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ABSTRACT

Silicon quantum dots for quantum information processing

Report Title

This thesis focuses on the development and demonstration of silicon metal-oxide-semiconductor (MOS) quantum 
dots (QDs) for spinbased quantum information processing. Firstly, by measuring the transport current through a MOS 
quantum dot, its multi-electron spin state was determined as the electron occupancy was reduced from twenty-seven 
electrons down to the single-electron limit. In particular,

kinks observed in the electron addition energy as a function of magnetic field demonstrated that a valley-orbit excited 
state existed 100 �eV above the ground state. 

Secondly, by incorporating a silicon single-electron transistor (SET) charge sensor next to a quantum dot, the 
electron occupancy of the dot was probed via the sensor output signal. By applying a digitally-controlled dynamic 
feedback loop to the charge sensor, robust detection of the QD charge state was achieved, even in the presence of 
charge drifts and random charge upset events. Next, the excited states of a silicon MOS quantum dot were studied in 
detail. The electron occupancy and excited-state energy levels were detected using a SET charge sensor, with the aid 
of pulsed-voltage spectroscopy. The energy of the  first orbital excited state was found to decrease rapidly as the 
electron occupancy increased from N = 1 to 4. By monitoring the sequential spin filling of the dot a valley splitting of �
230 �eV was extracted, which was found to be independent of electron number.

Finally, by performing single-shot spin readout on a silicon MOS quantum dot, spin lifetimes were extracted for 
different electron occupancies and valley splitting configurations, with a maximum one-electron spin lifetime 
exceeding 2 seconds. We also demonstrated the ability to tune the valley splitting energy via electrostatic gate 
control, with a splitting that increased linearly with applied electric field over

the range 0.3 - 0.8 meV. The spin relaxation rates were found to be highly dependent on the valley splitting energy, 
with a dramatic rate enhancement (or hot-spot) when the Zeeman and valley splittings coincided,

a process that had not previously been anticipated for silicon quantum dots.
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Abstract

This thesis focuses on the development and demonstration of sili-

con metal-oxide-semiconductor (MOS) quantum dots (QDs) for spin-

based quantum information processing. Firstly, by measuring the

transport current through a MOS quantum dot, its multi-electron

spin state was determined as the electron occupancy was reduced

from twenty-seven electrons down to the single-electron limit. In par-

ticular, kinks observed in the electron addition energy as a function of

magnetic field demonstrated that a valley-orbit excited state existed

100 µeV above the ground state.

Secondly, by incorporating a silicon single-electron transistor (SET)

charge sensor next to a quantum dot, the electron occupancy of the

dot was probed via the sensor output signal. By applying a digitally-

controlled dynamic feedback loop to the charge sensor, robust detec-

tion of the QD charge state was achieved, even in the presence of

charge drifts and random charge upset events.

Next, the excited states of a silicon MOS quantum dot were studied in

detail. The electron occupancy and excited-state energy levels were

detected using a SET charge sensor, with the aid of pulsed-voltage

spectroscopy. The energy of the first orbital excited state was found
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to decrease rapidly as the electron occupancy increased from N = 1 to

4. By monitoring the sequential spin filling of the dot a valley splitting

of ∼230 µeV was extracted, which was found to be independent of

electron number.

Finally, by performing single-shot spin readout on a silicon MOS quan-

tum dot, spin lifetimes were extracted for different electron occupan-

cies and valley splitting configurations, with a maximum one-electron

spin lifetime exceeding 2 seconds. We also demonstrated the abil-

ity to tune the valley splitting energy via electrostatic gate control,

with a splitting that increased linearly with applied electric field over

the range 0.3 - 0.8 meV. The spin relaxation rates were found to be

highly dependent on the valley splitting energy, with a dramatic rate

enhancement (or hot-spot) when the Zeeman and valley splittings co-

incided, a process that had not previously been anticipated for silicon

quantum dots.
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Chapter 1

Introduction

‘The journey of a thousand miles begins with a single step.’

Lao Tzu

1
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1. INTRODUCTION

1.1 Preamble

Silicon is one of the most widely used materials in our digital society. Silicon

semiconductor industries offer us powerful computation systems, such as personal

computers, mobile phones and electronic instruments. One of the key technologies

used for their production these devices is the silicon metal-oxide-semiconductor

(MOS) device structure. This technology has been growing exponentially in terms

of speed, cost and fields of application. To maintain this growth, MOS transistors

are becoming smaller, enabling them to be packed into one computer chip. But

there are physical limitations to their size, such as the size of the atom; more

importantly, there are limitations imposed by quantum physics in the nanoscale

world.

1.2 Quantum Computers

Integrated circuit technologies began to boom in the mid-nineteenth century. In

1965, Gorden E Moore, the co-founder of Intel, predicted that the number of

transistors on an integrated chip would double every 18 months [1]. This trend,

following ‘Moore’s law’, has continued up until today, when a modern computers

central processing unit (CPU) consists of billions of transistors, and the number

keeps growing. However, exponential growth cannot continue forever because the

transistors cannot be shrunk infinitely small.

When they are only nanometers (nm) in size, particles do not behave like

‘normal’objects because quantum mechanical effects such as particle-wave dual-

ity, tunnelling and superpositions occur. While quantum mechanics may impose

barriers to making the transistors even smaller, devices at these scales can also

2

28
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be used in a new type of computation system in which the quantum states of

elementary particles can store and process information. In such new quantum

computation systems, the equivalent of a bit is a quantum bit (or qubit). Be-

cause qubits can exist in a quantum superposition of a logic ‘0’and logic ‘1’state

simultaneously, it is possible to store 2N integers in an N -qubit register, for ex-

ceeding the storage of classical computers.

During the 1980s, Richard Feynman said, ‘Nature isn’t classical ... and if you

want to make a simulation of Nature, you’d better make it quantum mechanical,

and by golly it’s a wonderful problem, because it doesn’t look so easy.’ [2]. At

that time, the field of quantum computation an interesting concept in theoretical

physics, but it was difficult to implement such a quantum computer with the

technologies available.

In the 1990s, several quantum computation algorithms were proposed to solve

realistic problems, including Shor’s factoring algorithm to factorise large numbers

[3], and Grover’s search algorithm to perform fast database searching [4]. Both

algorithms have been proven to solve problems much more efficiently than classical

computers. For example, by performing Shor’s factoring algorithm on a large-

scale quantum computer, encryptions relying on the product of two large prime

numbers can be decrypted in polynomial time. Where classical computers may

take centuries to factorise these huge numbers, a quantum computer could solve

the problem within seconds.

Over the past decades, many different architectures and physical systems have

been investigated for the realisation of a large-scale quantum computer. These

systems include ion traps [5], photons [6], charge states in superconductors [7],

charge [8, 9] and spin states [10, 11] in quantum dots (QDs), flux in superconduc-

3
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1. INTRODUCTION

tors [12] and many more. In 1998, Bruce Kane proposed a silicon donor-based

structure to realise a quantum computer [13]. This proposal can be adapted

to the current silicon semiconductor industry, where, in terms of scalability, the

silicon integrated circuit has clear advantages over other material platforms.

In this thesis, we follow the silicon integrated circuit architecture path, and

utilise previous work on silicon MOS QDs [14, 15]. We fabricate and perform

experiments on this type of QD in pursuit of the holy grail of a quantum computer.

For the first time, we demonstrate the ability to extract the spin filling of a

silicon MOS QD, and successfully integrate a nearby single-electron transistor.

We reveal the quantum state composition of a silicon QD, where spin, valley and

orbital states can be identified. Using a single-shot spin-readout experiment and

an ability to control the valley-splitting energy, we discover a new mechanism to

demonstrate that spin lifetimes are perturbed by valley states in silicon.

1.3 Thesis Outline

The thesis is divided into eight chapters.

Chapter 1 provides a brief introduction to our motivation for building a quan-

tum computer.

Chapter 2 covers background knowledge and similar work carried out previ-

ously. We demonstrate how the spin of an electron can perform qubit operations,

and the issues involved. A summary of different qubit architectures is presented

for comparison with our silicon MOS structure. The basic physics properties of

silicon, and the advantages of using this material to realise a spin-based qubit,

4
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are discussed. Common experimental methods of operating and studying a QD

are listed, as are the fundamentals of the main chapters.

Chapter 3 provides an overview of the fabrication and experimental methods.

A list of equipment and fabrication recipes are presented, and details of how

we pattern our silicon MOS QD device are specified. The basic techniques and

instruments for performing experiments under cryogenic conditions are also given.

Chapter 4 demonstrates a low-disorder Si MOS QD containing a tunable num-

ber of electrons from zero to 27. The observed evolution of addition energies with

parallel magnetic field reveals the spin filling of electrons into valley-orbit states.

We find a splitting of 0.10 meV between the ground and first excited states, con-

sistent with theory and placing a lower bound on the valley splitting. Our results

prove optimism for the realisation of spin qubits based on silicon QDs in the near

future.

Chapter 5 reports charge-sensing measurements of a silicon MOS QD using

a single-electron transistor as a charge sensor with dynamic feedback control.

Using digitally controlled feedback, the sensor exhibits sensitive and robust de-

tection of the charge state of the QD, even in the presence of charge drifts and

random charge upset events. The sensor enables the occupancy of the QD to be

probed down to the single-electron level.

Chapter 6 reports studies of the energy spectra of a few-electron silicon MOS QD

using dynamic charge sensing and pulsed-voltage spectroscopy. The occupancy of

5
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the QD is probed down to the single-electron level using a nearby single-electron

transistor as a charge sensor. The energy of the first orbital excited state is found

to decrease rapidly as the electron occupancy increases from N = 1 to 4. By

monitoring the sequential spin-filling of the dot, we extract a valley-splitting of

∼230 µeV, irrespective of electron number. This indicates that favourable condi-

tions for qubit operation are in place in the few-electron regime.

Chapter 7 demonstrates that valley separation can be accurately tuned via

electrostatic gate control in a MOS QD, providing splittings spanning 0.3 - 0.8

meV. The splitting varies linearly with applied electric field, with a ratio in agree-

ment with atomistic tight-binding predictions. We demonstrate single-shot spin

readout and measure the spin relaxation for different valley configurations and

dot occupancies, finding one-electron lifetimes exceeding 2 seconds. Spin relax-

ation occurs via phonon emission due to spin-orbit coupling between the valley

states, a process not previously anticipated for silicon QDs.

Chapter 8 concludes the thesis by revising the key breakthroughs within the ex-

perimental chapters. Engineering a silicon MOS QD, and reading and analysing

the spin states, has brought us closer to realising a qubit. We discuss the future

work required to reach this goal.

6

32



Chapter 2

Background Knowledge and

Literature Review

This chapter covers background knowledge and related work carried out previously,

including how the spin of an electron can perform qubit operations, and the issues

involved. A summary of different qubit architectures is presented for comparison with

our silicon MOS structure. The basic physic properties of silicon are discussed, as

well as the advantages of using this material to realise a spin-based qubit. Common

experimental methods of operating and studying a QD are listed, as are the fundamental

concepts used in the main experimental results chapters.

7
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2. BACKGROUND KNOWLEDGE AND LITERATURE REVIEW

2.1 Spin Qubit Basics

2.1.1 Electron Spin

Spin is the angular momentum carried by elemental particles, which can be vi-

sualised as spinning tops. Spin is a quantised property: each particle has only

a set of available spin eigenstates. A boson, such as a single photon, carries an

integer spin number, either −1, 0 or 1. Fermions, such as electrons, protons

and neutrons can carry a spin number of −1/2 or 1/2. According to the Pauli

exclusion principle, any particle that carries a half-integer spin cannot share the

same quantum state with any other particle, which leads to the key principles of

solid state behaviour. This thesis focuses on the spin properties of electrons in

silicon, in particular the ability of the electron spin to serve as a spin qubit, to

store quantum information.

An electron with spin −1/2 is referred to as ‘spin-down’, while an electron

with spin 1/2 is referred to as ‘spin-up’. These are the eigenstates (the only two

states that are measurable) of the single-electron system. The two spin states

of an electron are degenerate in zero magnetic field (See also Chapter 2.4.5) and

the degeneracy is lifted when a field is applied. By convention, the magnetic

field direction along which the spin aligns is defined to as the ‘z-direction’, Bz.

Unlike for classical information, the electron has only one pure state, although the

quantum state of the electron can be a superposition of spin-up and spin-down,

denoted as:

|ψ〉 = α |↑〉+ β |↓〉 (2.1)

where |α|2 + |β|2 = 1 and α and β are the complex amplitudes of spin-up and

spin-down states respectively.

8
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B

Figure 2.1: Bloch sphere - Bloch sphere representation of the electron spin

state with complex amplitudes of spin-up |↑〉 and spin-down |↓〉, where |ψ〉 =

cos θ2 |↑〉+ eiφ sin θ
2 |↓〉.

9
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2. BACKGROUND KNOWLEDGE AND LITERATURE REVIEW

To visualise the spin state, the Bloch sphere is a spherical surface coordinate

system that represents the spin with any complex value of α and β. This then

transforms the state into:

|ψ〉 = cos
θ

2
|↑〉+ eiφ sin

θ

2
|↓〉 (2.2)

Since the global phase does not affect the quantum state, the entire wavefunction

can be multiplied by an overall phase factor (a complex number with unity mag-

nitude). Figure 2.1 displays the Bloch sphere that represents the spin direction

in three-dimensional (3D) space. When θ = 0, π, this gives |ψ〉 = |↑〉 , |↓〉 which

aligns and anti-aligns the spin with the z-direction. To have the spin pointing

in the x- or y-direction, θ = π
2

and φ = 0, π
2

is required, and the spin states are

|ψ〉 = 1√
2
(|↑〉+|↓〉), 1√

2
(|↑〉+i |↓〉) respectively. From the Bloch sphere diagram, we

can easily see where the spin direction is pointing with two complex coefficients,

which are technically generated by two basis states (spin-up and spin-down).

2.1.2 Spin Readout

To operate the electron-spin two-level system as a spin qubit, the ability to read

out the spin state is essential. As mentioned previously, the measurable states

of the system can only be the eigenstates of the Hamiltonian for the system,

namely the pure spin-up and spin-down states,|ψ〉 = |↑〉 , |↓〉 When a readout

process occurs, an electron carrying a mixed-spin state, |ψ〉 = α |↑〉 + β |↓〉 will

be projected onto either |↑〉 or |↓〉, with probability |α|2 and |β|2 respectively.

In Section 7.3, we show how an individual electron spin in a silicon QD can

be read out using the spin-charge conversion method.

10
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2.1.3 Spin Manipulation

Spin manipulation is the basic process by which computations can be performed

on spin qubit systems. Such manipulations include the rotation of a single spin

about any axis, which can realise a quantum-NOT (or qNOT) gate, and also

multi-qubit operations such as the CNOT (controlled-NOT) gate, the SWAP

gate, and other universal quantum gates. A qNOT gate simply rotates the spin-

up/down state to the opposite state. This can be written in matrix form as:

X =

[
0 1
1 0

]
(2.3)

where X is the operator that rotates the spin around the x-axis by 180◦. Ex-

perimentally, electron spin can be manipulated using coherent controls such as

ESR (electron-spin resonance) for single spins, and gate-controlled exchange cou-

pling for pairs of spins. The spin states remain in superposition states or en-

tangled states until the states are read out or they decay into a lower energy

state. Hence, during a series of spin manipulations, the actual states cannot be

observed before the computation is completed. In this thesis, the manipulation

of electron spins is not presented, but workers in this field have demonstrated

semiconductor-based electron-spin qubits in a variety of systems over the past

few years [11, 16, 17, 18, 19, 20].

2.1.4 Spin Lifetime

Despite having readable and controllable qubits, the spin states are coupled to

the environment, which is able to dephase the states. Several key dephasing

mechanisms are present for a semiconductor-based spin qubit, including charge

11
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noise, phonon and spin bath.

|↑〉

|↓〉

T1

|↑〉

|↓〉

T2

(a) (b)

Figure 2.2: Spin lifetime and spin decoherence - (a) Spin lifetime, T1, the

time taken for a spin to relax to a ground state. (b) Decoherence time, T2, the

time taken for the spin to dephase around the spin axis with 2π.

The spin lifetime, denoted T1, is the time an excited spin state takes to relax

to the ground state, see Figure 2.2 (a). T1 can be determined from repeated

spin readout events to extract the decay rate of the excited spin by fitting to the

equation:

S1(t) = Sinit exp(−t/T1) (2.4)

12
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where S(t) is the probability of the excited spin state over a waiting time, t, and

Sinit is the excited spin initial probability in the system.

The spin decoherence time, T2, is the time taken for the spin to dephase around

the spin axis. As seen in Figure 2.2 (b), T2 does not change the spin projection on

the spin axis (if T2 << T1), but it destroys most coherent operations, including

ESR and qubit operations, where they are required to rotate the spin without

causing dephasing. T2 is extracted in a similar way to T1, but instead of waiting

for the time t before the readout, a spin-resonance signal is applied during this

time t. The resonance signal rotates the spin around the spin-up and spin-down,

until the spin is fully dephased across the Bloch sphere and has a final excited

spin probability of Sfin:

S2(t) = (Sinit − Sfin) cos(rt) exp(−t/T2) + Sfin (2.5)

where cos(rt) represents the spin-resonance-driven oscillation. By collecting the

envelope of S2(t), the T2 can be extracted by fitting the decay rate. Generally, T2

is much shorter than T1, and there is a boundary of T2 ≤ 2T1 as the time taken

to reach the ground state cannot be faster than its dephasing speed. This thesis

focuses on T1 measurements and analysis only.

A pure spin does not couple to an electric field directly; the strongest way for

the electric field to interact with the spin is via spin-orbit coupling (SOC). As long

as an electron possesses an angular momentum within its own orbital, an internal

magnetic field ~m is generated under an electric field, given by ~m = ~E × ~p. This

~m generated by the electron then interacts with its own spin, and causes the spin

to dephase. The two common types of spin-orbit interaction (SOI) are named

‘Rashba’ [21, 22] and ‘Dresselhaus’ [23, 24, 25]. Figure 2.3 shows the difference

13
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)b()a(

px

py

px

py

Figure 2.3: Magnetic field from spin-orbit interaction - The internal mag-

netic field generated by electrons with momentum of px and py, in different types

of spin-orbit interaction (SOI): (a) Rashba SOI, αR(b) Dresselhaus SOI, βD

between (a) Rashba and (b) Dressulhaus SOIs. These types of SOC can exist at

the same time and affect the T1 and T2 of electrons.

Once the spin can couple to an electric field via SOI, electric field fluctu-

ations [26, 27] are able to reduce the electron-spin lifetime and decoherence

time. However, the effect of such an electric field fluctuation is not strong

enough to greatly reduce the spin lifetimes [28], as reported in many experi-

ments [20, 29, 30, 31, 32, 33, 34, 35, 36, 37]. The fluctuation is typically caused

by the gate potential noise or other nearby charge fluctuations around the sys-

tem [38, 39], but the major electric field noise comes from the phonon bath [32].

