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Abstract

Unauthorized access to communication networks remains at the forefront of secu-

rity concerns for Information Technology (IT) based systems. These concerns are

increasing within the Industrial Control Systems (ICS) community as ICS architec-

tures migrate away from legacy IT implementations to modern Internet Protocol (IP)

connections. More specifically, the connections that carry critical communications

to/from control devices within an ICS are in need of improved security measures to

enhance authentication reliability for remote devices and users. Research in Physical

Layer (PHY) security mechanisms for wired network devices has been largely ignored

and is considered here as a way to augment bit-level security protocols.

This research compared performance of two Distinct Native Attribute (DNA) fin-

gerprinting methods for discriminating device hardware. The first technique was

adopted from prior work and is called Radio Frequency-Distinct Native Attribute

(RF-DNA) Fingerprinting. RF-DNA Fingerprinting has been widely used for wire-

less device discrimination and was adopted here to enable comparison with the newly

developed Constellation Based-Distinct Native Attribute (CB-DNA) Fingerprinting

technique. At its core, the CB-DNA implementation leverages unique PHY attributes

to extract device dependent features to enable both Device Classification as a 1 vs. M

“Looks Most Like?” assessment, and Device ID Verification as a “Looks How Much

Like?” assessment for authenticating bit-level credentials. A Side-Channel Analy-

sis (SCA) technique was used to collect communication bursts from Ethernet cable

emissions for use with both fingerprinting techniques. The RF-DNA technique uses

only the preamble response from the communication burst to generate device finger-

prints. The CB-DNA technique uses the entire burst response and a non-conventional
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signal constellation developed to support the research. The independent and depen-

dent symbol projection regions within the non-conventional constellation are used

to generate statistical fingerprint features. The real benefit of CB-DNA lies within

the dependent constellation regions, the statistical variation of which vastly improves

serial-number discrimination over the RF-DNA technique.

The Cross-Model Discrimination (CMD) results for RF-DNA and CB-DNA Device

Classification using identical collected bursts show that both methods can easily dis-

criminate devices from four different device manufacturers, with an arbitrary bench-

mark of percent correct classification (%C) greater than 90% achieved for both meth-

ods. Like-Model Discrimination (LMD) discrimination, historically has presented the

greatest discrimination challenge, and is performed using 16 total devices, four each

from four manufacturers. CB-DNA LMD Fingerprinting benefits considerably with

the introduction of subcluster DNA features. Improvement across the range of Signal-

to-Noise Ratio (SNR) considered includes an approximate: 1) 5% to 22% increase in

%C, and 2) 5 to 19 dB of “gain,” measured as the reduction in required SNR rela-

tive to what is required for aggregate features to achieve the same %C. Relative to

best case RF-DNA performance, CB-DNA is clearly superior and provides 1) nearly

22% of %C improvement at collected SNR = 16 dB, and 2) 9 dB or more “gain”

for %C ≥ 70, where gain is the reduction in SNR relative to what is required by

RF-DNA to achieve the same %C. The Device ID Verification results for RF-DNA

included an average Rogue Reject Rate (RRR) of RRR = 85% and CB-DNA achieved

RRR = 85.5%. A Constellation Point Accumulation (CPA) enhancement was intro-

duced for CB-DNA, which was not implementable in RF-DNA, and increased Rogue

rejection performance to RRR = 93%.
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EXPLOITATION OF UNINTENTIONAL ETHERNET CABLE EMISSIONS

USING CONSTELLATION BASED-DISTINCT NATIVE ATTRIBUTE

(CB-DNA) FINGERPRINTS TO ENHANCE NETWORK SECURITY

I. Introduction

The research involved investigating the exploitability of Ethernet cable emissions

for the purpose of achieving reliable device hardware discrimination. The end result

was successful development and demonstration of a new Constellation Based-Distinct

Native Attribute (CB-DNA) Fingerprinting process. This chapter provides the oper-

ational and technical motivation behind CB-DNA development, including the opera-

tional motivation in Section 1.1 and technical motivation in Section 1.2. Section 1.3

summarizes research contributions and shows their relationship with prior related

work. The organizational structure of the document is covered in Section 1.4.

1.1 Operational Motivation

Over the last 40 years computer networks have permeated our everyday lives.

Information can now be shared in a matter of seconds rather than days or weeks, and

almost 40 percent of the world’s population is connected to the Internet [53]. Data

network proliferation and interconnectivity benefits have also introduced millions of

potential victims to cyber attacks by providing an avenue for hackers to reach their

victims. The use of computer networks to help defend our country has expanded

considerably over the last 20 years. Networks are prevalent in every mission aspect,

including weapons system deployment and in performance of our daily duties. To

complete its mission, our military employs seven million computing devices that are
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connected by more than 15,000 data networks [9]. Many security issues today are

due to a lack of emphasizing security in the early years of cyber system development.

Many of these systems still exist today and fixes are being applied as issues are

discovered resulting in a patchwork of fixes. This raises the question of how many

vulnerabilities remain to be discovered and can we find and fix them before our

adversaries do? The United States infrastructure has experienced a “17-fold increase

in computer attacks” between 2009 and 2011 [52]. The Department of Homeland

Security (DHS) recently stated that cyber attacks are “one of the most severe national

security threats to the United States [9].”

Sun Tzu, a Chinese military general and philosopher, once said “Supreme excel-

lence consists in breaking the enemy’s resistance without fighting [69].” Cyber warfare

is relatively cheap when compared to traditional warfare and it provides an attack

vector for our adversary to potentially degrade our military abilities and disrupt our

civilian institutions without physical conflict.

Cyber security threats remain on the top ten lists of multiple security-minded

enterprises. They have been identified as:

• the #1 concern of Fortune 1,000 companies for five years in a row according to

a 2014 survey [55];

• the #2 concern of the American Security Project in 2015 [30];

• the #3 concern of the United States Intelligence Office in 2012 [3].

As the U.S. modernizes its legacy Industrial Control Systems (ICS) implemen-

tations from Information Technology (IT) monitoring and control to more modern

Internet Protocol (IP)-based solutions, the noted security threats are becoming a real-

ity in the ICS arena [29]. Many ICS control devices are moving to IP-based solutions

(Modbus/TCP, Ethernet/IP, and DNP3) to provide critical communications [7, 61].
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A reoccurring theme for these systems is security vulnerability. Critical platforms

are inadequately protected, direct access to equipment by non-essential personnel is

prevalent, and open wireless and wired access ports on office walls remains a prob-

lem [46, 58]. Many ICS architectures and protocols were designed and built without

considering security or verification of remote users/devices [46, 61]. As the sophisti-

cation of attacks increases, these vulnerabilities are being exploited by attackers to

gain network access to hardware, operating systems, or executables [46].

In 2011, the United States Department of Defense deemed cyberspace the fifth

warfare domain alongside land, sea, air, and space highlighting the importance of

protecting our infrastructure and civilian enterprises. Our leaders understand now

more than ever, that the landscape of cyberspace is changing. As stated by General

Alexander, Commander of the United States Cyber Command, before the Senate

Committee on Armed Services on 27 March 2012, “cyberspace is becoming more

dangerous.” There are those who believe [40,45] that the cyber environment is turning

into the new intelligence gathering efforts of early 1960s and Cold War era.

Network services for Ethernet devices and connections have been standardized

by the International Organization for Standardization (ISO) which introduced the

Open System Interconnect (OSI) model depicted in Figure 1.1. The seven layer

model divides networking communication into seven segments for protocol implemen-

tation. Network security implementation normally takes place at the “Data Link”

and “Network” layers at which point devices are either granted or denied network ac-

cess [28,50,62,65]. It has been shown that the security protocols in place at these layers

provides an avenue for an attacker to spoof the bit-level security credentials of these

layers [5, 13, 18]. The first OSI model layer is considered the Physical Layer (PHY)

and has the potential to provide a vast amount of discriminating data that currently

is being ignored by the higher OSI layers for network security.
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Figure 1.1. Ope n System Inte r connect (OSI ) reference model highlighting the 7 layers 
associated with n etwork communication s [65]. 

Preventing unaut horized network access is necessary to help limit t he intelligence 

gat hering efforts of our adversaries. This research investigates Ethernet cable emis-

sions t hat contain PHY att ributes to augment traditional network security protocols 

such as Media Access Control (MAC) credent ials that can be easily spoofed t hrough 

network monitoring [28). The variat ions in the manufacturing process for network 

devices are enough t o cause slight variations in t he PHY signaling attributes of each 

device such t hat unique features can be extracted from a given signal to increase t ra-

ditional security mechanisms [15, 20, 35]. The research presented takes the Ethernet 

emissions and ut ilizes t he unique features present in t he device signal to augment 

current network security protocols. The newly developed approach improves device 

discriminat ion through an increase in 1) Device Classificat ion, 2) Device Ident ifica­

t ion (ID) Verificat ion, and 3) the reject ion of rogue devices requesting network access. 

Prior research in t he area focused heavily on wireless device discrimination and have 

shown that the unique feat ures are useful for security augmentation [20). 
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1.2 Technical Motivation

A side channel is a result of a system or device’s implementation such that an

output, whether intentional or not, leaks information relevant to specific operations

or data within the system or device. The knowledge base for Side-Channel Analysis

(SCA) is extensive and covers many decades of research to include intentional and

unintentional byproducts [14–17, 21, 22, 24, 26, 34, 39, 41, 56, 59, 60, 64, 71, 72, 75, 77].

Some pertinent exploitable side channels include network traffic (intentional) [14,41]

and unintentional Radio Frequency (RF) emissions. The unintentional RF emission

research can be divided into multiple subareas to include 1) components [15–17, 59,

60,75], 2) peripherals [21, 22,34,39,64,71,72], and 3) cables [22,56].

The ability to use PHY attributes (RF fingerprinting) as a means to perform de-

vice discrimination is not new and there is extensive research in this area covering

many decades. Typical utilization of PHY attributes includes generation of unique

discriminating features within transient, invariant or entire burst responses [20].

Transient-based approaches [4, 68, 70] are generally avoided given the transient re-

sponse 1) has limited duration, and 2) is influenced by environmental conditions that

affect the communication channel and limit its usefulness [19]. The invariant ap-

proaches as in [31–33,48–51,73,74] extract device dependent features from a specific

non-data modulated Region of Interest (ROI) within the burst (preamble, midamble,

etc.). The entire burst is typically used in Constellation Based (CB) approaches as

in [6,19,20,25,35] to extract features from data modulated ROI where device depen-

dent modulation errors exists between the ideal transmitted symbols and the received

symbols.

5



1.2.1 Side Channel Analysis (SCA).

Most early SCA literature [34,39,56,64,71,72] focuses on far-field device emissions

to recover data being leaked by the device. As a research area, SCA has a consid-

erable knowledge base, but it was evident that there was a gap in this research area

such that Ethernet cable emissions have yet to be explored as an exploitable byprod-

uct. The focus for this research is to collect unintentional near-field emissions using a

similar process and probe setup used in [15,60,75] and described in Section 3.1. This

research effort will then utilize the collected emissions to 1) provide the ability to per-

form symbol estimation on collected emissions enabling confirmation of payload data

and burst destination by an outside system, and 2) enhance traditional MAC based

authentication processes through the creation of a non-conventional constellation for

device feature extraction.

The details for a Single Slope (SSLP) symbol estimation process are provided in

Section 3.4.1 and an expanded CB approach is covered in Section 3.4.3. The latter

CB symbol estimation technique creates a non-conventional constellation from the

Ethernet emissions and is what enables the development of a CB-DNA Fingerprinting

process.

1.2.2 Constellation-Based (CB) Fingerprinting.

At the beginning of this research, it became clear that there was limited literature

addressing wired PHY augmentation to MAC based authentication using PHY-based

Distinct Native Attribute (DNA) features to form device fingerprints. The concep-

tualized fingerprinting approach for wired Ethernet devices utilizes new conditional

constellation regions not present in prior related works [6, 19, 25]. It is required that

symbol estimation from collected emissions generate fingerprints that are adequate

for device discrimination for both Cross-Model Discrimination (CMD) defined here as
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between different manufactures and Like-Model Discrimination (LMD) defined here

as between different devices with the same model number and manufacturer.

Current literature in wired device discrimination only contains a correlation based

approach [27, 28] which collects Ethernet burst preambles directly from the network

card for comparison against a training data set. A couple of drawbacks to this ap-

proach is 1) it requires direct access to network card for collection, and 2) it requires

sample rates at or greater than 1 Giga samples/sec (GSps).

The current literature in wireless device discrimination utilizes symbol estima-

tion for traditional constellation based signals such as Quadrature Phase Shift Key-

ing (QPSK) and Orthogonal Frequency-Division Multiplexing (OFDM). The vast

majority of these techniques create features from errors between the estimated sym-

bol and the ideal symbol location [6, 19, 25, 35]. This approach provides adequate

device discrimination for wireless devices but is limited to signals that are modulated

using a traditional constellation. The Ethernet protocols for PHY signaling do not

utilize a traditional constellation for signal modulation which further complicates the

issue, i.e., the collection process captures a transformed version of the communication

burst and not an ideal modulated signal representation.

Development details for the CB-DNA process are described in Section 3.7 and

builds upon Section 3.4.3 that takes a non-constellation modulated signal and projects

its symbols into a non-conventional constellation space. This proved to be an effective

means for implementing CB-DNA Fingerprinting and discriminating devices.

At the time of this research, a direct comparison between fingerprinting processes

utilizing the same collected emissions has yet to be conducted. Therefore, the Radio

Frequency-Distinct Native Attribute (RF-DNA) Fingerprinting process outlined in

Section 2.3 will be accomplished in parallel with the newly developed CB-DNA Fin-

gerprinting process on the unintentional Ethernet emissions and results compared.
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The goal is to find which fingerprinting process provides the best classification per-

formance for this type of signal.

As the methodology and implementation of device discrimination via PHY at-

tributes increases in maturity and approaches operational transition, it may be nec-

essary to improve fingerprinting discrimination performance. Other RF-DNA imple-

mentations have looked at discovering a more robust feature set through Dimensional

Analysis Reduction (DRA) which reduces the number of features needed to perform

discrimination while keeping the performance degradation to a minimum [48–50].

This technique does provide for an operational implementation that has a smaller

footprint but a drawback is a potential in discrimination performance. Process en-

hancements such as Constellation Point Accumulation (CPA) and Projection Point

Averaging (PPA) are investigated with the goal of improving overall verification per-

formance. The enhancements have the ability to provide an increase in performance

that negates the degradation from DRA.

1.3 Research Contributions

The technical areas mentioned in previous sections are summarized in Table 1.1

and provide a relational mapping between previous work in these areas and current

contributions presented in this dissertation. Some previously undefined acronyms con-

tained within the table include: Time Domain (TD), Spectral Domain (SD), Gabor

Transform (GT), Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML),

Generalized Relevance Learning Vector Quantized-Improved (GRLVQI), Support Vec-

tor Machine (SVM), k-Nearest Neighbor (kNN), Linear Discriminant Analysis (LDA),

and Subclass Discriminant Analysis (SDA)
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1.4 Document Organization

The remainder of the document is organized as follows. Chapter II provides rele-

vant background information on topics utilized for this research to include SCA, the

adopted RF-DNA Fingerprinting approach, 10BASE-T Ethernet standard, and the

device discrimination process. Chapter III provides the methodology for experimental

emission collection, post-collection processing, symbol estimation of wired emissions,

the adopted RF-DNA implementation, development of the CB-DNA Fingerprinting

technique, implementation of Device Classification and Device ID Verification, and

finally some enhancements for CB-DNA and additional verification metrics. Chap-

ter IV presents the CMD and LMD classification results, LMD device ID verification,

LMD ID verification enhancements, and lastly a sensitivity analysis associated with

probe orientation. Chapter V provides the research summary and conclusion, as well

as a brief discussion on potential future work.
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Table 1.1. Relational Mapping Between Current Research Contributions and Technical
Areas of Previous Work. The X Symbol Denotes Areas Addressed.

Technical Area Previous Work Current Research

Addressed Ref # Addressed Ref #

TD Features X [36, 37,50,63,73,74] X [12]

SD Features X [16, 17,51,73]

GT Features X [49–51]

CB Features X [6, 19,20,25,35] X [11, 12]

Correlation X [27, 28]

Emission Type

Intentional X [31, 36,37,50,63,73,74]

Unintentional X [15–17,59,60] X [10–12]

Burst X [31, 36,37,50,63,73,74] X [10–12]

Continuous X [15–17,59,60]

Classification / Verification Process

MDA/ML X [36, 37,50,73,74]
[15–17,31,51]

X [11, 12]

GRLVQI X [37, 49,51]

SVM X [6, 19, 25]

kNN X [6, 19] X [11]

LDA/SDA X [35]

Classification / Verification Devices

Wireless Devices X [31, 36,37,50,51,73,74]

Wired Devices X [27, 28] X [10–12]

Device Operations X [59, 60]

Wired Emission Symbol Estimation

RF SSLP X [10, 11]

CB-Based X [11]

Side Channel Analysis

Unintentional Emissions X [21, 22,24,26,34]
[39,41,56,71,72]

X [10–12]

Process Enhancements

DRA X [48–50]

CPA X [6, 35] X

PPA X

10



II. Background

2.1 Introduction

This chapter provides background information and key concepts supporting the

research methodology in Chapter III and research results presented in Chapter IV.

Section 2.2 provides a brief history of Side-Channel Analysis (SCA) as used to cap-

ture and exploit unintentional Radio Frequency (RF) emissions from digital devices.

The goal is to extract information that can be used to passively characterize device

operation or system configuration. RF Fingerprinting is addressed in Section 2.3,

to include a description of Radio Frequency-Distinct Native Attribute (RF-DNA)

in Section 2.3.1 as adopted for comparison with the newly developed Constellation

Based-Distinct Native Attribute (CB-DNA) presented in Section 3.7. Details for

previous Constellation Based (CB) discrimination techniques that utilize intentional

emission features are presented in Section 2.3.2 for completeness. Standard Ethernet

10BASE-T characteristics are covered in Section 2.4. The final sections address de-

vice discrimination as two distinct, equally important, related processes as depicted

in Figure 2.1. First, the 1 vs. M Device Classification assessment process is described

in Section 2.5 and a description of Multiple Discriminant Analysis/Maximum Likeli-

hood (MDA/ML) classification is provided. Second, the 1 vs. 1 Device Identification

(ID) Verification assessment is described in Section 2.6.
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F igure 2.1. D iagram of research path s taken for C B-DNA Fingerprint ing development 
and dem on strat ion . 

2.2 Side C hannel Analysis (SCA ) 

It is common knowledge that digital devices leak information in t he form of Elec­

t romagnet ic (EM) emissions. The German army successfully carried out side-channel 

attacks as early as WWI on field phone lines ut ilizing far-field emissions [24]. Since 

then, side channel attacks have expanded to other electronic devices. The miniatur­

ization of components and decreases in production costs has enabled the shrinking of 

entire devices and opened up a wide area of potential eavesdropping risks. 

Cathode Ray Thbe (CRT) monitors have been widely exploited in literat ure using 

the EM emissions result ing from video signal processing [39, 64, 71]. In 1985, it was 

first discovered that video displayed on a CRT could be reproduced on a TV screen 

when the TV receiver was tuned to the appropriate frequency [71]. The EM radiation 

from a CRT monitor is a direct result of the several hundred volt signal required to 

operate the monitor. It was discovered t hat the amplified CRT signal was very similar 
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to that of a broadcast television signal and theoretical eavesdropping distance for

some displays could be as high as 1 km. Moreover, adding additional CRT monitors

to the room did not mask the signals with additional noise because each monitor

resonated at a separate frequency which simply enabled an attacker to view more

screens. Since the original CRT exploration in 1985, several others such as [22,39,64]

have all accomplished similar attacks each focusing on slightly different SCA aspects.

The work in [39] advanced EM emanation exploitation by disguising hidden trans-

missions in video display signals. In this case, the video display unit was used to

transmit an audio signal that could be picked up with an AM radio. This enabled the

transmission of computer data to an eavesdropping station at a rate of approximately

Rb = 50 Bits/Sec (BPS) [39]. A second type of attack, more along the lines of [71],

hid images behind those displayed on the monitor so that the eavesdropper could

capture the hidden image on another monitor. A dithering technique which changes

the screen pixel modulation was used to carry out these various attacks.

A method to calculate the maximum eavesdropping distance for video emanations

being transferred to an Ethernet cable was subsequently developed in [22]. This

earlier work determined that an experimental distance of De = 29.5 m was the max

distance for video reconstruction. However, the paper itself appeared to have some

contradicting statements, and its last few sections lacked structure and rigor.

A novel approach is considered in [21] to recover and detect the keystrokes of a

PS/2 keyboard. Crosstalk and EM coupling is used to investigate the information

leakage from a computer with a PS/2 keyboard. It was determined that the EM

coupling of keyboard keystrokes was present in the power ground line, i.e., at the

power outlet. The factors enabling signal propagation are a lack of shielding in the

PS/2 cable, data encoded on sharp rise and fall edges of the clock, and frequency

of the transmission. Once the data signal is on the PS/2 ground line cable it can

13



propagate to the ground plane through the power outlet.

The potential for EM-based eavesdropping on an RS-232 cable has been inves-

tigated using a standard radio receiver [56]. The eavesdropping was successful for

multiple reasons, including: 1) use of high frequency transmissions, 2) use of large

signal amplitudes, 3) no cable shielding, 4) serial data transmission, and 5) low bit

transmission rates. It was shown in [56] that RS-232 cable eavesdropping can occur

at distances of De = 9 m and De = 7 m between the AM radio and the unshielded

and shielded cable, respectively. The only requirement for this type of attack is an

AM/FM radio with a few minor modifications and a way to store the received signal.

One drawback is that distances are reduced when one piece of equipment is connected

to a proper ground.

The work presented herein expands on prior SCA techniques by collect-
ing RF emissions from an Ethernet cable and performing symbol estima-
tion to extract addressing information and payload data from individual
Ethernet frames.

2.3 Radio Frequency (RF) Fingerprinting

RF Fingerprinting is a generic term used to describe techniques that utilizes RF

emissions, whether intentional or unintentional, to create a digital fingerprint from

unique features contained within the emissions. The generated fingerprints are then

used to perform discrimination between devices or specific device states. Device

hardware fingerprinting is possible due to variations in manufacturing processes and

device components. These variations inherently induce Physical Layer (PHY) feature

differences that vary across devices [35]. Amplifiers, capacitors, inductors and oscil-

lators also possess slight imperfections that influence device fingerprints [6,19,25,35].

The resultant variation can cause deviations in communication symbol rate, cen-

ter frequency, and AM/FM/PM conversion [35]. Thus, “it is possible to exploit
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device imperfections even when the intrinsic components used are supposedly identi-

cal [17, 20]” [12].

