works reliably, in wall turbulence individual local states also appear noisy but 
oscillatory and laboratory experiments have demonstrated their global spatio-temporal 
organization. The skins of sharks and dolphins, which constantly contend with the seeming 
chaos of turbulence, also have organized patterns seemingly to control the chaos of wall 
turbulence. No analytical theory has been developed showing how this is done. Here, an 
analogy is drawn with olivo-cerebellar dynamics and the mechanisms of phase reset,1 

successfully splitting the pre- and post-breakdown parts of near-wall instabilities to develop a 
new spatio-temporal theory of wall turbulence and how sharks and dolphins use their skins to 
tame the chaos of turbulence. 

The notable spatio-temporal observations of organized flow structures in wall turbulence are 
as follows. In transitional boundary layers, experimental discoveries of arrowhead turbulence 
spots,  arrayed and staggered shedding of hairpins,3 interpretations of hairpins4 and arrayed 
folds,  and analytical theories '  showing organization have been reported. In turbulent boundary 
layers (TBLs), the following experimentally observed/deduced organized flow structures have 
been reported: inclined near-wall vortex pairs,8 streaks,9 bursting,10 hairpins,11'14 pockets,15 large 
spatio-temporal structures with a characteristic upstream interface,1 '16'17 and seemingly coupled 
large and small scales.18'20 

No single analytical theory of flow organization models simultaneously the features of 
transition, TBL, and control methods used by sharks and dolphins. It is not known how to 
separate randomness from organization. Also, it is not known what instability process (which is 
the key to control) takes place in the viscous region closest to the wall, even though this is an 
extensively observed and modeled region of the TBL. Separation of pre- and post-breakdown 
regions would reduce empiricism and help supplant post-dictive models of near-wall turbulence 
with predictive models. 

This report offers a spatio-temporal theory of near-wall instabilities that give rise to 
organized flow structures, and it describes how to control the instabilities that produce these 
structures. It asserts that the apparent chaos of a TBL is the result of a group of self-regulating 
processes, similar to those apparent in biological processes.1'21"23 Significance is attached to two 
prior observations. First, the observation of a near-wall cyclic process26 shows that the sublayer 
thickness initially rises while its growth rate slows, then suddenly undergoes breakdown into 
turbulence and the sublayer thickness falls. The present authors' interpretation is that the 
sublayer undergoes a self-regulating growth-decay cycle; the vorticity accumulating in the 
sublayer during growth is abruptly liquidated into Strouhal arrays of hairpin vortices.16 The 
instant when this happens marks a point of bifurcation; the entire sublayer is always near 



bifurcation. The second prior observation is that high- and low-speed streaks converge and 
diverge.     The present authors' interpretation is that the locations where the streaks converge 
and diverge are where the diffused sublayer vorticity is dislocating due to lateral diffusive 
coupling a la phase change in crystals; hence, forms of the Ginzburg-Landau    (GL) theory of 
superconducting dislocation should phenomenologically apply. 

The near-wall pre- and post-breakdown flows are split heuristically, choosing the complex 
SL oscillator description to describe the pre-breakdown instability process (see Methods in 
appendix A). Olivo-cerebellar control mechanisms1 place the methods of chaos control on a 
common foundation. Assuming that a cellular flow has developed from a homogeneity due to 
end-effects, the theory shows how vorticity develops from a periodic to a chaotic state, and 
then—by dint of new principles of chaos control—how the periodic state is conserved, delaying 
the onset of chaos. Several disparate experimental and theoretical patterns are strikingly 
reproduced. 



2.    PRE- AND POST-BREAKDOWN REGIONS 
IN NEAR-WALL TURBULENCE ARE AUTONOMOUS 

Figure la is a schematic delineating the initial and boundary condition-dependent pre- and 
post-bifurcation regimes of three-dimensional boundary layer growth and breakdown cycles. In 
the pre-biflircation region, the vorticity is diffused but three-dimensional, whereas the bifurcation 
is characterized by an abrupt breakdown (it can be modeled as on/off switching); the diffused 
unsteady vorticity is liquidated down to 1.6 wall units29 in Strouhal shedding of hairpin 
vortices.   '     The pre-bifurcation self-regulating oscillations are modeled using complex SL 
oscillator equations. The turbulence states are described by oscillators of vorticities &>z

+, cox
+, and 

viscous wall-layer thickness Ss
+, where the vorticities are coupled orthogonally to each other and 

diffusively in the spanwise direction. TBL measurements are used to calibrate the oscillators 
(Methods). No part of any state is filtered out as noise. Other oscillators such as ci)y+ and 
pressure p+ may also be considered. All results given are spatio-temporal. The present theory is 
a departure from the Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES) 
solutions of the Navier-Stokes (NS) equations, or any turbulence modeling. 
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Figure la. Separation of Near-Wall TBL into Pre- and Post-Breakdown Regions (Regions of 
Molecular and Eddy Viscosity—Regions without and with Hairpin Vortices, Respectively) 
(Inset: The turbulent part of skin friction (Cf') is self-regulated between limits (broken lines); 
the lower limit may drop to a minimum   of Cf/2.) 

In the figure la inset, a-b-c... represents the decay and growth oscillation cycles of cf that 
oscillate, bounded between the dashed lines. If the process were linear, such as 
c'f + l^odc'r + (x)2c'f — 0, where co is the frequency and ^is the damping, the solution converges 
for C^* 0, diverges for C< 0, and oscillates for C = 0. For {"= 0, since the effect of the initial 
condition (IC) on the system cf is proportionate (no attenuation), the oscillations are large or 
small depending on the IC; furthermore, C< 0. Instead, since the system output continues to 



oscillate within bounds, the effect of the IC is being attenuated; that is, the process is nonlinear 
and self-correcting: c^ + 2/(c^)c^ + a)2Cf = 0, where the damping /(cf) = a0c^2 - 2^0o) is 
negative when c/ is small and positive when it is large. Here, ao is a constant, (ao, Co) > 0, and 
ao, Co, and co determine the shape of the limit cycle. Orr-Sommerfeld and GL or SL equations 
are examples of linear and nonlinear systems, respectively. 

The post-bifurcation region is responsible for turbulence mixing characterized by eddy 
viscosity. The split of the TBL into pre- and post-bifurcation regimes reduces information 
overflow, allowing focus on the instability process. The present work focuses on the spatio- 
temporal instabilities of the pre-bifurcation regime (figures 1 and B-l—the latter in the Extended 
Data presented in appendix B), where the matters most important to chaos control and viscous 
drag reduction occur. 

The arrayed and staggered distributions of vorticity during transition,3 known as K- and H- 
types, respectively, have been accurately reproduced. Time t+ in theory and distance x+ in 
smoke or dye flow visualization (which is a time history and is like a strip-chart record) are 
positive in opposite directions.31 Emmons' turbulence spot2 is reproduced (figures lb - Ig). 
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3.    SHARK DERMAL DENTICLES ARE TEMPLATES OF S-WAVE TRIADS 

In a TBL, the patterns in the distributions of the z gradient of ft>r
+ phase, 5^fft>z

+)/9z+, 
resemble the irregular distributions of pockets15 and shark scales (figures 2a - 2c). The contours 
of (l&Jt I < threshold 0.3) are similar to published high- and low-speed streak patterns.     The 
average streak spacing agrees with other published data (figures 2d - 2f and B-2). 

Simultaneous observations of high and low frequencies throughout the TBL,19'20 and the 
formation of streaks (solitary waves) and carrier waves due to crashing lateral diffusion waves 
(figure 4f, videos S 1-2,3), can be synthesized in a low-/high-frequency wave-guide model of 
wall-pressure fluctuations (figures 2g,h). From the converging/diverging dislocation 
singularities, a pair of streaks and hairpins (they have viscous cores) form a closed laminar 
viscous resonant "cavity" (strictly speaking, the "cavities" are partially connected) (figure 2g). 
Analogy is drawn to Schumann resonance in the ionosphere cavity, replacing the speed of light 
with that of sound, the earth's circumference with the hairpin vortex tube length, and the 
ionosphere's height with the vortex tube diameter. Two disparate groups of resonant pressure 
waves, large and small, respectively, are produced by the cavity length and diameter as (x)nu/ 
Ux = [c+/(A+)]-v/n(n + 1), where <jdn is the angular frequency, v is the kinematic viscosity, 
c+ is the ratio of the speed of sound in the medium c to the friction velocity L/T, A

+ = A(/T/u is 
the length Z,+ or the diameter d+ of the "cavity,", and n is the mode. Losses and leaks to other 
cavities would reduce the measured frequencies and widen the spectral peaks, but the resonance 
would be long lasting, yielding spatio-temporal/TBL pressure fluctuation with two regimes of 
wall-pressure spectral density (PSD) <t> oc <X)^N, where A^is a different constant in the high- and 
low-frequency ranges of resonance. The wave-guide model explains why there is a clear kink in 
the PSD and Reynolds number independence (figure 2h). Typically,32 for a streak length of 1000 
wall units (figure 2e) and 5+ = 15,800 at a momentum thickness Reynolds number of 36,000, 

L+ = —- — 47,000 (considering hairpins inclined at 45° to the flow direction), and d+ = 200 

wall units. For « = 1 to 3, the model yields ^L = 0.0102 - 0.0250 (< 0.5), and ^f^ = 2.37 - u| u| 
5.81 (> 0.5). Compared to the time-averaged wall-pressure measurements of PSD, these values 
correctly lie in two distinct Reynolds-number-independent PSD decay regions, the slope 
changing abruptly near — = 0.5. In contrast with prevailing notions, (jOhigh may be sourced from 

anywhere in the rotational TBL, and (JL)IOW solely from the society of interconnected wall-streaks 
without the hairpins. 