Phonons can deform the lattice spacing and change the bandgap of the semi-

conductor, creating an electric field fluctuation. In polar crystals like gallium

arsenide (GaAs), phonons can also change the electric field via the piezoelectric

effect. The wavelength of the phonons is another important factor in reducing

spin lifetime: the closer the wavelength is to the QD size, the faster the spin

14
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relaxes through SOC [40, 41, 42].

With the combination of SOC and the Zeeman effect, the typical dependency

of a spin lifetime can be expressed as:

T−1
1 ∝ ∆E5

Z/∆E
4
orb (2.6)

where ∆EZ is the Zeeman splitting energy and ∆Eorb is the orbital energy. In

a QD system with a single valley only, piezoelectric phonons dominate [27, 43, 44].

This dependency has been observed in a GaAs QD [28, 45] and a single-donor

spin qubit in silicon [46]. When the valley degree of freedom in a QD is involved,

an extra ∆E2
Z dependency is predicted due to the Rashba SOC [28, 44, 47]:

T−1
1 ∝ ∆E7

Z/∆E
4
orb (2.7)

However, in Chapter 7, we report that an even more complicated spin-lifetime

mechanism exists, which involves a spin-valley interaction due to SOI, in which

the valley-splitting energy dominates and creates a ‘hot-spot’, where the T1 grows

significantly when ∆EZ ∼ ∆EVS.

2.2 Quantum Dot Structures in Other Material

Systems

QDs are tiny systems confined in all three spatial dimensions, for example, elec-

trons in semiconductors confined via gate-defined electric fields. The idea of using

QDs to implement a spin-based quantum computer was proposed by Daniel Loss

and David DiVincenzo [10]. A significant advantage of using such a system is

that semiconductor technologies offer great scalability for increasing the number

of qubits.
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Several material platforms have been implemented to create reliable QDs for

spin manipulation, with pioneering work done in GaAs/aluminium gallium ar-

senide (AlGaAs) heterostructures. That work has demonstrated reading and

controlling a singlet-triplet qubit [11]. Recently, silicon MOS, silicon/silicon-

germanium (Si/SiGe) heterostructures and silicon nanowire architectures have

also achieved spin manipulation and relevant quantum information processing.

2.2.1 GaAs/AlGaAs Heterostructures

GaAs is a III/V material that provides excellent electron mobility. An operable

QD in GaAs is relatively larger than in silicon as it has a lower effective mass,

and hence the QDs are easier to be confined and have less disorder because of the

lower interface roughness. The direct-band property of GaAs also eliminates the

perturbation from valley states, which makes both the experiment and analysis

simpler compared to indirect-band-gap material.

One of the first GaAs/AlGaAs QDs was fabricated using a vertical island

architecture. The isolated GaAs island can be seen as a QD, while the top and

bottom substrates act as source and drain, see Figure 2.4. The gap between

the dot and the source-drain contacts is formed by AlGaAs, creating isolating

barriers that allow electrons to tunnel in and out of the dot. The charging energy

of such QDs has been studied [48] to confirm that the desired quantum states

have been produced. A comprehensive review of vertical GaAs QDs can be found

in Kouwenhoven et al. [49].

While vertical QDs are less flexible in the fabrication process and gate control,

laterally defined dots in GaAs/AlGaAs allow metallic gates to be patterned, and

offer greater gate tunability and dot confinement. These depletion gates isolate
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the electron 2DEG channels and the QD; they can also control the barrier trans-

parency between the dot and the channels. The ease with which the gates can

be placed onto the device makes it extendable and scalable, including fabricating

multiple dots near each other or integrating quantum point contacts (QPCs) as

charge sensors to count the number of electrons in the dot. Charge sensing has

been demonstrated by detecting electron occupancy in single and multiple QDs

[50, 51, 52, 53, 54, 55].

Figure 2.4: Vertical quantum dot - Schematic of a vertical GaAs/AlGaAs

QD fabricated by Tarucha et al. [48]

GaAs/AlGaAs quantum-coherent experiments have demonstrated the process

of obtaining Rabi oscillations on individually addressed QDs via integrated mi-

cromagnets [56, 57]. This is a significant step towards creating multiple qubits
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on a scalable solid-state platform.

Similar GaAs QDs have also been used to implement charge-based qubits.

Quantum operations on charged-based qubits have been demonstrated by Fuji-

sawa et al. [58].

The pioneer platform for semiconductor-based quantum computation has been

GaAs/AlGaAs heterostructures, and many other architectures have followed the

experiments it has enabled. It is essential to understand these experiments com-

prehensively in order to build future silicon QDs.

2.2.2 Si/SiGe Heterostructures

Si/SiGe heterostructures have similar properties to GaAs/AlGaAs heterostruc-

tures. A significant issue when using III/V materials like GaAs is the hyperfine

interaction between the electron spin and nuclear spins. Silicon is a group IV

material, where its isotope 28Si has zero nuclear spin. Spinless material-based

substrates greatly enhances the coherence of electron spins in the QD, which is

an essential requirement to store quantum information in the spin qubit.

Si/SiGe also offers relatively high electron mobility, approximately one or

two orders of magnitude below GaAs/AlGaAs structures. Similarly to laterally

defined GaAs/AlGaAs structures, gates are used to deplete and create barriers in

the device [59]. Charge sensing and single-electron QDs in Si/SiGe architectures

have been achieved [60, 61]; spin readout, lifetime measurements and coherent

control have also been demonstrated [36, 62, 63, 64].

One drawback is that silicon does not have a direct bandgap, and has six

degenerate band minima in k-space. However, with additional confinement, the

valley degeneracies can be lifted. For [100] or [110] lattice configurations, the
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lowest valley states will be doubly degenerate at the silicon interface.

Experiments have been carried out to measure the valley-splitting energy be-

tween these two lowest valleys [65], and the valley splitting is also calculated to

be less than 1 meV [66]. Goswami et al. showed that the valley splitting is

controllable with lateral confinement and magnetic field [67]. Takashina et al.

demonstrated valley polarisation with large splitting using a top-gate/bottom-

gate structure [68].

2.2.3 Silicon Nanowires

Silicon nanowires can be reproduced with a diameter of only 36 nm using a

controlled-growth technique [69]. The nanowire is confined in two dimensions, al-

lowing a one-dimensional (1D) channel for electrons to flow. A QD can be defined

in a more robust way compared to two-dimensional (2D) laterally defined gated

dots, where only one axis-gate position is required. Transport measurements have

demonstrated Coulomb blockade and spin filling in such dot [70].

While most research is focused on the spin of electrons, Zwanenburg et al.

reported few-hole transport in a silicon nanowire dot and measured its spin-

state [71]. The valence band in silicon has its band minimum centred at the

Γ point; hence, holes are generally considered to have even longer spin lifetimes

than electrons as a result of their single-valley state [72]. For clear observation of

a single charge in nanowire QDs, a short channel length is desired to avoid the

existence of impurities and defects in the wire.
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2.2.4 Carbon Nanotubes

Carbon nanotubes are made by wrapping a plane of graphene, resulting in a

cylindrical carbon nanostructure. Cobden et al. [73] demonstrated shell filling

of electrons and holes. Electron-hole symmetry in carbon nanotubes is evident

because of its high-purity structure. Jarillo-Herrero et al. observed nearly perfect

symmetry [74], along with strong electron-electron interaction.

While carbon nanotubes offer almost perfect 1D channels, positioning the

tubes on the substrate is not trivial. Hence, the scalability of carbon nanotubes

would need to rely on more advanced fabrication techniques.

2.2.5 Graphene

In recent years, graphene monolayer structures have become an area of interest

in semiconductors [75, 76, 77]. Graphene is a conducting material with high

mobility, a special band structure [78], a low nuclear spin and a weak spin-orbit

interaction [79, 80, 81]. This qualifies it as a QD base material. Despite its

superior conductivity property, a few issues need to be solved in order to exploit

it as a spin-based qubit. One major problem is graphene’s band structure: it

does not have a closed bandgap between the conduction and the valence band.

Recent experiments have shown that Coulomb diamonds and relaxation times

can be measured [82] in graphene QDs, via both transport current and integrated

charge detection.
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2.3 Silicon Device Physics

Silicon-based QDs are recognised as a promising system for the implementation

of solid-state quantum computing [14, 19, 36, 63, 83]. While such devices are

appealing because they can be engineered to show long coherence times [84, 85,

86], complications exist for the manipulation of quantum states that arise from

the multi-valley conduction band present in bulk silicon [87]. In fact, valley

degeneracy is typically lifted in nanodevices because of interfacial stress/strain

and electrostatic confinement [88, 89].

Table 2.1 lists some important properties of intrinsic silicon crystal. Properties

labelled with * are the values at room conditions (T = 300 K, P = 1 atm), and

may vary in different conditions.

2.3.1 Silicon Band Structure

A silicon atom has the subshells 3s and 3p in its outer shell, with two electrons

in each subshell. When a collection of silicon atoms are put together, these

subshells begin to overlap with their neighbour atoms, causing the energy levels

to be mixed. Figure 2.5 displays the way in which the energy levels are eventually

separated into two main bands in the silicon crystal. There are 2N energy states

available in the 3s subshell and 6N in the 3p subshell, where N is the total

number of silicon atoms. When the wavefunction of the atoms begins to overlap,

these states become mixed and the energy levels broaden. At one point, the two

subshells’ bands merge into a continuous band that contains 8N states. Finally

the band separates again so that both the top (conduction) and bottom (valence)

bands contain 4N states. The lattice spacing of the silicon crystal finds a stable
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Atomic number 14

Electron configuration 1s22s22p63s23p2

Isotopes 28(92%), 29, 30, 32(unstable)

Atoms per volume* 5.0× 1022 cm−3

Density* 2.328 g cm−3

Crystal structure diamond cubic

Lattice constant* 5.431 Å

Thermal conductivity* 1.5 W cm−1K−1

Melting point* 1687 K

Boiling point* 3538 K

Band gap* 1.12 eV

Conduction band minima 6

Valence band maxima 2

Effective density of states in conduction band 2.8×1019 cm−3

Effective density of states in valence band 1.08×1019 cm−3

Electron mobility* 1500 cm2V−1s−1

Hole mobility* 475 cm2V−1s−1

Electrical resistivity* 2.3×105 Ωcm

Dielectric Constant 11.9

Magnetic ordering diamagnetic

gyromagnetic ratio 2

Table 2.1: Silicon properties.
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5.43 Å Atomic separation

En
er

gy Conduction
Band

Valence
Band

Eg = 1.1eV

3p

3s

6N states
8N states 2N electrons

6N states
2N electrons

Figure 2.5: Energy levels in silicon - Energy band of silicon crystal. An initial

3s and 3p orbitals in a single atom are transformed into a conduction band and

valence band with 4N electrons each when the lattice separation closes.

23

49



2. BACKGROUND KNOWLEDGE AND LITERATURE REVIEW

point at 5.43 Å, where it has 4N states in the valence band (which is completely

filled with electrons) and 4N states in the conduction band (with no electrons

under neutral conditions).

k

E
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Γ15
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Figure 2.6: Band structure of bulk silicon in k-space - Conduction band

minima, EC and valance band maxima, EV, are shown at Γ25 and near X1 point

respectively. Source: Chelikowsky et al. [90]

Silicon is known to be an indirect bandgap material. The conduction band

minima and the valence band maxima do not lie at the same momentum in k-

space, see Figure 2.6. The recombination of electrons and holes requires an extra

momentum, which absorbs (emits) phonons from (into) the silicon crystal. This
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property means that silicon is not an ideal material for light-emitting diodes.
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2.3.2 Silicon-based MOS Devices

By stacking layers of metal, oxide and semiconductor (MOS), a 2D conducting

plane can be created at the oxide-semiconductor interface by varying the metal

potential. MOS technologies are widely used in today’s semiconductor industry.

Silicon MOS field effect transistors (MOSFETs) are also the dominant devices

for building integrated circuits.

EF

EC

EV
V > VT

EF

EC

EV
V = 0

(b)(a)

M O S M O S

Figure 2.7: Band diagram of MOS device - (a) The metal gate potential

is aligned with the Fermi level, with no electrons in the conduction bands (above

EC). (b) When the gate potential exceeds a certain threshold voltage VT, EC near

the interface is pulled below the Fermi level EF and electrons are accumulated in

the conduction band.

Figure 2.7 is a band diagram of a typical MOS device. Assuming the tempera-

ture is 0 K, electrons can only exist above the Fermi level, EF. When the metallic

gate potential is set to 0 and aligned with the Fermi level of the semiconductor,

electrons fill the valence band and no electron can exist in the conduction band,

as shown in Figure 2.7 (a). By applying a positive voltage to the gate, the band

structure near the interface between the oxide and semiconductor is tilted. At a

certain voltage, the conduction band is tilted strongly, until EC is below EF, as
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shown in Figure 2.7 (b). In this situation, the electrons have enough energy to

fill the empty states near the interface, and they can move freely in the x and y

directions, forming a thin conducting layer. The voltage required to accumulate

electrons in the conduction band is called the threshold voltage, VT. The value

of VT depends on the physical conditions of the MOS, including oxide thickness,

oxide quality, trap charges, substrate doping density and work function of the

metallic gate.

The electron-filled conducting layer is often referred to as a ‘2DEG’ (two-

dimensional electron gas). The metal of the MOS device can be patterned to

create different shapes of 2DEG, including small quantum wells. In this thesis, all

structures are MOS devices with aluminium (Al) as the metal, and silicon dioxide

(SiO2) as the oxide. Section 3.1 demonstrates the advantages of such materials

for fabricating artificial QDs using MOS technologies. Similar silicon MOS-based

structures have also been realised using global top and back gates [91, 92, 93].

2.3.3 Conduction-band Valleys in Silicon

A bulk silicon crystal has a six-fold degeneracy in the conduction band, located

at the six X-points in the Brillouin zone (∆ valleys), and a two-fold degeneracy

in the valence band at the Γ point (heavy holes and light holes), see Figure 2.6

and 2.8 (a).

When the silicon crystal is confined in one direction, the degeneracy of the

valleys is lifted. In a typical silicon MOS device, which relies on operating the

2DEG at the interface between the silicon and the oxide, the z-direction valleys

(perpendicular to the interface) are brought down to the Γ point. This creates

two degenerate Γ valley eigenstates that have a lower energy compared to the
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Δ

Figure 2.8: Valley composition in silicon - (a) Six degenerated valleys il-

lustrated in k-space, located on the ∆ axes in all six directions. (b) Along the

z-interface, the two valleys on kz are pushed onto the Γ point, lifting the valley

degeneracy.

original x- and y-direction ∆ valleys, as shown in Figure 2.8 (b). The eigenstates

can be expressed as:

EV+,V- =
1√
2

(kz+ ± eiθkz−) (2.8)

Where θ is the valley phase that can differ in QDs and changes the way how QDs

couple to each other [94, 95].

In a silicon MOS QD in the few-electron regime, electrons fill the two Γ valleys

because the energy is not sufficient to reach the higher valleys, which have energies

around 30 meV above the ground state [66].

With the presence of a vertical electric or magnetic field, the two Γ valleys’

eigenstates can be separated further. This energy difference is caused by the

narrow wavefunction envelope in the z-direction, see Figure 2.14 (b). This energy

is referred to as the valley-splitting energy ∆EVS in a silicon QD.
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2.4 Silicon Quantum Dot Physics

2.4.1 Electron Confinement in a Quantum Dot

Unlike atoms and molecules, which have strong confinement from the nucleus to

trap charges, QDs rely on material boundaries or external electric fields to create

an artificial band level confined in all three spatial dimensions. In an MOS-type

QD, electron motion in the z-direction is confined by the oxide-semiconductor

interface, and motion in the x,y-direction is laterally confined by the metallic

gates’ potential. This QD behaves more like a 2D quantum well because the

z-direction is tightly bound.

Quantum-state initialisation and readout often requires loading and unloading

electrons to/from the QD, such as spin readout relying on spin-to-charge conver-

sion. Tunnel coupling the QD to a 2DEG reservoir allows the electron occupancy

to be tunable in the QD, while maintaining the conduction band level between

them above the Fermi level, where this region is referred to as the ‘barrier’. Even

though the barrier forbids classical particle movement from the reservoir to the

QD, quantum tunnelling can still occur if the barrier is transparent enough. The

tunnel rate (that is, how quickly an electron can move through this barrier) de-

pends on the width and band-energy level of the barrier; increasing these two

properties decreases the tunnel rate exponentially.

The second condition necessary for quantum tunnelling to occur is the exis-

tence of a quantum state in the QD with an energy level equal to or below the

2DEG Fermi level. The quantum state in the small confined QD is quantised,

meaning that electrons can only exist at certain energy levels. Thus, to load an

additional electron into the QD, both the Coulomb charging energy (EC) and the
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quantum confinement energy (∆E) must be overcome.

2.4.2 Coulomb Blockade

S D
Dot

VP

μS μD

C.B.

x

S D
Dot

x

y

VP

)b()a(

Figure 2.9: Schematic of a single QD - (a) Conduction band profile of a single

QD, with connected source-drain bias. (b) Top view of the source-drain reservoir

and the QD.

Figure 2.9 shows a QD connected to two 2DEG reservoirs from two sides.

The electron reservoirs can be connected to ohmic contacts and become both the

source and the drain in the MOSFET device. Applying a source-drain bias allows

electrons to flow through the QD and produce a current.

As described in Section 2.4.1, electrons can only tunnel into the QD when

an appropriate state is available, in terms of both quantum mechanics and en-

ergy conservation. The term ‘Coulomb blockade’ describes these regions where

electrons are forbidden to travel through the QD. With a change in the QD

potential via a plunger gate (VP), the current is usually blockaded, except at

periodic Coulomb peaks, as shown in Figure 2.10 (a). A special current depen-

dency on VP and source-drain bias (VSD) is shown in Figure 2.10 (b). Electron
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0

Figure 2.10: Transport current Coulomb peaks and diamonds in a single

QD - (a) Transport current against VP - Coulomb peaks occurs when the QD

electrochemical potential sits between the source-drain Fermi level. (b) Stability

diagram with VSD against VP, showing how Coulomb diamonds are formed with

the Coulomb blockaded regime. Excited states create current resonance outside

the diamonds.
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currents are Coulomb blockaded in continuous diamond-shaped regions referred

to as ‘Coulomb diamonds’.

This type of device, where currents can flow only when the QD potential is

sitting on a Coulomb peak, is referred to as a ‘single-electron transistor’ (SET).

the SET is the main device structure used throughout this thesis, including the

single-dot devices (Chapter 4 and 5) and charge detectors (Chapter 5, 6 and 7).

