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1. OBJECTIVES
The research pursued under grant FA9550-12-1-0113 aims at enabling a systematic on-
line use of optimization techniques for real-time applications in complex stochastic 
environments. This is in contrast to off-line optimization for problems involving 
stochastic settings with complex system dynamics and constraints where one can usually 
afford computationally intensive methods, including time-consuming simulation. In an 
on-line setting, however, fast solutions are needed for time-critical decision making, a 
requirement complicated by the need to frequently re-solve what are already hard 
problems, since conditions in the operating environment are ever-changing. Thus, new 
approaches are called for which include: trading off optimality and computational 
speed; making creative use of powerful simulation-based models and solution algorithms; 
and exploring new paradigms for appropriate optimality criteria. The work in this project 
has led to the development of such approaches, while at the same time recognizing 
requirements for new generations of systems critical to the national infrastructure and 
consistent with the emerging information-based, network-centric view of warfare.  

Three major research objectives were pursued: 

1. Asynchronous, event-driven distributed optimization. Distributed optimization is
one of the means to break down a complex problem into a number of interrelated simpler 
ones, thus addressing scalability and the limited resources of networked wireless devices. 
This, however, comes at the expense of increased communication and the need for 
synchronization across the components over which the optimization problem is 
distributed. Developing asynchronous (specifically, event-driven) approaches alleviates 
much of this problem by controlling the exchange of information among nodes in a 
networked environment to occur only when absolutely necessary, dictated by “events” 
defined through certain well-defined conditions. The main challenges in this research 
direction are to specify the proper events that trigger communication and updates in the 
optimization process, as well as to guarantee global optimality of the resulting 
optimization algorithms. 

2. Temporal decomposition and receding-horizon optimization. Whereas distributed
optimization decomposes complex problems over the components of a system, another 
form of decomposition is over time. Our approach is to reduce the solution of a complex 
stochastic problem into a number of smaller deterministic problems solved only when 
new data are obtained or new random events are observed (along the lines of the event-
driven idea already mentioned). Thus, in using  receding horizon optimization, unlike 
conventional receding horizon methods which require continuous time-driven iterations, 
we iterate only when certain events occur; this can drastically reduce computation 
without affecting the optimality properties of the methods employed. 

3. Abstraction and on-line gradient-based optimization. Yet another way to combat
complexity is through abstraction schemes that preserve sufficient modeling accuracy to 
deliver near-optimal solutions to optimization problems. In this effort, we make use of 
Perturbation Analysis (PA) techniques to obtain gradient estimates from already available 
data without requiring stochastic models that are difficult to build. Recent research has 
led to a PA framework for very general stochastic hybrid systems with robustness 
properties that open up the possibility for solving optimization problems thus far 
considered of prohibitive complexity for PA techniques. As detailed in this report, we 
have indeed been able to solve such problems, including some that involve multi-player 
optimization, allowing us to study problems in a stochastic game setting. 
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2. ACCOMPLISHMENTS AND NEW FINDINGS

2.1.  Escaping Local Optima in Distributed Optimization. 

Asynchronous distributed optimization schemes can ensure scalability and reduce the 
need for excessive communication. In our prior work (e.g., see [29]) we developed such a 
scheme which is event-driven in that it limits communication to instants when some state 
estimation error function at a node exceeds a threshold. We also developed an interactive 
simulation environment, available at http://www.bu.edu/codes/research/distributed-
control/ through which we have performed experiments and tests related to this 
distributed optimization framework. Moreover, we continue to use a laboratory test bed 
(created with partial support from prior AFOSR grants) with small wireless mobile robots 
(Khepera III) acting as “agents” in a “real-world” cooperative setting (see 
http://www.bu.edu/codes/platforms/.)  Performing experiments in either the simulation or 
laboratory test bed environment, it has been easy to observe that many of the interesting 
problems we wish to address are non-convex and exhibit multiple local optima. The large 
class of coverage control problems arising in multi-agent cooperative systems is a case in 
point.  