• Present mc 
SK 

♦ NN1 .$ •:> NN2 

SM f 
V 11 & ' 
▼ 
□ 

12 

LAH 

0*0 
l 

V ^> 
T T 0  v 

8 • 
0 

100 

— Ree=27400 
— Ree=39700 
— Re=76700 

V 
"hi* 

*> 

^ 

\ 

10 

Figure 2. Shark Skin (c) Is a Negative of the TBL Instability Map (a, h) 

a: d^(coz
r)/dz+ in (z+, t+); TBL theory; compare with b and c. b: Near-wall smoke tracer 

concentration in (z, x) in TBL;15 y+ = 11-13.  c: Dermal denticles (diamond-shaped scales) of great 
white shark;    depending on species, there may be three to six riblets per scale (five to six riblets 
are rarely seen), d: Present theory, uncoupled \cOz+\ (kx = 0). ^ = 16(1 + O.li), X = (1 - 2i)/Ao. 
\coz

+\(z+, t+) < threshold = 0.3, which present authors call (ah ) streaks,  e: Low- and high-speed 
streak maps obtained using PIV27 in (z+, x+). f: Measurements of mean lateral streak spacing 
(b > y )', red circle: present spatio-temporal-averaged value (figure B-2b).  g: Schematic of origin 
of wall-pressure fluctuations (pw) showing vortex-tube wave-guide model of resonance,  h: Modeled 
resonance frequencies (u)high> ^low) compared with measurements    of spectra ((p(co)) in TBL of 

high momentum thickness Reynolds number (Ree); three vertical lines in each of the (Ohigh and 

(Oiow ranges, represent (from left to right) modes 1, 2, and 3, respectively. 

Note: Figures 2b, 2c, and 2e-f are sourced from references 15, 33, and 27, respectively. 
Figure 2h is adapted from reference 32. 



4.    TBL IS PERENNIALLY AND CHAOTICALLY TRANSITIONAL 

The thickness of the molecular viscosity-dependent wall layer undergoes limit cycle 
oscillation between approximately 5 and 50 wall units (figure B-ld). It blends with the viscous- 
sublayer near the wall and temporal inner extrapolations of the log-layer at the other edge. The 
phase-averaged streamwise velocity profile in the v+ direction approaches a modified Blasius 
relationship as the sublayer thickness approaches >'+= 50 near bifurcation (figure B-l). The 
appearance of TS (Tollmien-Schlichting) wave-like, short-span, two-dimensional oscillations in 
the wall layer is expected in the pre-bifurcation region in this latter part of the sublayer growth 
(see figure B-l and the Supplementary Information (SI) in appendix C); these oscillations are 
termed pseudo-TS waves (STS) (see Methods). The distortions of these waves are shown in 
figures 3a-l, which present iso-contours of 0((Oz+), as a series of interrupted parallel lines. 

Streaks are formed where a temporal series of diffusion waves ends (figures 3a, 4b). They 
are straight in arrayed transition (figure 3a, left). In a TBL, the streaks meander (figure 3a, right) 
due to unequal lateral phase-shock velocities ' approaching from the opposite boundaries 
(figures 4d, 4f). 

Figure 3c (bottom) shows synchronous oscillations. Large and small phase mismatches in 
successive oscillations  '  '    distort the phase maps. In figure 3b (top and bottom), tongues form 
due to phase mismatch between prior and later oscillations. Figure 3c (top and middle) shows 
oblique waves. The triad base (black arrow) is the hairpin nucleation site (figure 4c). Figure 3d 
shows numerical results 4 of staggered iso-shear contours in H-type transition for comparison. 

In figure 3e (top), waves end; in figure 3e (bottom), waves merge and come to rest when 
they have a large phase difference. Since the instabilities originate in two-dimensional waves, 
the number of waves ending and merging is equal. 

Within the transitional range that exists before chaos ensues, the waveforms are of K- and 
H-types  (figure 3f); these are, respectively, fairly precisely aligned and staggered waveforms. 
After chaos ensues in these waveforms, the flow is termed a TBL. Here one also finds two kinds 
of instabilities, aligned and staggered,35 but approximately so, where the latter grows spatially 
(subharmonic formation as in H-type) but the former doesn't. These instabilities are named A- 
type for aligned waves and S-type for staggered waves. Also, they are called triads since they 
have two oblique waves and a two-dimensional oscillation at the base (the former is formed 
when, locally, the vorticity fluctuates differently from its neighbors—a so-called pacemaker). 
The S-type wave gives rise to nucleation sites of hairpin vortices at its base (figures 4a and 4b). 

Figures 3f and 3g point out (confirmed later in figures 5 and 6) that in the journey from H to 
S, the arrest of the growth of the S-triads is synonymous with the preservation of H-type 
transition and chaos control. In figure 3h, the seemingly complicated pattern is actually 
composed of groups of interacting S- and A-triads. 



The comer and periodic boundary conditions produce variations of instabilities. The former 
produces a Strouhal shedding of hairpin vortices (blue at right in figure 3j and blue outlines at 
left in figure 4b), with oscillating interaction with oblique waves (figures 3i, right; 4b; B-2a), 
while periodic boundary conditions produce pure oblique waves (figure 3i, left). In figure 3i 
(right), in comers, waves end and merge. 

In a TBL, there is sometimes an avalanche of interactions between the S- and A-triads in 
which the S-type jumps streaks, laterally swallowing an array of A-triads (figures 3j and 3k). 
The process can continue downstream, and repeated subharmonic growth fills the spectrum; note 
that in contrast to H-type, S-waves can grow. Apart from these global pattems, locally the 
vorticity waves can end or merge (figure 3e) or oscillate (arrow in figure 3c) between them. 
Interactions of both wave triads yield spatio-temporal self-regulation (figure 3k). 

In figure 3k, the group pattems are unstable because the antagonistic diffusion is slow. In 
biology, stable patterns are produced in embryos when the head-to-tail and left-to-right axes are 
being determined (with some handedness), the signal for this vanishing soon after. Similarly, K- 
and H-types of transition are produced when the IC and BC are felt, and then K- and H-types 
become unstable (the effect of handedness growing to further bifurcation), which is called a 
TBL. Therefore, the activator (a) and inhibitor (b) equations21 in a TBL have many variations 
of the same embryonic theme, depending on how many bifurcations have taken place (i.e., how 
high the Re number is). To control chaos, sharks and dolphins manage these variations using 
competing instabilities. 

In figure 31, atz+ = -200 the vorticity diffusion rates in the activator (:: a) and inhibitor (:: b) 
parts of the self-regulation process in S-waves are equal, yielding the boxed "trapped spiral." 

When weakening (less red), the arrayed K-type transitional waves become A-type in a TBL, 
whose start is given by the onset of chaos (see figure 5k). However, when strengthening, both 
K- and H-type transitional waves become S-type in a TBL (figure 5f). This becomes clear 
during chaos control where the instability process is slowed down. 

10 
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5.    LATERALLY CRASHING DIFFUSION WAVES PRODUCE WALL STREAKS 

Figure 4a shows the distribution of diffusion. In figure 4b, the phase (0.95::) and amplitude 
(AQ/I) of coz

+ are overlaid. They both detect the streaks where the iso-phase ends alternately. 
Hairpin vortices are shed from the left comer boundary in 4b. Figure 4c reproduces the 
orthogonal plane smoke flow visualization showing the formation of "pockets"15 and hairpins. 
Section A-A and inset Ci show that pockets15 (figure 2b), folds,5 and S-triads are identical 
waveforms. A hairpin vortex (4c, lower sketch and photograph) forms at the base of the S-triad. 
After comparison, the hairpin vortex nucleation sites are marked in figures 4a and 4b (markings 
also in figure 3c (top) and figure B-2a. 

Figures 4d - 4f, B-3, and video SI-1 show the simultaneous formation of streaks and small- 
wavelength oscillations ("carrier waves") of the state. coz

+ streaks form where Re(a)z
+){z+, t+) = 0. 

An antagonistic pair of diffusion waves approaches each other laterally.31 As they slow down 
exponentially, nearly coming to a halt, they abruptly devolve into small-wavelength carrier 
waves. The lateral waves alternately exceed each other's speed, slightly overshooting the 
dividing plane and producing a sliding oscillation in t+ (figures 3a and 4f). (It may be that 
animals are using inter-aural time differencing of a lateral pair of surface pressure sensors to 
detect the streaks.) The overshoot causes streak-meandering in a TBL, which is absent in K- 
transition (figure 3a). To control chaos, periodic surface templates prescribe the overshoot. In 
figures 4d - 4f, the wave-crashing is depicted in relation to lateral arrays of slightly tilted, near- 
wall (mushroom) vortex pairs (4d) as a nonlinear pendulum, where the saddle "s", a point of 
neutral equilibrium, oscillates. 

The formation of carrier waves and lateral crashing are efficient when the IC wavelength of 
coz

+ is 200z+. Crashing is not clear when the a)z
+ wavelength is reduced from 200 (see video SI- 

2) to 100 (see video SI-3). 

