
REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188

[fhe public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
~earchi ng existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
pf information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE(DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

03-08-2014 Ph.D. Disseitation -
4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER

Improving Robot Locomotion Through Leaming Methods for W911NF-13-1-0092
Expensive Black-Box Systems Sb. GRANT NUMBER

Sc. PROGRAM ELEMENT NUMBER

611102
6. AUTHORS Sd. PROJECT NUMBER

Matt Tesch

Se. TASK NUMBER

Sf. W ORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT

Camegie Mellon University NUMBER

SOOO Forbes Avenue

Pittsbmgh, P A 1S213 -3S89

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS 10. SPONSOR/MONITOR'S ACRONYM(S)
(ES) ARO

U .S. Anny Research Office 11 . SPONSOR/MONITOR'S REPORT
P.O. Box 12211 NUMBER(S)
Research Triangle Park, NC 27709-2211 59786-NS.1

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARYNOTES
The views, opinions and/or findings contained in this repmt are those of the author(s) and should not contmed as an official Depa1tment
of the An ny position, policy or decision, unless so designated by other documentation.

14. ABSTRACT

The modular snake robots in Camegie Mellons Biorobotics lab provide an inu·iguing platfonn
for research: they have ah-eady been shown to excel at a variety of locomotive tasks and
have incredible potential for navigating complex tenains, but much of that potential remains
untapped. Unfortlmately, many techniques commonly used in robotics prove inapplicable to
these snake robots. This is because of the robots complex, multi-modal locomotion dynamics,
ln rh; ..-h ., .. .,. ,.t; f"',._, Jt t r. ,.,... ,....,.t.,.J .,.., ,.t tho' · .,,.,... .,11 .,; '7<> .,.., ,.t f't•onllo n t · n rh; ..-h n"o..-ln...to

' T

1S . SUBJECT TERMS

Leaming, snake robots

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

a. REPORT b . ABSTRACT c. THIS PAGE ABSTRACT

uu uu uu uu

-..- '

1S. NUMBER
OF PAGES

..-

19a. NAME OF RESPONSIBLE PERSON
Howard Choset
19b. TELEPHONE NUMBER

412-268-4985
Standard F01m 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

ABSTRACT

Improving Robot Locomotion Through Learning Methods for Expensive Black-Box Systems

Report Title

The modular snake robots in Carnegie Mellons Biorobotics lab provide an intriguing platform

for research: they have already been shown to excel at a variety of locomotive tasks and

have incredible potential for navigating complex terrains, but much of that potential remains

untapped. Unfortunately, many techniques commonly used in robotics prove inapplicable to

these snake robots. This is because of the robots complex, multi-modal locomotion dynamics,

which are di�cult to model, and their small size and frequent impacts, which preclude

addition of many standard sensors.

The motivation to expand the capabilities of these robots stems from experiencing several

failures and limitations in real world tests. In an archaeological expedition near the Red Sea,

the robot was able to move further than a human could into a collapsed cave containing fourmillenia-

old ship timbers. However, a gradual sandy slope prevented the robot from moving

further and potentially making an archaeological discovery. At a disaster response training

site, the robot was able to navigate a narrow passage underneath a rubble pile, but was

unable to pass over a four inch high piece of wood which lay across its path once the passage

widened.

This thesis addresses the improvement of these capabilities through the optimization

of functions which are expensive (requiring signi�cant time, money, computation, or other

resources), black-box (providing no gradient or derivative information), need not be convex

or linear, and may have many local optima. Objectives evaluated through tests on physical

robotic systems often �t these categories.

Several approaches are derived and tested for optimization of snake robot gait motion,

leading to improved locomotion across

at and sloped terrain. Additional unique challenges

posed by robotic systems are addressed, including stochasticity in the objective, consideration

of multiple con

icting objectives, and the desire to adapt to changing environments.

Although gaits are the motion of choice for traversing long distances over uniform terrain,

real-world environments will rarely be completely uniform. Instead, complex motions also

must be learned and optimized that enable navigation over complex terrain and large obstacles.

To address this challenge, I describe an approach to record, simplify, and parameterize

demonstrated trajectories from expert and novice users. As the settings which require such

motions usually can only quantify the result of the motion in terms of success and failure

rather than a numerical score, I derive extensions to the optimization framework used for

improving gaits to handle stochastic binary functions, and use this to optimize robustness

of trajectories for moving over obstacles.

Overall, these algorithms allow snake robot locomotion through any type environment to

be optimized. Furthermore, the generality inherent in the black-box approach allows these

techniques to be applicable to a wide variety of problems in robotics.

Improving Robot Locomotion Through
Learning Methods for Expensive Black-Box

Systems

Matthew Tesch

CMU-RI-TR-00-00

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Robotics

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

November/2013

Thesis Committee:
Howie Choset, Jeff Schneider, Drew Bagnell, Stefan Schaal, Jared Cohon

Copyright c© 2013 by Matthew Tesch. All rights reserved.

Abstract

The modular snake robots in Carnegie Mellons Biorobotics lab provide an intriguing plat-
form for research: they have already been shown to excel at a variety of locomotive tasks and
have incredible potential for navigating complex terrains, but much of that potential remains
untapped. Unfortunately, many techniques commonly used in robotics prove inapplicable to
these snake robots. This is because of the robots complex, multi-modal locomotion dynam-
ics, which are difficult to model, and their small size and frequent impacts, which preclude
addition of many standard sensors.

The motivation to expand the capabilities of these robots stems from experiencing several
failures and limitations in real world tests. In an archaeological expedition near the Red Sea,
the robot was able to move further than a human could into a collapsed cave containing four-
millenia-old ship timbers. However, a gradual sandy slope prevented the robot from moving
further and potentially making an archaeological discovery. At a disaster response training
site, the robot was able to navigate a narrow passage underneath a rubble pile, but was
unable to pass over a four inch high piece of wood which lay across its path once the passage
widened.

This thesis addresses the improvement of these capabilities through the optimization
of functions which are expensive (requiring significant time, money, computation, or other
resources), black-box (providing no gradient or derivative information), need not be convex
or linear, and may have many local optima. Objectives evaluated through tests on physical
robotic systems often fit these categories.

Several approaches are derived and tested for optimization of snake robot gait motion,
leading to improved locomotion across flat and sloped terrain. Additional unique challenges
posed by robotic systems are addressed, including stochasticity in the objective, considera-
tion of multiple conflicting objectives, and the desire to adapt to changing environments.

Although gaits are the motion of choice for traversing long distances over uniform terrain,
real-world environments will rarely be completely uniform. Instead, complex motions also
must be learned and optimized that enable navigation over complex terrain and large obsta-
cles. To address this challenge, I describe an approach to record, simplify, and parameterize
demonstrated trajectories from expert and novice users. As the settings which require such
motions usually can only quantify the result of the motion in terms of success and failure
rather than a numerical score, I derive extensions to the optimization framework used for
improving gaits to handle stochastic binary functions, and use this to optimize robustness
of trajectories for moving over obstacles.

Overall, these algorithms allow snake robot locomotion through any type environment to
be optimized. Furthermore, the generality inherent in the black-box approach allows these
techniques to be applicable to a wide variety of problems in robotics.

I

Acknowledgments

This journey would not have been possible without the support of many people over the
past years.

I would like to thank the members of the Biorobotics Lab, those who helped develop the
robot and so many of the tools that made it usable, those who weren’t afraid to tell me when
my crazy ideas were not going to work, and those who kept the robot working so I always
had a reliable platform. And of course, thanks go to Peggy Martin, without who the lab
would certainly cease to function!

I also owe thanks to the collaborators I have worked with and discussed ideas with
outside of the lab, especially those at the Museum of Science and Industry for being so
supportive during three days of data collection. I also appreciate the support of members of
CMU’s Auton lab for graciously adopting me during conference preparation and for supplying
computation resources.

I am grateful for the support of my committee, especially for the advice and time given
by my co-advisors, Howie Choset and Jeff Schneider.

Finally, I thank my family for their support. This is especially deserved by my wife for
her generosity in proofreading everything I wrote and her endless patience as she endured
late nights in the lab, pre-deadline stresses, and uncertain future plans.

II

Contents

List Of Figures VI

List Of Algorithms VIII

List Of Tables IX

List of Abbreviations and Symbols X

1 Introduction 1

2 Background 6
2.1 Gaussian Processes for Regression . 6

2.1.1 Gaussian Process Priors . 6
2.1.2 Gaussian Process Definition . 10
2.1.3 Sampling from the Prior . 11
2.1.4 Regression and the Gaussian Process Posterior 12
2.1.5 Gaussian process Posterior Visualization 15
2.1.6 GP Model Selection . 16
2.1.7 Fitting GPs to Stochastic Data . 18
2.1.8 Gaussian Process Summary . 20

2.2 Gaussian Processes for Classification . 20
2.2.1 Expectation of Posterior on Success Probability 22

2.3 Snake Robot Control . 23
2.4 Expensive Optimization . 26
2.5 Multi-objective Optimization . 30

3 Related Work 33
3.1 Expensive Optimization . 33

3.1.1 Active Learning . 34
3.1.2 Bandits . 34
3.1.3 Optimization of Expensive Stochastic Functions 36

3.2 Environmentally Adaptive Optimization . 36
3.2.1 Reinforcement Learning of Control Policies 38

3.3 Multi-objective Optimization . 39

III

3.3.1 Expensive Multi-objective Optimization 40
3.4 Locomotion Over Obstacles . 41

3.4.1 Imitation Learning . 41
3.5 Stochastic Binary Optimization . 42

4 Expensive Optimization for Robot Locomotion 44
4.1 Notation and Problem Statement . 47
4.2 Improvements For Robust and Effective Optimization 49

4.2.1 Model Selection: Hyperparameters 50
4.2.2 Model Selection: Mean and Covariance Function 54
4.2.3 Fitting GPs to Stochastic Data . 56
4.2.4 Demonstration of Algorithm Improvements 57

4.3 Extensions for Stochastic Objectives . 61
4.3.1 Baseline Approaches . 63
4.3.2 Bayesian Approaches . 64
4.3.3 Stochastic Optimization Results . 66

4.4 Optimization of Snake Robot Locomotion 68

5 Multiple Objectives 74
5.1 Objective Space . 76
5.2 Extending EI to Multiple Objectives . 77
5.3 Synthetic Test Problem Results . 80
5.4 Robot Results . 82
5.5 Conclusions and Future Work . 87

6 Environmentally Adaptive Optimization 89
6.1 Problem Definition and Notation . 92
6.2 Proposed Methods . 95

6.2.1 Policy Generation . 97
6.2.2 Experiment Selection: Unbiased Expected Improvement 99
6.2.3 Experiment Selection: Expected Policy Score Improvement 100
6.2.4 Method Comparison and Discussion 102

6.3 Experimental Results . 103
6.3.1 Synthetic Test Functions . 103
6.3.2 Simulation And Physical System Results 107
6.3.3 Application for Real-Time Control 110

6.4 Conclusion . 118

7 Generating Parameterized Non-gait Motion from Demonstrated Input 120
7.1 Kinesthetic Input for Recording Demonstrated Input 122

7.1.1 Expert Input . 123
7.1.2 Novice Input . 125

7.2 Identifying Keyframes For Single Recorded Expert Trajectory 131

IV

7.2.1 Method . 132
7.2.2 Results . 134

7.3 Finding Parameterized Trajectories Using Large Collections of Novice Trajec-
tories . 136

7.4 Conclusions and Future Work . 138

8 Stochastic Binary Optimization 140
8.1 Binary Stochastic Problem Definition . 142
8.2 Approach . 143

8.2.1 Baseline Algorithms . 143
8.2.2 Expected Improvement for Binary Responses 145

8.3 Empirical Results on Synthetic Functions . 147
8.3.1 Experimental Setup . 147
8.3.2 Measuring Performance . 149
8.3.3 Comparison of Results . 149

8.4 Physical Robot Experiments . 151
8.5 Exploiting Task Structure to Solve Difficult Problems 154
8.6 Conclusion and Future work . 158

9 Conclusion 159
9.1 The Future of Expensive Optimization . 159
9.2 Future Work . 161

Appendices 163

A Test Function Definitions 164
A.1 Adaptive Control Test Functions . 164
A.2 Stochastic Binary Test Functions . 165

B Example Optimization Scripts 166
B.1 Model Selection Example Scripts . 166
B.2 Stochastic EI Example Scripts . 167
B.3 Stochastic Binary Example Scripts . 168

C Further Information 170
C.1 Marginal Likelihood . 170

V

List of Figures

1.1 Overview of thesis goals . 2

2.1 GP mean functions . 7
2.2 GP covariance functions . 8
2.3 GP hyperparameters . 9
2.4 Bivariate and multivariate Gaussian samples 10
2.5 Conditioning to obtain GP posterior distributions 14
2.6 GP visualization . 15
2.7 GP hyperparameter likelihood surface; maximum likelihood hyperparameters 17
2.8 Fitting stochastic data with GPs . 19
2.9 Uses for snake robots . 23
2.10 Concept of expected improvement and probability of improvement 29
2.11 Pareto dominance, Pareto fronts, and hypervolume 32

4.1 Notation for expensive optimization and selection metrics 48
4.2 Non-discriminative GP hyperparameter marginal likelihood for sparse data . 53
4.3 Model complexity vs. likelihood tradeoff . 55
4.4 Automatic model selection demonstration 56
4.5 Multimodal likelihood function . 57
4.6 Effects of model selection during optimization 60
4.7 Ambiguity in “best previous experiment” in the presence of noise 62
4.8 Synthetic test functions for stochastic optimization 67
4.9 Stochastic optimization results . 69
4.10 Computational requirements of stochastic selection metrics 70
4.11 Optimization of snake robot sidewinding motion on flat ground 71
4.12 Optimization of snake robot sidewinding motion on slope 72
4.13 Obstacles on which to demonstrate locomotive optimization 72
4.14 Optimization of snake robot motion over small obstacles 73

5.1 Multi-objective terminology and example problem 75
5.2 Objective space projection . 77
5.3 Components of the expected improvement in hypervolume 79
5.4 Example of expected improvement in hypervolume 80
5.5 Synthetic test functions for multi-objective algorithm comparison 81

VI

5.6 Comparison of multi-objective algorithm performance on synthetic test functions 83
5.7 Surrogate function examples for multi-objective robot optimization 83
5.8 Results of multi-objective optimization of robot locomotion 84
5.9 Head stability objective for robot locomotion trials 85

6.1 Diagram of the adaptive expensive optimization problem 90
6.2 Visualization of adaptive optimization terminology and notation 91
6.3 Comparison of optimal and suboptimal policies 94
6.4 Comparison of various selection metrics for the adaptive optimization problem 98
6.5 Conceptual diagram for Unbiased Expected Improvement 100
6.6 Conceptual diagram for Expected Policy Score Improvement 101
6.7 Analytic test functions for empirical algorithm comparisons 103
6.8 Average run time comparison for adaptive optimization selection metrics . . 105
6.9 Empirical comparison of various adaptive optimization selection metrics on

synthetic test functions . 106
6.10 Empirical analysis of the effect of selection metric parameters on algorithm

performance . 107
6.11 Empirical comparison of proposed selection metric to random point selection

on a physical robot . 109
6.12 Diagram of robot test course setup . 111
6.13 Photo of training apparatus for learning adaptive control policy for snake

robot sidewinding up and down slopes . 111
6.14 Objective and selection metric during learning of adaptive policy on the snake

robot . 113
6.15 Resulting policy and predicted objective for adaptive slope sidewinding task 114
6.16 Obtained linear fit for slope angle estimation 116
6.17 Frames from video of snake robot demonstrating optimal policy on test course 117
6.18 Results showing performance of optimized policy to various static policies . . 118

7.1 Kinesthetic input concept and museum data collection overview 121
7.2 Obstacles for collection of expert demonstrations 123
7.3 Fidelity of expert demonstration playback 124
7.4 Images from data collection at the Museum of Science and Industry 128
7.5 Parameterization and subsequent optimization of expert trajectory 133
7.6 Playback comparison for expert demonstration and simplified versions 136

8.1 Results of binary optimization on 3.5 and 11 inch tall beams 141
8.2 Synthetic test functions for stochastic binary optimization 147
8.3 Comparison of algorithm performance on stochastic binary functions 151
8.4 Comparison of algorithm performance on stochastic binary functions 152
8.5 Robot overcoming obstacle using optimized motion 153
8.6 Improving solution variety by biasing against confidence 155
8.7 Results from optimization of robot motion, sharing information across tasks 157

VII

List of Algorithms

1 Basic Black-Box Optimization . 49
2 Robust Black-Box Optimization . 58
3 Robust GP Fitting . 59

VIII

List of Tables

7.1 Results of Replaying Recorded Trajectories 125
7.2 Aggregate Success Percentage by Gender and Approximate Age 128
7.3 Results of Simple Parameterized Trajectory Controllers 135

IX

List of Abbreviations and Symbols

A short description of the terms used in this thesis, this is intended to be a quick reference
to assist with understanding of formulae and abbreviations. More detailed descriptions are
given upon initial use of the terms.

Notation Description Page List
CDF cumulative density function 21, 22, 30, 143, 146

EI expected improvement 29, 30, 33, 36, 40, 45,
46, 58, 61, 63–65, 67,
68, 71, 77, 78, 82, 87,
92, 96, 99, 100, 102,
105, 106, 118, 142–
147, 149, 151, 152,
154, 158, 166, 167

EIHV expected improvement in hypervolume 78, 79, 82, 83, 86–88
EPSI Expected Policy Score Improvement IV, 98, 100–102, 104,

106–108

GP Gaussian process XI–XIII, 6–16, 18–
22, 27, 28, 33, 34, 37,
45–47, 49–52, 54–57,
59, 60, 63, 65–67, 76,
77, 80, 86, 96, 97,
101, 102, 104, 108,
112, 114, 119, 143–
145, 148–150, 152,
154, 156, 160, 161,
170

GPC Gaussian processes for classification XIII, 21, 142, 143,
146, 156, 158

LOO leave-one-out 50–52, 58, 60, 160

MLE maximum likelihood estimate 17, 52, 54, 55, 58, 160

X

Notation Description Page List
MOO multi-objective optimization 31, 40, 74–77

PDF probability density function XI, XIII, 10–12, 17,
21, 28, 30, 66, 68, 144

RL reinforcement learning 38, 39, 41

UCB upper confidence bound 28, 33, 144, 145
UEI Unbiased Expected Improvement IV, 98–100, 102, 106,

110, 112

k Covariance function of the Gaussian process (GP); must
be positive definite. k : X ×X → R

XI, 7–9, 11, 12

K Shorthand for the GP covariance function k of sets of

variables. K({x1, x2}, {x3, x4}) =

[
k(x1, x3) k(x1, x4)
k(x2, x3) k(x2, x4)

] XI, 12, 14, 17, 19

m The mean function of the GP. m : X → R XI, 7, 11, 12
M Shorthand for the GP mean function m of a set of vari-

ables. M({x1, x2, x3}) =
[
m(x1) m(x2) m(x3)

]T XI, 12, 14, 17

f ∗ Predictions for the objective f . 6, 47, 170

f̂µ The GP regression’s mean prediction for the objective f
based on the sampled points x̃ and ỹ. f̂µ : X → R

XI, 27, 47, 51, 52, 63,
65, 66, 97, 99, 101

f̂σ2 The GP regression’s predictive variance for the objective
f based on the sampled points x̃ and ỹ. f̂σ2 : X → R+

XI, 28, 51, 52, 63, 64,
97

pxY The GP regression’s predictive distribution for the value
of the objective f at x based on the sampled points x̃ and
ỹ. In equations this may refer to the distribution or the
probability density function (PDF) of the distribution in
particular. pxY ∼ N (f̂µ(x), f̂σ2(x))

XI, 21–23, 28, 30, 47,
61, 64, 99, 146

pxY The GP regression’s predictive distribution for the value
of the objective f at a set of points x based on the sam-
pled points x̃ and ỹ. pxY is a multivariate normal distri-
bution.

XI, 47

f̂ The GP regression of the objective f based on the sam-
pled points x̃ and ỹ. This is used as a general descriptive
term for the surrogate function, and in formulas the more
precise terms such as pxY will be used.

XI–XIII, 19, 21, 22,
27, 28, 30, 47–49, 51,
52, 58, 59, 63–68, 77–
79, 95–97, 99, 101,
104, 113, 143, 144,
146, 150

f̂x The random variable defined by pxY . 28, 64–66, 68, 77, 146

XI

Notation Description Page List
pxY In multiobjective problems, the joint predictive distribu-

tion for the value of the objective f (based on the GP
regression for each individual objective) at x, based on
the sampled points x̃ and ỹ.

XII, 78

f̂
x

The multivariate random variable defined by pxY. 78, 79
xt A point at which to sample a GP. XII, 11, 12, 99, 100
Y t The random variable in a GP associated with xt. 11
xt A set of points in X at which to sample a GP. XII, 11–14, 19
Yt The set of random variables in a GP corresponding to xt. 11–14
X Parameter space (domain) of f . For environmentally-

adaptive optimization (Chapter 6), Xc ×Xe = X.
XI–XIII, 6, 7, 10, 11,
13, 14, 26–28, 47, 88,
89, 95, 100, 102, 142,
143, 145–147

f Objective function to be maximized. f : X → R XI–XIII, 12–14, 16,
18, 19, 26, 27, 47,
48, 57, 61–64, 67, 76,
89, 90, 93–96, 98–
100, 103, 105, 110,
143, 164

xr After the experiment selection phase of an optimiza-
tion is complete, an algorithm uses the available in-
formation to recommend the point xr as the best pre-
diction for argmaxx∈X f(x) (or in the binary case, for
argmaxx∈X π(x))

XII, 142, 143, 149

ymax The objective evaluation with the highest value; max ỹ
for deterministic f . For stochastic f , see Ymax.

XII, 28, 30, 61–68,
144, 145, 154

Ymax A distribution over the estimated maximum objective
evaluation; analogous to ymax for stochastic f .

XII, 64–68

ỹ A set of sampled values of the objective f , corresponding
to the points x̃

XI–XIII, 16–19, 21,
22, 48–52, 58, 59, 61,
63, 65, 77, 78, 99, 170

x̃ A set of points in X at which the objective f has been
sampled to obtain ỹ

XI–XIII, 16–19, 21,
22, 48–52, 58, 59, 62,
63, 65, 66, 77, 142,
144, 145, 147, 170

xopt Optimal input parameter in X for f , or argmaxX f(x). XII, 47, 48
x̂opt Prediction for the optimal input parameter xopt, usually

based on the GP fit for x̃ and ỹ.
48

XII

Notation Description Page List
f The vector-valued function of multi-objective outputs;

f : X → Rn. f(x) = {f1(x), f2(x), . . . , fn(x)}
XII, XIII, 76–78

γ For environmentally-adaptive optimization (Chapter 6),
a policy γ defines which control parameters to select for
each environment. γ : Xe → Xc

XIII, 93–95, 97, 99–
101, 103

γ∗ The optimal policy γ∗ is the policy which maximizes the
policy score S.

XIII, 94, 95

S The score of a policy γ, S(γ) is a measure of its
(weighted) combined performance over all environments.

XIII, 93–95, 97, 100,
101

Xc For environmentally-adaptive optimization (Chapter 6),
the control subspace of X. Xc ⊂ X

XII, XIII, 92, 93, 95,
96, 99, 105

xc A single control setting; a point within Xc. xc ∈ Xc XIII, 92, 95, 99, 100,
110, 112, 164

Xe For environmentally-adaptive optimization (Chapter 6),
the environment subspace of X. Xe ⊂ X

XII, XIII, 93–97, 99,
101, 105

xe Parameters that define a single environment; a point
within Xe. xe ∈ Xe

XIII, 93–95, 97, 99–
101, 110, 164

π̂max The maximum of the predicted underlying π̂ at the sam-
pled points x̃

145, 146

π̂ In the binary stochastic setting (Chapter 8), π̂ is the
estimate of π. This is analogous to f̂ in the standard re-
gression case, and is represented by a Gaussian processes
for classification (GPC). However, the joint distributions
defined by this surrogate are not Gaussian (indeed, they
are not in general symmetric).

XIII, 21, 143, 144,
146, 149, 150, 153

π̄ In the binary stochastic setting, the expectation of pxπ, or
π̄(x) = E[pxπ]. π̄ : X → (0, 1)

XIII, 22, 144–146,
154

pxπ In the binary stochastic setting, the GPC regression’s
posterior predictive distribution for the value of under-
lying success probability π at x based on the sampled
points x̃ and ỹ. In equations this may refer to the distri-
bution or the PDF of the distribution in particular.

XIII, 21–23, 144, 146,
149, 154

σ When using a classification setting of GPs, σ is the re-
sponse function that converts between linear and probit
or logistic regression. σ : (−∞,∞)→ (0, 1)

XIII, 21, 22, 143,
144, 146

π In the binary stochastic setting (Chapter 8), π is the un-
known underlying probability of success. π : X → [0, 1]

XII, XIII, 22, 142–
153, 155, 156

XIII

Chapter 1

Introduction

The modular snake robots in Carnegie Mellon’s Biorobotics lab provide an intriguing plat-

form for research: they have already been shown to excel at a variety of locomotive tasks and

have incredible potential for navigating complex terrains, but much of that potential remains

untapped. Unfortunately, many techniques that are commonly used in robotics prove inap-

plicable to these snake robots because of either the robots’ complex, multi-modal locomotion

dynamics – which are difficult to model – or their small size and frequent impacts, which

preclude addition of many standard sensors. Therefore, in this thesis I extend research from

other fields to address these challenges, simultaneously advancing the robotics literature as

well as those fields from which the methods originate.

The motivation to expand the capabilities of these robots stems from experiencing several

failures and limitations in real world tests. For example, the robot was able to navigate a

narrow passage underneath a rubble pile at a disaster response training site, but was unable

to pass over a four inch high piece of wood which lay across its path once the passage widened.

In an archaeological expedition near the Red Sea, the robot was able to move further than

a human could into a collapsed cave containing four-millenia-old ship timbers. However, a

gradual sandy slope prevented the robot from moving further and potentially making an

1

(a) (b) (c)

Figure 1.1: This thesis develops learning algorithms for robotics applications; this includes (a) optimization
of motion in steady-state settings, (b) learning from demonstration, and (c) overcoming obstacles with
limited feedback.

archaeological discovery.

To increase performance of these locomotive tasks I develop machine learning techniques

as a means to build a suite of tools to make teleoperation simpler and more powerful. These

tools include a library of gaits that have been optimized for use on various terrains, new non-

gait motions to help the robot overcome obstacles, and optimization methods to efficiently

discover motions over new obstacles when the need arises.

This thesis seeks to add low-level autonomy to improve robot capabilities and simplify

the task for the operator, rather than providing complete autonomous control. In the desired

applications for the snake robot system which motivate this work (archaeology, search and

rescue), a human is critical in analyzing the scene for objects of interest or potential victims,

and providing high level directional control. By lowering the cognitive workload necessary

to control the robot and understand the scene, I hope to allow the operator to place more

focus on the task rather than the tool, improving mission performance. However, elements

of this work could still be used for full autonomy in other scenarios.

Although the methods developed herein are primarily designed for improving snake robot

teleoperative performance, they are applicable to a wider variety of problems with similar

2

underlying challenges. By addressing problems faced by the current robot with algorithmic

and learning advances rather than hardware development, I motivate the following more

general theoretic problems (Fig. 1.1):

1. Optimization of noisy, expensive, black-box functions, with extensions for multiple ob-

jectives and learning multiple related tasks.

2. Collection and generalization of demonstrated input for underactuated systems.

3. Optimization of expensive functions with stochastic binary outcomes.

Below, I outline the particular contributions of this work.

Improving Gaits

Control of snake robots is difficult in part because of the large number of degrees of freedom

in the system. One method of reducing the dimensionality to a more manageable level

is through coupling the control of these individual actuators by using gaits. A gait is a

cyclic motion in the robot’s shape space which produces some (possibly trivial) motion of

the robot in the world. Gaits are the foundation of snake robot locomotion; their effective

overall motion is easily characterized, and controllability proofs show that cyclic motion is

optimal for locomotion over large distances [14].

Empirically, gaits have produced impressive results when moving over uniform terrain,

including pipes, or terrain with low amplitude disturbances. However, we have no reason

to believe that our current set of gaits is optimal or complete; in addition, we know these

existing gaits cannot handle all of the challenges that the robot has faced.

The gait optimization work in this thesis uses a surrogate function to create a model of

gait performance as a function of gait parameters. Applying this method enables the robots

3

to more robustly move over a set of small obstacles, and to climb steeper slopes than pre-

viously possible. I describe improvements I add to existing surrogate function optimization

approaches to enable the optimization to run robustly, without finicky tuning parameters.

Also, as stochasticity exists in physical systems being run in the real world, I describe several

approaches to explicitly take into account this noise and show the effects of these methods.

As robotic systems often have multiple conflicting notions of optimality, I describe a

multi-objective formulation of the optimization setting above to generate Pareto optimal sets

of gait parameters; these sets contain optimal parameter choices for multiple simultaneous

(and potentially conflicting) objectives, such as speed and robustness.

I also extend the basic optimization setting to include parameters that can be used to

describe the environment or task, such as slope or crevice width. This extension seeks a

control parameter policy over these environment parameters, as opposed to a single optimal

gait parameter setting. The result has been demonstrated in a simple autonomous behav-

ior by incorporating state estimation that allows the system to measure and react to its

environment.

Learning and Optimizing Non-Gait Shape Changes

Although gaits are the motion of choice for traversing long distances over uniform terrain,

more interesting environments will rarely be uniform for significant lengths. Instead, complex

motions must be learned that enable navigation over complex terrain and large obstacles.

To address this challenge, I describe an approach to record, simplify, and parameterize

demonstrated trajectories from expert and novice users. As the settings where these motions

are needed usually measure the result of the motion in terms of success and failure rather

than a numerical score, I derive extensions to the optimization framework used for improving

gaits to handle stochastic binary functions, and use this to optimize robustness of trajectories

4

for moving over obstacles.

5

Chapter 2

Background

2.1 Gaussian Processes for Regression

In this thesis, Gaussian processes (GPs) are used extensively as a regression method. The

following section provides a brief overview of GPs, the notation used in this thesis, and their

application to regression.

Intuitively, a GP can be viewed as a probability distribution over functions. Given a

domain X (referred to as the parameter space), a GP assigns each function f ∗ : X → R a

likelihood. The GP can then be used to sample functions from this implied distribution,

to condition the function distribution on observations, and to provide predictive output

distributions for given points x ∈ X.

We will reach a more precise definition of GPs after first describing intuition of two key

concepts, the mean and covariance functions associated with a GP.

2.1.1 Gaussian Process Priors

As stated above, a GP is a distribution over functions which map X to R. The GP’s prior

distribution over this infinite set of mappings is completely described by a mean function

6

25

-~~0 --~~~--~0~--~--~10"

X

(a)

25

(b)

-~'=-o --~-s~----,o~----,5~--'----!1o·

X

(c)

Figure 2.1: The mean function describes the average expected function value. If the mean function is a
simple linear function such as (a) , then functions such as (b) have higher likelihoods than those given in
(c), because they are closer to the expected value.

m: X ~ lR and a positive definite covariance function k : X x X ~ JR.

Mean function: The mean function gives the overall trend of typical functions in the GP's

distribution (Fig. 2.1). When a GP is used to estimate a function, such as the regression

applications in this thesis, the mean function can be used to encode prior knowledge such as

linear trend, a constant bias term, or a step response at some location in the space. Often

in the literature, it is assumed to be identically zero at all points in the space.

Covariance function: The covariance function describes other properties of functions in

the distribution, such as smoothness and scale (Fig. 2.2). This is also used to encode prior

knowledge, but the effect on function behavior is not as directly intuit ive. More accurately,

the covariance function describes how related different points in X are, or how the expected

function values are correlated, or co-vary, at these points. For example, if typical functions

in the GP's distribution change very quickly, then the covariance function drops off quickly

as x and x' diverge; if typical functions change less quickly, then results in a covariance

function with a slower dropoff. This can even describe periodic behavior, by enforcing high

positive covariance between points spaced equal distances apart.

7

5
0

~·
3

(a) Squared Exponential
10

-~Lo -----~------0------------,o

X

(d) Sampled Functions

5
0

~· ""'

{b) Matern, d = 1
10

-~'Lo------5------o------------,o
X

(e) Sampled Functions

o5
~ .,.,.

(c) Periodic
10

-~Lo ------5------o------~----,o
X

(f) Sampled Functions

Figure 2.2: The covariance function describes how points in the space are correlated. Each figure in the top
row shows the covariance function output k (x , x'), where x' is set to zero and x is allowed to vary. Higher
values indicate higher correlation between function values at these points. Each bottom row figure shows
samples from a GP prior with a zero mean function and the covariance function pictured above it.

8

~~------~0~------~5

X

(a) f = 1 o} = 1

~5~------~0~------~

X

(b) f = 2 o} = 1 (c) £ = lo} = 2

Figure 2.3: T he black solid lines are samples drawn from GP priors with a squared exponential covariance
function and three different hyperparameter values. The red dashed line is the covariance function k(x, x')
with x' = 0. (a) The length scale parameter is set to 1, as is the signal variance. (b) When the length scale
increases, typical function samples are smoother and vary less quickly - values are more correlated across
the spatial dimension. (c) When the signal variance increases, the amplitude of typical function samples
mcreases.

H yp erparamet er s: Covariance functions are often parameterized so that they can de-

scribe an entire family of function behaviors. The overall characteristics are the same, but

details of the resulting distribution - typical amplitudes, rat e of changes, etc - may change.

For example, the squared exponential covariance function,

' 2 (x - x'? k(x , x) = Oj exp(-
2

(2), (2.1)

describes functions which generally vary smoothly. It has a length scale parameter £ and a

signal variance paramet er (JJ. As £ decreases, typical functions from the GP 's distribution

vary more quickly. As (JJ increases, function draws which have a larger scale, or range

of output values, become more likely. As these parameters affect the prior distribution of

functions rather than directly act as parameters of a single function, they are referred to as

hyperparameters. Sampled functions from GPs with the same covariance function family but

different hyperparameters are shown in Fig. 2.3.

9

• •
A 0 A

a a • A A • I A A • a I >- 0 0 0 >- 0 0 a
0 a • 0 0

A A 0 0
A

A

-5
X1 x2 -50 10

X X

(a) (b) (c)

Figure 2.4: (a) A bivariate Gaussian PDF with three points selected. (b) Each of the random variables
from (a) is associated with a point in X. The three points shown in (a) are shown as sets of points here,
including the circles which represent the mean, or most likely values. (c) As more points are added, and the
multivariate Gaussian becomes harder to visualize, each sample from that Gaussian approximates a function
from X toY; this is shown here with 10 points.