In order to address this major problem, we have developed a systematic approach for 
escaping a local optimum, rather than randomly perturbing controllable variables away 
from it. We were able to show [36] that the objective function for many problems can be 
decomposed to facilitate the evaluation of the local partial derivative of each node in the 
system and to provide insights into its structure. This structure is exploited by defining 
“boosting functions” applied to the aforementioned local partial derivative at an 
equilibrium point where its value is zero so as to transform it in a way that induces nodes 
to explore poorly covered areas of the mission space until a new equilibrium point is 
reached. This boosting process ensures that, at its conclusion, the objective function is no 
worse than its pre-boosting value (even though the global optima can still not be 
guaranteed). We have established and analyzed three families of boosting functions with 
different properties. We have also conducted extensive simulation-based experiments to 
demonstrate how this approach improves the solutions obtained through distributed 
optimization problems. 

2.2.  Trajectory Optimization in Cooperative Multi-Agent Systems. 

The distributed optimization framework discussed in Section 2.1 addresses static or 
parametric, rather than dynamic, optimization problems. For instance, in an optimal 
coverage problem, the goal is to determine optimal positions of agents (nodes) in a given 
mission space; the objective function is expressed in terms of all feasible positions which 
are, therefore, viewed as parameters to be optimized. In contrast, agents may be in 
continuous motion aiming to optimize an objective function describing their time-varying 
interaction with their environment.  

In the course of the project, we have tackled such problems aiming to investigate whether 
the success of event-driven distributed algorithms could be carried over to such ambitious 
dynamic optimization problems. A direct extension of the class of optimal coverage 
problems is that of “persistent monitoring” problems, where the objective is to control 
the movement of multiple cooperating agents to minimize an uncertainty metric in a 
given mission space. We started with a one-dimensional mission space, where we 
formally showed that the optimal solution is for each agent to move at maximal speed 
from one switching point to the next, possibly waiting some time at each point before 
reversing its 
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direction [12]. Thus, the solution is reduced to a simpler parametric optimization 
problem: determining a sequence of switching locations and associated waiting times at 
these switching points for each agent. This amounts to a hybrid system which we 
analyzed  using Infinitesimal Perturbation Analysis (IPA) to obtain a complete on-line 
solution through a gradient-based algorithm. Interestingly, our effort to extend event-
driven optimization techniques led us to a natural use of IPA, another key thrust of the 
project (see Section 2.4). We were also able to show that the solution obtained is robust 
with respect to the uncertainty model used.  

Motivated by the success of deriving computationally efficient solutions in the one-
dimensional persistent monitoring problem, we subsequently pursued the case of two-
dimensional mission spaces where the objective is to control the trajectories of multiple 
cooperating agents to minimize an uncertainty metric. Unfortunately, the simple solutions 
of the one-dimensional case do not carry over to a two-dimensional mission space. An 
alternative is to optimally assign each agent a linear trajectory, motivated by the one-
dimensional analysis. However, we proved that elliptical trajectories outperform linear 
ones [41]. With this motivation, we formulated a parametric optimization problem 
in which we seek to determine such optimal elliptical trajectories and then showed that 
the problem can again be solved using IPA to obtain performance gradients on line and 
ultimately derive a complete and scalable solution. Since the solutions obtained are 
generally locally optimal (as discussed in Section 2.1), we have incorporated a stochastic 
comparison algorithm for deriving globally optimal elliptical trajectories. Our approach 
allows for uncertainties modeled as stochastic processes, and leads to a scalable on-line 
methodology orders of magnitude more efficient than any off-line computationally 
intensive solutions. 

Over the past year of the project, we generalized the results above by approaching the 
trajectory optimization problem through a representation of an agent trajectory in terms 
of general function families characterized by parameters that we can optimize. We have 
shown [35] that the problem of determining optimal parameters for these trajectories can 
be solved, once again, using Infinitesimal Perturbation Analysis (IPA) to determine 
gradients of the objective function with respect to these parameters evaluated on line so 
as to adjust them through a standard gradient-based algorithm. We have applied this 
approach to the family of Lissajous functions as well as a Fourier series representation of 
an agent trajectory and demonstrated that this scalable approach provides solutions that 
are near-optimal relative to those obtained through a computationally intensive two point 
boundary value problem solver. The same idea has also been successfully applied to a 
class of optimal exploration, pick-up and delivery problems [50]. 