A physical layer identification survey by [20] summarizes various RF Fingerprint-

ing approaches used to create digital fingerprints into three basic approaches 1) tran-

sient responses, 2) invariant responses non-data modulated, and 3) varying data mod-

ulated burst response regions. “Transient-based approaches are generally avoided

given [19] 1) the limited duration of the transient response, and 2) the transient re-

sponse being influenced by environmental conditions that affect the communication

channel and limit its usefulness [12].” It is for those two reasons the research presented

in this document focuses on the two approaches that utilize the invariant and varying

responses to perform device fingerprinting. Section 2.3.1 provides the background de-

tails on RF-DNA approach which utilizes the invariant response region. Section 2.3.2

provides background on previous work in the area of varying (data modulated) burst

response regions.

2.3.1 RF-DNA Fingerprinting.

This section provides an introduction to traditional RF-DNA fingerprinting and

the techniques associated with it. The conventional RF-DNA implementation his-

torically extracts the invariant (non-data modulated) [16, 17, 31, 32, 36, 48, 50, 51, 59,

63, 73, 74] burst responses. A few of these implementations include Time Domain

(TD) [48], Spectral Domain (SD) [73], Fourier Transform (FT) [73], and Gabor Trans-

form (GT) [51] and then generate features from various Region of Interest (ROI) (i.e.,

transient, amble, and preamble). Another use for RF-DNA fingerprinting is to de-

tect normal or abnormal behavior of programmable logic components as described in

[60,75]. Here, a low sensitivity RF probe is used to collect near-field emissions from a

Programmable Logic Controller (PLC) in an effort to digitally fingerprint a series of
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operations that the device performs. The capability of this approach provides a way

to tell whether or not a device is genuine and its original design has not been altered

by additional logic gates.

Prior to this research, the majority of the previous research in RF-DNA finger-

printing has relied on intentional signal responses of wireless devices [36, 48, 51, 63,

73, 74] to perform device fingerprinting. However, the research presented here uses

the technique introduced in [10] and explained in Section 3.1 for collecting unin-

tentional RF emissions from Ethernet cables to produce RF-DNA fingerprints on a

burst-by-burst basis for wired network cards. The subsequent paragraphs discuss the

adopted RF-DNA approach described in [49,50]. The relevant parameters associated

with fingerprint generation are covered in Section 3.6 and are used to generate the

discrimination results presented in Section 4.4 and Section 4.5.

RF-DNA uses the steady-state response of the communication signal usually in

the form of an “amble”, and extracts native attributes to create a feature-based finger-

print [17,48–51]. This work adopts the RF-DNA fingerprinting approach utilizing the

specifics of the RF-DNA procedures outlined in [17, 50, 59] for Time Domain (TD)

responses and is restated here for completeness. Traditional RF-DNA TD finger-

printing starts by partitioning the ROI into subregions and finding the instantaneous

amplitude, phase, and frequency responses of the individual subregions.

Individual RF-DNA fingerprints FRF are generated from Nk samples extracted

from a real-valued discrete signal defined as cs(k). The number of individual TD

feature responses Nresp = 3 and consists of amplitude {āc(k)}, phase {φ̄c(k)}, and

frequency {f̄c(k)} with k = 1, . . . , Nk as provided in (2.1) - (2.3). Before the instanta-

neous phase (2.2) and frequency (2.3) can be calculated, the real-valued signal cs(k)

must first be converted into I-Q samples via the Hilbert transform [42], which results

in cs(k) = csQ(k) + csI(k) where
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a(k) =
√
cs2(k), (2.1)

φ(k) = tan−1

[
csQ(k)

csI(k)

]
, (2.2)

f(k) =
1

(2π)

[
dφ(k)

dk

]
. (2.3)

Consistent with other work [36, 50, 73] the TD features are also normalized (de-

noted with an over bar) and centered (denoted with a subscript c) and provided in

(2.4) - (2.6) where, k = 1, . . . , Nk, and the calculated means across Nk are µ(a), µ(φ),

and µ(f) for amplitude, phase, and frequency, respectively. The function denoted by

max{·} is the maximum value of each sequence’s centered response [50].

āc(k) =
a(k)− µ(a)
max
k {ac(k)}

, (2.4)

φ̄c(k) =
φ(k)− µ(φ)
max
k {φc(k)}

, (2.5)

f̄c(k) =
f(k)− µ(f)
max
k {fc(k)}

, (2.6)

The selected ROI containing Nk samples is divided into NR equal subregions, such

that the number of samples per subregion is an integer. Statistical features Nstat = 4

are then generated for each of the normalized and centered instantaneous responses

Nresp = 3, where the statistical features include standard deviation (σ), variance (σ2),

skewness (γ), and kurtosis (κ) as depicted in Figure 2.2. It is also common practice to

utilize the entire ROI as an NR+1 subregion. For each instantaneous, response a NRi

regional fingerprint is created according to (2.7) and concatenated as in (2.8). Then
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the individual feature vectors for a given instantaneous response are concatenated to

form the final composite fingerprint FRF
C as in (2.9).

1 2 3 4 5 NR - 1 NR

NR + 1

fR3
σ – Std Deviation

σ2 – Variance

γ – Skewness

κ – Kurtosis

fR3 = [ σR3, σ
2
R3, γR3, κR3 ]

Arbitrary Feature Sequence

Figure 2.2. Standard RF-DNA regional fingerprint format for generating centered and
normalized feature sequences [59,73].

FRF
Ri

= [σRi
, σ2

Ri
, γRi

, κRi
]1×4 (2.7)

FRF
a,φ,f = [FRF

R1
: FRF

R2
: FRF

R3
: · · · : FRF

RNR+1
]1×[4(NR+1)] (2.8)

FRF
C = [FRF

a : FRF
φ : FRF

f ] (2.9)

The number of features in a RF-DNA fingerprint are dependent on the number of

instantaneous responses Nresp, statistical features Nstat, and subregions NR selected.

For example Nresp = 3, Nstat = 3, NR = 20 results in a statistical feature vector of

length 3 × 3 × 20 = Nfeat = 180 features. The RF-DNA parameters used for this

research are covered in Section 3.6.

RF-DNA was introduced for two reasons: 1) the unintentional Ethernet
emissions are a new, previously uninvestigated emission type under the
RFINT program, and 2) to enable direct performance comparison of
prior RF-DNA and newly developed CB-DNA fingerprinting methods
utilizing identical collected emissions.
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2.3.2 Constellation-Based Fingerprinting.

This section provides background on previous CB device fingerprinting techniques.

The objective of CB fingerprinting is to take the intentional RF emissions (data

modulated) burst responses of wireless a device and extract unique features from the

constellation responses to identify a device by its physical-layer attributes. CB device

discrimination is also affected by slight variations in components such as amplifiers,

capacitors, inductors, and oscillators used in the manufacturing devices [6,8,19,25,35].

The component variations cause deviations in symbol rate, frequency, noise, AM-

AM compression and AM-PM conversion as discussed in [35]. Most of the prior

work associated with using signal constellations involves extracting features from

constellation errors depicted in Figure 2.3 [6, 8, 20,25,35].

I

Q

Measured
Phasor

Ideal Phasor

Ideal Signal

Magnitude Error

Error Vector

Phase Error

Measured Signal

Figure 2.3. Representation of the typical errors previous constellation based finger-
printing techniques [6].

The Phase, Magnitude and Error vector presented in Figure 2.3 highlights the

main components used to create features for prior work in CB device discrimination.

A few other metrics were also mentioned and include SYNC correlation and I/Q

offset [6, 25]. Several feature extraction methods and classifiers have been looked at
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to include Linear Discriminant Analysis (LDA) and Subclass Discriminant Analysis

(SDA) in [35], Brik et al. used a Support Vector Machine (SVM) and k-Nearest

Neighbor (kNN) in [6], Maximum Likelihood (ML) and weighted voting is used in [8].

What is not evident in [6, 8, 20, 25, 35] is how the constellation statistics (mean,

variance, etc.) are compiled into feature vectors. The works generally mentioned

that features are generated based on symbol estimation errors for each symbol within

a given communication burst. It is not clear in these prior works how all the in-

dividual errors are compiled into a single feature in the radiometric signatures cre-

ated [6,8,20,25,35]. The work in [6,35] does mention that an improvement in accuracy

was observed when multiple bursts were used for training. However, basic implemen-

tation details were given on training bins and the same bins did not appear to be used

for testing signatures. In [35] it states that “multiple frames are averaged to improve

Signal-to-Noise Ratio (SNR)” which is different than the approach described in Sec-

tion 3.10.1 where features are based on accumulation of projected points. Results

in [6, 35] are presented that do show some improvement in accuracy when increasing

the number of bursts in a training bin but again it is somewhat unclear how the

binning works.

The newly developed CB-DNA Fingerprinting method differs consid-
erably from prior constellation-based works given it relies on symbol
cluster distributions versus simple transmitted-vs-received constellation
error metrics.

2.4 Ethernet Signaling Characteristics

The original IEEE Ethernet Standard was comprised of multiple individual stan-

dards, and as new techniques and transmission mediums were used, new standards

would be created making it difficult to keep up with changes. Therefore in 2012, all

the individual standards were placed into one Ethernet standard 802.3-2012 which

was subsequently divided into clauses [1] representing individual standards.
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Table 2.1 gives a brief comparison of three Ethernet signaling clauses in the IEEE

802.3-2012 standard. The Manchester encoding scheme is employed by the full-duplex

10BASE-T Ethernet that utilizes the clocks falling edge and data stream to encode

the transmitted data sequences [57]. The 10BASE-T clause has a symbol duration

of TSym = 100 ns and it uses serial data transmission over two Twisted Wire Pair

(TWP)’s, including one pair for transmission and one pair for receiving. For a specific

symbol interval, a Clocked Data Zero (CD0) symbol is defined as having a high voltage

level for the first half of the symbol duration and a low voltage level for the second

half. Alternately, a Clocked Data One (CD1) symbol is defined as having a low

voltage level for the first half of the symbol duration and a high voltage level for the

second half.

Table 2.1. Ethernet Comparison for Three Clauses [1].

Signaling Type 10BASE-T 100BASE-TX 100BASE-T2

Encoding Manchester Muti-Level
Transmit-3 (MLT3)

Pulse-Amplitude
Modulation-5 (PAM5)

Symbol Time 100ns 8ns 40ns

Transmission Serial Serial Parallel

TWPs to Transmit One One Two*

TWPs to Receive One One Two*

Data Scrambler No Yes Yes

* Simultaneous Transmit and Receive on Same Wire

A network card implementing the 10BASE-T sits idle when it has no data to

send, and therefore, unintentional emissions of interest are only present when the

device is actively transmitting data frames. The preamble is used at the beginning

of each data transmission to synchronize clocks between transmitter and receiver so

that the receiver can perform symbol estimation. The preamble consists of Npre = 56

symbols that alternate between CD1 and CD0. Immediately following the preamble
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is the Start Frame Delimiter (SFD) that has a specific Nsfd = 8 symbol sequence of

‘10101011’. The SFD’s purpose is inform the receiving device that data is immediately

following. An inter-frame gap Tifg = 9.6 µs is an exploitable feature in the 10BASE-

T standard as it provides a delay in the transmission of subsequent communication

bursts between the end of one transmission and the beginning of the next as depicted

in Figure 2.4. The implementation of the other two clauses mentioned require that

the network card is always actively transmitting data symbols; however, when no

requested data is being transmitted an idle symbol is sent instead. The other two

clauses still use the same sequence of bits for the preamble but it is no longer used

to synchronize clocks. However, the SFD is still used to indicate the start of a new

frame.

INTER-FRAME GAP

Figure 2.4. A sequence of 10BASE-T bursts highlighting the inter-frame gap between
bursts [2].

Turn-on steady-state responses of 10BASE-T communication bursts and
the inter-frame gap enables reliable burst detection and ROI extraction
for both RF-DNA and CB-DNA Fingerprinting.

2.5 MDA/ML Device Discrimination

The specific elements of MDA/ML device classification described herein are di-

rectly adopted from [15, 50] and its use is consistent with previous RF-DNA finger-

printing works [16, 17, 48–51, 59, 73, 74]. The MDA/ML process is used to generate

the classification results in Chapter IV.
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Consistent with previous device discrimination work, Device Classification is de-

fined for this research as a 1 vs. M assessment where an unknown device fingerprint

is compared to all known devices and a decision is made as to which known device

looks “most like” the unknown device. In essence, the best match is always returned

to one of the known devices even if the input device has never been seen by the

model. The classification approach herein can be divided into two steps 1) model

development using Multiple Discriminant Analysis (MDA) an expansion of Fisher’s

LDA from an NC = 2 class problem to an NC > 2 class problem, where NC is the

number of classes [51]. The goal of MDA is to reduced the feature dimensionality

from d dimensions to NC−1 dimensions while maximizing the distance between class

means and minimizing the variance within a given class [23, 66], and 2) the device

classifier utilizes the ML classification technique which is accomplished by comparing

an unknown fingerprint against all class models and a measure of similarity is re-

turned for each NC . It is then said that the unknown fingerprint belongs to the class

with the highest similarity measure because it looks the “most like” that class [15,50].

2.5.1 Multiple Discriminant Analysis (MDA).

The first step in MDA is to find the scatter matrices that reduces the intra-class

variance (Sw) in (2.10) and maximizes the distant between the inter-class means (Sb)

in (2.11) [66]:

Sw =
C∑
i=1

Pi(µi − µ0)(µi − µ0)T , (2.10)

Sb =
C∑
i=1

PiΣi, (2.11)

where the prior probability of class ci is Pi and Σi is the covariance matrix. Probabil-

ities and costs are assumed to be equal for all classes. A projection matrix W is then

formed using (2.10) and (2.11) by W = Sw−1Sb and selecting NC − 1 eigenvectors.
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Device fingerprints F are then projected into the NC − 1 dimensional space via:

FW
i = WTF . (2.12)

A projected training matrix FW is created by taking a total of NTng training finger-

prints from each class and projecting them with (2.12) as in:

FW =

[
FW

1 ,FW
2 , . . . ,FW

NTng

]T
NTng×(NC−1)

. (2.13)

A multivariate normal distribution is fitted to the projected MDA training data

for classifier development using projected class means (µ̂W
i ) and covariance matri-

ces (Σ̂W
i ). The MDA process outputs 1) projection matrix W, 2) NC sets of FW,

3) NC estimated mean vectors µ̂W
i , and 4) NC covariance matrices Σ̂W

i . These four

outputs are then used for ML classification (estimation) of subsequent testing finger-

prints F̂ [66] as described in Section 2.5.2.

2.5.2 Maximum Likelihood (ML) Classification.

This section uses the outputs from the previous section to perform ML classifi-

cation via a similarity measure described by the Bayesian posterior probability and

assuming equal prior probabilities and costs. To do this, the covariance matrices Σ̂W
i

are first pooled according to:

Σ̂W
P =

1

NTng −NC

NC∑
i=1

Σ̂W
i , (2.14)

where NC is the total number of devices and Σ̂W
P is the pooled covariance over Σ̂W

i .

Device classification is then performed using some similarity criterion through a

one-to-many comparison of a single device fingerprint with a template reference from

each device modeled. A best match is found by calculating similarity score between
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an unknown projected device fingerprint F̂ and each of the NC reference models. The

unknown projected device fingerprint F̂ is then assigned to class mi according to:

P (mi|F̂) < P (mj|F̂)∀j 6= i, (2.15)

where i = 1, 2, . . . , NC and P (mi|F̂) is the conditional posterior probability that

F̂ belongs to mi. The conditional probability is then computed according to Bayes’

Rule as in [23,66]

P (mi|F̂) =
P (F̂ |mi)P (mi)

P (F̂)
. (2.16)

A simplification of (2.16) can occur because of the assumption of equal prior prob-

abilities and cost (P (mi) = 1/NC) allow for the P (mi) term to be ignored. The

denominator also remains constant and can likewise be ignored in (2.16) reducing

to only the P (F̂ |mi). This reduction then allows for the ML to be estimated from

likelihood values of a projected fingerprint F̂ [23,66] as in the conditional probability

P (F̂ |mi) =
1

(2π)(NC−1)/2

√
|Σ̂W

P |
exp(Fe), (2.17)

where

Fe = −1

2
(F̂ − µ̂i)T (Σ̂W

P )−1(F̂ − µ̂i). (2.18)

The performance of the system is quantified by the percent correct classification

%C performance metric that is based on the number correctly identified fingerprints

divided by the total number of trials.

2.5.3 Cross-Validation.

A cross-validation mechanism can be used to improve MDA/ML reliability. This

involves: 1) dividing the training fingerprints into K equal size disjoint blocks of
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NTng/K fingerprints, 2) holding out one block and training on K-1 blocks to pro-

duce projection matrix W as outlined in Section 2.5.1, and 3) validating the model

by using the holdout block and W to perform device classification according to Sec-

tion 2.5.2 [23]. The W from the training iteration that had the highest percent

correct classification %C is output and used for subsequent MDA/ML testing as-

sessment. The analysis of the classification errors is accomplished with the use of a

confusion matrix which will be discussed in more detail in Section 3.8.

2.6 Device ID Verification

This section provides the definition of Device ID Verification and explains the pro-

cess for device ID verification. The specific elements of device verification described

herein are adopted from [15, 50] and its use is consistent with previous RF-DNA

fingerprinting works [16, 17, 49, 59]. The device ID verification process is a 1 vs. 1

comparison for assessing “how much” a fingerprint for a claimed identity looks like

the reference model for that identity. The device verification assessment enables au-

thentication of a device’s claimed identity via the devices fingerprint and its claimed

bit-level identity to include but not limited to Media Access Control (MAC) creden-

tials.

For this research, there are two types of device designations that include: 1) an

authorized device presents its own (true) credentials to request network access while

its credentials are compared against a stored reference for that device, and 2) a rogue

device presents (false) credentials matching an authorized device and attempts to gain

unauthorized network access. Note that it is possible for an authorized device to turn

rogue (e.g., insider threat) and present false credentials. The purpose of verification

is to compare the claimed identity with that of the reference model for the true

identity [15]. The resultant of this comparison is a binary decision that either grants
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the device access (rightly/wrongly) or denies the device access (rightly/wrongly). The

binary decision is based solely on a verification test statistic ZV and a predetermined

threshold value tV (d) as in:

ZV ≥ tV (d)⇒ Accept,

ZV < tV (d)⇒ Reject,

(2.19)

where d = 1, 2, . . . , NC is the index of the reference model for the true identity.

The binary decision in (2.19) is applied to both authorized and rogue devices re-

sulting in four possible outcomes detailed in Table 2.2 with the bold entries considered

as outcome errors.

Table 2.2. Verification Outcome Decisions with Bold Entries Denoting Errors.

Input
Verification Decision (Output)

Authorized Rogue

Authorized Authorized Accept (AA) Authorized Reject (AR)

Rogue Rogue Accept (RA) Rogue Reject (RR)

The two types of errors in Table 2.2 are summarized below [15,19,50]:

1. An Authorized Reject (AR) from Table 2.2 is when an authorized device expe-

riences a reject outcome from (2.19).

2. A Rogue Accept (RA) from Table 2.2 is when a rogue device experiences an

accept outcome from (2.19).

Results are typically presented as rates in terms of percentages such that:

1. True Verification Rate (TV R) is the total number of AA over all authorized

attempts (AA + AR).
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2. False Verification Rate (FV R) is the total number of AR over all authorized

attempts (AA + AR) or simply (1− TV R).

3. Rogue Reject Rate (RRR) is the total number of RR over all rogue attempts

(RR +RA).

4. Rogue Accept Rate (RAR) is the total number of RA over all rogue attempts

(RR +RA) or simply (1−RRR).

The verification threshold tV (d) for device d is set using a Receiver Operating

Characteristic (ROC) curve which is created by plotting the TV R against FV R while

varying tV (d) as depicted in Figure 2.5. Setting the tV (d) to the same point as the

Equal Error Rate (EER) point on the curve serves two purposes: 1) the classification

system operates under equal errors such that FV R = (1−TV R) and RAR are equal

and, 2) the EER point is a common statistic used to compare across classification

systems. The lower the EER for a given system typically indicates better performance

for that system [15,50]. Depending on the security needs of the classification system

the threshold value tV (d) can be increased or decreased.
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Figure 2.5. A Receiver Operating Characteristic (ROC) curve for Device A and B
with diagonal dashed line representing the Equal Error Rate (EER) and highlighting
the selection of the (EER) point as the verification threshold for Device A as tV (A) .
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The ID verification steps include: 1) developing a reference model, 2) selecting

a similarity measure, 3) determining device-dependent threshold values tV (d) with,

(d = 1, 2, . . . , NC) based on desired TV R and FV R performance, 4) generating a test

statistic ZV for each unknown fingerprint from the device presenting the claimed ID

and, 5) comparing ZV with threshold tV (d) according to (2.19) and making a final

accept (grant network access) or reject (deny network access) decision.
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III. Methodology

This chapter provides the methodology for generating results presented in Chap-

ter IV. The experimental setup for collecting the Electromagnetic (EM) responses of

Ethernet cards using a Category 6 Ethernet cable is presented in Section 3.1. This

includes details for the collection receiver, Ethernet card operation, and EM probe-

cable location. Section 3.3 covers post-collection processing and defines the Region of

Interest (ROI) for both Radio Frequency-Distinct Native Attribute (RF-DNA) and

Constellation Based-Distinct Native Attribute (CB-DNA). The details for the symbol

estimation techniques are presented in Section 3.4. Information regarding variation

in the Signal-to-Noise Ratio (SNR) is covered in Section 3.5. The adopted RF-DNA

methodology and parameters used for RF-DNA fingerprint generation are covered in

Section 3.6. Section 3.7 provides details for the CB-DNA Fingerprinting approach

developed under this research and demonstrated herein. The CB-DNA development

uses the symbol projection and bit estimation using the non-conventional constella-

tion, and generates CB-DNA fingerprints comprised of projected symbol statistics in

the new constellation space.

Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML) implementa-

tion is introduced for device discrimination, including the Device Classification pro-

cess in Section 3.8 and Device Identification (ID) Verification process in Section 3.9.

CB-DNA enhancements that demonstrate achievable device ID verification improve-

ment are also considered and includes 1) Constellation Point Accumulation (CPA) in

Section 3.10.1, and 2) MDA/ML Projection Point Averaging (PPA) in Section 3.10.2.

Lastly, a section on additional verification metrics is included in Section 3.11 as a way

to compare this research with other works.
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3.1 Experimental Hardware Setup

The experimental hardware setup included a Dell Precision T7500 desktop com-

puter with two Network Interface Card (NIC) slots. One slot hosted the NIC used

to collect emissions of interest using a LeCroy WavePro 760Zi-A 6 GHz oscilloscope.