2.4.3 Single Electron Transport through a Quantum Dot

VP VP VP

e

e

eVSD

S D S D S D

N N N+1

(a) (b) (c)

S

D

EC+ΔE

ECΔE

Figure 2.11: Transport through a single QD - (a) The potential configuration

of a Coulomb blockade regime - there is no possibility for an additional electron to

move in or out of the QD. (b) An electron state between the source-drain Fermi

levels µS and µD is available for an electron to tunnel in from the source, shown

by the green ellipse. (c) The potential configuration after the electron tunnels into

the QD. The electron is now available to tunnel to the drain, shown by the red

ellipse. Afterwards, the QD potential returns to (b).

This section describes how electrons tunnel through a QD at zero temperature

[96]. Figure 2.11 (a) is the energy configuration in the Coulomb blockade regime.

In order to load an additional electron in the QD, additional energies EC and ∆E
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are required, as described in section 2.4.1. The available potential is higher than

the electrochemical potential of the QD, µ(N) by the addition energy µ(N +

1) − µ(N) = EC + ∆E, and is also higher than the Fermi level of the 2DEG,

µ(N + 1) > µS, µD. Hence, there is no electron in the 2DEG permitted to tunnel

into the QD.

If the potential VP is increased, µ(N) decreases, as shown in Figure 2.11 (b).

The available potential is now lower than the source Fermi level, µ(N + 1) < µS,

and an electron is able to tunnel from the source to the QD, as described by the

green ellipse. When the electron tunnels into the QD, the Coulomb field brings

all the preoccupied electrons’ energies up by EC only, as shown in Figure 2.11 (c),

and the electron number from N to N + 1. The new electrochemical potential,

µ(N+1), of the QD is now replaced by the preloaded available potential level, but

remains higher than the drain Fermi level, µ(N+1) > µD. Hence, an electron can

again tunnel from the QD to the drain, described by the red ellipse, and return

to the Figure 2.11 (b) state, restoring the previous QD electrochemical potential

and reverting to N electrons. By repeating the process in Figure 2.11 (b, c), a

current is produced via electron tunnelling through the QD, while the available

state in Figure 2.11 (b) sits within the source-drain bias window, eVSD, so that

µS > µ(N + 1) > µD.

If more than one available energy level exists in the source-drain bias window,

µS > µ(N + 1), µ(N + 1) + n∆E > µD, electrons can also tunnel through these

excited states, where their energies are n∆E higher than the ground state (n ∈

N, assuming ∆E is uniform for all N electron occupied). Figure 2.12 shows

two different methods of tunnelling through the QD via the excited state. In

Figure 2.12 (a) the excited state exists where µS > µ(N + 1) + ∆E > µD, and
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Figure 2.12: Transport through a single QD with excited states - (a)

Two states are available for the additional electron to tunnel through. (b,d) An

alternative method of tunnelling through excited states, with VP lowered. In (c), if

scenario 1 occurs (green ellipse), the potential levels will become (b), but if scenario

2 occurs (red ellipse), the potential levels will become (d). Both (b, d) will return

to (c) once an electron tunnels back to the QD from the source.
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the electron can simply choose one of the two states to tunnel through. This

excited-state tunnelling path corresponds to the solid lines shown in Figure 2.10

(b), with the quantum states being above the µ(N + 1) ground state.

The alternative method of tunnelling through the QD is shown in Figure

2.12 (b, c, d). In Figure 2.12 (b), there is only one ground state available for an

electron to move from the source to QD. Figure 2.12 (c) shows that, once the

electron tunnels in, two electrons exist with a potential higher than the drain,

µ(N + 1), µ(N + 1)−∆E > µD. Assume the electron at µ(N + 1) tunnels out to

the drain from the green ellipse, the configuration returns to Figure 2.12 (b). In

contrast, if the electron at µ(N + 1)−∆E tunnels out first (from the red ellipse),

the configuration becomes Figure 2.12 (d). Depending on which scenario occurs

in Figure 2.12 (c), the potential configuration is shown by either Figure 2.12 (b)

or (d), which then returns to Figure 2.12 (c). These tunnelling paths correspond

to the double lines shown in Figure 2.10 (b), in which the preoccupied quantum

states are below the µ(N + 1) ground state.

2.4.4 Pulsed-Gate Spectroscopy Measurements

While electron transport through a QD can reveal the electron occupancy and

quantum states of the QD (Figure 2.10), an alternative way to probe the QD

is to use a nearby charge detector, without relying on transport current running

through the QD. A charge detector has a sensitive transconductance region so that

a nearby single-electron charge movement can affect its current. By monitoring

the charge-detector transport current, the change of electron occupancy of the

QD can be determined.

By applying a two-level pulse, it is possible to shuffle an electron in and out
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Figure 2.13: Energy-selective tunnelling from reservoir - (a) An electron

can be loaded into the QD when its energy is below the Fermi level, while VP

increases. (b) An electron can be unloaded when its energy is above the Fermi

level, while VP decreases. (c) An electron can be loaded into either the ground

state (scenario 1) or the excited state (scenario 2). (d) If the electron is loaded into

the ground state (scenario 1 in (c)), while VP decreases, its energy is still below

the Fermi level and it cannot tunnel out. In scenario 2, the excited-state electron

can tunnel out from the QD
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of a QD, as shown in Figure 2.13 (a, b). When the pulse on VP is high, an

electron can jump into the QD, causing a current change in the nearby charge

detector (Figure 2.13 (a)); at the low-level pulse, an electron hops off the QD and

the charge detector returns to the original current level (Figure 2.13 (b)). This

two-level pulsing measurement can be used to find the electron transitions in the

QD and the tunnel rate of the QD.

The excited states of the QD could also be measured using this technique. In

Figure 2.13 (c), once the ground state is predetermined, the pulse level on VP can

be increased, allowing more available states sitting below the Fermi level. The

electron could choose to tunnel into the ground state (green), or into an excited

state (red). Now, if VP is pulsed until the excited state is above the Fermi level

but the ground state is still below it, the tunnelled-in electron could only hop out

at the excited state (green). By using multilevel pulsing on the plunger gate, the

quantum states of individual electrons can be distinguished, enabling reading of

a single-electron spin. The lifetime of the excited state can also be extracted via

this technique by varying the pulse-time width.

In Chapters 6 and 7, the applications of such a pulsing technique are discussed

in more detail.

2.4.5 Quantum Dot Excited States

An excited state has a higher energy compared to the ground state, which has

the lowest energy in an isolated system. While a 2D QD can be thought of as

particles in a 2D box, the trivial excited states are the orbital levels that have

different wavefunctions. In Figure 2.14 (c), the red quantum state can be seen as

the third harmonic eigenstate, which generally has higher energy than the green
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Figure 2.14: Origin of excited states in a QD - (a) Zeeman splitting of

spins, within a magnetic field. (b) Valley splitting from lattice spacing and altered

wave function under the same envelope. (c) Traditional orbital energies of the

conduction band energy.

state (first harmonic). The orbital states are often related to the size of the QD:

as the size increases, the orbital separation decreases (see Figure 2.15).

In a silicon QD that contains electrons as particles, the possible quantum

states are more than the orbital levels alone. The spin of an electron has two

states: spin-up and spin-down. These spin states are degenerate when no external

magnetic field exists, and the energy separation varies linearly with the magnetic

field (see Figure 2.14 (a)). Spin states are the core information in a spin-based

quantum computation system, and also the main properties being measured and

studied throughout this thesis.

Figure 2.15 (a) demonstrates how the spin of an electron reacts with an ex-

ternal magnetic field, ~B. As bulk silicon has a g-factor greater than 0 (g = 2),

a spin-up electron gains an extra Zeeman energy, ∆EZ = gµB| ~B|, while it has a

magnetic moment antiparallel to ~B. The energy of the spin-down electron de-
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Figure 2.15: Change of excited-state energies under changing conditions

- (a) An in-plane magnetic field causes Zeeman-splitting energy ∆EZ = gµBB.

(b) Varying the envelope wavefunction with perpendicular electric and magnetic

fields causes a change in valley-splitting energy ∆EVS. Additional Zeeman-splitting

is introduced using a magnetic field. (c) Changing the QD size with any lateral

confinement or electron occupancy affects the orbital excited-state energy ∆EO,

as well as the valley-splitting energy, as a result of the change in the wavefunction

envelope.
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creases, ∆EZ = gµB| ~B|, and has its magnetic moment parallel to ~B. Notice that

the electron-spin direction is opposite to the magnetic moment, as electrons are

negatively charged. The g-factor could be a different value, or even a negative

value, using different materials - for example, bulk GaAs has a typical g-factor =

0.44.

The third class of excited states in a silicon QD is the valley eigenstates. As

described in Section 2.3.3, there are two degenerate Γ valley eigenstates that have

much lower energies compared to the other ∆ valley states. Figure 2.14 (b) shows

that the two-valley eigenstates’ wavefunctions are out of phase with respect to

the z-direction lattice spacing: the green and red wavefunctions have the same

envelope but accumulate different integrated volumes. The valley-splitting energy

between these two states can vary with the z-direction electric or magnetic field

because the envelope of the wavefunction in z-direction varies, as shown in Figure

2.15 (The magnetic field also varies the Zeeman-splitting energy.)

In Chapter 6, we discuss how these three types of quantum excited states can

be identified with both electric- and magnetic-field manipulation.
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Chapter 3

Experimental Methods

This chapter provides an overview of the fabrication and experimental methods

used. A list of equipment and fabrication recipes, and details on how to pattern the

silicon MOS QD devices, is also presented. The basic techniques and instruments re-

quired to perform experiments under cryogenic condition are given.

The devices were fabricated within the Australian National Fabrication Facility

(ANFF) at the University of New South Wales (UNSW), and the measurements were

performed in the National Magnet Laboratory (NML) at UNSW.
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3.1 Device Fabrication

3.1.1 Optical Patterning of Ohmic Contacts and Oxide

Growth

The silicon substrate is prepared in the microfabrication laboratory, with lightly

n-doped phosphorus (resistivity > 10 kΩ cm). The field oxide is grown in a single-

walled furnace using a wet oxidation process. An oxide thickness of 200 nm can be

grown at 1000 ◦C. The gate oxide is grown in an ultra-dry triple-walled furnace.

In order to grow high-quality gate oxide, dichloroethylene (DCE) is introduced

during the process. A gate oxide thickness of 5 nm is grown at 800 ◦C.

The ohmic contacts are heavily doped with phosphorus at a concentration of

1020cm−3. Phosphorus is predoped at 950 ◦C for 30 minutes. This is followed by

a deglaze process carried out to remove the excess unreacted dopant glass using

a hydrofluoric acid (HF) etch. Channel stoppers to prevent source-drain leakage

are also implemented within the chip, where they are doped with boron. The dop-

ing patterns are conducted via photolithography using chromium masks exposed

under ultraviolet (UV) light. The resolution supported by the photolithography

is 1.5 µm.

3.1.2 Electron Beam Lithography of Gates and Alignment

Markers

The main electron beam lithography (EBL) machine used for fabricating the

devices in this thesis is FEI XL30. It was used to both write and image the

nanostructures. The patterning software programs used are DesignCAD and

Nanometer Pattern Generation System (NPGS). DesignCAD provided the main
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environment for drawing gate patterns and alignment markers, and NPGS pro-

vided additional support for patterning parameters such as drawing sequences,

drawing directions and area dose, and controlling the EBL writing process. The

EBL system allows a minimum gate width of 20 nm.

Polymethyl-methacrylate (PMMA) resists are used for patterning. For stan-

dard gates, PMMA A4 is spun onto the wafer at 7500 rpm for 30 seconds, resulting

in a 150 nm resist thickness. For gates that are required to cross over other gates

(typically plunger gates), PMMA A5 is spun at 5000 rpm for 30 seconds, resulting

in a 280 nm resist thickness. The resists are baked for 90 seconds at 180 ◦C.

An electron-beam energy of 15-30 kV is used for writing the patterns. A

dosage of 500-650 µC cm−2 is used for nanoscale gate structures, and 400 µC cm−2

is used for fan-out bond pads. Alignment marks are used for multilayer gate

alignment; they are coated with titanium before the gate patterning. Each device

is manually aligned with the XL30 machine, ensuring that the nanostructures are

aligned properly even with flawed (partially missing or difficult to detect with the

beam) alignment markers.

The development process is performed in a solution of 1:3 methy-isobutyl-

ketone (MIBK): Isopropyl alcohol (IPA) for 20 seconds, followed by a 20-second

IPA rinse and nitrogen gas blowdry. The sample is then put into a Lesker thermal

electron-beam evaporator. The aluminium gates are deposited at a rate ∼ 5 Ås−1

at a pressure ≤ 5 × 10−6 torr. Finally, the metal lift-off process is performed in

NMP solvent (1-methyl-2-pyrrolidone) at 80 ◦C for a few hours, followed by 10

seconds of ultrasonic agitation.

An additional short oxygen plasma-ashing process (3 minutes) under low pres-

sure (110 mTorr) is used to remove organic residues (mainly the PMMA) left
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behind on the chip surface.

3.1.3 Annealing and Packaging

To terminate the dangling bonds and charge traps between the silicon and SiO2

interface of the chip, forming gas annealing is performed. The chip is loaded

into a furnace preset to 400 ◦C for 15 minutes. The forming gas consists of 95%

nitrogen gas (N2) and 5% hydrogen gas (H2). The annealing process also improves

performance of ohmic resistance and threshold voltage [14].

The fabrication of the devices on the chip is now complete. In order to mount

the devices onto the measurement equipment, the devices are packaged in a stan-

dard 20-pin Charntec. Usually, the chip is diced into smaller pieces, each of which

holds 2×2 or 3×2 devices, for ease of pin bonding.

The Kulicke & Soffa aluminium wedge bonder was used to bond the chip

metallisation pads to the contacts of the Charntec. Not all the devices can be

bonded with 20 pins at the same time; therefore, to measure the unbonded device,

it is necessary to take off the bonds of the previous device. The packages are kept

in a Gel-Pak conductive box to prevent electrostatic discharge before they are

loaded into the measurement setup.

3.2 Design of Device Structures

In this thesis, all devices in the following chapters are fabricated with silicon

MOS with multilayer Al-AlxOy-Al gate stack. The original concept is presented

in Angus et al., where a QD can be formed with two layers of aluminium gates.

The main advantage of this structure is the potential of the QD barriers, and

the fact that the reservoirs can be controlled independently, providing the ability
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to maintain the channel conductance and the barrier height while the QD sits

within the few-electron regime [15].

3.2.1 Multi-layer Gate Structure

DS QD

DS 2DEG 2DEG

DS

(a)

(b)

(c)

z
x

(d)

(e)

(f)

y
x

Figure 3.1: QD with triple-layer gate stack structure - Schematics of

stacking up the triple-layers, cross-section and top views. (a, d) Barrier gates

(blue) are placed as the first layer. (b, e) The lead gates (green) connect the source

and drain all the way to the barrier gates, creating the 2DEG reservoir. (c, f) The

plunger gate (red) is placed as the last layer, inducing an independently controlled

QD.

To realise the QD described above, a triple-layer gate stack is required. The

first layer of the aluminium gates is the barrier gates, as shown in Figure 3.1
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(a, d). The barrier gates typically operate at a lower potential than the plunger

(controlling the QD potential) and the lead gates (inducing the 2DEG reservoir),

or even at a negative potential if no electron tunnelling is required (see Chap-

ters 6 7). One reason to place the barrier gates first is to obtain a lower pinch-off

voltage. The height of the barrier gates is ∼ 30 nm.

The second layer is the lead gates, connecting the ohmic contact channels all

the way to the barrier gates (see Figure 3.1 (b, e)). If independent control of the

QD is not required (for example, to realise a charge sensor), the lead gates can

go over the barrier gates and connect the two channels. Before the second layer

is fabricated, the device is put into an oven at 180 ◦C for 10 minutes to ensure

that a layer of AlxOy insulator exists between the two layers. The AlxOy grown

is typically 4-5 nm extracted from XTEM [97], allowing up to ∼ 4 V difference

between the two layers before voltage breakdown. The height of the lead gates

are ∼ 40 to 70 nm - slightly higher than the barrier gates to ensure it is possible

to cross over them.

The final layer is the plunger gates to control the QD potential. The same

process is performed to grow the AlxOy (See Figure 3.1 (c, f)). In order to cross

over the previous two layers of gates, the final layer is much higher - typically

70-120 nm (depending on the height of the previous layer).

With these three layers of aluminium gates, a fully electrostatically control-

lable QD device is fabricated. This architecture permits the last electron in

Chapter 4 to be reached while maintaining a sufficient readable current through

the QD.
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3.2.2 Integrated SET Charge Sensor

An alternative way to count the number of electrons in a QD is to rely on a

charge detector (see Chapter 5). A charge detector must be close to the QD in

order to have the maximum capacitive coupling. In this silicon MOS structure,

aluminium gates can only be defined laterally; hence, the charge sensor can only

sit beside the QD laterally.

Figure 5.1 demonstrates how a SET charge sensor is fabricated next to the

QD. The SET structure is very similar to the QD with two leads, except that

the extra plunger gate is optional because entering the few-electron regime is not

desired. The two barriers are placed first, followed by the top gate, which acts as

both the plunger gate of the SET island and the lead gate to induce the 2DEG

reservoir. The distance between the QD and island of the SET in the following

chapters is 100-150 nm, a range that gives sufficient SET current signal to detect

electron transitions in the main QD.

3.2.3 Extension to Multiple Dots and Qubits

By extending this architecture, we can fabricate a double QD device [97] using

three barriers and two separated QD plunger gates. The devices described in

Chapters 6 and 7 were planned to create a double QD system with charge sen-

sor. The next stage is to perform coherent experiments, which may involve the

integration of an ESR line to rotate the spin of an electron. The idea would be

to place the ESR line at the empty left side of the device shown in Figure 7.1 to

obtain a maximum magnetic field microwave acting on the QD, using a similar

ESR design to that used by Pla et al. [20].
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3.3 Measurement

All the device measurements are performed under cryogenic conditions, where a

4 K liquid helium Dewar is used for device function pretesting, and a 20 mK base

temperature dilution refrigerator with the least possible thermal noise is used for

the main experiment.

3.3.1 4 K Dewar Measurements

The Charntecs onto which the devices are bonded is mounted on a dip rig and

dipped into the 4 K liquid helium Dewar. The other end of the Dewar has

Bayonet Neill-Concelman (BNC) connector pins that are terminated with ground

connectors except during measurements, to protect the devices from electrostatic

discharge. The major objective of using this 4 K Dewar is to do a leakage test,

including gate to source-drain leakage, shorted gates and other possible defects

of the device. The leakage test is performed using a source-measure unit (SMU)

instrument, allowing the use of a current cap to protect the device from explosion.