2.3.  Event-driven Cooperative Receding-Horizon Optimization. 

This part of the project has focused on making optimal decisions in a real-time stochastic 
setting in the absence of any information about the future at the time a decision needs to 
be made. To model the unknown future, we normally either build an analytical 
probabilistic model encompassing uncertainties or we resort to simulation. Building an 
analytical model is difficult because we must often make questionable assumptions, lack 
the necessary information, or resort to unreliable data to construct appropriate 
distributions. Simulation, on the other hand, is a time-consuming task. Both are 
“estimate-and-plan” approaches in which a policy is derived to dictate optimal decisions 
to make in real time as a function of an observed system state. An alternative is a “hedge-
and-react” approach whereby we simply wait for a random event to occur and then react, 
provided that the decision making process upon reaction is sufficiently fast relative to the 
random event frequency. In this approach, the process is viewed as deterministic in 
between randomly occurring events, amounting to a decomposition of a complex problem 
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over time. Thus, at certain points in time, we solve an optimization problem over a given 
time horizon, and then continuously extend this time horizon forward. This gives rise to 
Receding Horizon (RH) optimization algorithms which we have developed in our prior 
work. 

There are several limitations of the RH optimization approaches previously developed. 
Our work in this project has led to overcoming many of these limitations and establishing 
a novel general-purpose event-driven RH optimization framework [34]. The limitations 
we have overcome include potential instabilities in agent trajectories and poor 
performance due to inaccurate estimation of a reward-to-go function. In this framework, a 
controller sequentially solves optimization problems over a planning horizon and 
executes the control for a shorter action horizon, where both are defined by certain events 
associated with new information becoming available. In contrast to earlier similar 
controllers developed, we were able to reduce the originally infinite-dimensional feasible 
control set to a finite set at each control update event. We proved several properties of 
this new controller and generated extensive simulation results showing its improved 
performance. 

Another class of real-time dynamic optimization problems arises in systems whose 
components (e.g., mobile agents) critically depend on battery-supplied energy.  We 
studied the problem of optimally controlling how to discharge and recharge a non-ideal 
battery so as to maximize the work it can perform over a given time period and still 
maintain a desired final energy level. Although we originally expected to resort to RH 
optimization approaches as described above, we were able to show that a much simpler 
solution can be obtained  which is of bang–bang type [4] with the property that the 
battery is always in recharging mode during the last part of the finite horizon over which 
the problem is solved. We then extended the problem to settings where recharging is only 
occasionally feasible and showed that it can be reduced to a nonlinear optimization 
problem which can be solved at least numerically. We were also able to extend our study 
to the problem of optimally controlling a set of non-ideal rechargeable batteries that can 
be shared to perform a given amount of work over some specified time period. We sought 
to maximize the minimum residual energy among all batteries at the end of this period by 
optimally controlling the discharging and recharging process at each battery. We showed 
that the optimal solution must result in equal residual energies for all batteries as long as 
such a policy is feasible. This greatly simplifies the task of subsequently deriving explicit 
solutions for the problem. Finally, we incorporated this work into the problem of optimal 
routing and energy allocation for maximizing the lifetime of wireless sensor networks 
with non-ideal batteries [26]. 

2.4.  Abstraction and on-line gradient-based optimization 

Under past AFOSR grants, we were able to establish a general framework for an 
Infinitesimal Perturbation Analysis (IPA) theory for stochastic hybrid systems to control 
and optimize their performance in a real-time setting that allows for uncertainties and 
changes in their operating environment (see [14]). During this work, we came to the 
realization that previously intractable stochastic games can also be solved as multi-agent 
optimization problems so that system-centric solutions can be compared to user-centric 
ones and quantify the associated gap between the two, known as the “price of anarchy.” 
We solved several stochastic resource contention problems, including the long-standing 
lot-sizing problem as a stochastic game for which we have formally proved that in this 
case the “price of anarchy” is zero [2].  