As will be noted in Section 3.1.1, two different, like-model, different serial number os-

cilloscopes were used for collections. For these collections, a low-pass baseband filter

with a bandwidth of WBB = 32 MHz was placed in-line between the oscilloscope and

a Riscure 205HS “High Sensitivity” near-field probe to capture the EM signal. The

oscilloscope settings included: 1) a sample rate of fs = 250 MSamp/Sec (MSPS), 2) a

1.0 volts/div vertical scale, 3) a 2.0 msec/div horizontal time scale, and 4) a trigger

offset of tOff = −25.0 ms.

The second desktop NIC slot hosted the Ethernet Devices Under Test (DUT) in

Table 3.1, i.e., the transmitting Ethernet cards to be fingerprinted. The DUTs were

connected to a Dell Precision laptop via a given length (LC) of Category 6 Ethernet

cable and configured for 10BASE-T Ethernet signaling with full duplex enabled. As

indicated in Table 3.1, a total of 16 Ethernet cards used for proof-of-concept demon-

stration, including four devices (D) from each of four different manufacturers (M).

MATLAB R© was used to generate transmitted DUT data, trigger the collection os-

cilloscope, and write/store the collected signals to disk. A communication delay

between MATLAB R© and the Device Under Test (DUT) necessitated the use of a

negative collection trigger offset tOff .

As discussed earlier in Section 2.4, 10BASE-T full duplex operation only requires

two of the four available Twisted Wire Pair (TWP)s within the Ehternet cable. This

includes a TWP wire for transmitting (TWP of interest for extracting fingerprints)

and a different TWP for receiving communications from the connect network card.

The connected network card was not actively transmitting data frames. The re-
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Table 3.1. Ethernet Devices Under Test (DUT) Utilizing a Manufacturer (M) Device
(D) Combinations (M#:D#) as Device Reference.

D-Link Intel TRENDnET StarTech

Dev ID MAC Dev ID MAC Dev ID MAC Dev ID MAC

M1:D1 D966 M2:D1 1586 M3:D1 9B55 M4:D1 32CB

M1:D2 DA06 M2:D2 1A93 M3:D2 9334 M4:D2 32B4

M1:D3 DA07 M2:D3 1A59 M3:D3 9B54 M4:D3 96F4

M1:D4 60E0 M2:D4 1A9E M3:D4 9B56 M4:D4 3048

maining two TWPs remained inactive during DUT emission collections. Thus, the

Ethernet communication “channel” was relatively benign with the only possible in-

terference coming from network traffic on the receiving TWP wire. This environment

was sufficient for proof-of-concept demonstration. Performance analysis in a less be-

nign, more fully loaded Ethernet channel (additional TWPs active), was beyond the

scope of the research and remains an area for future work.

3.1.1 Probe-Cable Orientation.

The EM collection probe could be located anywhere along the Category 6 Ethernet

cable. For a selected collection point, the probe was positioned such that it was

just touching the cable without inducing physical distortion (no pressure). Various

emission collection points and probe-cable orientations are depicted in Figure 3.1a.

Note that the probe location changes in this figure correspond to linear (along the

cable) displacement. The following points also apply for radial (around the cable)

displacement. As indicated in Figure 3.1a, at any given location along the cable

the probe is within close proximity to one of four TWPs within the cable; since the

sheath is not removed for collection, the TWP closest to the probe is unknown. Also,

as depicted in Figure 3.1b there are multiple probe-wire orientations for a given TWP.

Thus, the experimentally collected EM response (amplitude, phase, power, etc.) for

the wire of interest changes with probe position.

32



(a) Ethernet Cable (b) TWP Locations

Figure 3.1. Orientation of RF probe with respect to (a) Ethernet cable Twisted Wire
Pairs (TWP) (b) wires within a given TWP.

The TWP in Figure 3.1b includes the wire of interest with letters A, B, and C

representing three unique probe-wire positions. When the probe is at location A

the signal response is most affected by the EM field generated by the colored wire.

The same is true for the response at location C but for the white wire. In an ideal

environment, the response collected at locations A and C would be perfectly out-

of-phase by 180◦. In addition, the response at location B would be zero given it

would be equidistant from both wires and the EM fields would cancel out. Thus,

establishing a repeatable procedure for probe location (axial and radial orientation)

was an important step for Ethernet cable emission collection.

A “good” probe location (linear and radial) was arbitrarily established as being

a probe-cable orientation that produced burst responses having peak amplitudes of

2-3 volts as displayed on the collection oscilloscope. For a given length cable and

collection oscilloscope combination (two combinations were used), the probe location

was determined using one of the Ethernet cards and maintained for subsequent col-

lections from all cards using a jig to keep the probe-cable orientation fixed. The two

cable-oscilloscope collection configurations included: 1) an LC = 8 m length cable

with oscilloscope #1 (Config #1), and 2) an LC = 100 m length cable with oscillo-

scope #2 (Config #2). Developmental and baseline performance results in Section 4.4

and Section 4.5 are based on Config #1 using a probe location of LP ≈ 2 m from
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the transmitting DUT. Revalidation and sensitivity analysis results in Section 4.7 are

based on Config #2 using probe locations of LP ≈ 2m (revalidation) and LP ≈ 98.0m

(sensitivity analysis) from the transmitting DUT.

3.2 Response Analysis

This section provides the technical details for response analysis for both the wire

and Electromagnetic (EM) 10BASE-T responses. A voltage change on the wire rep-

resents the transmission of symbols in 10BASE-T Ethernet signaling. Figure 3.2a

shows an example of the measured wire response for a Clocked Data One (CD1) an

oscilloscope. As current flows along the wire an EM field is generated around the

wire and the Radio Frequency (RF) probe measures the change in the EM field to

generate an EM response for a CD1 as in Figure 3.2b.

In an ideal situation, the two subfigures in Figure 3.2 would be the derivative of

each other as given by (3.1), which represents the instantaneous current i(t) given in-

stantaneous voltage v(t) for a single wire [67]. In (3.1) the current, i(t), is equal to the

capacitance of a single wire C times the derivative of the voltage, with respect to time.

However, Ethernet uses the TWP to reduce common mode noise, crosstalk between

adjacent wires, and the reduce the distance that RF signals can travel. The TWP

concept does not provide an ideal situation and therefore causes varying responses

based on probe placement.

i(t) = C × dv(t)

dt
(3.1)
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Figure 3.2. The wired response in (a) is numerically derived from the experimentally
collected EM response in (b).

3.3 Post-Collection Processing

This section contains information specific to the processing of individual collec-

tions to extract the response Regions of Interest (ROI) used for both RF-DNA and

CB-DNA fingerprinting. The post-collection processing occurred exclusively using

MATLAB R©, after emission collection described in Section 3.1. Each collection was
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approximately TCol ≈ 4.5 ms in duration and contained 25 bursts (frames). Figure

3.3 shows a typical collection with various burst durations. The space between two

ROI bursts corresponds to what is called the “inter-frame gap” which has a minimum

specified duration of Tifg = 9.6 µs. The highlighted region in Figure 3.3 is expanded

in Figure 3.4 and highlights an area containing a single ROI for both CB-DNA and

RF-DNA fingerprinting approaches. For the remainder of the document the term

“burst” will be used more widely instead of “frame” as the CB-DNA approach dis-

cussed in later sections can be expanded to other types of communication protocols;

however, “frame” will be used when specifically talking about the Ethernet.

Figure 3.3. Representative 10BASE-T EM probe response collection containing 25
bursts. Highlighted region expanded in Figure 3.4.

3.3.1 Course Burst Detection.

A course burst cb is extracted from the collected emissions as described herein.

The course burst detection process begins with an input sequence of collected sam-

ples {cs(k) : for 1 ≤ k ≤ NCS}, where NCS is the total number of samples in

the collected sequence. Two variables are empirically set for course burst detection,

including 1) a noise level threshold VNL = 0.4 v, and 2) the number of process-

ing window samples Npw = 800. The processing window subsequence is given by

pw({m}) ∈ {cs(k)} where m is a consecutive set of discrete samples contained in
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{cs(k)} such that m = {n + 1, n + 2, . . . , n + Npw} and 1 ≤ n ≤ NCS − Npw. The

value of Npw = 800 was empirically chosen to equal one-third the number of discrete

samples contained within the “inter-frame gap”, as defined in [1] and to ensure there

would be at least one pw({m}) having no value above NL = 0.4.

One of two outcomes is possible within processing window pw({m}):

Case A: No value in set m exists such that pw({m}) > NL = 0.4 (noise region)

Case B: > 1 value in set m exists such that pw({m}) > NL = 0.4 (burst region)

Case A and Case B conditions describe the extraction of bursts as the processing

window slides across {cs(k)} in increments of Npw until the end of the collection is

reached (NCS − Npw). The start and end indexes for a burst within pw({m}) are

found using the following process. The burst start index is the m satisfying Case B,

when the previous processing window pw({m−Npw}) satisfies Case A. At this time,

the start index ms of the detected burst is defined as the first index in pw({m}) such

that pw(ms) > VNL. The end of the burst is described as the pw({m}) being in Case

A when the previous pw({m−Npw}) was in Case B. At this time, the end index me of

the detected burst is the last index in pw({m}) for processing window pw({m−Npw})

such that pw(me) > VNL. The burst is extracted according to the start ms and end

me indexes and stored for fine burst alignment.

The course burst detection process is illustrated in Figure 3.4 using the entire

highlighted region in Figure 3.3 to represent {cs(k)}. It can be seen that the noise

floor (green line) between adjacent bursts is below the VNL = 0.4 v threshold and

the red line represents a binary decision such that a 1 is represented by at least one

m ⊂ pw({m}) > VNL and a 0 represents that m 6⊂ pw({m}) > VNL. The red line

goes above and below VNL near the burst turn-on and turn-off transition boundaries

representing the start (ms) and end (me) indexes of the extracted cb burst. The fine
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burst alignment process in Section 3.3.2 uses the course burst detection output cb to

more precisely locate the ROI prior to RF-DNA and CB-DNA fingerprint generation.
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Figure 3.4. Representative {cs(k)} from Figure 3.3.

3.3.2 Fine Burst Alignment.

Fine burst alignment is an important step prior to symbol estimation, which is

covered in Section 3.4, and both RF-DNA and CB-DNA fingerprinting approaches

are covered in Section 3.6 and Section 3.7, respectively. Fine burst alignment enables

reliable symbol estimation and ROI determination for both CB-DNA and RF-DNA

fingerprinting. Fine burst alignment was accomplished here using correlation. The

implementation includes correlating the course detected burst cb response extracted

in Section 3.3.1 with a selected preamble reference response as shown in Figure 3.5.
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Figure 3.5. Representative 10BASE-T preamble time domain amplitude response used
for Fine Burst Alignment (FBA) [10].
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The start of the ROI (SROI) is defined as the sample index number where max-

imum correlation occurs; the same fine aligned bursts are used for generating both

RF-DNA and CB-DNA fingerprints. Fine burst alignment ensures that all ROI’s

are extracted using the same technique for all devices. The end of the ROI for

RF-DNA is ErfROI = SROI + NDTS, where NDTS = 1600 is the number of discrete

time samples in an Ethernet preamble. The end of the ROI for CB-DNA varies from

SROI +NDTS +14, 400 < ECBROI < SROI +NDTS +57, 000 and is based on the length

of the transmitted burst. The number of discrete samples contained in RF-DNA is

NRFROI = NDTS. The number of samples in a CB-DNA varies on a burst-by-burst

basis, and is defined as NCBROI = me − SROI , where me is the end of a cb defined

in Section 3.3.1. An example burst that has gone through fine burst alignment is

presented in Figure 3.6, where the ROI for both RF-DNA (RFROI) and CB-DNA

(CBROI) are highlighted.
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Figure 3.6. An example Ethernet packet highlighting the Regions Of Interest (ROI)
for both RF-DNA and CB-DNA.

Fine burst alignment is not perfect and some alignment jitter remains. Jitter is

defined here as a delay/lag between SROI in cb and the first peak in the preamble of

cb, where units are number of samples. Results for the alignment jitter are covered

in Section 4.1.
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3.4 Wired Emission Symbol Estimation

This section provides development details for two symbol estimation processes:

1) the original Single Slope (SSLP) symbol estimation technique used to extract Eth-

ernet frame data from Ethernet cable emissions [10], and 2) the expanded Constella-

tion Based (CB) symbol estimation technique that was ultimately used for CB-DNA

process development. Proper synchronization is a must for reliable and repeatable

symbol estimation. The finely aligned bursts from Section 3.3.2 are considered ade-

quately synchronized and ready for the symbol estimation processes.

Eye diagrams are typically used to analyze communication signal characteristics by

visualizing the time-dependent variation between multiple symbols transmitted within

a single frame [54, 76]. All eye diagrams used in this research were created after fine

burst alignment and were used to verify symbol synchronization and detect the CD1

and Clocked Data Zero (CD0) symbols. The representative eye diagram in Figure 3.7

was constructed by superimposing approximately 2,200 consecutive symbols from a

single Ethernet frame.

3.4.1 Single Slope (SSLP) Symbol Estimation.

Eye diagram analysis aided in the development of the test statistic used to perform

symbol estimation for SSLP. Visual analysis of Figure 3.7 in the highlighted TG(k)

region shows two groups of signals having amplitudes making either a negative-to-

positive and or positive-to-negative transition around the TG(k) midpoint; these two

groups represent CD1 (red) and CD0 (blue) symbols. There also appears to be other

symbol variants within each of the two CD1 and CD0 symbols that is revisited later

in Section 3.7.1.

The SSLP symbol estimation process for 10BASE-T binary signal reception is

described with the aid of Figure 3.8. First, consider a sequence of symbol samples
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Figure 3.7. Eye diagram from one 10BASE-T collected emission showing 100ns symbol
duration.

{s(k)} for 1 ≤ k ≤ NTS, where NTS is the total number of samples spanning symbol

interval TS in Figure 3.8. For NTS = 25 as used here, TS ≈ 100 ns as shown in (3.2),

where FSample = 250 Million Samples/sec (MSps). Elements of TG(k) are calculated

according to (3.3), where N∆ is the number of samples right and left of the midpoint

TG(km) in Figure 3.8. The total number of elements NTG is calculated according to

(3.4). It was empirically determined through visual analysis of multiple eye diagrams

that a value N∆ = 3 provided adequate SSLP symbol estimation.

The transition of the symbols from low to high for a CD1 and high to low for a

CD0 enabled the use of the mean gradient of TG(k) as a reliable test statistic (ZG)

to estimate symbol value as in (3.5).

TS = (NTS)/FSample ≈ 100 nSec (3.2)

TG(k) = s(k) for (km −N∆ ≤ k ≤ km +N∆) (3.3)

NTG = 2×N∆ + 1 Samples, 1 ≤ N∆ ≤ (NTS − 1)/2 (3.4)

41



k
m

k

T
S

T
G

Figure 3.8. Near-field probe response for a Clocked Data One (CD1) symbol with
gradient test statistic TG generation region highlighted.

ZG = Mean

[
Gradient

{
TG(k)

}]
(3.5)

The sign of the test statistic values determines whether a symbol is estimated as

a CD1 or CD0 according to the following threshold:

ZG > 0→ 1,

ZG ≤ 0→ 0. (3.6)

3.4.2 Non-Conventional Constellation Development.

The 2D binary constellation described in this section is used for symbol estimation

(bit estimation) and CB-DNA fingerprinting that creates cluster statistics based on

the clusters formed during symbol projection in Section 3.7. The symbol estimation

boundary is presented and its use for symbol estimation is explained. The process

used for locating and synchronizing to individual burst responses in the collected

traces was as described in Section 3.3.2.

42



Generation of the 2D constellation for 10BASE-T binary signal reception is an

expansion of the SSLP estimation process described in Section 3.4.1 and used for CB

symbol estimation in Section 3.4.3. The 2D projection process will be described with

the aid of Figure 3.9 and (3.2 - 3.4) from Section 3.4.1. The 2D projection process

starts by first considering a sequence of symbol samples {s(k)} for 1 ≤ k ≤ NTS, where

NTS is the total number of samples spanning symbol interval TS. For NTS = 25 as

used here, TS ≈ 100ns as shown in (3.2). Elements of TG(k) are calculated according

to (3.3), where N∆ is the number of samples right and left of the midpoint TG(km).

The total number of elements NTG is calculated according to (3.4).

The difference in the symbol estimation process begins here where CB symbol

estimation uses N∆ = 7 for TG calculation which is an increase of 4 over SSLP

symbol estimation approach. The increase in N∆ was done to capture the variations

in the symbols that occur closer to the boundaries of the TS region in Figure 3.9.

Section 3.7.1 has more details about variation affects at the TS boundaries.

With the new N∆ = 7 and the sequence mid-point s(km) at index km, two new

gradient-based test statistics are generated using two sub-sequences, {T−
G (k)} and

{T+
G (k)}, on either side of s(km) in Figure 3.9 according to (3.7) and (3.9) [11], where

each sub-sequence contains N∆ + 1 samples. MATLAB R© gradient operation is used

in (3.8) and (3.10) which results in an instantaneous gradient calculation at each

sample point that calculates the slope across points (k − 1, k, k + 1) for each point

k contained in {T−
G (k)} and {T+

G (k)} resulting in N∆ + 1 total slope values [43].

The resultant Z−
G from (3.8) and Z+

G from (3.10) are used to form the 2D (Z−
G ,Z+

G)

constellation. This is illustrated in Figure 3.10 which shows a representative received

symbol constellation for each device manufacturer. The use of these non-conventional

constellations for symbol estimation is discussed in Section 3.4.3.

43



k
m

k

T
S

T
G
-

T
G

T
G
+

Figure 3.9. Near-field probe response for a Clocked Data One (CD1) symbol with
gradient test statistic T−

G (k) and T+
G (k) generation regions highlighted.

T−
G (k) = s(k)for(km −N∆ < k < km) (3.7)

Z−
G = Mean

[
Gradient

{
T−
G (k)

}]
(3.8)

T+
G (k) = s(k)for(km < k < km +N∆) (3.9)

Z+
G = Mean

[
Gradient

{
T+
G (k)

}]
(3.10)

3.4.3 Constellation-Based (CB) Symbol Estimation.

The symbol estimation in this research varies from that of traditional symbol

estimation due in part that the transmitted signal was not based on a constellation

and the derivative effect of the RF probe on the current passing through the wire. A

traditional symbol estimation method compares a projected received symbol against
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Figure 3.10. 2D binary constellation diagram, symbol estimation boundary for all card
manufacturers.

the ideal constellation points and selects the closest ideal constellation point to the

received projection to estimate its bit value. This work performs symbol estimation

on a symbol-by-symbol basis using a diagonal line denoted by ZC in Figure 3.11 which

represents the 2D binary symbol estimation boundary and is described in (3.11).

ZC → Z−
G = −(Z+

G) (3.11)

To provide symbol estimates the incoming symbols are projected into the 2D

constellation space via the (Z−
G ,Z+

G) pair from Section 3.4.2. Symbols mapped to

the left of ZC are estimated as a binary 0 while symbols mapped to right of ZC are

estimated as a binary 1.

A Bit Error Rate (BER) assessment was conducted on the CB symbol estimation

approach and compared to the SSLP approach in Section 3.4.1. The assessment

was conducted to assess the impact of BER on the CB-DNA Fingerprinting process
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Figure 3.11. 2D binary constellation diagram, symbol estimation boundary, and ideal
symbol location for card manufacturer TRENDnET (M3) [11].

in Section 3.7.3 given it relies on symbol estimates to assign projected symbols to

clusters. The results of the BER assessment are presented in Section 4.2.

3.5 Signal-to-Noise Ratio (SNR) Variation

An important aspect of device discrimination is to perform fingerprinting as-

sessment under varying channel conditions, i.e., at varying Signal-to-Noise Ratio

(SNR). Experimentally collected bursts averaged across all devices provide an SNR

of SNRC ≈ 16 dB for Config #1, SNRC ≈ 26 dB for Config #2 (LP ≈ 2 m), and

SNRC ≈ 24 dB for Config #2 (LP ≈ 98 m). The calculated SNR for all devices can

be found in Table 3.2.

To assess channel variation effects, a total of NNz = 6 independent like-filtered Ad-

ditive White Gaussian Noise (AWGN) realizations were generated and power scaled in

MATLAB R© then added to the collected bursts to achieve analysis SNRA = {2x|x ∈

, 2 < x < 16} dB, (SNR is used in place of SNRA henceforth for brevity). Each

AWGN realization was 1) randomly generated from a Gaussian distribution, 2) base-

band filtered with a WBB = 40 MHz and a Ofilt = 16 order filter, 3) power-scaled to

achieve the appropriate SNR value, and 4) added to the collected signal responses.
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This process was repeated for all collected signal responses NS = 1, 000 per card to

generate a total of NF = NS ×NNz = 6, 000 fingerprints for model development and

device verification in Sections 3.8 and 3.9, respectively.

Table 3.2. Calculated Signal-to-Noise-Ratios (SNR) for All 16 Device Manufacturers
at Probe to Transmitter Distances of LP = 2 m and 98 m Along the Cable.

Device ID Config #1
LP = 2 m

Config #2
LP = 2 m

Config #2
LP = 98 m

M1:D1 15.0 26.0 23.6

M1:D2 15.1 26.0 23.4

M1:D3 14.7 26.0 23.6

M1:D4 14.9 25.7 23.4

M2:D1 19.3 24.4 24.7

M2:D2 17.6 25.1 23.7

M2:D3 19.5 24.6 24.5

M2:D4 21.7 25.2 24.5

M3:D1 14.1 25.7 23.4

M3:D2 13.4 25.6 23.4

M3:D3 18.7 25.6 19.8

M3:D4 13.5 25.4 23.8

M4:D1 13.9 25.4 24.3

M4:D2 13.8 25.6 24.5

M4:D3 13.5 25.7 24.2

M4:D4 13.3 25.6 24.0

Average 15.7 25.5 23.7

Variations in the SNR are attributed to the differences in the collection receiver,

as well as the probe-to-cable orientation.

3.6 RF-DNA Fingerprinting

This section provides the implementation of the adopted RF-DNA fingerprinting

approach discussed in Section 2.3 to include the relevant parameters associated with

fingerprint generation used during device discrimination.
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3.6.1 RF-DNA Fingerprint Generation.

The preamble of the Ethernet frame was selected as the ROI for implementation

of the RF-DNA approach as highlighted in Figure 3.6 and is subsequently expanded

in Figure 3.12 to show only the preamble response. The preamble response shown in

Figure 3.12 is RFROI , where each RFROI contains NDTS = 1600 discrete time samples

and consists of only NrSym = 64 transmitted symbols per ROI.
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Figure 3.12. Representative 10BASE-T Region of Interest (ROI) for RF-DNA and used
for fingerprint generation. The RFROI contains NDTS = 1600 and divided into NR = 16
subregions.