2.1.2 Gaussian Process D efinit ion

The discussion above has provided a basic level of intuition on GPs - in particular, they

are a distribution over functions from X to IR, and are described by a mean function and a

covariance function. Here we provide a formal definition, and describe the basic equations

and notation needed to work with GPs.

Now consider a joint Gaussian probability distribution between two random variables, Y1

and }2. As shown in Fig. 2.4a and 2.4b, we associate Y1 with x 1 EX and Y2 with x2 EX.

This multivariate distribution describes the relation of Y1 and Y2; as shown in the figure,

certain pairs of values are more or less likely, and the most likely set of values represents the

mean of the Gaussian PDF.

This is simple to extend to more points, although the dimension of the Gaussian PDF

because too large to visualize. In Fig. 2.4c, we shown several samples from a 10-dimensional

Gaussian PDF, again with each random variable Yi associated with a points X i EX. Again,

the mean of this distribution gives the most likely set of joint random values.

A GP simply extends the above concept to an infinite1 number of points. If fact , the

1Technically, a GP need not be over an infinite set, but is simply a multivariate Gaussian distribution if

10

formal definition of a GP, taken from page 13 of [81], is

Definition (GP). A GP is a collection of random variables, any finite number of which have

a [joint] Gaussian distribution.

To equate this definition with our understanding of a GP as a distribution over functions,

we add the notion of an index set X. Each of the random variables Yi in a GP’s collection is

the distribution of function values at some point xi ∈ X. A subset of these random variables,

{Y1, Y2, . . . , Yk}, is associated with the joint distribution of function values at a set of points

{x1, x2, . . . , xk}. The example from Fig. 2.4c might then be a subset of 10 of a GP’s random

variables.

2.1.3 Sampling from the Prior

As we initially stated, a GP can be thought of as a prior over functions. Suppose we wish

to sample from this distribution. If X ⊂ Rn, then it contains an infinite number of points;

the definition of a GP only guarantees a joint distribution for a finite number of points2.

Fortunately, for practical purposes, it is sufficient to sample at a finite but potentially large

number of points. We consider a set of test points xt = {xt1, xt2, . . . , xtk} in the domain of

the function at which to jointly sample the GP to draw from this function distribution. The

collection of random variables in the GP corresponding to xt is Yt = {Y t
1 , Y

t
2 , . . . , Y

t
k}.

To form the multivariate Gaussian distribution which the GP describes at these points,

we must define the mean of the Gaussian as well as its covariance matrix. Recall that the

GP is completely described by a mean function m and a covariance function k. The joint

not.
2This is reasonable – as the number of dimensions of a Gaussian approaches infinity, the value of the PDF

approaches zero everywhere; the value is undefined when the PDF is over an infinite dimensional space.

11

prior distribution of function values at xt is given as

Yt|xt ∼ N





m(xt1)

m(xt2)

...

m(xtk)


,



k(xt1, x
t
1) k(xt1, x

t
2) · · · k(xt1, x

t
k)

k(xt2, x
t
1) k(xt2, x

t
2) · · · k(xt2, x

t
k)

...
...

. . .
...

k(xtk, x
t
1) k(xtk, x

t
2) · · · k(xtk, x

t
k)




, (2.2)

or in a shorthand notation

Yt|xt ∼ N
(
M(xt), K(xt,xt)

)
. (2.3)

Recall that when the idea of the covariance function k was introduced above, it was

called out that k must be positive definite, whereas no restriction was made on the mean

function. The reason for this is now apparent – the covariance function defines the entries

of a Gaussian distribution’s covariance matrix, and as this matrix must be positive definite,

the function which produces it also must be.

Finally, we note that (a) the view of a GP as a collection of random variables in Def. 2.1.2

and (b) the more casual statement that a GP is completely described by a mean and co-

variance function can be related as follows. Given a mean and covariance function, one can

define a Gaussian PDF for any finite test set xt; similarly, given a collection of random

variables, one can use the definitions of expectation and covariance to obtain the values of

the mean and covariance functions evaluated from any finite set of those random variables.

2.1.4 Regression and the Gaussian Process Posterior

In regression, the goal is to fit a model to data from an unknown function f . As GPs provide

a distribution over functions, they work ideally as such a model, producing a most likely

estimate of the underlying function (the mean) as well as pointwise variances (the covariance

12

function evaluated at each point independently) to represent uncertainty. However, to use

GPs in this role, we cannot simply use the prior distribution described above – we must

be able to condition on the sampled data from f to obtain a posterior distribution over

functions.

Computing this posterior is possible because the GP provides a joint Gaussian distribu-

tion for any finite set of random variables Yt, and conditioning Gaussian distributions is

well understood. We first restate this general result, and then apply it to the derivation of

a GP posterior.

For a set of m+n random variables divided into two groups ZA = [Z1, Z2, . . . , Zm]T and

ZB = [Zm+1, Zm+2, . . . , Zm+n]T , suppose their joint distribution is given as

ZA

ZB

 ∼ N

µA
µB

 ,
ΣAA ΣAB

ΣBA ΣBB


 . (2.4)

If the true values of the variables in ZB are observed to be z, we can update the distri-

bution of the values of ZA with this information, giving

(ZA|ZB = z) ∼ N
(
µ̄, Σ̄

)
where (2.5)

µ̄ = µA + ΣABΣ−1
BB(Z − µB),

Σ̄ = ΣAA − ΣABΣ−1
BBΣBA.

Similarly, if we have two sets of points in X, xt at which we wish to predict the function

and x at which we will sample the true objective f , the prior distribution over the joint set

is

13

A • • • 0

• a • A A • • A A
a I A A 6 a • 0 a >- 0 • 0 • >- 0 >- 0 a 0 0

0 a 0 • A
A 0 A 0 0

A • A • 0
• I A • •

-So 10 -So 10 -So 10
X X X

(a) (b) (c)

Figure 2.5: (a) A GP with a squared exponential covariance function and zero mean is used to generate a
multivariate Gaussian over random variables associated with points {1 , 2, ... , 10} C X. Three samples are
drawn from this distribution, and plotted as the black circles, red triangles, and blue squares. (b) Two points
are chosen in X x Y (perhaps evaluations of some unknown function) . (c) The GP from a is conditioned on
these points, and three new samples are drawn from the posterior. Notice that the samples all interpolate
these points; the posterior distribution's variance has collapsed to zero in these dimensions.

(2.6)

and by using Equation (2.5) the posterior distribution is

y tlxt, x, Y = y '"'-' N (Jl, f.) , where (2.7)

Jl M(xt) + K(x\x)K(x,x)-1(y - M(x)) ,

In Fig. 2.5, this process is demonstrated. A number of samples from the GP prior are

drawn at a test set of 10 points. After evaluating two points from the true function f , a

number of samples is drawn from the posterior obtained by conditioning on these evaluated

points.

14

>- 0

X X X

(a) (b) (c)

Figure 2.6: A useful, albeit incomplete, visualization of a GP is obtained by plotting the mean function
along with a shaded confidence region of the pointwise standard deviations. (a) Posterior from a GP with a
squared exponential covariance and hyperparameters l = 1 and a} = 1. (b) Squared exponential covariance
with l = 1.4 and a} = 4. (c) Periodic covariance with l = 2, .\ = 5, and aJ2.

2.1.5 Gaussian process Posterior Visualization

Roughly, a G P can either be thought of as (a) an infinite-dimensional Gaussian, or (b) a

distribut ion over functions. Unfortunately, neither of t hese permits a complete yet simple

visualization. One approach might be to draw several samples, as in previous figures from

this chapter; this can quickly result in cluttered and hard t o understand images. A more

common, straightforward technique used to form a partial visualization of the GP and its

posterior is a solid line with a shaded 'confidence region' around it (see F ig. 2.6).

The solid line in the center is t he mean of the GP function distribution. In the case of

a GP prior, this is just the mean function; in the case of a posterior, it is the mean of t he

posterior dist ribution discussed above. The gray shaded region is ± 1 standard deviation of

the individual Gaussian predict ive distribution at each point.

The information that is missing in t his representation is any detail about the joint dist ri-

bution - how points in t his space co-vary. In other words, this pict ure does not describe t he

full function distribution of the GP ; for example, the picture would be identical for two GP

priors using a squared exponential covariance with different length scale hyperparameters.

Even with this limitation, these images provide reasonable intuition about the function

15

distribution. and will be heavily used in the following chapters. Also, for regression appli-

cations, this visualization captures key information about the prediction: the most likely

function (the mean) and the uncertainty in this estimate at various points (the pointwise

variances).

2.1.6 GP Model Selection

As mentioned above, the mean and covariance functions and corresponding hyperparameters

determine the GP’s prior distribution over functions; therefore, they also affect the posterior

distribution. When using GPs for regression of an unknown function f , a central question

is then which functions and hyperparameters to choose?

First, and most importantly, this choice should reflect prior information. Do you know

that f is periodic? Is there an expected linear trend in f? Adding such information will

focus the resulting predictive function distribution more closely around f .

There are also principled probabilistic techniques one can use to make this selection. As-

sume you have evaluated f at several points x̃ = {x1, x2, . . . , xn} to obtain ỹ = {y1, y2, . . . , yn}.

The idea behind the probabilistic selection approach is relatively simple: determine which

model (hyperparameters, covariance function, etc.) make the evaluated ỹ most likely. Al-

ternatively, this can be thought of as finding which model most likely could have generated

the data {x̃, ỹ}. Intuitively, if the data clearly shows a sharp linear trend, then this data is

more likely to have come from a GP with a similar linear mean function than one with a

zero mean function. If the data is periodic with a period of 1, it is more likely to come from

a period covariance function with a period of 1 than one with a period of 1.5.

To compute this marginal likelihood3 of the data, assume you have a GP and asso-

ciated hyperparameters. This defines a Gaussian prior Y|x̃ over the random variables

3The term marginal refers to marginalizing out possible function values; a more detailed derivation using
this intuition is given in Appendix C.1.

16

(a) (b) (c)

Figure 2.7: (a) A region of t he likelihood surface for t he two hyperparameters of a squared exponential
covariance, f. and CJ f , which contains the maximum likelihood estimate. For numerical optimization reasons,
the negative log likelihood is usually considered; this figure is also shown with arctan scaling to make the
contours more apparent. (b) The GP posterior using the maximum likelihood hyperparameters, f. = 0.21
and CT~ = 3.6. (c) The GP posterior using a set of non-maximum likelihood hyperparameters, f. = 0.082 and
CTJ = 2.1.

Y = {Yi , Y2 , . . . , Yn} associated with x, as given by Equat ion (2.3). Using t he st andard

equat ion for a multivariate Gaussian PDF, the value of this PDF at y directly gives t he

likelihood that y could have been drawn from this distribution,

(2.8)

where I: = K (x ,x) and 11 = M (x).

Using the marginal likelihood, one can compare different potential hyperparameters,

mean functions, and covariance functions. Finding those which result in t he highest likeli­

hood of the dat a y is referred to as maximum likelihood estimation, and t he optimal setting

is t he maximum likelihood estimate (MLE). T his is commonly done to choose t he best set of

hyperparameters given a fixed mean and covariance function; plot t ing the likelihood for each

value of t he hyperparameters results in a likelihood surface such as that in Fig. 2.7. Due to

the non-linearity and potential non-convexity, finding t he opt imum of this surface requires

careful optimization (discussed more in §4.2).

17

2.1.7 Fitting GPs to Stochastic Data

Although the regression examples above involved deterministic functions, GPs can also be

used in situations where the sampled data is stochastic. Let us assume objective function

evaluations can be viewed as realizations of a random noise variable added to an underlying

latent function; each sampled value yi ∈ ỹ can be written as f(xi) = flat(xi) + ε (where

xi is the corresponding element of x̃ and ε is the realization of the random process noise

variable).4

To include this in the GP model, a diagonal element can be added to the covariance

matrix, as is common in the literature [81, 43, 103, 77]:

kn(xi, xj) = k(xi, xj) + σ2
nδij (2.9)

In this equation, k(xi, xj) is the (underlying noiseless) covariance function between xi and xj,

and δij is the Kronecker delta function which serves to only add noise to the diagonal element

of the resulting covariance matrix. The σ2
n term serves as an additional hyperparameter for

the GP, and represents the variance of the process noise random variable ε. The addition

of this term prevents overfitting by relaxing the constraint that the predicted mean value of

the GP exactly interpolate the data given, as it would without this term (Fig. 2.8).

Often, the end user of the GP regression (e.g., the optimization algorithm or an online

parameter selection method) should decouple the estimated value of the process noise (e.g.,

the variance of ε) and the uncertainty in the estimate of the latent function flat. This allows

for reasoning about which regions of the parameter space are most informative to sample

(e.g., the uncertainty in flat) during optimization (see §4.3), as well as reasoning about risk

(e.g., the stochasticity of the system) during online parameter selection.

Note that these terms can be separated during the inference; the uncertainty in the

4This follows the approach described in [81], and the equations in this section are adapted from this
reference to fit with the notation I use in this thesis.

18

<:

,- -- ...

0 ' '
B ' ' ' ' <:
.2
<IJ
> :.::;
u
<IJ
:o'
0

experiment parameters

(a) A GP fit to samples from
a deterministic function, using
no noise hyperparameter.

<:
0

B
<:
.2
<IJ
>
B
<IJ
:o'
0

experiment parameters

(b) A GP fit to samples from
a stochastic function, using no
noise hyperparameter.

' '
' c: ' ' 0 ' ' :.::; ' ' u '

,
<: ' .'
.2 ' ' ' ' <IJ I > ' :.::; ' u
<IJ
:o'
0

experiment parameters

(c) A GP for to samples from
a stochastic function, using a
noise hyperparameter.

Figure 2.8: Effects of stochasticity in the objective and noise covariance function hyperparameters on GP
regression. T he black solid line is the function, t he red line is the GP posterior mean, and the red dotted lines
are one standard deviation uncertainty bounds of the GP predictive distribution. Fitting stochastic data
without an explicit noise hyperparameter leads to overfitting (see (b)), as the GP attempts to interpolate
the observations exactly. (c) Using a noise hyperparameter eliminates t his overfitting.

estimate of f iat at a set of test points xt given the stochastic objective evaluations y at :X is

(2.10)

The posterior dist ribution of samples from the stochastic function (including the estimation

uncertainty as well as the noise term) is simply the sum of two independent normal dis­

tributions. The variance of the sum of independent normal distributions is the sum of t he

variances, and therefore the variance of this distribution is

(2.11)

This method of adding a noise term to GP regression assumes independent, uniform

Gaussian noise. An active area of research in the community at large is the investigation of

heteroscedastic noise models (non uniform noise variance over the parameter space). These

often can provide improved accuracy for physical systems, as noise in the objective is likely

to be higher in some regions (e.g., faster , more stochastic dynamics) ; however, the increased

19

computational penalty during inference is significant. Further, these heteroscedastic models

are difficult to train on the small training datasets inherent with the expensive optimization

problems discussed in this thesis (c.f. the model complexity discussion in §4.2.2). Because

of this difficulty, I feel that the benefits to this thesis of increased noise model accuracy

are outweighed by the increased challenges inherent in inference and hyperparameter opti-

mization with these models. The homoscedastic models discussed in this section are used

instead when obtaining results, but the methods I describe remain applicable for either type

of model.

2.1.8 Gaussian Process Summary

Overall, GPs provide a data-driven regression tool based on a Bayesian treatment of the data.

One must understand that although technically a non-parametric technique, GPs do have

parameters that must be carefully selected – the mean, covariance, and hyperparameters.

The goal of this section was to give background for the use of GPs for regression in this

thesis. I have described the intuition behind GPs, the formal definition, and covered the

notation that I use in this thesis. Also, an overview is given of using GPs for the regression

of unknown functions, including evaluating posterior distributions, explanation of a common

visualization method, and basic model selection.

Finally, I stress that this is only a brief overview necessary for this thesis; more detail

and other explanations can be found in several resources, such as [27, 95, 81].

2.2 Gaussian Processes for Classification

A strength of using GPs is the probabilistic modeling of an unknown function. When the

observed function outcomes are binary (0 or 1) and stochastic (sampled from an underlying

Bernoulli distribution), standard GPs are not appropriate. In this section, I describe an

20

adaptation of GPs to this noisy classification setting. GPCs provides a similar probabilistic

model for the underlying function in the stochastic binary case, which I elaborate on in

Chapter 8. More in-depth coverage of this background material may be found in Chapter 3

of [81].

Adapting GPs for a space of binary response variables uses concepts from linear binary

classification. Linear logistic regression and linear probit regression use the logistic and

the probit, respectively, as response functions σ to convert a linear model with a range of

(−∞,∞) to an output that lies within [0, 1] (i.e., a valid probability)5. Therefore, given a

linear regression model y = wTx, the predicted class probability π̂(x) is σ(wx). The choice

of w for the latent linear regression model is typically accomplished via maximizing the

likelihood of the data given the model.

Similarly, a GP can generate outputs in the range (−∞,∞), and by using a response

function σ can convert these outputs to values which can be interpreted as class probabilities.

In particular, the latent GP f̂ defines a Gaussian PDF pxY for each x ∈ X (as well as joint

Gaussian PDFs for any set of points in X). We define the corresponding probability density

over class probability functions as pxπ.

Note that although the response function σ maps from the latent space F to the class

probability space Π, pxπ(ȳ) 6= pxY (σ−1(ȳ)) (where ȳ is a class probability in Π, not a 0/1

sample). Instead, due to the change of variables,

pxπ(ȳ) = pxY (σ−1(ȳ))
δσ−1

δȳ
(ȳ). (2.12)

Finally, because we do not observe values of the latent function, the inference step for

conditioning our GP posterior on the sampled observations x̃ = {xi} and ỹ = {yi} requires

computing the following integral to determine the posterior f̂ at x∗:

5Later in this thesis, I use the standard normal CDF for σ; however, any monotonically increasing function
mapping from R to the unit interval can be used.

21

p(f̂ ∗|x̃, ỹ, x∗) =

∫
p(f̂ ∗|x̃, x∗, f∗)p(f∗|x̃, ỹ)df∗ (2.13)

In this equation, f∗ represents the GP prior on the latent function at x∗. Unfortunately,

the second term in the integrand represents a non-Gaussian likelihood which makes this in-

tegral analytically intractable; approximate inference methods for GP classification rely on

approximating this with a Gaussian. Advantages and disadvantages of different approxima-

tions are discussed in [75]; I use Minka’s expectation propagation (EP) method [69] due to

its accuracy and reasonable speed.

2.2.1 Expectation of Posterior on Success Probability

As noted above, pxπ(ȳ) 6= pxY (σ−1(ȳ)); therefore, the expectation of the posterior over the

success probability, E[pxπ], is not generally equal to σ(E[pxY]). To calculate the former, we use

the definition of expectation along with a change-of-variables substitution (π = σ ◦ f and

ȳ = σ(z)) to take this integral in the latent space (where approximations for the standard

normal CDF can be used):

E[pxπ] =

∫ 1

0

ȳpxπ(ȳ)dȳ (2.14)

=

∫ 1

0

ȳpxY (σ−1(ȳ))
δσ−1

δȳ
(ȳ)dȳ

=

∫ σ−1(1)

σ−1(0)

σ(z)pxY (z)
δσ−1

δȳ
(σ(z))

δσ

δz
(z)dz

=

∫ ∞
−∞

σ(z)pxY (z)dz (2.15)

As noted in section 3.9 of [81], if σ is the Gaussian cumulative density function (CDF)

this can be rewritten as follows (for notational simplicity, we define π̄(x) = E[pxπ] for use

22

later in this thesis):

E[pxπ] = Φ

(
E[pxY]√

1 + V[pxY]

)
. (2.16)

2.3 Snake Robot Control

The work in this thesis was motivated by the goal of improving the locomotive capabilities of

Carnegie Mellon’s snake robots [106, 107, 48]. There have been many such robots, perhaps

many inspired by the pioneering work of Hirose [40]; an in-depth survey of these systems is

given by [42]. Even compared to this large body of prior robot design work, the CMU robots

have demonstrated impressive locomotive capabilities (see Fig. 2.9). These modular robots

are about 5 centimeters in diameter – small enough to fit through a chain link fence – and can

range in length from 1 to 2 meters. This size allows the robot to fit into small channels and

spaces (such as void spaces in collapsed rubble) too confined for other mechanisms. Much

like their biological counterparts they use cyclic control trajectories called gaits to move

across relatively regular terrain. Examples of regular terrain are a flat expanse of grass, a

roughly uniform diameter pole, or a regular grid of poles.

(a) (b) (c)

Figure 2.9: (a) Snake robot locomoting along a tree branch. (b) Time-lapse snapshots of the sidewinding
gait. (c) Robot deployed in a mock building collapse.

23

Although the space of cyclic controls is infinite, the CMU robots are usually controlled by

motions within a finite dimensional constrained control trajectory subspace (the gait model

described in [100]):

α(n, t) =

 βodd + Aoddsin(ξodd) odd

βeven + Aevensin(ξeven + η) even
(2.17)

ξodd = ψoddn+ νoddt

ξeven = ψevenn+ νevent

This model is general enough to command the snake to slither, sidewind, roll in an arc,

wrap around a tree or pole in a helix and climb, turn in place, and traverse via many other

motions. Similar controllers for the non-climbing gaits were discovered in parallel by [31].

Other groups have also found that controlling with sinusoidal joint angle inputs (which drive

a discrete serpenoid backbone curve) is effective; among them Kuwada et al. use this strategy

for planar motions within pipes [61].

Several researchers have investigated control paradigms that differ from simple cyclic posi-

tion control, as well. A “backbone curve” approach to biologically-inspired hyper-redundant

robot locomotion is given by [19]. This curve can be thought of as the spine of a biological

snake. For practical application on a system, a fitting step must be run that is particular to

a robot’s morphology; [38] and [18] present examples of such fitting methods.

Liljebäck et al. have designed a coupled follow-the-leader and jam detection/resolution

control scheme for obstacle-aided locomotion [63, 64], but it is limited to 2-D motion, and

makes several assumptions about the system sensors and environment, requiring motion

capture setups that are impractical for use outside of a laboratory setup. Furthermore, their

control scheme is designed for infinitely thin segments, requiring further work to improve its

24

general performance on real systems.

Snake robots of the same form factor as CMU’s (e.g., [108, 76]) have as of yet had

difficulty in overcoming large obstacles. The cyclic gaits mentioned above are not as well

suited to overcoming large obstacles or irregular terrain. Other approaches for locomotion

over obstacles have focused on different robot form factors ([36, 74]); these systems have

different size, complexity, and mobility tradeoffs not addressed in this work.

Instead of relying on pure undulation of the robot’s shape for locomotion, [32], [34], and

others have investigated the use of external propulsion. This is most often accomplished by

the addition of powered wheels or tracks on the exterior of a chain of modules. The control

challenges and resulting methods for such robots differ significantly from those considered

in this work.

However, in no way have any of the above methods produced motions which were shown

to be optimal with respect to any objective. Although all of these methods have some sort of

gain, stiffness, amplitude, or other tuning parameters in their control law, they do not answer

the question of how to set that parameter in order to produce optimal motion. The optimal

value for such a parameter is not immediately clear, and in most cases is not something that

can be derived from first principles because of the numerous unmodeled effects that play

into any notion of optimality.

Optimality could be claimed by gait generation techniques for simple three-link analytic

kinematic systems, such as those techniques proposed by Shammas et al. using height func-

tions inspired by differential geometry [94]; these allow a user to individually visualize the

resulting magnitudes of motion in the x, y, and θ directions, but the underlying methods

were flawed due to not accounting for the SE(2) structure of the group: as θ changes, the

directions of x and y do as well. These methods were corrected and improved by Hatton et

al. in [37], which used connection vector fields to help gait designers visualize the resulting

motion, and [39], which reduced the error in x and y by choosing coordinates that bounded

25

values of θ. Currently these planar analytic methods do not scale to higher dimensional

complex 3-D systems which do not have analytic models.

2.4 Expensive Optimization

Optimization of the control of physical systems such as snake robots is an example of ex-

pensive, black-box optimization. An expensive function is one for which evaluations take

significant resources (time, money, computation, or other resources). A black-box function

is one which provides no gradient or derivative information when sampled; it can be treated

as a “black box” to which an input is given and an output is returned, but no other infor-

mation about the inner workings of the function is available. Furthermore, these functions

need not have guarantees of convexity or linearity; one must search for a global optimum

over a function which is in all likelihood nonlinear and non-convex.

The goal of expensive optimization is to recommend xr which best approximates xbest,

the maximizer6 of the expensive, black-box function f : X → R. This is done through careful

sequential selection of points at which to evaluate f , attempting to minimize the number

of total evaluations while maximizing the resulting f(xr). In cases where the evaluations of

f are costly (hours to days), computational requirements of the optimization algorithm are

not a significant issue; careful choice of the sample is more important than the speed of its

selection.

Optimization of functions which fall into this class cannot be accomplished through use

of many standard techniques. For example, gradient-ascent approaches would require a

number of samples around a sampled point to find an approximation to the gradient; even

then, without knowing the basic behavior of the function it would be difficult to pick points

that provided an accurate and stable estimate of the gradient.

6When referencing other work in this field, note that often the goal is to minimize rather than maximize
f .

26

This has motivated the development of a class of “gradient free” optimization techniques;

these include local approaches, such as a Nelder-Mead simplex search (c.f. [73]), and global

approaches such as genetic algorithms [7] or simulated annealing [55]. Naturally, a globally

optimal controller is preferred to a locally optimal one, but unfortunately most methods

which search for such global optima require a large number of function evaluations, which is

prohibitive if these evaluations are expensive.

To address this problem, a subset of these techniques is based on the idea of predicting

the entire unknown expensive function from limited sampled data. These techniques have

different names depending on the field of use, but are commonly termed response surface or

Bayesian optimization methods. They rely on a data-driven probabilistic model f̂ (often a

GP) as a surrogate for the underlying expensive function f . Such algorithms are iterative,

sequential experiment selection methods – at each step i, they update the surrogate f̂ based

on data from previous evaluations of f (Fig. 2.10a), select a next point to evaluate xi ∈ X,

and evaluate xi on the true function f to obtain yi. The point xi is chosen by optimizing

a selection metric (sometimes referred to as an infill criterion) at each iteration, which can

consider information provided by the surrogate f̂ such as predicted function value and model

uncertainty at different xi within X. A comprehensive survey on this subject is given by

Jones [49].

In surrogate function approaches to the expensive optimization task, the central challenge

is the determination of the fitness metric, or how to balance exploration (sampling in un-

known regions) and exploitation (sampling in known good regions) during the optimization.

At one extreme, an approach would be to choose the current maximum of the surrogate,

xnext = argmax
x∈X

f̂µ. (2.18)

Simple examples show that this method is not guaranteed to converge, even to a local

27

optimum. At the opposite extreme, one might choose to reduce uncertainty in the function

estimate by selecting the point of the response surface with maximum uncertainty,

xnext = argmax
x∈X

f̂σ2 , (2.19)

or the point which maximizes expected information gain (described in [8]). These methods

would eventually obtain a very close fit to the true function, and therefore generate a good

prediction for the global optimum. However, the goal of optimization is not to have a perfect

function fit, but to find the optimum. This method wastes precious function evaluations on

improving the function estimate, even in low, uninteresting regions of the objective function

that are very unlikely to improve upon the best value found so far.

To improve the quality of search, the uncertainty of the estimated function value should be

used in conjunction with that estimated value. To this end, upper confidence bound (UCB)

algorithms have been developed (e.g., [3, 23, 71]), which pick a subsequent experiment based

on a weighted sum of the estimated function and its uncertainty. Unfortunately, this requires

tuning parameters, in particular the balance between exploration and exploitation.

Another approach that incorporates a natural tradeoff is to maximize the probability of

improvement [60, 104]. Improvement I(x) refers to the distance above the maximum value

of the objective found so far, ymax. Given the random variable f̂x associated with the GP

surrogate f̂ at x, improvement is defined as (a random variable)

I(x) = max(f̂x − ymax, 0). (2.20)

The probability of improvement is the probability that this random variable is greater

than zero. By considering the PDF associated with f̂x, pxY , this can be calculated as

PI(x) =

∫ ∞
ymax

pxY (y) dy. (2.21)

28

- 3o'-----'----'2---'----'--'-----'---'---'------'--'10

(a) (b)

Figure 2.10: (a) A surrogate function (dark line) interpolates sampled points of an unknown underlying
function (dotted red line). The surrogate quantifies uncertainty in its prediction, as shown by the shaded
region. (b) Experiment selection metrics such as probability of improvement and expected improvement
consider the predictive distribution at a potential sample point x (vertical line), compared to the best
previous sample (horizontal line).

This can be visualized as the integral of the tail of the predictive distribution above the

maximum value of the objective found so far (Fig. 2.10b). However, this metric is biased

towards a local search, as the probability of improvement will be maximized near the highest

predicted function value. As noted in [49], to encourage exploration one usually measures

the probability of improvement above some threshold over the optimal point sampled so far ,

but this still requires carefully tuning a parameter for best algorithm performance - in this

case, the value of the t hreshold.

A more principled method to address this tradeoff is the idea of expected improvement

(EI) [70], popularized by Jones et al. 's efficient global optimization (EGO) algorithm [50].

This is a slight alteration of the probability of improvement metric; instead of the area

of the tail of the predictive distribution, the center of mass of this tail is computed. This

provides a statistical measure that has been shown to effectively balance the trade-off between

exploration and exploitation, without requiring an algorithm parameter to be carefully tuned.

29

Calculating EI requires taking the expectation over improvement from Equation (2.20):

EI(x) = E[I(x)] (2.22)

EI(x) =

∫ ∞
−∞

pxY (y) max(y − ymax, 0) dy (2.23)

= (f̂xµ − ymax)
(

1− Φ((ymax − f̂xµ)/f̂xσ)
)

(2.24)

+ f̂xσφ((ymax − f̂xµ)/f̂xσ)

where φ and Φ are the PDF and CDF of the standard normal distribution and f̂xµ and f̂xσ

are the mean and standard deviation of pxY .

2.5 Multi-objective Optimization

An important consideration of real-world systems is the existence of competing objectives.

For example, faster speed is usually desirable for a locomoting system. Often these systems

carry on-board power, and must therefore simultaneously minimize energy usage. These

objectives are in direct competition, and so the question arises of how to measure true

optimality in such cases; to address this question, one of two ideologies is followed.

The first, and arguably the more popular in robotics, is the creation of a simple aggre-

gate function that combines (through addition, multiplication, or more complex arithmetic

operators) these objectives. This new aggregate is then defined as the “true” objective,

and standard single objective optimization techniques are used for its optimization. The

formation of the aggregate is ideally informed by some estimate of relative importance by

the user, but more practically is a untuned näıve combination. Unfortunately, weights in the

resulting formula must be tuned to create a function with the desired behavior, and often

this function is brittle to changes in system requirements. To make things worse, there are

30

maximizers of nonlinear aggregate functions that cannot be found with any combination of

weights for a simple weighted linear sum aggregate objective.

One example of complications that might arise from use of a simple aggregate function

is demonstrated in generating a simple measure of efficiency. One choice for the aggregate

objective might be distance traveled, d, divided by energy used, E. To obtain a more nu-

merically stable optimization, d/E might be changed to d/(E+ε), where ε is a constant that

must be tuned to prevent seeking low-energy, low distance, but high “efficiency” motions.

Perhaps the solutions generated are then slower than desired, and a design decision is made

to make speed more important. Then the objective is changed to dγ/(E + ε). Generation

of complex aggregate objectives commonly results in this increasing number of parameters

and adjustment of the objective weights. This is especially costly if you are dealing with

expensive-to-evaluate functions, such as physical robot locomotion. Each new objective re-

quires a new optimization (although information could theoretically be reused to reduce the

wasted cycles).

The second ideology is that embraced in the field of multi-objective optimization (MOO),

which searches for a set of Pareto optimal solutions. This set, named after economist Vil-

fredo Pareto, includes all solutions which cannot be improved in one objective without a

corresponding decrease in another. For example, let f1 and f2 be objectives that we wish to

maximize (each over the same domain), and a, b, and c points in the domain of fi, as shown

in Fig. 2.11a. Clearly, b is preferred to a, as it is at least as good in every objective, and

better in at least one. The point b is said to dominate a, written b � a or a ≺ b.

Alternatively, note f1(b) > f1(c) and f2(b) < f2(c). Therefore, we cannot say that one

point is better than the other unless we have defined an explicit relative importance of the

objectives. The points b and c are incomparable; this is written b ∼ c or (reflexively) c ∼ b.

Considering a set P , the Pareto optimal subset of P is {p ∈ P | ∀ q ∈ P, (p ∼ q) ∨ (p � q)}.

In the example above, {b, c} would be the Pareto optimal subset of {a, b, c}. For detailed

31

N
a.> c > ·.;:::;
u
a.>
B
0

objective 1
(a)

b

N
a.>
> ·.;:::;
u
a.>
B
0

objective 1
(b)

Figure 2.11: Objective-space illustrations of a multi-objective optimization problem. Sampled points are solid
circles, and the Pareto front (or frontier) is created by connecting Pareto optimal samples; it is illustrated
by the bold jagged line. (a): A simple example of Pareto dominance. The dark shaded region shows the
area that is Pareto dominated by the Pareto optimal set {b, c}. The light shaded region indicates areas of
the space that Pareto dominate a. (b): T he dark shaded area represents the hypervolume of the currently
known Pareto front ; the lightly shaded area is the hypervolume increase resulting from a sample at the
location of the circle.

coverage of these ideas, see [21].

This notion of Pareto optimality allows us to define the best set of parameters given

no particular relative importance of the objectives. Once knowledge of this optimal set is

obtained, it is straightforward to select the best parameters for any given objective tradeoffs

or constraints. Finding such optimal sets has been important for a number of real world

applications, including modeling grasshopper foraging behavior [89], rehabilitation of water

distribution networks [17], design of airfoils [72], and optimization of spacecraft trajecto-

ries [22].

In Chapter 5 of this thesis, I adopt this second ideology and focus on expensive opti­

mization of multiple competing objectives. These algorithms search for the Pareto set of

solutions rather than a single optimum.

32

Chapter 3

Related Work

Optimization of robotic systems poses many unique challenges: stochasticity in objective

evaluations, consideration of multiple conflicting objectives, adaptation to changing environ-

ments, and optimization of tasks which are difficult to score in more detail than a simple

true or false. Below, I discuss existing research pertaining to these challenges, focusing on

work which considers expensive systems.