The long streaks are like solitary waves with short-wavelength carrier waves riding on them, 
giving the notion of coupled high and low frequencies.   "    Since a TS wave is the natural 
oscillation of the pre-breakdown u-based diffused near-wall vorticity, the carrier wave is a form 
of orthogonal  TS wave. As was shown in section 3, a wave-guide model indicates that the 
lengths of the viscous cores of streaks (figures 2c, 2e, "f' in figure 4e), which bounce around the 
wall-parallel TBL, produce low-frequency pressure pulses and their diameters produce distinctly 
high-frequency pulses. 
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Figure 4. Nucleation Site of Hairpin Vortex and the Origin of 
Streaks end Small-Wavelength Oscillations 

a: \d a>z Idz |. b: Overlay of iso-phase (0.95TT) and amplitude (Ao/2) of (0:
+. a: transition; b-f: 

TBL. c: Figure 5 ofFalco   showing simultaneous smoke visualization of surface parallel (top) 
(y   =9-14) and longitudinal plane (bottom) TBL. Inset Q: S-triadfrom a.  Circles in a and b 
are nucleation sites of hairpins,  (d-f): Simultaneous formation of streaks and small-wavelength 
oscillations of the state, d: Cross-stream (z, y) near-wall smoke tracer concentration;  the 
mushroom-like longitudinal vortex oairs are slanted,  e: Schematic of nonlinear pendulum 
behavior ofvorticity diffusion; phase: (s: saddle, unstable 180°) and foci (f: stable, 0°). 

f (Upper Traces): Re(coz
+)(z+, t+), /u- = 0.5. coz

+ scale bar at z+=50: 2VT j1] = 1.2. Note crashing 

of lateral diffusion waves and formation of carrier waves.  Color indicates ^(coz
+) at z+=50. 

f (Lower Trace): Re(coz
+)(z+, i* = 0); scale bar at z+ = 50: 0.2. 

Note: Figures 4c and 4d are sourced from references 15 and 5, respectively. 
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SHARK SKIN IS A SPATIO-TEMPORAL DIFFUSION TEMPLATE FOR 
RESETTING THE PHASE OF CHAOTIC WAVE TRIADS 

Figure 5 shows the results of the modeling of chaos control by sharks. Skins of great 
white,33 Atlantic sharpnose,36 and tiger shark37 dermal denticles (dd), with embedded riblets, are 
shown in figures 2c, 5a, and 5e, respectively. The model using a bi-modal periodic distribution 
(inz, t, or z, x) of the coefficient of lateral diffusion ^ (see Methods) is shown in figures 5b and 
5d. The agreement of figures 5b and 5d with the \G>Z

+
\ of TBL S-waves (figures 5c and 5f) and 

shark skins (figures 5a and 5e) is remarkable. 

Figure 5f shows the baseline TBL \o)z
t\. Figure 5g is a diffusion contour map of the riblets 

(R), the dermal denticles (dd), and of their combination (R+dd). At the uninterrupted riblet 
spacing of 10z+, lateral diffusion (£„) perturbations of 2.5% (weak riblets) delay the onset of 
chaos, and K-type waves are conserved for t+ < 80,000 (figure 5h); a 20% perturbation (strong 
riblets) then applied at /+ > 80,000, the chaotic region in 5h, produces orderly arrays of A-waves, 
suppressing S-waves (figure 5i). However, the riblets need to be interrupted along the dd 
outlines (5d,e,g) because the animal is flexible and non-uniform in JC. 

Figure 5j shows the combined effects of weak riblets that are interrupted by the dd (see 
Methods). Figure 5k shows the effects of combining weak interrupted riblets, dd, and strong 
diffusion perturbations after chaos has ensued (f* > 80,000). This is the predicted chaos control 
due to sharks. 

See figures B-4 through B-7 and the SI for additional results. 
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Figure 5. Shark Skin Is a Template of Organized Lateral Diffusion for Control of Chaos Onset 

a: Atlantic sharpnose dd.     b: Diffusion (ILI(Z
+

, t )) analog of a. c: \coz
+\(z+, t+). A single S-triad is 

shown, d: Modules a and c are overlaid on a staggered model ofb. e: Staggered array ofdd in 
tiger shark*' compares with d. f-k: \coz

+\ maps; riblet spacing s+ = 10. f: Baseline TBL. 
gi ji. analog of surface: R, dd, and R+dd refer to riblets, dermal denticles, and combined riblets 
and dermal denudes, respectively, h: Uninterrupted weak riblets; chaos onset is delayed; arrayed 
K-waves ere con?er\>ed. i: Uninterrupted strong riblets at t+ > 80,000; arrayed A-waves are 
produced, y. Coir.blned weak riblets of smoothly varying heights as in dd. k: Weak, then strong 
riblets and dd. 

Note: Figure 5a, overlay in figure 5d, and figure 5e are 
sourced from references 36, 36, and 37, respectively. 
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DOLPHIN LATERAL MICROGROOVES VIBRATE 
TO RESET PHASE OF CHAOTIC WAVE TRIADS 

Figure 6 shows how dolphins control chaos with surface perturbations coupled to the SL 
oscillator. The baseline TBL in figure 5f applies. In dolphins, the lateral surface microgrooves 
(inset A in figure 6)38 organize the lateral coupling and a two-dimensional SL oscillator is 
approached (see Methods); the TS waves are prominent in figures 3c (bottom) and 4b. 

The dolphin's microgrooves impart variation in the coefficient of lateral diffusion whose 
periodicity matches that of TS waves. Active vibration    of the microgrooves, modeled as/«/ 
(see Methods), is assumed to be in integer multiples (1, 16) of STS waves (figures 6a and 6b). 
With bimodal vibration (1STS + 16STS), chaos onset is delayed the most (figure 6c). With 
grooves alone, fewer S- but more A-triads are produced (figure 6d). When microgrooves and 
vibrations (16STS) are combined, there is a clear delay in the onset of chaos (figure 6e). 

The diffusion template lock-in mechanism of chaos control by sharks and dolphins is a 
spatio-temporal version of Llinas' olivo-cerebellar temporal SPR mechanism1 (figure B-10). In 
the latter, the relative physical locations of the inferior-olive neurons are not important for phase 
synchronization, while the spatial locations of the oscillators are important in TBL chaos control. 

Riblets in sharks are longitudinally proud and periodic in z . Dolphins can have longitudinal 
arrays of transverse microgrooves inx+ (inset A in figure 6). Both surface patterns control 
diffusion. Compared with the baseline in figure 5f, the S-triads in figure 6e are fewer and there 
is a corresponding increase in A-triads; the \<J)Z\ map is similar in riblets (figure 5i). 

When chaos is controlled, turbulence production-induced drag is reduced, the limit being 
50%.30 The present authors therefore see nothing in their theory that contradicts the prior 
claims   '   regarding dolphins' high drag reduction. 

Engineering drag reduction methods, such as outer layer devices42 (figure B-8) and 
Stokes' 0'43 spanwise shaking of walls (figure B-9), potentially can be modeled as periodic 
perturbations that are external (Iex,) to the SL oscillator (lacking in coupling). 

17 



-800 800 

Figure 6. Dolphin Chaos Control with Surface-Grooved Diffusion Perturbations Coupled to 
the SL Oscillator, and External  TS-Wave Microvibration of Surface 

a — e: \o)z'\ maps. Baseline TBL is as in figure 5f. Surface microvibration: 1 TS (a); 16 TS (b); 
1 TS + 16 TS (c).  Inset A: Microgrooveddolphin.'    d: Effect of microgrooves. e: Combined 
lateral microgrooves and 16 TS vibration. 

Note: Inset A in figure 6 is sourced from reference 38. 
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8.    DISCUSSION AND SUMMARY 

Wall turbulence models, on which some climate models may be based, tend to be statistical, 
although there is no instant when any of the states have profdes matching these models. 
Economics theories have similar artificial reality. Newton's laws of motion, on the other hand, 
apply at all instants, and the present theory does as well. If IC and BC are sufficiently known, 
the present theory makes a short-term theoretical prediction. It describes TBLs using orthogonal 
SL oscillators diffusively coupled laterally. Sharks and dolphins control the growth of chaos in 
turbulence and maintain the existing transitional organization by (1) imposing a weak lateral and 
longitudinal periodic perturbation to the oscillator's diffusion matching their skin topology, and 
(2) imposing periodic perturbations external to the oscillator much as in Llinas'1 olivo-cerebellar 
synchronization, again using their skin. 

Turbulence production over a wall is highest near^ = 10 - 15. The theory considered 
instabilities in a layer parallel to the wall at this height. Due to wall proximity, the coupling with 
the third orthogonal oscillator {a>v

+) was ignored. In the unstable wall-parallel layer at ^+ ~ II, 
unsteadiness of the pre-breakdown laminar flow is modeled by a parabolic equation44 (equation 
A-2 in Methods), where reversal of the direction of vorticity diffusion makes the equations 
singular parabolic, whose attribute is irregularities within the flow field. In the present case, this 
gives rise to rows of stagnation points (breaks in a)z

+ contours—figure 3a) appearing as streaks, 
and dislocation sites where streaks merge or diverge. The boundaries where diffusion changes 
sign are regions of large variation in tracer concentration and density (figures 3b and 3e), and 
where chaos ensues (e.g., at the K to H transition, as slightly-handed streak jumps). The surface 
templates in sharks/dolphins control the motion of the stagnation points by ensuring similar 
handedness in bifurcations24 of the diffusion wavefronts, restricting the diversification of scales. 