To extract a unique DNA feature set, each Time Domain (TD) ROI is divided

into NR equal length subregions as illustrated in Figure 3.12 for NR = 16, where

each NR subregion has an equal number of discrete times samples k. Instantaneous

amplitude {a(k)}, phase {φ(k)}, and frequency {f(k)} are TD sequences used for

RF-DNA fingerprint generation. Composite RF-DNA fingerprints are generated by:

1) centering (mean removal) and normalizing {a(k)}, {φ(k)}, and {f(k)}, 2) calculat-

ing three statistical features of variance (σ2), skewness (γ), and kurtosis (κ) for each
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TD sequence to form Regional Fingerprint FRF
Ri

as in (3.12) for i = 1, 2, . . . , NR, and

concatenate into an instantaneous response vector as in (3.13)and, 3) concatenate

instantaneous response vectors FRF
a,φ,f to form the final 1× (9NR) Composite RF-DNA

Fingerprint FRF
C as in (3.14) [16,17,73].

FRF
Ri

= [σ2
Ri
, γRi

, κRi
]1×3 (3.12)

FRF
a,φ,f = [FRF

R1
: FRF

R2
: FRF

R3
: · · · : FRF

RNR+1
]1×NR

(3.13)

FRF
C = [FRF

a : FRF
φ : FRF

f ]1×(9NR) (3.14)

The total number of RF-DNA features in (3.14) is a function of NR, TD re-

sponses, and statistics. Varying NR provides a means to investigate performance

for various feature vector sizes. Fingerprints were generated over the ROI using

three TD responses ({a(k)}, {φ(k)}, {f(k)}), three statistics (σ2, γ, κ) per re-

sponse, for NR = 16, 32, 80 with (3.14) and produced RF-DNA fingerprints having

NFeat = 144, 288, 720 total features, respectively. A total NNz = 6 independent

AWGN realizations were added to each of the NS = 1, 000 collected bursts as de-

scribed in Section 3.5 to provide a total of NF = NS ×NNz = 6, 000 fingerprints for

each device at each analysis SNRs.

3.7 CB-DNA Development

This section provides technical details for developing a two-dimensional (2D) sig-

naling constellation from symbol projections. This development was required given

that the near-field probe response represents the time derivative of signals passing

through the Ethernet cable and no previous constellation was associated with the
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derivative signal. CB symbol estimation was covered in Section 3.4.3. Section 3.7.1

explains conditional and unconditional cluster regions within the constellation space.

The CB-DNA approach is explained in Section 3.7.2 which exploits the subcluster

(conditional) and aggregate (unconditional) regions for fingerprint generation in Sec-

tion 3.7.3.

3.7.1 Constellation Cluster Analysis.

The 10BASE-T Ethernet Standard 802.3, Clause 14 states that only two symbols

are used to transmit a data one and zero. However, Section 3.4.1 postulated that the

Ethernet cable emissions collected by the RF probe contained multiple variations of

those symbols based on the appearance of the eye diagram in Figure 3.7. The symbol

projection process developed in Section 3.4.2 further supports the idea of subclus-

ters in the constellations presented in Figure 3.10 because cluster regions are easily

identifiable within the aggregate clusters of ones and zeros. For example, Figure 3.10

shows that the Intel constellation has six distinct groupings, with three on each side

of ZC .

To highlight the symbol variants responsible for the subclusters within a pro-

jected constellation, each symbol variant is separated by their demodulation value

and grouped based on preceding and succeeding symbol estimations. As a result,

four symbol shapes emerge that represent an estimated CD1 and four that represent

an estimated CD0 for a total of eight distinct symbol shapes. Figure 3.13 displays the

eight symbols for two manufacturers. When referring to the subplots in Figure 3.13 a

quadrant system is used. The upper left quadrant is referred to as quadrant one and

the quadrants are increased numerically in a clockwise rotation until the quadrant 4

(lower left) is reached. For both card manufacturers the symbols in quadrants one

and two represent an estimated symbol value of a one and in quadrants three and
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four an estimated symbol value of a zero. Quadrants two and three have a preceding

estimated symbol of a one, and quadrants one and four have a preceding estimated

symbol of a zero. In Figure 3.13, a succeeding estimated symbol of a one is represented

by a solid line in all quadrants, whereas a zero is a dashed line. Each symbol was

generated by averaging Nsym = 200 symbols for each of the eight bit combinations,

[000], [001], [100], [101], [111], [110], [011], [010]. A quadrant by quadrant comparison

between, Figure 3.13a and Figure 3.13b shows that symbol shapes are similar near

the midpoint of the symbols between the card manufacturers. However, slight vari-

ations can be seen in the amplitude and signal behavior at the left edge of T−
G and

right edge of T+
G regions denoted as green dashed lines.

With the new information gained through cluster analysis a new color constellation

was created by plotting each of the eight symbols with a different (symbol/color)

combination to highlight the effect of preceding and succeeding bit combinations on

constellation shapes. The new constellation is displayed in Figure 3.14 where it is

apparent that independent aggregate clusters in Figure 3.11 are made up of four

dependent subcluster regions.

Figure 3.14 displays eight distinct conditional subcluster regions for StarTech

(M3:D1). The two legends denote the bit combinations used to assign projected

symbols to a given subcluster. Middle bit values represent the current bit being

estimated. For example, the red open circles are estimated to be a zero and the

estimated bit before and after the current bit are also estimated as a zero. The

dependent subcluster regions are also provided for the remainder of the four manu-

facturers in Figure 3.15 where it is visually evident that Intel (M2) and StarTech (M4)

constellations are discernibly different than DLink (M1) and TRENDnET (M3). In

Figure 3.15 it is also apparent that M1 and M3 are the most similar and would be

difficult to tell apart visually. It is these variations in subcluster sizes and locations
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Figure 3.13. Averaged symbol shapes presented for card manufacturer M1 (a) and M2
(b) with each symbol representing an average of Nsym = 200 symbols. The dashed yellow
vertical line is the symbol midpoint km and the dashed green vertical lines represent
the boundaries of TG from Figure 3.9.

that the CB-DNA fingerprinting approach capitalizes on when creating a fingerprint

feature set.

3.7.2 CB-DNA Fingerprinting Approach.

As with the RF-DNA fingerprinting approach, a majority of prior constellation-

based fingerprinting works rely on features extracted from intentional RF emissions.

However, unlike RF-DNA approaches that extract relevant features prior to symbol
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Figure 3.14. 2D binary constellation diagram, symbol estimation boundary and sub-
cluster regions for card manufacturer StarTech (M3).
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Figure 3.15. 2D binary constellation diagram, symbol estimation boundary and sub-
cluster regions for all card manufacturers.
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constellation mapping, the constellation-based methods rely on this mapping and ex-

tract unique features derived from modulation errors within the constellation space,

i.e., differences (error) between received projected symbol points and ideal transmitted

constellation points [6, 20, 25, 35]. The CB-DNA approach developed here also relies

on projected symbol mapping, but differs from previous approaches by extracting

statistical features from projected symbols grouped as: 1) Unconditional aggregated

clusters, and 2) Conditional subclusters comprising the aggregated cluster. The ag-

gregated clusters are qualified as unconditional given that projection assignment to

these clusters is independent of prior and subsequent symbol projections (bit values)

given that only a single communication symbol within the burst is required for as-

signment. The subcluster regions are qualified as conditional given that projection

assignment to subclusters is dependent on both the prior and subsequent symbol pro-

jections (bit values prior to and succeeding the current bit to be estimated) three

consecutive communication symbols within a burst are required for assignment.

The entire Ethernet communication burst is used as the ROI for the CB-DNA

fingerprinting approach as highlighted in Figure 3.6. Given the variable payload of

Ethernet transmissions, the number of communication symbols available in each burst

used for CB-DNA fingerprint generation ranges from Nsym = 576 to Nsym = 2, 280

including the preamble symbols. As such, each subcluster region averages between

72 and 285 projected symbols. When compared to the RF-DNA ROI which only

includes the preamble response Nsym = 64, the CB-DNA ROI provides 9 to 33 times

more symbols to generate fingerprint statistics.

Unique CB-DNA feature sets are extracted from the burst ROI using the following

steps on a burst-by-burst basis: 1) individual communication symbols within the

burst are projected into the constellation space described in Section 3.4.3, 2) resultant

(Z−
G , Z+

G) pairs are placed in one of eight groups based on three consecutive symbol
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projections, i.e., [0 X 0], [0 X 1], [1 X 0], and [1 X 1], where X denotes the symbol being

currently projected, 3) statistical features of mean (µ), variance (σ2), skewness (γ),

kurtosis (κ), covariance (Cov), coskewness (β1×2), and cokurtosis (δ1×3) are calculated

for the two unconditional aggregated and eight conditional subcluster regions, and

4) fingerprints sets are formed according to the Section 3.7.3.

3.7.3 CB-DNA Fingerprint Generation.

Calculation of statistical CB-DNA fingerprint features originate within designated

aggregate and subcluster regions of the constellation described in Section 3.7.1 for a

total of NCR = 2 + 8 = 10. Statistical CB-DNA features are then calculated for each

cluster region using the mean (µ), variance (σ2), skewness (γ), and kurtosis (κ) along

the Z−
G and Z+

G dimensions shown in Figure 3.14. Joint statistics in both the Z−
G and

Z+
G direction are also considered and include covariance (cov), coskewness (β1×2), and

cokurtosis (δ1×3). The resultant statistics form a Regional Cluster Fingerprint FCB
Ri

given by (3.15), where the superscripted −/+ sign denotes constellation dimension

and i = 1, 2, . . . , NCR. The final Composite CB-DNA Fingerprint FCB
C is of dimen-

sion 1× (14×NCR) and constructed by concatenating FCB
Ri

from (3.15) as shown in

(3.16) [11].

FCB
Ri

=
[
µ−
Ri
, µ+

Ri
, σ2−

Ri
, σ2+

Ri
, γ−Ri

, γ+
Ri
, κ−Ri

, κ+
Ri
, covRi

, βRi
1×2, δ

Ri
1×3,

]
1×14

(3.15)

FCB
C =

[
FCB
R1

: FCB
R2

: FCB
R3

: · · · : FCB
RNCR

]
1×(14NCR)

(3.16)

The total number of CB-DNA features in (3.16) is a function of NCR, statis-

tics, and dimensions i.e., Z−
G and Z+

G . Varying NCR provides a means to investi-

gate performance for various feature vector sizes. Fingerprints were generated using

NCR = 2, 8, 10, with 4 statistics (µ, σ2, γ, κ) from each of the Z−
G and Z+

G dimen-
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sions and 6 joint statistics (cov, β1×2, δ1×3) producing CB-DNA fingerprints having

NFeat = 28, 112, 140 total features, respectively. A total NNz = 6 independent, like-

filtered AWGN realizations were added to each of the NS = 1, 000 collected bursts as

described in Section 3.5. This yields a total of NF = NS ×NNz = 6, 000 fingerprints

per device for each analysis SNR.

3.8 Device Classification

This section describes the specific implementation of MDA/ML processing in Sec-

tion 2.5 that was used to generate results in Chapter IV. The general term class

is used to describe either a group of network devices from a specific manufacturer

(manufacturer class) or an individual network card (device class). Cross-Model Dis-

crimination (CMD) is used herein to mean discrimination of classes representing de-

vices from different manufacturers. Like-Model Discrimination (LMD) is used herein

to mean discrimination of classes representing devices from the same or different

manufacturers, of the same model number, and differing only in serial number.

Device classification represents a “1 vs. M” assessment where fingerprints from an

unknown device (one authorized or rogue device) are compared against fingerprints

from all known authorized devices (the many) and a decision made that assigns an

identity (rightly or wrongly) to the unknown device matching one of the authorized de-

vices. This is a “best match” assessment that can yield both good and poor matches.

The effect of varying SNR on discrimination performance was assessed to char-

acterize the effect of varying channel conditions and to provide an assessment of the

relationship between collection probe placement and Ethernet card separation dis-

tance. This was accomplished by adding independent like-filtered Additive White

Gaussian Noise (AWGN) NNz realizations to each experimentally collected emission

as outlined in Section 3.5. For Monte Carlo simulation results in Chapter IV, a total of
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NNz = 6 independent AWGN realizations were used to generate fingerprints across the

desired SNRA = {2x|x ∈, 2 < x < 16} dB. Given NNz = 6 AWGN realizations and

NS = 1, 000 collected signal responses per card, a total ofNF = NS×NNz = 6, 000 in-

dependent fingerprints per card were used for discrimination assessment at each SNR.

The adopted MDA/ML processing approach used here is from [50] and used to

compare RF-DNA and CB-DNA device classification performance. Both CMD and

LMD is considered using NC = 4 and NC = 16 classes, respectively. An identical

number of Training (NTng) and Testing (NTst) fingerprints are used for each class.

A total of NF = 24, 000 (CMD) and NF = 6, 000 (LMD) fingerprints were gen-

erated at each SNR for each NC per Section 3.6.1 for RF-DNA and Section 3.7.3

for CB-DNA. Classifier cross-validation is implemented using a factor of K = 5 to

improve MDA/ML reliability.

Plots of average cross-class percent correct (%C) versus analysis SNR and raw

classification confusion matrices are used in Section 4.4 to quantify classification per-

formance. This provides an accurate picture of overall performance for the classifi-

cation model across all SNR explored. The confusion matrices are used to assess

performance at a specific SNR and to highlight correct and incorrect cross-class per-

formance that is not evident in %C plots. The confusion matrix representations used

here are consistent with literature [27, 28], with 1) correct classification reflected in

diagonal entries, and 2) misclassification reflected in off-diagonal entries, i.e., how one

class is confused with another class in the model.

3.9 Device ID Verification

This section provides the specific implementation for device verification as outlined

in Section 2.6 and is used to generate the verification results in Chapter IV. The

Euclidean distance metric is chosen as the measure of similarity for device verification.
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The development of the reference model/models is the first step in verification as

outlined in Section 2.6 which involves selecting rogue devices from the pool of available

devices from Table 3.1 to hold out during MDA/ML model development. To keep

the model of authorized devices as robust as possible the original set of NC = 16

was divided into two disjoint sets representing NA(i) = 12 authorized devices and

NR(i) = 4 rogue devices where i = 1, 2, 3, ..., NPerm denotes permutation number. For

each permutation, the NR(i) rogue set contains 1-of-4 devices from each manufacturer

and are selected as four-choose-one on a per manufacturer basis, yielding a total of

NPerm = 256 possible rogue permutations sets. Accordingly, the NA(i) authorized

sets contain the remaining 3-of-4 devices from each manufacturer. Table 3.3 provides

ten representative permutations where, X∈NA(i) and {R1, R2, R3, R4} ∈ NR(i). For

each permutation, all NR(i) = 4 rogues present false credentials matching each of

the NA(i) = 12 authorized devices, for a total of 4 × 12 = 48 rogue scenarios per

permutation. Accounting for NA(i) = 12 authorized devices and NPerm = 256 rogue

permutations of NR(i) = 4 rogue devices provides a total of 12× 256× 4 = 12, 288

possible rogue assessment scenarios.

Providing results for all NPerm = 256 permutations would be tedious; therefore, a

reduced number of results will be presented in Chapter IV. The process for selecting

the limited number of permutations discussed in Section 4.5 is based on the exam-

ination of the %C for all NPerm = 256 authorized permutations. All NPerm = 256

MDA/ML permutations were generated with CB-DNA and RF-DNA approaches and

a visual inspection of Figure 3.16 shows no apparent outliers but instead shows a pe-

riodic trend is evident in %C for each SNR over all NPerm = 256 permutations.

Per the legend in Figure 3.17, %C results for three specific SNR are highlighted

with periodic behavior attributed to how devices were assigned to each permutation.

With no apparent visual outliers in Figure 3.16a, the lowest and highest %C for
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Figure 3.16. LMD average %C for 256 permutations (i=1, 2,. . . , 256) with NA(i)=12
devices chosen as 3 devices from each of 4 manufacturers. All SNR ranges are plotted
with specific SNRs highlighted according to Figure 3.17.

Figure 3.17. Legend for Figure 3.16.
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Table 3.3. Manufacturer-Device (M:D) Combinations Used for Verification Assess-
ments. Shows 10 of 256 Permutations with X Denoting NA(i) = 12 (i = 29, 32, 74, 105,
106, 107, 108, 157, 159 and 160) Authorized Devices and 4 Rogue Devices {R1, R2,
R3, R4} [?].

Reference
MAC Address

Last Four
Perm (i)

29 32 74 105 106 107 108 157 159 160

M1:D1 D966 R1 R1 X X X X X X X X
M1:D2 DA06 X X R1 R1 R1 R1 R1 X X X
M1:D3 DA07 X X X X X X X R1 R1 R1
M1:D4 60E0 X X X X X X X X X X

M2:D1 1586 X X R2 X X X X X X X
M2:D2 1A93 R2 R2 X X X X X R2 R2 R2
M2:D3 1A59 X X X R2 R2 R2 R2 X X X
M2:D4 1A9E X X X X X X X X X X

M3:D1 9B55 X X X X X X X X X X
M3:D2 9334 X X X X X X X X X X
M3:D3 9B54 X X R3 R3 R3 X X X X X
M3:D4 9B56 R3 R3 X X X R3 R3 R3 R3 R3

M4:D1 32CB R4 X X R4 X X X R4 X X
M4:D2 32B4 X X R4 X R4 X X X X X
M4:D3 96F4 X X X X X R4 X X R4 X
M4:D4 3048 X R4 X X X X R4 X X R4

each SNR are taken from Figure 3.16a and provided in Figure 3.18 for comparison.

Again no visual outliers are present and the expected relationship of increasing %C

with increasing SNR is evident. Therefore, a representative set of NA(i) permutations

in Table 3.3 were chosen for presentation given they are statistically representative of

highest (i = 29, 32, 157, 159, 160) and lowest (i = 74, 105, 106, 107, 108) %C. These

permutations are subsequently used for rogue assessment in Section 4.5 at an analysis

SNR = 20 dB that corresponds to the first time that %C > 90% in Figure 3.18.

Verification results presented in Section 4.5 are based on Table 3.3, which provides

ten representative permutations for, X∈ NA(i) and {R1, R2, R3, R4} ∈ NR(i), where

(i = 29, 32, 74, 105, 106, 107, 108, 157, 159, 160). For each permutation, all NR(i) = 4
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Figure 3.18. Highest and lowest %C performance across all permutations in Figure 3.16
at each SNR considered.

rogue devices present false credentials matching each of the NA(i) = 12 authorized

devices, for a total of 4× 12 = 48 rogue scenarios per permutation.

3.9.1 Authorized Device Assessments.

Test statistics ZV are calculated for authorized devices from NTng = 3, 000 and

NTst = 3, 000 fingerprints to assess the ability for an authorized device to correctly

gain access to the network. The test statistics are used to generate the authorized

device Probability Mass Functions (PMF) for the training and testing sets. The

generated PMFs are then used to create the Receiver Operating Characteristic (ROC)

curves which provide a measure of system performance as outlined in Section 2.6. An

example ROC curve is displayed in Figure 3.19 and is used to set device dependent

threshold values, tV (d) for d = 1, 2, . . . , NA(i), which are set here at the Equal Error

Rate (EER) for consistency with other related research.

The assessment criteria for an authorized device is based on True Verification Rate

(TV R) and False Verification Rate (FV R) such that TV R > 0.9 and FV R < 0.1,

which results in a Binary Grant/Deny (BGD) access decision with respect to the

authorized ROC curves. Solid lines in the authorized device ROC curves have suc-
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Figure 3.19. A general Receiver Operating Characteristic (ROC) curve with horizontal
dashed lined representing the 90 % benchmark and solid (Grant) and dashed (Deny)
curves represent the Binary Grant/Deny (BDG) access decision.

cessfully met the BGD criteria and gained access to the network while dashed lines

represent those that do not. The Authorized Accept Rate (AAR) is a metric that

measures all the BGD decisions for a given permutation. When AAR = 100% for a

given permutation, all NA = 12 devices have successfully gained access to the network.

Figure 3.20 displays an alternative way to look at a ROC curve by plotting the

individual test statistics that make up the PMFs from which the ROC curves are gen-

erated. In Figure 3.20 the blue circles represent an authorized device being correctly

granted access to the network and the red X’s denote when the authorized device

was incorrectly denied access to the network. Each test statistic is representative

of a single burst attempt at network access and thereby results will be presented as

Burst-by-Burst (BbB). The horizontal black lines represent the threshold value tV (d)

at the EER for each authorized device A1 . . . A12 from Figure 3.19.

BbB attempts are reported using an TV R metric. The BbB metrics are based

on NA = 12 authorized devices with each attempting NTst = 3, 000 network access

attempts. This results in Naa = 3, 000 access attempts for each device and when

TV R = 100% that device was correctly granted access for all Naa access attempts.
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Figure 3.20. Individual euclidean distance test statistics. Solid horizontal lines are de-
vice dependent tV (d) thresholds corresponding to ROC EER in Figure 3.19. Authorized
devices are listed as (A1–A12). Individual ID verification test statistics are represented
by either blue circles correctly granted access or red X’s incorrectly denying access.

3.9.2 Rogue Device Assessments.

Rogue assessment results in Section 4.5 are based NTst = 6, 000 rogue testing

fingerprints being compared against each of the NA = 12 authorized devices, for a

total of ZV = 6, 000 × 12 = 72, 000 test statistics per rogue device for a given rogue

assessment. With each permutation having NR = 4 rogue devices, the resultant

number of test statics calculated per permutation considered is NZV = 288, 000.

The assessment criteria for rogue devices is based on TV R and Rogue Rejection

Rate (RAR) such that TV R > 0.9 and RAR < 0.1 which also results in a BGD access

decision with respect to the rogue ROC curves. Solid lines in rogue device ROC curves

are denied access to the network by because they met the rogue BGD criteria, while

dashed lines represent those that have been erroneously granted access. The Rogue

Rejection Rate (RRR) (RRR = 1 − RAR) is a metric that measures all the BGD

decisions for a given permutation. When RRR = 100% for a given permutation, then

all NA = 12 × NR = 4 = 48 rogue access attempts have been successfully denied

access to the network.

BbB attempts are also reported using an RRR metric. The BbB metrics are
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based on NR = 4 rogue devices with each attempting NTst = 6, 000 network access

attempts as each of the NA = 12 authorized devices. The resultant number of access

attempts is Naa = 4× 6, 000× 12 = 288, 000. When RRR = 100, all Naa = 288, 000

access attempts were correctly denied network access. A similar BbB figure will be

used for RRR comparisons as was used for TV R of authorized devices.

3.10 Device ID Verification Enhancements

This sections provides two enhancements called CPA and PPA to improve the

performance of device ID verification. Figure 3.21 represents the general process for

each of the enhancements. CPA is covered in Section 3.10.1 and PPA in Section 3.10.2.

Figure 3.21. Device ID verification improvement methodology, including: 1) Constel-
lation Point Accumulation (CPA) for CB-DNA, and 2) MDA/ML Projection Point
Averaging (PPA) for both RF-DNA and CB-DNA.