Basic turn-on and barrier-gate pinch-off measurements are also performed, to

ensure that all the gates and QD characteristics behave normally.

The cryogenic phenomena of a QD are already visible at this temperature, such

as oscillation of the source-drain current that represents Coulomb oscillations,

and the ability to detect charge movements with a charge sensor using clever

filtering techniques. Once the device performance is at an appropriate standard,

the device is transferred to the dilution refrigerator for further experiments that

require an even lower temperature.
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3.3.2 Dilution Refrigerator Measurements

3He

pump
4He

Mixing
Chamber

Still

1K Pot

(a) (b)

Figure 3.2: Dilution refrigerator - (a) Schematic of a dilution refrigerator,

where the sample is attached beside the mixing chamber (red lines indicate heat

exchange). (b) The Kelvinox K100 dilution refrigerator at NML with instruments

attached.

The 3He/4He dilution refrigerator has the cooling power of 15-200µW to reach

a base temperature as low as 20 mK. Figure 3.2 (a) shows a simple schematic of

a dilution refrigerator. At T = 0, 3He is lighter than 4He hence the 3He (pure

phase) will float on top of the 4He in the mixing chamber. The binding strength

between two 3He atoms is weaker than 3He-4He, where 3He tends to dissolve into
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the 4He bath (diluted phase). At equilibrium, there will be around 6.4% of 3He

in the diluted phase. By heating the still where it contains the diluted 3He, the

equilibrium 3He concentration is reduced to approximately 2% and the excess 3He

is vaporised. The pressure then causes the pure 3He in the mixing chamber to

migrate into the diluted phase; this process absorbs heat and is the main cooling

mechanism that brings the mixing chamber down to mK range. An 1 K pot that

pumps 4He is used to re-cool the 3He gas that has vaporised from the still.

An Oxford Instruments’ Kelvinox K100 dilution refrigerator system (see Fig-

ure 3.2 (b)) was used for mK measurements. The device is mounted at the bottom

of the dip rig and thermally coupled to the mixing chamber via a copper plate,

providing excellent thermal conductivity between them. Loom lines (DC) and

flexible cables (AC) that come from the top of the insert to the device are wired

in a way to maximise their contact with the copper parts of the insert, to ensure

the hot temperature in the lines do not reach the mixing chamber; Additional

thermal/frequency filters are also installed for the flexible cables. Two fridges

were used in the following works: one is a direct-current (DC) fridge where DC

or low-frequency measurements are performed; the other is the RF2 fridge that

uses fast-pulsing gates and a microwave line. The device remains in the fridge for

weeks or months (unlike the Dewar, which is used mainly for testing purposes),

depending on the type of experiment. Regular helium-bath and nitrogen-trap

refilling is required to maintain the dilution refrigerator at mK. The electron

temperature running through a typical SET in the fridge is typically 300 mK,

extracted from it’s Coulomb peak width, where the peaks are much sharper com-

pared to the ones in 4 K Dewar.
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3.3.3 Electronic Measurement Equipment

This section describes the electronic devices commonly used in the experiments.

All the instruments can be controlled remotely and monitored by a computer via

a general purpose interface bus (GPIB) connector, which allows measurements

to be carried out in batches and with complex calculations. GPIB cables also

optically isolate the computer from the instruments, shielding the computer from

electronic noise. This includes the Kelvinox remote operating system and the

superconducting magnet within the fridge.

The Stanford Research Systems Isolated Voltage Source (SIM928) is the main

voltage source for the source drain and gates. To protect the device from possible

electric shock as a result of battery failure, all the pins are connected with resistive

voltage dividers (1:5 dividers). This has the added advantage of offering a finer

potential control over the gates. Some gates are even connected with additional

dividers for further resolution (1:50 dividers).

Even though most measurements are performed under DC conditions, Stan-

ford Research Systems SR830 lock-in amplifier generates an alternating-current

(AC) excitation on the source-drain bias, and measures the conductance of the

channel with a frequency range of a few hundred Hz. A 1:10000 divider is con-

nected from the SR830 to the source-drain bias. The advantage of using an AC

lock-in conductance measurement is that the background noise can be greatly

reduced. The combination of the isolated voltage source and the lock-in am-

plifier can perform measurements including transport, stability plots and charge

sensing.

A FEMTO current amplifier [98] at room temperature offers a significantly
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reduced noise level, and does not generate a ringing effect, allowing a source-drain

current in a pA order of magnitude to be probed. Other instruments such as an

arbitrary waveform generator, a digital oscilloscope and digital filters are also

used in various experiments in the following chapters.
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Chapter 4

Spin Filling of Valley-Orbit

States

In this chapter, we report the demonstration of a low-disorder Si MOS QD contain-

ing a tunable number of electrons from zero to twenty-seven. The observed evolution

of addition energies with parallel magnetic fields reveals the spin filling of electrons

into valley-orbit states. We find a splitting of 0.10 meV between the ground and first

excited states, consistent with theory and placing a lower bound on the valley splitting.

Our results provide optimism for the realisation of spin qubits based on silicon QDs in

the near future.

Parts of this chapter have been published in: W. H. Lim, C. H. Yang, F. A. Zwa-

nenburg and A. S. Dzurak, Nanotechnology 22, 335704 (2011).
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4. SPIN FILLING OF VALLEY-ORBIT STATES

4.1 Introduction

Semiconductor quantum dots [96] are conduction band islands to which electrons

can be added one by one by means of an electric field. Quantum dots provide

a promising platform for spin based qubits, with their long coherence times due

to the weak coupling of spin to local charge fluctuations. For a quantum dot to

be useful as a spin qubit it is essential to understand the details of its excitation

spectrum and its spin-filling structure. One powerful method to probe the spin

filling is via magnetospectroscopy. This has been applied to both vertical [48]

and lateral GaAs/AlGaAs quantum dots [99], showing ground-state spin filling

in agreement with Hund’s rule.

In this chapter we present the investigation of a Si MOS quantum dot with

lower disorder than any studied to date, in which it is possible to analyse the

electron occupancy in a manner previously inaccessible. We deduce the spin

filling of the first 12 electrons in the dot from ground-state magnetospectroscopy

measurements. The formation of a two-electron (N = 2) spin-singlet state at

low magnetic fields confirms that there is no valley degeneracy present, while the

magnetic field dependence of the higher-order Coulomb peaks allows us to deduce

the level structure for the first four electrons.

4.2 Device Architecture

In this work, the device is fabricated using a multi-layer Al-Al2O3-Al gate stack

(see Chapter 3.1). The triple-layer gate stack in our structure (Figure 4.1) pro-

vides excellent flexibility for tuning the barrier transparency and the energy levels

of the dot independently.
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The lowest layer of gates is barrier gates (B1 and B2). They are used to

define the dot spatially and control the tunnel coupling. The second layer of

gates defines the source-drain leads (L1 and L2). The lead gates induce the

electron accumulation layers that act as source-drain reservoirs. The plunger

gate (P) which extends over the barrier gates, lead gates and the dot island, is

used to control the electron occupancy of the dot. The lithographic size of the

dot is estimated to be 30× 60 nm2.

n+ ohmic regionsnear intrinsic S i substrate S iO2
aluminum gates oxidized aluminum

S D

E lec tron R es ervoir

B 1L1 L2B 2

P

Dot

B 1 B 2
L1 L2P

100 nm

a

b

Figure 4.1: Single Dot Device Architecture - a, Scanning electron microscope

image and b, Schematic cross-section of a Si MOS quantum dot.
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4. SPIN FILLING OF VALLEY-ORBIT STATES

4.2.1 Measurement Configuration

The chip was packaged into a standard 20 pin Charntec package and bonded

using an aluminium wedge bonder. Measurements throughout this chapter were

performed in a dilution refrigerator with a base temperature of 20 mK. All the

gates and source-drain pins are connected with dc loom lines inside the refrig-

erator. The source-drain conductance was measured using standard ac lock-in

techniques described in chapter 3.3.

4.3 Transport Measurements and Bias Spectroscopy

Figure 4.2 is a plot of the differential conductance dI/dVSD of the device ver-

sus plunger gate voltage VP and source-drain voltage VSD, showing the familiar

‘Coulomb diamond’ charge stability map. Before the first charge transition the

diamond edges open entirely to a source-drain voltage |VSD| > 20 mV, because

the quantum dot has been fully depleted of electrons. Our group had previously

reported a device with similar gate architecture but an accidental parallel quan-

tum dot created distortion of the charge stability map in the few-electron regime,

complicating the interpretation of the dot’s level structure [15]. Here, clear and

sharp Coulomb peaks mark the first 27 electrons entering the dot, see Figure 4.3,

while the charge stability map of Figure 4.2 shows no distortions from disorder

potentials.

As with quantum dots in GaAs/AlGaAs [48], shell filling has been observed

in Si/SiGe quantum dots, with a filled shell structure observed for N = 4 elec-

trons [89]. The addition spectrum of our Si MOS quantum dot (Figure 4.3) also

shows a noticeable peak at N = 4. A filled shell at N = 4 would be consistent
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4.3 Transport Measurements and Bias Spectroscopy
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Figure 4.2: Coulomb Diamonds of Single Dot Device - Stability diagram

of the device in the few-electron regime. By decreasing the plunger gate voltage

VP, electrons are depleted one-by-one from the dot. The first diamond opens up

completely indicating that the first electron has tunneled off the dot.
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4. SPIN FILLING OF VALLEY-ORBIT STATES

N
0 5 10 15 20 25

4
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0.10

0.05

Vadd (V)

Figure 4.3: Coulomb Peaks from N = 1 to 27 - Coulomb oscillations as

a function of plunger gate voltage VP for the first 27 electrons in the dot. VP

is compensated by VB2 to suppress the non-monotonic background conductance.

Inset: Addition voltage Vadd versus electron number N calculated as the difference

between two consecutive Coulomb peaks in plunger gate voltage.

with the filling of a first orbital state in a two-valley system.

4.4 Spin Filling

4.4.1 Valley-Orbit States

In general, valleys and orbits could hybridise [100], making it inappropriate to

define distinct orbital and valley quantum numbers. Depending on the degree of

mixing, the valley-orbit levels behave mostly like valleys or like orbits. Instead

of referring to a pure valley splitting we therefore adopt the term valley-orbit

splitting, ∆EVO = EVO2 − EVO1 for the difference in energy between the first

two single-particle levels, EVO1 and EVO2. This is sometimes referred to as the

ground-state gap [100]. In later chapters, we will discuss how to distinguish

and separate the valley and orbital states, using different device structures and
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4.4 Spin Filling

measurement techniques.

4.4.2 Spin State Characterisation via Magnetospectroscopy

Full electrostatic control of the electron number allows us to investigate the spin

filling by measuring the magnetic field dependence of the electrochemical poten-

tial µN , which is by definition the energy required for adding the N th electron to

the dot. The slope of µN(B) is given by [101]

∂µN
∂B

= −gµB∆Stot(N), (4.1)

where g is the g-factor, the Bohr magneton µB = 58 µeV/T and ∆Stot(N) is the

change in total spin of the dot when the N th electron is added. The electrochem-

ical potential has a slope of +gµB/2 when a spin-up electron is added, whereas

addition of a spin-down electron results in a slope of −gµB/2. The rate at which

µN changes with magnetic field thus reveals the sign of the added spin. For the

experiments in this work we apply the magnetic field B parallel to the Si/SiO2

interface.

The conductance at the first two charge transitions is plotted as a function of

the electrochemical potential energy and the magnetic field in Figure 4.5. Here,

the Coulomb peak positions in gate voltage are converted to electrochemical po-

tential µN using the lever arm αP extracted from the corresponding Coulomb

diamonds. The blue lines above the Coulomb peaks are guides for the eye with

slopes of ±gµB/2, as predicted by equation (1) using g = 2 for bulk silicon. Since

the first Coulomb peak moves down in energy with increasing magnetic field the

peak corresponds to a spin-down electron entering the quantum dot, as expected

for the N = 1 ground state. For B ≥ 1 T the second Coulomb peak also falls in
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Figure 4.4: Stability Diagram of VB2 v.s. VP - Differential conductance

dI/dVsd as a function of barrier gate voltage VB2 and plunger gate voltage VP at

B = 0 T. The regular parallel Coulomb peaks are a signature of low disorder. The

dotted lines point out the regions where spin filling measurements take place.

energy with increasing B at a rate close to −gµB/2, however, for low magnetic

fields the peak noticeably increases in energy with B, leading to a ‘kink’(marked

2a) at B ∼ 0.86 T. This kink (2a) is confirmed by several repeated measurements

over positive and negative magnetic field (see supplementary in [88]). These re-

sults imply that at low magnetic field (before the kink), the second electron fills

the quantum dot with its spin up. As we increase the magnetic field (after the

kink), the sign of the second electron spin changes from up to down at B ∼ 0.86 T.

For B > 0.86 T the first two electrons fill two different levels split by ∆EVO

= 0.10 meV. We note that the presence of a doubly degenerate ground-state level

would demand the two electrons to exhibit parallel spin filling starting from 0 T,

since the two electrons would then occupy two different valley states in order to

minimise the exchange energy [101].

To assess the degree of valley-orbit mixing we compare the expected values

for the orbital level spacing and the valley splitting. As stated above, theoretical
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4.4 Spin Filling

Figure 4.5: Spin filling of N = 1, 2 - Magnetospectroscopy of the first two

electrons entering the quantum dot. The circle 2a marks a kink in the second

Coulomb peak at ∼0.86 T. (a) and (b) are data sets taken at different time

calculations of the latter predict 0.1–0.3 meV. An estimate of the orbital level

spacing in a quantum dot is given by 2π~2/gvgsm
∗A [96], where gv (gs) is the

valley (spin) degeneracy, m∗ the electron effective mass and A the dot area. For

non-degenerate valleys, gv = 1 and gs = 2. Using the effective mass of 0.19m0,

and the lithographic dot area of ∼ 30×60 nm2 we obtain an expected orbital level

spacing of 0.7 meV. This value is considerably larger than the lower bound on the

valley splitting, suggesting that the first two levels may be valley-like, however,

to maintain generality we will continue to refer to the levels as valley-orbit states.

4.4.3 Spin Filling for N = 2 to 4 Electrons

We now turn to the spin filling for N ≥ 2 electrons. Figure 4.4 shows the

differential conductance as a function of plunger gate voltage and barrier gate

voltage VB2. The highly regular pattern of parallel Coulomb peak lines again

demonstrates the low disorder in this device. In order to determine the spin

filling for higher electron numbers we investigate the difference between successive
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4. SPIN FILLING OF VALLEY-ORBIT STATES

electrochemical potentials as a function of magnetic field. The resulting addition

energies Eadd(N) = µN − µN−1 have slopes which depend on the spin filling of

two consecutive electrons, according to [28]

∂Eadd(N)

∂B
= 0 for ↓, ↓ or ↑, ↑ (4.2)

= −gµB for ↑, ↓

= +gµB for ↓, ↑

where the first (second) arrow depicts the spin of the (N − 1)th (N th) electron

respectively.

Figure 4.6 (a) plots the measured addition energies, Eadd(N) = µN−µN−1, for

N = 2 to N = 4 electrons for magnetic fields B in the range of −8 T< B < 8 T.

We see that the data in Figure 4.6 (a) tend to follow ∂Eadd(N)/∂B = 0,±gµB,

as expected from Equation (2). Furthermore, the Eadd(N) data is relatively

symmetric about B = 0, indicating that the trends are real and not measurement

artefacts. As a guide to the eye, we also show lines with slopes of exactly 0, ±gµB

(blue lines in Figure 4.6 (a) that we interpret the Eadd(N) to be following. While

in regions the match is not exact, we propose that these trend lines are the best

qualitative fit to the data. We are thus able to infer spin states for each of the

first 4 electrons at all values of magnetic field |B| < 8 T. These spin states are

labelled with red (green) arrows, representing spin down (up), in Figure 4.6 (a).

We now focus on the spin states of the these four electrons, N = 1 to N = 4.

At low magnetic fields (< 0.8 T), the electrons populate the quantum dot ground

states with alternating spin directions: ↓, ↑, ↓, ↑. Conversely, at high magnetic

fields (> 4 T) a configuration with four spin-down electrons has least energy:

↓, ↓, ↓, ↓. Recently, parallel spin filling in a Si quantum dot was explained as a
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Figure 4.6: Spin filling of N = 3, 4 - (a) Addition energies of the 3rd and

4th electrons versus magnetic field. Kinks are reproducible and approximately

symmetric over positive and negative magnetic fields. (b) A simple model showing

the evolution of single-particle energy levels EVOi of valley-orbit i assuming only

the Zeeman shift. Each level splits into two levels EVOi ± 1
2gµBB at non-zero

magnetic fields. The level crossings fit the kinks observed in the first four Coulomb

peaks shown in Figure 4.5
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4. SPIN FILLING OF VALLEY-ORBIT STATES

result of a large exchange energy and an unusually large valley splitting of 0.77

meV [91]. When the level spacing is smaller than the exchange energy, it is

energetically favoured for two electrons to occupy two consecutive levels with the

same spin sign. This is not the case for the device measured here: the anti-parallel

spin filling of the first two electrons below 0.86 T is only possible in case of a small

exchange energy (less than ∆EVO). This is an unexpected result for a dot of this

size where the exchange energy is predicted to be larger than the orbital level

spacing [101]. Possibly the Coulomb interaction in the dot is strongly screened

by the plunger gate. This is not unlikely since the distance from gate to dot (10

nm) is smaller than the dimensions of the dot itself (30−60 nm).

In Figure 4.6 (b), we illustrate the magnetic-field evolution of four non-

degenerate valley-orbit levels by means of an elementary model. Each level splits

into spin-up and spin-down levels in finite magnetic field. We assume that the

exchange interaction is small in comparison to the level spacing. The level cross-

ings that follow from our model fit the kinks observed in the first four Coulomb

peaks. The observed kink positions yield three valley-orbit levels which are 0.10,

0.23 and 0.29 meV above the lowest ground state level. The extracted level spac-

ings for the first four valley-orbit states are then: EVO2 − EVO1 = 0.10 meV;

EVO3 − EVO2 = 0.13 meV; and EVO4 − EVO3 = 0.06 meV.

4.4.4 Spin Filling for N = 5 to 12 Electrons

Figure 4.7, we plot the addition energies Eadd(N) as a function of B for electrons

N = 5 to 12. Once again, we predominantly observe slopes of ∂Eadd(N)/∂B =

0,±gµB, as expected from Equation (2). Occasionally, e.g. at N = 6 ↔ 7, a
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Figure 4.7: Spin filling of N = 5 to 12 - Addition energies Eadd(N) as a

function of B for electrons N = 5 to 12.
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4. SPIN FILLING OF VALLEY-ORBIT STATES

segment has a slope of ±2gµB, because the total spin on the dot changes by more

than 1
2
. This can occur due to many-body interactions on the dot and lead to

spin blockade [102]. The latter phenomenon could also explain the suppression

of current in the fifth charge transition at B = 2−5 T [101, 103, 104].