3.1 Expensive Optimization

Recall from §2.4 that expensive optimization [12, 49] is the global optimization of functions

which are costly to evaluate, restricting the number of available function evaluations; the

choice of which point to evaluate is more important than the speed at which a point can be

chosen. Many methods use stochastic processes [83, 33, 41] such as GPs as a surrogate for

the expensive function, and select the next point to evaluate by maximizing a heuristic such

as the UCB, probability of improvement, or EI.

Because these algorithms depend on the surrogate when selecting points for evaluation,

the quality of information provided by the surrogate is paramount to the resulting perfor-

33

mance of the optimization algorithm. However, the focus of existing work is typically on

the choice and optimization of the selection heuristic, leaving effective implementation of the

underlying regression as an exercise for the reader. Commonly, the assumption is of constant

GP covariance function hyperparameters.

3.1.1 Active Learning

The reader may note a superficial similarity of expensive optimization to the field of active

learning [93], in which the expensive cost of evaluating the true function (or labelling the

data) motivates a careful sequential sample selection process in order to efficiently learn.

The primary difference is that active learning methods are not seeking an optimum, but an

improvement in the quality of the model (often a classifier, as in [52]). In expensive global

optimization, the overall quality of the model is irrelevant, especially in suboptimal areas of

the search space; the primary concern is rather the prediction of the optimum. However,

many methods in both active learning and expensive global optimization using surrogate

functions are related to ideas in optimal experiment design [29].

3.1.2 Bandits

A slang term for a casino slot machine is the “one-armed bandit,” referring to the single

lever on the side as well as the fact that it will (likely) take your money if used. This has

inspired a number of classic problems spanning probability, decision theory, and machine

learning, perhaps most famously the multi-armed bandit (or k-armed bandit) problem [84]:

given a number of slot machines, each with an unknown payout distribution, what is the

selection strategy which will maximize the expected payout? Pulling the ith arm returns a

reward from its unknown payout distribution; at each timestep an arm must be pulled. This

problem has been well studied (c.f., [9]), leading to a number of extensions.

34

At a basic level, the multi-armed bandit problem is about the tradeoff between exploration

and exploitation. Given the current knowledge of the payouts of each of the arms, should the

sampling strategy favor the current best arm, or try another arm to learn about other arms

which may have better distributions? These problems can be seen almost as a discrete version

of the expensive optimization problem described above: which point should be selected to

best optimize the unknown function, and which arm should be pulled to maximize the

expected reward.

However, there are several differences between expensive optimization and the bandit

literature. First, the vast majority of bandit literature is focused on asymptotic bounds on

the cumulative regret, the sum of each arm that is pulled, rather than the simple regret of

the expensive optimization problem, in which only the final recommendation reflects the

quality of the algorithm. The recent work of [15] begins to investigating bounds on the

simple regret as compared to bounds on cumulative regret, but the results in this paper

aim to characterize the spaces in which cumulative regret can be minimized rather than the

definition of practical algorithms for the simple regret case.

Second, the payouts from arms of a bandit problem are usually assumed to be independent

distributions, and therefore information about one arm’s payout distribution is not used to

learn other arms’ payouts. In the expensive optimization problem a central assumption

is that the objective function is (at least mostly) continuous; nearby points should have

related values. A particularly relevant set of subtopics in the bandit literature that begin

to address this is continuous-armed bandits [2, 4, 57] or metric bandits [16]; these have a

more similar problem structure to that of expensive optimization. Metric-armed bandits

embed the “arms” of the classic multi-arm bandit problem into a metric space, allowing

a potentially uncountably infinite number of arms. These arms are often constrained to

generate responses via an underlying (often Lipschitz continuous) function.

Finally, in bandit problems, the number of function evaluations is typically much larger,

35

potentially infinite. Therefore, the modelling of the knowledge of the arm distributions

is typically less sophisticated than the surrogate functions used in expensive optimization;

bandit algorithms may only store the mean and number of pulls for each arm.

3.1.3 Optimization of Expensive Stochastic Functions

One practical issue encountered when optimizing physical systems in real-world conditions

is that these systems are almost never perfectly deterministic – there is some level of process

or sensor noise. Although the general global optimization of stochastic functions is fairly

well studied (c.f. [111]), there is far less literature on the problem when function evaluations

are expensive. The incorporation of this noise into the function regression methods used

is straightforward and well documented, but there is not a rigorous extension of current

experiment selection metrics to account for noise. An extension of the EI metric described

in [43] and further extended in [77] is termed augmented expected improvement (AEI) and has

some desirable properties, but is defined by a heuristic which requires a tuning parameter,

and is not rigorously founded. Vazquez et al. [103] developed an informational approach

relying on Monte-Carlo simulations to estimate entropy reduction; this methods perform

comparably to AEI, and both are shown to significantly outperform näıve implementations

of EI. However, in practice most algorithms either ignore this noise, which is potentially

devastating, or sample a number of times to try to reduce it, which is impractical with

expensive systems.

3.2 Environmentally Adaptive Optimization

When working with real robots, there are many situations in which finding a simple optimal

parameter is not enough – rather, a policy must be optimized which determines how the

robot reacts to different tasks or environments. For example, a slight change in the task –

36

a robot hand grasping a slightly different object, a robot locomoting over a similar terrain,

or an autonomous car seeing a slightly different intersection – should not require another

complete optimization, but rather a policy should be learned that can adapt to the full range

of expected tasks or environments.

Prior work in multi-task learning postulates that tabula rasa learning for multiple similar

problems is to be avoided, especially when the task has descriptive features (or parameters).

Approaches using a number of techniques have been taken (e.g., [6] suggest neural network

predictors for generalizing task knowledge), but perhaps the most relevant is that of [10]; this

incorporates the task as additional parameters of a GP used to model the objective. Bonilla

et al. take an active learning approach, attempting to efficiently and accurately model rather

than optimize the objective at a new task given previous information from another task.

The field of robust controller selection [62, 105] takes a different approach. These methods

do assume that single control/environment samples are expensive, but seek to find a robust

controller, rather than an adaptive control policy. Their formulation treats the environment

parameter as noise, which is only useful when the environment is unobservable or changes

at a timescale much shorter than the control bandwidth. In addition, when the choice of

optimal control parameters changes significantly across the potential range of environments,

the quality of a robust controller degrades significantly.

In the bandit literature, the subtopic of contextual bandits (e.g., [65]) involves a concept

of “side information” used to inform the selection of an arm that is similar to the environment

parameter mentioned above. However, contextual bandits do not allow for a training phase

where this context can be intelligently chosen. They also differ from expensive optimization

approaches in all of the ways that standard bandits do, as described above.

37

3.2.1 Reinforcement Learning of Control Policies

The idea of reinforcement learning (RL) [98] is also applicable to the optimization of control

policies, but acts on a different timescale with assumptions about observability that cannot

always be met for locomoting robots in the field. In the RL framework the system is described

by an underlying Markov Decision Process (MDP), which from each state a set of actions can

be taken which map to other states via a set of transition probabilities. Each such transition

generates some reward. Given some starting state distribution, RL aims to learn a policy,

or a state→ action map, which maximizes the expected total reward when executed on the

MDP; this basic idea has many applications.

Note the difference in terminology between expensive optimization over a range of tasks

and RL. In expensive optimization, various environments or tasks refer to different conditions

the robot may encounter and react to; in RL this concept is embodied in the state of the

system. This notion of state usually does not include internal state of the robot. In RL there

is a single environment, the entire MDP; in other words the robot can be in many different

states within the environment, and can react differently to each of these.

This terminology hints at other key differences. First, RL is typically used for planning

control policies which operate at a fast timescale – continually reacting to new states. This

means that the notion of a single expensive experiment refers to an episode, or a series

of actions on the MDP, where many state/action samples are taken. For the expensive

optimization work described in this thesis, these control policies operate on a longer range

timescale. An environment is sensed, and a controller is chosen in response that will move the

robot over several seconds – several full gait cycles – or longer before a significant change is

detected which will require a change in controller. In these cases, a single action is expensive,

and these evaluations are limited.

A second key difference between these areas is in the effect of actions. The MDP structure

of RL problems means that an action causes a transition to another state. This is a reasonable

38

assumption for problems where an approximate distribution of expected states is given (some

notion of what the world is like). However, in the control policy optimization work in

this thesis there is no clear mapping between states; running a certain controller on an

environment simply results in a reward based on the quality of the resulting motion, rather

than a transition to a different environment. If this work involved motion through a known

environment, where the position within that environment could be sensed, only then would

RL methods would be more appropriate.

Finally, related to both of these ideas is the fact that the goal of expensive multi-

environment learning is the selection of both state and action for the next sample; in RL

most methods assume the state is given and so focus on optimal action selection to best

learn a policy. This assumption is relaxed in methods which allowing the learner to pick its

state [54], but these ideas focus on minimizing the number of state selections [68].

3.3 Multi-objective Optimization

Robotic systems often have multiple competing notions of good performance (energy effi-

ciency, speed, stability, etc.). As described in §2.5, one approach to managing this tradeoff

is to search for a set of Pareto optimal solutions rather than a single optimal point.

Finding these sets of optimal points requires specialized optimization methods. For

cases where the objective functions are linear, the NISE method [96] has been developed

to converge quickly on a good approximation of the Pareto set, even in problems of very

high dimensions. Multi-objective simplex methods such as [109], which extend the single-

objective linear constrained optimization simplex method1 developed in 1947 [24], provide

exact solutions for the Pareto optimal set for linear objective functions.

For nonlinear cases there are also a number of methods; perhaps the most popular is

1Note that this simple method differs from the Nelder Mead constrained nonlinear optimization
method [73].

39

the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [25]. This empirically has been

shown to produce good results which are well distributed over the Pareto front – the Pareto

optimal set given in objective space coordinates.

3.3.1 Expensive Multi-objective Optimization

In the case of expensive experiments, there is significantly less literature on identifying the

Pareto set; the evolutionary methods used in standard multi-objective optimization (MOO)

are most appropriate when samples are cheap and parameter and objective spaces are very

high dimensional.

Some approaches for expensive MOO attempt to extend successful single objective expen-

sive optimization techniques. In [58], a single aggregate objective function is created through

a weighted combination of individual objectives as terms in a Tchebycheff function [35]. Each

iteration, a new set of weights are chosen, and the experiment which maximizes the EI of

that particular aggregate objective is chosen.

Other approaches attempt to work in the full objective space rather than simplifying

the problem to one objective. For example, Keane [53] attempts to directly measure the

multivariate EI of a point – how much the hypervolume of the Pareto front increases (c.f.

Fig. 2.11b). The expression Keane presents is a simplification of the true quantity and only

measures improvement as an increase from a single point on the Pareto front; Emmerich et

al. [28] redefine this improvement more rigorously (yet are still able to find a closed-form

expression) using Lebesgue integration on a partition of the objective space. However, none

of these methods are designed for or tested with noisy function evaluations.

40

3.4 Locomotion Over Obstacles

As described in §2.3, existing work in snake robot locomotion is largely focused on cyclic

gait motions, as these provide a convenient coupling between the large number of degrees

of freedom, rather than special-purpose motions for overcoming obstacles, which make no

such assumptions. To address the complexity of complete manual control of these degrees of

freedom, Baker et al. instrumented a small mock-up of the robot to move by hand [5]. This

kinesthetic approach is less useful for cyclic motions, and more useful for slow, deliberate

inputs to move the robot over significant obstacles. The small mock-up of the robot used

by Baker et al. did not have the same size, shape, or sensors of the full robot; although

it provided a method to control the full system, the lack of representational fidelity could

decrease the effectiveness of the tool in eliciting user demonstrations.

3.4.1 Imitation Learning

Outside of snake robot locomotion, such learn-from-demonstration techniques have been

used to great success. A large class of machine learning techniques have been developed

for teaching a robot to follow the example of a provided expert example; these are termed

learning from demonstration or imitation learning.

One challenge is in selecting an appropriate model for the learned controller; this model

must be flexible and descriptive [46]. Although learning a model that tracks a demonstrated

expert input works well when that input is optimal, often when learning even from experts in

the field the demonstration is not optimal (or near optimal). In these cases, a second phase

involving RL can be added to improve the learned trajectory. Standard RL approaches are

ill-suited to this problem when the state is high-dimensional, and so specific algorithms have

been developed for this task [59, 101].

In this thesis, novice input is used in addition to expert input; as such an improvement

41

phase will be critical for any learned motions. Tuning such a reward function in any case

assumes the existence of a reward function (and the availability of the data necessary to

compute it). When such a function is ambiguous or not available, inverse optimal control

[1, 82] methods seek to learn the teachers intent, or the implicit reward function they are

optimizing, from the observed behavior. One problem with nearly all existing imitation

learning methods, as pointed out by [78], is the danger of bad performance in recovering

from mistakes because of the bias in state distribution of examples seen by the learner; Ross

and Bagnell [88] propose a solution to this based on Conservative Policy Iteration [51].

3.5 Stochastic Binary Optimization

After obtaining a demonstrated trajectory, it (usually) must go through an optimization

process to work effectively and robustly on the robot. Many of these processes described

in the previous section use a complex, hand tuned reward function during this optimization

which is a function of many elements of the robot state – its position, orientation, location of

objects in the environment, to name a few. Outside of using a full motion capture setup, or

obtaining point cloud sensor data of the surroundings, these state variables may be difficult

to obtain. For the snake robot in particular, such sensors may not fit in the constraints of

the system, and when used in the field, such motion capture setups are impractical. The

only data available may be the success or failure of the task upon replay.

The methods described above for optimization of demonstrated trajectories are not suited

for this regime of limited feedback (especially when coupled with very few trials). However,

active learning (§3.1.1) is primarily focused on learning the binary class membership of a set

of unlabeled data points, but attempts to accurately learn class membership of all unlabeled

points with high confidence, which is inefficient if the loss function is asymmetric (if it is

more important to identify successes than failures). The active binary-classification problem

42

discussed in [30] focuses on finding a Bayesian optimal policy for identifying a particular

class, but assumes deterministic class membership (whereas the result of trials with physical

systems is often stochastic).

The bandit literature also considers the similar binary or Bernoulli multi-arm bandit

problem [20, 110], where pulls from the bandit arms are from independent Bernoulli distri-

butions (providing stochastic binary feedback). However, as described in §3.1.2 the focus of

this work is to minimize bounds on cumulative regret, typically in infinite horizon settings.

43

Chapter 4

Expensive Optimization for Robot

Locomotion

This chapter discusses the application of the expensive optimization techniques described

above in §2.4 to the optimization of the performance of robotic systems. Optimization of

these systems often falls under the purview of expensive, black-box optimization techniques;

specifically, the objectives of interest lack an accurate generative model, do not return gra-

dient information, and are expensive (in computation, money, or time) to sample.

Although high fidelity models exist for some robotic systems (e.g., industrial robot arms),

many locomoting systems exhibit complex environment interaction which is difficult to inex-

pensively model with any degree of fidelity.1 Accurate models are needed to obtain accurate

estimates for objectives such as distance travelled, energy consumption, and robustness or

repeatability of a motion; these are just a few examples of objectives which fall into this

category.

As the environment becomes more complex – bumpy, irregular ground or rubble piles –

1Of course, available models should not be ignored; they should be used to direct the sampling of the
objectives on the robot or provide useful statistics about the objective that can be used to improve the
regression.

44

slip, friction, and intermittent ground contact become even more difficult to model. The only

reliable way to test these systems is to evaluate the objectives on the real robot, measuring the

objective directly (e.g., how far did the robot move, or how much energy did it consume). As

these experiments are conducted on the physical robot, information that would be obtained

from analytic objectives, such as the gradient, is not available.

Experiments on any real robot take time to set up and run. These usually cannot feasibly

be run continuously for days or even hours; current robot designs are not intended for such

constant use, and someone must manage experiment setup and execution. Use of the robot

incurs a (potentially hidden) cost which also must be considered; parts wear out and must

be replaced, and so efficient use of the robot is preferred. Even simulations and models may

require significant computational resources if they are of high fidelity (the computational

fluid dynamics models referenced in [47] can take hours for a single evaluation).

In this chapter, I address the basic application of expensive black-box optimization tech-

niques to robotic systems. In particular, I focus on optimization of a snake robot (c.f. [100]),

which has difficult to model dynamics and a clearly defined space to search over, as the

objectives considered are functions of the parameters of the gait model. However, the chal-

lenges that are encountered with this system are representative of those experienced with

other robotic systems, and I hope the advances described here can help make these tools

more usable in other fields as well. Finally, I focus on optimization using the EI [70] selec-

tion metric as it has been proven effective in previous work [50, 44, 79] and has no tuning

parameters, allowing for true out-of-the-box use.

The main contributions of the work in this chapter are:

1. Improvement of the robustness of standard expensive black-box optimization; these

modifications allow it to run with less supervision and overcome many typical prob-

lems. In particular, the improvements affect GP model selection and hyperparameter

optimization.

45

2. Derivation of a theoretically accurate extension of EI to handle stochastic systems, and

discussion of the ramifications of using existing techniques on stochastic systems.

3. Empirical results comparing:

• Performance of the expensive optimization algorithm with and without the sug-

gested GP model selection improvements.

• Performance of several approaches for expensive stochastic optimization, including

a novel extension of EI as well as several alternative baselines.

4. Demonstration of the algorithms on a physical system (the snake robot described pre-

viously).

5. Performance improvements in several modes of snake robot locomotion, both over flat

ground and up slopes.

Many of the results in this chapter (and in this thesis) are empirical rather than theo-

retical; this focus is motivated by my observations that algorithms that obtain theoretical

optimality guarantees with a given set of parameters often alter these parameters in or-

der to generate better empirical results. Weaker convergence guarantees are also omitted

here, although this is a well studied problem (c.f. Vazquez and Bect [102]). In fact, the

techniques I describe for model selection (which have a marked improvement on algorithm

performance) actually invalidate theoretical guarantees of convergence from Vazquez and

Bect’s work. However, note that obtaining convergence guarantees on search algorithms is

trivial (e.g., uniform random search will converge), and algorithms such as epsilon-greedy

or rapidly exploring random trees are able to obtain such convergence guarantees simply

by adding a random step, even though they can be shown to perform arbitrarily poorly in

practice.

46

Finally, the results in this thesis were generated using software that is published with

the thesis (downloadable from http://www.mtesch.net/thesisCode/). Although there is

no guarantee provided with the software (as per the Community Research and Academic

Programming License [67] it is released under), and it has been changed since some of the

robot experiments were initially obtained, I hope that this is a useful tool that will save time

for other researchers in this field.

4.1 Notation and Problem Statement

In this thesis, I use the following notation and conventions (see Fig. 4.1 for a depiction

of these terms, and the glossary of terms at the beginning of this document as a quick

reference). First, the domain of the objective function is given by X, where X ⊂ Rk; this is

typically a space of parameters that can be varied such as trajectory parameters of a robot

arm or gains in a control loop. The true objective function is f : X → R, and the maximizer

argmaxX f(x) is written as xopt. GPs (see §2.1) are the method used to produce a surrogate

function, and they provide both an estimate of the objective f , written as f̂µ : X → R,

as well as a (normal) predictive probability distribution of possible output values at each

x ∈ X, written as pxY : R → R+. In other words, the predicted probability density that

f(x) = y is pxY (y). As with any probability distribution,
∫∞
−∞ p

x
Y (y) dy = 1 for any x ∈ X.

Moreover, the GP provides a joint predictive probability distribution for any set of points

x = x1, x2, . . . , xn; this is an n-dimensional multivariate Gaussian written as pxY .

One important piece of intuition to have about GPs is that they can be viewed as a

probability distribution over functions. As noted, the GP provides a joint predictive prob-

ability distribution for any set of points x ⊆ X. Because this set of points can be very

large (practically infinite), it can be used to represent the domain of the function (e.g., Rm),

assigning a probability density to each candidate function f ∗.