3.10.1 Constellation Point Accumulation (CPA).

This section provides an explanation of CPA. Two figures are presented to provide

an example of CPA effects on NCR regions, 3) The CPA process and fingerprint
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generation based on the increased size of NCR regions is explained.

Constellation point accumulation is accomplished prior to fingerprint generation

and is used to increase the number of projected symbols per NCR region. The idea for

this enhanced process is that the more points included in the calculation of statistical

features discussed in Section 3.7.3 would provide more veritable fingerprint features

and thus increase device discrimination performance.

An example of the effects of CPA on constellation shape and density is provided

in Figure 3.22 where it is clearly evident that the number of symbol projections have

increased in Figure 3.22b from Figure 3.22a.
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Figure 3.22. The effects of Constellation Point Accumulation (CPA) on cluster regions
for device M4:D1 (StarTech).

The process of CPA takes multiple bursts NB(i), (i = 1, . . . , NCPA) and divides

each NB(i) into their respective NCR(i, j), (j = 1, 2, . . . , 10) cluster regions as outlined

in Section 3.7.1 and Section 3.7.2. The NCR(i, j) regions are then merged over i to

form larger MNCR(j) subcluster regions as outlined in (3.17).
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NCR(1, 1), NCR(1, 2), . . . , NCR(1, 10)

↓ ↓ ↓ ↓

NCR(2, 1), NCR(2, 2), . . . , NCR(1, 10)

...
...

. . .
...

NCR(NCPA, 1), NCR(NCPA, 2), . . . , NCR(NCPA, 10)

↓ ↓ ↓ ↓

MNCR(1), MNCR(2), . . . ,MNCR(10)

(3.17)

The newly formed MNCR(j) regions in (3.17) are then processed in the same

manner as outlined in Section 3.7.3 and are used for fingerprint generation in the

same manner as NCR cluster regions for a single burst. Results were generated and

are available for NCPA = 1, 3, 6, 9; however, only results for NCPA = 1 and NCPA = 9

are discussed in Section 4.6.

3.10.2 Projection Point Averaging (PPA).

This section provides details on PPA as a second enhancement to the CB-DNA

approach to provide increased performance for device discrimination, if needed. This

method was previously considered in the Air Force Institute of Technology (AFIT)

RFINT program and used here as a comparison to CPA.

The timing of PPA varies from that of CPA in that PPA takes place after the

model has been developed according to Section 2.5 and occurs during the verification

process. More specifically, PPA is accomplished during the verification process after

the NTst = 3, 000 fingerprints have been projected into the Fisher space and converted

to Pj projected testing fingerprints, where j = 1, 2, . . . , NTst. The set of {Pj}’s

are then averaged according to the value of NPPA, where sum(Pj...j+NPPA−1)/NPPA,

results in a total number of PAve(i), where (i = 1, 2, . . . , NTst/NPPA). The Euclidean
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similarity measure is then applied to each of the averaged projections PAve(i) and

verification for authorized and rogue devices continues as outlined in Section 2.6.

The results presented in Section 4.6 are based on NPPA = 1 and NPPA = 5.

3.11 Additional Verification Metrics

This section provides the relationship between metrics defined in Section 2.6 and

used in Chapter IV and similar metrics used in [27, 28]. Work in [27, 28] uses a

correlation based approach to exploit 10BASE-T Ethernet preambles and is most

closely related to the research presented herein. The main difference in the approaches

is that, here, CB-DNA discrimination is based on signal constellation features versus

waveform correlation features. Additionally, direct access to network cards is required

for the process in [27,28], whereas the CB-DNA approach developed here only requires

access to the Ethernet cable. The metrics used for assessments in [27, 28] include

Accuracy, Precision, Recall, and Specificity as described in [38]. Some of these metrics

were highlighted as being of interest during peer reviews of this work. Thus, the

additional metrics are summarized here for completeness and may aid readers who

are unfamiliar with metrics commonly used in AFITs published RF-DNA works and

adopted herein. The alternate metrics are based on the following type of network

access attempts: 1) the total number of network access attempts by an authorized

device results in either an Authorized Accept (AA) or Authorized Reject (AR), and

2) the total number of network access attempts by a rogue device results in either

a Rogue Reject (RR), Rogue Accept (RA). For example, if authorized Device A

attempted access to the network 25 times for a given period and it received a AA = 20

then the resultant AR = 5 over the same period. Similarly, if unauthorized Device B

attempted to access to the network 25 times for a given period and received RA = 5

then the resultant RR = 20 over the same period.
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Accuracy is defined in (3.18) with Accuracy = 1 for a particular device being

desired and reflecting that 1) the device’s AR = 0, and 2) no rogues were accepted

using its credentials resulting in RA = 0.

Precision is defined in (3.19) and provides insight into how easily an authorized

device’s identity can be stolen and how often it is denied access. When Precision = 1

for a given device, AR = 0 (it is always granted access) however, the value of RR is

unknown as (3.19) reduces to RR/RR = 1. When Precision = 0 device credentials

are easily stolen and we have no insight into false verifications because the numerator

is zero.

Recall is defined in (3.20) and is equivalent to what is calculated as RRR in

Section 3.9.2. This metric characterizes the vulnerability for a given device to have

its credentials stolen. When Recall = 1 for a given authorized device then any other

unauthorized device trying to gain access as that authorized device is rejected such

that RA = 0.

Specificity is defined in (3.21) and is equivalent to what is calculated as TV R in

this work. This metric characterizes a particular devices ability to gain authorized

network access as itself. For a device with Specificity = 1 it is always correctly

granted network access.

Accuracy =
RR + AA

[(RA+RR) + (AA+ AR)]
(3.18)

Precision =
RR

(RR + AR)
(3.19)

Recall =
RR

(RA+RR)
(3.20)

Specificity =
AA

(AA+ AR)
(3.21)
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Consistent with prior related RF-DNA works, RRR (Recall) and TV R (Specificity)

are predominantly used here for verification performance assessments in Chapter 4.

Given refereed paper feedback which suggest that Accuracy is the most “telling of

the four additional metrics, Accuracy metrics are given some attention as well in

Section 4.5.1 to assess CB-DNA device ID verification performance.
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IV. Results

This chapter starts by providing some analysis results for the alignment jitter

in Section 4.1, the Bit Error Rate (BER) assessment in Section 4.2, and the device

chip-set analysis in Section 4.3, which are used to explain some of the classification

and verification results in the latter sections. Results are then presented for De-

vice Classification and Device ID Verification using Radio Frequency-Distinct Native

Attribute (RF-DNA) and Constellation Based-Distinct Native Attribute (CB-DNA)

device fingerprinting techniques based on the methodology described in Chapter III.

The RF-DNA results were generated using a process adopted from previous related

work [16, 51, 73] and implemented as described in Section 3.6. The CB-DNA results

were generated using the process developed under this research and described in Sec-

tion 3.7. Furthermore, comparative results are presented for RF-DNA and CB-DNA

fingerprinting techniques using device fingerprints generated from the same collected

emissions as described in Chapter III. The Multiple Discriminant Analysis/Maxi-

mum Likelihood (MDA/ML) results for Device Classification are based on a 1 vs. M

“Looks Most Like?” assessment and are presented in Section 4.4 for both NC = 4 and

NC = 16 authorized device class models. Results for Device ID Verification are based

on 1 vs. 1 “Looks How Much Like?” assessment and are presented in Section 4.5 for

NC = 12 Authorized device class models and NR = 4 Rogue devices as described in

Section 3.9. Preliminary results for process enhancements are provided in Section 4.6

and demonstrate achievable improvement resulting from cross-burst 1) Constellation

Point Accumulation (CPA), and 2) MDA/ML Projection Point Averaging (PPA).

Lastly, a sensitivity analysis and probe placement comparison is accomplished in

Section 4.7 by moving the probe-to-card location from LP ≈ 2 m to LP ≈ 98 m.
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4.1 Burst Alignment Jitter

This section discusses the alignment jitter for all devices for both Config #1

(oscope #1, cable #1 of length LC = 8 m) and Config #2 (oscope #2, cable #2 of

length LC = 100 m). The alignment jitter Aj is defined as the number of samples

between the max correlation point and the first peak in the preamble.

Table 4.1 shows the standard deviation on the number of samples between the SROI

and the first peak in the alignment process. For the Config #1 listed in Table 4.1,

relatively the same amount of jitter is present for all devices except M3:D3 from

manufacturer TRENDnET. Config #2 with LP ≈ 2 m shows that the standard

deviations are fairly consistent across all devices. When the collection probe is moved

to the LP ≈ 98m location in Config #2 the fine alignment jitter Aj varies considerably

as seen in Table 4.1 with M3:D3 having the highest standard deviation.

The misalignment for device M3:D3 (Config #1) is explained with the help of

Figure 4.1 where three signals are present to include: 1) the red dashed line (reference

preamble), 2) the solid brown signal (M3:D2), and 3) the solid black signal (M3:D3).

The SROI is denoted with a dashed vertical green line at index 1. The measured

alignment jitter for device M3:D2 is shown with the aid of the brown double arrow

which extends from the SROI to the vertical dashed brown line which represents the

first maximum value of the aligned signal with Aj = 3. The measured alignment

jitter for device M3:D3 is shown with the black double arrow which extends to the

dashed black line representing the first maximum value of that aligned signal with

Aj = 21. This phenomenon was discussed earlier in Section 3.1.1 and is caused

by how signals are transmitted over the twisted pair. The effects of the alignment

jitter Aj have a varying net positive effect on device classification for both RF-DNA

and CB-DNA. As the NR subregions for RF-DNA are increased, more features will

be based on the misaligned subregion making it easier for MDA/ML to exploit the
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Table 4.1. The Standard Deviation Associated with Fine Burst Alignment Between
the Start of the ROI and the First Peak in the Aligned ROI.

Device ID Config #1 Config #2 Config #2
LP = 2 m LP = 2 m LP = 98 m

M1:D1 1.2 1.2 42

M1:D2 1.2 1.2 56

M1:D3 1.2 1.2 52

M1:D4 1.2 1.2 49

M2:D1 1.4 1.3 28

M2:D2 1.5 1.3 64

M2:D3 1.5 1.3 23

M2:D4 1.6 1.3 65

M3:D1 1.2 1.2 69

M3:D2 1.2 1.2 75

M3:D3 10.6 1.2 698

M3:D4 1.2 1.2 35

M4:D1 1.1 1.1 117

M4:D2 1.1 1.1 108

M4:D3 1.1 1.1 125

M4:D4 1.1 1.1 364
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Figure 4.1. Illustration of alignment jitter showing how the maximum correlation point
occurs before the ROI start.
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affected statistics. The CB-DNA approach only has one projected symbol adversely

affected by the misalignment resulting in a smaller net effect to CB-DNA fingerprints.

Because of this disparity, RF-DNA has an advantage over CB-DNA for both Device

Classification and Device ID Verification.

4.2 BER Assessment

The BER assessment provided in this section is based on Nsym ≈ 1.7 billion

collected symbols per manufacturer (pooled symbols from 4 cards). The BER results

are presented in Table 4.2 where the Single Slope (SSLP) results were generated

according to Section 3.4.1 [10] and Constellation Based (CB) results were generated

according to Section 3.4.3 [11]. The overall BER for each method is approximately

the same and on average experiences one bit error for every 1.34 M symbol estimates.

The maximum size burst sent has NBmax = 2280 symbols and only one out of every

587 generated fingerprints would be affected on average based on current BER. One

bit error would affect the proper placement of three points into the proper subcluster

grouping. It is determined that this small error rate will have a negligible effect

on CB-DNA fingerprint generation. The effects of an increased BER on fingerprint

statistics is left for future work.

Table 4.2. Comparison of Card Manufacturer BER for Previous Single Slope (SSLP)
Estimation Method in [10] and the 2D Constellation Point (CP) Method [11].

Manufacturer
# Processed Bits

in Billions
# Bit Errors BER

SSLP CB SSLP CB

D-Link (M1) 1,733 21 18 1.21E-08 1.04E-08

Intel (M2) 1,739 845 845 4.86E-07 4.86E-07

TRENDnET (M3) 1,740 8 389 4.59E-09 2.23E-07

StarTech (M4) 1,737 1260 3478 7.25E-07 2.00E-06

Totals 6,949 2971 5186 4.28E-07 7.46E-07
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4.3 Device Chip-set Analysis

The chip-sets for the NC = 16 Device Under Test (DUT)s that were used in this

research were examined for similarities in the specific components used to manufacture

these devices. The four different manufacturers were used with four devices from each

manufacturer; the results of the chip-set visual examination are provided in Table 4.3.

It is evident from this table that M1 and M3 devices have the same LAN transformer

markings. The LAN transformer is the last component that conditions the signal

prior to it being transferred to the PHY medium. The effects of the common LAN

transformer markings will be discussed as needed in the future sections.

Table 4.3. An Expansion of Table 3.1 to Highlight the Chip-Set Markings for the 16
Devices Under Test (DUT)s [11,12].

Manufacturer Reference MAC Address
Last Four

LAN Transformer Markings

D-Link

M1:D1 D966 Bi-Tek IM-1178LLF 1247I

M1:D2 DA06 Bi-Tek IM-1178LLF 1247I

M1:D3 DA07 Bi-Tek IM-1178LLF 1247I

M1:D4 60E0 Bi-Tek IM-1178LLF 1247I

Intel

M2:D1 1586 BI HS00-06037LF 1247

M2:D2 1A93 BI HS00-06037LF 1247

M2:D3 1A59 BI HS00-06037LF 1247

M2:D4 1A9E BI HS00-06037LF 1247

TRENDnET

M3:D1 9B55 Bi-Tek IM-1178LLF 1247I

M3:D2 9334 Bi-Tek IM-1178LLF 1247I

M3:D3 9B54 Bi-Tek IM-1178LLF 1247I

M3:D4 9B56 Bi-Tek IM-1178LLF 1247I

StarTech

M4:D1 32CB FPE G24102MK 1250a1

M4:D2 32B4 FPE G24102MK 1250a1

M4:D3 96F4 FPE G24102MK 1320G1

M4:D4 3048 FPE G24102MK 1250a1
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4.4 Device Classification

This section provides results for the 1 vs. M “Looks Most Like?” classification

assessment. For the remainder of the document, comparison is aided by presenting

CB-DNA results to the left of, or above, RF-DNA results.

Classification results are based on the MDA/ML process outlined in Section 3.8,

where classification represents a comparison between one device versus many (specif-

ically, 1 vs. M). MDA/ML results are presented here for both Cross-Model Discrimi-

nation (CMD) and Like-Model Discrimination (LMD) (serial number discrimination)

using the NC = 16 devices listed in Table 3.1. Device fingerprint generation occurs us-

ing identical burst emissions per methods in Section 3.6 for RF-DNA and Section 3.7

for CB-DNA, with RF-DNA using only the burst preamble and CB-DNA using the

entire burst response.

For classification assessments, a total ofNCol = 1, 000 collected bursts (NTng = 500

for training and NTst = 500 for testing) are processed from each device with six like-

filtered Additive White Gaussian Noise (AWGN) noise realizations added to each

collected burst. This results in a total of NTng = 500 × 6 = 3, 000 training and

NTst = 500 × 6 = 3, 000 testing fingerprints being used per device for classification

training and testing assessments as described in Section 3.8. Two classification mod-

els are created, per Section 3.8, and used for discrimination assessment, with 1) CMD

results being based on NTst = 12, 000 testing fingerprints per device manufacturer,

and 2) LMD results being based on NTst = 3, 000 fingerprints per device. To stay

consistent with prior related RF-DNA research, an arbitrary performance benchmark

of %C = 90% average cross-class correct classification performance is used for com-

parative assessment. Summary analysis and conclusions are based on CI = 95%

binomial confidence intervals [44]. When results are presented for a large number of

independent trials (e.g., Figure 4.2 and Figure 4.4), the resultant CI = 95% con-
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fidence intervals are less than the vertical extent of data markers and omitted for

visual clarity.

4.4.1 Cross-Model Discrimination (CMD).

Figure 4.2 shows average RF-DNA and CB-DNA classification performance for

CMD discrimination. Results show that the %C = 90% benchmark is achieved for

both RF-DNA and CB-DNA at Signal-to-Noise Ratio SNR ≥ 12.0 dB. However,

RF-DNA requires NFeat = 720 total features to achieve this. The CB-DNA ap-

proach achieves the benchmark utilizing only NFeat = 112. With respect to CB-DNA

%C results in Figure 4.2a, subclusters and combined fingerprints consistently out-

perform aggregated fingerprints by approximately 5% across all SNR values, where

combined fingerprints consist of aggregate clusters and subclusters. With fingerprints

generated from combined and subcluster regions having statistically the same perfor-

mance in Figure 4.2a, only fingerprints based on subcluster points will be compared

to RF-DNA; they consist of 28 less features relative to the number of features in

combined fingerprints. Figure 4.2b provides RF-DNA performance and an overlay

of CB-DNA subcluster results from Figure 4.2a. The RF-DNA results are equal or

slightly better than CB-DNA results at SNR = 10 dB, but have worse performance

at lower SNR values.

While CMD results in Figure 4.2 enable direct comparison of average cross-class

%C performance for RF-DNA and CB-DNA Fingerprinting, they inherently hide class

interaction and individual class performance. Individual class performance is more

accurately analyzed using a conventional classification confusion matrix as described

in Section 3.8. Confusion matrix results exist for all SNR in Figure 4.2 but are only

presented here for two selected SNR to support general conclusions. The MDA/ML

confusion matrices for CMD at SNR = 12.0 dB and SNR = 30.0 dB are presented in
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(a) CB-DNA Fingerprinting %C vs. SNR for CMD using
NC = 4 Classes and NCR = 2 Aggregate, 8 Subcluster,
and 10 Combined Regions.
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(b) RF-DNA Fingerprinting %C vs. SNR for CMD using
NC = 4 Classes and NR = 16, 32, and 80 Subregions.

Figure 4.2. MDA/ML Cross-Model Discrimination (CMD) using (a) CB-DNA and (b)
RF-DNA Fingerprinting [12].

Table 4.4 and Table 4.5, respectively. These matrices highlight correct classification

(diagonal entries) and cross-class misclassification (off-diagonal entries) where matrix

rows represent Input Class and matrix columns represent Called Class. The Input

Class is defined as the ground truth for the input fingerprints. The Called Class is

the results after classification. The table entries are presented as %C CB-DNA /

%C RF-DNA with bold entries denoting best or equivalent performance.
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CB-DNA CMD Fingerprinting benefits considerably with the introduc-
tion of subcluster DNA features. Improvement across the range of SNR
considered includes an approximate: 1) 5% to 8% increase in %C, and 2) 5
to 19 dB of “gain,” measured as the reduction in required SNR relative
to what is required for aggregate features to achieve the same %C.

Historically, RF-DNA CMD manufacturer discrimination has been least
challenging. Relative to best case RF-DNA performance, CB-DNA
achieves 1) a marginally poorer 2% decrease in %C for SNR > 12 dB,
and 2) up to 10% improvement in %C for SNR < 12 dB.

The CMD confusion matrices in Table 4.4 and Table 4.5 are nearly symmetric

about the diagonal with a majority of the misclassification occurring between DLink

(M1) and TRENDnET (M3) devices. This is attributable to DLink and TREND-

nET devices using identical LAN transformers as indicated in Table 4.3. The di-

agonal correct classification entries show that CMD performance for both RF-DNA

and CB-DNA are generally equivalent at each SNR presented. The resultant CMD

averages for RF-DNA and CB-DNA are pursuant with Figure 4.2 at the correspond-

ing SNR.

Table 4.4. Conventional CMD Classification Confusion Matrix (%) for NC = 4 Classes
at SNR = 12 dB [12]. Presented as %C CB-DNA / %C RF-DNA with Bold Entries
Denoting Superior or Statistically Equivalent Performance.

Called Class

DLink Intel TRENDnET StarTech

Input
Class

DLink 83.76 / 87.30 0.0 / 0.02 16.21 / 12.61 0.03 / 0.07

Intel 0.0 / 0.03 100 / 99.9 0.0 / 0.07 0.0 / 0.0

TRENDnET 18.31 / 20.98 0.0 /0.1 81.67 / 78.92 0.02 / 0.0

StarTech 0.0 / 0.02 0.0 / 0.0 0.0 / 0.03 100 / 99.5

The CMD DNA plots in Figure 4.3 were generated by averaging NTst = 250 finger-

prints from each device within a given manufacturing group (a total of NTst = 1, 000

fingerprints per manufacturer). The vertical DNA Marker (statistical features) shows
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Table 4.5. Conventional CMD Classification Confusion Matrix (%) for NC = 4 Classes
at SNR = 30 dB [12]. Presented as %C CB-DNA / %C RF-DNA with Bold Entries
Denoting Superior or Statistically Equivalent Performance.

Called Class

DLink Intel TRENDnET StarTech

Input
Class

DLink 97.11 / 99.50 0.0 / 0.01 2.89 / 0.49 0.0 / 0.0

Intel 0.0 / 0.0 100 / 100 0.0 / 0.0 0.0 / 0.0

TRENDnET 2.63 / 0.38 0.0 /0.0 97.37 / 99.62 0.0 / 0.0

StarTech 0.0 / 0.0 0.0 / 0.02 0.0 / 0.0 100 / 99.98

how device fingerprint features vary across the device fingerprints – note that the

displayed value are normalized within each feature such that a maximum (red) value

occurs for each statistic. The horizontal Manufacturer axis shows the device manu-

facturer identities in Table 3.1. Figure 4.3 provides a visual aide reflecting how device

fingerprints generally differ. Of note here is that manufacturer M1 and M3 fingerprints

appear mostly similar, with the greatest similarity reflected in the RF-DNA finger-

prints. This is consistent with the higher level of cross-manufacturer misclassification

occurring between M1 and M3 in the Table 4.4 and Table 4.5 confusion matrices.
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Figure 4.3. CMD CB-DNA and RF-DNA statistical fingerprint visualization with total
number of features per fingerprint in parentheses.
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4.4.2 Like-Model Discrimination (LMD).

Historically, LMD has presented the greatest discrimination challenge for RF-DNA

Fingerprinting given that the devices are assembled using identical components and

may come off the assembly line in the same batch [16, 50]. LMD is also the most

challenging case for CB-DNA when comparing the CMD results from Figure 4.2 with

LMD results in Figure 4.4.

Average %C LMD results are presented in Figure 4.4 for RF-DNA and CB-DNA

Fingerprinting. Results in Figure 4.4b show that the RF-DNA approach never achieves

the %C = 90% benchmark and yields maximum performance of %C ≈ 78% at

SNR = 32.0 dB. The %C = 90% performance benchmark is only achieved by

CB-DNA for SNR ≥ 24.0 dB for combined results and SNR ≥ 26.0 dB for sub-

cluster results.