Also, the picture of alternating spin filling below 0.8 T no longer holds for

N > 4. Unexpectedly, the fifth electron is spin up at low magnetic field, while the

lowest-energy configuration predicts a spin-down state. This anomaly could be

explained by an extra electron in a dot nearby, which alters the spin configuration

of the main dot. Such a small dot can be created at high plunger gate voltages,

where the potential well differs from a perfect parabola.

4.5 Conclusions

The results here show that silicon MOS quantum dots can be fabricated with

the low levels of disorder necessary to form well-defined electron spin qubits in a

host material that can be made almost free of nuclear spins. The excellent charge

stability allows the spin states of the dot to be mapped up to N = 12 electrons and

a valley-orbit splitting of 0.10 meV to be extracted. Theoretical study [66] has

shown that a valley splitting of 0.1 meV is sufficient for the operation of a silicon

double quantum dot as a singlet-triplet qubit, in analogy with recent experiments

in GaAs [11]. Given that the valley-orbit splitting is strongly dependent on the

interfacial electric field, it should be possible to further increase the splitting

via appropriate device engineering and gate configuration, demonstrated in later

chapters. Our results therefore provide real promise for the realisation of low-

decoherence spin qubits based upon silicon MOS technology.
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Chapter 5

Dynamically Controlled Charge

Sensing

This chapter reports charge-sensing measurements of a silicon MOS QD using a

single-electron transistor as a charge sensor with dynamic feedback control. Using

digitally-controlled feedback, the sensor exhibits sensitive and robust detection of the

charge state of the QD, even in the presence of charge drifts and random charge upset

events. The sensor enables the occupancy of the QD to be probed down to the single-

electron level.

Parts of this chapter have been published in: C. H. Yang, W. H. Lim, F. A. Zwa-

nenburg and A. S. Dzurak, AIP Advances 1, 042111 (2011).
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5. DYNAMICALLY CONTROLLED CHARGE SENSING

5.1 Introduction

Non-invasive charge sensing [105] is an invaluable tool for the study of electron

charge and spin states in nanostructured devices. It has been used to identify

electron occupancy down to the single electron level [51, 60] and has made

possible the single-shot readout of single electron spins confined in both quan-

tum dots [106] and dopants [46]. Both quantum point contacts (QPCs) and

single electron transistors (SETs) possess high transconductance, making them

sensitive to their local electrostatic environment and therefore excellent charge

sensors. A QPC can be conveniently integrated with lateral quantum dot struc-

tures formed in two-dimensional electron layers in GaAs/AlGaAs [52, 53, 54, 55],

Si/SiGe [60, 61] and Si metal-oxide-semiconductor field-effect transistors (MOS-

FETs) [91, 107]. SETs also have been integrated with quantum dots in a variety

of structures including Ge/Si core/shell nanowires [108], carbon nanotubes [109],

graphene [110] and Si MOSFETs [111].

In this chapter we demonstrate a silicon MOS quantum dot [14, 15] integrated

with a nearby SET charge sensor [112], using a dynamic feedback technique to

maintain constant charge sensitivity over a wide operating range. The feedback

algorithm dynamically adjusts the gate-voltage of the SET to ensure that it op-

erates at a constant output current. In this configuration the SET optimally

responds to changes in the local electrostatic environment, such as electron tun-

nelling events. In contrast with previous sensing measurements, the dynamic

feedback employed here allows the SET sensor to recover from random charging

events that would otherwise reduce the sensitivity of the sensor. This enables

high-sensitivity measurements to be obtained over many hours, even in the pres-
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ence of random and large charge upset events.

5.2 Device Architecture and Measurement Set-

up

Figure 5.1 shows a scanning electron microscope (SEM) image and schematic

of the structure used for these experiments. In this structure, the roles of the

quantum dot and SET charge sensor are interchangeable. Here, we operate the

lower device as the quantum dot while the upper device acts as the charge sensor.

Ten gate electrodes are used to electrostatically define the two devices, which

can be independently measured. Positive voltages on the gates are used to in-

duce electron accumulation layers below the Si-SiO2 interface. Barrier gates B1-

B4 produce tunnel barriers in the electron layers, as shown in Figure 5.1 (b).

In both devices the dot (or SET island) electron occupancy is controlled by a

‘plunger’gate, labelled PD for the dot and PS for the SET, while ‘lead gates’L1-

L4 are used to induce the four source and drain electron reservoirs for the two

devices.

We operated the quantum dot with an ac excitation voltage Vsd of 100 µeV

at 87 Hz and the SET with Vsd of 400 µeV at 133 Hz. The lead gates of both dot

and SET were fixed at VL1,L2,L3,L4 = 3.0 V to induce the electron reservoirs. The

barrier gates were operated in the range VB1,B2,B3,B4 = 0.6–0.7 V.

The spacing between the quantum dot and the island of the SET charge

sensor was ∼120 nm. We also studied devices separated by 1 micron, where an

additional metallic antenna was used to enhance the capacitive coupling from the

dot to the SET island [108, 109, 113]. In those devices the electron accumulation
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Figure 5.1: Single Dot with Charge Sensor - (a) SEM image of the silicon

MOS device, the bottom one operating as the dot and the upper one as the charge

sensor. (b) The 3D schematic model of the device.
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layer in the leads strongly screened the capacitance from antenna to both islands,

preventing effective charge sensing. We therefore found that a directly coupled

device, as shown in Figure 5.1, was the most effective.

Charge sensing of the quantum dot by the SET is performed by measuring

both devices simultaneously, as depicted in Figure 5.2(a). Using the SET plunger

gate PS we tune the current IS of the SET to the edge of a Coulomb peak, where

the transconductance dIS/dVPD is high, thus enabling the detection of single-

electron transfers in the quantum dot, the latter controlled using its plunger gate

PD.

z-1

+

+

z-1-β

γ/ΔVPD

-ΔVPD

iS

AC

VPS

Controller

VPS IS 

VPD

PS 

PD

SET 

DOT 

PS PD

DOTSET 
ISLAND

CPS CPD

(a)

(c)

AC  = CPD /CPS

z
y

(b)

Figure 5.2: Feedback Controller Block Diagram - (a, b) Block diagram

of the second-order feedback control system used to ensure stable and continuous

charge sensing of the quantum dot by the SET sensor. (c) Physical interpretation

of mutual capacitance ratio, AC = CPD/CPS.
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5. DYNAMICALLY CONTROLLED CHARGE SENSING

5.3 Charge Sensing Results for a Single QD

Figure 5.3(a) shows the correlated signals of the quantum dot current ID (black

line) and the sensor current, IS, with both uncompensated (magenta) and fixed

compensated (dark blue) sensor control. When there is a single-electron transfer

in the quantum dot (corresponding to a Coulomb peak in ID), an abrupt change

appears in the sensor current trace IS (uncompensated). As we reduce VPD, IS

will gradually shift away from the Coulomb peak edge because the sensor island

is capacitively coupled to the dot plunger. Hence, this does not give a uniform

single-electron transfer detection signal.

Fixed compensation improves the sensitivity of the charge sensing technique,

leading to the dark blue trace in Figure 5.3(a). Here, we adjust the sensor gate

voltage by ∆VPS, in proportion to ∆VPD at a fixed ratio. The sensor current

IS now operates within a fixed range, keeping approximately the same position

near the edge of the Coulomb peak. The transconductance dIS/dVPD of the sensor

current, obtained numerically, is plotted as an orange trace in Figure 5.3(a). Each

time the occupancy of the quantum dot changes by one electron it produces a

sharp negative peak in dIS/dVPD. The sensor also detects an additional charge

movement near VPD = 1.46 V, whereas ID does not show any corresponding

transport current through the dot.

We are able to distinguish the main (gate-defined) quantum dot from other

unintentional (disorder-induced) dots or traps by observing the difference in am-

plitudes and the positions of the charge sensing signals. Arrow in Figure 5.3(a)

indicate the detection of a charge upset outside the main dot. The Coulomb peaks

in ID have a regular pattern, whereas the observed ‘trap’charging signal is between
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Figure 5.3: Charge Sensor and Transport Currents - (a) SET sensor cur-

rent IS without compensation (magenta) and dot transport current ID (black).

Fixed compensation is applied by linearly adjusting the sensor gate potential VPS

and the compensated IS (dark blue) then operates within a fixed range, with a cor-

responding transconductance dIS/dVPD (orange). (b) Sensor error current iS with

dynamic feedback compensation applied while ramping VPD up (red) and down

(green), with 5 overlaid traces. And modelled iS for the same range of experimen-

tal parameters. IS operating point is set to I0 = 50 pA and the traces have been

offset for clarity. Here, β = 4 MΩ and γ = 80 kΩ.
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5. DYNAMICALLY CONTROLLED CHARGE SENSING

two Coulomb peaks and is not visible in ID. The ability to distinguish the origin

of charge movements makes SET or QPC sensing a valuable characterisation tool

for the study of quantum dots and has motivated its use in many experiments

discussed earlier [33, 46, 51, 52, 53, 54, 55, 60, 61, 91, 107, 108, 109, 110, 111].

Despite its utility, fixed compensation of the charge sensor suffers from two

significant problems: (i) the effect of slow charge drifts; and (ii) sudden and

random charge upset in the environment that cause significant changes in the

sensor current and which cannot be compensated for. Maintaining the stability

of the charge sensor output over a long period of time is therefore difficult without

some form of feedback. Here, dynamic feedback is used to control the charge sen-

sor and correct for both of the fore-mentioned problems. A computer-controlled

second-order feedback algorithm adjusts the plunger gate PS of the charge sensor,

by taking IS as the feedback signal and re-tuning VPS for each sample x being

measured.

Figure 5.2 (a) shows the block diagram for this dynamically-controlled charge

sensor, which can be described by the following equations:

VPS[x+ 1] = VPS[x]− βiS[x]−∆VPDAC[x] (5.1a)

AC[x+ 1] = AC[x] +
γ

∆VPD

iS[x] (5.1b)

Here, ∆VPD is the dot-plunger-gate step size and AC = CPD/CPS is the mutual

capacitance ratio between the dot-plunger PD to sensor island and the sensor-

plunger PS to sensor island (see Figure 5.2(c)). The parameter β controls the

first-order feedback, which governs the decay rate of the error current, iS =

IS − I0, where I0 is the sensor ac operating point. Note that when we apply
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5.3 Charge Sensing Results for a Single QD

fixed compensation we have β = 0 and AC is constant. In practice, AC can also

experience sudden changes in the presence of charge upset and the parameter γ

governs the decay rate of AC back to its steady-state value after an upset. Both β

and γ are chosen to give a feedback system with good stability and a reasonable

response time, while ensuring that IS operates at the desired operating point I0.

Charge sensing results with dynamic feedback control are shown in Figure

5.3(b). Five overlaid traces for two opposing gate sweep directions are shown.

When we increase the dot-plunger voltage VPD(red traces), the charge sensor

detects electrons loading into the quantum dot, and a sudden decrease in iS

occurs for each loading event. This drop triggers the feedback system to increase

VPS in order to pull IS back to the operating point I0. In contrast, when we

increase the dot-plunger voltage VPD(green traces), an electron moving out of

the dot causes a sudden increase in iS. The feedback mechanism then gradually

decreases IS back to I0. Figure 5.3(b) also shows the modeled values using the

same parameters as the controller and the measured physical properties of the

device. Good agreement between the model and the experimental results confirms

that the feedback system is working as designed.

In the experimental data of Figure 5.3(b) we observe a large upset event in the

up-sweep (red trace) at VPD ∼ 1.35 V, corresponding to what must have been a

large and random charge upset in the device. Significantly, the feedback control

enabled the sensor current IS to return to its optimal operating point I0 after

this event, meaning that charge sensing could then continue. With only fixed

compensation applied, such a dramatic upset would most likely have shifted the

sensor to a near zero current and charge sensing would have been significantly

impeded. This demonstrates the utility of the dynamic feedback compensation
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5. DYNAMICALLY CONTROLLED CHARGE SENSING

for charge sensing over long time periods, which is often necessary in order to

fully characterise a quantum dot system or other nanostructures.

In order to further assess the robustness of the technique we studied the charge

state of the quantum dot by mapping the sensor error current iS as a function of

the dot plunger gate VPD and one of the dot barrier gates VB2 – see Figure 5.4(a).

The interlaced positive (negative) sweeps of the plunger gate voltage produce dips

(peaks) in iS, thus mapping the charge transitions in the quantum dot. We set

the grey scale in the map in such a way that loading (unloading) of an electron

appears as a white (black) pixel in Figure 5.4((a). Randomly occurring white and

black pixels corresponds to charging and ionisation of charge traps. This data

was obtained over 10 hours and the level of sensitivity and sensor operating point

remained constant over this entire period, despite the occurrence of a number of

upset events.

Several interesting features are observed in Figure 5.4(a). The main quantum

dot contains no electron on the far left side of the plot, since there are no more

charge transitions. The first two transition lines have a different slope to the

other regular ones. We believe that at low VPD, the shape of the potential well

in the quantum dot may have deformed due to the presence of local disorder.

This changes the coupling of the dot-plunger gate to the quantum dot resulting

in a different slope. Another feature observed is the hysteresis present when

loading/unloading the first two electrons, with the loading and unloading events

occurring at different values of VPD. The red arrows show the intersections of the

main transitions and a line where hysteresis occurs. The origin of this hysteresis

is most likely related to non-equilibrium charge coupling between the main dot

and a nearby charge trap.
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5. DYNAMICALLY CONTROLLED CHARGE SENSING

The mutual capacitance ratio AC calculated by the feedback control system

provides an additional parameter to aid understanding of the quantum dot sys-

tem. It represents the change in CPD with different electron occupancy, assuming

CPS stays constant. Figure 5.4(b) plots AC, obtained simultaneously with the

data in Figure 5.4(a), and supports the assignment N = 0 for the electron occu-

pancy at low gate voltages. When N = 0, CPD increases significantly, due to the

absence of the capacitive screening effect of the electrons in the dot.

We note that a similar SET architecture by Angus et al. [112] demonstrated

the capability of radio-frequency charge detection with sensitivities of better than

10 µe/
√

Hz. Hence, we expect that our SET structure and digital feedback system

should be able to perform time-averaged sensing at MHz bandwidth. However in

this experiment, the electrical setup is designated for low-frequency measurements

only.

5.4 Conclusions

In conclusion, we have used a silicon single electron transistor to demonstrate

charge sensing of a nearby silicon MOS quantum dot. We observed single electron

occupancy of the dot and demonstrated the benefits of dynamic feedback control.

The control algorithm is highly robust against charge drifts and random charge

upset events, enabling measurement stability for long periods (up to hours) and

over a wide range of gate biases. This device architecture and sensing technique

has excellent potential for future experiments such as single-shot electron spin

readout and charge sensing in double quantum dots.
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Chapter 6

Excited State Spectroscopy of

Orbital and Valley Levels

Understanding interactions between orbital and valley quantum states in silicon

nanodevices is crucial in assessing the prospects for spin-based qubits. In this chapter,

we study the energy spectra of a few-electron silicon MOS QD using dynamic charge

sensing and pulsed-voltage spectroscopy. The occupancy of the QD is probed down

to the single-electron level using a nearby single-electron transistor as a charge sensor.

The energy of the first orbital excited state is found to decrease rapidly as the electron

occupancy increases from N = 1 to 4. By monitoring the sequential spin-filling of the

dot, we extract a valley-splitting of ∼230 µeV, irrespective of electron number. This

indicates that favourable conditions for qubit operation are in place in the few-electron

regime.

Parts of this chapter have been published in: C. H. Yang, W. H. Lim, N. S. Lai, A.

Morello and A. S. Dzurak, Physical Review B 86, 115319 (2012).
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6. EXCITED STATE SPECTROSCOPY OF ORBITAL AND
VALLEY LEVELS

6.1 Introduction

In order to assess whether a quantum device shows valley splitting compatible

with use in spin-based quantum computing, orbital and valley spectra must be ex-

tracted. In particular, it is of interest to probe the relative magnitude of the valley

and orbital energy spacing to determine the degree of mixing of these states [100]

and ultimately identify the most appropriate strategy for qubit operation [114].

In this work, we use pulsed-voltage spectroscopy to investigate the excitation

energy spectra of a nearly-closed silicon metal-oxide-semiconductor (MOS) QD

in the few-electron regime (N ≤ 4). In a magnetic field we observe Zeeman shifts

of the ground state, valley excited state, and first orbital excited state that allow

us to determine the sequential spin filling of the N -electron states. Interestingly,

the energy of the first orbital excited state is seen to decrease rapidly as the

dot occupancy increases, whereas a valley splitting of ∼230 µeV is found not

to depend on electron number. This has the significance of guaranteeing the

existence of a well-defined spin-1/2 qubit Hilbert space, sufficiently separated

from higher-energy excitations.

6.2 Device Architecture and Measurement Set-

up

Figure 6.1 shows a scanning electron microscope (SEM) image of a device iden-

tical to the one under study; in the experiments presented here, only the (false)

coloured gates are used. A quantum dot is formed between the left and right

barrier gates (LB, RB) and is independently controlled by the plunger gate (P).

By applying a positive voltage on the lead gate (LD), an electron accumulation
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Figure 6.1: Single Dot with Charge Sensor - SEM image of a quantum dot

integrated with a SET and the measurement set-up. Only colored gates are used

in the experiments.
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reservoir is induced at the Si/SiO2 interface. Electrons from the reservoir can

then tunnel on and off the quantum dot through the left barrier. Next to this

single-lead quantum dot is a single-electron transistor (SET) sensor (S) which

is used to detect the electron tunneling events to/from the quantum dot. The

SET top gate (ST) forms an electron channel from source to drain and the two

underlying barrier gates (SLB, SRB) create tunnel barriers, forming an electron

island in between.

In order to characterise the excitation spectrum [115] of the QD, we make

use of the technique developed by Elzerman and co-workers [106] which com-

bines charge detection and gate pulsing. We apply an ac excitation voltage of

200 µV at fS=173 Hz to the drain of the SET and monitor the sensor current IS

locked-in to fS at the source through a low-noise room temperature preamplifier.