47

(1)1

.::: _.
~ 0
E
0 -1

~~~--~~--~~5--~~--~~~~ 10 

X 

(a) 

2.5 

~ 
(1) max(Y) 

. ::: 0.5 _. 
(.) 

0 (1) 

B -tls 
0 

-1 

-1.5 

- 2 

-~5 
0 5 10 

X 

(b) 

Figure 4.1: (a) The objective function/ , surrogate j , and maximizer x*. (b) The best sampled point , 
max(y), and the predictive distribution for a potential sample location. The red shaded area of this distri­
bution indicates the portion of this distribution considered improvement in this context. 

The goal of expensive global optimization is to sequentially choose points at which to 

sample which result in the best Xapt according to a loss function, usually the simple regret2 

f(xopt ) - f(xopt) ( c.f. [15] for a comparison of simple and cumulat ive regret) . The choice of 

each subsequent sample location as well as Xopt is informed only by the results of evaluations 

of the previous samples. We define x as the set of sampled points built up by the algorithm, 

andy represents the results of evaluat ing these points on the expensive objective f. Xopt is 

usually restricted to point within the set of sampled values :X for practical reasons (it can be 

risky and unwise to choose a parameter which has never been tested on the system). In this 

case, the simple regret is given as f(xopt) - max(y). 

2The term regret in this context refers to the regret you suffer from not choosing based on complete and 
perfect knowledge. 

48 



Algorithm 1 Basic Black-Box Optimization

1: x̃← space-filling design of k points
2: ỹ← {}
3: for i← 1 to k do
4: addToList(ỹ, f(x̃{i})
5: end for
6: for i← k + 1 to n do
7: f̂ ← conditionGP(x̃, ỹ)
8: xi ← argmaxX metric(f̂(x))
9: addToList(x̃, xi)

10: addToList(ỹ, f(xi))
11: end for

4.2 Improvements For Robust and Effective Optimiza-

tion

As noted in §2.4, global optimization of noisy, non-convex, black-box functions such as robot

performance metrics cannot efficiently be accomplished by many standard techniques. In

this thesis, I focus on development of a class of surrogate-function based global optimization

methods, often termed expensive “black-box” methods (c.f. survey by Jones [49]), which are

generally described by the steps in Alg. 1.

The two important steps in this algorithm are finding the surrogate function (line 7) and

choosing an appropriate selection metric (line 8). Although more focus in the literature (as

well as in this thesis) is given to the latter, we first address the former. Both from my own

experience and from informal discussions of other practitioners of these techniques, one of

the largest hurdles for new and experienced users when using surrogate-function methods is

simply obtaining consistent and reasonable regression from the GP used for the surrogate

function. Because of this difficulty, some researchers substitute other techniques such as

random forests [13] in place of GPs (c.f. Hutter et al.’s Sequential Model-based Algorithm

Configuration (SMAC) from [45]). While the choice of regression method for the surrogate

should be based on a number of factors, I hope the work in this thesis and the provided code

49



will eliminate “initial frustration with and learning curve of GPs” from that list.

In this section, I describe several approaches that can be combined to improve the “fit-

ting” process for the GP. More accurately, I describe how mean function, covariance func-

tions, and hyperparameters of the underlying GP can be chosen to result in more robust

high-level algorithm performance. The improvements aim to make these optimization tech-

niques work in an “off the shelf,” parameter-free manner, i.e., the user does not need knowl-

edge of the internal workings of the optimization algorithm in order use it for their own

problem, and does not need intuition from years of experience tuning algorithm parameters.

4.2.1 Model Selection: Hyperparameters

A GP is non-parametric in that it determines a probability distribution over functions by

conditioning on sampled data; however, it is not strictly without parameters which must be

tuned. To produce a quality fit of the underlying function, they rely on a reasonable choice of

a covariance function (which defines the general function behavior) and a good selection of

hyperparameters for that covariance function (which determine quantities such as the length

scale of the function in each dimension). If a low-quality choice is made, not only is the fit

of the function poor, but the performance of any algorithm that depends on it is adversely

affected. Many problems encountered by users initially attempting to use GPs for regression

are a results of poor selection of covariance hyperparameters.

Leave-one-out Likelihood

Recall from §2.1.6 the use of marginal likelihood of the training data {x̃, ỹ} as a method

to select among hyperparameters. Although the marginal likelihood provides a commonly

used measure of regression model quality, cross validation techniques often replace marginal

likelihood as a model quality measure to prevent overfitting to the data. Cross validation

(CV) is the practice of evaluating the accuracy of a model by partitioning collected data,

50



using one subset to train the regression, and the remaining data (the held out data) to

quantify the model’s predictive quality. Leave-one-out CV is an extreme form of CV which

holds out each data point individually (training the model on the remaining data), and

averages the accuracy measure from each.

I have found that the use of leave-one-out (LOO) likelihood in place of the marginal

likelihood for can reduce overfitting when selecting GP hyperparameters (this has also been

noted in [97]) and therefore I use this in the improved black box algorithm below; however

the following sections apply to either standard or LOO likelihood, and I include options to

use either in the provided code.

To compute the LOO likelihood, first define an error function err that describes the

predictive error in the model. This is done by comparing the ith observed value ỹi with

the GP’s prediction at the ith sample location x̃i using training data with the ith element

removed, {x̃−i, ỹ−i}. We denote the mean and variance of this GP posterior as f̂µ
−i

and

f̂σ2

−i
respectively.

Intuitively, this error function represents how well the model predicts a held out element

of the training data if trained on all of the data except the held out element. A simple

example of such a function is the squared loss

err(ỹi, f̂µ
−i
, f̂σ2

−i
) = (ỹi − f̂µ

−i
)2. (4.1)

This represents the error in the model, but penalizes the model for errors the same whether

it has high or low confidence in the returned value. A more appropriate error function is the

log probability loss (see Equation 5.10 of [81])

err(ỹi, f̂µ
−i
, f̂σ2

−i
) = −1

2
log f̂σ2−i− (ỹi − f̂µ

−i
)2

2f̂σ2

−i − 1

2
log 2π. (4.2)

Regardless of the error function, it is then computed by holding out each element of the

51



training set; the summation of these individual terms gives the LOO likelihood

LLOO(x̃, ỹ) =

|X|∑
i=1

err(ỹi, f̂µ
−i
, f̂σ2

−i
). (4.3)

Likelihood Optimization: Random Restarts, Intelligent Initial Conditions

Although simple optimization techniques such as conjugate gradient are effective when the

GP has a reasonably dense number of points in the input space, when conditioning on sparse

data (as is common in expensive optimization tasks), these often terminate early or reach

an incorrect local optimum due to the relatively uniform nature of this likelihood function.

As seen in Fig. 4.2, this hyperparameter optimization involves a search over a potentially

multi-modal likelihood function, with large areas that are essentially flat (and so have no

useful gradient information for gradient-based optimization techniques).

In order to robustly find the minimum3 of this nonlinear, non-convex optimization prob-

lem, I use local optimization with random restarts. This begins with reasonable parameter

ranges for the hyperparameters, generating a large number of seeds uniformly at random

in the hyperparameter space, and then uses standard gradient-based techniques such as the

conjugate gradient line search included in the GPML MATLAB software [80] to maximize

the likelihood from each of these seeds.

This large global search of the likelihood function is effective, but also can be slow,

especially if the number of random seeds for likelihood optimization is large. For this reason,

I store the maximum likelihood estimate (MLE) hyperparameter value from the previous

regression (with n− 1 points), and use it as one of the seeds for likelihood optimization. A

simple gradient-based optimization from this point often results in finding the new global

optimum of the likelihood function. This increases stability while allowing the number of

3often, for practical reasons of numerical stability, the maximum likelihood estimator is found via mini-
mization of the negative log likelihood

52



200, ..... 10 . 

100 ~. 5, 
c c 

~\ ~\ 
d 

-2 
-2\ 

-4 -1 -2 -0.5 -1 
0 0 

2 -4 1 0.5 
(} I (} 

(a) (b) 
2.5 2.5 

2 2 

1.5 

# 

>- , >-# , , , , 
- 0.5 

.... 41' 
.; 

- 0.5 

- 1 -1 

- 1.50 
0.05 0.1 0.15 0.2 0.25 

-1.5 
0 0.05 0.1 0.15 0.2 0.25 

X X 
(c) (d) 

Figure 4.2: (a) When conditioning on sparse data, large regions of the likelihood surface can be relatively 
uniform, causing it to be difficult to reason between different hyperparameter values. (b) A zoomed in view 
of the red boxed region of (a); the central valley also extends much further as l decreases with no significant 
change in t he negative log likelihood value. The different markers correspond to the different GP fits in (c) 
and (d), which have approximately the same likelihood but represent significantly different hypotheses. 

53 



seeds to be greatly reduced.

However it is not sufficient to only run a local optimization from the previous MLE

hyperparameters, as these can lie outside the new global optimum’s basin of attraction,

demonstrating the need for the random restart process described above. Understanding that

the change in the model likelihood function will be greater with the 6th point than the 106th,

as the number of data points increases we decrease the number of random restarts (but

maintaining some to allow for a non-zero chance of escape from potential local optima). The

initial GP fit is one of the most important, and therefore uses the largest number of random

seeds; speed is increased in later iterations through the use of fewer seeds.

The expensive optimization code included with this thesis implements this multi-resolution,

random restart approach for hyperparameter likelihood optimization, and to improve per-

formance optionally only completes the final line search with a fraction of the large number

of random seeds (those with the maximum likelihood).

4.2.2 Model Selection: Mean and Covariance Function

Robustly finding the MLE hyperparameters for a given choice of mean and covariance func-

tion is important, but when the data is sparse and the model is complex (e.g., contains noise

hyperparameters, and independent length scales for each dimension) the likelihood function

is not very discriminative – many of the hyperparameters have comparable marginal likeli-

hoods – and can even be multimodal. This often indicates multiple explanations for the data

under the model – for example, one optimum could represent the data primarily explained

as noise, and the other as points from a noiseless function (as was demonstrated in Fig. 4.5).

This ambiguity can indicate that the model is too complex. As Occam’s Razor suggests,

the simplest competing hypothesis that can explain the data should be chosen. This holds

true for mean and covariance function complexity; using simple choices for these functions in

the presence of sparse data produces more robust fits with higher likelihoods. To determine

54



(a) (b) 

Figure 4.3: (a) Sections of the likelihood surface for a three-hyperpararneter model (isometric squared 
exponential covariance plus a diagonal noise term). The 2-D land <Yf surfaces are shown for various values of 
<Yn . (b) When t he simpler two-hyperpararneter model (zero mean, isomet ric squared exponent ial covariance) 
is used, the likelihoods are much larger - the sloping surface is the likelihood for the two parameter model, 
whereas the slices from t he three parameter model is shown at the very bottom - note the differing scales 
between these figures. 

the best choice of mean and covariance for the given data at a particular step, I turn to 

model selection. 

In this work, I have implemented an automat ic model-select ion process in order to make 

the GP fit more stable. This process takes place by varying the covariance function and 

mean function as well as their hyperparameters. Instead of assuming a single model family 

(a mean and covariance function) , a set of potential model families is used. During the 

regression process the MLE hyperpa.rameters for each family are found, and the family 

whose MLE hyperparameters have the highest likelihood among all of the model families 

is chosen. Complex model families have lower likelihoods over much of the hyperparameter 

space (because this likelihood is spread over more dimensions, as seen in F ig. 4.3) , so in 

pract ice t his leads to automatic selection of the simplest reasonable hypothesis (Fig. 4.4). 

To balance speed and quality, a multiresolution sampling procedure also is applied here. 

For each potential mean and covariance funct ion combination, a local search from many 

random restarts is run. In addition, the previous MLE hyperparameters for each model 

family are kept as a seed for the next fit. The family t hat previously was chosen as the best 

55 



40 60 

- 1: - 10.9 
10 - 1: 17.6 

30 
40 - 2:20.5 

- 2: -6.63 - 3:7.29 
0 

- 3: - 6.52 20 
>- 20 >- >-

- 10 - 1:8.76 - ----- -" ... ; -- -

10 - 2: - 1.54 
- 3: -0.601 - 20 

- 20 

5 10 -400 0 2 4 6 B 10 2 4 6 B 10 X X X 

(a) (b) (c) 

Figure 4.4: Automatic model selection can be accomplished by choosing a mean and covariance function 
whose MLE hyperparameters result in the highest likelihood over all of the models. Each figure above is 
shown with GP posteriors using the MLE hyperparameters for three models of varying complexity (each used 
an isometric squared exponential covariance, and the mean functions were mx, mx + b, and ax2 + bx +c), 
with the most likely drawn as a thicker line. The legend also displays the negative log likelihood of each. 
For a small number of data points, simple models are chosen; as the complexity of the data increases, more 
complex models are naturally chosen. T his automatic model selection serves to help reduce overfitting. 

is given preference wit h more random restarts. 

4 .2 .3 Fitting GP s to Stochastic D ata 

When collecting data from a stochastic source such as a physical system, it is important 

to take this stochasticity into account in the surrogate function serving as a model for t he 

system. I take t he view t hat objective function samples from the robot can be viewed as 

realizat ions of a random noise variable added to an underlying latent funct ion, as described 

in §2.1.7. 

However, t his adds another hyperparameter to the GP , generalizing the model and in­

creasing the chance of a poor fit to the true data4 . Specifically, for small number of data 

points, t he hyperparameter likelihood often has a large, fiat minimum region or is multi­

modal, containing a local optimum describing t he data with very lit tle noise and a local 

optimum describing the data as almost pure noise (Fig. 4.5) . This furt her mot ivates the use 

4If the system has a known sampling variance (known e), this can be fixed during the hyperparameter 
likelihood maximization step, eliminating the additional hyperparameter 

56 



10 15 

8 10 

• 
5 • >- • 

- 5 

-2Q 0.05 0.1 0.15 0.2 0.25 -
10o 0.05 0.1 0.15 0.2 0.25 

X X 

(a) (b) (c) 

Figure 4.5: (a) A slice from the 3 dimensional negative log likelihood surface for a squared exponential 
covariance function with a diagonal noise term (the signal parameter af varies from 3.6 to 2.5 with the change 
in f in order to capture both minima in this surface) . For visualization purposes (to avoid washing out the 
minima due to the scale of the remainder of t he surface), atan scaling has been applied. (b ) The GP fit 
corresponding to the maximum that explains the data as relatively low noise. (c) The GP fit corresponding 
to the maximum that explains the data as pure noise. 

of the model selection process described in §4.2.2. 

4.2.4 Demonstration of Algorithm Improvements 

The suggested improvements in the previous sections are not algorithmic changes per se, but 

allow the hyperparameter selection process to occur with minimal human intervention and 

without any knowledge of the true function behavior. These improvements, many of which 

are standard techniques used for optimization problems, prevent overfit ting and allow GP 

function regression to be reliably and easily used to generate surrogate objective funct ions 

that can be used in high-level algorithms such as EGO. This is important because t he 

use of these surrogates ent ails the assumption that they are a reasonable represent at ion of 

knowledge about j ; if the regression is grossly inaccurate or cannot fit t he data, then t he 

surrounding algorithms will perform poorly (further motivat ion to include prior knowledge 

to guide the set of covariance functions and hyperparameter choices during model selection). 

The specific changes are: 

• Stochastic GP fit through addition of an independent noise term to the covariance 

57 



Algorithm 2 Robust Black-Box Optimization

1: function Optimize(f)
2: x̃← space-filling design of k points.
3: ỹ← {}
4: for i← 1 to k do
5: addToList(ỹ, f(x̃{i})
6: end for
7: savedHPs ← NULL
8: for i← k + 1 to nr do
9: n = GetNumRandRestarts(i) . Random restarts decrease as i increases

10: f̂ , savedHPs ← RobustFitGP(x̃, ỹ, savedHPs, nr)
11: xi := argmaxX metric(f̂(x))
12: addToList(x̃, xi)
13: addToList(ỹ, f(xi))
14: end for
15: end function

function diagonal

• Save the previous MLE covariance function hyperparameters as a seed for a local search

during the next iteration.

• Use a local search procedure with random restarts for MLE hyperparameter optimiza-

tions (this should also be used for optimization of your selection metric – such as EI –

as well)

• Model selection over multiple candidate covariance functions through comparison of

marginal likelihood.

• Use of LOO likelihood instead of marginal likelihood to prevent overfitting.

• Multi-resolution sampling procedure for random restarts, dependent on potential co-

variance function as well as iteration.

The resulting algorithm (abbreviated version shown in Alg. 2) still contains the basic

structure of the original black-box optimization algorithm (Alg. 1), but significantly improves

58



Algorithm 3 Robust GP Fitting

1: function RobustFitGP(x̃, ỹ, prevBestHPs, numRandomRestarts)
2: covOptions ← set of potential covariance functions
3: bestHPs ← {}
4: bestLikelihoods ← {}
5: for i← 1 to Length(covOptions) do
6: cov ← covOptions[i]
7: if prevBestHPs 6= NULL then . Consider the previous best HP
8: prevBestHP ← prevBestHPs[i]
9: bestHP, bestLikelihood ← LocalLikelihoodOpt(x̃, ỹ, cov, prevBestHP)

10: else
11: bestHP ← 0
12: bestLikelihood ← −∞
13: end if
14: for j ← 1 to numRandomRestarts do . Try a number of random restarts
15: randHP = Random(X)
16: likelihood, HP ← LocalLikelihoodOpt(x̃, ỹ, cov, randHP)
17: if likelihood > bestLikelihood then
18: bestHP ← HP
19: bestLikelihood ← likelihood
20: end if
21: end for
22: Append(bestHPs, bestHP)
23: Append(bestLikelihoods, bestLikelihood)
24: end for
25: bestIdx ← indexOfMax (bestLikelihoods)
26: f̂ ← ConditionGP(x̃, ỹ, covOptions[bestIdx], bestHPs[bestIdx])
27: return f̂ , bestHPs
28: end function

the algorithm’s results on physical systems through the improved GP fit summarized in

Alg. 3. Following are empirical comparisons with and without some of these changes to

demonstrate the effect they have on algorithm performance. The code to generate these

results can be found in Appendix B.1.

To demonstrate the importance of an automatic model selection process, I show the

result of optimizing a stochastic function with and without model selection between multiple

covariance functions. The same optimization task is performed 50 times each with (a) only

59



(a) 

2!100 

~ 
E 
.... 80 

i 
Cl... 

E 60 
~ 
8, 
<( 

10 20 
40o 

Experiment Number 

(b) 

•••Simple 
Complex 

- Auto-selected 

10 20 30 40 
Experiment Number 

(c) 

Figure 4.6: The result of model selection on optimization with EI on a simple noisy test function. Each 
algorithm was run 50 times. (a) The latent deterministic test function; Gaussian noise with a standard 
deviation of 4 was added. (b) For the auto-selection approach, the proportion of experiments in which each 
model was chosen after a certain number of data points. (c) The average optimization performance in terms 
of best sampled point for ea.ch single covariance function as well as the automat ic model selection process. 

a noiseless covariance function, (b) only a noisy covariance function, and (c) automatic 

selection between t hese; see Fig. 4.6. 

As this shows, the simple model is generally preferred initially, but with more datapoints 

the noise term can better explain the collected data. By using LOO likelihood to select t he 

model, overfitting with the complex model is greatly reduced. The algorithm performance 

also matches what is expected; initially, the simple model and auto-selection approaches are 

comparable, but as t he data becomes more difficult to explain, t he simple model provides 

poor regression leading to ill-informed experiment selection and worse overall performance. 

Obtaining quality GP fits to sparse and changing data, while not specifically part of t he 

optimizat ion metric, results in large performance improvements of the surrounding algorithm 

and is therefore a crucial component of this thesis. The optimization of the selection metric 

(line 11 of Alg. 2) is also a crucial step, but I have found it to be more readily solved. I 

have implemented a simple approach using random restarts of MATLAB's implementation 

of active-set optimization in the supplied code; this has proven effective. Jones has also 

outlined an approach for this optimization in his EGO algorithm [50]. 

60 



4.3 Extensions for Stochastic Objectives

The motivating system in this thesis, the snake robot, is stochastic; commanding the robot to

execute the same motion multiple times will result in a random distribution of end positions.

Due to this non-deterministic behavior, objectives based on this motion are also stochastic.

In §4.2.3, I have already discussed the additional considerations that must be made during

the regression process. Here I focus the discussion on the computation of the selection metric

in the presence of noise; in particular, I develop several extensions to the EI selection metric

to account for this stochasticity.

First, we define samples of the stochastic function as realizations of a random variable

added to the latent objective,

fnoisy(x) = flat(x) + ε, (4.4)

where ε is drawn from N (0, σ2
n). Recall the definition of EI (see Equation (2.22)): it is the

expectation of improvement over the best experiment max(ỹ), or

EI(x) =

∫ ∞
max(ỹ)

pxY (y)(y −max(ỹ)) dy. (4.5)

There is an implicit assumption in this equation that a particular function evaluation will

always yield the same result; noisy function evaluations can invalidate this assumption even

if the regression accounts for the noise. In the deterministic case, the value of the best

experiment is ymax = max(ỹ). However, in the stochastic case, the meaning of the value of

the best experiment is not clear (see Fig. 4.7).

A näıve approach would be to assume the result of the experiment was not noisy, and

simply take the deterministic approach. However, because there is an additive noise term,

the underlying objective value flat(xmax) will not always equal evaluations of fnoisy(xmax),

61



..... 

X 
(a) . 

...... , ' 

Figure 4.7: (a) If function evaluations (circles; underlying function values are dots) are taken from a noisy 
function (solid curve with 1-a variance as dashed lines) , the maximal sample (dashed horizontal line) does 
not necessarily correspond to the value or location of the underlying function's maximum at the sampled 
locations (solid horizontal line). 

leading to an offset from the underlying function value which can negatively affect the result 

of optimization relying on this estimate. Instead, the choice of Ymax should be based on 

estimates of the unobserved f iat at the sampled :X rather than the sampled fnoisy(x) values. 

As f iat is not known exactly, this approach intuitively leads to a representation of Ymax 

as a random variable. In this case, definition of the notion of improvement also requires 

consideration. This is normally given as the distance above the best previous evaluation, 

I(y) = max(y - Ymax, 0); if Ymax is a random variable, then I(y) becomes one as well. 

In the remainder of this section, I develop simple heuristics to try to work around these 

concerns (c.f. [43, 77]), and also describe several alternative approaches. I then describe 

positive and negative attributes of each one (computational complexity, fidelity of approx­

imation to a true Bayesian approach, etc), and provide an empirical comparison of the 

resulting performance. 

62 



4.3.1 Baseline Approaches

All of the baseline approaches described here use the standard EI equations, but alter the

definition of ymax, the best previous experiment term.

The first baseline is a näıve approach which ignores noise. This approach defines

yb1
max = max(ỹ) (4.6)

as in the noiseless case.

Next, we consider that ỹ only represents realizations of flat(x̃) + ε, and use f̂µ (the mean

prediction of flat), as a surrogate to calculate ymax:

̂̃y =
{
f̂µ(x) ∀x ∈ x̃

}
(4.7)

yb2
max = max(̂̃y) (4.8)

This incorporates learned information about the level of observed noise into the prediction

of ymax.

As the estimate f̂ also contains uncertainty, the next baseline takes this into considera-

tion. This is a “confidence bound” style approach, which contains a parameter β that can

be tuned to alter the performance of the metric. When β < 0, this is a lower confidence

bound approach, and when β > 0, an upper confidence bound.

̂̃yCB(β) =
{
f̂µ(x) + β f̂σ2(x) ∀ x ∈ x̃

}
(4.9)

yb3
max = max(̂̃yCB(β)) (4.10)

Recall from §2.1.7 that a stochastic GP fit contains two notions of variance, the process

63



noise added to the diagonal of the covariance representing the stochastic nature of the func-

tion (e.g., inconsistent repeatability of trajectories on a robot), and the model uncertainty,

representing the uncertainty in the prediction of the underlying function. The f̂σ2 in (4.9)

represents the second of these two uncertainty terms.

4.3.2 Bayesian Approaches

The baselines described above take into consideration the predicted value and uncertainty

of the best objective sample, and use various simplifying assumptions to represent their

estimate as a single point. A Bayesian approach would instead represent the uncertainty

in the value of the best objective sample as a random variable Ymax and a corresponding

probability distribution over possible maximum values pymax(y).

The representation of ymax as a random variable has an effect on calculation of the EI.

When ymax is a known deterministic quantity, the improvement (from Equation (2.20))

I(x) = max(f̂x − ymax, 0) (4.11)

is a random variable that is a deterministic except for f̂x (the random variable associated

with pxY , considering only the uncertainty in flat and not the predictive noise). When Ymax

replaces ymax,

I(x) = max(f̂x − Ymax, 0), (4.12)

the improvement is dependent on two non-independent random variables, f̂x and Ymax. The

expectation EI = E[I] should then be calculated over the joint distribution p(f̂x, Ymax), which

for many forms of the distribution of Ymax is not possible in a closed-form expression.

The following approaches describe several methods to estimate Ymax using different sim-

plifying assumptions. The subsequent section compares the efficacy of these approximations

64



when used to calculate EI for expensive stochastic optimization tasks with that of the base-

lines described above, as well as the relative required computation of the methods.

Predicted Distribution at Best Experiment: Although the parameter which gener-

ated the best sampled objective value may not be the parameter which has the best expected

sample value or underlying latent function mean (recall Fig. 4.7), perhaps the simplest

method to generate an expression for Ymax is to assume that it is. In other words, let xbest

be the sampled xi ∈ x̃ which corresponds to yi = max(ỹ). Then define

pB1
ymax

= pxbestY . (4.13)

Note that because f̂ is a GP, the joint distribution of f̂x and Ymax = f̂xbest (needed to

evaluate the expectation of Equation (4.12)) is Gaussian, and easily obtained from the GP.

In this and the following approaches, only the variance from the uncertainty in the latent

function (and not the process noise) is considered for pxbestY .

Predicted Distribution at the Maximum GP Mean: Rather than using the best

sampled objective value as the basis for determining the distribution for Ymax, another option

is to use the GP’s predicted distribution at the location of the highest predicted mean value

at the sampled points, or

xbest = argmax
x∈x̃

f̂µ(x), (4.14)

pB2
ymax

= pxbestY . (4.15)

Jointly Predicted Maximum at Sampled Points: Finally, instead of the Gaussian

predictive distribution at a single point, one could use the more accurate distribution of the

65



maximum at all of the points in x̃5:

pB3
ymax

= max{f̂x |x ∈ x̃}. (4.16)

Because the GP defines the joint normal distribution of {f̂x1 , f̂x2 , . . . , f̂xn}, this results

in computing the distribution of the maximum of dependent normal random variables. Un-

fortunately, this results in a non-Gaussian distribution for which an analytic expression for

the PDF or even the expectation is not known (bounds on the expectation of this quantity

are investigated in [87]). In the case of infinite series of i.i.d. random variables, the field of

extreme value theory has found representative distributions of this quantity, but for corre-

lated finite variables the results are not as well understood. Due to these challenges, this

estimation method for Ymax is not considered below.

4.3.3 Stochastic Optimization Results

In this section, I empirically compare optimization performance of the various methods

above. The optimizations here are run on several test functions in various dimensions with

various levels of uniform Gaussian noise added to the function.

The overall measure of performance used to compare these methods is the true function

value at the GP’s best predicted point, or f(argmaxxi∈X f̂µ(xi)). A secondary consideration

for any of these methods, especially those which require numerical integration, is computation

time. This is also displayed with the results in this section.

The synthetic test functions used for this comparison are shown in Fig. 4.8. For each

of these, zero mean Gaussian noise with different standard deviations (0.1 and 0.75 were

considered) was added to the test function.

5Indeed, this could be done for all the points in the parameter space as well; the relative merits of this
more extensive approach are not considered.

66



100 

-0.000 
10 x2 0 0 x2 0 0 

X 

(a) (b) (c) 
0.1 

0.08 

0.06 . . . · ~:.· ·1 
:r. ... :·... .. ~ ;:. . .. ~ .:: :::':i· Q) 

i :~ 
.::. 

',;I• • •. 2. • ._ ... •' '~ 15 !! .t••. ~ ... ~ ·,: ... \•·: • .t •• ··~·, .. .... . ~ .Ill, 

;·:.' .. :~;,. ...... :::;~ :··~·l ... . • · ... B 
0 ' ( .. : . /;\;~:·. :. ,..:·._~: ;. :· .. 

-0.02 :':.. . : ::.· ...... , . . ... . 
-0.04 . . . .. 
-0.06 

10 
-0.080 

10 x2 0 0 

X 

(d) (e) (f) 

Figure 4.8: Test functions considered for an empirical comparison of various adaptations of the EI metric to 
stochastic functions. T he top row shows the deterministic latent / Jat , and the bottom row a dense sampling 
of the stochastic /noisy· From left to right, a 1-D function with a high level of noise, a 2-D function with a 
medium level of noise, and a second 2-D function. 

To draw conclusions for t he improvement given by each of these approaches, the standard 

baselines of random experiment selection and EI with a GP without a noise covariance 

hyperparameter were first tested. The baselines described in §4.3.1, using EI with Y~a:o y~2ax, 

and y~3ruo were also tested. Finally, the Bayesian approaches of estimating the distribution of 

Ymax (see §4.3.2) were tested. For this computation of the expectat ion of improvement over 

a joint bivariate distribution, two approaches were compared. First, assuming the variables 

independently distributed, a simple 1-D numerical integral of EI was computed by taking 

the expectat ion over the closed form EI expression for values Ymax sampled from Ymax, 

(4.17) 

where EIY(x) is the EI of /(x) over y . Also considered was the two dimension expectation 

67 



integral over the joint PDF of f̂(x) and Ymax, pjoint:

EI2D(x) = E[I(x)] (4.18)

= E[max(f̂x − Ymax, 0)] (4.19)

=

∫ ∞
−∞

∫ ∞
−∞

max(yt − ymax, 0) pjoint(ymax, yt) dymax dyt (4.20)

Note that Equation (4.17) and Equation (4.18) give different results because f̂(x) and Ymax

are not independent (but as discussed above, for the Bayesian methods B1 and B2 this joint

distribution is Gaussian and easily computed).

Fig. 4.9 shows the performance of each of these approaches for each test function, and

Fig. 4.10 depicts the relative computation required by the different methods. The test

scripts used to obtain these results are given in Appendix B.2.

One interesting conclusion that these results suggest is that optimization of stochastic

functions can be effectively accomplished with relatively simple changes to the terms in the

EI metric. Deterministic approximations for the unknown ymax consistently perform on par

with or better than the more complex approximations for its distribution. Furthermore,

these simple approximations are much simpler to compute, resulting in faster performance

and less error-prone implementation details (such as numerical integration challenges).

4.4 Optimization of Snake Robot Locomotion

The goal in developing this improved black-box optimization approach was to improve open-

loop performance of a physical system, in particular the snake robot described in §2.3. The

objective of interest for the robot was locomotion speed over various terrains (other objectives

are discussed in future chapters). The chosen parameter space was the subset of the full gait

68



0.07 

~ 0.06 

~ c 0.05 
£t .g 
:;; B o.04 
.,_g 
~- 0.00 

"'"' >"' 
~ [D 0.02 

~ 
_. 0.0 1 

%~----~.70--~~~.~5~~~~ 
Evaluation Number 

(a) 
0.06 

(d) 
0.07 

(g) 

60 

%~------~,o~--~~.~5~~~~. 
Evaluation Number 

(b) 
60 

%~------~,o~----~.~5~~~~ 
Evaluation Number 

(e) 
60 

(h) 

(c) 
120 

10 15 
Evaluation Number 

(f) 

tO 15 20 
Evaluation Number 

(i) 

Figure 4.9: For each test function, 50 tests were run for each approach described in the text. Each column 
shows results from the test funct ion in the corresponding column of Fig. 4.8. The first row compares the 
baseline approaches, t he second row the described Bayesian approaches (using both 1-D and 2-D integrals), 
and t he third row compares the best baseline to t he best Bayesian approach. The thick lines are the median 
algorithm performance, defined as t he quality of t he recommendation, and the t hin lines are 25% and 75% 
quant iles. Note that for each test functions, the baselines perform on par with or better than the best 
Bayesian approach. 

69 



-(/) ..._... 

c 
:l 
a: 

T 
Baseline Bayesian 

Algorithm 

T 

Bayesian 2d 

Figure 4.10: A comparison of the computational time required for the different algorithms (during optimiza­
tion of test function 2). In each category of methods (baseline, Bayesian, and 2-D Bayesian) the results were 
comparable, so only one example of each is shown. The height of the bar represents the average computation 
on steps 11-20, and the error bars give the 25th and 75th quantile. Note that the data is on a semilog plot; 
the computation required for more complex methods is several orders of magnitude more than the simpler 
methods. These tests were run on a 2.6 GHz Intel Core 2 processor. 

equation parameters (c. f. [100]) which define the sidewinding gait . The terrains included 

fiat ground, bumpy obstacles, and slopes with and wit hout obstacles. As a comparison to 

the optimized performance, I used the performance of the hand-tuned default parameters 

for this sidewinding gait. 

Initially, I optimized the speed of sidewinding locomotion across fiat ground. The motion 

of the hand-tuned sidewinding gait is depicted in Fig. 4.11a, while Fig. 4.llb shows t he 

motion resulting from the newly optimized parameters. This new motion not only achieves 

three t imes the speed of a gait hand-t uned for the same purpose, but is also a previously 

undiscovered method of snake robot locomotion; it is qualitatively different from the existing 

sidewinding gait. Specifically, it is more dynamic, relying on momentum rather than solely 

kinemat ic forces in order to locomote. 

The next task that the modified expensive black-box algorithm was used for was opti-

mization of motion up a slope. One of the previous limitations of the snake robot was the 

inability to climb steep slopes. For example, using parameters for a sidewinding snake robot 

gait that were hand-tuned for fiat ground locomotion, the robot would t ip when attempting 

70 



(a) (b)

Figure 4.11: (a) The previous hand-tuned sidewinding motion. (b) The optimized gait; although it used the
same fixed parameter values as the sidewinding gait, it is qualitatively different than the existing sidewinding
motion. Note that although this optimized gait has an increased amplitude, simply increasing amplitude
from the previous hand-tuned gait will produce a less effective gait; this increase must be coordinated with
a change in the other parameters.

to climb up a 20 degree slope. However, using the algorithm described above, a number of

improved solutions were quickly found. The optimized gait parameters, discovered after only

26 trials (Fig. 4.12a), resulted in a swinging motion that served to balance the snake on the

slope during the climb (Fig. 4.12b).

Gait parameters for robot locomotion both on flat ground and on a slope were also

optimized in the presence of obstacles (Fig. 4.13). For each combination of obstacle type

and slope, 40 sequential gait parameters were tested (each subsequent test chosen as the

result of maximizing EI over previous results). The resulting learning curves are shown

in Fig. 4.14. In each case, a gait parameter choice was found which resulted in improved

performance over the initial hand-tuned sidewinding gait parameters.

These results not only demonstrate the efficacy of the algorithm, but also extend the

capabilities of the snake robot. More importantly, the new sets of parameters were found

without expert knowledge regarding parameter selection; the only human interaction was

resetting the snake and measuring the distance traveled. A benefit to the principled explo-

ration of the parameter space rather than relying purely on human intuition is that global

71



(a) (b)

Figure 4.12: (a) The sampled speed from each experiment conducted during the optimization. The solid
line represents the best value found so far, and is a useful visual comparison of results. The automatic
tradeoff between exploration and exploitation can be seen; experiments 0-16 are more explorative; 17-27
are largely improving upon the best result so far. Determining a low chance for further improvement, the
selection metric then chooses to explore the space (resulting in a number of poor choices) for the remaining
experiments in the budget. (b) Still shots from the optimized climbing motion of the robot. In order to
keep its balance, the robot “swings” from a horizontal position to one aligned with the slope of the incline.

(a) (b) (c) (d)

Figure 4.13: Various obstacles were built on which to optimize open-loop gait performance. Note that each
of these can either be inclined or flat or the ground. (a) A simple wood slope. (b) Irregularly spaced small
square obstacles. (c) Three black pipes, split in half along the center. (d) Note the scale; the robot, even
when lifting its body a moderate amount, cannot pass over the obstacles.

optima are often easier to discover. When hand tuning the sidewinding motion, the perfor-

mance can decrease as the gait parameters are incrementally moved outside of a small range

near the initial local optimum. By removing human inhibitions about leaving this “good”

area of the parameter space, large unexplored regions of the parameter space are sampled,

resulting in overall improved performance.

72



(a) Half pipe obstacles, horizontal. (b) Small square obstacles, horizontal.

(c) Half pipe obstacles, sloped. (d) Small square obstacles, sloped.

Figure 4.14: Results from optimization tests on two sets of obstacles. Each obstacles was set flat on the
ground for a first round of optimization tests; a second set of tests was conducted for each obstacle when set
at an angle. For each test, the sampled objective function value is plotted for each experiment conducted,
and a solid line indicates the best sampled value so far.

73



Chapter 5

Multiple Objectives

Many problems in robotics inherently require optimization of multiple conflicting criteria,

such as the speed of a system and its energy efficiency. In these cases, the näıve approach

is to consider a scalar combination of these criteria, e.g., to optimize a linear combination

of speed and efficiency. However when no preferences are known between the criteria, such

combinations limit the solution to a single point based on arbitrary preferences implied

by the aggregate function. In multi-objective optimization (MOO) (see §2.5) these multiple

objectives are treated explicitly as independent unless the user has a clear preference between

them. Instead of a single optimum, this gives rise to a set of Pareto optimal solutions, termed

the Pareto set (see Figure 5.1a).

This full set of solutions is useful in real-world situations. For example, the snake robots

the motivate the work in this thesis are equipped with an on-board camera to allow an