The confidence interval CI = 95% contained within the data markers suggests that

fingerprints based on combined and subcluster regions are statistically equivalent in

Figure 4.4a. Therefore, as in the CMD case, comparisons with RF-DNA will be done

with only subcluster regions at a reduced feature count ofNFeat = 112. The subcluster

CB-DNA performance from Figure 4.4a is superimposed on RF-DNA performance

results in Figure 4.4b for comparison. The comparison shows the best case RF-DNA

performance (NR = 80 regions) is %C ≈ 78% at SNR = 32.0 dB while CB-DNA

reaches %C = 90% at SNR ≈ 24.0 dB. For the LMD case, RF-DNA is the inferior

technique and is outperformed by CB-DNA by approximately 20% at the collected

SNRC = 16.0 dB.
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(a) CB-DNA Fingerprinting %C vs. SNR for LMD using
NC = 16 Classes and NCR = 2 Aggregate, 8 Subcluster,
and 10 Combined Regions.
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(b) RF-DNA Fingerprinting %C vs. SNR for LMD using
NC = 16 Classes and NR = 16, 32, and 80 Subregions.

Figure 4.4. MDA/ML Like-Model Discrimination (LMD) using (a) CB-DNA and (b)
RF-DNA Fingerprinting [12].

CB-DNA LMD Fingerprinting benefits considerably with the introduc-
tion of subcluster DNA features. Improvement across the range of SNR
considered includes an approximate: 1) 5% to 22% increase in %C, and
2) 5 to 19 dB of “gain,” measured as the reduction in required SNR rel-
ative to what is required for aggregate features to achieve the same %C.
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Historically, RF-DNA LMD serial number discrimination has been most
challenging. Relative to best case RF-DNA performance, CB-DNA is
clearly superior and provides 1) nearly 22% of %C improvement at col-
lected SNR=16 dB, and 2) 9 dB or more “gain” for %C ≥ 70, where
gain is the reduction in SNR relative to what is required by RF-DNA to
achieve the same %C.

As with CMD results in Section 4.4.1, LMD results in Figure 4.4 do not enable

direct comparison of average cross-class %C performance and inherently hide class

interaction and individual class performance. Unlike CMD assessments which were

based on NC = 4 classes (manufacturers), LMD assessments were based on NC = 16

classes (devices) with each class representing one of four devices from one of four

manufacturers. Thus, a conventional LMD confusion matrix would generally contain

16 rows (one input class per row) and 16 columns (one called class per column). As an

alternative, the NC = 16 LMD class results are presented here using unconventional

confusion matrices at SNR = 12 dB and SNR = 30 dB for consistency with previous

CMD analysis. The unconventional confusion matrices are formed here by pooling

results for all four classes (devices) within a given manufacturer, i.e., individual con-

fusion matrix results for all classes (individual devices) for a given manufacturer are

pooled into a manufacturer class and presented in a conventional 4-by-4 confusion

matrix format. Table 4.6 and Table 4.7 show pooled LMD classification performance

at SNR = 12 dB and SNR = 30 dB, respectively. In this case, diagonal entries rep-

resent that the device was correctly classified as belonging within its manufacturing

group and off-diagonal terms represent all misclassifications attributable to the device

being incorrectly associated with another manufacturer. The table entries are pre-

sented as %C CB-DNA / %C RF-DNA with bold entries denoting best or equivalent

performance.

By comparison with prior CMD results in Table 4.4 (SNR = 12 dB) and Table 4.5

(SNR = 30 dB), the corresponding pooled LMD results in Table 4.6 and Table 4.7
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Table 4.6. Unconventional Cross Manufacturer Classification Confusion Matrix (%)
Based on LMD Results for NC = 16 Classes at SNR = 12 dB [12]. Four Classes (Devices)
Within Each Manufactured Pooled for Presentation. Presented as %C CB-DNA / %C
RF-DNA with Bold Entries Denoting Superior or Statistically Equivalent Performance.

Any Called Manufacturer

M1 M2 M3 M4

Any Input
Manufacturer

M1 84.07 / 81.61 0.0 / 0.0 15.93 / 18.84 0.0 / 0.03

M2 0.0 / 0.0 100 / 99.99 0.0 / 0.01 0.0 / 0.0

M3 15.98 / 16.11 0.0 / 0.23 84.02 / 83.89 0.0 / 0.0

M4 0.0 / 0.01 0.0 / 0.0 0.0 / 0.0 100 / 99.99

Table 4.7. Unconventional Cross Manufacturer Classification Confusion Matrix (%)
Based on LMD Results for NC = 16 Classes at SNR = 30 dB [12]. Four Classes (Devices)
Within Each Manufactured Pooled for Presentation. Presented as %C CB-DNA / %C
RF-DNA with Bold Entries Denoting Superior or Statistically Equivalent Performance.

Any Called Manufacturer

M1 M2 M3 M4

Any Input
Manufacturer

M1 97.68 / 99.65 0.0 / 0.0 2.32 / 0.35 0.0 / 0.0

M2 0.0 / 0.0 100 / 100 0.0 / 0.0 0.0 / 0.0

M3 1.69 / 0.25 0.0 / 0.0 98.31 / 99.75 0.0 / 0.0

M4 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 100 / 100

reflect overall similar discrimination performance for both RF-DNA and CB-DNA

Fingerprinting methods as the CMD results. This is consistent with expectations

given that the misclassifications within the same manufacturing group are hidden

within the diagonal entries of the confusion matrix.

The unconventional pooled confusion matrices in Table 4.6 and Table 4.7 do not

show LMD misclassification occurring within the manufacturer groups. Thus, another

unconventional confusion matrix representation is introduced to assess LMD perfor-

mance within and across manufacturer groups. One such representation is provided

in Table 4.8 and used to highlight like-manufacturer called class performance using

all devices as input classes (NC = 16). In this representation, the Other Class column

85



includes all results where input devices are misclassified as belonging to another man-

ufacturer group (cross-manufacturer error). This confusion matrix representation is

available for all SNR considered. However, representative results are presented here

for SNR = 26.0 dB given that this is the lowest SNR at which CB-DNA perfor-

mance in Figure 4.4a achieves the %C = 90% benchmark. There are four miniature

confusion matrices in Table 4.8 that represent the like-model confusion within a given

manufacturer group. The four diagonal correct classification entries in Table 4.8 show

that LMD performance for CB-DNA is statistically better than RF-DNA in all but

one case (M3:D3) for the SNR presented. When excluding the M3:D3 case, the

range of improvement of CB-DNA relative to RF-DNA is %C = 13% to 52%. Other

Class entries in Table 4.8 show that the only cross-manufacturer confusion occurs

between DLink (M1) and TRENDnET (M3), which is also attributed to the fact that

they have the same LAN transformer. As the table further shows, M2 and M4 only

experienced misclassification within its own manufacturing group.

The high %C for device M3:D3 is attributable to the alignment jitter discussed in

Section 4.1, where it was shown that Region of Interest (ROI) for this device had a

higher standard deviation than the rest of the devices. With RF-DNA utilizing only

the preamble, which is a much smaller ROI, the misalignment has a more positive

impact on the RF-DNA results for this device. This would also affect the results for

the CMD case. The positive effect on results will also be discussed in the verification

section.

Figure 4.5 is used to visually show how similar/dissimilar like-model fingerprints

are to one another and highlights the difficulty of the process when compared to

CMD. The figure was generated by averaging 1,000 fingerprints from each device

within manufacturer group M2 and was chosen because it had the highest %C of the

4 subtables when excluding M3 due to the alignment jitter in Table 4.8. Therefore,
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it should have the most dissimilar fingerprints. The Y-axis represents the location

of a given statistic within a device fingerprint. The X-axis represents the device as

described in Table 3.1.

Table 4.8. Unconventional LMD Classification Confusion Matrix Highlighting Like-
Manufacture Confusion for NC = 16 at SNR = 26.0 dB. Presented as %C CB-DNA /
%C RF-DNA with Bold Entries Denoting Superior or Statistically Equivalent Perfor-
mance [12].

Input
Class

Called Class

M1:D1 M1:D2 M1:D3 M1:D4 Other Class

M1:D1 76.60 / 33.83 0.07 / 11.10 23.20 / 30.60 0.0 / 24.26 0.13 / 0.21

M1:D2 0.17 / 10.03 95.57 / 70.10 2.20 / 8.23 0.87 / 9.63 1.19 / 2.01

M1:D3 9.90 / 9.13 0.83 /10.0 87.97 / 57.17 0.53 / 22.70 0.77 / 1.0

M1:D4 0.37 / 7.40 1.17 / 13.70 0.70 / 25.13 85.30 / 53.40 12.46/ 0.37

M2:D1 M2:D2 M2:D3 M2:D4 Other Class

M2:D1 91.63 / 86.53 3.97 / 6.40 3.03 / 1.37 0.70 / 1.17 0.0 / 0.0

M2:D2 5.27 / 6.70 83.10 / 57.23 1.50 / 13.30 10.13/ 22.77 0.0 / 0.0

M2:D3 1.03 / 8.03 1.0 / 11.50 97.73/ 67.47 0.23/ 13.0 0.0 / 0.0

M2:D4 3.53/ 2.83 6.53/ 21.63 1.03 / 13.57 88.90 / 61.97 0.0 / 0.0

M3:D1 M3:D2 M3:D3 M3:D4 Other Class

M3:D1 92.03 / 60.77 5.43 / 24.43 0.07 / 0.0 1.07 / 14.33 1.40/ 0.47

M3:D2 5.83 / 26.0 91.10 / 59.57 0.17 / 0.0 2.10 / 13.60 0.08 / 0.83

M3:D3 0.03/ 0.0 0.13 / 0.0 99.80 / 100 0.0 / 0.0 0.04 / 0.0

M3:D4 2.26 / 11.87 1.93 / 9.80 0.0 / 0.0 87.20 / 75.73 8.61 / 2.60

M4:D1 M4:D2 M4:D3 M4:D4 Other Class

M4:D1 83.50 / 71.93 3.80/ 0.33 4.60/ 5.84 8.10 / 21.90 0.0 / 0.0

M4:D2 2.90 / 1.33 93.70 / 81.63 1.17 / 7.94 2.23 / 9.10 0.0 / 0.0

M4:D3 6.67/ 6.23 0.67/ 10.90 87.37 / 73.20 5.30 / 9.67 0.0 / 0.0

M4:D4 3.37 / 11.17 3.13 / 8.43 5.40 / 9.43 88.10 / 70.97 0.0 / 0.0

4.5 Device ID Verification

This section provides results for the 1 vs. 1 a “Look How Much Like?” verification

assessments. As stated in Section 3.9, 256 different permutations for NA = 12 autho-
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Figure 4.5. LMD CB-DNA and RF-DNA statistical fingerprint visualization with total
number of features per fingerprint in parentheses.

rized devices and NR = 4 were created from the NC = 16 devices in Table 4.3 with

representative permutations provided in Table 3.3. Specific results are provided for

Perm #29 to guide the discussion on ROC generation and raw test statistic presen-

tation for both authorized and rogue devices. Perm #29 was chosen because it had

the highest %C of the permutations listed in Table 3.3.

Euclidean distance was chosen as the similarity measure for device verification.

The verification results presented in this section use only like-model verification and
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utilize a total of NFeat = 140 CB-DNA and NFeat = 720 RF-DNA features per

fingerprint but are available for fingerprints based on a reduced number of features.

True Verification Rate (TV R) and False Verification Rate (FV R) for Authorized

devices as described in Section 3.9 is based on NTst = 3, 000 fingerprints per device.

Rogue Accept Rate (RAR) and Rogue Reject Rate (RRR) for Rogue Devices are

based on NTst = 6, 000 fingerprints.

Verification is assessed using two network access methods, including 1) ROC

curves for making Binary Grant/Deny (BGD) decisions using test statistic PMFs,

and 2) stem plots of raw Euclidean distance test statistics (ZV ) for making Burst-by-

Burst (BbB) decisions.

Assessment of Binary Grant/Deny (BGD) verification performance is accom-

plished using ROC curves, which are generated for authorized and rogue devices

as TVR vs. FVR and TVR vs. RAR, respectively. The TV R vs. RAR presentation

is a matter of convenience and enables 1) direct assessment of rogue performance for

a given authorized device TV R (vertical displacement in Figure 4.6 and Figure 4.8

are identical), and 2) easy calculation of RRR=1-RAR in Figure 4.8. The PMFs

used to generate Figures 4.6 and 4.8 ROCs are based on independent ZV generated

per Section 3.9 and include a total of NTst = 3, 000 and NTst = 6, 000 fingerprints

per authorized and rogue device, respectively.

For ROC curves in Figure 4.6, BGD success is based on arbitrarily defined criteria,

to stay consistent with other RF-DNA works, such that Authorized Device verification

criteria is TV R > 0.9 and FV R < 0.1. The Authorized Accept Rate (AAR) metric

is common to the TV R metric presented in previous RF-DNA publications as being

the number of authorized access attempts satisfying this criteria divided by the total

number of attempts for a given permutation [49, 50]. The common TV R > 0.9

benchmark is shown as a horizontal dotted line in Figure 4.6, with curves for successful
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attempts denoted by solid lines and failures denoted by dashed curves.

The RF-DNA and CB-DNA ID verification authorized device ROC curves are

displayed in Figure 4.6 for Perm #29 in Table 3.3 at SNR = 20.0 dB. The dashed

ROC curves in Figure 4.6b for RF-DNA show that only five of the NA = 12 authorized

devices meet the arbitrary TV R > 0.9 and FV R < 0.1 criteria and are not granted

network access (AAR = 41.7%). In addition, there is one device in Figure 4.6b in the

upper left corner; it is the M3:D3 device that had the higher alignment jitter. The

solid ROC curves in Figure 4.6a for CB-DNA show that all but one of the NA = 12

authorized devices meet or exceed the arbitrary TV R < 0.9 and FV R < 0.1

criteria and are granted network access (AAR = 91.7%). The tV (d) verification

threshold values are set according to the Equal Error Rate (EER) line in Figure 4.6.

The BbB verification process for authorized devices is illustrated in Figure 4.7

which showsNTst = 3, 000 Euclidean distance ZV from all authorized devices (A1–A12).

The device dependent verification thresholds tV (d) are indicated by a solid black hor-

izontal line and correspond to EER operating points in Figure 4.6 ROC curves. The

blue circles below the threshold value are device access attempts where the device

was correctly granted network access and the red X’s denote an erroneous rejection

for that device.

For BbB verification assessment, TV R for the dth authorized device is calcu-

lated as the number of ZV (d) ≤ tV (d) divided by the total number of ZV (d) with

the percentages for each device being displayed in Table 4.9 along with the verifi-

cation thresholds tV (d) for each device. The TV R for RF-DNA in Table 4.9 are

84.8% ≤ TV R ≤ 100% and CB-DNA are 88.4% ≤ TV R ≤ 97.8%. Again, it is

seen that M3:D3 (A9) is has the highest TV R due to the alignment jitter.

In the rogue device ROC curves in Figure 4.8, BGD success is based on arbitrarily

defined criteria for Rogue Device verification of TV R > 0.9 and RAR < 0.1, with
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Figure 4.6. ID Verification ROC curves for Perm #29 at SNR = 20 dB using a Euclidean
distance measure of similarity. Relative to Binary Grant/Deny (BGD) network access
decisions CB-DNA authorized device success is AAR = 91.7% (11/12) and RF-DNA
AAR = 41.7% (5/12) for TV R > 0.9 and FV R < 0.1 criteria.
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Figure 4.7. Euclidean distance test statistics for Perm #29 devices at SNR = 20 dB.
Solid horizontal lines are device dependent tV (d) thresholds corresponding to ROC EER
in Figure 4.6. Authorized device (A1–A12) ID verification test statistics where blue
circles indicate correct access granted and red X’s indicate an incorrect access denied
for NTst=3,000 testing fingerprints per authorized device.
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Table 4.9. CB-DNA and RF-DNA Authorized Device Dependent TV (d) Threshold
and TVR Values for Perm #29 at SNR = 20 dB Corresponding to Figure 4.7 with
Bold Entries Denoting Better Performance for TVR Results. Device Dependent tV (d)
Thresholds Corresponding to ROC EER in Figure 4.6.

Authorized Device Index (A#)

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

CB-DNA
TV R 90.4 90.7 89.4 93.1 97.1 94.3 91.5 90.6 97.8 91.0 88.4 86.7

TV (d) 0.10 0.10 0.09 0.10 0.15 0.11 0.09 0.09 0.13 0.10 0.10 0.10

RF-DNA
TV R 85.4 85.2 84.8 91.4 87.5 86.6 89.3 89.4 100 86.2 85.7 86.9

TV (d) 1.66 1.69 1.71 2.00 1.91 1.96 1.78 1.81 3.87 1.75 1.82 1.82

RRR being the number of rogue access attempts satisfying this criteria divided by

the total number of attempts. The common TV R > 0.9 benchmark is shown as

a horizontal dotted line and is the same as Figure 4.6, with curves for successful

rejections denoted by solid lines and dashed curves denote when access is wrongly

granted.

Rogue device ROC curves for RF-DNA and CB-DNA ID verification are provided

in Figure 4.8 using Perm #29 devices in Table 3.3 at SNR = 20.0 dB. The solid

RF-DNA ROC curves in Figure 4.8b show that RRR = 34/48 rogue device attempts

met the TV R > 0.9 and RAR < 0.1 criteria and were successfully rejected (denied

network access) at RRR = 70%. The solid CB-DNA ROC curves in Figure 4.8a show

that RRR = 37/48 rogue device attempts met the TV R > 0.9 and RAR < 0.1 criteria

and were successfully rejected (denied network access) at RRR = 77%. CB-DNA is

marginally better and improved RRR by 7% over RF-DNA.

The BbB verification process for rogue devices is illustrated in Figure 4.9, which

shows NTst = 6, 000 Euclidean distance ZV per Perm #29. There were a total of 48

rogue assessment scenarios for this permutation. For visual clarity, only results for 12

of the scenarios are presented and results for only NR(3) = R3 are presented as falsely

claiming each of the authorized device IDs (R3:A1, R3:A2,. . . , R3:A12) in Figure 4.7.

The authorized devices tV (d) correspond to those in Table 4.10 and are used to make
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Figure 4.8. Rogue device ID verification ROC curves for Perm #29 in Table 3.3 at
SNR = 20 dB using a Euclidean distance measure of similarity. Relative to Binary
Grant/Deny (BGD) network access decisions CB-DNA rogue device R3 rejection is
RRR = 77% (37/48) and RF-DNA RRR = 70% (34/48) for TV R > 0.9 and RAR < 0.1
criteria.

BbB grant/deny decisions.

The blue circles above the tV (d) threshold are rogue device rejections where the

rogue device is correctly denied network access. The red X’s below tV (d) are rogue

device acceptances where the rogue is errantly granted network access. In this case,

RRR for dth claimed ID is calculated as the number of ZV (d) > tV (d) divided by the

total number of ZV (d). The tV (d) used for the rogue assessment are in Table 4.10

for RF-DNA and CB-DNA. Table 4.10 also provides RRR values for RF-DNA from
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(a) CB-DNA

(b) RF-DNA

Figure 4.9. Euclidean distance test statistics for Perm #29 rogue devices at SNR =
20 dB. Solid horizontal lines are device dependent tV (d) thresholds corresponding to
ROC EER in Figure 4.6. Rogue device (R3) verification test statistics where blue circles
denote a rogue device being correctly denied access and red X’s denote an incorrect
grant access decision for NTst = 6, 000 BbB testing fingerprints, with R3 presenting a
false ID for each authorized device (R3:A1–R3:A12).
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Table 4.10. CB-DNA and RF-DNA Device Dependent TV (d) Threshold and RRR
Values for Perm #29 at SNR = 20 dB Corresponding to Figure 4.9 with Bold Entries
Denoting Better or Equal Performance for RRR Results. Device Dependent tV (d)
Thresholds Corresponding to ROC EER in Figure 4.6.

CB-DNA RF-DNA

Rogue : Claimed RRR TV (d) RRR TV (d)

R3:A1 42.0 0.096 78.6 1.660

R3:A2 79.9 0.100 91.0 1.686

R3:A3 14.7 0.091 90.2 1.711

R3:A4 100 0.104 100 1.998

R3:A5 100 0.148 100 1.910

R3:A6 100 0.106 100 1.962

R3:A7 67.1 0.090 24.8 1.779

R3:A8 52.4 0.090 22.7 1.812

R3:A9 96.8 0.128 100 3.867

R3:A10 100 0.098 100 1.749

R3:A11 100 0.104 100 1.817

R3:A12 100 0.095 100 1.821

22.7% ≤ RRR ≤ 100% and CB-DNA ranging from 14.7% ≤ RRR ≤ 100%. For

RF-DNA and CB-DNA, it is clear in Figure 4.9 that R3 (an M3 device) is least

similar to A4, A5, and A6 (M2 devices) and A10, A11, and A12 (M4 devices) given

the corresponding ZV are well above tV (d) for those devices. It is also evident that

when the rogue device was granted access it was thought to be either an M1 or M3

manufacturer. There is one exception in Figure 4.9 for R3:A9 in that R3 was rejected

every time for RF-DNA but gained network access 3.2% of time for CB-DNA. These

results again show that the misalignment jitter impacts both RF-DNA and CB-DNA

however the impact to RF-DNA is higher.

RF-DNA and CB-DNA results in Table 4.11 and Table 4.12 are presented as

(#Successes / Total #Trials)×100 with bold entries denoting best or equivalent per-

formance. For binary results, AAR is based on NA = 12 authorized devices trials and
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RRR is based on (NA = 12)× (NR = 4) = 48 total trials. The BbB results are based

on (NA = 12)× (NR = 4)× (NTst = 6, 000) = 288, 000 trials.

Table 4.11. Perm #29 Device ID Verification Performance: Binary Grant/Deny (BGD)
Authorized Accept Rate (AAR) (12 attempts per SNR) and Rogue Reject Rate (RRR)
for BGD (48 Attempts per SNR) and Burst-By-Burst (BbB) (288,000 Attempts per
SNR) Assessments.