The Reynolds numbers (Re) of whales (up to blue whales) (0.4-3 x 109) and dolphins (0.2- 
O Q 

1.75 x 10 ) are similar to those of ships/submarines (> 2 x 10 ) and unmanned underwater 
vehicles (> 2 x 10 ), respectively. The feasibility of cost-effective chaos control in practical 
flows is not in doubt. The removal of/ex/ establishes a new TBL having higher lateral mixing 
(figure B-8b), and dolphins may also delay the onset of chaos up to almost halfway between the 
dorsal fin and the tail (inset A in figure 6), beyond which chaos' enhanced mixing keeps the TBL 
attached. It would be useful to document the dynamic skin properties of whales whose high Re 
number may involve chaos management mechanisms similar to high-frequency neural control.45 

Currently in weather simulation, the mean paths of hurricanes are computed but no 
predictions are offered for tornadoes due to spatial resolution issues. Alternatively, since a self- 
regulating model of weather should be valid,46'47 a low spatial resolution model would produce 
accurate results if weak orthogonal oscillators are included as control oscillators. Four-equation 
riblet modeling carried out with low spatial resolution (see figures B-7a, c, e) reproduces the 
measurements qualitatively. Tuning such oscillators with high spatial resolution is difficult; 
high-resolution simulations with fewer orthogonal coupled oscillators have been emphasized 
here instead. Even a one-oscillator model {coz, figures If, 2d, B-4, B-7f-h, and B-8b,c) captures 
some of the TBL spatio-temporal organization. Persistent chaos control, as animals must be 
doing, requires inclusion of all three orthogonal coupled vorticity oscillators of amplitude 1, 
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0.01, and 0.0001 (in the z, x, and ^ directions, respectively), and of the viscous layer thickness, 
which has a mass conservation property. 

For the delay of chaos onset, the perturbations required are weak. But the diverse 
interactions of S- and A-wave triads produce a Reynolds number-like effect (see figure 7D2 in 
Kazantsev et al.1), which requires larger perturbations for control. 

Laterally growing non-uniformities and end-effects are present even in laminar boundary 
layers (LBLs). LBLs approaching Recri, become unsteady and can be described by highly 
diffusive SL equations with periods matching those of TS waves (see Methods). Such two- 
dimensional waves are seen in TBLs, and during control they become clear (figure B-8b). 
During swimming, dolphins also develop arrays of parallel azimuthal microgrooves not only 
near their nose, but over most of their length (see inset A in figure 6). 

The lateral crashing of diffusion waves in a TBL is similar to oblique shedding in cylinders 
spreading from the ends to the center at the speed of phase "shock."31  While the crashing of 
diffusion waves and the formation of carrier waves and streaks remain qualitatively unchanged 
with lateral diffusion, the carrier waves are clearer at low values (//,■ = 0.5) (figures 4f and B-3). 
When //,. drops from 64 to 0.5 in t+ = 1700, the number of crashes increases from four to five, 
which is a Reynolds number-like effect. Although results are given here primarily for^,. = 16, //,- 
should change in steps as the near-wall turbulence instability goes through bifurcations to 
produce STS waves; arrayed, staggered, and chaotic triads; and their more intricate interactions. 

The present approach is compatible with common engineering drag reduction methods, 
which are modeled as perturbations external {Iexf) to the TBL oscillators (figures B-8 and B-9). 

Lateral diffusion of vorticity forms streaks and small-wavelength carrier waves, but 
evidence of their coupling is lacking. A society of laterally balancing streaks form ad inflnitum 
on a whale from head to tail—but the size of the largest scales is limited by the competition of 
the activator and inhibitor parts of the self-regulation process of instabilities. 

Only the phases of non-uniformities that are lower or higher even-harmonics of STS 
wavelength are reset to null the instigation of chaos because other wavelengths do not couple 
with the TBL oscillators. This accrues from the disturbance rejection property of SL equations. 
This property limits the work cost of control, which would be less than previously thought. 

Dolphins use wavelengths of (STS, 16STS) for longitudinal surface vibration acting on the 
coz oscillator for control. Dolphins' fatty skin is conducive for this, whereas sharks' dermal 
denticles and riblets are made of rigid teeth-like material that acts like armor. In sharks (figures 
5f-5k), external perturbation did not yield large benefits. In the evolutionary reaction-diffusion 
bifurcations,   '    sharks and dolphins have taken more aggressive and docile turns, respectively, 
and their chaos control strategies are consistent with that selection. The hydrodynamics, control, 
and sensing of sharks/dolphins' flapping fin propulsion are self-regulating,24 just as their wall- 
turbulence is. Both flapping fin hydrodynamics and wall-turbulence are transitional,35 and have 
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bi-stable attractors. The mechanism of how these animals use their actuators, sensors, and 
controllers to interact with their surroundings has a common theoretical foundation. 

The self-regulating, transitional, and deterministic nature of a TBL at all Re numbers makes 
chaos control an exercise in finding the locally effective spatio-temporal phase reset mechanism. 
The perturbations of tornadoes in planetary boundary layers are likely to have predictable control 
solutions, just as sharks and dolphins likely deal with the oscillating fin-necklace vortices 
submerged in their TBLs. Theoretical insights into cerebral electrical storms during seizures 
could be gleaned by modeling neuronal networks as dislocating three-dimensional streaks. 

This report has shown chaos control by surface "emplating" (evolutionary interactive 
templating between the turbulence environment and the animal skin) and external stimulation. In 
a broadened definition, nascent chaos control may be deemed to be present in other systems in 
nature, such as economics regulation, parental guidance, social bonding, rhyming naming of 
siblings, and large-scale societal regimentation. 
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APPENDIX A 
METHODS 

METHODS SUMMARY 

Evolution of spanwise and streamwise vorticity disturbances in a TBL is modeled by two 
diffusively-coupled continua of Stuart-Landau oscillators, derived near the critical Reynolds 
number from the Navier-Stokes equations. These oscillators are orthogonally coupled to each 
other in a manner consistent with continuity. The equations apply in the pre-breakdown TBL, a 
region of time-variable thickness dominated by molecular viscosity rather than eddy viscosity. 
The equations' parameters are derived from published experimental values measured in the post- 
transition {Rex » Rex,cl-ii) TBL. TBL control is accomplished by spatio-temporal variation of the 
diffusion and/or by an external source of vorticity. The details are given below. 

APPLICABILITY OF THE STUART-LANDAU EQUATION 

From the Navier-Stokes equations, Stuart    and Watson49 showed that small disturbances 
A(t) in parallel (Couette, Poiseuille) flows near the critical Reynolds number Recrii evolve via the 
Stuart-Landau (SL) oscillator equation (A-l). This model is broadly applicable    for the growth 
of disturbances near a bifurcation point: 

A = aA-XA2A\ (A-l) 

where A is any physical quantity indicated by the Navier-Stokes equations,31 and (•), CO* indicate 
time derivative and complex conjugate operations, respectively. The complex coefficients o-, X 
are determined by the flow and modeled quantity. A forced form of equation (A-l) can 
quantitatively model the force fluctuations on a flapping fin.24 The model is applicable to non- 
parallel flows if the flow development time scale is slow compared to that of perturbation 
growth. 

Spanwise diffusive coupling can be introduced into equation (A-l), such that 

y4(z, t) = ff.4 + ^0 - Ai42i4* (A-2) 

Equation (A-2) was proposed50 for a bluff body shedding model composed of discrete Van der 
Pol elements, which are a special case of SL oscillators.     This coupling is the viscous force 
produced by Newtonian fluid between closely-spaced oscillators, and approaches the differential 
form as spacing goes to zero. This model reproduces the growth of chevron patterns in the 
cylinder wake. 

Einstein and Li   observed a time-dependent viscous layer in the near-wall region of the 
TBL. This layer's growth rate is inversely proportional to its thickness and is liquidated when its 
thickness renders it unstable. This liquidation ejects the built-up vorticity into the outer flow. 
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and then a new cycle resumes. This sublayer's existence is required to employ the SL equation 
in the TBL because the assumption Re ~ Recri, required to employ the SL model is valid there. 

NEAR-WALL TBL MODEL 

Spanwise and streamwise vorticity perturbations, a)z
+ and to/, respectively, were modeled 

by the SL equations 

d)+ = ((raj+ + M^r-Az wz
+2aj+* -/cja^ljr, (A-3) 

aj+ = (ffa)+ + \i j^- - Xx aj+ &)+  + fcz-^f-J T, (A-4) 

where T is a time scaling and the parameters kx and /cz are positive, real coupling constants. The 
notation O* indicates a quantity in wall units. The coupling mechanism indicates a sink in o)^" 
scaling with 60^", and a source in OKJ" consistent with continuity, assuming that (xiy « (o^ and 
d/dx « K: d/(3t. This is called an "orthogonal" coupling due to this consistency with continuity. 
The simplest mechanism meeting these requirements was chosen, but others exist. 