operator to teleoperate the robot out of direct line-of-sight. This camera is fixed to the

undulating body (often the head) of the robot, which causes difficulty in maintaining situ-

ational awareness during locomotion (Figure 5.1b). To mitigate this effect, one can control

the robot through small-amplitude low-frequency motions to stabilize the camera. However,

such motions also reduce the speed of the system, creating a scenario with conflicting notions

74



N 
Ql 
> 

·~ 
(J 
Ql 
E 
0 

objective 1 

(a) (b) 

Figure 5.1: (a) The set of Pareto optimal solutions are those that are not Pareto dominated by any other 
points in the full set of solutions. T he Pareto optimal points in this figure are those which are on the stair­
stepped line. The hypervolume of such a set is the volume which is dominated by t he Pareto set, shown 
as the dark shaded region; this is a popular measure of the quality of a multi-objective solution set. The 
light shaded region is the potential improvement to the hypervolume if the point indicated by the circle 
were added to the set. (b) One problem when teleoperating our snake robots is that the large movement of 
the head, which houses the camera, can cause operators to become disorientated. We demonstrate multi­
objective optimization methods in this chapter to help solve this problem, simultaneously optimizing for the 
conflicting objectives of head stability and speed. 

of good performance. In this case, speed may be important when the robot is t eleoperat ed 

through a wide, easy to comprehend space, but as t he robot enters a more complex passage, 

the stability of the head camera may become paramount . This clearly demonstrates how t he 

relative importance of objectives can change during operation, motivating a search for the 

full Paret o set of solutions. 

There is a large body of work on optimization of multiple objectives when a large number 

of objective evaluations can be made, or when the objectives are in a particular form (see 

§3.3). This t hesis focuses on global optimizat ion of expensive systems, and therefore the 

methods discussed in this chapter differ from much of the exist ing M 00 work in the relat ively 

small budget for objective samples (often around 40-50 for 2-3 dimension paramet er and 

objective spaces). The goal of these algorit hms is to find a the best approximat ion to t he 

Pareto set of solutions while restricted t o such a budget. 

In t his chapter we seek to demonstrate the benefits of viewing robotic optimizat ion prob­

lems in a MOO framework. I develop a new algorithm for obtaining a Pareto optimal set of 

75 



solutions while budgeting the number of tests on the robot, based on Emmerich’s derivation

of expected improvement in hypervolume [28]. I also implement a leading existing approach

for expensive MOO, Knowles’s ParEGO [58] (described in §3.3). These are empirically com-

pared on a set of test functions, and then a concrete real world MOO example objective for

the snake robot – simultaneous improvement of head stability and speed during execution

of sidewinding – is used to demonstrate the described algorithm.

5.1 Objective Space

Recall from §2.5 that MOO compares solutions in a multidimensional objective space. Whereas

in single objective optimization, the objective is visualized as a curve or surface over some

parameter space X (e.g., Fig. 4.8), in MOO the objective functions fi are often shown di-

rectly in the objective space as parameterized surfaces; the parameter space appears only

implicitly.

To obtain this parameterized surface, each point x ∈ X is represented by f(x) =

{f1(x), f2(x), . . . , fn(x)}. For example, the result of this operation for GP surrogates of

two simple 1-D functions is seen in Fig. 5.2.

Note that the parameter space often appears only implicitly in this work, and focus is on

the f(x) that are associated with some x. Also, note that only part of this objective space

is in the range of f and that f can be many-to-one; in other words, the mapping from X to

Y is in general non-surjective and non-injective.

This focus solely on f(x) instead of pairs (x, fi(x)) is useful for comparing solution quality.

In Fig. 5.2a, is it not immediately clear which of the sampled points form the pareto set.

However, in Fig. 5.2b, the pareto set of sampled points is immediately evident.

With surrogate-based algorithms, a separate GP regression is done for each objective in-

dependently. When fitting GPs to the objectives, the useful single-objective ±σ uncertainty-

76



-•,!-----7----7----7-, ~.-7-, ~.-7--, ----!--!------:'. 
Parameter Space 

(a) 

"' a>"' 
~ 
0 2 
CD 
E 
0 ·~ 

·. 

/ 

-------

{b) 

Figure 5.2: Two objectives were sampled at x = {0, 4, 7, 9}. (a ) The resulting GP fits. (b) The objective 
space projection of the GP fits is shown as the thin line, while the thick line indicates the current Pareto 
front of the sampled points. 

visualization technique for GPs (§2. 1.5) does not carry over to the objective space view. 

Instead, each point f (x) results in an uncertainty ellipse. 

5.2 Extending EI to Multiple Objectives 

As the EI metric has been a success in expensive single-objective optimization, the natural 

question is whether it can be applied to the MOO case. Recall the notion of improvement 

for the single objective case (Equation (2.20)); if evaluating the objective at x (with a 

corresponding random variable jx given by the surrogate), the predicted improvement over 

the set of sampled points y is simply the increase in the maximum value of the result ing set, 

or 

I(x) = max(jx - max(y), 0). (5.1) 

Note that as Jx is a random variable, I(x) is as well. 

In MOO there is more than one objective, and the solution is not just a single point, but 

an entire Pareto set of points. To measure improvement in such a set, a valid metric must be 

77 



devised to measure the quality of such a set. One such metric is the set’s hypervolume [112].

This is the volume in objective space which is Pareto-dominated by at least one point in the

Pareto set. A reference point in objective space must be selected to define the lower bounds

of this volume; this point should be chosen given prior knowledge of or an educated guess

about the minimum possible value of the objective functions (e.g., the net displacement of

a gait must always be greater than or equal to 0).

The concept of the hypervolume indicator is illustrated for a two-dimensional objective

space in Fig. 5.1a. This measure has desirable properties; for example it is not affected when

a dominated point is added to a set of solutions, and the addition of a non-dominated point

always increases a set’s hypervolume. Given a method to compute the hypervolume HV of

a solution set, improvement can be defined as

I(x) = HV(ỹ ∪ f̂
x
)− HV(ỹ), (5.2)

where f̂
x

is the multivariate random variable given by the surrogates’ prediction for f(x).

The expectation over this quantity can then be written as

E[I(x)] =

∫
Y1×Y2×···×Yn

(HV(ỹ ∪ y)− HV(ỹ)) pxY(y) dy (5.3)

where this integral is taken over the objective space. In Fig. 5.3, the two components of

this integral are shown. Recall that for the single objective case, EI is the distance which

the center of mass of the probability of improvement distribution is above the best samples.

Analogously, expected improvement in hypervolume (EIHV) is the distance which the center

of mass of the probability of improvement distribution is above the set of best samples.

Although a simple closed-form solution has been derived for EI in the single objective case,

E[I(x)] is not straightforward when the improvement is measured in terms of hypervolume;

evaluating this for a given test point requires either a multidimensional numerical integral, or

78



Objective 1 

(a) 

N 

.~ 
<.> ., 
g 

Objective 1 

(b) 

N 

~ 
<.> ., 
iS 
0 

Objective 1 

(c) 

Figure 5.3: These objective space plots are computed using the example samples and function fits from 
Fig. 5.2. The expected improvement in hypervolume (EIHV) for a given parameter x = 8 is the expectation 
over the improvement in hypervolume for potential objective values f"'. Therefore, the integrand (c) is 

the (a) probability density of f"' times the (b) improvement for each potential y in the objective space 
Y1 X Y2 . .. Yn. The resulting quantity is integrated over the objective space to obtain the final EIHV(x) 
value. 

the development of an analytic form for this expectation. Fortunately, Emmerich et al. have 

provided the outline of a method to compute this quantity in closed form [28]. This method 

divides the objective space into a grid based on points on the pareto front, computes a closed 

form integral in each of these grid squares, and then adds the contributions to obtain the 

resulting EIHV for a given point in parameter space. 

Working in objective space, this metric considers the joint improvement in all objectives 

simultaneously, trading off the benefits of sampling a point which might improve one or 

another. Using the example functions from Fig. 5.2, the EIHV value for each point in the 

parameter space is shown in Fig. 5.4. 

Using hypervolume as the indicator of solution set quality and finding an efficient com­

putation of its expectation allows us to use machinery from the single objective case for 

optimization with multiple objectives. The resulting multi-objective optimization algorithm 

using EIHV metric can be summarized in a form parallel to the surrogate-based single ob-

jective algorithm defined in Alg. 1. T he modifications are that line 7 is replaced by a fit for 

each objective, and the metric used in line 8 is EIHV. 

79 



> .. 
;!; 
w •• 

3 4 , 6 7 

Parameter Space 

Figure 5.4: The expected improvement in hypervolume for each point in the parameter space (corresponding 
to the GP fits in Fig. 5.2). 

As with single object ive surrogate-function based algorithms, it is imperative that t he 

function regression met hod provides a reasonable estimate of the objective and the un-

certainty of that estimate. The hyperparameter tuning met hods from §4.2 are useful in 

obtaining a realistic and non-trivial GP fit . 

5.3 Synthetic Test Problem Results 

The primary mot ivation for the careful experiment selection methods described herein is t he 

expensive nat ure of testing the performance of physical robot ic systems. Because of this 

expensive nature, it is unreasonable to run an exhaustive set of tests on such a system to 

just ify the choice of algorithm. Instead, a more extensive comparison on two simple analytic 

functions was run. 

Many of the mult i-objective test functions in the literature are particularly designed to 

confound exist ing multi-objective evolutionary algorithms (MOEAs) , and therefore involve 

large high-dimensional parameter spaces wit h many disconnected Pareto set regions. The 

low-dimensional analogues, when t hey exist, are trivial surfaces that do not provide for a 

reasonable evaluation of the optimizat ion algorithms under consideration. 

80 



(a) 

2.5 

- 2 

t 
0: 

"' 2 

~ 16 • ., 
a: I 

10 

Parameter 2 I) o Parameter 1 Parameter2 

(d) 

4 6 10 
Decision V a.riaiJCe 

(b) 

10 

0 0 Parametef' 

(e) 

s : 
"' : c : 
.~4 ... 

~s 
'!! 
i2 
a: 

I .. ·· 
0o!:-" ............ _···~· ··~~2~·...:...·-·~-·3,-·-·_·-=-=·_·..,.,·.,_·--:::.---! 

Reward Function 1 

(c) 

(f) 

Figure 5.5: Competing test functions created from one dimensional slices ((a) and (b)) and scaled two 
dimensional regions ((d) and (e)) of the Branin test functions. T he plots in (c) and (f) show the resulting 
objective space projection (blue dots) and Pareto frontiers (black lines). 

Instead, I chose to use a region of the Branin test function, a common benchmark for 

global single objective optimization from the Dixon-Szego test problem set [26]. I chose 

different regions of the Branin function for each objective, and found that the resulting 

surfaces exhibit qualitatively similar properties to those observed for the performance of our 

robots. These regions, shown in Figure 5.5, are defined by the following equations, where B 

is the original Branin function and all inputs are between 0 and 10 inclusive: 

J{(x) 

fi(x) 

ff(xl, x2) 

fi.(xl, x2) 

B (x, 1)/10, 

B (3, x)/10, 

B (x1 , 2 + 0.5x2)/20 

B (0.4x1 , 5 + 0.1x2)/10 

81 

(5.4) 

(5.5) 

(5.6) 

(5.7) 



In addition to the optimization method described in §5.2, I have chosen a simple, pop-

ular, state-of-the-art optimization method for expensive multi-objective problems called

ParEGO [58]. This algorithm takes the approach, at each iteration, of generating a sin-

gle aggregate objective function. It then reverts to a single-objective experiment selection

method (the EI-based algorithm EGO, described in [50]) to choose the next sample. Finally,

I also use random experiment selection to provide a baseline from which to measure the

importance of any careful experiment selection.

For the simple one-dimensional test function, I ran each algorithm 20 times, each time

independently selecting 40 locations at which to sequentially sample the objective functions.

The repeated trials are necessary because initial sample location selection is random. For the

two-dimensional test function, each algorithm was run 20 times, with 20 sampling locations

selected each time.

The resulting algorithm performance is shown in Figure 5.6. In each case, both ParEGO

and the EIHV were shown to significantly outperform random experiment selection, demon-

strating the potential savings when optimizing on expensive systems. The use of EIHV also

outperformed ParEGO for both tested settings of ParEGO’s s-value (10 and 1000), show-

ing an algorithm with no tuning parameters and good performance. Due to these empirical

results, I chose to use EIHV when optimizing multiple objectives on the physical snake robot.

5.4 Robot Results

After the validation of EIHV in the previous experiments, I used this method to generate

a set of Pareto optimal solutions for competing objectives of head stability and speed. In

order to do so, I first needed to define the cost functions and the parameter space over which

the optimization occurs.

The speed objective definition is straightforward – after running the snake for 10 seconds

82



~ 10 15 20 25 30 35 AO 
Sample Nuntlor 

(a) 

. , 
:. 

- EIHV 
•oo•ParEGO 
•••Random 

%~~--~2~~.~~-L~ 
Reward Functioo 1 

(b) 

... 

1.5!--. ------:1,...0 -----,1.=--------,20 
Sample Number 

(c) 

2·•·r-~~--~---.,_:::"'E:EI::J<HV;==n 

(\I 2 • • • • • • • • • • 

6 
'6 .~ 1.5 

l 1 

a: 
0.5 

·•• ParEGO 
•••Random 

'60.5 1 1..522.5 
Raward !=unction 1 

(d) 

Figure 5.6: Results of two different expensive MOO methods - optimization of the expected improvement 
in hypervolume (EIHV) and ParEGO - and a random experiment selection baseline on the 1-D (a) and 2-D 
(c) test functions shown in Figure 5.5. The line indicates the median hypervolume of the 20 trials, while the 
shaded regions represent the middle 50% of the trials. Also shown are t he resulting Pareto frontiers from 
each method on each test function ((b) and (d)). On both functions EIHV outperforms ParEGO, and both 
methods are significantly better than random, demonstrating the importance of careful experiment selection 
in expensive optimization. 

0.5 
1 o Head 1 o Head 

Amplitude Offset Amplitude Amplitude Offset 

(a) 11th sample (b) 18th sample (c) 25th sample 

0.5 
1 o Head 

0.5 
1 o Head 

0.5 
1 o Head 

Amplitude Offsel Amplitude Offset Amplitude Offset 

(d) 11th sample (e) 18th sample (f) 25th sample 

Figure 5. 7: After the initial random experiments, the GP function regression method generates an estimate 
of t he function after each subsequent sample. These surfaces are shown here for three selected iterations, 
where the top row is regression of the stability objective and the bottom is the regression of the speed 
objective. The color of the surface is t he uncertainty in the estimate (blue regions in the center have low 
uncertainty, red regions near t he edge have high uncertainty). 

83 



c--. 
-'110 -60 - 40 -20 

(a) Point A, 1.25Hz (b) Point B, 0.4Hz frame (c) Point 
frame rate rate C, 0.4Hz 

frame rate 

Stability 

(d) 

Figure 5.8: (a)- ( c) Time lapse images showing the head and snake motion of three different points in the 
head stability/ speed Pareto set. The snake in (a) moves quickly, but the head rotates back and forth. The 
snake in (b) moves at a slower rate, but with noticeably less head sway. Finally, (c) is a very slow but 
very head-stable motion. As can be seen in (d ) , t hese points span the Pareto front , and none dominate the 
others. Shown as blue dots are the results of all experimental evaluations during the optimization. 

wit h the gait parameters as specified by the optimizer, the net displacement of the center 

of mass is measured. The head stability objective was more complicated. To obviate the 

need for a motion capture lab, I combined several tools that only relied on sensor data 

from on-board the robot. Intuitively, this capt ures a notion of how much t he camera image 

changed for an operator. Moreover, since the result ing image from a t ranslating camera is 

less disorienting than a rotating camera, I chose to focus on t he latter motion. 

I choose a point p at a dist ance l of 18 inches normal to t he center of t he camera lens 

plane as t he desired focal point . Using a Kalman filter based sensor-fusion state estimation 

technique [85], the mot ion of this point is est imated throughout t he gait . However, because 

the primary consideration is orientation, I use a shape-st able body frame termed the virtual 

chassis [86], consider only t he orientation component of the virtual chassis state estimate, 

and define the point p to be in t he world frame assuming the virtual chassis is fixed in 

position but free to rot ate in all three dimensions. 

More formally, let t he 4x4 homogeneous t ransform of the estimated orientation of the 

virtual chassis at the timestep t be defined by R( t ) vc. Then t he position of the head frame in 

the virt ual chassis frame at tis given by the transform matrix T(t)~c (where the 0 indicates 

84 



-30 -- - 25 

- 20 

- 15 

-10 
- 10 o.tt -0. 

-f -__ -5 

- 5 - 10 0 

(a) (b) (c) 

Figure 5.9: (a) The focal point p(t) is a distance l from the head camera, normal to the image plane; it 
is shown here for two different timesteps. The motion of this point provides a measure of head stability. 
(b) T he head stability objective used for the snake robot trials was the estimated swept area of the head 
camera's focal point. The data above from one of the trials shows the center of mass of the robot (black 
circle), the trace of the head (black line) and the trace of this focal point (red line) through multiple cycles 
of the commanded gait. The wide sweeps of the head result in a poor objective score of - 68.6 (V = 11.5 
and H = 59.6). (c) T he same plot for a trial resulting in a more stable head trajectory; the resulting head 
stability objective is - 2.70 (V = 2.75 and H = 9.81). 

the Oth snake module) . The ray from the head camera module top is of length l in the z 

direction, so let p0 = [0, 0, l, l ]T be the location of p in the head module frame. Given these 

variables, p is defined in the fixed-position, free-rotation virtual chassis ((world" frame at 

time t (see Fig. 5.9a) as 

p(t) = R(ttcT(t)~cPo· (5.8) 

To transform this focal point location into the stability cost, the minimum bounding box 

for this swept area is calculated. First, the vertical sweep is 

V = max (Pz(t)) - min (pz(t)) , 
O<t<T O<t<T 

(5.9) 

where Pz(t) is the z component of p(t), and T is the total number of timestamps. The 

horizontal sweep first requires calculation of the total angular sweep from the origin to all 

p(t) projected onto the x - y plane. This should be the smallest angle for which the interior 

cone (from the origin) can contain all p(t) . This angle is H8 , and is given in radians. The 

horizontal sweep is calculated as 

85 



d(t) =
√
px(t)2 + py(t)2, (5.10)

H = Hθ

∑
0<t<T

d(t)

T
, (5.11)

where px(t) and py(t) are similarly the x and y components of p(t), and d(t) is the distance

from the origin of p(t) projected into the x− y plane. Finally, the total cost – representing a

bounding box of the swept position of the focal point – is given by V ×H/10 (see the examples

in Fig. 5.9b and Fig. 5.9c). In practice I negate this value because these optimization methods

maximize rather than minimize.

As the primary concerns are speed and head stability, I chose to optimize parameters

of an augmented gait model that would add more position control of the head module

while still keeping a low-dimensional parameter space. The basic form of the gait model in

Equation (2.17) is restricted to the sidewinding parameter space as defined in [100], and an

additional offset φ is added for the head module:

α(1, t) = βodd + Aodd sin(θ + δ + φ) (5.12)

I then optimize over the amplitude and φ, with a fixed ratio between Aodd and Aeven.

Finally, when running tests on physical systems, the non-deterministic nature can cause

instability in many optimization methods. Although using a GP that can explicitly model

this noise allows many surrogate function based optimizers to perform well in the presence of

noise, I make two adjustments. First, I run each trial 5 times, averaging the results for each

objective and removing outliers. Second, when determining the Pareto set for the purpose

of the calculation of EIHV, I use the surrogate’s estimate of the objective values for each

sampled point. This improves the stability by ensuring that an artificially high sampled

value will not too strongly discourage nearby samples.

86



The process and results of these optimization trials can be seen in Figures 5.7 and 5.8,

respectively. The optimizer has sampled points which span the trade-off between both objec-

tives, and in particular has found relatively fast motions that have improved head stability.

The three montages of robot motion shown in Figures 5.8a, 5.8b and 5.8c show how this

multi-objective optimization approach generates a range of solutions, whereas the typical

approach of aggregating these objectives would only have found one of these solutions.

5.5 Conclusions and Future Work

Multi-objective optimization is often a reasonable alternative to creating a single aggregate

objective in the case of competing system performance objectives. This is a case which

comes up frequently in robotics as well as many other fields, such as design, decision theory,

and economics. A Pareto optimal set should be found which contains all solutions which are

not dominated, or completely outperformed, by another solution. The generation of Pareto

optimal solutions sets is difficult when sampling the performance of a system is expensive,

but once accomplished these solutions can be selected from to provide real-time trade-offs

between objectives.

In this chapter, I have created and tested a MOO approach based on maximization of the

expected improvement in hypervolume (EIHV) of the Pareto set. I have compared this to a

leading MOO algorithm, ParEGO, on multiple test functions. Finally, I have applied this EI

based approach algorithm to optimize snake robot gait parameters for fast and head-stable

sidewinding. This application required care to reduce the effect of noisy evaluations on the

optimization performance as well as the creation of a head-stability cost function from recent

state-estimation techniques for the robot.

Future work involves testing these methods with higher-dimensional parameter spaces

and use of these methods on other robotic systems. In addition, the explicit handling of

87



noisy objective evaluations is an open problem. Another topic of interest is considering the

EIHV metric (as well as other approaches) in the case of partial objective set evaluations, or

when you can must choose not only which point in X to sample at but also which objectives

to sample. Furthering this work can allow these methods to be used with more confidence

for various applications.

88



Chapter 6

Environmentally Adaptive

Optimization

In the problems addressed in the previous chapters, an assumption is made that the pa-

rameters x ∈ X of the objective function f are all controllable when an experiment is run,

i.e., the objective is entirely defined by the control inputs (gait parameters, joint torques,

etc.). Outside of a controlled laboratory environment, other variables (such as environmental

factors) can have a significant impact on the outcome of an experiment or the behavior of

a robotic system. For example, if the terrain has alternating flat and tilted or smooth and

sandy sections, the robot performance (e.g. speed) will change in these different areas.

In this chapter, I explore the effects of relaxing this assumption of full control over param-

eters by splitting the parameter space into two subsets: first, the control parameters, which

match the idea of the parameter space from the previous chapters, and the uncontrollable

environment parameters, which describe the other inputs that may affect the objective, such

as terrain smoothness or slope. This decomposition is shown in Fig. 6.1.

Given this decomposition, the goal is to find control policies that adapt to changes in the

environment by selecting the best controller parameters for each environment. The specific

89



x f

(a)

xc
f

xe

(b)

Figure 6.1: (a) The previous expensive optimization work in this thesis fits the pattern on the left, where
parameters are fed into the robotic system, which results in obtaining a value for f at that parameter. (b)
In this chapter, the objective f is explicitly a function of both the control parameters as well as environment
parameters; treating these differently allows the generation of adaptive control policies for the system.

problem I address is how to learn such a policy efficiently (a small number of tests on the

robot) during an offline training phase, where the environment parameters are controllable.

The resulting policy should then work effectively during testing, where environment param-

eters are uncontrolled; i.e., it should perform well in any environment that is encountered.

This problem setup is similar to that of contextual bandits (see §3.2), where the context or

side information corresponds to this notion of environment parameters. However, the focus

in this chapter is on efficient learning during the training phase, while the general focus

in the bandit community is on learning and minimization of regret only during the testing

phase.

The optimal control policies define an optimal control parameter for each environment pa-

rameter under consideration. The optimal control parameters are often different for various

environments; e.g., the best parameters for uphill motion are likely different than the best for

downhill motion. For the expensive systems I focus on in this thesis, however, it is infeasible

to test every possible controller in every possible environment. Even running an efficient

control parameter optimization for each environment individually would be impossible.

To address this challenge, I make assumptions about the continuity of the objective.

Although optimal control parameters differ for various environments, one would expect some

degree of continuity in the performance of a robotic system – similar control parameters on

90



(a) (b)

Figure 6.2: (a) I am interested in problems for which the optimal control parameter changes significantly
with changes in the environmental conditions. Ideally similar environment/control combinations lead to
similar system output; I therefore assume this function is continuous, although these methods can still operate
with some discontinuities. (b) The optimal policy (dark lines that indicate mapping from environment to
control) tends to be piecewise continuous; similar environments usually result in similar controllers, but
there are likely to be some discontinuities. A good policy can be estimated from a low-cost model of the
true expensive system output, requiring only a handful of carefully chosen points.

the same environment or similar environments with the same control parameters should lead

to similar performance (Fig. 6.2). By jointly modeling the objective as a continuous function

over both the environment and control parameters, tabula rasa learning is not performed for

each environment; knowledge is shared across different environments. From my experience

and the demonstrations in this chapter, this coupled optimization of controls for multiple

environment drastically reduces the number of experiments required to optimize for a set of

environments.

In the following sections, I show that this information-sharing approach is important,

but does not provide a complete solution. The choice of experiments (points at which to

evaluate the objective) can significantly affect the quality of the resulting policy. Following

the theme of the previous chapters, I design experiment selection metrics to iteratively select

parameters at which to evaluate in a manner that enables generation of the best possible

policies.

In particular, I first outline the terms necessary to formally define the optimization

91



problem and the goals of our algorithms. I then propose two algorithms which extend the EI

experiment selection metric to this new problem domain. I demonstrate the efficacy of these

methods on a set of test functions, clearly showing the importance of careful experiment

selection. Finally, I show results of several control policies created using these methods

applied to both simulated systems and physical robots. Specifically, I demonstrate improved

locomotion over changing terrain for the snake robots described in [100], as compared to a

control policy generated through random sampling of the environment and control parameter

spaces.

6.1 Problem Definition and Notation

This work aims to find a control policy – a map from environments to controls – that

optimally adapts to external variables, while minimizing the number of experiments done to

perform the optimization. The two subgoals then become:

1. Policy Generation: After the completion of a predetermined number of objective

evaluations, predict an optimal control policy based on the samples.

2. Experiment Selection: Select subsequent parameters for evaluation, based on the

previous objective evaluations, which maximize the score of the policy predicted by

the policy generation algorithm.

In order to make these ideas more concrete, I first define several terms and then restate

the subgoals more precisely.

Definition (Control Parameter). The control parameter space Xc is a compact subset of

Rmc . Each xc ∈ Xc represents a particular quantity that can be fully specified during

normal operation. Some examples of control parameters include the value of a set of gains

92



in a PID controller, the relative concentration of two reactants in an industrial process, or

the prescribed dosage of a drug during development.

Definition (Environment Parameter). The environment parameter space Xe is a compact

subset of Rme . This space contrasts with the control space in that values xe ∈ Xe cannot be

controlled under normal real-world operation, but can be specified in a laboratory setting.

Furthermore, xe can be measured during normal operation. Therefore, these parameters

represent continuous valued external factors of the system, such as terrain steepness for a

locomoting system, wind strength and direction for a UAV, particulate size in an industrial

process, or disease strain during drug development.

Definition (Objective). The objective, denoted as f : Xe ×Xc → R, is a continuous, real-

valued function of the environment and control parameters. As in the previous chapters,

this function represents the performance of the system; here it depends on environmental

conditions as well as the control parameter. Example objectives include the speed of a

locomoting system over a terrain, the efficiency of a mechanical process, or the turbulence of

a wing design calculated from a wind tunnel or computational fluid dynamics experiment.

For the methods we propose here, we assume that sampling this objective is time intensive

or computationally expensive, and therefore there is a limit to the number of times this

function can be evaluated.

Definition (Control Policy, Score, Optimal Policy). The control policy defined in this work

is a mapping γ : Xe → Xc, such that γ(xe) represents the control parameter set by γ in

reaction to sensing environment parameter xe.

The score S of a control policy,

S(γ) =

∫
Xe

ω(xe)f(xe, γ(xe))dxe, (6.1)

represents how well this policy adapts to varied environmental parameters. The ω : Xe →

93



(a) (b)

Figure 6.3: An example objective for one dimensional environment and control spaces. The policy γ is
shown below the function and its performance is projected on the objective/environment plane. The policy
score is the integral of this gray shaded region. An optimal policy is illustrated in (a), presenting the best
control parameter for every environment parameter. Note that the policy shown in (b), which also maps
to a control parameter that maximizes the objective at xe = 1, results in a significantly lower overall score
because of its poorer choices in other regions of the environment space.

R+ term is an optional weighting function that reflects the relative importance of learning

controllers for various environments.

The optimal control policy for the system, γ∗, is defined as the policy which maximizes

f(xe, γ(xe)) ∀ xe ∈ Xe. In other words,

γ∗ = argmax
γ
S(γ). (6.2)

Note that γ∗ is independent of ω, because γ∗(xe) can be independently determined for

each xe ∈ Xe. Although the weighting function can make a significant difference during

experiment selection and ranking of sub-optimal policies, the optimal policy is unaffected by

the relative importance of different environments.

To illustrate these ideas, I use one-dimensional environment and control spaces (Fig. 6.3).

In Fig. 6.3a, the optimal policy γ∗ is shown on the control-environment plane, and the score

integral is visualized on the objective-environment plane; Fig. 6.3b shows a suboptimal policy.

Note that the objective is assumed to be continuous, whereas the control policy does not

94



have this restriction.

The goal of this work is to find the highest scoring γ after a number of objective eval-

uations. As above, I break this problem into policy generation and experiment selection

subproblems, stated here more formally:

1. Policy Generation: Given the results of n objective evaluations, choose the best

prediction for the function γ∗.1

2. Experiment Selection: Iteratively choose the sequence of pointsX = {x1, x2, . . . xn},

xi ∈ Xe×Xc, where the choice of xk+1 is informed by {f(xi) |i ≤ k}, which maximizes

the score of the policy produced by the chosen policy generation algorithm.

6.2 Proposed Methods

The difficulty of applying a standard optimization technique to this problem is the fact that

we cannot evaluate the true function being maximized during policy generation, S. This is

because evaluating S(γ), the score of a single policy, involves an integral of the expensive

objective f(xe, xc). As the policy generation task admits no new evaluations of f , and

experiment selection only allows n evaluations, it is clear that it is impossible to calculate

S(γ) for any single policy γ, let alone apply a standard optimization technique to S. Rather

than directly searching the infinite-dimensional policy space, the problem setup requires

selection of a series of xi ∈ Xe × Xc which will yield the information necessary to build a

good policy.

The first of these problems is addressed in this approach by using a surrogate function,

f̂ , to model the objective and make decisions. This technique is widely used in global

optimization of expensive functions, but the surrogate usually directly represents the function

1γ∗ need not be representable in any given functional form; I store the result at a dense grid of points
and retrieve the closest neighbor upon evaluation.

95



to be optimized (as in previous chapters). Here, I instead use it to represent a function that

is an intermediary in the computation of our score function. However, this shares with

the global optimization community the key idea of replacing an expensive function with a

surrogate, using the surrogate to make informed decisions, and then updating the surrogate

when new information is available. Again, I use GPs for this surrogate f̂ .

The same caveats as were described in §4.2.4 apply here; the high level algorithms cannot

be expected to perform well if the surrogate is not a reasonable representation of knowledge

about the function. If the hypothesis space is not rich enough to capture behavior of the

objective, or the hypothesis space is too rich, the model could under- or overfit the data,

resulting in poor algorithm performance. The experimental results in this chapter use the

squared exponential covariance as the GP’s covariance function, but the methods described

below do not rely on any particular choice of covariance; in general I recommend selecting

among model complexities (for example, different covariance functions for the GP) as in

§4.2.2. In addition, any prior knowledge about the objective should be encoded in the model

prior.

Unsurprisingly, standard local and global optimization methods directly applied to op-

timizing the objective f perform poorly. This is because these methods are not optimizing

the true quantity of interest – the score; rather they focus on improving knowledge in en-

vironments with high objective results, and ignore environments with low objective results.

This results in f̂ having a high uncertainty in these “difficult” environments (ones with low

objective results), less reliably finding near-optimal control parameters for these regions, and

therefore not reliable obtaining high score contributions from these environments. This can

result in a lower overall scores. However, I have included results from using a straightforward

EI search as a baseline approach.

To respond to the bias against “difficult” environments encountered by this straightfor-

ward optimization of f over Xe × Xc, one might choose to incorporate a method such as

96



information gain, uniform sampling, or maximum dispersion point selection to ensure that

all types of environments are equally sampled. Unfortunately, these methods cause poor

regions of the control space to be sampled at the same frequency as good regions of the

control space, resulting in an ineffective use of the limited sample budget. I have included a

uniform random point selection algorithm as another baseline to demonstrate this ineffective

sampling behavior.

These baselines amount to heuristic approaches for this problem, and although heuristics

can often perform well, I seek a more principled solution. The methods proposed in §6.2.2

and §6.2.3 attempt to provide a tractable solution which maximizes a statistical quantity

related to the score function: approximate expectation of improvement above the current

predicted policy score.

6.2.1 Policy Generation

Using the assumption that the posterior mean of the GP, f̂µ, is the best estimate of the

true function, the appropriate course of action is to select the policy which maximizes the

estimated score,

Ŝ(γ) =

∫
Xe

ω(xe)f̂µ(xe, γ(xe))dxe. (6.3)

Therefore, I choose γ̂∗ = argmaxγ Ŝ(γ).

Alternatively, one could also choose to take a low-risk approach, and use a lower confi-

dence bound of the surrogate function to define Ŝ. We define β ∈ R+ as a risk-averseness

parameter. Using f̂µ − β(f̂σ2)1/2 instead of f̂µ in Equation (6.3) biases the generated policy

towards control/environment combinations that perform well (high expected mean value)

but also which the surrogate is confident in (low predictive variance). This reduces the

likelihood that the policy will choose a controller that will perform extremely poorly in an

unexplored region of the parameter space.

97



(a) Surrogate for f (b) Expected Improvement

(c) Unbiased Expected Improvement (d) Expected Policy Score Improvement

Figure 6.4: (a) A surrogate for the objective f ; the intensity represents the confidence (dark = high, light
= low). (b) The value of a potential experiment using EI. The EI metric biases point selection towards
environments with high objective values. (c) The value of a potential experiment using EI over the best
predicted objective value for that environment. This reduces this bias toward easy environments and more
directly optimizes the policy score. (d) The estimated policy score improvement as a result of sampling each
point. This selection criterion is computationally intensive, but results in better performance than (c).

98



As this work mainly focuses on experiment selection methods and typical expensive

optimization problems are fairly low-dimensional, I maximize Equation (6.3) to estimate γ̂∗

via a dense sampling of the relatively cheap f̂µ. If needed, more efficient approximations

could be applied for this optimization subproblem.

6.2.2 Experiment Selection: Unbiased Expected Improvement

Recall that EI has proven to be an effective experiment selection metric in global optimization

problems (§2.4, §4.2). This metric seeks to provide a balanced method for trading off explo-

ration of the search space and focus on the best regions discovered so far (“exploitation”). I

restate Equation (2.22) here as

EI(x) =

∫ ∞
max(ỹ)

pxY (y)(y −max(ỹ)) dy. (6.4)

Although the use of EI has been successful for many expensive optimization problems,

a näıve application of this approach to the selection of xk ∈ Xe ×Xc produces poor results

for control policy generation. As the algorithm quickly finds the maximum regions of f ,

environments which have no control parameter that performs very well will not be explored

at all. Instead, the algorithm biases its search towards environments that have high values for

the objective (Fig. 6.4b). This results in a policy that performs well in “easy” environments,

but suboptimally in “difficult” environments.

The approach proposed here adapts this basic idea to the explicit separation of the en-

vironment and control space. I consider the expected improvement of sampling at some

xt = (xte, x
t
c), but measure improvement over the maximum estimated value for that envi-

ronment (when xe = xte), or y∗xte = maxxc∈Xc f̂µ(xc, x
t
e), instead of over the best objective