Simultaneously, a train of voltage pulses with amplitude Vpulse is applied to gate

P, in addition to its dc voltage VP, shifting the energy levels of the dot up and

down. This pulse train modulates the sensor current via a cross-capacitance at a

frequency fpulse and the resulting current Ipulse at this frequency is measured with

a second (Pulse) lock-in amplifier, as shown in Figure 6.1. In order to maximise

charge sensitivity in the detector, we employ dynamic compensation, as described

in Yang et al. [116]. We first tune the SET so that the sensor lock-in current IS

is at the edge of a Coulomb peak, where the transconductance dIS/dVST is high

(2 nS). We then monitor the charge state of the quantum dot using the sensor

signal IS while the SET gate voltage VST is dynamically adjusted in order to main-

tain an approximately constant sensor signal IS. This makes our read-out signal

virtually unaffected by slow charge drifts and random charge rearrangements,

which would otherwise prevent optimal bias.
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Figure 6.2: Pulsing Schematic - (a)(b) Schematic energy diagrams during

pulsing of gate P with two different VP offsets.

Figure 6.2(a)(b) show schematic energy diagrams of electrons loading and

unloading the quantum dot through the left barrier while the right barrier is raised

high to completely cut off the channel. The electron tunnel rate is independently

controlled by the left barrier gate voltage VLB. In (b), both the high and low phase

of the pulse are below the Fermi level EF of the electron reservoir. Hence, there is

no change in electron occupancy of the dot and the pulse lock-in detection signal

Ipulse is small, due only to capacitive coupling between the plunger gate and the

sensor. Conversely, in (c), an electron can tunnel into the quantum dot from the

reservoir during the high phase of the pulse (low in potential) and tunnel off when

the pulse phase is low (high in potential). This change of electron occupancy in

the dot induces a much larger lock-in detection signal Ipulse.
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Figure 6.3: Charge Stability Diagram via Charge Sensor - (a) SET sensor

lock-in current IS vs. VP and VRB, mapping out the charge stability plot of the

quantum dot. Dynamic compensation is applied to the SET sensor. (b) Measured

pulse lock-in signal Ipulse from SET sensor with a symmetric square wave of peak-

to-peak voltage Vpulse = 2 mV applied to dot plunger P at fpulse=487 Hz. The first

charge transition is not visible because the tunnel rate into/out of dot is too low

with respect to fpulse.
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6.3 Quantum Dot Occupancy and Measurement of Excited States

6.3 Quantum Dot Occupancy and Measurement

of Excited States

Figure 6.3(a) shows the measured QD charge stability map as a function of right

barrier gate voltage VRB and plunger gate voltage VP. As we reduce VP, the num-

ber of electrons in the quantum dot is reduced one by one until we observe no

more charge transitions in the stability map. The charging energy of the dot is

around 10 meV for high occupancy and increases significantly (up to 20 meV) in

the few-electron regime. This indicates that the dot size is dramatically affected

by the number of electrons at low N and strongly suggests that we have achieved

the few-electron regime. In light of this, we believe that the last transition ob-

served is likely to be ascribed to the last electron (N = 0). Simultaneously, we

measure the pulse lock-in detection signal Ipulse when a symmetric square wave

with Vpulse of 2 mV and fpulse=487 Hz is applied to gate P, and the resulting

stability map is plotted in Figure 6.3(b). Identical charge transitions are de-

tected using Ipulse, but with an improved signal-to-noise ratio compared with the

sensor signal IS plotted in Figure 6.3(a). This allows us to detect a number of

extra transitions which are believed to originate from charge impurities nearby

the sensor. Indeed, these features have different slopes with respect to the main

ones and their signal strength is significantly reduced. This indicates that the

originating charge displacement is elsewhere located in the substrate with respect

to the gate-defined QD.

Towards the one-electron limit, as the dot potential well becomes shallower

and the tunnel barrier widens, the tunnel rate decreases. Here, the tunnel rate

for the first electron falls significantly below 974 Hz (2×fpulse Hz) and so the
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N=0↔1 transition is not visible in Figure 6.3(b). Although electron tunneling

is allowed energetically (see Figure 6.3(a)), the high pulsing frequency used does

not provide an electron with sufficient time to tunnel onto/off the dot. In this

case, the tunneling time is longer than 1 ms.

0

10

20

30
dIpulse

1.25 1.28

20

10

−5

0

5

30

I p
u

ls
e 

(p
A

)

V
p

u
ls

e 
(m

V
)

VP (V)

(a) (b)

N=2 N=3
20 mV

G3

E3

dVP

(arb. units) 

1.25 1.28
VP (V)

Figure 6.4: Observation of Excited state via Charge Sensor - (a) Lock-in

detection signal, with Vpulse = 20 mV, at fpulse=444 Hz for N = 2↔ 3 transition,

extracted along the yellow dashed line in (d) at Vpulse = 20 mV. The red arrow

indicates the orbital excited state. (b) Derivative of the detection signal with

respect to VP. Orbital ground and excited states are observed at the loading edge

as white parallel lines.

In order to observe the excited states of the dot, we increase Vpulse to 20 mV

as shown in Figure 6.4(a, b) for the N = 2 ↔ 3 transition. The pulse lock-in

signal Ipulse increases as soon as the three-electron ground state is pulsed below

EF (green arrow in Figure 6.4(a)). The signal then decays slowly with increasing

VP indicating a decrease in tunnel rate as the ground state moves away from

resonance with the Fermi level. When the three-electron excited state is pulsed

below EF the tunnel rate rises rapidly again, resulting in a second increase in the

detection signal (red arrow in Figure 6.4(a)). When we increase VP further, so

N = 3 at both pulse levels, the signal falls low again since the tunneling events
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are energetically forbidden due to Coulomb blockade. Figure 6.4(b) shows the

derivative dIpulse/dVP of the pulse lock-in detection signal as a function of Vpulse

and VP. The left white line represents the ground-state loading edge. The second

white line in parallel with the ground state is the excited state loading edge, while

the unloading edge appears as a black line. Here by loading (unloading) edge we

refer to the potential configuration for which an electron can start to occupy an

energy level in the upper phase of the pulse (not) being allowed to empty it during

the lower phase.

6.4 Orbital State Spectrum

We next study in detail the orbital excited states for the first few electrons by

increasing Vpulse to 40 mV and plotting the charge stability diagram of the dot

as a function of VLB and VP in Figure 6.5(a). We identify these excited states

as orbital states, as opposed to valley states, because their energies are much

larger than the valley splitting in our device (∼230 µeV), as we shall show in the

next section. In Figure 6.5(a), we have converted the pulse lock-in signal Ipulse

to a corresponding average change of electron occupancy ∆N in the dot using a

simple linear map. We identify ∆N = 1 as the level where Ipulse saturates, which

occurs when the tunnel rate significantly exceeds the pulse frequency fpulse, as

seen in Figure 6.4(a) at VP beyond the E3 riser. Note that ∆N = 2 where

two transitions overlap, as the pulsing level exceeds the charging energy allowing

occupancy to change by two electrons. The ground states and the orbital excited

states of the first four electron transitions are highlighted by green and red lines,

respectively. We also observe a decrease in tunnel rate as we decrease VLB (thus
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Figure 6.5: Excited state observation through pulse lock-in - (a) Lock-in

signal from sensor S with Vpulse=40 mV at fpulse=487 Hz applied to gate P, as a

function of VP and VLB. Here we apply a linear scaling of the lock-in output to

directly indicate the excess electron occupancy ∆N on the dot. INSET: different

region focusing on the first transition shown to enhance visibility of both excited

state and unloading edge. (b) Orbital excited-state energy of the first 4 electrons

at VLB=0.3 V. (c) Positions of ∆N = 0.5 for ground states (GS) and first excited

states (OS). These points are extracted from panel (a) where the tunnel rate from

the reservoir to the dot is around 974 Hz.
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increasing the barrier height), resulting in ∆N → 0 as the tunnel rate falls below

fpulse. In Figure 6.5(b), we plot the first orbital excited state energy EOrb with

respect to the electron number N , extracted from Figure 6.5(a). Note that the

energy conversion factor, α ∼ = 0.3 eV/V, is derived from considerations relevant

to valley splitting measurements, as discussed next. As VP is reduced, the dot

becomes smaller leading to an increase in the orbital level spacing from 1 meV

for N = 4, to 8 meV for N = 1.

In Figure 6.5(c), we plot the positions in gate voltage space (VLB; VP) cor-

responding to ∆N = 0.5 for the ground and orbital excited states N = 1 to 5.

These are the points where the tunnel rates are comparable to the pulse frequency

fpulse. As the dot occupancy increases, a greater barrier height (or lower VLB) is

required to maintain a constant tunnel rate. We note that both the ground states

(GS) and the orbital excited states (OS) follow regular trend lines, except for the

N = 5 ground state, which appears more like an orbital excited state. This is

due to the ground orbital levels being full with electrons and starting to fill the

next orbital.

6.5 Spin and Valley Level Filling

We now study the spin filling of the first four electrons into the valley states of the

quantum dot by examining the Zeeman shifts of the ground and excited states in

a magnetic field parallel to the oxide interface in the range -6 T < B < 6 T, as

shown in Figure 6.6(a). Here we set Vpulse = 20 mV and plot the derivative of the

pulse lock-in current, dIpulse/dVP. The data reveals a number of levels, including

spin ground and excited states, for what appear to be two distinct valley levels,
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Figure 6.6: Magneto-spectroscopy of the first 4 electrons - (a) Grey-scale

plot of the QD differential occupancy (∆2N) in magnetic field for the first 4 electron

transitions at Vpulse =20 mV and fpulse=487 Hz. Orbital excited states, Zeeman

splittings and valley-orbit splitting are observed. V ′P represents arbitrarily shifted

VP. (b) Schematic of the evolution of two non-degenerate valley eigenstates for

positive B-field. V1 (V1’) and V2 (V2’) represent loading (unloading) edge states.

Each valley state Zeeman splits into two levels at finite B-fields. The blue dots

represent already-occupied electron states.
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as we explain below.

We first consider the unloading edge of the charge transitions, which appear

as dark lines in Figure 6.6(a). For the first transition (N = 0↔ 1), the unloading

edge moves towards less positive VP with increasing magnetic field |B|, indicating

that the first electron is spin-down |↓〉. Assuming that the g-factor = 2 for

electrons in silicon and using the Zeeman energy equation 1
2
gµBB, where µB

is the Bohr magneton, we fit the energy change of the unloading edge. This

results in a plunger gate voltage to energy conversion factor, α ∼ 0.3 eV/V.

This is consistent with values for a similar quantum dot reported in Ref. [15].

Note that the evaluation of the α-factor from the Zeeman splitting is a robust

approach in Si-based systems. Because of the weak spin-orbit coupling [117], only

very small deviations (less than 1%) of the g-factor from the free-electron value

are observed in Si, as opposed to the case of III-V semiconductors where much

larger deviations are found. Next, we analyze the unloading edge of the second

transition (N = 1 ↔ 2). The energy level first increases with magnetic field for

|B| < 2 T, indicating that a spin-up electron was unloaded, and then decreases

with |B| above ∼ 2 T. This indicates that the N = 2 ground state changes from

a singlet 1√
2
(|↓↑〉 − |↑↓〉) at low B, to a triplet |↓↓〉 for |B| > 2 T. A similar kink

at |B| ∼ 2 T (marked by a yellow arrow) is observed for the third transition

(N = 2↔ 3), although here the unloading edge moves downwards at low |B| and

then upwards at high |B|. Finally, the unloading edge of the fourth transition

(N = 3↔ 4) rises linearly with |B|, consistent with a spin-up electron unloading

for all magnetic fields up to 6 T.

In order to explain these data, we use a model based on two non-degenerate

valley states (V1, V2) whose spin-states depend on B field according to the Zeeman
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energy equation (Figure 6.6(b)). This model relies on the fact that bulk silicon

has six degenerate valleys, but when confined to two dimensions, such as a Si/SiO2

interface, these separate into four valleys with high effective mass and two lower-

energy Γ-valleys [87]. The Γ-valleys are also non-degenerate with a splitting

∆EV = EV2 − EV1 that is typically well below 1 meV. In previous ground-state

magneto-spectroscopy studies on a similar dot we found ∆EV ∼ 0.1 meV [88],

which we note is much smaller than the first orbital excited state energies (EOrb

= 1−8 meV) as long as dot occupancy is kept low (N ≤ 4). From Figure 6.6(b),

we see that the first electron fills the lower valley V1 as spin-down for all B.

When the second electron loads (N = 1↔ 2 transition) it will fill V1 as spin-up

at low values of |B|, forming a spin singlet 1√
2
(|↓↑〉 − |↑↓〉), however at large |B|,

when the Zeeman energy exceeds the valley splitting ∆EV, it will preferentially

load into the upper valley V2 as spin-down, to form a triplet state |↓↓〉. Moving

to the third electron, we see that it will fill as spin-down in valley V2 for low

|B|, and then as spin-up in valley V1 once the Zeeman energy exceeds ∆EV. The

fourth electron always fills as spin-up in valley V2, unless there is a nearby orbital

state (within the Zeeman energy), which is likely to be the case for higher dot

occupancy than currently reported (N > 4). In Figure 6.6(a) we can clearly see

the orbital excited states (white lines) between the loading and unloading edges.

They predominantly move downwards with the Zeeman energy, implying that

they load spin-down electrons.

We find that the level crossings in Figure 6.6 (marked by yellow arrows) occur

at |B| ∼ 2 T for N = 1..3, indicating that the valley splitting ∆EV = gµBB ∼

230 µeV remains approximately constant for small electron occupancy. This value

is roughly double the valley splitting we observed in a previous device [88], most
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likely due to the larger electric fields employed in the present study [118]. The

observation of a valley splitting that is independent of electron number confirms

the prediction [66] that the valley exchange Coulomb integral is negligible.

The ground-state loading edges (lower white lines in Figure 6.6(a)) for transi-

tions 2 to 4 show the same trends in magnetic field as the unloading edges. How-

ever, for the first transition (N = 0 ↔ 1) the ground state (marked by a green

dashed line) is not visible. We know this state is present because the distance

between the loading and unloading edge must equal Vpulse = 20 mV. We believe

this is due to a very low (loading) tunnel rate, which we previously observed for

low electron occupancy in Figure 6.5(a). Note that the observation of the spin

excited state is compatible with the pulse frequency in use which is chosen to

be higher than the relaxation rate. Indeed, the relaxation rate in the window of

magnetic field applied is expected to be in the range 0.1 - 10 Hz [36, 92], whereas

we use pulse sequences of few hundreds of Hz. This accounts for the kink at 2 T

formed by the lower valley spin up state and the upper valley spin down state.

Finally, we consider the N = 5 ground state, which has a tunnel rate that follows

the trend for the orbital excited states for N = 1 to 4, as shown in Figure 6.5(c).

We can now understand this in terms of a shell structure, where the first four

electrons fill the spin and valley states of the lowest orbital, and the fifth electron

occupies the next available orbital level. This is consistent with a shell structure

of N = 4 observed in other silicon quantum dots [88, 89].

The origin of orbital and valley states are also described in Figure 2.14. As

for the complete shell structure of a 2D QD, see Chapter 7 on descriptions of 2D

Fock-Darwin states (Figure 7.3).
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6.6 Conclusions

In conclusion, we have demonstrated excited state spectroscopy of a nearly-closed

silicon quantum dot using charge sensing and a pulsed-gating technique, thus

enabling clear identification of the spin, valley and orbital states for the first four

electrons. As the occupancy increased from N = 1 to 4 electrons, we found that

the valley splitting for the lowest orbital level remained approximately constant

at 230 µeV, while the next orbital level energy decreased from 8 meV to 1 meV.

Given the increasing interest in quantum information processing using spin and

valley states in silicon quantum dots [66], it is important that the multi-valley

level structure of these systems is well characterised experimentally.
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Chapter 7

Spin-Valley Lifetimes in a QD

with Tunable Valley Splitting

This chapter demonstrates that valley separation can be accurately tuned via elec-

trostatic gate control in a MOS QD, providing splittings spanning 0.3 - 0.8 meV. The

splitting varies linearly with applied electric field, with a ratio in agreement with atom-

istic tight-binding predictions. We demonstrate single-shot spin readout and measure

the spin relaxation for different valley configurations and dot occupancies, finding one-

electron lifetimes exceeding 2 seconds. Spin relaxation occurs via phonon emission due

to spin-orbit coupling between the valley states, a process not previously anticipated

for silicon QDs.

An analytical theory describes the magnetic field dependence of the relaxation rate,

including the presence of a dramatic rate enhancement (or hot-spot) when Zeeman and

valley splittings coincide.

Parts of this chapter have been published in: C. H. Yang, A. Rossi, R. Ruskov,

N. S. Lai, F. A. Mohiyaddin, S. Lee, C. Tahan, G. Klimeck, A. Morello and A. S.

Dzurak, Nature Communications 4, 2069 (2013). Rusko Ruskov and Charles Tahan

from the Laboratory for Physical Sciences in Maryland are acknowledged for their

development of the detailed theory explaining the spin-valley state mixing presented

here in Section 7.4.
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7. SPIN-VALLEY LIFETIMES IN A QD WITH TUNABLE
VALLEY SPLITTING

7.1 Introduction

In order to define a robust spin-1/2 qubit Hilbert space, it is necessary that the

energy scale of the two-level system is well separated from higher excitations. In

this respect, a major challenge for the use of silicon is represented by the multi-

valley nature of its conduction band. The Γ valley degeneracy is generally lifted

by a sharp perpendicular potential [65, 118, 119, 120] and the relevant energy

separation is termed the valley splitting (VS).

The valley splitting depends on physics at the atomic scale [121, 122, 123]

(e.g. roughness, alloy and interface disorder), and so it is not surprising that

experiments have revealed a large variability of splittings among devices, ranging

from hundreds of µeV [67, 87, 124, 125] up to tens of meV in exceptional cases [68].

At present, the lack of a reliable experimental strategy to achieve control over

the VS is driving an intense research effort for the development of devices that

can assure robust electron spin qubits by minimising multi-valley detrimental

effects [114, 126], or even exploit the valley degree of freedom [127, 128] for new

types of qubits.

Another crucial parameter to assess the suitability of a physical system to en-

code spin-based qubits is the relaxation time of spin excited states (T1). Spin life-

times have been measured for gate-defined Si quantum dots (QDs) [92], Si/SiGe

QDs [36, 129] and donors in Si [46], reporting values which span from a few mil-

liseconds to a few seconds. Furthermore, the dependence of the spin relaxation

rate (T−1
1 ) on an externally-applied magnetic field (B) has been investigated. Dif-

ferent mechanisms apply to donors and QDs, accounting for observed T−1
1 ∝ B5

and B7 dependencies [130], respectively. In principle, T−1
1 (B) depends on the
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valley configuration and the details of the excited states above the spin ground

state. However, until now, no experimental observation of the effects of a variable

VS on the relaxation rate has been reported.