PARAMETER ESTIMATION 

The SL oscillator in equation (A-3) has base amplitude AQ = (ff/v)    and spanwise scale 
proportional to Cu,/ov)   , where (Or, (Oi indicate the real and imaginary parts, respectively, of a 
complex quantity. Near the wall, the wall-shear stress zwau ~ cor, since dvldx ~ 0 (D is the 
surface-normal velocity). The quantity fwaii/fWaii is in the range51 0.32 - 0.40, where (•) and (•) 
are the standard deviation and mean, respectively. In the present model, AQ = 0.63 yields 
(Oz = 0.364; oJz = 1 by definition. For a = ov(l + CQ/), JU = jur(l + C\i), and X: = (I + C2i)/Ao2, 
C] = 0.3, C2 = -3 have been employed (unless noted), CQ = 1 yields unit linear frequency. 

Unless noted, the spanwise scaling factor ^r = 16. This is estimated from31 <jr- fxr(7r/Lc)2 - 
s{Re - Recrit) = 0 for characteristic aspect ratio Lc. Re = Recri, is assumed per the self-regulating 
nature of the sublayer. Lc is the ratio of near-wall streak spacing to measurement layer height 
(figure 2f27). The best fit for points in the range 0 </ < 50 is /^ = 467J(y+)'L62. Using this fit, 
fir= 16 corresponds to;/ = 8.10 near the range 9 <y+ < 14 indicated by comparison of the 
present results with spatio-temporal observations.15 

o 

Townsend derived fWaii,x/^waii,z = 1/100 using assumptions similar to those used in the 
present work. It is then estimated that Xr

x = 1002 A/. Order-of-magnitude considerations yield kx 

= 1 and ^ = 0.01. T = 0.005 was chosen for computational convenience, since the oscillator 
time scale is arbitrary. 

A-2 



PERIOD OF A TWO-DIMENSIONAL UNCOUPLED SL OSCILLATOR 

Let coz
+(z+, t+) = M(z+, t+)exp{i0(z+, t+)), where magnitude M e R, M > 0, and phase jJ € R. 

In regions where M(z+, t+) ~ M(/+), 0{z+, t+) ~ $ (/+), equation (A-3) simplifies to 

M = (arM - A$M3) T,       (p = (at - Af M2) r, 

such that for M> 0,  lim M = Ao= (cr,//!,.2)172. An analogous limiting value 000= (o;- (<Tr/Ar
z)A.iZ)T 

t + ->oo 

yields the period of the two-dimensional (Tollmien-Schlichting) wave T= In/cpoo, where T = 
IOOTT for the constants used here. This period is used in the modeling of microgrooves and 
microvibrations in dolphin chaos control. 

SIMULATIONS 

The equations are solved with a finite-difference fourth-order Runge-Kutta solver with time 
step dt+ = 0.2 and spatial grid dz^ = 1. Harmonic boundary conditions are applied at z = ±L/2 
unless noted. When used, comer boundary conditions coz

+{±L/2, t+) are applied in combination 
with ar= (7r(z ) near the boundary; to obtain cr,(|z+| - L/2) ~ (JriCenter and smooth descent to zero at 
the boundary, (Tr(z

+) = cr,-ce„,erx [er/((z+ + L/2)/25) - erj{{z+ -LI2)I25) - 1]. The value 0"r>eenter (= 1) 
is the a, value used for all z when using harmonic boundary conditions. This equation yields a 
"comer" width of z+~ 50, matching Recrj,. Unless noted, the initial conditions, which embody 
lateral cellularization due to end-effects, are 0)^{z+, 0) = 0.1sin(27i/+/200), (o^{z+, 0) = 10"57V(z+), 
where N{z+) are uniformly distributed random numbers with range (-0.5,0.5) {N simulates free- 
stream turbulence). 

CONTROL 

"Controlled" forms of equations (A-3) and (A-4) are: 

6>t = (W + /iz(z+,t+)gf - Az cofaif - /c,K+l + /e
z.t(z+,t+))T, 

d)+ = {aa>+
x + ^(z+,t+)01 - A- ayfcot* + kz

d-£ + /e^(z+,t+)) 

The physical mechanism of "/^-control" is alteration of the local aspect ratio Lc. The mechanism 
of "/exrcontrol" is the addition of vorticity from a source outside the model. 
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SHARK CHAOS CONTROL 

Uninterrupted riblets are modeled using //(2+) = //(z+) =/Z(l + KMsin{2nz+/s+)), where p. = 
16(1 - 0.3/) is the flat plate value. The spacing between riblet peaks s+= 10 is used unless noted. 
KM gives the "strength" of the riblets, where the terms "weak" and "strong" riblets denote KM = 

0.025 and 0.2, respectively. 

Riblets interrupted by the dermal denticles are modeled using //(z+, /+) = //(z+, t+) = fl {\ + 
KMsm.(2nz+/s+) + Sc{z+, t+) - 5c), where Sc(z+, t+) = (V4)|sin(/+/200) - sin(7iz+/25)|, and the 
overbar denotes an average over a period. The Y* multiple in the latter equation gives the height 
of the denticles relative to the riblets. 

DOLPHIN CHAOS CONTROL 

The dolphin's microgrooves38 are modeled using //r(?+) = //(t+) = fi{\ + Kgroovesm(t+/50)), 
where Kgroove= 0.075. Microvibrations39 are modeled using Z'"^, (t*) = 0.005(/i:/a5,sin(/'+/800) + 
Ki/ovvsin(/+/50)). Where both microvibration frequencies are applied, Kfast- lj KSIOW= 1/16, such 
that their amplitudes are proportional to the ratio of the periods. 
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APPENDIX B 
EXTENDED DATA 

This appendix provides additional results that support those given in the main body. It 
covers: 

1. Unsteady boundary layer properties (figure B-l) 

2. Streaks (figures B-2 and B-3) 

3. Riblet chaos control (figures B-4 and B-5) 

4. Shark chaos control (figure B-6) 

5. Harmonic riblet chaos control (figure B-7) 

6. LEBU (large eddy break-up) device (figure B-8) 

7. Stokes' lateral shaking (figure B-9) 

8. Temporal phase reset (figure B-l0) 
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UNSTEADY BOUNDARY LAYER PROPERTIES 

40 SO 

Figure B-l.   Viscous Unsteady Sublayer Growth Decay Is a Limit Cycle 

a-d: One-dimensional oscillator model of growth and breakdown cycle of sublayer, a-c: Unsteady 
pre-breakdown U-velocity profiles tend to an asymptotic state with t/T —> 1, which is close to the 
Blasius profile (to get a closed-form solution, the surface-normal component is ignored in the 
solution of the unsteady momentum equation' ). A situation conducive to the formation ofTS 
(Tollmien-Schlichting) waves is approached in each growth-decay cycle (see two-dimensional 
oscillations in S-triads in figure 3c). a: Unsteady velocity profiles (y+, U^/UT) obtained by solving 
NS equations as per Black;'2 in wall layer coordinates, there is no approach to the Blasius 
solution. h:y+, u^/U^eff. (See SI for U^eff) c:y+/(t/T)1/2, u*/U^,eff. d: Unsteady sublayer 
thickness growth (0 < t/T < 1) and liquidation (1 < t/T < 1.5); linear and SL models are compared 
with Black's52 (t/T, Ss

+).  The linear and SL models do not require any input from the log layer 
(such as U^eff) to reproduce Black's distribution, d (Inset): d3,+/dt+, Ss

+. One-dimensional SL 
model of the sublayer thickness; this model is described in SI. Sublayer thickness variation is a 
limit cycle varying betweeny+ of 1.6 and57.  The sublayer grows during a-b-c, and liquidates the 
vorticity during c-a.  The inset in d also shows how a disturbed sublayer would return to the limit 
cycle once the disturbance is removed; the return path is long (figure B-8b). 
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STREAKS 
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Figure B-2a. Combined Image of Streak and Phase Iso-Contours 

The streaks are i so-contour s of az
+  = threshold ofAo 2.  The arrays of wave endings in the 

phase overlay on the streaks. Corner hairpins (HP): also markedby\(02
+\ = thresholdofA(/2, 

they are leaning foi-ward; there are orthogonal oblique wax'es travelling along the hairpin 
length, root to tip, just as they do with streaks.  Thus, the longitudinal near-wall vortex pairs and 
hairpins have similar dynamical properties—orthogonal disturbances travel through them (see 
wcn'e-guide model of wall-pressure fluctuation in Discussion and Summary).  The "noise " 
between streaks is from local instabilities (waves end or have inflections switching from + to- 
values); this "noise " does not become streaks and may appear in pairs frequently; therefore, it is 
not noise. Broken circles: HP lift-up at base ofS-wave triads; see figure 4c. 