evaluation so far, max(ỹ). This gives the Unbiased Expected Improvement (UEI), and is

99



(a) (b) 

Figure 6.5: (a) Standard EI measures improvement over the best sampled experiment, the value of which 
is represented by the horizontal red plane. This biases against sampling in difficult environments, such as 
those towards the left of the environment axis. (b ) Unbiased expected improvement reduces this bias by 
measuring improvement over the maximum of the estimated objective for each environment; the objective 
is shown below in blue, and t he maximum is shown above in red. 

illustrated in Fig. 6.5: 

UEI(xt) = w(x!) 1~ p~ (y)(y - y;~) dy. 
yx~ 

(6.5) 

The x k chosen by this algorithm is then given by argmaxx UEI(x). 

By applying this method, the inherent bias towards environments containing high values 

for f (Fig. 6.4c) is removed. Since the calculation of S involves integrat ion of the performance 

of the controller !(xe) over all environments, the UEI measures how a sample at (x!, x~) would 

cont ribute to improvements in the policy score S that we wish to maximize, rather than the 

intermediary objective f. 

6.2.3 Experiment Selection: Expected Policy Score Improvement 

Although the UEI met hod begins to approximate improvement of the true policy score 

function S, there is one crucial limitation. T he improvement to the score calculated by 

UEI(xi) only considers improvement at one point in t he environment space, independent of 

100 



(a) (b) (c) (d) 

Figure 6.6: EPSI provides a measure of t he potential improvement to the score of the estimated optimal 
policy i'* resulting from sampling at some xi. (a) Sampled values from the dist ribution at j(xi) are shown; 
t his is a sampling of the GP posterior at this point . The policy score given j is the shaded region on the 
objective/environment plane. (b) - (d) New estimates of t he policy score are generated by updating j with 
t hese samples. The lightly shaded regions show the predicted improvement over S(i'*), the estimated optimal 
policy score. The EPSI is the weighted combination of t hese policy score improvement contributions. 

the other environments, and therefore is only an infinitesimal element of t he true expected 
A 

improvement of the policy score. However, sampling a point will add information to f about 

an entire region, not just a single point. To approximate the full expected improvement, we 

must find a way to extrapolate t he effect of sampling a single point t o an entire region. To 

measure this effect, I generate new GP surrogate funct ions for every possible objective value 

y in t he posterior predictive distribution of a point, and integrate the improvement t o t he 

policy predicted by each new surrogate (see Fig. 6.6). 

Using t his method generates a more complete estimate of the effect of sampling a point 

on t he policy score. Of course, computing a large numeric integral can also take significantly 

more t ime, and the quality of the solut ion can vary based on the resolut ion of the integral. 

More formally, let us define the Expected Policy Score Improvement (EPSI) at a test 

point xi = (x:, x~) as: 

where J,..Y is the mean of the surrogate function conditioned on the addition of a sample 

at xi wit h value y , and ,-y; is the optimal policy generated using j,..Y. The point chosen for 

101 



evaluation by this algorithm is argmaxX EPSI(x).

By maximizing Equation (6.6), we are choosing a point to evaluate which maximizes

expectation of improvement in the policy score function, rather than choosing a point which

maximizes improvement in one differential element of the policy score integral. An example

of this criterion is shown in Fig. 6.4d.

6.2.4 Method Comparison and Discussion

As the UEI uses an analytic expression to calculate expected improvement, it is relatively

quick to calculate but only considers one infinitesimal element of the policy score integral

(albeit arguably the most significant element). EPSI provides a more complete approxima-

tion, but requires a numeric double integral, for which the integrand requires conditioning

the GP.

This produces a resulting selection surface which is smoother with respect to the environ-

ment parameter as compared to UEI (Fig. 6.4). Qualitatively the locations of the maxima

chosen by each algorithm are similar. However, the EPSI approach gives a more complete

approximation of the true policy score improvement. This results in improved performance

but suffers from a computationally burdensome numeric integral which may diminish its

usefulness for some applications.

One notable difference in the computation of the EI used here and that typically used

for global optimization is that here the improvement over maxima of our surrogate func-

tion (an approximation to the objective) is calculated, whereas other approaches calculate

this improvement over the best previous objective evaluation. I calculate improvement in

this manner because a randomly selected environment has zero probability of containing a

previously evaluated point. The full implications of this difference are not explored in this

thesis.

102



(a) (b) (c)

Figure 6.7: Three analytic test functions designed for the comparison of point selection algorithms. The
exact formulae consist mainly of a collection of trigonometric functions, and are given in Appendix A.

6.3 Experimental Results

To evaluate the performance of these algorithms I first used synthetic “test functions” in

lieu of an objective from a physical system, which allowed the completion of enough tests

to enable one to draw reasonable conclusions about relative algorithm performance. The

algorithms were also tested on objectives from real physical and simulated systems; they

were used to learn policies γ̂∗ (as previously described in §6.2.1) which were then evaluated

on a course with changing environment parameters.

6.3.1 Synthetic Test Functions

I created three test functions of varying complexity to use for f , shown in Fig. 6.7, which

could be used to compare point selection algorithms. Specifically, these functions were

created such that a static control policy would not be effective over the entire space. They

also mimic qualitative properties I have noted in objectives from the physical robot, such as

periodicity and multiple local optima.

To measure the performance of each algorithm, an initial set of k points is non-deterministically

generated through a high-dispersion sampling method such as a Latin hypercube [66], and

then use the algorithm to sequentially select n−k more points, evaluating the objective after

103



each choice. The predicted f̂ is used after each objective evaluation to generate a policy,

which is scored via a numeric integral on the objective. This entire process was repeated 10

times for each algorithm, the results averaged, and standard errors calculated to provide a

rigorous comparison of methods.

Although the algorithms described herein do not have any intrinsic parameters to tune,

there are several implementation details which must be considered. Specifically, the choice of

covariance function for the GP, the sampling strategy, the sampling density, and the density

of the numeric integrals all can have an effect on overall performance. Therefore, to keep the

comparison as fair as possible, I kept these choices constant when comparing the algorithms.

In particular:

• The squared exponential covariance function was used for the Gaussian process.

• A grid of points was used as the set of all points at which to evaluate the metric. The

location of this grid was defined by independent random offsets in each parameter,

which were recalculated for the selection of each subsequent point xi.

• Varying densities of this grid, from 10 to 40 points in the environment parameter space

and 10-20 points in the control parameter space, were compared. Each algorithm was

run for 10 trials at each grid density. The inner numeric integral of the EPSI method

was a summation over the environmental component of this grid.

• The outer integral of the EPSI method was run at various resolutions, and with varying

limits: integration limits of ±3 and ±4 standard deviations were both used, each with

sampling density of 31 and 61 points. These values were selected after conducting a

small study of the effect of limits and sampling density on the accuracy of the numeric

integration of the expected improvement metric.

We reiterate here that the EPSI method had greater computational requirements given

104



El UEI EPSI 31 EPSI 61 
Algorithm 

Figure 6.8: The average run time for iterations 31-40 of three separate runs of standard EI, UEI, and 
EPSI (with numerical integral resolutions of 31 and 61), using the MATLAB code provided with this thesis 
run on a 2.8 GHz Core i7-2640M processor. For the simple implementations used, the run time of UEI is 
inconsequential compared with EPSI, and doubling the numerical integral resolution of EPSI doubles the 
computational time (as would be expected). The error bars provide a 95% confidence interval for each 
algorithm. 

the same implementation choices, however in many applications with real systems the t ime 

required by the algorithm is insignificant compared to objective evaluation times. In Fig. 6.8, 

typical computational run times are shown for comparison; these tests were run on a Core 

i 7 processor. 

A summary of the results of these methods is shown in Fig. 6.9. As expected, random 

point selection performs suboptimally, showing that it is important to carefully select ex-

periments. However, as uniform coverage is probabilistically guaranteed, random selection 

results in continual policy improvement . Standard EI also shows an unsurprising t rend, as 

it is biased towards "easy" environments: initially, performance is comparable to the other 

algorithms, as it seeks out the best area of Xe x X c. However, t he overall expected improve-

ment is low in regions of Xe that do not have high values for f, and so policy score tends 

to stagnate quickly, ignoring potential score funct ion improvements from sampling in these 

regions. 

105 



Test Fvnc:lion 1: E>cperlmem Sele<:llon Comparison 

( h .f I i ~· ~ El<pocted Polley S<:o<e lmpmvemont 
:o _, 1 Unbalsod E"')eC!!d lmprovemenl 

' Expeded lfl1)rOYement 

• "l'f Random 

" ~ EJq>eriment Number 

(a) 

Test Fur.::rlon 2: Exporimet\t Selecl.bn Comparison 

100 150 21)0 1-:$ UO lf(l 

Experiment Number ExpeM!ent Number 

(b) (c) 

Figure 6.9: Comparison of algorithms on the three analytic test functions shown in Fig. 6.7. Each algorithm 
was run 10 times, and the scores averaged. The dotted black line represents the best possible policy for 
that function. EPSI performed best, followed by UEI. Expected improvement selected initial experiments 
intelligently, but its inherent bias lead to poor overall performance. Random point selection suffered from no 
such bias, and resulted in steady policy score improvement with increasing experiments. Each line represents 
the mean of 20 trials, and the shaded regions indicate ±1 standard error. 

The UEI performs much better, eliminating this bias of st andard EI. This suggests that 

it is a. reasonable, simple choice to use for tackling such point selection problems. Finally, 

the EPSI algorithm improves upon UEI, but only slightly. In all of the results, it was 

always shown to be at least as good, but often the margin of improvement was very slight. 

This indicates that although EPSI potentially gives a better approximation to the expected 

improvement of the policy score, UEI provides a. much simpler and quicker method which 

produces similarly high quality results. The final choice between these methods involves 

several factors, and is largely application dependent. 

While not strictly algorithm parameters, implementation decisions can have significant 

effects on performance. Fig. 6.10a. illustrates that a. more dense sampling of candidate points 

improves the average generated policy's performance, relative to the start of the test, by 

as much as 50% (near experiment 75) for the UEI algorithm. During computation of the 

numeric integrals of the EPSI algorithm, this grid size was the resolution of the integral over 

the environment space (see Equation (6.6)), and was also shown to have a. notable effect (see 

Fig. 6.10b). The resolution of the integral over the predictive distribution for EPSI can be 

106 



Test Function 2: Effect of Grid Size ol UEI Performance Test Function 3: Effect of Grid Size on EPSI Performance 
·~----~--~~--~----~--~----· 

"' 

- 40X20 
- 10X10 

"' aoo 110 zr.o 100 100 200 

Experiment Number E.xpenment Number 

(a) (b) 
Test Function 2: Effect of Integral Density on EPSI Performance Test Function 3: Effect of Integral Density on EPSI Performance 

100 100,---~--~~--~--~~--~----. 

... 
~ 
8 , .. 
(/) 

~80 
0.. 

~ .. 
::!! 

100 IGO .200 
Experiment Number 

(c) 

.................................. 

- 61 p()jnts - 61 points 
- 31 p()jnts - 31 points 

100 1«1 200 

E.xpenment Number 

(d) 

F igure 6.10: A comparison of the effect of grid resolution (top row) and numeric integral density (bottom 
row) on algorithm performance. In general, higher density candidate point grids and numeric integrals 
resulted in improvements in the quality of results. All EPSI results shown use ±3 standard deviations of 
p(y) as the limits to the numeric integral. Each line represents the mean of 20 t rials, and the shaded regions 
indicate ± 1 standard error. 

a limiting factor as well, as seen in Fig. 6.10c and 6.10d. T he dependence of EPSI on high 

density numeric integrals is one of the most significant limitations of this algorithm. 

6 .3 .2 Simulation And Physical System Results 

As such a complete analysis could not be run on physical systems due to the expensive nature 

of objective evaluations and the inability to compute a true policy score, I instead set up a 

range of environmental conditions in a "test course," and then used the above algorithms 

107 



to generate policies which were scored on this test course. These policies map environment

parameters (slope and crevice width) into a 2-D gait parameter control space (see [100]).

The EPSI algorithm was compared to random point selection.

Two test courses were defined, one for a simulation of a snake robot and one for the

physical mechanism in Choset’s lab [107]. The tests involved crawling through a crevice and

crawling up slopes of varying steepness. The effects of transitions between environments

were not considered when generating the control policies; therefore during evaluation on the

test course the terrain and parameter changes were instantaneous (when using the physical

snake this was accomplished by pausing the test in order to change these parameters).

Finally, the additional difficulty of noisy function evaluations is encountered when work-

ing both with the robot and with simulations. Although there is no explicit mention of noise

in the algorithms, an appropriate choice of GP covariance function attempts to characterize

this by fitting a noise parameter as well (c.f. §4.2.3). This allows the algorithms to remain

effective even in the presence of stochastic objective evaluations.

Results of evaluation of the policies generated during testing are shown in Fig. 6.11.

Overall, EPSI caused superior policies to be generated, as compared to uniform random point

selection (this comparison is not as unfair as it might seem; in the analytic tests random

performed second only to the proposed algorithms, because standard approaches are not

appropriate for this problem). The difference can be noted even after only 10 samples of

the space (the first 5 of which are the randomly generated initial sampling). These results

also show that using surrogate functions still carries risk, as a bad surrogate function fit can

result in a bad policy, such as that seen after 20 experiments from the simulated snake. This

result suggests the use of the low-risk policy generation method described in §6.2.1 when few

sampled points are available, and a less conservative method when more data is available.

108



(a) 

(c) 

Experimental (Simulator) Comparison of Point Selection Methods 

1 ~~~ 
,.---~ ,.. ... , ... 

~ ~,, .. / ··· .... ·· .. 
~ M , \. ... ·· I •• 
! ,; .... , . . I • •• 
i3 : \. I • • . ••.•. 
o • • 'I .: ' ~ . . . . . . 

1

- • Expected Poi cy Score lmprovemen 
••• Random 

~.~. ----~--~~~===~~==~~====~==~ 
Experiment Number 

(b) 
Experimental (Robot) Comparison of Point Selection Methods 

~------"' 

~ ~~~~~~~ 
UJ 29.5 ., 

~ ~···· .... ~ .... ,..,... . .. . . . ... .. 
8 29 ~........ .· ······ ... 
u; •• .. . 
t- •• •••••• 

a •• • 1-• Expected Policy Score Improvement I··· Random n~.~. --------~ .• ~=========~========~ 
Experiment Number 

(d) 

Figure 6.11 : Performance of policies generated from points selected randomly versus using the EPSI method. 
In the top row, a simulated snake robot crawls through a crevice of varying width using a helical rolling 
motion. The system performance is a measure of locomotive energy efficiency; high amplitude controllers 
do well in wide cracks but waste energy in small cracks. T he bottom row shows a physical robot climbing 
up an incline; higher amplitudes work well for flat ground, but smaller amplitudes allow the robot to climb 
steeper inclines without slipping backwards. In both cases, 5 initial experiments were selected randomly 
before use of the point selection method. Candidate points were chosen from a grid 40 environment points 
by 20 control points. Only one trial was conducted for each setup. 

109 



6.3.3 Application for Real-Time Control

In the above experimental results, the parameters of the test environment are explicitly

given, so the system does not need to estimate the environment parameters. Also, transi-

tions between environments with different parameters are ignored; the experiments consist

of several independent tests on environments with different parameters. In the following

experiments2, I have also considered estimation and transitions by running the robot over

a continuous test course consisting of segments with different environment parameters; no

knowledge of these parameters is given to the system and so it must determine the parame-

ters and then react appropriately through a learned policy. The policy learning is completed

using the UEI approach described above.

For the experiments in this section, the test course consists of four panels of plywood

measuring 4’ by 4’, hinged together in series (see Fig. 6.12). The joined ends are raised

to different heights to produce four different slopes; the angle between adjacent panels is

limited to ±30 degrees. The robot is placed at one end, with the goal of moving over the

four panels to the other end in the shortest amount of time.

Learning the Adaptive Policy

The training setup used to evaluate choices of xe and xc can be seen in Figure 6.13. The

parameter ranges included a slope from −25 to +25 degrees for xe, and a sidewinding hor-

izontal amplitude of 0 to 0.9 for xc. The sidewinding gait was used as described in [100].

The ratio of horizontal to vertical amplitude was restricted to 8/3, and the spatial period

was fixed at one and a half wavelengths over the length of the robot (16 modules).

For this task, I define f(xe, xc) as the dot product between the desired direction of travel

for slope xe (either up or down in the direction of the gradient) and the vector from the start

2These experiments were joint work with Chaohui Gong, and the slope estimation procedure described
below was developed by Chaohui; it is included here to provide a full description of the test setup.

110



Start Goal 
~ / 

Figure 6.12: Diagram of test course. The robot was placed at the start location to begin, with the task 
of reaching the goal location in the minimum amount of time. The slope of each segment can be set 
independently, and is estimated in real time as the robot moves along the segment. 

Figure 6.13: The training setup consisted of a 4 foot by 4 foot plywood sheet. The robot began at a small 
circle at point A for uphill trials, and one at point B for downhill slopes. The height of the test setup was 
changed when requested by the optimizat ion algorithm by adjusting one quick clamp on each side of the 
plywood sheet, and clamping on to small blocks of wood attached to the underside of the sheet. T he distance 
travelled was measured by comparison of the snake's position at the end of ten seconds to ruled markings 
drawn on the wood. 

111 



point of the robot’s center of mass to the end point after 10 seconds of gait execution with

parameters xc. Note that negative values are reported if a robot travelled a negative distance

(such as rolling back down the slope after tipping over while travelling upwards). When the

robot exceeded the allowable range (such as fast rolling motions downhill), the robot was

timed and a constant velocity assumption was used to extrapolate downhill distance. When

collecting data, I chose to reduce the inherent noise by running each sample 5-8 times (outliers

were removed, and extra samples were not taken when data was extremely consistent from

the first samples).

To learn the policy, a total of 25 slope/control parameter combinations were tested; after

an initial 10 random samples, the UEI experiment selection method selected the next 15. As

an illustration of the optimization process, Figure 6.14 shows the predicted reward function

and resulting experiment selection metric during a sub-sequence of the samples that were

taken. The entire distribution of the sample locations is shown in Figure 6.15a. Note that

random selection would not define the boundaries of the policy as well, and that simple

optimization of the reward over all slopes would focus towards the overall peak, resulting in

a policy performing well only for slopes near that peak. The adaptive optimization approach

seeks and finds a policy which performs well on all slopes.

Finally, the resulting optimized policy is shown in 6.15b. Note that it can be discon-

tinuous, as its value (the control for a given slope) at each slope is determined by running

any standard optimization method over the (cheap to evaluate) “slice” of the GP’s predicted

surface for that slope; this is independently done for each slope, and therefore allows for

jumps in the optimal control between one slope and another. In my implementation, I ran

a set of such optimizations over a dense sampling of the slopes using the GP (this only took

around 3 seconds on an Intel Core i7 processor), and stored these values in a simple lookup

table so they could be retrieved later during testing.

112



300 

o'-- ..-- - - -o.s ---o.s 
02--------- 02 0.4 

0.4 0 ' 
Slope (rad} Amplitude 

(a) Objective estimate after 
18 tests 

20 

(d) UEI selection metric after 
18 tests 

300 

() 
~ 200 

~ 
§. 100 

~ 
~ 
(/) 

·100 

·0.4 .o.2'- ~. -- ---
0 ........_ -----~ 0.6 0.8 02--------- 02 0.4 

0.4 0 ' 
Slope (rad} Amplitude 

(b) Objective estimate after 
21 tests 

Slope (rad} Amplitude 

(e) UEI selection metric after 
21 tests 

600 

--·- 0 6--0.8 
0.2 n.• o ---0.2 0.4 

Slope (rad} Amplitude 

(c) 0 b jective estimate after 
24 tests 

Slope (rad} Amplitude 

(f) UEI selection metric after 
24 tests 

Figure 6.14: The top row shows the changes in the estimated objective j as the number of samples increases. 
The height of the surface indicates the predicted value, whereas the color indicates the uncertainty. T he left 
corner (negative slope, low amplitude) has not been sampled and has a high uncertainty after 18 and 21 
experiments; after 24, however, the function has been sampled at this location causing a significant change 
in the surface prediction. The bottom row shows the value of the selection metric, the unbiased expected 
improvement. As opposed to a simple optimization of the space, samples are still collected for slope angles 
which have no high predicted speed; this allows the algorithm to learn a policy that performs well for all 
values of the environment parameter rather than only the "easy" environments. 

113 



9 
350 

CD CD 300 "0 8 "0 

-~ -~ a. a. 250 
E 

7 
E 

<( <( 200 
C) C) 
c: c: 150 :0 :0 c: 6 c: 
-~ -~ 100 
"0 "0 50 i:i5 5 i:i5 

0 
4 

(a) (b) 

Figure 6.15: GP posterior pointwise variance and mean after sampling budget has been exhausted. (a) 
Uncertainty in the final objective function estimate. The black dots in the figure are the 25 sampled points. 
The uncertainty is highest furthest from the sampled points. (b) The mean predicted objective. The optimal 
policy is shown by the large black dots; at steep downhill slopes, the optimization determines that a zero­
amplitude sidewinding gait is most effective (this gait rolls down the hill very quickly). At a critical slope, 
the optimal control switches to a high amplitude sidewinding gait. At very steep slopes the optimal control 
parameter decreases slightly; perhaps this decreased amplitude increases the stability or repeatability of the 
motion. 

R eal-t ime Slop e Estimat ion 

In order to react to changing environmental parameters, the robot must be able to sense 

those parameters. For this task, the accurate est imat ion of the slope angle is critical. This 

is accomplished by first estimating the pitch angle of the virtual chassis relative to a spatial 

reference frame, and then inferring the slope angle from this estimated pitch. 

The virtual chassis [86] is a shape-stable body frame for mechanisms with many degrees 

of freedom. Rat her than rigidly attach a body frame onto one of the links of the robot, this 

body frame captures a more intuitive notion of the robot's posit ion. The origin of the virtual 

chassis is located at the center of mass of the robot, and the orientation is aligned with t he 

principal moments of inertia. This is of particular use for estimat ion of the slope, because 

one can make assumptions that t he largest two principal components of the virtual chassis 

form a plane parallel to the ground (following the intuit ion that this is the uflat" part of the 

robot). 

114 



Using the state estimation approach from [85], I obtain a filtered, averaged inertial mea-

surement signal from the gyroscopes, accelerometers, and joint angle encoders throughout

the robot. This produces a robust orientation estimate for the virtual chassis,

R =

[
~rx, ~ry, ~rz

]
=


rx1 ry1 rz1

rx2 ry2 rz2

rx3 ry3 rz3

 , (6.7)

where ~rx, ~ry and ~rz denote the ~x, ~y and ~z axes of the virtual chassis relative to a world frame.

To retrieve the pitch of the snake robot from the estimated orientation of the virtual

chassis R, we find the rotation about the ~z axis (longitudinal) that would result in a coor-

dinate frame where the ~x axis (forward direction of sidewinding motion) is in the horizontal

plane. This resulting coordinate frame can be given as

RRz(−θVC) =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 =


rx1 ry1 rz1

rx2 ry2 rz2

rx3 ry3 rz3




cos(θVC) sin(−θVC) 0

sin(θVC) cos(θVC) 0

0 0 1

 , (6.8)

where θVC is the desired pitch angle of the virtual chassis.

The condition we are interested in is finding the θVC which results in the x axis placed

in the horizontal x− y plane; in this case, the z component of the resulting x-axis must be

0, or c31 = 0. Therefore, we can write

rx3 cos(θVC)− ry3 sin(θVC) = 0, (6.9)

which gives the pitch angle of the virtual chassis as θVC = atan2(|rx3|, ry3)

As the snake robot is moving, the x− z plane of the virtual chassis is not guaranteed to

115



0.7 

0.6 

0.1 

1-• • Best linear Fit I 
, , 

0.1 0.2 0.3 0.4 
slope angle a.L (radians) 

# 

, , , 

0.5 

Figure 6.16: The bars in the figure denote the variance of estimated virtual chassis pitch Ovc with different 
gait parameters and on different slopes. A linear relation between the slope angle OsL and virtual chassis 
pitch Ovc is revealed. 

be parallel to t he slope. To correct for this effect, a relation between t he estimated virtual 

chassis pitch Bvc and the angle of t he slope OsL is empirically determined: 

1 ( -2) OsL = - Ovc - 7.85 x 10 . 
1.20 

(6.10) 

This empirical relation is based on the measurements from experiments in which a snake 

robot executes sidewinding with different gait parameters on different slopes. Fig. 6.16 

shows a summary of the experimental data along with the best fit relationship between Bvc 

and OsL· 

To further improve real-t ime estimation, the estimated slope angle is then fed into a. 

simple low-pass filter to smooth out noisy measurements, 

- - ~t -
OsL[k] = 8sL[k - 1] + T (OsL[k] - 8sd k - 1]), (6.11) 

where ~t, T , OsL[k], OsL[k] are respectively the t ime interval, gait period, estimated slope 

angle, and smoothed slope angle at t ime step k. 

116 



(a) 3 sec (b) 17 sec (c) 27 sec (d) 38 sec

(e) 40 sec (f) 42 sec (g) 43 sec

Figure 6.17: For this setup of our test course, the optimal control policy chose a sidewinding parameterization
with a wide base for the uphill segments, and quickly transitioned to a zero-amplitude roll for the downhill
segments. Note the time each frame was taken, and the difference in speed when moving uphill versus
downhill.

Experimental Results

To test the performance of the adaptive policy, I constructed two test environments. The

first test environment serves as a simple demonstration of the adaptive controller. The slopes

of the four boards relative to the ground are 12.0◦, 24.6◦, −18.8◦, and −17.6◦. As the snake

robot climbs up, a large amplitude is selected according to the optimal policy; when the

robot is on a negative slope, zero amplitude is chosen to make the snake robot quickly roll

down the hill (as shown in Fig. 6.17). The time consumed for each section of the course is

given in Fig. 6.18a.

The second test environment was defined by the slope angles 18.2◦, −18.2◦, 19.5◦, and

−19.5◦, and formed an M-shaped terrain. In this test environment, I compared the results

of using the adaptive policy to two fixed-parameter strategies: (a) a conservative choice of

A = 1 as an amplitude which provides good performance on ascending slopes, and (b) a

small amplitude A = .45 which is most effective on descending slopes. The comparison of

these strategies is shown in Fig. 6.18b. During execution, sidewinding with a low amplitude

caused the robot to tumble down 3 times before climbing up the first ascending slope, and

117



192 -------· --·--·-------·--·--·-----

Ql 

~ 144 -------·--·--·-------·--·--·----
10 
t;; lh= -18.84' 

iS~ 
1::' §. 96 -----------------------------

~ 

~ 
10 

F= 

10 20 30 40 

time {s) 

(a) 

192 -·-·-·-·-·-·-·-·-·-· ••••••• , ••••••••••••• ---------·-·- --· 
- Aggress<ve (A = 1) 

Ql ·- ···COnservative (A = 0.45) / 
U ---Trained • P· =--1.9.47 ' 
c: 144 -···-··-···-··--··-·····.·-· ···············-·-·- ··-·-·-·-··· 
19 / .... 
VI , • 

iS ~ . .'. ~. = 19.47" 
"0 ·= 96 ------------~------ · ·· ·· • • • ••••••••• ···- - - ---- -------- - -· 

~~ :' 
Qi 
> ro 
F 

/ ~=-182'1 
46 ----~---~:;-' ------ -- ~ :: •••••••• ···_·_·; _,-- ---------------- : :-.::-.. -

- ..... 
,. f ..... .. \ ' 

0 o ' • ' • ~- 20 ·3~ - 40 

time (s) 

(b) 

50 60 

th =- IS.2r 

70 

Figure 6.18: (a) Performance of adaptive sidewinding on a simple test course. The slope of each line denotes 
the travelling speed, and different colors represent panels at different slopes. (b) A comparison among three 
strategies (shown in different line types) . Sidewinding with a small amplitude failed to finish the task, and 
t he conservative approach of sidewinding with a large amplitude leads to slow completion. The adaptive 
strategy outperforms both static policies. 

the robot was unable to complete the course. Sidewinding with a large amplitude succeeded 

in traversing the entire test course, but the t ime to complet ion (71 seconds) was longer t han 

that of t he adaptive policy (36 seconds). 

6.4 Conclusion 

This chapter has formulated an opt imization problem that applies to expensive systems 

operating in varying environment al conditions. Through careful selection of t raining ex-

periments, I have demonstrated the learning of effect ive control policies with only a small 

number of objective evaluations. 

This framework is applicable to a rich set of problems. Locomoting systems, industrial 

processes, and prescription drugs all operate in changing environmental conditions, are ex-

pensive to test, and could benefit from optimal adaptive control policies. I have described 

two potential approaches for this experiment selection, both inspired by the statistical notion 

of EI. One approach provides a fast , efficient computat ion t hat performs reasonably well, 

while the other is more complex and comput ationally intensive, but produces better results 

118 



overall. I have also proposed a simple method for policy generation, given the experiments

chosen by such an algorithm. I have demonstrated the efficacy of these algorithms, and pre-

sented a summary of results on analytic test functions as well as on a physical snake robot

system.

In addition to producing superior control policies as compared to näıve approaches, these

methods have the advantage of requiring no algorithm parameters to tune for particular ap-

plications. However, there are still several implementation details that must be considered,

including reasonable covariance functions for fitting GPs to the objective and numeric inte-

gral resolution.

Improving the algorithms so that these implementation details are less important choices

is one direction for future work; by improving the efficiency of the computation in the nu-

meric integral, the limiting factor for high-resolution integrals is removed. This could be

approached by applying methods to quickly update a GP distribution given one additional

sample, or deriving analytic approximations that could be used in place of numeric expres-

sions.

Other plans for extending this work include demonstrating the efficacy of the algorithms

on higher-dimensional problems, more extensive use for improving adaptability of real world

systems, and comparing the proposed methods against a wider range of possible approaches

to this problem.

119



Chapter 7

Generating Parameterized Non-gait

Motion from Demonstrated Input

The previous chapters have explored efficient optimization techniques for expensive parame-

terized functions in a number of settings. The snake robot demonstrations in these chapters

have been limited to optimization of existing snake robot gaits (c.f. §2.3). Although these

cyclic motions are useful for steady-state terrain such as flat ground, static slopes, or uni-

formly distributed small obstacles, they are not as appropriate for overcoming unstructured

terrain on a scale comparable with the robot. Moving over large rocks, onto a ledge, over

beams, or past a junction in a pipe all require special purpose scripted, non-cyclic motions.

This chapter focuses on the discovery and encoding of these special purpose motions.

For complex non-planar tasks, generating such motions by prescribing individual joint

trajectories can be unintuitive. Although the robot is controlled at the joint level, it is

more natural to consider motions at a higher level. Inspired by the idea of master-slave,

or kinesthetic, control for a number of complex systems (e.g., large, treaded articulated

robots [5] and remote welding equipment [99]), a similar control method was implemented

on the snake robots (Fig. 7.1). This approach to overcoming obstacles with a snake robot

120



(a) (b)

Figure 7.1: (a) In the kinesthetic control approach, a user moves a compliant input snake (often termed
the “master” or a “dolly”), and the controlled “slave” robot mirrors the commanded shape. This can be an
effective way to locomote the snake in challenging situations. (b) This demonstration process was used for
large scale data collection at Chicago’s Museum of Science and Industry; over the course of three days at
the museum, nearly 10% of the 276 attempts that were made by visitors succeeded.

allows the easy, straightforward recording of open loop, acyclic commanded angle trajectories

(non-gait motions) which move the robot over these obstacles and can later be replayed when

these obstacles are encountered in the field. Trajectory discovery through demonstration is

discussed in §7.1.

The representation of the recorded trajectory is important. Simply recording the joint

angles at the full feedback rate may allow for easy playback, but does not allow for mean-

ingful modification or improvement. As the optimization techniques I develop in this thesis

are designed for parameterized functions, I seek a method to encode recorded trajectories

in a relatively low-dimensional parameterization, where the parameters encode the useful

variations in these trajectories. This parameterization also enables easier storage and imple-

mentation and more intuitive understanding (and therefore tuning) of the trajectories. The

encoding process is discussed in §7.2, while the optimization of these trajectories to more

robustly overcome obstacles (or complete other tasks) is described in Chapter 8.

121



7.1 Kinesthetic Input for Recording Demonstrated In-

put

The kinesthetic input approach to data collection allows for dynamic collection of data

through direct input and playback. This is enabled by the controllable motor current limits

on our snake robots. When these limits are turned to zero, the snake is easily backdrive-

able. Because the modules are still powered on, the magnetic encoder continues to provide

feedback.

This mode of input can be simultaneous - using one snake as a master, sending com-

manded angles to a slave snake - or pre-recorded - using one snake as both master and slave

by recording a motion, resetting the snake to the original position of input, and playing back

the most recent recording. An example of the simultaneous approach is shown in Figure 7.1a,

where an operator is steering the robot over an obstacle by moving a different robot through

the desired shapes.

Although in many examples of kinesthetic “teach-in” (such as motions of a robot arm)

the same robot is used to first record and then replay the data, locomotion poses particular

challenges due to the presence of position and orientation variables that are not directly

actuated. When moving a robot arm, the complete state is recorded; when moving a loco-

moting system, the internal shape changes are recorded but the position of the system in

the world is not. When two robots are used in a simultaneous playback mode, the operator

is better able to intuitively understand the effect of their actions, and easily correct minor

errors. This results in higher quality solutions than a two-step record and replay process.

In the following sections, I describe the process of collecting data from experts (§7.1.1)

and novices (§7.1.2), summarize the collected data, and discuss the benefits and drawbacks

of each approach.

122



(a) 4x4 Beam (3.5x3.5 inches) (b) Ledge (15 cm tall)

Figure 7.2: The two challenges used for collecting expert input. Both represent obstacles that were encoun-
tered during tests at TEEX Disaster City R©, and which we were unable to overcome with existing gait-based
control methods. Also shown in these images are the starting positions used for the trials. The goals were to
(a) move the robot completely over the 4x4 and (b) to move the robot so it is supported only by the ledge,
without touching the ground.

7.1.1 Expert Input

Two obstacles were chosen based on ones encountered in previous field experiences that

we were unable to overcome: a 4x4 solid wood beam (Fig. 7.2a) and a 6 inch tall ledge

(Fig. 7.2b). To generate a corpus of data, five different approaches for climbing each of these

two obstacles were created1. Using the kinesthetic input approach, we saved a reference

trajectory of the joint angles for each approach on each obstacle. The robot then attempted

25 trials on each obstacle, replaying each recorded reference trajectory five times to generate

unique outputs. A typical example of the consistency of replaying the reference trajectory

is shown in Figure 7.3.

At each obstacle the robot started in a common position, illustrated in Figure 7.2. A

trial was considered a success if the robot moved completely over the beam or into a position

where it was only supported by the ledge. Although these replays were run at real time for

1The generation, recording, and testing of these reference trajectories was done by Alex O’Neill.

123



0.2,---,----,----,-----,-----,------.-----.----,----, 

-0.2 

- 0.4 

~ 
(I) -0.6 

"§> 
<( 

- 0.8 

- I 

- Original Input 

- 1.2 - - - Feedback from Replay 

20 30 40 50 60 70 80 90 

Time (s) 

(a) Module 7, "Head to Tail" approach to a 4x4 

Figure 7.3: The reference trajectory for a single module in one trial is shown as the solid black line; the 
dotted red lines show the joint angle feedback capt ured when playing back this reference trajectory on a robot 
attempting to move over an obstacle. This illustrates typical deviation from commanded angle trajectories. 

the purpose of this data collection, they can be replayed faster ; a speedup factor of lOx was 

attempted a number of times and presented no issues. 

Data from these trials were recorded, including of the type of obstacle, t he met hod used 

to overcome the obstacle, the trial number, the success of the trial and any notes concerning 

the t rial. A summary of this data is shown in Table 7.1. 

The basic approaches taken were the following: 

• Flop: Lift the snake's head up high, and then ''flop'' it down onto the obstacle. 

• R oll: Roll the snake onto t he obstacle. 

• H ead to Tail: Progress a kink t hrough the snake from the head to the tail to get over 

the obstacle. 

• Tail t o H ead: Progress a kink t hrough the snake from the tail to the head to get over 

the obstacle. 

124 



Table 7.1: Results of Replaying Recorded Trajectories

Obstacle Approach Successes/Trials

4x4

Flop 4/5
Roll 4/4

Head to Tail Progression 5/5
Tail to Head Progression 5/5

Pinch 5/5

15 cm Ledge

Flop 5/5
Roll 4/5

Head to Tail Progression 4/5
Tail to Head Progression 5/5

Pinch 5/5

• Pinch: Lift up the middle first then the sides.

This repeatability of these experiments suggests that recording expert trajectories as

input leads to useful recorded data. However, there is still room for improvement, as the

success rate was not 100%, and small variations still led to failures. In §7.2 I discuss the

parameterization and optimization of these trajectories to further improve robustness.

7.1.2 Novice Input

The demonstrated expert trajectories were effective, but I hypothesize that spending enough