In this chapter we show the first experimental demonstration that the valley

splitting in a silicon QD can be finely tuned by direct control of an electrostatic

gate potential. We find that the dependence of the VS on vertical electric field at

the Si/SiO2 interface is strikingly linear, and show that its tunability is in excellent

agreement with atomistic tight-binding predictions. We demonstrate accurate

control of the VS over a range of about 500 µeV and use it to explore the physics

of spin relaxation for different QD occupancies (N=1, 2, 3). We probe both the

regime where the VS is much larger than the Zeeman splitting at all magnetic

fields and that where the valley and spin splittings are comparable. We observe a

dramatic enhancement of the spin decay rate (relaxation hot-spot) when spin and

valley splittings coincide. To our knowledge, such hot-spots have been predicted

for relaxation involving orbital states [42, 47] (not valley states), but these are yet

to be observed. An analytic theory that explains the B-field dependence of the

relaxation rates and the details of the relaxation hot-spot in terms of admixing

of spin-valley states is presented in Section 7.4. This mechanism is seen to be

significantly more prominent than the conventional spin-orbit hybridisation [28].

7.2 Quantum Dot Occupancy and Shell Struc-

ture

Our device is fabricated using a multi-level gated metal-oxide-semiconductor

(MOS) technology [14](Chapter 3.1), and its architecture is depicted in Fig-
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Figure 7.1: Device architecture - (a) Schematic (top view) of the device’s

gate layout. Different colours represent different layers within the gate stack. (b)

Schematic diagram of the single-lead QD (left) and SET detector (right). Regions

where an electron layer is formed are coloured in orange. The readout signal (ISET)

is sensitive to the QD charge state due to the QD/SET capacitive coupling (Ccpl).

(c) Device cross-sectional schematic. An electron layer is formed underneath the

positively biased gates: R1 and R2 define the QD reservoir; P controls the QD

population; and ST the sensor’s island. The SiO2 layer (in purple) thickness and

plunger gate width are indicated. (d) Energy diagram showing qualitatively the

conduction band profile in the device. Electrons accumulate wherever the gate bias

lowers the conduction band below the Fermi level, EF. (e) Device SEM image with

the corresponding color gates.
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Figure 7.2: Device architecture 3D view - Schematic (3D view) of the device

with gates and electron layers.
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ure 7.1(a)-(d), and Figure 7.2. A quantum dot is formed under gate P by applying

a positive bias voltage to induce an electron accumulation layer. Strong planar

confinement for the dot’s potential well is achieved by negatively biasing gates

B, C1 and C2. A 2DEG reservoir is also induced by positively biasing gates R1

and R2, and the QD occupancy can be modified by inducing electrons to tunnel

between this reservoir and the dot. The remaining gates, namely SB1, SB2, ST,

are employed to define a single-electron transistor (SET), capacitively coupled to

the QD and used as a read-out device. The high flexibility of our design would

allow us to use the same device also as a (single-lead) double dot structure by re-

arranging the gate bias (e.g. dots can be formed under gates B and C2). However,

in this work, we only present results relevant to the single-dot configuration.

In order to characterise the addition spectrum of the QD, we make use of a

technique previously developed for GaAs-based systems which combines charge

detection and gate pulsing [33]. There is no direct transport through the single-

lead QD and, therefore, addition/removal of charge is only detected via modi-

fications in the SET current. In particular, charge transitions are detected as

current peaks in the SET signal whenever the QD energy eigenstates come into

resonance with the reservoir’s Fermi level. Note that the SET-QD coupling is

merely capacitive (via Ccpl) and electrons do not tunnel between them. In or-

der to maximise charge sensitivity in the detector, we employ dynamic voltage

compensation [116] on different gates which makes our read-out signal virtually

unaffected by slow charge drifts and random charge rearrangements.

Figure 7.3(a) shows the measured stability map as a function of plunger gate

voltage, VP, and barrier gate voltage, VB. Current peaks in the lock-in signal

indicate the occurrence of charge transitions due to tunnelling between the QD
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Figure 7.3: Filling energy of the QD - (a) Stability map as a function of

plunger gate voltage, VP, and barrier gate voltage, VB. Current peaks in the lock-

in signal indicate the occurrence of charge transitions due to tunnelling between

the QD and the reservoir. (b) Charging energy across the blue dotted line in (a), as

a function of electron number. Spikes corresponding to complete 2D shell filling are

observed. (c) Schematic of electron filling for two-valley 2D Fock-Darwin states.

Each state can hold two electrons of antiparallel spin and is identified by a pair of

quantum numbers (n, l) and its valley occupancy (v).
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and the reservoir. We have converted this signal into an average change of oc-

cupancy [131], ∆N , which is shown in the grey-scale plot. For each transition,

we can also probe the first orbital excited state whenever a slow decrease in the

detection signal is followed by a steep rise [131]. We observe charge additions for

the first fourteen electrons in the dot. We determine the voltage to energy con-

version factor, α, for gate P via temperature dependence measurement on charge

transitions and we find α ≈ 0.16 eV/V.

Figure 7.3(b) illustrates the addition energy spectrum for the first fourteen

electron additions to the QD, from the dashed horizontal line where VB=0.2V.

There is very little variation of charging energy (EC) for high occupancies (EC ≈ 11

meV for N > 9). However, by decreasing the electron number, the charging en-

ergy steadily increases, as expected when the dot size is significantly affected by

the electron number. This evidently indicates that the few-electron regime has

been achieved. Most interestingly, the energy spectrum shows peaks for the ad-

dition of the 5th and 13th electrons. The extra addition energy needed for those

transitions can be attributed to complete filling of the first and second orbital

shells. As illustrated in Figure 7.3(c), this is consistent with the energy spectrum

of two-valley 2D Fock-Darwin states [49], where the first and second orbital shells

hold 4 and 8 electrons respectively. This confirms that we can probe the occu-

pancy until the last electron. To our knowledge, such a clear manifestation of

two-dimensional shell structure has been observed before only in InGaAs dots [48]

and in Si/SiGe dots [89].
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7.3 Single-Shot Spin Readout and Spin-Valley

Lifetimes for N = 1 Electron

In order to measure the spin state of individual electrons in the QD, we use

an energy-selective readout technique [106]. In our experiments the B-field is

directed along the [110] crystallographic axis. The readout protocol consists of

three phases clocked by a three-level pulsed voltage applied to gate P, which

directly controls the dot’s electrochemical potential (see Figure 7.4 (a)).

Firstly, an electron of unknown spin is loaded into the dot causing a sudden

decrease in the sensor current. Next, the potential of the dot is lifted so that the

Fermi level of the reservoir lies between the spin-up and spin-down states of the

dot, meaning that a spin-up electron can tunnel off the dot while a spin-down

electron is blocked. This is the read phase, during which the presence of a spin-

up state would be signalled by a current transient (spin-up tunnels out and then

spin-down tunnels in) whereas a spin-down electron would lead to no current

modification. Finally, the dot’s potential is further lifted to allow the electron to

tunnel off, regardless of its spin orientation. In Figure 7.4 (b) single-shot traces

for both spin-up (in blue) and spin-down (in green) detection are plotted. The

longer the system is held in the load phase before performing a read operation,

the more likely it is for the spin-up excited state to decay to the spin-down ground

state.

Figure 7.4 (c) shows the QD occupancy averaged over 256 single-shot traces

for varying read levels at B=3T (note that the energy scale on the y-axis is the

effective shift of the dot’s potential). This detection of a spin-up electron transient

is seen to extend for about 350µeV, as expected from the Zeeman equation,
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Figure 7.4: Spin readout for single-electron occupancy. - (a) Schematic

diagram showing the effect of the 3-level pulse sequence on the electro-chemical

potential of the dot. Energy levels in the QD are Zeeman split according to spin

polarisation and valley degeneracy is lifted. For clarity, only lower valley states are

shown to be loaded/unloaded. (b) Pulsing sequence (top) for the single-shot spin

readout and normalised SET signal for spin-up (middle) and spin-down (bottom).

(c) QD occupancy averaged over 256 single-shot traces for varying read levels at

B=3T. (d) Fitted spin-up probability with various B field, then extracted as spin

lifetime.
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EZ = gµBB, by assuming g = 2. The field dependence of the measured EZ(B)

also shows good agreement with the Zeeman equation. This proves that we can

reliably load/unload electrons onto spin-split single-particle states. Thus, by

varying the length of the load phase and monitoring the probability of detecting

a spin-up electron, we can determine [46, 106] the spin lifetime, T1, as shown in

Figure 7.4 (d).

As shown in Figure 7.5 (b), we observe a wide range of spin lifetimes as

a function of magnetic field, with lifetimes as long as 2.6s at the lowest fields

studied, B=1.25T. These are some of the longest lifetimes observed to date in

silicon quantum dots [130].

A key focus of our experiment was to electrostatically tune the valley energy

separation and measure relaxation rates in different valley configurations and QD

electron occupancies. As we show below, our data definitively indicate that excited

valley states play a critical role in the spin relaxation processes. We develop a

theory to explain how changes in the valley splitting affects the spin-valley state

mixing and leads to the observed relaxation times.

As we detail in Section 7.6, we have attained accurate gate control of the

valley splitting, allowing us to tune it over a range of hundreds of µeV. This

permits us to conduct experiments in regimes where the valley splitting (EVS) is

either larger or smaller than the Zeeman spin splitting (EZ), depending on the

magnitude of the magnetic field (see Figure 7.5 (a)).

Figure 7.5 (b) presents measurements of spin relaxation rates as a function of

magnetic field for two valley splitting values at a fixed dot population of N = 1.

We start by examining a configuration where the valley separation is larger than

the spin splitting at all fields (green data set). In other words, we operate in a
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Figure 7.5: Energy spectrum and spin relaxation rates for single-electron

occupancy. - (a) Energy diagram of the 1-electron spin-valley states as a function

of B-field. Maximum mixing of spin and valley degrees of freedom occurs at the

anticrossing point where Zeeman and valley splittings coincide. Relevant relax-

ation processes are sketched. (b) Relaxation rates as a function of magnetic field

for different valley splittings. Data points for EVS = 0.75meV, EVS = 0.33meV

are shown as green and red circles, respectively. Dashed lines are the calculated

relaxation rates fitted with r=1.7 nm (green), r=1.1 nm (red).
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7.4 Theory of Spin-Valley Mixing in a Silicon QD

regime for which

EVS > EZ = gµBB (7.1)

where g is the electron gyromagnetic ratio, µB is the Bohr magneton and B is

the applied in-plane magnetic field.

For EVS=0.75 meV (green data in Figure 7.5 (b)), we observe a monotonic

increase of the rate with respect to B that becomes increasingly fast as EZ ap-

proaches EVS. In our experimental conditions (B-field parallel to [110]), the

T−1
1 ∝ B5 dependences for known bulk-like mechanisms in silicon [43, 132] should

not apply, while predicted [44, 47, 129, 130] rates ∝ B7 do not explain the ex-

perimental data.

By decreasing the valley separation to EVS =0.33 meV, we can achieve the

condition where the Zeeman splitting matches or exceeds the valley splitting.

The red data in Figure 7.5 (b) illustrate the situation where inequality (1) only

holds for B < 2.8T. When EZ = EVS (i.e. for B=2.8T), a spike in the relaxation

rate occurs. Relaxation hot-spots have been previously predicted to occur for spin

relaxation involving orbital states in single and coupled QDs [42, 47, 133, 134]. To

our knowledge, this is the first experimental observation of such a phenomenon,

where the valley excited state is dominantly affecting the spin relaxation time

around the hot-spot, and creates a more complicated field dependency on T1.

7.4 Theory of Spin-Valley Mixing in a Silicon

QD

In order to understand the relaxation mechanisms, we developed a model that

takes into account the perturbations in pure spin states due to spin-orbit coupling
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(SOC), yielding eigenstates which are admixtures of spin and valley states. The

four lowest spin-valley states [(see Figure 7.5(a)) are defined as |1〉 = |v−, ↓〉,

|2〉 = |v−, ↑〉, |3〉 = |v+, ↓〉, |4〉 = |v+, ↑〉. These states are considered to be only

very weakly affected by higher excitations, such as orbital levels which are at

least 8 meV above the ground state in our device in Chapter 6 [131]. In [37]

supplementary note, we detail how mixing to a 2p-like orbital state leads to a B7

dependence in T−1
1 and is, therefore, important mainly for high B-fields (above

the anticrossing point). At lower fields, the prominent mechanism is the spin-

valley admixing, which we now discuss in detail.

The relaxation between pure spin states is forbidden because the electron-

phonon interaction does not involve spin flipping. However, in the presence of

interface disorder, SOC can mix states that contain both the valley and spin

degrees of freedom, thus permitting phonon-induced relaxation. Indeed, in the

non-ideal case of QDs with a disordered interface, roughness can perturb the

envelope function of both valleys (otherwise identical for ideal interfaces) and

allows one to assume non-zero dipole matrix elements connecting the valley states

(see [37] supplementary note), such as r−+ ≡ 〈v−|r|v+〉, r−− ≡ 〈v−|r|v−〉, r++ ≡

〈v+|r|v+〉 (for ideal interfaces these are non-zero only due to a strongly suppressed

Umklapp process). By means of perturbation theory, we define renormalised

excited states
∣∣2〉 and

∣∣3〉 that can relax to the ground state |1〉, as they have an

admixture of the state |3〉 of the same spin projection (see Figure 7.5(a)). The

details of the SOC Hamiltonian, HSO, and perturbation matrix are reported in

the [37] supplementary note. The leading order wavefunctions are given by:

∣∣2〉(0)
= sin

γ

2
|2〉 − cos

γ

2
|3〉 (7.2)
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∣∣3〉(0)
= cos

γ

2
|2〉+ sin

γ

2
|3〉 (7.3)

where cosγ
2
≡ [1+a

2
]1/2, sinγ

2
≡ [1−a

2
]1/2, and a ≡ −δ/

√
δ2 + ∆2

a is an expression

involving the detuning from the anticrossing point, δ ≡ EVS−EZ, and the energy

splitting at the anticrossing:

∆a = 2|〈v−,↑|HSO|v+,↓〉| = r−+
mtEVS√

2~
(βD − αR) (7.4)

where βD (αR) is the Dresselhaus (Rashba) SOC parameter, ~ is the reduced

Planck’s constant and mt = 0.198me is the transverse effective electron mass.

By evaluating the relaxation rate via the electron-phonon deformation poten-

tials (proportional to the deformation potential constants, Ξd,u), we obtain the

rate below the anticrossing as:

Γ2̄1 = cos2γ

2
Γv′v =

√
δ2 + ∆2

a − δ
2
√
δ2 + ∆2

a

Γv′v (7.5)

where the pure valley relaxation rates are (for longitudinal and transverse phonons):

Γ
(σ)
v′v [∆Ev′v, r] =

∆E5
v′v

4πρ~6

r2

v7
σ

I(σ) (7.6)

where ρ is the silicon mass density, vσ is the speed of sound in silicon, I(l) =

4[Ξ2
u

35
+ 2ΞuΞd

15
+

Ξ2
d

3
], I(t) = 16

105
Ξ2
u are the angular integrals, and ∆Ev′v and r are

the energy difference and the dipole matrix element relevant to the transition,

respectively (see also [37] supplementary note). The experimental condition for

which the hot-spot occurs (i.e. EVS = EZ) is modelled as an anticrossing point

for the mixed states
∣∣2〉 and

∣∣3〉. At that point, spin relaxation is maximised and

Γ2̄1 approaches the valley relaxation rate, as δ → 0 in Equation (7.5).
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Above the anticrossing (i.e. EVS < EZ), the relevant relaxation transitions are∣∣3〉→ |1〉 and
∣∣3〉→ ∣∣2〉 (the subsequent decay

∣∣2〉→ |1〉 is in the form of a fast

inter-valley transition and is, therefore, neglected). The analytical formulations

of these contributions read:

Γ3̄1 = sin2γ

2
Γv′v =

√
δ2 + ∆2

a + δ

2
√
δ2 + ∆2

a

Γv′v (7.7)

Γ3̄2̄ = sin2γ

2
cos2γ

2
Γv′v[∆Ev′v, r−− − r++] (7.8)

The dashed lines in Figure 7.5(b) show the calculated relaxation rates relevant

to the two experimental values of EVS discussed, including also B7 contribution

from SOC mixing with the higher orbital state (see [37] supplementary note).

We use dipole matrix elements as a single free parameter by assuming |r−+| '

|r−− − r++| ≡ r. A least-square fit to the experimental data is performed by

fixing the SOC strength to (βD−αR)≈ 45−60 m/s (justified by the high electric

field ≈ 3×107V/m, see References [135, 136]). The fit then extracts a dipole size

r ≈1-2 nm for both values of EVS.

The good agreement between the calculations and experiment, as well as the

presence of a hot-spot at the point of degeneracy between Zeeman and valley

splitting, provide strong evidence of our ansatz that the spin relaxation is pre-

dominantly due to a new mechanism: that of mixing with the excited valley

states via Rashba/Dresselhaus-like SOC in the presence of interface disorder.

Both the splitting at the anticrossing, Equation (7.4), and the intervalley

relaxation, Equation (7.6), depend crucially on the size of the dipole matrix

element, r, predicting a fast phonon relaxation of ≈ 107 −108 s−1 for r = 1−3 nm,

at the hot-spot of Figure 7.5(b). This confirms our core findings that when spin-
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valley states anticross, the inter-valley rates are fast for these samples, with the

only available relaxation mechanism being the inter-valley decay. We point out

that these relaxation rates are expected to be sample/material-dependent, given

the effect of interface disorder on valley mixing.

7.5 Spin-Valley Relaxation for N = 2 Electron

States

We now examine the case N = 2 electrons, and investigate the dependence of the

relaxation rate on the magnetic field at a fixed valley splitting (EVS=0.58 meV).

We note that the energy levels accessible for loading the second electron in the dot,

when the N = 1 spin-down ground state is already occupied, are either the singlet

(S) or the two lower triplets (T−, T0), while the higher triplet (T+) would require

a spin-flip and is, therefore, not readily accessible (see Figure 7.6(a)). In general,

for triplet states, the antisymmetry of the two-electron wavefunction requires one

electron to occupy a higher energy state. For our multi-valley QD (Figure 7.3

(c)), this requirement is fulfilled when the two electrons occupy different valley

states [(see Figure 7.6 (a)). For low fields, the ground state is S and the triplets

have higher energies. This results in excited states (triplets) that extend over two

valleys and relax to single-valley ground state (singlet).