Figure B-2b. Spatio-Temporal Lateral Streak Spacing An
+ in Units ofz 

in Baseline TBL (t+ > 0.2 x 10*); Axes (z+, t+) 

Lines: Red is moving a\>erage at a given C\ black is the mean for t+ > 0.2 x JO4. Mean ^ = 
66.17 z+, marked by the red circle (figure 2f); this mean compares favorably with experimental 
data27 (figure 2f); the mean value of ^ increases if an additional criterion (such as streak 
length) is imposed, as done in experiments. 
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Figure B-3a-h. Effects of Amplitude offir on lateral Diffusion of Vorticity Waves in TBL 

iur = 0.5 (a), 1.0 (b), 2 (c), 4 (d), 8 (e), 16 (f), 32 (g), and 64 (h). Number of crashes increases as 
fur drops, and waves approach two-dimensionality as p.? increases. High Re number TBL has 
Hr -> 0, and unsteady LBL approaching critical Re value has jUr —> «. Coefficient of lateral 
diffusion is a measure of Re number, diameter of near-wall vortex pairs and hairpins that form 
after vorticity is liquidated, and the highness of high-frequency wall-pressure fluctuations (see 
wave-guide model in figures 2g,h). 
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Figure B-3i-l. Laterally Crashing Diffusion Waves in TBL Lead to the Formation of Streaks 
and Coupling of High and Low Frequencies (see Videos SI1-SI3) 

i, k: Coupledcoz
+, cox

+ oscillators, j, 1: Coupledcoz
+, a)x

+, Ss
+ oscillators, i, j: \cox

+\ contour. 
k, 1; Re(\o)x

+\). Inclusion of the 5S* oscillator leads to lateral distortion; this three-equation 
model is described in SI. Lateral crashing is evident in kat z+ = 0, where streaks form; this 
happens at z+ = ±50 in j,l. 
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RIBLET CHAOS CONTROL 
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Figure B-4. Shark "Strong" Riblet Model (Excluding Dermal Denticles): Acting on co:
+ in the 

Region Marked by Vertical Dotted Lines in (a, b) 

a: |fijz
+| (z+, t+).   "Strong" riblets are active: 60,000 < t+ < 120,000, one-equation model (coz

+), 
with "corner" boundary conditions (hairpin shedding in blue); riblet spacing = 10 z+. 
b: Streak spacing in units ofz+ in (t+, z+). Red: Moving average with window. Blue: Individual 
streak spacing realizations. Black: "Conditional" mean based on whether riblets are active or 
not. Streak spacing in baseline TBL appears in figure B-2b and figure 2f. 
c: Probability density function of streak spacing P(z+), z+. Streak spacing is approaching a 
monochromatic distribution in riblets. In b, also notice the parallel blue lines when riblets are 
applied, indicating that streak spacing is organized into harmonics. 
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RIBLET CHAOS CONTROL (Cont'd) 

Figure B-5. Riblet Chaos Control 

I®/  (z+, t+); Two-equation (a-t, (0X
+) model. Effects of diffusion {K^ = 0.025 (a-c), 0.05 (d-f), 0.1 

(g-i), awi/ 0.2 (j-l)) a«t/ 77^/e? spacing: 5+ = 5 (a, d, g, j), 70 (b, e, h, k), and 12.5 (c, f, i, 1). ty, 5+ 

adjust amplitude and spacing ofriblets (see Methods). Baseline TBL: Figure 5f. 
b, k: Riblet spacing ofs+ = 10 and K^ = 0.025 (lowj and 0.2 (high) give best chaos control, the 
0.025 value being for extending transitional range, and 0.2 being suitable when chaos cannot be 
delayed anymore and TBL has been established. 
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SHARK CHAOS CONTROL 
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Figure B-6. Chaos Control in Sharks Using Dermal Denticles, Riblets, and Their Vibration 

\coz \ (z , t ). Frees trear- turbulence in IC promotes the early onset of chaos, a: Baseline TEL. 
b: Etffects of dd scales on baseline, where dd scales are imposed on the coz

+ oscillator. Onset of 
chaos is delayed, c: Effects of dd and riblets on baseline where riblets are imposed on the cox

+ 

oscillator. Onset of chaos is delayed some more, d: External vibration of baseline at a time 
period of 16 TS.  e: Resuhs of combined dd, riblets, and external stimulation on baseline. 
Staggered transitional organization is restored, and the onset of chaos is delayed the longest. 
The lateral oscillators are synchronized. Note that the imposition of the riblets and dd are not 
precisely the same as used in figure 5; here, nz(z+, t+) =ji (1+ Sc(z+, f) - Sc), where Sc(z+, t+) = 
(K//4)\sin(t /200) - sin(nz /20) , and where the overbar denotes an average over a period, ^(z*, 
t ) - ft (1 + KM sin(2KZ /s )).  That is, dd are imposed on the coz

+ oscillator, and riblets are 
imposed on the a)x

+ oscillator. 
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HARMONIC RIBLET CHAOS CONTROL 

Figure B-7a-e. Alternative Riblet Modeling Using Coupled Oscillators 

Present theory is a, c, and e. Riblets are assumed to act as high-frequency oscillators (<X)xh). 
a, c, and e: Four-equation model (oscillators cor

+
) cyx

+, (oxh , Ss
+) run with low spatial resolution. 

Details of this model can be found in SI.   a, c: (z+, real part ofcox
+); e: (z+, real part of G)xh); 

b, d: Normalized wall-shear stress (t+, z+) due to Choi.    Animation files of figure B-7a,c,e are 
provided, with other associated animations, in video SI-5. 

Note: Figures B-7b and B-7d are sourced from reference 53. 
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FigureB-7f-h.  TBL Streaks Identified by Iso-Contours of\a)z\ < 0.2 in (z+, t+) 

f: One-equation model (coz
+) with corner boundary condition (black hairpins in corners). 

g: Sensing streaks, and applying Iext locally, eliminates streaks, h: Strong riblets organize to a 
preponderance of streaks (compare with figures 5i, 5k, and B-5k, which are from a two-equation 
model). 
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LEBU (LARGE EDDY BREAK-UP) DEVICE 

Figure B-8a,b. Chaos Control with Perturbatiom External to SL Oscillator: LEBU 

Present theory is b. a: TBL hairpin vortices, Karmdn shedding from LEBU, outer edge ofTBL; 
x, y; schematic of smoke flow visualization of FBL perturbed by Kdrmdn shedding fi-om a 
LEBU;4 the region where skin fiction is great iy reduced is marked by a pair of vertical broken 
lines; the near-two-dimensional wake perturbation acts on the TBL between the trailing edge of 
the LEBU and the onset station of the new internal layer; maximum local skin friction reductions 
of up to 30 - 40% have been reported; in Stoke* ' spanwise shaking, up to 50% drag reduction is 
possible.30   b: Present theory: \co:

+\ in (z+, t+); Uncoupledm-^ oscillator (kx = 0), Iext = 
Ao sin(2nt+/T) (method appears in SI); TBL returns with a vengeance. In an animal, this would 
be the tail region, which would keep the tailcom TBL at'ached. See video SI-4. 

Note: Figure B-8a is sourced from reference 42. 
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Figure B-8c. External Perturbation Iext Breaks Streaks 

Streaks are detected by d\a)z\/dz, as shown in lower trace at the cursor location (horizontal chain 
line in upper trace). See video SI-4. 
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STOKES' LATERAL SHAKING 

Figure B-9.  Chaos Control with Perturbations External to SL Oscillator: 
Stokes' Drag Reduction 

.54 a: Numerical simulation ofstreamwise velocity contour;   spanwise oscillatory force control on 
TBL. b: Smoke tracer concentration distribution.4' c: This theory; the \(0z

+\ (z+, t+) effects of 
Stokes' lateral wall shaking on drag reduction is modeled as Iexl.  The three-equation model that 
yields the results ofc are provided in SI, with accompanying justification of the terms employed. 

Note: Figure B-9a is sourced from reference 54. Figure B-9b is sourced from reference 43. 
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TEMPORAL PHASE RESET 

Temporal Phase Reset 
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Figure B-10. Schematic Explaining Spatio-Temporal Phase Reset 

a: Impulse causes phase reset in 10 rodent brain inferior-olive (IO) neuron time traces.155 

b: Analog solutions of six 10 neurons (lower inset in h) are synchronized as in a.23 

c-e: A spatial template (e right: sloping shore) makes the deep ocean (e left) waves56 (c) become 
two-dimensional,    d: a,b are temporal; c,d are spatio-temporal. 

Note: Reference sources: Figure B-lOa is from reference 1; B-lOb is from reference 23; rodent 
in B-lOa is from reference 55; photographs in B-lOc and B-lOd are from references 56 and 57, 
respectively. 
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APPENDIX C 
SUPPLEMENTARY INFORMATION (SI) 

SI METHODS AND DISCUSSION 

This appendix describes the methods used to generate the figures provided in the extended 
data of appendix B. It also discusses these methods and provides further discussion of the results 
in the main body. It covers: 

1. Unsteady boundary layer properties: 

• Linear sublayer thickness model 

• Log-layer bounded sublayer thickness model 

• Stuart-Landau sublayer thickness model 

• Inclusion of sublayer thickness in model: Coupling between vorticity and 

sublayer equations. 

2. Shark chaos control 

3. LEBU (Large Eddy Break-Up) device 

4. Stokes' lateral shaking for drag reduction 

VIDEOS 

Note: Videos are available from the principal author. 

Other supplementary information available for download includes the videos listed below. 
These videos are animations that make certain results more clear: 

Video SI-1. Animation of the (Oz laterally crashing waves using the model shown in still 
form in figure 4f. It shows how streaks are formed. Oscillators: £or

+ as per baseline (wavelength 
of 200 wall units; Methods), aix

+{z+fi) = 0, rather than noise. 

Video SI-2. Animation of i?e(a)z ) crashing waves using OJ^ initial condition wavelength/l/c 
= 200z+. Clear formation of streaks and carrier waves when Xic= 200z+, compared to 100z+. 
Streaks form where Re(a)z) crosses sign with spacing ^/c/2. Oscillators: coz , 0)x , Ss ; IC: 
a)x

+(z+,0) = 0, 4+(z+,0) = 10; model details given later in this appendix. 