With this motivation, we sought to extend the definition of a Stochastic Hybrid 
Automaton (SHA) to overcome some limitations that make it difficult to use for on-line 
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control and optimization. In particular, guard sets (describing conditions for transitioning 
from one discrete state to another) do not specify the exact event causing a transition. To 
overcome this, we have introduced a clock structure (borrowed from timed automata), 
timer states, and guard functions that disambiguate how transitions occur. In the modified 
SHA, we have formally shown that every transition is associated with an explicit element 
of an underlying event set. This also makes it possible to uniformly treat all events 
observed on a sample path of a stochastic hybrid system and generalize the performance 
sensitivity estimators derived through IPA. Thus, we managed to eliminate the need for a 
case-by-case treatment of different event types and have provided a unified set of matrix 
IPA equations [5]. We have demonstrated the use of this unified framework in a number 
of application areas, including the problem of optimal “timeout control” [10] which often 
arises in time-critical settings, as well as in transportation applications such as the traffic 
light control problem [19],[44]. 
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4. PERSONNEL SUPPORTED

• Principal Investigator:

Christos G. Cassandras, Professor, Boston University 

• Graduate Students:

- Ali Kebarighotbi (PhD obtained, 2012  
– supported by predecessor AFOSR grant)

- Tao Wang (PhD obtained, 2013) 
- Yanfeng Geng (PhD obtained, 2013) 
- Julia Lima Fleck 
- Yasaman Khazaeni 
- Sepideh Pourazarm 
- Xinmiao Sun 
- Yue Zhang 

The PhD dissertation completed by Ali Kebarighotbi  is entitled “Perturbation Analysis in 
Fluid Scheduling and Optimization of Stochastic Hybrid Systems”. It studies on-line 
optimization problems for stochastic hybrid systems, i.e., systems that involve both 
continuous and discrete dynamics and are suitable for modeling almost any 
physical system of interest. For the class of Stochastic Flow Models (SFM), a classic 
problem for optimally allocating a resource to multiple competing user queues is 
considered and placed in the framework of SFMs. Infinitesimal Perturbation Analysis 
(IPA) is used to calculate the gradient estimates for the average holding cost of this 
system with respect to resource allocation parameters. The monotonicity property of 
these estimates was exploited to prove the optimality of a well-known rule called the cµ-
rule" under non-idling policies. Furthermore, nonlinear cost functions are considered, 
yielding simple distribution-free cost sensitivity estimates. In addition, a Transmission 
Control Protocol (TCP) communication link is used to examine the effectiveness of IPA 
in calculating derivative estimates of a “goodput” objective with respect to a timeout 
parameter. The analysis is also extended to the case of multi-node communications. This 
analysis reveals the potential in using IPA to control delay thresholds in a broader range 
of time-critical applications. Finally, the dissertation proposes  a general framework for 
analysis and on-line optimization of Stochastic Hybrid Systems which facilitates the use 
of IPA. This framework enables one to uniformly treat all events observed on the sample 
path of the SHS. As a result, a unifying matrix notation for IPA equations is developed 
which eliminates the need for the case-by-case analysis of event classes as usually done 
in prior work. 