CB-DNA RF-DNA

SNR
(dB)

BGD BbB BGD BbB

AAR(%) RRR(%) RRR(%) AAR(%) RRR(%) RRR(%)

8 0 62.5 77.1 0 60.4 74.8

10 0 62.5 78.3 8.3 66.7 76.5

12 16.7 62.5 79.7 8.3 66.7 78.2

14 33.3 64.6 82.2 8.3 66.7 80.0

16 33.3 66.7 84.0 8.3 66.7 82.0

18 50.0 72.9 85.1 25.0 70.8 83.8

20 91.7 77.1 86.2 41.7 70.8 85.4

22 91.7 79.2 87.3 58.3 75.0 86.5

24 100 79.2 88.1 75.0 79.2 87.3

26 100 83.3 88.8 83.3 79.2 87.8

28 100 85.4 89.3 91.7 79.2 88.5

Table 4.11 presents Perm #29 results for all SNR considered and highlights the

direct relationship between SNR and the AAR and RRR for both RF-DNA and

CB-DNA. In addition, Table 4.11 shows that SNR = 24.0 dB is the lowest SNR at

which AAR = 100% for authorized devices. It is also evident in Table 4.11 that the

BbB method consistently outperforms the binary accept/reject decision for both fin-

gerprinting methods at all SNR. As indicted by bold entries in Table 4.11, RF-DNA

results are inferior to CB-DNA for most SNR. The best BGD decision for RF-DNA is

RRR = 79.2% at SNR = 24.0 dB, which is exceeded by CB-DNA at SNR = 26.0 dB.

The confidence interval for these results was calculated to be ±0.1% with 95% confi-

dence.

Table 4.12 provides results for the 10 Perms listed in Table 3.3 and the average
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overall 12,288 rogue scenarios at SNR = 20.0 dB. This SNR is highlighted to stay

consistent with the other results presented in this section. Binary Grant/Deny Access

results collectively include 70% < RRR < 79% for RF-DNA and 72% < RRR < 79%

for CB-DNA. Burst-by-Burst results jointly include 82% < RRR < 88% for RF-DNA

and 82% < RRR < 89% for CB-DNA. As indicated by the bold entries, RF-DNA

results are generally poorer than CB-DNA. Also of interest is that for the 10 Perms

in Table 4.12, the permutations yielding highest RRR had correspondingly poorer

%C than the permutations yielding lowest RRR – reflecting no direct relationship

between classification and verification performance for both approaches.

Table 4.12. Device ID Verification Performance for 10 Selected Permutations at SNR =
20 dB for Binary Grant/Deny (BGD) AAR (12 attempts per Permutation), RRR (48
Attempts per Permutation) and Burst-By-Burst (BbB) RRR (288,000 Attempts per
Permutation). All Permutations Averages Provided for BGD RRR (12,288 Attempts)
and BbB RRR (Over 73,000,000 Attempts).

CB-DNA RF-DNA

BGD BbB BGD BbB

Perm# AAR(%) RRR(%) RRR(%) AAR(%) RRR(%) RRR(%)

L
o
w

e
st

%
C 74 33.3 72.9 86.6 16.7 79.2 87.9

105 25.0 75 89.9 8.3 79.2 88.1
106 25.0 72.9 89.6 25.0 79.2 86.4
107 41.7 72.9 88.9 25.0 79.2 86.4
108 41.7 75.0 88.4 33.3 79.2 86.0

H
ig

h
e
st

%
C 29 91.7 77.1 86.2 41.7 70.8 85.4

32 100 79.1 85.0 66.7 70.8 83.3
157 91.7 72.9 84.7 41.7 70.8 84.5
159 100 70.8 83.1 50 70.8 82.7
160 91.7 72.9 82.5 58.3 70.8 82.3

All Perms 70.0 72.4 85.5 42.6 75.1 85.0

The “All Perms” row in Table 4.12 shows that CB-DNA outperforms RF-DNA

with average RRR of 72.4% and 85.5% for BGD and BbB, respectively. The im-

provement is ≈ 3% for BGD and ≈ 1.5% for BbB access decisions.
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4.5.1 Alternate Verification Performance Metrics.

This section presents results using alternate verification metrics commonly em-

ployed in machine learning applications [38]. These metrics provide insight into in-

dividual device performance and are covered here for two purposes: 1) to enable

comparison with other constellation-based works and results as found in [27,28], and

2) to bridge the gap for researchers accustomed to different metrics. As introduced

in Section 3.11, the alternate metrics include Accuracy, Precision, Recall, and Speci-

ficity. The results are only provided for CB-DNA as it has demonstrated superior

performance to RF-DNA.

Numerical results are available for all four metrics. However, the focus of dis-

cussion here is on Accuracy. Refereed paper feedback suggests that this is the most

“telling of the four metrics.” The Accuracy metric for a given device reflects: 1) how

reliably the device ID is self-validated and how network access is rightly granted (akin

to TV R), and 2) how resistant the devices ID is to cross-validation error, whereby

its credentials are stolen and used by a rogue device to wrongly gain network access

(akin to RAR). Thus, an Accuracy = 1 for a particular device is desired and reflects

that: 1) the device is appropriately granted access 100% of the time, and 2) rogues

presenting its credentials are denied access 100% of the time.

Figure 4.10 and Table 4.13 contain information specific to Perm #29 and device

NA = A2 (M1:D3), which are used to link the effects of SNR on the accuracy metric

and how it is related to traditional rogue Receiver Operating Characteristic (ROC)

curves. The rogue ROC curves in Figure 4.10 contain a total of 8 rogue ROC curves

with four for each of the two presented SNR values. Five of the eight curves are

in the upper left hand corner and not visible suggesting at or near RRR = 100%

while also achieving at or near TV R = 100%. The EER line represents the chosen

operating point.
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Figure 4.10. TVR and RAR for Device M1:M3 at SNR = 14, 30 dB. RAR shown for all
rouge devices NR(i) = R1-R4.

Table 4.13 provides accuracy results across NA = 12 devices for Perm #29 and

highlights the effects of SNR variation on accuracy. The bold entries in this table

correspond to the ROC curves in Figure 4.10 by accounting for all of the ROC curves

for a given SNR value. More succinctly, an individual ROC curve provides metrics for

network access attempts by a individual rogue device against one authorized device,

whereas the accuracy metric accounts for all network access attempts across all rogue

devices against one authorized device.
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Table 4.13. Perm #29 Accuracy Performance for a Given Device with Each Metric
based on 27,000 Tests per Device.

SNR

Device 10 12 14 16 18 20 22 24 26 28 30

M1:D2 0.731 0.763 0.807 0.836 0.843 0.856 0.867 0.886 0.911 0.927 0.935

M1:D3 0.735 0.739 0.761 0.770 0.773 0.782 0.799 0.809 0.815 0.817 0.820

M1:D4 0.735 0.735 0.758 0.767 0.777 0.784 0.788 0.789 0.789 0.790 0.790

M2:D1 0.795 0.797 0.801 0.804 0.807 0.811 0.820 0.826 0.833 0.836 0.836

M2:D3 0.842 0.872 0.904 0.937 0.959 0.974 0.984 0.988 0.990 0.991 0.991

M2:D4 0.798 0.799 0.801 0.803 0.803 0.805 0.804 0.804 0.801 0.801 0.800

M3:D1 0.779 0.792 0.822 0.852 0.880 0.905 0.924 0.941 0.953 0.962 0.967

M3:D2 0.777 0.778 0.819 0.850 0.866 0.883 0.908 0.926 0.945 0.955 0.967

M3:D3 0.819 0.858 0.911 0.947 0.973 0.988 0.996 0.998 0.999 0.999 0.999

M4:D2 0.837 0.855 0.869 0.875 0.882 0.892 0.909 0.923 0.934 0.948 0.958

M4:D3 0.804 0.817 0.829 0.839 0.845 0.856 0.863 0.864 0.870 0.875 0.877

M4:D4 0.808 0.826 0.842 0.861 0.871 0.883 0.891 0.897 0.901 0.905 0.908

Mean 0.776 0.788 0.803 0.827 0.845 0.857 0.868 0.880 0.888 0.895 0.901
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4.6 CPA and PPA Enhancements

This section provides results for performance enhancements that include: 1) the

pre-fingerprint generation CPA process developed under this research and described

in Section 3.10.1, and 2) the post-MDA/ML PPA process adopted from prior research

and described in Section 3.10.2. The goal is to improve overall device ID verification

performance using CB-DNA. Results are presented for four different parameter val-

ues, including: 1)NCPA = 1 representing no accumulation and NCPA = 9 representing

accumulation of constellation points from symbols in nine bursts, and 2) NPPA = 1

representing no projection averaging, and NPPA = 5 representing the averaging of

five projection bursts in MDA/ML projection space.

Figure 4.11 provides four different RRR assessments for BGD and BbB decisions,

with the blue triangles representing No Enhancement (NCPA = 1 and NPPA = 1),

the red circles representing CPA-Only Enhancement (NCPA = 9 and NPPA = 1), the

green diamonds representing PPA-Only Enhancement (NCPA=1 and NPPA = 5), and

the black squares representing Combined Enhancement (NCPA = 9 and NPPA = 5).

The vertical axis is RRR(%) and the horizontal axis is presented as Rogue Man-

ufacturer ID:Claimed Manufacturer ID (M#:M#). For example, the first horizon-

tal entry in Figure 3.21 is M1:M1 that represents all the times that a rogue de-

vice from manufacturing group M1 attempted to gain access as one of the other

three authorized M1 devices. The results in Figure 4.11a, under BGD, are based on

(NA = 3) × (NPerms = 256) × (NR = 1) = 768 individual binary tests for all cases.

Figure 4.11b under BbB results are composed of (NA = 3) × (NPerms = 256) ×

(NR = 1) × (NTst = 6, 000) ≈ 4.6M raw test statistic comparisons with no PPA

(NPPA = 1) and (NA = 3)× (NPerms = 256)× (NR = 1)× (NTst = 6, 000/5) ≈ 92K

raw test statistic with PPA (NPPA = 5) for each M#:M# in the x-axis.

The first four M#:M# entries in the horizontal axis of the individual subfigures

102



 
M

1:
M

1
M

2:
M

2
M

3:
M

3
M

4:
M

4
M

1:
M

2
M

1:
M

3
M

1:
M

4
M

2:
M

1
M

2:
M

3
M

2:
M

4
M

3:
M

1
M

3:
M

2
M

3:
M

4
M

4:
M

1
M

4:
M

2
M

4:
M

3  

R
og

ue
 R

ej
ec

t R
at

e 
(%

)

0

20

40

60

80

100

(a) Binary Grant/Deny

 
M

1:
M

1
M

2:
M

2
M

3:
M

3
M

4:
M

4
M

1:
M

2
M

1:
M

3
M

1:
M

4
M

2:
M

1
M

2:
M

3
M

2:
M

4
M

3:
M

1
M

3:
M

2
M

3:
M

4
M

4:
M

1
M

4:
M

2
M

4:
M

3  

R
og

ue
 R

ej
ec

t R
at

e 
(%

)

0

20

40

60

80

100

N
CPA

=9, N
PPA

=5

N
CPA

=1, N
PPA

=5

N
CPA

=9, N
PPA

=1

N
CPA

=1, N
PPA

=1

(b) Burst-by-Burst

Figure 4.11. Constellation Point Accumulation (CPA) and MDA/ML Projection Point
Averaging (PPA) results. Average RRR presented as rogue manufacturer (M#) :
claimed manufacturer (M#) for Binary Grant/Deny (BGD) and Burst-by-Burst (BbB)
decisions across 256 permutations at SNR = 14. Results for no CPA (NCPA=1) and
no PPA (NPPA=1), CPA ONLY (NCPA = 9), PPA ONLY (NPPA = 5),and both CPA
(NCPA=9) and PPA (NPPA=5).

in Figure 4.11 show results for when a rogue device is from the same manufacturer

as the authorized device it is pretending to be, and as expected, the worst RRR

are in that section of each subfigure. The only other time CB-DNA has difficulty

with a lower RRR is when an M1 device is pretending to be an M3 device and vice
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versa. However, when enhancements due to CPA and PPA are used individually,

verification for M1:M3 and M3:M1 improve ≈ 60% for the BGD Test and ≈ 22% for

BbB. CPA and PPA enhancements see some mixed results when they are individually

used for M1:M1 - M4:M4; however, when the two techniques are combined, an average

increase in RRR over M1:M1 - M4:M4 is 58% ≤ RRR ≤ 95% for BGD Test and

11% ≤ RRR ≤ 60% for BbB. In general, RRR improve to over 78% when both

CPA and PPA enhancements are used.

Also of note is that the BbB test has an average increase in performance of 13%

over BGD test when the rogue device comes from the same manufacturer group. The

BbB test also has an average increase in performance of ≈ 15% and ≈ 11% over BGD

Test for M1:M3 and M3:M1 cases, respectfully. This advantage is eliminated when

the CPA and PPA enhancements are taken into account and RRR becomes more

similar for both methods.

The enhancements also provide increased performance in the accuracy metric

discussed in Section 4.5.1. Individual device accuracy results without enhancements

(NCPA = 1, NPPA = 1) are provided in Table 4.14. Table 4.15 provides individual

device accuracy metrics with enhancements (NCPA = 9, NPPA = 5) with both tables

showing SNR variations. Table 4.14, with no enhancements, has average results

across all devices between 0.77 < Accuracy < 0.90 and when enhancements are

considered, as provided in Table 4.15, accuracy increases to 0.92 < Accuracy < 0.97.

These accuracy results suggest that the CB-DNA approach is able to, on average,

reject more than 90% of the rogue attacks while correctly granting access to authorized

devices more than 90% of time.
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Table 4.14. Device Accuracy Across All Permutations with no Enhancements with
Each Metric based on 5.1M+ Tests per Device.

SNR

Device 8 10 12 14 16 18 20 22 24 26 28

M1:D1 0.741 0.744 0.753 0.774 0.799 0.822 0.846 0.869 0.887 0.899 0.906

M1:D2 0.713 0.734 0.760 0.788 0.816 0.841 0.866 0.888 0.908 0.923 0.935

M1:D3 0.748 0.759 0.773 0.794 0.815 0.836 0.856 0.876 0.892 0.903 0.911

M1:D4 0.731 0.746 0.764 0.785 0.807 0.827 0.846 0.862 0.875 0.885 0.893

M2:D1 0.798 0.800 0.803 0.809 0.816 0.826 0.837 0.849 0.860 0.869 0.876

M2:D2 0.798 0.799 0.802 0.810 0.823 0.834 0.843 0.850 0.855 0.859 0.862

M2:D3 0.808 0.823 0.841 0.870 0.900 0.923 0.937 0.946 0.950 0.954 0.957

M2:D4 0.802 0.805 0.811 0.825 0.842 0.857 0.869 0.879 0.886 0.892 0.897

M3:D1 0.752 0.764 0.781 0.800 0.821 0.840 0.858 0.872 0.884 0.894 0.902

M3:D2 0.724 0.738 0.755 0.779 0.805 0.826 0.847 0.865 0.881 0.892 0.900

M3:D3 0.756 0.794 0.832 0.859 0.878 0.897 0.915 0.929 0.938 0.943 0.946

M3:D4 0.719 0.738 0.759 0.782 0.803 0.821 0.837 0.850 0.862 0.872 0.881

M4:D1 0.807 0.809 0.811 0.813 0.818 0.823 0.829 0.835 0.841 0.846 0.852

M4:D2 0.820 0.829 0.837 0.846 0.855 0.867 0.882 0.896 0.910 0.921 0.930

M4:D3 0.805 0.808 0.812 0.818 0.824 0.831 0.841 0.851 0.858 0.866 0.873

M4:D4 0.808 0.814 0.823 0.831 0.840 0.848 0.855 0.861 0.867 0.873 0.878

Mean 0.771 0.781 0.795 0.811 0.829 0.845 0.860 0.874 0.885 0.893 0.900
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Table 4.15. Device Accuracy Across All Permutations with Enhancements for NCPA = 9
and NPPA = 5 Based on 1M+ Tests per Device.

SNR

Device 8 10 12 14 16 18 20 22 24 26 28

M1:D1 0.917 0.919 0.921 0.926 0.930 0.930 0.930 0.929 0.928 0.927 0.927

M1:D2 0.971 0.988 0.998 0.999 1.000 1.000 1.000 1.000 0.999 0.999 0.999

M1:D3 0.921 0.922 0.924 0.925 0.925 0.926 0.926 0.927 0.927 0.928 0.930

M1:D4 0.855 0.865 0.870 0.878 0.885 0.895 0.908 0.926 0.943 0.956 0.966

M2:D1 0.912 0.919 0.925 0.941 0.947 0.952 0.967 0.982 0.992 0.997 0.998

M2:D2 0.910 0.921 0.927 0.945 0.965 0.978 0.986 0.992 0.996 0.997 0.998

M2:D3 0.995 0.994 0.994 0.998 1.000 1.000 1.000 0.999 0.999 0.999 0.999

M2:D4 0.972 0.980 0.993 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

M3:D1 0.954 0.958 0.963 0.961 0.955 0.953 0.956 0.966 0.976 0.983 0.987

M3:D2 0.932 0.942 0.950 0.948 0.942 0.934 0.935 0.953 0.970 0.980 0.984

M3:D3 0.856 0.859 0.877 0.891 0.895 0.902 0.910 0.926 0.939 0.944 0.950

M3:D4 0.874 0.891 0.895 0.883 0.857 0.836 0.831 0.836 0.836 0.840 0.841

M4:D1 0.876 0.870 0.877 0.901 0.928 0.962 0.988 0.992 0.993 0.992 0.990

M4:D2 0.977 0.983 0.995 0.996 0.997 0.997 0.998 0.998 0.998 0.998 0.997

M4:D3 0.870 0.867 0.875 0.895 0.919 0.933 0.944 0.952 0.960 0.965 0.967

M4:D4 0.911 0.916 0.916 0.922 0.938 0.958 0.973 0.983 0.988 0.988 0.988

Mean 0.919 0.925 0.931 0.938 0.943 0.947 0.953 0.960 0.965 0.968 0.970

106



4.7 Sensitivity Analysis and Probe Placement

This section provides results for effects to projected constellation points (shapes

of constellations), classification and verification results as the probe-to-card distance

LP increases from 2 to 98 m. It also validates Config #1 classification results for

CMD and LMD from Section 4.4. Furthermore, verification results for Perm #29

Section 4.5 with Config #2 and probe-to-card distance of LP ≈ 2 m is also validated.

The addition of Additive White Gaussian Noise (AWGN) to the collected signal is

investigated to see if it provides accurate SNR variation on CMD and LMD results.

The projected device constellations in Figure 4.12 show how a representative de-

vice constellation changes from a card distance LP ≈ 2 m (Figure 4.12a) to LP ≈ 98 m

(Figure 4.12b). A representative device (D1) is presented for each of the four man-

ufacturers (M1-M4). The effects of an increase on LP distance can be clearly seen

in Figure 4.12 as the subclusters of the projected constellations are not as elongated

when LP ≈ 98 m. Receiver coloration has a potential to make some changes on the

presentation of the projected symbols. This is seen when comparing Figure 3.15 and

Figure 4.12a, which shows some slight movement in the projected subclusters but

their relative shapes appear to be the same.

4.7.1 Sensitivity Analysis: Device Classification.

The effect of collection probe and Ethernet card separation distance on average

cross-class %C performance was addressed, i.e., the variation in %C as the probe-to-

card distance LP increases. Config #2 with LP ≈ 2 m (Rx 2:Cable 2) was used to

validate original results from Config #1 with LP ≈ 2 m (Rx 1:Cable 1). Config #2

was used to vary the probe-to-card distance for LP ≈ 2 m and LP ≈ 98 m. Results

are presented here for the maximum 10BASE-T cable length of LC = 100 m, as

specified in IEEE 802 [1]. Figure 4.13 presents CMD (left) and LMD (right) results
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(b) Config #2 with LP ≈ 98 m

Figure 4.12. The effects of cable-to-probe linear distance on constellation shapes at
SNR = 26 dB for both LP ≈ 2 m and LP ≈ 98 m collection points. Representative device
(D1) is presented for each of the manufacturers (M1-M4).

for Config #1 at LP ≈ 2 m, Config #2 at LP ≈ 2 m, and LP ≈ 98 m with a

theoretical variation of SNR = {2x|x ∈, 2 < x < 32} dB for both configurations.

The vertical dashed lines in Figure 4.13 denote the collected SNR value for each
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configuration and LP combination with the same color as the %C curve it represents.
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Figure 4.13. The effects of cable to probe linear distance on CMD and LMD for varying
SNR values. Collected SNR values for each configuration and LP combination denoted
as a dashed vertical line with same color as %C curve.

The CMD results for Config #1 and Config #2 at LP ≈ 2 m and LP ≈ 98 m

are presented in Figure 4.13a and have similar %C classification across all SNRs,

which provides evidence for validation of the CB-DNA process. The CMD results

for Config #2 at LP ≈ 2 m and LP ≈ 98 m do not provide enough evidence to

suggest that adding AWGN is a good indication of probe distance since both results
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for Config #2 are statistically the same.

The LMD results for Config #1 and Config #2 at LP ≈ 2 m in Figure 4.13b

provide additional evidence pointing towards validation of the process. An interesting

observation in the LMD is that Config #2 at LP ≈ 98 m outperforms the other two

at the collected SNR. This fact does not support the idea that adding AWGN to

the collected signal at one collected SNR is representative of the actual performance

at a lower SNR. However, Config #1 and Config #2 at LP ≈ 2 m have different

collection SNR values of SNR = 16 dB and SNR = 28 dB, respectively. The

predicted %C for Config #2 at SNR = 16 dB is very close to the actual collected

SNR for Config #1 providing some evidence that adding AWGN at various powers

does provide insight to classification performance at different collected SNRs. This

suggests that the additions of AWGN is not tied to probe location and further study

of this effect is required.

4.7.2 Sensitivity Analysis: Device ID Verification.

Verification was re-accomplished using Perm #29 at LP ≈ 2 m for Config #2 and

the results are compared to Config #1 at SNR = 26 dB. From this point forward,

results for Config #1 will be presented above Config #2 for all figures. The authorized

device ROC curves for both configurations are in Figure 4.14 in which Config #1

has a higher BGD AAR of AAR = 97.7% versus Config #2 of AAR = 58.3%.

For Config #2, the five devices that did not meet the previously defined criteria of

TV R > 0.9 and FV R < 0.1 were from manufacturing group M1 and M3. This is

different from Config #1 where an M4 device was the sole manufacturer not meeting

the criteria. It is expected that the use of different collection configurations will

provide some variation in the results. However, Config #2 has similar alignment

jitter for all devices, which removes the advantage of device (M3:D3) for Config #1.
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Figure 4.14. Config #1 and Config #2 validation at LP ≈ 2 m of CB-DNA ID verification
ROC curves for Perm #29 in Table 3.3 at SNR = 20 dB using a Euclidean distance
measure of similarity. Relative to Binary Grant/Deny (BGD) network access decisions
Config #1 authorized device success is AAR = 91.7% (11/12) and Config #2 AAR = 58.3%
(7/12) for TV R > 0.9 and FV R < 0.1 criteria.