Video SI-3. Animation ofRe(a)z) crashing waves using initial condition wavelength A/c = 
100z+. Compare crashing behavior to Video SI-2; crashing is not as clear when initial wave 
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length is 100 wall units. Oscillators: (o?, co^, 8S
+; IC: fi^+(z+,0) = 0, d^{z+fi) = 10; model details 

given later in this appendix. 

Video SI-4. Animation of 5|aj^|/5z+, where contours and traces of that variable are plotted 
simultaneously with a moving cursor. A strong oscillator (LEBU) is applied at t+ =180,000. 
This video shows how streaks are annihilated. Also see the stationary view in figure B-8b. 

Video SI-5. This is a presentation-like movie containing animations of wj, ooj, and w^, for 
cases with and without harmonic riblets. Increasing lock-in with increasing number of control 
oscillators is apparent. See figures B-7a,c,e for stationary view and see this appendix for 
accompanying methods and discussion. 

UNSTEADY BOUNDARY LAYER PROPERTIES 

In figure B-la, the profiles match the log law and IT =yr equation at the two extremities of 
y+\ this entire region is viscous; L/^^-is unsteady and is 99% of the velocity obtained by 
extrapolating the log layer wall-ward at the given t/T^   In figure B-lc, the horizontal axis 

y+I^Jt/T is reminiscent of Blasius boundary layer thickness scaling of 77 = y I—, if x/if = C/, a 

velocity, and v = kinematic viscosity.5   Instead of the local value, a value of the friction velocity 
is used that is taken as the average over the cycle in B-ld (an attractor value59). In figure B-Id, 
the vorticity in the layer j/ < 1.6 is not liquidated;    not liquidating down to the wall satisfies the 
requirement of dynamical separation;60 see p. 302 of Bandyopadhyay et al.61 and also 
Bandyopadhyay.59 

The viscous boundary layer results in figure B-I can be examined in the context of unsteady 
laminar boundary layer theory.44 Consider the unsteady laminar problem of oil emanating into 
quiescent fluid from a tube at r = 0 and spreading radially (or two-dimensionally) over a surface 
such that the leading edge is at the point r = R{t), producing a boundary layer in the quiescent 
fluid. Similarity solutions of the unsteady momentum and continuity equations asymptotically 
reduce to the Blasius relationship as r -»/?. In the context of figure B-ld, the beginning of each 
cycle (marked a) is analogous to the region in which the oil spill's leading edge is in the region 
of r = 0, although this exact point is never reached because vorticity is not liquidated all the way 
to y+ = 0.29'60 The velocity profiles in the present model approach the Blasius solution with 
increasing t/T, which is analogous to Phillips' region R{t) » 0; in Phillips' theory, the oil film is 
stretched as per a-b-c, and the Blasius profile is approached at c, whence TS waves (named 
pseudo  TS here) likely form as per the present model. Einstein & Li's observation   that the 
viscous layer growth in a TBL slows as the layer thickness grows (region b-c in the figure B-ld 
inset) indicates that the layer is within the R{t) » 0 region—in which the Blasius relationship is 
closely approached—over a large fraction of each self-regulating cycle (the region a-b is like 
r -> 0 and the region b-c is like r -> R). The "oil-spill" cycle is repeated as per the self- 
regulation cycle. The present model has been put in the context of Phillips' more rigorous theory 
and beyond Black's because it shows that a Blasius solution is indeed approached 
asymptotically, whereby the idea of TS-waves forming within the TBL during each production 
cycle is reasonable. 
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Linear Sublayer Thickness Model 

In the linear model in figure B-ld, the evolution of the sublayer thickness 5S
+ is modeled by 

the expression 

5+ = £ -^ - liquidation. (C-1) 
Or Js 

The first term on the right-hand side of the expression is the growth term; the liquidation term is 
not used in the curves in figure B-ld and will be discussed later. The form of the growth term is 
informed by the work of Einstein and Li, 6 who solved the diffusion equation 

du _      d2u 
at - Vd^ 

with the initial and boundary conditions 

uiO,y) = Uref      u(t, 0) = 0      limy^oo u(t# y) = t/re/, 

which yields the expression for the time-dependent velocity profile within the sublayer: 

u(t,y) = Ureferf{^=). 

In the above expressions, the scaling velocity (/re^ is a velocity that exists at some representative 
height within the turbulent flow. Einstein and L:'s final expression can be manipulated to find a 
time-dependent expression for the thickness of the sublayer Ss, defined as 99% of (/re^: 

5S = 2Vvt erf-1 (0.99). 

The above expression may be recast in wall units    such that 

5+ = 2 erf"1 (0.99) VF. 

The time derivative of the above expression yields 

„•+ _ errHo.gg) _ 2 (err1(0.99))2       6.635 
s ~     7F     _        st        *  st ' 

i.e., the form of the growth term in equation (C-l), such that /?= 6.635. 
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Log-Layer Bounded Sublayer Thickness Model 

,52 Black   also uses the diffusion equation as the basis for his sublayer thickness model but 
imposes initial and boundary conditions: 

u(y,0) = uT(i4 + flln(y^)), fory>0 

u(0, t) = 0, forO <t<T 

lim^oo u(y, t)=uT^A + B in (y^) ), /or t > 0 

where A and B are experimentally determined parameters for the log layer, and uT is the friction 
velocity. The expression (see equation 2.31 in Black52) for the velocity u* = u/uT is a function 
of the non-dimensional time t/T. The sublayer thickness is the height at which it* is within 1% 
of the log-layer's value at that time; the effective free-stream velocity t/oo,e// is the velocity at 
the sublayer's outer boundary. 

Stuart-Landau Sublayer Thickness Model 

A modified SL expression can instead be used to model the thickness of the sublayer: 

where /?and the SL constants crand A are as described earlier in this section and in Methods, 
respectively. The coefficients ds and K are chosen together to yield a limit cycle approximating 
that of the linear and Black models; in figure B-ld, ds = 2400 and K = 53 + 20i. Note that in 
the absence of a liquidation term, the linear and log-layer-bounded models indicate a sublayer 
growing without bound, whereas the SL model is intrinsically self-regulating. 

Inclusion of Sublayer Thickness in Model: Coupling Between Vorticity and 
Sublayer Equations 

Figures B-3(j,l), B-7(a,c,e), and B-9c use vorticity equations that are coupled to the linear 
model of the sublayer thickness, such that 

d)z
+ = (W + /-^--Az wfaj;*) ksS+ - nx\(0*\, (C-2a) 

a>; = (W + /-^.-Ax cofa>t*) ks5+ - kh\a>+xh\ + k^, (C-2b) 

d)+h = ((Ta)+h + n-jffi- Ah coih
2a)^Thks8^ + kxh^r (C-2c) 

4+ = /? M £) " ^ l^)^*^)-^, (C-2d) 
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where the sublayer liquidation term, omitted in equation (C-l), has now been included. In the 
expressions for the spanwise and streamwise vorticity, the time scale kgS^ has physical meaning 
in that vorticity perturbations may be assumed to grow more quickly in a thicker sublayer. The 
coupling between OJ^ and a)^ is assumed for now to be "outside" this sublayer-based time 
coupling. The coefficients kx and kz are modified from the values provided in Methods 
(appendix A) based on order-of-magnitude considerations such that kx — 0.1 ks5*, where 
5/ « 30 is the mean thickness of the sublayer over a cycle, and the multiplier kg = 0.00025. 
Unless noted, the value jur= 0.49 is used when the above model is used, instead of//,.= 16 as 
described in Methods. This lower value of//,- is indicative of a higher Reynolds number (figure 
B-3). 

An additional equation for the harmonic vorticity a)Jh, which was used in an early iteration 
of riblet modeling (figures B-7a,c,e), has also been included. When no harmonic riblets are 
applied, setting fch = 0 is sufficient to revert this four-equation model to a three-equation model 
in ojz .(Ox.Sg; the terms "three-equation model" and "four-equation model" are used to refer to 
sublayer-coupled models run, respectively, without and with harmonic riblets. The physical 
justification of this riblet model, which here is called harmonic riblets to distinguish it from the 
aspect ratio-based modeling described in Methods, is that individual riblets were proposed to 
create local vortices of their own scale, which were driven by the (small) spanwise velocity near 
the wall. These local vortices can be seen in visualizations.62 The reader will note that this 
oscillator is coupled to the cd^ oscillator in the same way that the oi^ oscillator is coupled to OJ^ , 
and the respective constants kh and kxh match kx and kz, when the harmonic oscillator is used. 
A relative time constant Th has been added to this squation as well, such that these near-wall 
control oscillators can be given different frequencies from the "primary" three oscillators. T/j = 8 
has been used in the present work. 

The above form of coupling and liquidation in equation (C-2d) performs well at low spatial 
resolution, where the resolution imposes a kind of averaging on the calculations. However, at 
higher spatial resolution, this sublayer model has a tendency to yield unphysical "spires" of 
unliquidated sublayer as simulation time increases. The sublayer coupled results in figures B-3j 
and 31 (right column) are shown at low simulation time. In figures B-7a,c,e, the spatial 
resolution is low (dz+ = 142), and the simulation could be continued for high values of/+. 

The constant growth term g^ added to the expression for sublayer thickness has been 
estimated as the proportion of the growth layer that Popovich and Hummel    found was not 
liquidated, such that g^ ~ 0.032. The liquidation threshold is A = kAA0, where sublayer 
intermittency y ~ 1 — kA. Here, sublayer intermittency is defined as the proportion of time for 
which the sublayer is being actively liquidated. It has been taken as y = 0.1, such that the 
liquidation time is very short, relative to the growtn time.52 

The liquidation coefficient /c; can be estimated from the values of other constants since the 
net growth of the sublayer over a single growth-breakdown cycle is small. Equation (C-2d) can 
therefore be integrated over a cycle of length T to give the condition 
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j> (so+jV) at- - % km^)\ ^f-^ dt*»o. 