time to generate a diverse set of solutions for the vast set starting configurations, obstacles,

and other parameters is infeasible for a small group of researchers. I believe that data from a

few selected, experienced individuals is unlikely to cover the landscape of potential strategies

for overcoming such obstacles; to ensure that the motions can be effectively generalized across

varied tasks, a broader source of ideas should be surveyed.

To obtain data from a much larger set of users, our lab began a collaboration with the

Museum of Science and Industry in Chicago, Illinois; the museum generously allowed us to

125



set up a temporary station in its main rotunda for three days (August 24th-26th, 2012)2.

This provided a constant line of volunteers with fresh ideas and approaches, from children

with few preconceived notions of how the system should work to adults eager to try and

solve the puzzle we presented.

Task Setup

The goal of the exhibit was to collect data that could be used to manipulate a snake robot

over an obstacle. To simplify the task, we selected a single obstacle, the 4 × 4 dimensional

lumber that was used as one of the challenges for the expert in §7.1.1. For the exhibit (see

Figure 7.1b), we placed two of these beams end-to-end, with sandbags to hold them down

and visually separate them. At the start of each trial we placed a snake robot in front of

each of these obstacles, ensuring a consistent default starting configuration.

Each visitor was given the goal of moving the robot on the right completely over the

obstacle, with the instruction only to touch or move the robot on the left. They were also

told that the robot on the right would try to duplicate the motions of the robot that they

were moving, although there were physical limits – the robot would not be able to levitate, for

example, and the snake’s modules had limited torque and speed. For some visitors (especially

younger children), we gave brief demonstrations to illustrate these concepts. Each visitor

was then given two minutes to attempt this challenge.

Interestingly, not even experienced snake robot researchers could necessarily complete

this task easily. Some members of our lab had consistent success, whereas others could not

complete this challenge within the allotted time.

2Dave Rollinson and Florian Enner assisted with the exhibit and data collection process.

126



Data Collection

Sensor data was recorded from each module in both snakes at approximately 20 Hz that

included the joint angle, 3-axis accelerometers, 3-axis gyros3, motor current, and internal

temperature (at 1 Hz). In addition to the robots’ internal sensors, we also recorded other

data about each two-minute trial (i.e., a single visitor’s attempt at the challenge), including

• Whether the attempt resulting in a success (the robot entirely moving over the obstacle,

so no part remained in the space above it) or a failure

• The total time spent (two full minutes (usually) for failures, and the time of completion

for successes)

• Video footage from two HD cameras

• Additional information about the user that enabled us to more easily match photo-

graphic or videographic data with sensor logs

• Any other notable observations

This information was included as annotations to the log files, allowing it to be easily

parsed and displayed with the sensor data. The video files were logged separately, and used

during post processing for qualitative assessments, debugging, and clarifying issues with the

logged data.

Over three days, 276 attempts at the obstacle were recorded, from users spanning various

demographic categories (Fig. 7.4). Overall, the aggregate success rate was 9.4%, or 26/276.

In Table 7.2, we provide success rate broken down by rough age group and gender.

3some older modules only have 2 axis-gyros

127



Table 7.2: Aggregate Success Percentage by Gender and Approximate Age

Friday Saturday Sunday Total

Male 9.5% (7/74) 10 (6/59.5)† 6.5 (3/46) 9.4%
Female 8.7% (4/46) 10 (4/39.5)† 9.5 (2/21) 9.4%

3-15 years 8.6% (6/70) 8.0 (4/50) 5.3 (2.5/47.5)† 7.4%
16-25 years 15% (5/34) 16 (4/25) 17 (2/12) 15%
26+ years 0.0% (0/16) 14 (2/14) 6.7 (0.5/7.5)† 6.7%

Overall 9.2% (11/120) 11 (10/89) 7.4 (5/67) 9.4%

† Some trials involved a team spanning gender or age groups, and were thus counted pro-
portionally for each group.

(a) (b) (c) (d)

Figure 7.4: A sampling of the people who interacted with our exhibit. The participants ranged from young
children to teenagers to adults.

128



Observed Challenges and Proposed Improvements

As expected, the collected data from the novice museum visitors was much broader than the

demonstrated expert input, even within the approaches taken in the 26 recorded successes.

When attempting to draw conclusions from the data, however, several challenges arose.

1. Although trials were scored with only success or failure, this does not accurately rep-

resent the quality of many of the attempts. For example, the first 30 seconds of a

trial may have made significant progress over the beam, and then an accidental move

reverses that progress within a few seconds. If the collected corpus of data is to be

later used as the basis for learning a robust motion, it is important to indicate the

value of segments representing partial trials; however, the method to segment and rate

this data is not clear.

2. Many attempts effectively resulted in multiple shorter trials from differing starting

configurations. If after 30 seconds of moderate progress, a mistake returns the robot

to the starting side of the beam in perhaps a slightly changed orientation and shape,

this amounts to the beginning of a new trial. Similar to the idea of ranking partial

segments above, each of these segments should be attributed a success or failure in

addition to recording the starting configuration.

3. The ground truth was limited. Although sensor data was recorded from the robots,

no motion capture data was collected, and therefore the location of the robot was

unknown (except to the extent that ‘success’ was marked on a trial the instant it fully

passed over an obstacle).

4. The signal to noise ratio was high. Learning from novices, this is to be expected;

however, even within most of the successful trials, there were significant exploratory

motions that did not contribute to the progress of the robot.

129



5. One particular cause of poor quality trials is hypothesized to be “de-registration,” or

misalignment in relative orientation between the master and slave systems or position

relative to the obstacle (c.f. the photos in Fig. 7.4). As the master is moved, the

slave repeats the actions in the controlled degrees of freedom (internal shape), but

the unactuated portions of the state (position and orientation in the world) cannot

be replicated. Many operators appeared confused by this, the resulting de-registration

decreasing the quality of input they gave, while other users immediately attempted to

re-register before continuing.

In response to these data quality issues, I make several suggestions for collecting more

useful data. First, motion capture data should be recorded for each trial, resulting in world

position and orientation (relative to the obstacle) for both the master and slave system. This

would address items 1, 2, and 3 above, providing information that could be used to segment

trials, determine new initial conditions, and allow interesting conclusions to be drawn from

an interaction perspective.

Second, the addition of a test station at the exhibit where visitors could use the robot

for a short period to build intuition (perhaps requiring the user to pass a simple test) before

attempting the timed challenge. This could be limited to control of a computer simulation

to reduce system cost and complexity, but would address item 4 above by turning the novice

users into trained novices.

Finally, to address item 5, avenues for active reorientation could be explored. If the

master snake was aware of the slave snake’s orientation, major problems (such as inversions)

could be eliminated by reversing the commanded angles. Notably, the data from Sunday

was taken when no copy of the obstacle was given on the master snake side; this allowed

us to test whether removing this source of potential deregistration confusion would increase

performance. Although there were too few trials too support any definite conclusions, the

removal of the obstacle actually appeared to decrease average performance.

130



Overall, this massive collection of data highlighted many challenges while providing a

corpus of data that could be used for preliminary analysis. The initial hypothesis that novices

would generate a broader array of recorded trajectories was validated, but the usefulness of

this breadth has not yet been proven. In §7.3 and §7.4, I will discuss attempts and ideas for

obtaining useful low-dimensional, generalizable, parameterized trajectories from this data.

7.2 Identifying Keyframes For Single Recorded Expert

Trajectory

The data collection methods in §7.1.1 enable repeatable locomotion of the snake over selected

obstacles. However, in real applications such as search and rescue scenarios, variations

exist in the terrain and obstacles, leading to the need to extend and improve the recorded

trajectories. I also seek to increase their robustness (percentage of successful trials) in the

presence of noise and small variations, and to generalize these joint angle trajectories so that

they can adapt to a wider range of obstacles – ledges at different heights, for example.

This thesis focuses on optimization of parameterized functions of robot performance,

but one difficulty when improving these demonstrated trajectories is the large number of

variables required to represent the controller. The recorded input from the slave snake in

these trials is simply a list of joint angles, received at around 20Hz over a period of 60 to

180 seconds. This leads to a matrix of size k x n, where k is the number of joints (16 for the

tests conducted here), and n is the number of timesteps (usually 2000 to 3000).

The goal in this section is to find a low-dimensional representation of the data. This

process need not perfectly reconstruct the input, but should capture the intent of the original

so that the simplified trajectory can still be used, without loss of effectiveness, to move the

robot over an obstacle. Ideally, this processing would also remove unnecessary noise and

jitter introduced while recording the input, potentially even improving the effectiveness of

131



the paths. Below, I formulate the process of finding a low-dimensional representation as a

optimization problem, specifically obtaining a series of keyframes.

The choice of this keyframe-based approach was motivated by a number of factors. First,

keyframes are easy and intuitive to vary. Second, they can often be further simplified from a

vector of joint angles to the linear combination of a small number of shape modes. Finally,

identified useful keyframes are easy to later sequence together when attempting to build more

complex motions. Combining stored trajectories instead would require matching initial and

final conditions, resulting in limited sequencing options.

Although dynamic motion primitives [90] have been used for recording and generaliz-

ing demonstration trajectories, they usually require more parameters than the keyframe

approach does. Furthermore, the stated advantages for generalization are most appropri-

ate when the robot-to-workspace transform is known (such as a fixed base manipulator); a

challenge with snake robots is that they have no such known transform.

7.2.1 Method

I develop the following method to produce such a parameterized reduction of the joint angle

trajectories generated in the previous section. First, I define the form of the reduction as

ordered endpoints for a piecewise linear function, one set for each joint on the robot. When

obtaining this reduction, the number of endpoints needed should be minimized, while main-

taining some notion of representational error below a given threshold (ensuring a reasonable

level of representational fidelity to the original data).

To find the parameters of the reduction for a given joint, I initially sample points that

densely interpolate that joint’s trajectory and use these as the endpoints for the piecewise

linear function. Points are removed incrementally, selecting at each step to remove the point

resulting in the smallest increase in error. This is repeated until a specified error threshold

has been reached.

132



1.5 0.5 ~ o.s~ 1.5 0.5-

g 
'0 ~ ~ 

~ ., "' a ~ 1 @ .!:;., 0 .!:;., c: .!:;., c: 
~ .a 0.5 ~ 

., 
j1 !!! ., g> ~ C) .!! c: <;; < c: 0. ., 

< a: a: < a: 
u 0.25 E u 0 02.5 E u o.2s E ., 

~ 
., 

u e 12 u 12 c: u.. "' '-'- c: u.. E -0.5 "' > E ~ E ~ E 
., E E 

0 0 0 0 0-0.5 0 
u .,; () .,; () .,; 

.0 .0 .0 
< < < 

Time(s) 

(a) Module 5, "Pinch" approach (b) Module 12, "RolF' approach (c) Module 3, "Flop'' approach 
to a 4x4 to a 15 em ledge to a 4x4 

Figure 7.5: These plots show the fidelity of a piecewise linear approximation to t he original kinesthetic 
input for three randomly selected joint angle t rajectories. The original trajectory is shown by the solid 
black line. Simply reducing from a dense interpolation of the input (here, the mean-squared error threshold 
was 0.004 rad2

) gives a fair approximation to the input; the circular markers indicate the linear segment 
endpoints and the dotted blue line indicates the deviation of this approximation from the original (right axis 
scale). The secondary gradient descent optimization over the linear segment endpoints provides a noticeable 
improvement (triangular segment endpoints and red solid line for deviation). Note that by moving to a 
piecewise linear parameterization, the amount of information that needs to be stored for these t rajectories 
reduce from 2774, 3652, and 2636 points in JR2 to 14, 13, and 10, respectively. 

The fidelity of the resulting piecewise linear function is t hen improved by a secondary 

optimizat ion step. Each remaining point is allowed to vary in t ime and angle, relaxing the 

init ial assumption that these points exactly interpolate the data. This can be done through 

gradient descent on the representational error, cycling through all points one at a. t ime until 

convergence is reached. Figure 7.5 shows the result of both the reduction and the optional 

optimization step for three different joint trajectories, using a threshold of .004 ra.d2 for each. 

More formally, let the original input trajectory be defined by a vector of timestamps 

T = [t1 , t2 , .. . tn]T, and the joint angles corresponding to these t imestamps as 

8 = 

We use the convention of subscripts for timestep index, and superscripts for joint number 

index. 

133 



Our lower-dimensional reduced trajectory can be defined as Θ̂ = {(t̂i, θ̂i) | 1 ≤ i ≤ k},

where t̂i is a column vector of the times for the endpoints of the piecewise segments for joint

i and θ̂i is a column vector with the corresponding joint angle at each of these times.

A slight overloading of notation allows us to use Θ̂ as a function as well; in this case,

Θ̂(t, i) returns the angle produced by this reduced trajectory for time t and joint i. This can

be computed via linear interpolation between the surrounding points.

Given this notation, we can define the mean-squared error of our the reduced represen-

tation as the normalized sum of squared distances from the original input, or

error =
1

kn

k∑
i=1

n∑
t=1

(
Θ̂(T (t), i)−Θ(t, i)

)2

, (7.1)

where parenthesis are overloaded to index into the matrices T and Θ in row-major or-

der. Given the more rigorous definition of the error function, the reduction and tun-

ing/optimization step can now be completed as described above.

7.2.2 Results

Overall, this reduction was run on each of the 10 recorded trajectories (five approaches each

to overcoming two obstacles), and has resulted in typical reductions from initial T of around

3000 points, and Θ that are 3000 x 16, to Θ̂ reductions that are typically defined by around

10 − 14 time/angle pairs for each of the 16 modules. This amounts to a typical reduction

factor around 120, resulting in around 360 parameters (around 24 per joint).

While typical reductions of 3000 × 16 = 48000 values to around 360 is significant, this

obviously still results in a fairly high-dimensional space. However, in many cases the actual

values that one might modify for optimization would be much lower. One might assume

timestamps to be fixed, reducing to 180 parameters. If only certain modules are of interest,

then this might further reduce to 45. Additionally, one can couple keyframes across multiple

134



Table 7.3: Results of Simple Parameterized Trajectory Controllers

Obstacle Approach Successes/Trials
Original Reduced Optimized

4x4 Flop 4/5 5/5 5/5
15 cm Ledge Roll 4/5 5/5 5/5
15 cm Ledge Head to Tail 4/5 4/5 4/5

modules, tolerate increased error, use wavelet decomposition, form a grammar from common

symbols, or apply other analysis with expert knowledge to decrease the number of parameters

for optimization into a reasonable range (10−30), depending on the task. The exact processes

which this further reduction would involve are likely to be highly task dependent.

Testing Reduced Trajectories

To validate the usefulness of the reduction methods described above, we must test the re-

sulting joint trajectories to verify that they can actually accomplish the task with a similar

rate of success as compared to the originals.

For a optimization threshold of 0.004 rad2, Table 7.3 shows the performance of the

reductions as compared to the original commanded trajectories for three selected obsta-

cle/approach combinations. In no case is there a decrease in rate of success; in fact the rate

of success increases for two obstacles. I hypothesize that this increase is due to a reduction

in the high frequency signal (mostly noise during the original data collection), resulting in

more repeatable motions.

Interestingly, these results do not show a noticeable improvement between the simple re-

duction and the extra optimization step (potentially due to the high quality of the reduction).

However, while running the tests there was indication that this optimization significantly in-

creased the faithfulness of the representation. In Figure 7.6, the ending position for the

“Head to Tail” approach to moving onto a ledge is compared for the original trajectory,

135



(a) Original Controller (b) Initial Reduction (c) Optimized Reduction

Figure 7.6: The ending position for the “Head to Tail” approach to climbing on top of a six inch ledge. The
optimized reduction is noticeably more faithful to the original controller, as indicated by the fewer modules
overhanging the ledge resulting in a more stable ending configuration and the better match between ending
shapes.

the reduction, and the optimized reduction. In both the original and optimized reduction,

there is very little of the robot hanging over the ledge, whereas the simple reduction leaves

considerable more of the robot over the ledge.

Although more conclusive tests will be done in future work, these results give strong

supporting evidence that the given reduction and parameterization methods result in simple,

effective controllers for overcoming obstacles. In particular, these results indicate that there

is no noticeable degradation in performance between replaying the original trajectories and

the piecewise linear optimized reductions.

7.3 Finding Parameterized Trajectories Using Large

Collections of Novice Trajectories

The hypothesis that led to collecting data from large numbers of novice users was that the

resulting data would contain a breadth of different solution classes as well as variations within

similar classes of solutions. The desired end goal when parameterizing these trajectories is a

136



set of low-dimensional parameterized trajectories where the parameters represent directions

of the most variation.

The parameterization approach described in 7.2 is not appropriate for generating such a

representation, as it is designed for single trajectories. However, this approach demonstrated

the success of identifying keyframe shapes, which can be similarly applied to collects of novice

trajectories.

To learn a set of solutions, a clustering approach was used to segment the entire collection

of recorded data into keyframes based on Euclidean distance in joint angle space. If the joint

angles from demonstration Di are given as the matrix

Θi =


θ1

1 . . . θk1
...

. . .
...

θ1
n . . . θkn

 ,
where each column represents a timestep and each row a joint of the robot, then the matrix

Θ̃ = [Θ1 Θ2 . . . Θm] represents the joint angles from all of the trials. The columns were

fed into a clustering algorithm (both k-means and Gaussian Mixture Models (GMMs) were

used), resulting in a cluster center ci = [θ1 θ2 . . . θn]T associated with each column of Θ̃.

To identify classes of solutions, each demonstration Di was described as a transition map

between states corresponding to cluster centers. Self transitions were ignored; if the cluster

centers for Θi were c1, c1, c2, c2, c4, c1, the identified transitions would be 1→ 2, 2→ 4, and

4→ 1. The number of each of these transitions were then used as edge weights on a graph G

with vertices for each cluster center. This graph served as a visualization on which different

solution classes could be easily identified.

Unfortunately, a reasonable number of cluster centers and other clustering algorithm

parameters could not be found that resulted in a balance between representational fidelity

(improving with number of clusters) and clarity of solution classes (decreasing with number

137



of clusters). Even with thousands of cluster centers, few of the original solutions could

be played back just using the associated keyframes. Cluster centers had to be reduced to

around 50 for patterns to appear in the transition graph (with more clusters, most edges

corresponded to only a single transition from the data).

I believe that this approach could be used as the basis of a useful reparameterization

algorithm, but the data collection issues mentioned in §7.1.2 resulted in challenges when

attempting to analyze the data. More sophisticated approaches, such as those discussed

below, could lead to further improvements on improved data.

7.4 Conclusions and Future Work

This chapter has demonstrated that kinesthetic input is effective to learn motions not just

for manipulators (e.g., [11, 91, 92]), but also for locomoting snake robots. An approach

for obtaining low-dimensional parameterized representations of demonstrated input has also

been described, and shown to be effective for simplifying expert trajectories.

Attempting to generate a broad set of low-dimensional parameterized trajectories from

a collection of novice input was not as successful. Although better results might have been

obtained by gathering a larger quantity of data, I believe the underlying problem was the

quality of the data. I have discussed several considerations for future collection of such data.

In particular, additional information such as the orientation and position of the system

would likely have resulted in more intelligent cluster centers, improving the identified pat-

terns. This information could also assist in identifying useful subtrajectories from failures

which seemed to be were partially effective. Given an improved transition graph, one could

use unsupervised learning techniques to subsample the data and obtain small potentially

useful segments, sequencing these segments to plan trajectories over new obstacles.

An observation made during the clustering process was that Euclidean distance in the

138



space of joint angles is not the correct distance metric. As the robot is using its whole

body to locomote by pushing off of the environment, the overall shape is more important.

This implies that a distance metric using module positions in R3 could improve clustering

performance, especially when paired with additional state information from an improved

data collection process (such as distance from obstacle). Such a metric would also be more

adaptable to changes in the number of segments in the robot. However, consideration must

be given during reconstruction of trajectories to playback on the robot, as the mapping from

shapes to joint angles is nontrivial.

Finally, other methods such as using kernel principal component analysis (PCA) with a

dynamic time warping (DTW) kernel seem promising, and should be considered. Overall,

I believe learning from multiple noisy demonstrations holds promise for obtaining robust

solutions, and contains many interesting research challenges.

139



Chapter 8

Stochastic Binary Optimization

In robotics, demonstrations from humans can be effective in situations where a task must

be completed – some examples are suture tying [91, 92], attempting the “ball-in-cup” ma-

nipulation challenge [11], or overcoming obstacles with a snake robot. These tasks often

define some natural binary notion of success – is the knot tied, is the ball in the cup, or has

the robot passed over/through the obstacle. The definition of a more continuous objective,

however, is not intuitive. How does one measure whether any particular failed attempt to

tie a knot is better than any other?

In the previous chapter, I discussed methods for finding low-dimensional parameterized

representations of demonstrated trajectories. These representations can then be optimized

relative to some simple objective (Chapter 4), multiple objectives (Chapter 5), or across a

range of environments (Chapter 6). The optimization approaches described in these chapters

take into consideration the expensive nature of robotic systems, but all share a significant

limitation: the objective is assumed to be a continuous, real-valued function.

In this chapter, I discuss the problem setting where the objective is not a deterministic

continuous-valued function, but a stochastic binary valued function. The binary property of

the objective is straightforward to define in terms of success. Allowing for stochasticity is

140



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.1: Efficient optimization is possible even with limited function evaluations which only return a noisy
success or failure. Top: Moving over a 3.5 inch beam with the predicted best motion after 20 evaluations,
using no prior information. Bottom: Building a strong prior by sharing results from previous optimizations
on different obstacles allows the robot to move over an 11 inch beam on the first attempt.

important because the non-deterministic nature of physical systems (due to environmental

factors or noise in the system) can cause subsequent attempts using identical commanded

trajectories to have differing results. I describe the use of a similar framework to that

described in Chapter 4 for the stochastic binary setting.

Unfortunately, attempting this optimization in parameter spaces where regions with

significant probability of success are relatively sparse (e.g., a snake robot attempting to

overcome a tall obstacle) will effectively amount to a blind search. Using the concept of

environment (task) parameters and control parameters discussed in Chapter 6, I describe

how to exploit task structure to solve simpler problems first (smaller obstacles), and then

use the learned knowledge as a principled prior for the difficult task. This enables efficient

optimization of tasks which would otherwise require an exhaustive search.

141



This chapter begins with a definition of the stochastic binary optimization problem. I

describe several existing algorithms which could be applied to this problem as baselines.

Next, I derive a selection metric for stochastic binary functions based on the idea of EI for

binary outputs. I present a summary of results from a comparison of these methods on a

set of synthetic test functions, and apply the EI-based method to learn robust motions for

a snake robot to overcome obstacles (top of Fig. 8.1). Finally, I demonstrate the sharing

of knowledge among tasks in order to efficiently learn to overcome more difficult obstacles

(bottom of Fig. 8.1).

The primary contributions in this chapter are the definition of the stochastic binary

optimization problem, the application of Gaussian processes for classification (GPC) to adapt

expensive black box optimization methods to this problem setting, and the definition of the

EI for stochastic binary outputs. Secondary contributions include the comparison of methods

on synthetic test functions and the optimization of a new locomotive capability on a real

snake robot.

8.1 Binary Stochastic Problem Definition

The problem I attempt to solve is analogous to minimizing simple regret for a continuous-

armed bandit that receives a 1/0 binomial reward, with a budget of n function evaluations.

More formally, I state it as follows: given an input (parameter) space X ⊂ R and an un-

known function π : X → [0, 1] which represents the underlying binomial probability of success

of an experiment, the learner sequentially chooses a series of points x̃ = {x1, x2, . . . xn |xi ∈

X} to evaluate. After choosing each xi, the learner receives feedback yi where yi = 1

with probability π(xi) and yi = 0 with probability 1 − π(xi). The choice of xi is made

with knowledge of {y1, y2, . . . yi − 1}. The goal of the learner is to recommend, after n

experiments, a point xr which minimizes the (typically unknown) error, or simple regret,

142



maxx∈X π(x)− π(xr); this is equivalent to maximizing performance π(xr).

8.2 Approach

As mentioned above, the core method used in this chapter is an adaptation of the expensive

optimization framework described in Chapter 4. A key insight is that this previous approach

is applicable to the binary stochastic problem domain if the surrogate function regression

method is replaced with one more appropriate.

This becomes clear in the problem definition above. In fact, although the output obtained

from sampling the system in this chapter is always 0 or 1, we are still searching for the

optimum of a continuous function as before; this is now π (our probability of success) rather

than the objective f .

To address this, I model the surrogate function with a formulation of GPs for classification

problems, as described in §2.2. This use of GPC serves as a way to better model our

assumptions about the problem. Specifically, GPC assumes an underlying π and only allows

conditioning on binary 0 or 1 data, matching our problem definition. For the GPC response

function σ, I use the standard normal CDF.

Given the change in regression method, the expressions for the selection metric must

also be modified. In the remainder of this section, I explore several baseline approaches to

this problem (only some of which use GPC as the regression method), as well as a novel

principled extension of EI to the binary stochastic base.

8.2.1 Baseline Algorithms

Using GPC to model this problem allows us to infer a posterior probability distribution

π̂ over the unknown true function π from observing several (xi, yi), and also to obtain a

posterior over a latent function f̂ . Although this latent function could technically be used

143



for experiment selection, it does not have a direct probabilistic interpretation except through

the response function σ.

As baselines to compare against the binary EI metric I present in §8.2.2, I use a uniform

random experiment selection method along with the following approaches.

First, as UCB methods are often used in bandit and expensive optimization problems

(e.g., [3]), I compare against UCB on the latent function f̂ , with β as a tuneable metric

parameter:

UCBβ
f (x) = f̂µ(x) + βf̂σ(x) (8.1)

Note that this method cannot be applied directly using π̂, because the π̂µ(x) and π̂σ(x)

are not well defined. One may choose to use the variance of π̂(x) (which in general must

be computed numerically) for π̂σ(x), or one may interpret the original quantity statistically

and choose to define

UCBβ
π(x) = y where

∫ y

0

pxπ(t)dt = β, (8.2)

using β directly as the confidence level rather than a multiplier on the standard deviation;

again, the integral of the PDF pxπ would in general require a numerical integral.

For comparison, I also test the standard EI metric in the latent space, EIf , and on a

standard GP directly fit to the binary data. For the former, because we are not directly

observing samples from f̂ we must redefine the ymax term in the improvement quantity from

Equation (2.20) as

ymax = max
x̃
{σ−1(π̄(x))}, (8.3)

144



where x̃ is all sampled xi. This represents the latent space projection of the maximizer of

π̄(x) at the previously sampled points.

Finally, I compare against the continuous-armed bandit algorithm UCBC (Upper Confi-

dence Bound for Continuous-armed bandits) proposed in [4]. This algorithm divides X into

a set of n equal-sized intervals, and runs the multi-armed bandit UCB algorithm to select

the interval from which to sample. The point to sample is then chosen uniformly at random

from this interval. Recommendations for how to choose the algorithm parameter n are given

in [4].

8.2.2 Expected Improvement for Binary Responses

In the case of stochastic binomial feedback, the notion of improvement that underlies the

definition of EI must change. Because the only potential values for yi are 1 and 0, after

the first 1 is sampled ymax would be set to 1. As there is no possibility for a returned value

higher than 1, improvement (and therefore EI) would be identically zero for each x ∈ X.

Instead, note that these are noisy observations of an underlying success probability and

query the GP posterior1 at each point in x̃. Let

π̂max = max
x̃

π̄(x). (8.4)

As the 0 and 1 responses are samples from a Bernoulli distribution with mean π(x), I define

the improvement as if one could truly sample the underlying mean. Choosing this rather than

conditioning our improvement on 0/1 is consistent with the fact that our π̂max represents a

probability, not a single sample of 0/1. In this case,

1I have evidence that this is a reasonable approach, as the stochastic experiments in §4.3 did not find
significantly different performance between this and more sophisticated approaches.

145



Iπ(x) = max(π̂x − π̂max, 0), (8.5)

where π̂x is the random variable associated with pxπ, the GPC pointwise posterior distribution

at x. This is analogous to f̂x in Equation (2.20). Note that Iπ(x) is a random variable.

To calculate the binary EI, I follow a similar procedure to that in §2.2.1 (in particular,

the definition of expectation along with a change-of-variables substitution for π = σ ◦ f and

ȳ = σ(z)) to calculate the expectation of Iπ(x).

EIπ(x) =

∫ 1

π̂max

(ȳ − π̂max)pxπ(ȳ)dȳ (8.6)

=

∫ 1

π̂max

(ȳ − π̂max)pxY (σ−1(ȳ))
δσ−1

δȳ
(ȳ)dȳ

=

∫ σ−1(1)

σ−1(π̂max)

(σ(z)− π̂max)pxY (z)
δσ−1

δȳ
(σ(z))

δσ

δz
(z)dz

=

∫ ∞
σ−1(π̂max)

(σ(z)− π̂max)pxY (z)dz

The marginalization trick that allowed us to evaluate this integral and obtain a solution

only requiring the Gaussian CDF in the case of π̄ (Equation (2.16)) does not work because

here the integral is not from −∞ to ∞; fortunately it is one-dimensional regardless of

the dimension of X and is easy to numerically evaluate in practice (e.g., using adaptive

quadrature techniques).

After finding this expression for EIπ, it can be used as a selection metric in the modified

black box optimization algorithm discussed above (using GPC as the function regression

method).

146



%~~2~~4---76 ---8~~10 
X 

(a) Test Function 1 

0 0 X 

(d) Test Function 4 

8 
X 

{b) Test Function 2 

10 

1-

0 
10 

0.8 

10 10 
X 

(c) Test Function 3 

10 

0 0 X 

(e) Test Function 5 

Figure 8.2: A number of synthetic test functions were created for algorithm comparison and validation. T he 
equations for the functions used as benchmark tests in this chapter are given in Appendix A. 

8.3 Empirical Results on Synthetic Funct ions 

To validate the performance of the adapted EI metric for stochastic binary outputs, I created 

several synthetic test functions for 1r(x) on which a large number of optimizations could be 

run. Shown in Fig. 8.2 are several of these functions, which exhibit properties such as 

multiple local optima and a narrow global optimum to challenge optimization algorithms; 

moreover, they are stochastic ( 1r ( x) ~ { 0, 1}) over much of X. 

8.3.1 Experimental Setup 

To compare the various algorithms, I allowed each algorithm to sequentially choose a series 

of 50 points, x = { x1 , x 2 . . . x50}, with feedback of Yi generated from a Bernoulli distribution 

147 



with mean π(x) (according to the test function) after each choice of xi. This was completed

100 times for each test function.

For our random selection baseline, at each step i, a random point was chosen and eval-

uated. For the baseline EIf and UCBf metrics (which used the latent GP) as well as the

proposed EIπ metric, the standard black box optimization framework described in Alg. 1 was

used with an initial Latin hypercube sampling of 5 points. The UCBf baseline tests were

run with various values of the β parameter from 0.5 to 10; 1 was found to work as well as

or better than other values and is shown in the comparison here. The maximization of the

metric was done by evaluating the metric on a dense grid over the space; in practice and in

higher dimensions one would typically apply another global optimization method to obtain

the maximizer.

One of the contributions in Chapter 4 is the formal model selection process leading to the

robust black box optimization algorithm shown in Alg. 2. Although this chapter advocates

for selection of the covariance function and hyperparameters of the GP at each iteration

through likelihood maximization, for the comparisons in this chapter I chose to use a simple

squared exponential covariance with fixed hyperparameters (length scale of e0.75 and signal

variance of e5) to reduce the variance in algorithm performance due to optimization of this

likelihood function.

For comparison with the UCBC algorithm, the algorithm parameter of n was chosen as

recommended in [4] for unknown functions, n = (T/ln(T ))1/4 = 2, assuming the number

of samples T = 50. I also ran UCBC with n = 10, but did not get appreciably different

performance.

All of the algorithms described in this chapter are implemented in the code provided with

this thesis. The example MATLAB scripts used to run these experiments are given in §B.3.

148



8.3.2 Measuring Performance

To obtain a measure of the algorithm’s performance at step i, I use the natural Bayesian

recommendation strategy of choosing the point which has the highest expected probabil-

ity of success E[pxπ] given knowledge only of the evaluated points {x1, x2 . . . xi} and values

{y1, y2 . . . yi}. In practice, one may wish to optimize a utility function that also considers

risk (e.g., the uncertainty in that probability).

After choosing xr = argmaxX E[pxπ], this point is evaluated on the underlying true success

probability function π, and the resulting value π(xr) is given as the performance of the

algorithm at step i. For the random selection and UCBC algorithms which do not have a

notion of π̂, a GP was fit to the data collected by the algorithm to obtain this π̂ using the

same parameters as the other algorithms2.

8.3.3 Comparison of Results

In Fig. 8.3, I plot the average performance over 100 runs of the proposed stochastic binary

EI EIπ as well as the random baseline and the UCBC algorithm. As expected, the knowledge

of the underlying function grew slowly but steadily as random sampling characterized the

entire function. The focus of EIπ on areas of the function with the highest expectation

for improvement led to a more efficient strategy which still chose to explore but focused

experimental evaluations on more promising areas of the search space. Notably, EIπ matched

or outperformed tuned versions of all other algorithms tested, without requiring a tuning

parameter.

The UCBC algorithm worked well for simple cases (test function 1 had a significant

region with high probability of success) but faltered as the functions became more difficult

to optimize. An inefficiency of this algorithm is that there is no shared knowledge between

2UCBC does not define a recommendation strategy; the natural choice of a point uniformly at random
from the interval with the highest mean performed very poorly and was therefore omitted from the results.

149



nearby intervals – one would expect that if a function is continuous, the performance at

interval k is likely to be similar to that of k − 1 for a large enough number of intervals. A

potential difficulty is the dependence on a tuning parameter – the number of intervals n. It

is likely that different values for this parameter would significantly affect the results; I chose

the parameter recommended by [4] (n = 2), but also varied this parameter (to n = 10) and

obtained comparable performance on test functions 1 and 3 and slight improvements on test

function 2. This reinforces my observations that bandit algorithm parameters which produce

the best theoretical bounds do not always translate to efficient algorithm performance.

Another challenge is that UCBC is not defined for higher dimensions; the natural exten-

sion would be to use a grid of area elements instead of a set of intervals, but the choice of

n for each dimension isn’t clear; for this reason I limit the comparison with UCBC to the

one-dimensional test functions (1-3).

I also note that EIπ outperforms the näıve use of black-box optimization techniques on

the latent GP f̂ , as shown in Fig. 8.4. This is largely true because the interpretation of

variances on the latent function when used in the classification framework is unintuitive –

the variance f̂σ is not based solely on the sampled points as in the regression case; instead

larger values of f̂µ tend to have larger variances due to the nonlinear mapping into the space

of probabilities π̂.

This problem is especially apparent in test function 3, where the local maxima cover

a fairly wide area likely to be sampled during the initial space-filling design, whereas the

global maximum is narrower; because the variance of the latent function continues to be

high at high values of the mean, and drop off very slowly, both EIf and UCBf tend to focus

remaining evaluations in this localized area.

Because EIπ instead uses the posterior in the underlying success probability space, the