The individual BbB test statistic for Config #1 and Config #2 for authorized

devices is in Figure 4.15 with overall BbB percentage results and Tv(d) threshold

values corresponding the EER in Figure 4.14, which can be found in Table 4.16. Also

summarized in Table 4.16 is the TV R results based on BbB comparisons. Config #1

and Config #2 BbB results presented in Figure 4.15 and Table 4.16 provide validation

evidence on the CB-DNA approach for authorized device verification.
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Figure 4.15. Config #1 and Config #2 validation at LP ≈ 2 m of CB-DNA Euclidean
distance test statistics for Perm #29 devices at SNR = 20 dB. Solid horizontal lines are
device dependent tV (d) thresholds corresponding to ROC EER in Figure 4.14. Autho-
rized Device (A1–A12) ID verification test statistics where blue circles indicate correct
access granted and red X’s indicate incorrect access denied for NTst=3,000 testing fin-
gerprints per authorized device.
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Table 4.16. CB-DNA Config #1 and Config #2 with LP = 2 m Authorized Device
Dependent TV (d) Threshold and TVR Values for Perm #29 at SNR = 20 dB Cor-
responding to Figure 4.15 with Bold Entries Denoting Better Performance for TVR
Results. Device Dependent tV (d) Thresholds Corresponding to ROC EER in Figure 4.6.

Config #1 Config #2

TV R TV (d) TV R TV (d)

A1 90.4 0.096 84.5 0.103

A2 90.7 0.100 91.5 0.105

A3 89.4 0.091 82.2 0.092

A4 93.1 0.104 93.4 0.132

A5 97.1 0.148 98.1 0.172

A6 94.3 0.106 94.1 0.141

A7 91.5 0.090 85.1 0.097

A8 90.6 0.090 85.1 0.096

A9 97.8 0.128 85.0 0.116

A10 91.0 0.098 92.7 0.109

A11 88.4 0.104 97.4 0.129

A12 86.7 0.095 91.0 0.105

Mean 91.8 90.0
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The rogue device ROC curves show a different result than the authorized ROC

curves in that the RRR, is based on the BGD access decision of TV R > 0.9 and

RAR < 0.1. The results for Config #1, is lower than Config #2 at RRR = 77% and

RRR = 83.3%, respectively. These results provide additional rogue device evidence

for the validation of the CB-DNA approach.
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Figure 4.16. Config #1 and Config #2 validation at LP ≈ 2 m of rogue device ID
verification ROC curves for Perm #29 in Table 3.3 at SNR = 20 dB using a Euclidean
distance measure of similarity. Relative to Binary Grant/Deny (BGD) network access
decisions Config #1 rogue device R3 rejection is RRR = 77% (37/48) and Config #2
RRR = 83.3% (40/48) for TV R > 0.9 and RAR < 0.1 criteria.
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The BbB results presented in Figure 4.17 and Table 4.17 again show that the only

confusion for rogue access is between manufacturer devices M1 and M3.
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Figure 4.17. Config #1 and Config #2 validation at LP ≈ 2 m of CB-DNA Euclidean
distance test statistics for Perm #29 rogue devices at SNR = 20 dB. Solid horizontal
lines are device dependent tV (d) thresholds corresponding to ROC EER in Figure 4.14.
Rogue device (R3) verification test statistics with blue circles denote a rogue device
being correctly denied access and red X’s denote an incorrectly granted access decision
for NTst = 6, 000 BbB testing fingerprints, with rogue device R3 presenting a false ID
for each authorized device (R3:A1–R3:A12).

The individual BbB test statistic for Config #1 and Config #2 for rogue devices

is in Figure 4.17 with overall BbB RRR percentage results and Tv(d) threshold values

corresponding the EER in Figure 4.14, which can be found in Table 4.17.
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Table 4.17. CB-DNA Config #1 and Config #2 with LP = 2 m Device Dependent
TV (d) Threshold and RRR Values for Perm #29 at SNR = 20 dB Corresponding to
Figure 4.14 with Bold Entries Denoting Better Performance. Device Dependent tV (d)
Thresholds Corresponding to ROC EER in Figure 4.14.

Config #1 Config #2

(Rogue : Claimed) RRR TV (d) RRR TV (d)

R3:A1 42.0 0.096 45.7 0.103

R3:A2 79.9 0.100 90.2 0.105

R3:A3 14.7 0.091 45.5 0.092

R3:A4 100 0.104 100 0.132

R3:A5 100 0.148 100 0.172

R3:A6 100 0.106 100 0.141

R3:A7 67.1 0.090 50.1 0.097

R3:A8 52.4 0.090 41.6 0.096

R3:A9 96.8 0.128 24.3 0.116

R3:A10 100 0.098 100 0.109

R3:A11 100 0.104 100 0.129

R3:A12 100 0.095 100 0.105

Mean 79.4 74.8

The general conclusions for AWGN show that the experimental LC = 100 m

assessment were not consistent with the theoretical assessment when using the same

receiver and cable at different LP values; however, the experimental assessment was

consistent with the theoretical assessment at the same LP ≈ 2 m but utilizing different

receivers and cables. The results for Config #2 were generally validated by the results

from Config #1 at LP ≈ 2 m.
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V. Summary and Conclusions

This chapter provides the summary and conclusions for the main research ele-

ments, results, as well as topic areas of focus for future research. Section 5.1.1 summa-

rizes the Single Slope (SSLP) and Constellation Based (CB) symbol estimation pro-

cesses. Device Classification as a 1 vs. M “Looks Most Like?” assessment, and Device

ID Verification as a “Looks How Much Like?” assessment for authenticating bit-level

credentials are addressed for Radio Frequency-Distinct Native Attribute (RF-DNA)

and Constellation Based-Distinct Native Attribute (CB-DNA) Fingerprinting pro-

cesses. Both fingerprinting processes were investigated over a range of Signal-to-Noise

Ratio SNR values utilizing 16 devices from four manufacturers (DLink (M1), Intel

(M2), TRENDnET (M3), and StarTech (M4)) with four devices from each manu-

facturer. The adopted RF-DNA process is covered in Section 5.1.2. Section 5.1.3

concludes the newly developed CB-DNA Fingerprinting process, and the impact of

two process enhancements for Constellation Point Accumulation (CPA) and Projec-

tion Point Averaging (PPA) follows in Section 5.1.4. The summary of the comparison

between the two approaches is provided in Section 5.1.5 prior to finishing with relevant

future work in Section 5.2.

5.1 Research Summary

Cyber security threats are on the top 10 list of concerns for many security-minded

enterprises as indicated by: 1) a 2014 survey of Fortune 1,000 companies which listed

cyber as the number one concern during the previous five years [55], 2) the American

Security Project considering cyber as its number two threat in 2015 [30], and 3) the

United States Intelligence Office listing cyber as its number three concern [3].

Some of these same cyber security threats are also of concern within the Indus-
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trial Control Systems (ICS) enterprise. One of the most concerning elements of these

threats involves Supervisory Control and Data Acquisition (SCADA) and Process

Control System (PCS) implementations that are migrating away from legacy Infor-

mation Technology (IT) architectures to more modern Internet Protocol (IP)-based

connections [29]. Modern IP-based connections (e.g., Modbus/TCP, Ethernet/IP

and DNP3) are being used to provide critical communications to/from control de-

vices [7,61] and security vulnerabilities remain a concern of those connections. Com-

mon ICS vulnerabilities include critical platforms being inadequately protected which

allow nonessential personnel direct access to equipment, as well as having open access

to wireless and wired ports in common work areas [46,58]. Many protocols and archi-

tectures built for ICS applications were designed without security measure concerns

and include no means for verifying the authenticity of remote users or devices [46,61].

These vulnerabilities make it easy for potential attackers to easily gain ICS network

access and exploit hardware, operating systems, and/or executables [46].

Some of the ICS network security and control vulnerabilities can be addressed us-

ing the CB-DNA Fingerprinting method demonstrated under this research, with the

envisioned implementation being used to augment bit-level mechanisms. CB-DNA

Fingerprinting can also be used: 1) by asset owners to support ICS asset manage-

ment by classifying devices, components, and performing sensor Identification (ID),

2) by compliance personnel to support ICS security audits through verifying device,

component, and/or sensor status (unchanged or changed accidentally, intentionally,

or maliciously), and 3) for post-incident event ICS triage to assess device, component,

and/or sensor status to help determine if the cause of the incident is an incidental

failure, intentional rogue activity, etc.
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5.1.1 Symbol Estimation.

As developed under this research and documented in [10, 11], the technique for

passive collection and exploitation of unintentional Ethernet cable emissions is effec-

tive and advances the body of knowledge on Side-Channel Analysis (SCA). Previous

wired responses that were considered for SCA used signals that were extracted from

field phone lines [24], RS-232 cables [56], power lines [21], and Ethernet cables [27,28];

these prior works focused on 1) monitor video reconstruction, 2) keystroke recogni-

tion, and 3) data extraction, versus communication symbol estimation as done under

this research. The SSLP symbol estimation technique developed herein [10], uses

unintentional emissions, and enables subsequent development of the CB symbol esti-

mation process [11]. The resultant CB symbol estimation method not only provides

a reliable, alternate method to perform symbol estimation, but the corresponding

symbol constellation provides the basis for generating unique CB device fingerprints

and development of the CB-DNA Fingerprinting approach.

The resultant Bit Error Rate (BER) for the two methods is BER = 4.28x10−7 and

BER = 7.46x10−7 for SSLP and CB, respectively. These BERs are approximately

the same and sufficient for Ethernet operation, as well as providing confidence in the

fingerprint generation from the projected non-conventional constellations developed

in this research.

5.1.2 RF-DNA Fingerprinting.

This work successfully implemented the RF-DNA approach in [17, 50] and the

wired Ethernet results here are consistent with prior related wireless results in [31,

33, 51, 73, 74]. Results include RF-DNA Cross-Model Discrimination (CMD), where

different manufactures were easily discernible with %C = 91.4% at SNR = 12 dB

and %C = 99.7% at SNR = 30 dB. Like-Model Discrimination (LMD) was generally
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poorer than other device discrimination results [48, 50] implementing the RF-DNA

approach with results, here, being %C = 67.6% at SNR = 26 dB.

Variation in standards between wired and wireless signaling characteristics, and

many devices here share similar LAN transformer markings provide a couple of rea-

sons for RF-DNAs generally poorer performance in LMD. Furthermore, the derivative

effects of the probe on the transmitted burst can also hide some potential discrimi-

nating evidence in the preamble.

The RF-DNA device ID verification performance is also limited by the same effects

that limit its classification performance and also results in generally poorer verification

performance when comparing previously related work [47,50].

5.1.3 CB-DNA Fingerprinting.

This work successfully collected and analyzed wired Ethernet emissions for the

purpose of creating a non-conventional constellation in support of symbol estima-

tion of cable emissions and device discrimination utilizing the developed CB-DNA

approach herein. CB-DNA discrimination performance was investigated using two

configurations: 1) Config #1 (oscope #1, cable #1 of length LC = 8 m), and 2) Con-

fig #2 (oscope #2, cable #2 of length LC = 100 m) where Config #2 was used to

validate the CB-DNA results from Config #1 at LP ≈ 2 m.

For experimental Config #1, CB-DNA CMD Fingerprinting benefits considerably

with the introduction of subcluster DNA features. Improvement across the range of

SNR considered includes an approximate: 1) 5% to 8% increase in %C, and 2) 5 to 19

dB of “gain,” measured as the reduction in required SNR relative to what is required

for aggregate features to achieve the same %C.

Historically, RF-DNA LMD serial number discrimination has been most challeng-

ing. Relative to best case RF-DNA performance, CB-DNA is clearly superior and
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provides 1) nearly 22% of %C improvement at collected SNR=16 dB, and 2) 9 dB

or more “gain” for %C ≥ 70, where gain is the reduction in SNR relative to what is

required by RF-DNA to achieve the same %C.

These results were revalidated by processing additional collections for CB-DNA

with experimental Config #2, where similar results were achieved at a probe location

LP = 2 m from the transmitting Device Under Test (DUT). The sensitivity analysis

conducted at LP = 98 m showed improved performance across all SNR which is

believed to be a result of fine burst alignment variations. Both configurations showed

that the misclassification error for CMD occurred between DLink (M1) and TREND-

nET (M3) devices near 100% of the time. The misclassification error appears to be

directly tied to the fact that both manufacturers use the same LAN transformer [12].

For LMD there was some obvious confusion within a manufacturing group. However,

any misclassification outside of a device’s own manufacturer only occurred between

DLink (M1) and TRENDnET (M3).

The like-model verification results provide adequate Rogue Reject Rate (RRR)

and True Verification Rate (TV R) for network security implementation. The like-

model verification results for CB-DNA utilizing the Binary Grant/Deny (BGD) de-

cision are 65% < RRR < 86% at SNR = 20 dB and 25% < TV R ≤ 100%.

The Burst-by-Burst (BbB) metric results at values of 81% < RRR < 93% and

88% < TV R < 92% at SNR = 20 dB are typically higher than BGD. The com-

mon LAN transformer also affects verification in much the same way as classification

for manufacturers DLink (M1) and TRENDnET (M3). It was concluded that all

network access attempts outside of a manufacturing group that resulted in Rogue

Accepts (RA) are only between DLink (M1) and TRENDnET (M3). This suggests

that LAN transformer RF characteristics influences fingerprint features and impact

the ability to perform Ethernet card ID Verification across manufacturers.
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Prior work that performs CB device discrimination primarily relies on symbol

estimation errors to generate device signatures (i.e., fingerprints) [6, 8, 19, 25, 35].

Conducting a direct comparison of results between these prior works and the current

research are difficult for multiple reasons: 1) incomplete methodologies, 2) terminol-

ogy differences, 3) no SNR variations, 4) discrimination techniques variances, and

5) different devices. However, CB-DNA generally provides improved TV R = 95%

relative to [6] which presents a TV R ≈ 90%. Another metric used by [6, 35] is accu-

racy, which is not defined in either document, but is reported as accuracy ≈ 99% in

both works. CB-DNA provides similar results by achieving accuracy = 97%.

One last method for comparison is a correlation-based approach [27,28] to exploit

10BASE-T Ethernet preambles and is most closely related to the research presented

herein. The work in [27, 28] provides accuracy results over multiple methods that

range from 90% < accuarcy < 99%. The CB-DNA approach developed in this

research provides consistent results ranging from 90% < accuarcy < 97%. Benefits

of the CB-DNA method herein include: 1) only requiring external cable access and

not individual twisted wire pairs inside the cable, 2) using sample rates that can be

4 to 10 times lower, and 3) operating at lower SNR while still achieving desirable

Authorized Accept Rate (AAR) and RRR.

5.1.3.1 Conditional Constellation Features.

This research introduces conditional constellation features as a means to exploit

additional information contained in aggregate CB non-conventional constellation clus-

ters, i.e., the two projected clusters representing Binary 1 and one Binary 0 transmis-

sions. Conditional assignment of symbol projections to multiple subclusters forming

the aggregate clusters was introduced here using a sequence of three consecutive sym-

bols (bits), including the concatenation of 1) the prior estimated bit value, 2) the
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current bit being assigned, and 3) the subsequent estimated bit value; a total of four

possible prior/subsequent estimated bit combinations and four subclusters per binary

aggregate cluster. None of the prior related RF-DNA or CB-DNA works address fin-

gerprinting devices using conditional symbol features. CB-DNA Fingerprinting using

conditional subcluster to create dependent features proved to be very effective and

improved %C by 5% (CMD) and 25% (LMD) relative to using features based only

on binary aggregate clusters. The performance increase of %Ci = 25% for LMD

provides evidence that the conditional subcluster features helped alleviate confusion

of DLink (M1) and TRENDnET (M3) devices which share a common LAN trans-

former. Providing further evidence is when aggregate clusters and subclusters are

combined for LMD, the performance increase is only %Ci < 2% relative to just sub-

cluster performance and is within the CI = 95% confidence interval. Even though

the aggregate subclusters do provide decent classification results, the true power of

the CB-DNA technique lies within the subclusters and the generation of dependent

features introduced in this research.

The novel discovery of the dependent features generated from conditional subclus-

ters allows the CB-DNA technique the ability to achieve performance for LMD that

was previously only achievable when performing CMD.

5.1.4 CPA and PPA Enhancements.

Two types of performance enhancements were considered, including: 1) CPA

where projected constellation points were accumulated for a specific number of bursts

prior to fingerprint feature generation, and 2) PPA where fingerprints projections in

the MDA/ML Fisher space are averaged prior to test statistic generation. CPA is

a new method developed under this research for CB-DNA and not implementable

in RF-DNA. PPA was previously considered for use in the Air Force Institute of
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Technology (AFIT) RFINT program.

The utilization of CPA method for CB-DNA provides a Rogue rejection perfor-

mance increase of RRRi = 19.7% for BbB and RRRi = 42.5% for BGD decisions rel-

ative to no CPA. The PPA method also experiences improvement in Rogue rejection

performance results with an increase of RRRi = 23.8% for BbB and RRRi = 52.9%

for BGD decisions relative to no PPA. The highest increase in Rogue rejection per-

formance occurs when both techniques were combined resulting in an increase of

RRRi = 33.3% for BbB and RRRi = 82.9% for BGD decisions relative to no CPA

and no PPA. The results for combined CPA and PPA enhancements show an increase

in rogue rejection to RRR ≈ 98% between DLink (M1) and TRENDnET (M3) de-

vices. It is evident that both enhancements helped alleviate confusion between DLink

(M1) and TRENDnET (M3) devices due to their common LAN transformers. The

increased ID Verification performance gains by CPA and PPA provide the potential

for a more stringent device verification threshold.

5.1.5 RF-DNA vs. CB-DNA.

This work is the only known work to consider a direct comparison of RF-DNA

and CB-DNA methods using identical collected emissions. A benefit of performing

comparative device discrimination assessments using identical collected emissions is

that it enables a direct comparison between approaches. Comparison of results for

two techniques based on different emissions, collected with different hardware config-

urations and equipment, can induce potential biases and errantly sway conclusions.

The RF-DNA performance used here for unintentional Ethernet emissions are con-

sistent with prior works [31,33,51,73,74] for other signals and show that LMD is more

challenging than CMD. LMD was also more challenging than CMD for CB-DNA,

however CB-DNA managed to achieve the %C > 90% benchmark highlighting its
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superior classification ability for this type of response. Device ID Verification results

were more similar between the two approaches. It is believed that the RF-DNA

approach had an advantage over CB-DNA because misalignment affects NR = 1

subregion and consequently affects NFeat = 9 features. The effect of one projected

symbol error for CB-DNA fingerprinting only affects at most NCR = 3 subcluster

regions, and the NSym = 80+ symbols within each subcluster help to mitigate the

misalignment effects. No one feature is based solely on the misaligned region as it

is with RF-DNA. Evaluating the amount of the advantage RF-DNA experiences

for this data set would require identifying the most relevant features for classifica-

tion which Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML) is not

capable of doing.

CB-DNA is more applicable to an operational transition [50] due to the smaller

feature set required for better performance. This assessment is based on the per-

formance of both techniques and the number of features needed to achieve their

respective performance (CB-DNA, Nfeats = 112 vs. RF-DNA, Nfeats = 720).

5.2 Future Research Topic Areas

This section outlines potential future work that could be accomplished either

as a natural progression for extending CB-DNA Fingerprinting applicability or to

addresses specific peculiarities discovered during development and warranting further

consideration.

5.2.1 Conventional Constellation CB-DNA Fingerprinting.

The collected emissions and received constellation space used here to develop

and demonstrate conditional CB-DNA Fingerprinting were not based on a conven-

tional communication signaling constellation. However, this does not limit conditional
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CB-DNA applicability. The natural progression of the research is to consider conven-

tional higher-order constellations such as Phase Shift Keying (PSK), Phase Amplitude

Modulation (PAM), and Quadrature Amplitude Modulation (QAM). There is com-

munity interest in pursuing this extension, as the results would enable more direct

comparison with previous CB device discrimination work in [6, 8, 19, 25, 35], which

did not utilize conditional features. The additional work could also consider an al-

ternative projection space for the higher-order modulations such that were done here

for the non-conventional binary constellation using waveform slope in/near symbol

transition boundaries.

5.2.2 Probe Placement Analysis.

Collection probe placement along the Ethernet cable was done entirely through

oscilloscope observations, with an “acceptable” location being one that produced a

near-maximum amplitude response. It was experimentally observed that varying the

probe orientation (linear translation and rotation) along the cable affected collected

SNR levels and that pressure variation impacted the signal responses, as well. The

effects of these variations on CB-DNA Fingerprinting performance requires further

study and a non-visual approach to probe placement should be considered.

5.2.3 Ethernet Traffic Load Effects.

Only one of four Twisted Wire Pair (TWP) in the Ethernet cable were active

to support DUT operation for this research. This benign environment was sufficient

for initial proof-of-concept demonstration. Additional cable traffic loading should be

considered for future studies. The cross-TWP interference effects in a more malign

environment with higher traffic loads is expected to have some effect on both BER and

CB-DNA device discrimination performance. The degree of degradation in a malign
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environment remains to be determined. Further study is warranted to characterize

performance for higher traffic rates occurring across multiple TWP.

5.2.4 Bit Error Rate (BER) Effects.

The effects of BER on conditional constellation projection assignment were deemed

insignificant given that there was, on average, only one bit error occurring for every

NF ≈ 500 processed fingerprints. As noted in Section 5.2.3, an increase in Ethernet

traffic on other TWP is expected to increase BER and likely result in more projected

symbols being incorrectly assigned to constellation subregions. The resultant effect

may be similar to increasing SNR which results in degraded device discrimination

performance. A follow-on study is suggested to assess the impact of increasing BER

on conditional CB-DNA Fingerprinting performance.

5.2.5 Expansion to 100BASE-T.

The CB-DNA Fingerprinting approach was developed herein using 10BASE-T

Ethernet cable emissions. Potential applicability to higher Ethernet speeds, such as

100BASE-T, is of interest. The lower speed of 10BASE-T is not a limiting factor

for ICS applications given that a majority of ICS implementations are/will be using

10BASAE-T [7,61]. However, support for higher speeds is essential, and the CB-DNA

approach should be expanded to address higher Ethernet speeds. This expansion is

similar to what has been historically done for RF-DNA Fingerprinting using multiple

wireless protocols, e.g., Zigbee [48], WiMAX [50], and WiFi [37].

5.2.6 Alternate Classifiers.

The MDA/ML classification technique used here has an inherent limitation of

not being able to discern which of the input features are most relevant to the final
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classification decision [50]. It is recommended that additional CB-DNA Fingerprint-

ing demonstrations be conducted using an alternate classifier to identify the most

relevant features. This resultant feature relevance ranking can then be used to se-

lect the best, reduced dimensional, subset of features and enhance operational tran-

sition opportunity. Two other potential classifiers that support post-classification

feature relevance ranking are Generalized Relevance Learning Vector Quantized-

Improved (GRLVQI) [50] and Support Vector Machine (SVM) [6]. Even if these

classifiers do not produce adequate classification performance, their relevance rank-

ing will be useful for selecting reduced dimensional subsets for MDA/ML processing.
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