The PhD dissertation completed by Tao Wang is entitled “Control and Optimization 
Approaches for Power Management in Energy-Aware Battery-Powered Systems”. This 
dissertation is devoted to on-line optimal power management of energy-aware battery-
powered systems (BPSs). Its first part focuses on the power management of BPSs based 
on an analytical non-ideal battery model, the Kinetic Battery Model (KBM), and gives 
solutions to the cases with both fully and partially available rechargeability. In multi-
battery systems, a similar methodology is employed to show an optimal policy which 
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enforces equal terminal energy values of all batteries as long as such a policy is feasible. 
Furthermore, the KBM is introduced into a routing problem for lifetime maximization 
in wireless sensor networks (WSNs). The solution not only preserves the properties of the 
problem based on an ideal battery model but also shows the applicability of the KBM to 
large network problems. The second part of the dissertation is focused on the energy 
aware behavior of mobile devices and vehicles (e.g., electric vehicles (EVs)). It two 
motion control problems of (a) cruising range maximization and (b) traveling time 
minimization. Approximate controller structures are proposed such that the original 
optimal control problems are transformed into nonlinear parametric optimization 
problems, which are much easier to solve. Finally, the vehicle routing problem with 
energy constraints is investigated. Optimal routes and recharging times at charging 
stations are sought to minimize the total elapsed time for vehicles to reach a destination. 
For a single vehicle, a mixed-integer nonlinear programming (MINLP) problem is 
formulated. A decomposition method is proposed to transform the MINLP problem into 
two simpler problems respectively for the two types of decision variables. Based on this, 
a multi-vehicle routing problem is studied using a flow model, where traffic congestion 
effects are included.  

The PhD dissertation completed by Yanfeng Geng is entitled “Optimization Methods for 
Intelligent Transportation Systems In Urban Settings”. The dissertation develops a novel 
“Smart Parking” system in the context of dynamic stochastic resource allocation 
problems. As opposed to simply providing parking information to drivers, the proposed 
approach is to assign and reserve an optimal parking space based on a user’s cost 
function that combines proximity to destination and parking cost. This is accomplished 
by solving a Mixed Integer Linear Programming (MILP) problem at each decision point 
defined over a sequence of time instants. The solution of each MILP problem is an 
optimal allocation based on current state information, and is updated at the next decision 
point with a guarantee that there is no resource reservation conflict and that no user is 
ever assigned a resource with a higher than this user’s current cost function value. An 
indoor laboratory testbed was built to demonstrate the functionality of a system prototype 
and a full implementation in a garage was also carried out. The dissertation further 
addresses the traffic light control problem viewed as a stochastic hybrid system and by 
developing a Stochastic Flow Model (SFM) for it. Using Infinitesimal Perturbation 
Analysis (IPA), on-line gradient estimates of a cost metric are derived with respect to the 
controllable green and red cycle lengths. The estimators are used to iteratively adjust light 
cycle lengths to improve performance and, in conjunction with a standard gradient-based 
algorithm, to obtain optimal values which adapt to changing traffic conditions.  

5. INTERACTIONS/TRANSITIONS DURING REPORTING PERIOD

Participation/Presentations at Meetings, Conferences, Seminars 

C.G. Cassandras gave invited talks/ plenary addresses/lectures at the following 
meetings/organizations: 

• University of Athens, April 2012, Athens, Greece (Invited Seminar).
• University of Cyprus, April 2012, Nicosia, Cyprus (Two Invited Seminars).
• Boston University CISE Anniversary Symposium, May 2012, Boston, MA (Invited

Talk).
• Tsinghua University, May 2012, Beijing, China (Invited Seminar).
• Beijing Jiaotong University, May 2012, Beijing, China (Invited Seminar).
• 24th Chinese Control and Decision Conference, Taiyuan, China, May 2012 (Keynote

Address)
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• Chinese Academy of Sciences, Beijing, China, May 2012 (Invited Seminar).
• National Taiwan University, Taipei, Taiwan, May 2012 (Invited Seminar).
• National Chiao Tung University, Hsinchu, Taiwan, June 2012 (Invited Seminar).
• 2013 American Control Conference, Montreal, Canada, June 2012 (Invited Panel

Presentation).
• Kyoto University, Kyoto, Japan, August 2012 (Invited Seminar).
• Tokyo Institute of Technology, Tokyo, Japan, August 2012 (Invited Seminar).
• 2012 Conference, Society of Instrument and Control Engineers Annual Conference,

Akita, Japan, August 2012 (Plenary Lecture).
• 2013 Brazil Automation Conference, Campina Grande, Brazil, August 2012 (Plenary