variance decreases near the local maxima as expected, and the algorithm explores other areas

of X with potential for improvement.

150



' ... a'" .n.n .. ; r ................................... .. 
0.8 .. . 

0.6 

0.4 

0.2 

%~~,~o --~ro~~3~o ~~~~ 
Sample Number 

'X 
or 

0.4 : 

0.2 

. ............ . 
············· 

0.4 

0.2 

10 20 30 10 20 30 
Sample Number Sample Number 

(a) Test Function 1 (b) Test Function 2 (c) Test Function 3 

' 
..... ············· ..... ····. 

0.2 

%~--~,0--~20~~~~b=~40==~50 
Sample Number 

(d) Test Function 4 

~ 
I< 

0.8 

10 20 30 40 
Sample Number 

(e) Test Function 5 

Figure 8.3: After each sample, each algorithm was queried as to its recommendation for a point x that 
would have a maximum expectation of success 7T(x); these results show the underlying probability value of 
that point averaged over 100 runs of each algorithm. Here I compare the stochastic binary EI (El rr) to the 
continuous-armed bandit algorithm UCBC suggested in [4] as well as uniform random selection. The cause 
of the unusual drop in performance of UCBC with more samples on test function 2 has not been determined. 

Finally, standard EI fit directly to the binary data performs remarkably well on the 

1-D functions, while not performing as well on the higher dimensional test problems. This 

method also required additional model selection; the results shown are the best obtained after 

carefully fitting a noise term in the diagonal of the covariance; poor selection or omittance 

of this term resulted in performance far below any baseline shown. 

8.4 Physical Robot Experiments 

The motivating system for this thesis, Choset's snake robot, is able to use gaits to move 

quickly across flat ground, forward through narrow openings, and up the inside and outside 

151 



0.6 

~ 

" 0.4 

0.2 

00 

_ EI• 
••• EI1 
. UCB1, 13= 1 

.. •EI (noise in fit) 
10 20 30 40 50 

Sample Number 

(a) Test Function 1 

0.8 

0.2 

~ 

" 

O.B 

0.4 

0.2 

. . . ..... . ... .. . . .. ... o .. 

a • A• ... tJ-A t #A 

_ EI• 
••• EI1 
. ucs,, 13=1 

... El (noise in fit) 
10 20 30 40 50 

Sample Number 

{b) Test Function 2 

- " 
••• Elf 

• UCBf, ~ = 1 

0.8 

0.6 

O.B 

* 0.4 

0.2 

_ EI, 

••• EI1 
. ucs,, p = 1 

... EI (noise in fit) 
tO 20 30 40 50 

Sample Number 

(c) Test Function 3 

- X 

••• Elf 

. UCBr ~= 1 

,. • El (noise in fit) •nEI (noise in fit) 
%~--~10--~20~_b~~~~40~~50 

Sample Number 
10 20 30 40 50 

Sample Number 

(d) Test Function 4 (e) Test Function 5 

Figure 8.4: As in Fig. 8.3, the average expected probability of success for each algorithm's recommendat ion 
at each step is shown above. These results, averaged over 100 runs of each algorithm, compare the proposed 
EI" algorithm with use of EI and upper confidence bounds on t he latent function obtained while fitting a 
GP to binary data, and EI on a GP fit directly to the 0/ 1 data with a tuned noise parameter. 

of irregular horizontal and vertical pipes. However, moving over cluttered, obstacle-laden 

surfaces (such as a rubble pile) provides a challenge for the system. The task in this chapter, 

moving over a beam of dimensional lumber, was inspired by encountering this obstacle (in 

particular, a 4x4) in field deployments during disaster response t raining exercises. 

As described in §7.1.1, a master-slave system was set up to record an expert's demon-

stration of moving the robot over an obstacle. Using a sparse funct ion approximation of t he 

expert 's input, I created a 7-parameter model that was able to overcome obstacles of vari-

ous sizes, albeit unreliably - the same parameters would only sometimes result in success. 

Parameters of t his model (offset , widths, and amplitudes of travelling waves) were difficult 

to opt imize by hand to produce reliable results. 

Using the EI?r metric in the optimization framework described above, 2- and 3-dimensional 

152 



subspaces of the model were searched to identify regions of the parameter space that resulted

in a robust motion over the obstacle that was used to record the original unreliable motion.

In each of these cases, running 40 experiments at 20 points3 resulted in the recommendation

of a parameter setting which produced robust, successful motions (Fig. 8.5).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.5: After completion of the optimization, the predicted best parameters result in a robust motion
which successfully moves the snake robot over the obstacle.

After completing the first 2D optimization, it was noted that after the optimization

found a successful solution it would not sample other areas of the space. This is because

as π̂µ approaches 1, the maximum possible improvement approaches 0, as does EIπ; this

3The model and test setup resulted in two experiments per selected parameter.

153



discourages selection of points that are not near the current maximum. This effect does not

occur in the non-binary setting, because improvement (and therefore EI) is unbounded no

matter the value of ymax. For a given desired EI value, a normal distribution (potentially

generated from the GP) exists which can exceed this threshold.

While continuing to sample this successful solution in the binary setting technically meets

the optimization goal of finding a robust solution, there is utility in the use of the remaining

experiments to find other robust solutions in the parameter space. To accomplish this explo-

ration, I modified the selection metric to not select any point which had a high confidence

in its estimate of the true probability. To measure this confidence in being within ε of the

mean at a point x, take the integral

C(x) =

∫ min(π̄+ε,1)

max(π̄−ε,0)

pxπ(ȳ)dȳ. (8.7)

I reran the optimization over the same 2D parameter space, not considering points where,

for ε = .1, C(x) >= 90%. As seen in Fig. 8.6, this generated a more diverse solution set

which provided a richer set of motions for the robot.

8.5 Exploiting Task Structure to Solve Difficult Prob-

lems

Attempting this same optimization on a taller (9 inch) obstacle resulted in no successes

within the first 20 trials; a solution with a non-zero probability of success was sparse enough

that this was essentially a blind search of the parameter space. It is preferable to avoid an

exhaustive search, even for such problems where the regions with high success probability

are sparse within the space.

To address this problem, I used the observation that in many cases, tasks can be param-

154



C\1 

X 

2 4 6 8 10 
Parameter 1 

(a) Experiment selection using E I1r 

C\1 
~ 

6 <I> -<I> 
~ E 

co 
~ 4 co 

CL. 

0 X) ~ 
0 2 4 6 8 10 

Parameter 1 

(b) Experiment selection using Eln and ignoring 
areas of high certainty 

Figure 8.6: Selected points and predicted success probability for optimization of robot motion over an obstacle 
using the EI7r experiment selection metric. T he 20 parameters chosen for the 2D optimization are shown as 
an "0" if they resulted in a success, and an "X" if they resulted in a failure. In (a), the optimization only 
using the EI,. metric results in pure exploitation after confidently finding a good solution. In (b), avoiding 
selection of points with a high confidence generates more robust solutions. 

155 



eterized so that a spectrum of tasks is defined which contains the difficult task as well as

simpler tasks. The insight in this section is that if such a task parameterization is chosen,

one can learn the general behavior and location of optima of the objective from one or more

simpler optimization problems, and use these as a principled prior for optimization of the

difficult task. This idea is similar to the problem definition from Chapter 6, as well as those

in [10].

To learn parameters of the expert trajectory for more difficult obstacles, such as the 9 inch

beam that provided a challenge, a fourth parameter (obstacle height) was added to the GP

function approximation. This generated a success probability posterior for all parameters

and all obstacle heights, creating a prior that incorporated previous data for subsequent

optimizations. A series of optimizations were then attempted for beams of heights 5.5, 7,

and 9 inches. Each GPC regression used all previous collected data (including that from

the original 3.5 inch optimization). Fig. 8.7 shows a selected trial for each intermediate task

parameter.

As opposed to the initial experimental trial, success was obtained for the 9 inch beam on

the first experiment suggested by EIπ, demonstrating that shared knowledge between tasks

can improve real-world optimization performance. Parameters for overcoming an 11 inch

beam were then successfully predicted with no required optimization (bottom of Fig. 8.1).

Sharing data across additional task parameters further reinforces use of the selection bias

against points with high confidence (as defined by Equation (8.7)). The exploration inherent

when avoiding these points increases the quality of the prior for the more difficult tasks by

better defining the boundaries of regions of high probability for simpler tasks.

Although generalizing results from an easier task to a more difficult task works well

for many problems, there are caveats. Common choices for GP covariance functions are

axis-aligned, resulting in poorer generalization if a trend across multiple tasks exists with

principal direction that is not primarily along the task parameter axes. In addition, if a

156



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8.7: Successful trials from optimizations for 5.5 (top), 7 (center), and 9 (bottom) inch obstacles. The
robot started at the left side of the obstacle, and moved over the obstacle to the right.

157



global optima for a difficult task is unrelated to an optima for a simple task, the sharing

of knowledge across tasks is less likely to increase efficiency (unless it helps identify global

properties of this function that could improve the search).

8.6 Conclusion and Future work

I have defined the stochastic binary optimization problem for expensive functions, presented

a novel use of GPC to frame this problem as expensive black-box optimization, and presented

a new algorithm using a derivation of EI in the stochastic binary case. This approach out-

performed several baseline metrics as well as a leading continuous-armed bandit algorithm.

I also used this algorithm to learn a robust motion for moving a snake robot over an obsta-

cle, and used shared task knowledge to efficiently create an adaptive policy for obstacles of

various heights.

The problem I define is not limited to the demonstrated snake robot application, but ap-

plies to many expensive problems with parameterized policies and stochastic success/failure

feedback. This includes variations of applications where continuous-armed bandits are cur-

rently used, such as auction mechanisms and oblivious routing (see references in [56]), which

could contain an offline training phase penalizing simple rather than continuous regret.

158



Chapter 9

Conclusion

This thesis has explored expensive optimization in the context of improving snake robot

locomotion. I have developed methods addressing optimization in a number of settings,

focusing on methods without tuning parameters. The effectiveness of these methods has

been demonstrated on many problems, improving the locomotive capabilities of snake robots.

In addition, data collection and parameterization methods have been explored for learning

from demonstration, opening the way to optimization of new robot capabilities that are not

easy to encode programmatically but can be demonstrated to the system.

9.1 The Future of Expensive Optimization

Somewhat surprisingly, the use and knowledge of these methods is not widespread in the

machine learning or robotics communities. I believe there are a number of reasons for this,

many of which I have attempted to address in some way in this thesis.

Dearth of Existing Code The learning curve is high for expensive optimization meth-

ods. Although conceptually simple, there are many “tricks of the trade” necessary for good

performance that are learned by practitioners of these methods over years of tinkering with

159



them. For example, should LOO likelihood or marginal log likelihood be used? Just what

is the best covariance function? What selection metric is best (and what parameters should

be used for it)? How important is it do explicitly deal with noise? How should one optimize

the selection metric?

I have tried to address many of these questions in the thesis, especially in §4.2. Many are

also addressed in works from other researchers. But a potential new user must sift through

dozens of papers, reading between the lines, and then attempt to use all these lessons learned

when writing their own code.

I believe this is one of the primary reasons these methods aren’t used – the high learning

curve, undocumented necessary expert knowledge, and lack of existing code. This serves as

a primary motivation I have released code with this thesis. It is not the solution to all of

these problems, and there are design and usability decisions I would certainly change if I

were to start over. However, it provides a start that I hope is better than a blank slate, and

can serve as a stepping stone for improved code in the future.

Gaussian Processes Difficulties GPs can be finicky. I have spoken to researchers who

have tried using them for months before giving up in frustration, and others who have a

list of techniques they prefer besides GPs. I can also speak to this; the choice of covariance

function and hyperparameters is the difference between a smooth interpolation of data and

a few tall spikes in an otherwise flat plane.

This is another reason why I focused so heavily on the robust fitting of the surrogate

function in Chapter 4, and the reason I attempted to provide a gentle and intuitive introduc-

tion to GPs in §2.1. There are still many areas for further improvement of GPs not discussed

in this thesis. For example, fitting to sparse data can often lead to many hyperparameter

choices with comparable likelihoods; rather than selecting the MLE hyperparameter, one

can integrate over all the hyperparameters weighted by their likelihood (using slice sampling

160



techniques) to give a more robust surrogate. Improved addition of prior information, such

as using a prior estimate as the mean function, could greatly benefit practical use of these

algorithms.

Fortunately, a software package for GPs does exist; the GPML [80] MATLAB library

is actively developed, constantly improving and integrating new research into the codebase.

The documentation is excellent, but is best paired with a book describing GPs in detail. I

believe it is important that a higher level wrapper for this code is written to improve the

accessibility of the GPs.

Scattered Corpus of Research The same basic approach is known in various fields as

“global optimization”, “expensive black-box optimization”, “kriging”, “design and analysis

of computer experiments (DACE)”, “Bayesian optimization”, and “simple regret for contin-

uum armed bandits”, used for different purposes with different terminology. This lack of

consistent terminology contributes to confusion, and prevents the spread of advancements

across disciplines. Workshops such as the Neural Information Processing Systems (NIPS)

Bayesian Optimization workshop have begun to address this by bringing together researchers

from various fields, but there is still progress to be made.

9.2 Future Work

There are several areas of the work in this thesis which I believe hold the most promise.

First, it is important to address the remaining challenges listed above. I believe the increased

quality of GP regression when integrating over all potential hyperparameters could greatly

improve optimization algorithm performance, especially during initial steps where the current

approach is a uniform random search or space-filling experimental design. However, the

resulting non-Gaussian distributions are a consideration, as they complicate many necessary

161



calculations.

A better optimization toolbox (where a deep understanding of low level parameters is

not needed) would go a long way in acceptance and adoption of these optimization methods.

Incorporating automatic smart parameter selection, such as the model selection work in this

thesis, could help these method be usable “out-of-the-box.”

This thesis’s work on learning from massive novice demonstrations provided an interesting

preliminary study on the topic. Using the lessons learned and collecting more data could

enable groundbreaking work using existing techniques as well as better inform the clustering

described in §7.3. Other untested techniques, such as identifying trajectory modes using

kernel principal component analysis (PCA) with a dynamic time warping (DTW) kernel

seem promising, and should also be tested with improved data.

Finally, although this thesis demonstrated these techniques on a snake robot, the methods

are general and can be applied to many other robotic systems. More demonstrations will

further increase the trust in and adoption of expensive optimization techniques, leading to

improvements to this simple yet effective concept.

162



Appendices

163



Appendix A

Test Function Definitions

A.1 Adaptive Control Test Functions

These are test functions for adaptive control (Chapter 6).

Test function 1

f = − tan−1
(
.2((xe − 4)2 − (xe − 4)xc + x2

c)
)
− tan−1

(
.2((xe)

2 − xe(xc − 4) + (xc − 4)2)
)

−1 ≤ xe ≤ 5

−3 ≤ xc ≤ 7

Test function 2

f = cos(xc)sin(xc)− .2∗ cos(xe) + 1.5sin(xcxe) + cos(.3xc) + sin(xecos(.2xc)) + .13xc− .02xe

1 ≤ xe ≤ 20

1 ≤ xc ≤ 1.5

Test function 3 (Same as function 2, with the following bounds)

−1 ≤ xe ≤ 5

−3 ≤ xc ≤ 7

164



A.2 Stochastic Binary Test Functions

These are test functions for stochastic binary optimization (Chapter 8). Bounds used were
0 ≤ x ≤ 10 (for each parameter).

Test function 1

Φ

(
sin(x)− cos(3x)/4 +

x3 − 13x2 − 29x− 55

50

)
Test Function 2

sin(5x/4)/4− cos(3(x− 1)/5)/20− 5x3 + 54x2 − 179x+ 159

100

Test Function 3

3Φ((−40x+ 7)/16)/4 + φ(x− 9/2)/2 + 5φ(2x− 15)/2

Test Function 4(
Φ

(
sin(x1)− cos(3x1)/4 +

x3
1 − 13x2

1 − 29x1 − 55

50

))
×(

3

4
Φ

(
−5

2
x2 +

35

8

)
+

9

5
∗ φ
(

1

2
x2 −

9

4

)
+ 1.64φ

(
4

3
x2 − 10

))
Test Function 5(

sin(5x1/4)/4− cos(3(x1 − 1)/5)/20− 5x3
1 + 54x2

1 − 179x1 + 159

100

)
×

3

4
Φ

(
−5

2
x1,+

35

8

)
1

2
φ

(
x− 9

2

)
+

7

4
φ

(
4

3
x2 − 10

)

165



Appendix B

Example Optimization Scripts

The sample scripts provided in this appendix give a brief glimpse at the commands and
use of the optimization toolbox provided with this thesis, as used to generate data for this
thesis. More complete examples and documentation is available with the code, downloadable
at http://www.mtesch.net/thesisCode/.

B.1 Model Selection Example Scripts

These commands were used to generate the data for figures in §4.2.4 showing the effect of
model selection on EI performance.

% Compare optimization with and without model selection

% Set up parameter structure

p = struct();

p.algorithm = ’responseSurface’;

p.numTrials = 50;

p.numInitExperiments = 2;

p.numExperiments = 40;

p.retryOnFailure = 1;

p.mins = [0; 0];

p.maxs = [10; 10];

p.costFunction = ’bra_noise’;

p.metric = ’expImprove’;

% Set up covariance options

GPhypBoth = struct();

GPhypBoth(1).covFunc = {@covSEiso};

GPhypBoth(1).initCovHyps = [0, 0];

GPhypBoth(1).meanFunc = {@meanZero};

GPhypBoth(1).initMeanHyps = [];

166



GPhypBoth(1).likFunc = {@likGauss};

GPhypBoth(1).lik = -50;

GPhypBoth(1).infMethod = @infLOO;

GPhypBoth(2).covFunc = {@covSum,{@covSEiso, @covNoise}};

GPhypBoth(2).initCovHyps = [0, 0, 0];

GPhypBoth(2).meanFunc = {@meanZero};

GPhypBoth(2).initMeanHyps = [];

GPhypBoth(2).likFunc = {@likGauss};

GPhypBoth(2).lik = -50;

GPhypBoth(2).infMethod = @infLOO;

% Run simple tests

p.GPhyp = GPhypBoth(1);

optimize(p, ’simple’);

% Run complex tests

p.GPhyp = GPhypBoth(2);

optimize(p, ’complex’);

% Run auto-selection tests

p.GPhyp = GPhypBoth;

optimize(p, ’auto’);

B.2 Stochastic EI Example Scripts

These commands were used to generate the data for figures in §4.3.3 showing the effect of
incorporating noise into the derivation of the EI selection metric.

% Set up params struct

p = struct();

p.algorithm = ’responseSurface’;

p.numTrials = 50;

p.numInitExperiments = 5;

p.numExperiments = 20;

p.retryOnFailure = 1;

p.mins = [0];

p.maxs = [10];

p.costFunction = ’f1_1_noise’;

% Define covariance functions:

GPhyp = struct();

167



GPhyp(1).covFunc = {’covSum’,{’covSEiso’,’covNoise’}};

GPhyp(1).initCovHyps = [0,0,0];

GPhyp(1).meanFunc = ’meanConst’;

GPhyp(1).initMeanHyps = [0];

GPhyp(1).likFunc = ’likGauss’;

GPhyp(1).lik = -50;

GPhyp(1).infMethod = ’infExact’;

p.GPhyp = GPhyp;

% Choose algorithm and metric (if applicable):

p.metric = ’expImproveNoiseNoDist’;

%p.metric = ’expImproveNoiseDist’;

%p.metric = ’expImproveNoiseDist2d’;

%p.metric = ’expImprove’;

p.metric_option = ’max_sample’;

%p.metric_option = ’max_mu’;

%p.metric_option = ’max_mu_sample’;

%p.metric_option = ’max_ucb_sample’; p.metric_beta = -2.0;

% Run the test

optimize(p,[’result_directory’]);

B.3 Stochastic Binary Example Scripts

These commands were used to generate the data for figures in Chapter 8.

% Build params structure:

p = struct();

%p.algorithm = ’nonBinaryResponseSurface’; % For baselines using GP

p.algorithm = ’binaryResponseSurface’; % For baselines using GPC

p.numTrials = 100;

p.numExperiments = 50;

p.costFunction = ’class1’; % select cost function

p.retryOnFailure = 1;

p.numInitExperiments = 5;

p.initExpSelection = ’latin’;

p.numTestPoints = 1000;

p.mins = [0];

p.maxs = [10];

168



% Select metric and optional parameters:

%p.metric = ’binaryLatentUCB’;

%p.metricBeta = 1.0;

p.metric = ’binaryLatentEI’;

%p.metric = ’expImprove’;

%p.metric = ’binaryProbabilityEI’;

%p.metric = ’random’;

% Optional: ignore highly confidence values!

%p.ignoreConfidence = 0.9; p.ignoreConfidenceRange = .1;

% Set up GP parameters

hyp = struct();

hyp.cov = [0.75; 2.5];

hyp.lik = []; % set to -50 if using GP, [] if using GPC

p.gpHyp = hyp;

p.covarianceFunction = {@covSEiso};

p.meanFitMethod = ’zero’;

% Run 1-D tests:

for costFunctionNumber = 1:7

p.costFunction = [’class’ num2str(costFunctionNumber)];

optimize(p, [’binary-class’ num2str(costFunctionNumber) ’-results]);

end

% Run 2-D tests:

p.mins = [0 0];

p.maxs = [10 10];

for costFunctionNumber = 8:9

p.costFunction = [’class’ num2str(costFunctionNumber)];

optimize(p, [’binary-class’ num2str(costFunctionNumber) ’-results’]);

end

169



Appendix C

Further Information

C.1 Marginal Likelihood

This derivation largely follows that from Rasmussen and Williams textbook on GPs [81].
Recall from §2.1 that a GP represents a probability distribution over functions; computing

the marginal likelihood of the data requires marginalizing out the candidate function values,
given here as f ∗:

p(ỹ|x̃, θ) =

∫
p(ỹ|f ∗, x̃, θ)p(f ∗|x̃, θ)df ∗ (C.1)

Above, the first term in the integrand represents the likelihood of the data given the
function f ∗; for covariance functions without a noise parameter this equals 0 except for
hyperparameters where the function exactly interpolates the data; for covariance functions
with a diagonal noise term σ2

n, p(ỹ|f ∗, x̃) = N (f ∗, σ2
nI). The second term represents the

prior over functions, and is given by N (0, K).
As discussed in [81], the nature of GPs allows this integral to be computed analytically,

and the marginal likelihood is given by

p(f ∗|x̃, θ) =
1

(|Ky|)1/2(2π)n/2
e−1/2yTK−1

y y. (C.2)

If there is a stochastic GP with diagonal noise, the covariance matrices Ky should include
the addition of the diagonal noise term.

170



Bibliography

[1] Pieter Abbeel and A.Y. Ng. Apprenticeship learning via inverse reinforcement learning.
In Proceedings of the twenty-first international conference on Machine learning. ACM,
2004.

[2] Rajeev Agrawal. The Continuum-Armed Bandit Problem. SIAM Journal on Control
and Optimization, 33(6):1926–1951, November 1995.

[3] Peter Auer, N Cesa-Bianchi, and P Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, pages 235–256, 2002.

[4] Peter Auer, Ronald Ortner, and C Szepesvári. Improved rates for the stochastic
continuum-armed bandit problem. Learning Theory, 2007.

[5] J. Baker and Johann Borenstein. The Joysnake A Haptic Operator Console for High-
Degreeof-Freedom Robots. In Robotics, pages 12–15, 2006.

[6] T. Bakker, B. and Heskes. Task Clustering and Gating for Bayesian Multitask Learn-
ing. Journal of Machine Learning Research, (4):83–99, 2003.

[7] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic
Programming: An Introduction. Morgan Kaufmann, 1997.

[8] Jose M. Bernardo. Expected Information as Expected Utility. The Annals of Statistics,
7(3):686–690, May 1979.

[9] D. A. Berry and B. Fristedt. Bandit Problems; Sequential Allocation of Experiments.
Chapman and Hall, New York, 1985.

[10] E Bonilla, F Agakov, and C Williams. Kernel multi-task learning using task-specific
features. In 11th International Conference on Artificial Intelligence and Statistics
(AISTATS), 2007.

[11] Abdeslam Boularias, Jens Kober, and Jan Peters. Model-free inverse reinforcement
learning. In International Conference on Artificial Intelligence and Statistics, 2011.

[12] George E. P. Box and Norman R. Draper. Empirical model-building and response
surfaces. Wiley, 1987.

171



[13] L Breiman. Random forests. Machine learning, 2001.

[14] R.W. Brockett. Control theory and singular riemannian geometry. In PeterJ. Hilton
and GailS. Young, editors, New Directions in Applied Mathematics, pages 11–27.
Springer New York, 1982.

[15] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in finitely-armed
and continuous-armed bandits. Theoretical Computer Science, 412(19):1832–1852,
April 2011.

[16] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X -Armed Ban-
dits. Journal of Machine Learning Research, 12:1655–1695, 2011.

[17] P. B. Cheung, L. F. Reis, K. T. Formiga, F. H. Chaudhry, and W. G. Ticona. Multi-
objective evolutionary algorithms applied to the rehabilitation of a water distribution
system: A comparative study. In C. M. Fonseca and Et. Al., editors, Int. Conf. Evol.
Multicriterion Optimization, pages 662–676, Berlin, Germany, 2003. Springer-Verlag.

[18] G.S. Chirikjian and J.W. Burdick. A modal approach to hyper-redundant manipulator
kinematics. IEEE Transactions on Robotics and Automation, 10(3):343–354, June
1994.

[19] G.S. Chirikjian and J.W. Burdick. The kinematics of hyper-redundant robot locomo-
tion. IEEE Transactions on Robotics and Automation, 11(6):781–793, 1995.

[20] Jiang Chong and R. Srikant. Parametrized Stochastic Multi-armed Bandits with Bi-
nary Rewards. CoRR, abs/1111.4, 2011.

[21] Jared L. Cohon. Multiobjective Programming and Planning. Courier Dover Publica-
tions, 2004.

[22] V Coverstone-Carroll. Optimal multi-objective low-thrust spacecraft trajectories.
Computer Methods in Applied Mechanics and Engineering, 186(2-4):387–402, June
2000.

[23] D.D. Cox and S. John. A statistical method for global optimization. In 1992 IEEE
International Conference on Systems, Man, and Cybernetics, pages 1241–1246. Ieee,
1992.

[24] George B. Dantzig. Programming in a Linear Structure. Technical report, Comptroller,
USAF, Washington, D.C., 1948.

[25] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast Elitist
Multi-Objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6:182—-197, 2000.

172



[26] LCW Dixon and GP Szego. The global optimization problem: an introduction. To-
wards Global Optimization, 2:1 – 15, 1978.

[27] Mark Ebden. Gaussian Processes for Regression: A Quick Introduction. Technical
Report August 2008.

[28] Michael Emmerich and Jan-willem Klinkenberg. The computation of the expected
improvement in dominated hypervolume of Pareto front approximations. Technical
Report 1, Leiden Institute for Advanced Computer Science, 2008.

[29] V. Federov. Theory of Optimal Experiments. Academic Press, 1972.

[30] Roman Garnett, Yamuna Krishnamurthy, Xuehan Xiong, Jeff Schneider, and
Richard P Mann. Bayesian optimal active search and surveying. In Proceedings of
the 29th International Conference on Machine Learning (ICML 2012), 2012.

[31] J. Gonzalez-Gomez, H. Zhang, Eduardo Boemo, and Jianwei Zhang. Locomotion
capabilities of a modular robot with eight pitch-yaw-connecting modules. In 9th inter-
national conference on climbing and walking robots. Citeseer, 2006.

[32] Grzegorz Granosik and Johann Borenstein. Serpentine Robots for Industrial Inspection
and Surveillance. Industrial Robotics., (February):633–662, 2007.

[33] Hans-Martin Gutmann. A Radial Basis Function Method for Global Optimization.
Journal of Global Optimization, 19, 1999.

[34] Masaya Hara, Shogo Satomura, Hiroaki Fukushima, Tetsushi Kamegawa, Hiroki
Igarashi, and Fumitoshi Matsuno. Control of a Snake-like Robot Using the Screw
Drive Mechanism. Proceedings 2007 IEEE International Conference on Robotics and
Automation, XX(Xx):3883–3888, April 2007.

[35] G. H. Hardy and E. M. Wright. ”The Functions theta(x) and psi(x)” and ”Proof that
theta(x) and psi(x) are of Order x.”. In An Introduction to the Theory of Numbers,
chapter 22, pages pp. 340–342. Clarendon Press, Oxford, England, 5th edition, 1979.

[36] Kazunari Hatazaki, Masashi Konyo, Kazuya Isaki, Satoshi Tadokoro, and Fumiaki
Takemura. Active scope camera for urban search and rescue. 2007 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 2596–2602, October
2007.

[37] Ross L. Hatton and Howie Choset. Connection vector fields for underactuated systems.
2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and
Biomechatronics, pages 451–456, October 2008.

[38] Ross L. Hatton and Howie Choset. Generating Gaits for Snake Robots by Annealed
Chain Fitting and Keyframe Wave Extraction. In IEEE International Conference on
Intelligent Robots and Systems, pages 840–845, St. Louis, USA, 2009.

173



[39] Ross L. Hatton and Howie Choset. Optimizing Coordinate Choice for Locomoting
Systems. In Proceedings of the IEEE International Conference on Robotics and, July
2010.

[40] B Y Shigeo Hirose and Hiroya Yamada. Snake-Like Robots. IEEE Robotics & Au-
tomation Magazine, (March):88–98, 2009.

[41] Kenneth Holmström. An adaptive radial basis algorithm (ARBF) for expensive black-
box global optimization. Journal of Global Optimization, 41(3), 2008.

[42] James K Hopkins, Brent W Spranklin, and Satyandra K Gupta. A survey of snake-
inspired robot designs. Bioinspiration & biomimetics, 4(2):021001, June 2009.

[43] D. Huang, T. T. Allen, W. I. Notz, and N. Zeng. Global Optimization of Stochastic
Black-Box Systems via Sequential Kriging Meta-Models. Journal of Global Optimiza-
tion, 34(3):441–466, March 2006.

[44] D. Huang, T. T. Allen, W. I. Notz, and N. Zeng. Global Optimization of Stochastic
Black-Box Systems via Sequential Kriging Meta-Models. Journal of Global Optimiza-
tion, 34(3), 2006.

[45] Frank Hutter, HH Hoos, and K Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. Learning and Intelligent Optimization, 2011.

[46] A.J. Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning attractor landscapes for
learning motor primitives. Advances in neural information processing systems, 15:1523–
1530, 2003.

[47] Antony Jameson and J.C. Vassberg. Computational fluid dynamics for aerodynamic
design: Its current and future impact. Fluid Dynamics, 538, 2001.

[48] Aaron Johnson, Cornell Wright, Matthew Tesch, Kevin Lipkin, and Howie Choset. A
Novel Architecture for Modular Snake Robots. Technical report, Robotics Institute,
2011.

[49] Donald R. Jones. A taxonomy of global optimization methods based on response
surfaces. Journal of Global Optimization, 21(4):345–383, 2001.

[50] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient Global Opti-
mization of Expensive Black-Box Functions. Journal of Global Optimization, 13(4),
1998.

[51] S. Kakade and J. Langford. Approximately optimal approximate reinforcement learn-
ing. In Proceedings of the Nineteenth International Conference on Machine Learning,
pages 267–274. Morgan Kaufmann, 2002.

174



[52] Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell. Active Learn-
ing with Gaussian Processes for Object Categorization. 2007 IEEE 11th International
Conference on Computer Vision, pages 1–8, October 2007.

[53] A. J. KEANE. Statistical improvement criteria for use in multiobjective design opti-
mization. AIAA journal, 44(4):879–891, 2006.

[54] Michael Kearns, Y. Mansour, and A.Y. Ng. Approximate planning in large POMDPs
via reusable trajectories. Advances in Neural Information Processing Systems, 12:1001–
1007, 2000.

[55] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by Simulated An-
nealing. Science, 220(4598):671–680, 1983.

[56] Robert Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In
Advances in Neural Information Processing Systems, pages 697–704, 2004.

[57] Robert Kleinberg and Eli Upfal. Multi-Armed Bandits in Metric Spaces. In STOC
’08 Proceedings of the 40th annual ACM symposium on Theory of computing, pages
681–690, 2008.

[58] J. Knowles. ParEGO: a hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems. IEEE Transactions on Evolutionary
Computation, 10(1):50–66, February 2006.

[59] Jens Kober and Jan Peters. Learning motor primitives for robotics. In IEEE Interna-
tional Conference on Robotics and Automation, pages 2112–2118. IEEE, 2009.

[60] Harold J Kushner. A new method for locating the maximum point of an arbitrary
multipeak curve in the presence of noise. Journal of Basic Engineering, 86:97–106,
1964.

[61] Akina Kuwada, Shuichi Wakimoto, Koichi Suzumori, and Yudai Adomi. Automatic
pipe negotiation control for snake-like robot. 2008 IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics, (438):558–563, July 2008.

[62] J.S. Lehman. Sequential Design of Computer Experiments for Robust Parameter De-
sign. PhD thesis, Ohio State University, 2002.

[63] P. Liljeback, K.Y. Pettersen, O. Stavdahl, and J.T. Gravdahl. Experimental Investiga-
tion of Obstacle-Aided Locomotion With a Snake Robot. Robotics, IEEE Transactions
on Robotics, PP(99):1–8, 2011.

[64] Pal Liljeback, Kristin Y Pettersen, Ø yvind Stavdahl, and Jan Tommy Gravdahl. A
hybrid model of obstacle-aided snake robot locomotion. In 2010 IEEE International
Conference on Robotics and Automation, pages 675–682. IEEE, May 2010.

175



[65] Tyler Lu, Dávid Pál, and Martin Pál. Showing Relevant Ads via Lipschitz Context
Multi-Armed Bandits. 13th International Conference on Artificial Intelligence and
Statistics, 2010.

[66] Michael D. McKay, Richard J. Beckman, and W. J. Conover. A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from a
Computer Code. Technometrics, 21(2):239 – 245, 1979.

[67] Matt Might. Community research and academic programming license.

[68] Lilyana Mihalkova and Raymond Mooney. Using active relocation to aid reinforcement
learning. In Proceedings of the 19th International FLAIRS Conference, number May,
pages 580–585, 2006.

[69] Thomas P. Minka. A family of algorithms for approximate Bayesian inference. Phd
thesis, Massachusetts Institute of Technology, 2001.

[70] J Mockus, V Tiesis, and A Zilinskas. The application of Bayesian methods for seeking
the extremum. Towards Global Optimization, 2:117–129, 1978.

[71] Andrew W Moore and Jeff Schneider. Memory-based stochastic optimization. Advances
in Neural Information Processing Systems, pages 1066–1072, 1996.

[72] B. Naujoks, L. Willmes, T. Back, and W. Haase. Evaluating Multi-criteria Evolu-
tionary Algorithms for Airfoil Optimisation. LECTURE NOTES IN COMPUTER
SCIENCE, (2439):841–850, 2003.

[73] John A. Nelder and Roger Mead. A Simplex Method for Function Minimization. The
Computer Journal, 7(4), January 1965.

[74] M Neumann, P. Labenda, T. Predki, and L. Heckes. Snake-like, tracked, mobile robot
with active flippers for urban search-and-rescue tasks. In 15th International Conference
on Climbing and Walking Robots and the Support Technologies for Mobile Machines
(CLAWAR), 2012.

[75] Hannes Nickisch and CE Rasmussen. Approximations for binary Gaussian process
classification. Journal of Machine Learning Research, 9:2035–2078, 2008.

[76] H. Ohno and S. Hirose. Design of slim slime robot and its gait of locomotion. Pro-
ceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems.,
pages 707–715, 2001.

[77] V Picheny, D Ginsbourger, and Y Richet. Noisy Expected Improvement and on-line
computation time allocation for the optimization of simulators with tunable fidelity.
In 2nd International Conference on Engineering Optimization, pages 1–10, Lisbon,
Portugal, 2010.

176



[78] Dean Pomerleau. ALVINN: An Autonomous Land Vehicle In a Neural Network. In
D.S. Touretzky, editor, Advances in Neural Information Processing Systems. Morgan
Kaufmann, 1989.

[79] Wolfgang Ponweiser, Tobias Wagner, and Markus Vincze. Clustered multiple general-
ized expected improvement: A novel infill sampling criterion for surrogate models. In
2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Com-
putational Intelligence), pages 3515–3522. Ieee, June 2008.

[80] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Ma-
chine Learning.

[81] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[82] Nathan Ratliff, David Bradley, J.A. Bagnell, and Joel Chestnutt. Boosting struc-
tured prediction for imitation learning. In Advances in Neural Information Processing
Systems, 2006.

[83] Rommel G. Regis and Christine A. Shoemaker. A Stochastic Radial Basis Function
Method for the Global Optimization of Expensive Functions. INFORMS Journal on
Computing, 19(4), 2007.

[84] Herbert Robbins. Some aspects of the sequential design of experiments. Bull. Amer.
Math. Soc., 58, 1952.

[85] David Rollinson, Austin Buchan, and Howie Choset. State Estimation for Snake
Robots. IEEE International Conference on Intelligent Robots and Systems, pages
1075–1080, 2011.

[86] David Rollinson and Howie Choset. Virtual Chassis for Snake Robots. IEEE Interna-
tional Conference on Intelligent Robots and Systems (accepted), 2011.

[87] AM Ross. Useful bounds on the expected maximum of correlated normal variables.
2003.

[88] S. Ross and J.A. Bagnell. Efficient reductions for imitation learning. In Proceedings of
the 13th International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 9, 2010.

[89] K D Rothley, Oswald J Schmitx, and Jared L Cohon. Foraging to balance conflicting
demands : novel insights from grasshoppers under predation risk. Behavioral Ecology,
8(5):551–559, 1997.

[90] Stefan Schaal. Dynamic movement primitives-a framework for motor control in humans
and humanoid robotics. Adaptive Motion of Animals and Machines, 2006.

177



[91] John Schulman, Ankush Gupta, Sibi Venkatesan, Mallory Tayson-Frederick, and Pieter
Abbeel. A Case Study of Trajectory Transfer Through Non-Rigid Registration for a
Simplified Suturing Scenario. In 26th IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2013.

[92] John Schulman, Jonathan Ho, Cameron Lee, and Pieter Abbeel. Learning from Demon-
strations Through the Use of Non-Rigid Registration. In 16th International Symposium
on Robotics Research (ISRR), 2013.

[93] Burr Settles. Active Learning Literature Survey. Technical report, University of
Wisconsin–Madison, 2009.

[94] E. Shammas, H. Choset, and A. Rizzi. Natural gait generation techniques for princi-
pally kinematic mechanical systems. In Proceedings of Robotics: Science and Systems.
Citeseer, 2005.

[95] Snelson, Ed (Gatsby Computational Neuroscience Unit, UCL). Tutorial: Gaussian
process models for machine learning, 2006.

[96] Rajendra S Solanki, Perry A Appino, and Jared L Cohon. Theory and Methodology
Approximating the noninferior set in multiobjective linear programming problems.
European Journal Of Operational Research, 68:356–373, 1993.

[97] S Sundararajan and SS Keerthi. Predictive approaches for choosing hyperparameters
in Gaussian processes. Neural Computation, 2001.

[98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, 1998.

[99] Tzyh-Jong Tarn, Shan-Ben Chen, and Gu Fang, editors. Robotic Welding, Intelligence
and Automation, volume 88 of Lecture Notes in Electrical Engineering. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[100] Matthew Tesch, Kevin Lipkin, Isaac Brown, Ross Hatton, Aaron Peck, Justine Rem-
bisz, and Howie Choset. Parameterized and Scripted Gaits for Modular Snake Robots.
Advanced Robotics, 23(9):1131–1158, June 2009.

[101] E. Theodorou, Jonas Buchli, and S. Schaal. Learning policy improvements with path
integrals. In International Conference on Artificial Intelligence and Statistics (AIS-
TATS 2010), pages 828–835, 2010.

[102] Emmanuel Vazquez and Julien Bect. Convergence properties of the expected im-
provement algorithm with fixed mean and covariance functions. Journal of Statistical
Planning and Inference, 140(11):3088–3095, 2010.

178



[103] Emmanuel Vazquez, Julien Villemonteix, Maryan Sidorkiewicz, and Éric Walter.
Global optimization based on noisy evaluations: An empirical study of two statistical
approaches. Journal of Physics: Conference Series, 135:012100, November 2008.

[104] Antanas Žilinskas. A review of statistical models for global optimization. Journal of
Global Optimization, 2(2):145–153, June 1992.

[105] B.J. Williams, T.J. Santner, and W.I. Notz. Sequential design of computer experiments
to minimize integrated response functions. Statistica Sinica, 10(4):1133–1152, 2000.

[106] C. Wright, A. Buchan, B. Brown, J. Geist, M. Schwerin, D. Rollinson, M. Tesch, and
H. Choset. Design and Architecture of the Unified Modular Snake Robot. In 2012
IEEE International Conference on Robotics and Automation, St. Paul, MN, 2012.

[107] Cornell Wright, Aaron Johnson, Aaron Peck, Zachary McCord, Allison Naaktgeboren,
Philip Gianfortoni, Manuel Gonzalez-Rivero, Ross L. Hatton, and Howie Choset. De-
sign of a Modular snake robot. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2609–2614. IEEE, October 2007.

[108] H. Yamada and S. Hirose. Study on the 3D shape of active cord mechanism. Proceedings
2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.,
pages 2890–2895.

[109] Milan Zeleny. Linear Multiobjective Programming. Springer-Verlag, 1974.

[110] Xuan Zhang, B. John Oommen, and Ole-Christoffer Granmo. Generalized Bayesian
pursuit: A novel scheme for multi-armed Bernoulli bandit problems. Artificial Intelli-
gence Applications and Innovations, 364:122–131, 2011.

[111] Anatoly Zhigljavsky and Antanas Žilinskas. Stochastic Global Optimization. Springer,
2008.

[112] Eckart Zitzler and Lothar Thiele. Multiobjective Optimization Using Evolutionary
Algorithms - A Comparative Case Study. pages 292–304, September 1998.

179