Since the second integral is zero when the condition 51 (60^) < A holds, the above equation may 
be rewritten in the form 

!oP{9o+j;)dt+*SZrklmo)+)\dt+. (C-3) 

The following approximations are introduced: 

Equation (C-3) may now be evaluated to find the approximation 

kl*A0il-kJkA[
9o + {w)\ 

Unfortunately, the time period T is not known a priori; instead, the approximation 

2 71 
T = 

<^basekSSs,ref 

has been used, where the base frequency ajbase = c0 — C2. The value of the reference sublayer 
thickness (5/ref is taken to be the minimum sublayer thickness Sgmin = 1.6, taken from Popovich 
and Hummel.29 To account for the imprecision in the approximations, the expression 

.     _  C /? f .      l<*baSeksSt.r, 

has been employed, where ki is a coefficient near one. Note that the method used to approximate 
the period T is an overestimation since 5S

+ > S^min, meaning that in general ki>l. 

SHARK CHAOS CONTROL 

Figures B-4b and B-4c show that, due to riblet application, streak spacing approaches a 
monochromatic spacing. 

Figure B-5 shows that between riblet spanwise spacing of 8, 10, and 12.5 wall units, the 
optimal spacing is 10 wall units. Chaos onset is best delayed at /cM of 0.025. When chaos onset 
cannot be prevented, then an amplitude of 0.20 is required for best organization. 

In figure B-5, the best chaos control (arrayed K-type waves) is achieved at K^ = 0.025 (weak 
diffusion), and riblet spacing of 10 wall units. With increasing KM, at s+ = 10, the arrayed K-type 
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transitions to arrayed A-type in k. The /  limit is 120 x 10" in figure B-5b, whereas it is 80 x 10 
in the rest. The S- and A-waves also display a subdued tendency, oscillating between streaks 
with restrained tendency for streak jumps and growth in S-waves. The riblets have brought in- 
phase balance between the activator and inhibitor parts    of the self-regulating instability (the 
positive and negative feedbacks are in phase). 

Normally in a TBL, the wave triads are chaotically disposed. However, figures 5 and B-6 
show that the shark dd's and their staggering provide a template for the TBL instabilities to lock 
in to because the templates mimic the primary modes of the flow. The lock-in mechanism is a 
spatio-temporal version of the temporal Self-referential Phase Reset (SPR).1-23 Although the 
process is nonlinear, chaos is eliminated and the initial condition dependence is removed by the 
effects of the template, which acts as an impulse of required amplitude and duration. 

The dependence on IC can also be removed (figures B-7a,c,e) by imposing the harmonic 

riblets model described earlier. In such a model, — = -r = —^r (figures B-7a,c,e). The baseline 
A*      Xh       ioo2 v   ^ > > J 

TBL spanwise co* vorticity distributions have both standing and transverse oscillations (figure 
B-7a). When a weak orthogonal streamwise vorticity co^ oscillator (o)^) is added, the 
transverse oscillations in <»z

+ are reduced and they mostly stand and oscillate (pure varicose 
instability). However, when the riblet oscillator (ft)^+) is added, the (Qz pattern standing 
becomes locked and all transverse waves are eliminated (figure B-7c). The lock-in is 
qualitatively in agreement with measurements.5   The distributions of cox/,+ (figure B-7e) show 
that the riblets apply a correction to the other oscillators to achieve aligned lock-in, but this 
correction is applied by only some of the riblets at a time; that is, at a given instant of time, only 
some of the riblets are active (figure B-7e). Note that the different methods of riblet modeling 
(surface template or harmonic) share this quality, which is also observed experimentally (figure 
10 of Lee and Lee 2). For temporal representation of figure B-7, see video SI-5. 

Paraphrasing the stability theory due to Phillips,    the streamwise cox
+ oscillator couples 

with the coz   transverse and main oscillators, which leads to the formation of sub-streak 
wavelengths (Phillips 'figure 4); Phillips' theory hints that the riblet amenable sub-streak 
wavelength is naturally present but submerged in the chaos of streak spacing in figure B-2a; 
once the riblet template (which in figure B-7c is (JOxh ) is offered, this wavelength locks-in to 
that—a Llinas phase reset takes place. 

The wing-tip to wing-tip spacing of dermal denticles of sharks is on the order of streak 
spacing (figures 2f and B-2b). The dd surface pattern would help organize the streak spacing 
(figure B-6b), which in turn would organize the sub-streak wavelengths of Phillips, discussed 
above. As a result, the shark riblets would have less work to do. 

In figure B-7a, both surface-normal and lateral travelling waves are present and the 
distribution is similar to that measured by Choi5  (figure B-7b is a reproduction of figure 17 from 
Choi), where spanwise correlation of skin friction is roughly stationary and non-uniform. 
However, in figure B-7c, the pattern is purely stationary and uniform and can be compared with 
measurements in figure B-7d. 

C-7 



Figures B-7a,c,e give theoretical confirmation to Watson et al.,64 who noted that (italics 
added by present authors): 

Turbulent boundary layers exhibit spanwise variations in skin friction coefficients and integral 
boundary layer properties, even in flat plate experiments where great care has been taken to insure 
the two-dimensionality of the outer flow. Spanwise plots of [momentum thickness] for nominally 
two-dimensional flows are always somewhat ragged, as are [skin friction] measurements. The 
reason may be because of the raggedness in the transition process, and/or the presence of near 
wall structures in the boundary layer, inducing a standing pattern in the flow. 

Considering the induced wall image, the standing pattern is interpreted as varicose instability; 
they are rings in B-7c and spirals in B-7a (see figure 1 in Desyatnikov et al.,65 who solve the 
nonlinear Schrodinger equation and interpret similar results as solitons of self-trapped waves; 
this is in broad agreement with the present conclusion that streaks are solitary waves trapped in 
the near-wall viscous layer). 

The vorticity pattern in figure B-7c oscillates in the vertical direction while remaining 
stationary in the transverse direction. This shows the presence of varicose instability (video Sl- 
5). (In the presence of a transverse wave, the vorticity layer spirals left or right.) From this, the 
liquidation of vorticity into hairpin vortices may be considered to be analogous to volcanic 
eruption due to plate tectonics. (The plate becomes locally thin and is unable to prevent the 
high-pressure hot magma from erupting.) The vorticity layer at a given fz+, t+) thickens and 
thins due to stretching in two orthogonal directions parallel to the wall. If a triad is situated there 
and is resonating as in S-type, for a brief instant the layer thickness suddenly reaches the critical 
height in all three TS waves simultaneously (in arrayed A-triads, it doesn't). At that instant, the 
diffused vorticity spins faster while thinning, becomes concentrated (discrete), develops 
amplifying local oscillation briefly, bifurcates (selects handedness24), and subsequently pinches 
off into the recognizable hairpin form. Due to Biot-Savart wall imaging, the vortex line lifts up 
into a hairpin form. 

Figure B-7g, in comparison to B-7f, shows that when the long streaks (| ft)z
+ | < 0.2 

contours) in the baseline TBL are detected and shaken (using some 7^,), they are eliminated. 
However, when the short oblique "streaks" are shaken, they become fragmented. 

Figure B-7h shows that when a strong lateral diffusion perturbation is added to the TBL to 
model riblets at spacing z+ = 10, the TBL becomes populated with rows of parallel streaks; this 
A-type dominant pattern is also seen in figures 5i,k. 

LEBU (LARGE EDDY BREAK-UP) DEVICE 

The model in figure B-8 is as follows. The powerful external oscillator used to model the 
effect of vortex-shedding devices placed into the outer layer is given by the expression 

2ntJr\ ^(t+)=4,sin(HL) 
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Note that this period of oscillation is not an even multiple ofTTS. This oscillator's amplitude is 
equal to that of the most powerful wall vorticity oscillator OJ^ , and so may be termed a "very 
strong" perturbation, as might be expected if coherent vortices produced with higher speed outer- 
layer fluid are brought close to the wall. The rest of the model is a one-equation model for a)z

+ 

(i.e., kx= 0), as given in Methods. 

STOKES' LATERAL SHAKING FOR DRAG REDUCTION 

Stokes' method of drag reduction (shown in figure B-9), imposed experimentally by 
oscillating the wall in the spanwise direction, is modeled using an external perturbation to 
equation (C-2b) of the sublayer-coupled model, such that 

,,+ _ /'_,.+ , ..s2^ a)x 

l^xt = Ao^t * ^sm{a)baseksS+mint
+) =^o^sin(^). 

Physically, this perturbation corresponds to an external source of streamwise vorticity, cox = 
dw/dy - dv/dz, where v,w are the surface-normal and spanwise velocities, respectively. When 
imposed in a highly sheared TBL, Stokes' layer does not penetrate as far from the wall as it does 
in an unsheared fluid, 0 meaning that at some (small) height, the spanwise velocity is virtually 
unperturbed by the oscillations of the wall. Thus, for v » 0 (non-penetrating condition), it is 
permissible to say that a velocity condition w(0,t) =j{t) is equivalent to a source of streamwise 
vorticity. 
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