As the magnetic field is increased, S and T− undergo an avoided crossing

(B ≡ BST), and then T− becomes the ground state. We adjust the levels of our

pulsed readout protocol so that, during the load phase only S and T− are be-

low the reservoir’s Fermi energy, while, during the read phase, the Fermi energy

is positioned within the singlet-triplet (ST) energy gap. As a consequence, for

113

139



7. SPIN-VALLEY LIFETIMES IN A QD WITH TUNABLE
VALLEY SPLITTING

B

Energy

v-

v+
E V

S

| 〉2e

| 〉2e

|3〉2e

S
S

T-

T-
T0

T+

Δa

EZ

δ

(a)

Γ

BST

|S〉 |T-〉

2e

1 2 3 4
|δ|/gμB (T)

N = 2
(c)

T 1
-1

(s
-1

)

B (T)
2 3 4 5 6 7 8

100

101

102

103

B
ST

= 
5.

0T

(b)

N = 2

Figure 7.6: Spin-valley relaxation for 2-electron occupancy. - (a) Energy

diagrams of the 2-electron spin-valley states in the dot’s potential well (left) and as a

function of B-field (right). Dashed line indicates that T+ is not accessible (see text).

(b) Relaxation rate as a function of B-field for N = 2 and EVS = 0.58meV. Red

(blue) crosses represent data points at fields smaller (larger) than the anticrossing

point. Dashed lines are the calculated rates fitted with r2e=4.76 nm. (c) Data

from the (b) re-plotted as a function of the modulus of the detuning energy, δ.
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B < BST (B > BST ) a T− (S) state would be signalled with a current tran-

sient, and relaxation rates can be extracted as for the N = 1 occupancy. The

experimental relaxation rates in Figure 7.6(b) show a strongly non-monotonic be-

haviour, approaching an absolute minimum at the anticrossing point (BST=5T).

The trend is strikingly symmetric, as can be appreciated when T−1
1 is plotted

against the detuning energy, as shown in Figure 7.6 (c). This symmetry is re-

flected in the QD energy spectrum (Figure 7.6(a)), as far as the detuning δ is

concerned. For B < BST, the ST energy gap decreases with increasing B, re-

sulting in slower relaxation rates. By contrast, for B > BST, the ST energy gap

increases for increasing field, and so does the relaxation rate.

As opposed to the 1-electron case, we note that the 2-electron eigenstates

anticrossing leads to a minimum in the relaxation rate (cold-spot), defined by a

splitting at the anticrossing, ∆2e
a , of the same order as that of Equation (7.4) (see

Figure 7.6(a) and [37] supplementary note). The occurrence of this minimum

does not strictly depend on the nature of the states involved in the decay (spin-

like, valley-like, orbital-like or admixtures). It is due to the fact that the avoided

crossing takes place between the ground and the first excited state, while for the

case N=1 it involves the first and the second excited states without affecting the

ground state.

To model the 2-electron case, we build the wavefunctions for S and T− from

the single-particle states by considering the Coulomb interaction as a perturb-

ing averaged field. The corresponding states are defined as |1〉2e = |v−, v−, S〉,

|2〉2e = |v−, v+, T−〉. Next, the additional perturbation given by SOC leads to
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renormalised eigenstates which are admixtures of singlet and triplet:

∣∣1〉(0)

2e
= sin

γ

2
|1〉2e − cos

γ

2
|2〉2e (7.9)

∣∣2〉(0)

2e
= cos

γ

2
|1〉2e + sin

γ

2
|2〉2e (7.10)

being similar forms to Equation (7.2) (7.3). As we show in the [37] supplemen-

tary note, by evaluating the electron-phonon Hamiltonian matrix element for the

transition between these states, one finds that it coincides in its form with its

1-electron counterpart for
∣∣3〉

1e
→
∣∣2〉

1e
. Therefore, we can conclude that the

corresponding relaxation rate, Γ2e
2̄1̄, has the same functional form as those derived

in Equation (7.8), although the matrix elements for the two cases will be different

([37] supplementary note). Dashed lines in Figure 7.6 (b) represent the calculated

rates which are fitted to the experimental data similarly to the case N = 1. Once

again, the model convincingly reproduces the main features of the experimental

trend, in particular the rates for fields away from the anticrossing together with

the symmetry of the characteristics with respect to BST. Further work may be

needed to improve the fit in the vicinity of the anticrossing point.

We also measured the relaxation rates for N = 3 electrons. When the QD

occupancy is set at N=2, the lower valley is fully occupied and for low B-fields

the ground state is a singlet. In this condition, the readout protocol is adjusted

to probe spin relaxation within the upper valley upon loading/unloading of the

third electron. By keeping EVS = 0.58meV and using the same methodology

described before, we measure relaxation rates for the third electron spin state.

We find that there is no significant difference between the spin relaxation rates for

N = 3 and N = 1, as shown in Figure 7.7. Two main conclusions can be drawn
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Figure 7.7: Spin-valley relaxation for 3-electron occupancy. - Relaxation

rate as a function of B-field for N = 3 and EVS = 0.58meV. Results for N = 1 are

also shown for comparison.

from this. Firstly, we can infer that the effect of electron-electron interactions on

the multi-valley spectrum may be negligible [137], which is plausible. Indeed, for

valley 3-electron states, two electrons are just ‘spectators’, so that the remaining

electron establishes the same energy level structure as in Figure 7.3 (b), and the

Coulomb corrections should not affect the valley splitting. Secondly, as we report

in Reference [131], in small QDs for higher occupancies a significantly reduced

energy separation between the ground state and the first excited orbital state is

observed. This would introduce a non-negligible perturbation on the relaxation

if this were affected by the orbital degree of freedom. Hence, the similarities in

behaviour in terms of decay rates are a further indication that for our QD the

dominant relaxation mechanism resides in the degree of spin-valley admixing, as

opposed to the spin-orbit admixing relevant for other semiconductor systems [28].
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7.6 Valley Splitting Control via Electric Field

Tuning

We now turn to the experimental demonstration of accurate control of the valley

splitting, EVS, via electrostatic gating. To determine EVS, we use two different

experimental approaches. One utilises the rapid increase in spin relaxation at the

hot-spot, and is applicable in the low magnetic field regime. The other is based

on magnetospectroscopy, and is relevant for high fields.

The first technique stems from the fact that the hot-spot can be reliably

detected by monitoring the spin-up probability as a function of magnetic field.

In Figure 7.8 (a), we show measurements of the spin-up probability performed

with the same method as the one used to evaluate spin lifetimes. We see that

the probability of detecting a spin-up electron decreases significantly at some

magnetic fields. A sudden drop of the spin-up fraction in a narrow range of field

identifies the increase in relaxation rate associated with the hot-spot. Given that

valley and Zeeman splittings coincide at the hot-spot, one can extract the valley

separation as EVS = gµBBHS, where BHS is defined as the field at which the hot-

spot is observed. For varying gate voltage configurations, we scan B in the range

2.8T< B <5T, and identify BHS by setting an arbitrary probability threshold

(green shaded area in Figure 7.8(a)) below which the hot-spot is assumed to

occur. The use of this technique is limited to B < 5T because the lifetime drop

at the hot-spot can be therein confidently assessed. At higher fields the relaxation

becomes increasingly fast and its enhancement at the hot-spot is indistinguishable

within our measurement bandwidth ( ≈ 10 kHz).

In order to evaluate EVS at higher magnetic fields, we use a more conventional
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Figure 7.8: Extraction of valley splitting energies. - (a) Spin-up probability

as a function of magnetic field for VP = 1.59V. The occurrence of a hot-spot

minimises the spin-up fraction and allows one to extract BHS (shaded area) and,

in turn, EVS. (b) Pulsed-voltage magnetospectroscopy showing dISET/dVP at N =

1→ 2 transition. A square pulse of amplitude 16 mV at 287 Hz is applied to gate

P. The evolution of the energy difference between the singlet state (light grey) and

the triplet state (dark grey) allows one to extract BST (dashed line) and, in turn,

EVS.

119

145



7. SPIN-VALLEY LIFETIMES IN A QD WITH TUNABLE
VALLEY SPLITTING

magneto-spectroscopic approach, as shown in Figure 7.8 (b). By employing the

same gate-pulsed technique used for the charge stability experiments (Figure 7.3

(a)), we focus on the singlet-triplet ground state transition as we load the second

electron into the dot (i.e. N = 1 → 2 transition) in the range 5T< B <6.5T.

This is clearly identified as the point where the S (light grey feature) and T−

(dark grey feature) states cross. Here, EVS = gµBBST, as seen in Figure 7.6(a).

The data points in Figure 7.9 represent the measured valley separation as a

function of VP, obtained by means of the aforementioned techniques. The solid

line fit shows remarkable consistency between the two sets of data and reveals

that EVS depends linearly on the gate voltage over a range of nearly 500 µeV,

with a slope of 640 µeV/V. In order to keep constant the dot’s occupancy and

tunnelling rates for different VP, a voltage compensation is carried out by tuning

gates C1 and B accordingly. We note that we previously reported valley splittings

of comparable magnitude (few hundreds of µeV) in devices realised with the same

technology [88, 131]. However, to our knowledge, this is the first demonstration

of the ability to accurately tune the valley splitting electrostatically in a silicon

device.

A linear dependence of the valley splitting with respect to the vertical electric

field has been predicted for 2DEG systems via effective mass theory [65, 118,

122]. A similar dependence for MOS-based QDs [138] has also been reported by

employing atomistic tight-binding calculations [139]. In order to compare our

experimental finding with the theoretical predictions, we simulate the vertical

electric field (Fz) in the vicinity of the dot for the range of gate voltages used

in the experiments. We employ the commercial semiconductor software ISE-

TCAD [140] to model the device electrostatic potential, and thereby the electric
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Figure 7.9: Tunability of the valley splitting via gate-voltage control. -

Valley splitting as a function of plunger gate voltage (bottom axis) and modulus

of interface vertical electric field in the QD (top axis). Blue and red dots show

the valley separation (left axis) measured with hot-spot and magnetospectroscopic

techniques, respectively. Error bars indicate standard deviations for the measured

values. The linear fit (solid line) indicates a valley tunability of 0.640 meV/V.

Dashed lines are calculations performed via atomistic (purple) and effective mass

(green) methods (right axis, offset for clarity).
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fields in the nanostructure. For this purpose, TCAD solves the Poisson equation

with an approximation of Newton’s iterative method [141] to obtain convergence

at low temperatures.

The spatial extent of the dot is identified by regions where the calculated

conduction band energy drops below the Fermi level. Note that our calculations

are performed on a three-dimensional geometry identical to the real device with

the only free parameter being the amount of offset interface charge. This is

adjusted to match the experimental threshold voltage of the device (Vth=0.625V).

For further explanation on the TCAD simulation see the subsection 7.6.1.

The computed variation of interface electric field with gate voltage VP is used

to determine the valley splitting according to both the atomistic [138] and effec-

tive mass [118] predictions. Dashed lines in Figure 7.9 depict the trends for both

approaches, with both exceeding by more than 1 meV the measured values. De-

spite this offset, the atomistic calculations give a tunability of the valley splitting

with gate voltage, ∆EVS/∆VP, in good agreement with the experiments.

Method ∆EVS/∆VP (meV/V)

Experiment 0.640

Atomistic 0.597

Effective mass 0.541

Table 7.1: Comparison of experimental and calculated tunabilities.

The calculated value of 597 µeV/V agrees with the measured value to within

less than 7%. The value of 541 µeV/V calculated using the effective mass ap-

proach reveals a larger deviation (≈ 15%) from the experiments. The presence

of an offset in the computed valley splitting may be due to the contribution of

surface roughness that is not accounted for in the models, and is thought to be
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responsible for a global reduction of EVS [95, 100, 120, 121, 122, 123]. We empha-

sise, however, that the gate tunability would remain robust against this effect,

which is not dependent on electric field.

7.6.1 TCAD Modelling

Y
X

Z

X
X’

Potential (V)
2.40

-0.40
0.15

0.72

1.30
1.80

Figure 7.10: TCAD simulation model of the device. - Three-dimensional

device layout used for the simulations. Color scale represents the electrostatic

potential at each gate for one iteration.

The TCAD model of the real device geometry is shown in Figure 7.10. In our

simulations we use the same voltage range as in the experiments and the only free

parameter is the Si/SiO2 interface charge, Qox. This has been chosen to match

the experimental threshold voltage (Vth=0.625 V).

The vertical electric field profile in the (x, z) plane at VP=1.4V is shown in
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Figure 7.11: Extracted data from TCAD simulation. - (a) Two-

dimensional electric field profile at VP=1.4V. (b) Conduction band energy profile

at VP=1.4V. (c) Calculated threshold voltage as a function of interface charge.

The experimental value (0.625V) is obtained at Qox = −4.5 × 1011 cm−2. Inset:

integrated electron density in the dot vs the voltage applied simultaneously to all

gates for different Qox. Threshold voltage dependence on Qox can be extracted

(main graph). (d) Valley splitting at VP=1.4V as a function of interface charge

calculated with the atomistic (blue) and effective mass (green) predictions.
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Figure 7.11 (a). Figure 7.11 (b) is the simulation of the conduction band profile

at the same VP, the QD is formed in the region where the conduction band falls

below the Fermi energy, so that the vertical interface field therein is the one

relevant to calculate the valley splitting. In Figure 7.11 (c) the dependence of Vth

on Qox is reported. This has been evaluated by integrating the charge density in a

region of the 2DEG near the interface as all the gate voltages are simultaneously

swept (see inset). The value of choice is Qox = −4.5×1011 cm−2. Finally, with the

same methodology illustrated previously, the dependence of the valley splitting

(at VP = 1.4V) on the interface charge density has been estimated with both the

atomistic and the effective mass theories, and is shown in Figure 7.11 (d). It is of

note that the variation of EVS with interface charges is relatively small and cannot

account for the large offset between computed and experimental values. Hence,

we believe that the main factors that reduce valley splitting in this nanostructure

are due to interface effects.

The work in this Subsection 7.6.1 is led by Fahd Mohiyaddin.

7.7 Conclusions

In this chapter, we have shown that the valley splitting in a silicon device can

be electrostatically controlled by simple tuning of the gate bias. We used this

valley splitting control, together with spin relaxation measurements, to explore

the interplay between spin and valley levels in a few-electron quantum dot.

The relaxation rates for a one-electron system exhibit a dramatic hot-spot

enhancement when the spin Zeeman energy equals the valley splitting, while for

a two-electron system the rates reach a minimum at this condition. We found
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that the known mechanisms for spin relaxation, such as the admixing of spin

and p orbital states, were unable to explain the key features of the experimental

lifetime data, and so introduced a novel approach based on admixing of valley

and spin eigenstates. Our theory, which showed good agreement with experiment,

implies that spin relaxation via phonon emission due to spin-orbit coupling can

occur in realistic quantum dot systems, most likely due to interface disorder.

Our results show that by electrical tuning of the valley splitting in silicon

quantum dots, it is possible to ensure the long lifetimes (T1 > 1 s) required for

robust spin qubit operation. Despite this, the excited valley state will generally

be lower than orbital states in small quantum dots, placing an ultimate limit on

the lifetimes accessible in very small dots, due to the spin-valley mixing described

above.

Electrical manipulation of the valley states is also a fundamental requirement

to perform coherent valley operations. However, the experimental relaxation rate

at the observed hot-spot was found to be fast (T−1
1 > 1 kHz) for our devices,

implying a fast inter-valley relaxation rate.

Finally, in the context of realizing scalable quantum computers, these results

allow us to address questions of device uniformity and reproducibility with greater

optimism. Indeed, our work suggests that issues related to the wide variability

of the valley splitting observed in silicon nanostructures to date can shift from

the elusive atomic level (surface roughness, strain, interface disorder) to the more

accessible device level, where gate geometry and electrostatic confinement can be

engineered to ensure robust qubit systems.

126

152



Chapter 8

Conclusion

‘We are an impossibility in an impossible universe.’

Ray Bradbury
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8. CONCLUSION

8.1 Key Achievements

Feature List Chapter 4 Chapter 5 Chapter 6 Chapter 7

Stacking layers 3 3 3 3

Number of dot(s) 1 1 1(2)* 1(2)*

Transport through QD X X - -

Magneto spectroscopy X - X X

SET charge sensor - X X X

Pulse technique - - X X

Spin readout - - - X

Charging energy (meV) 3-10 3-10 10-20 10-20

Orbital split. energy (meV) 0.1# - 1-8 2-10

Valley split. energy (µeV) 100# - 230 300-800

Relaxation time - - - 2.6s

Table 8.1: Comparison between generations of devices

*Potentially 2 quantum dots.
#Orbital and valley splitting energies cannot be distinguished.

This thesis demonstrates how to engineer a silicon MOS-based QD, a poten-

tial candidate for realising a high-fidelity spin qubit. We successfully obtained a

single electron within a QD, and determined its spin behaviour via both transport-

current and charge-detection methods. The spin-filling results suggest that the

g-factor in a silicon QD is very close to 2. By applying a dynamic feedback control

on the gate potential from the sensor current, the charge stability diagram of the

QD becomes more robust against noise and random charge moments. By extend-

ing this method, the excited states of the QD can be probed via a pulsed-gating

technique. The excited states of the QD have also been studied comprehensively,

including a demonstration of the QD’s true 2D Fock-Darwin states, with a mix-

ture of valley eigenstates. The individual spin of each electron was successfully
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8.2 Future Work

read out using a single-shot pulsing technique. It was also discovered that the spin

lifetime of the electrons depends not just on the magnetic field, but also on the

mixture with the valley states. By rearranging the gate potential configuration,

the valley-splitting energy of the QD can be tuned, providing additional control

over the QD spectrum. These breakthroughs have demonstrated that the silicon

MOS QD architecture is now well positioned for the realisation of a functioning

spin qubit.

Summary of the key features and results of generations of devices are presented

in Table 8.1, demonstrating how each of milestones has been achieved throughout

the whole thesis project.

8.2 Future Work

The research presented in this thesis can be extended in several ways. At this

point, experiments based on the results of this thesis are already in progress.

First, a qubit could be realised with a single QD and a microwave control sig-

nal. By incorporating an on-chip transmission line, which generates a microwave

signal, it is possible to rotate the spin of the electron within the QD. The ESR

line could be fabricated in the same way as the patterned aluminium gates, and

could be placed close to the QD to achieve maximum signal strength. A fully

workable single qubit requires the spin to be rotated around two axes; this could

be achieved by delivering an out-of-phase microwave pulses.

Second, an alternate type of qubit could be realised using singlet-triplet states,

which require two coupled QDs. Figure 6.1 demonstrates an example: with the

right QD on the other side turned on, it is possible to pulse the coupling gate
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8. CONCLUSION

between the two QDs in various way to achieve the singlet-triplet qubit.

Finally, the unique property of valleys in silicon may offer new paths for quan-

tum computation. Valleys in silicon QDs is a field yet to be explored, as shown

in Chapter 7, which looks into the interplay between spin and valley physics.

Although the valley-involved lifetimes are believed to be shorter than spins, this

additional degree of freedom in silicon may provide advantages over other plat-

forms, presenting a spin-valley hybrid type of qubit.
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