Lecture).
• Oak Ridge National Laboratory, Oak Ridge, TN, September 2012 (Invited Talk).
• NSF Workshop on "Ideas and Technology of Control Systems", Maui, HI, December

2012 (Invited Talk).
• 51st IEEE Conf. Decision and Control, Maui, HI, December 2012 (Invited Panel Talk

on “Ethics in Publishing”).
• Zhejiang University, Huangzhou, China, January 2013 (Two Distinguished

Lectures).
• Fudan University, Shanghai, China, January 2013 (Invited Seminar).
• Workshop on Control of Cyber-Physical Systems, Baltimore, MD, March 2013 (Two

Invited Talks).
• University of Cyprus, April 2012, Nicosia, Cyprus, April 2013 (Invited Seminar).
• Tokyo Institute of Technology, Tokyo, May 2013 (Invited Seminar).
• MathWorks Research Faculty Summit, Newton, MA, June 2013 (Invited Talk).
• UC Berkeley, Berkeley, CA, October 2013 (Invited Seminar).
• University of Connecticut, Storrs, CT, November 2013 (Invited Seminar).
• GeorgiaTech, Atlanat, GA, November 2013 (Invited Seminar).
• 52nd IEEE Conf. on Decision and Control, Florence, Italy, December 2013 (Invited

Panel Talk).
• Boston University, Boston, MA, March 2014 (2014 Distinguished Scholar Award

Lecture)
• 33rd Benelux Meeting on Systems and Control, Heijen,The Netherlands, March 2014

(Plenary Lecture).
• University of Notre Dame, South Bend, IN, April 2014 (Invited Seminar).
• University of Michigan, Ann Arbor, MI, April 2014 (Invited Seminar).
• MathWorks Research Faculty Summit, Newton, MA, June 2014 (Invited Talk).
• KIOS Center Workshop, University of Cyprus, Nicosia, Cyprus, June 2014 (Plenary

Lecture).
• University of Cyprus, Nicosia, Cyprus, June 2014 (Invited Seminar).
• UTC Institute for Advanced Systems Engineering Annual Conference, Storrs, CT,

October 2014 (Plenary Lecture).
• Symposium on the Control of Network Systems, Boston, MA, October 2014 (Invited

Talk).
• 53rd IEEE Conf. on Decision and Control, Los Angeles, CA, December 2014

(Invited Talk).
• Federal Highway Administration Workshop on Next Generation Traffic Control

Systems, Washington, DC, February 2015 (Invited Panel Presentation).

Transitions 
• Dynamic Resource Allocation optimization algorithm used in developing a “Smart
Parking”system with an iPhone application 
C.G. Cassandras and PhD student Yanfeng Geng developed an optimization algorithm 
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used for a “smart parking” system using an application for the iPhone. The system was 
deployed in a garage pilot study at Boston University and has undergone several pilot 
studies. 

6. NEW DISCOVERIES, INVENTIONS, OR PATENT DISCLOSURES

Provisional patent application: “Method and System for Dynamic Parking Allocation in 
Urban Settings” Application Number 61/521,424; filed 8/9/2011 (still pending). 

7. HONORS/AWARDS

C.G. Cassandras (Lifetime, selected): 
• Lilly Fellow (1991), Kern Fellow (2012), Fellow of IEEE (1996), Fellow of IFAC

(2008) 
• 2011 IEEE Control Systems Technology Award
• IFAC Harold Chestnut Prize (1999)
• Distinguished Member Award, IEEE Control Systems Society (2006)
• Editor-in-Chief of IEEE Transactions on Automatic Control (1998-2009)

Honors/Awards received during grant period: 
• President, IEEE Control Systems Society, 2012
• 2014 Engineering Distinguished Scholar Award, Boston University
• 2014 IBM/IEEE Smarter Planet Challenge competition, 2nd prize (student team

led by Theodora Brisimi)
• Zhu Kezhen Award, 2012
• Keynote/Plenary speaker in four international meetings/conferences
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