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Final Report 
AFOSR FA9550-12-1-0154 

Selective Optimization 
Project term: 4/2012-4/2015 

 
Shabbir Ahmed and Santanu S. Dey 

Georgia Institute of Technology 
 
 
Project Overview 
This project focuses on developing algorithms for optimization problems that have intrinsic 
limitations preventing the utilization of all available decision alternatives (problem variables) 
and/or the satisfaction of all constraints. Part of the optimization decision in these problems is 
the selection of which variables to use and/or which subset of constraints to satisfy. We refer to 
these problems as selective optimization (SO) problems. A typical example is the partial 
coverage problem that seeks levels of resources (facilities, sensors, transmission locations) to 
cover or serve a set of specified tasks (customers, targets, receivers) while minimizing resource 
usage costs. In many settings, full coverage is economically or physically impossible, and a 
typical goal is to achieve partial (say 95%) coverage, i.e. only a subset of the covering 
constraints need to be satisfied. Applications of selective optimization arise in numerous diverse 
areas ranging from defense to medicine.  
 
The combinatorial aspects of selection make these problems extremely difficult. In this project 
we develop a set of generic tools applicable to a wide class of selective optimization problems. 
Our approach is based on standard mixed-integer programming (MIP) formulations of selective 
optimization problems. While such formulations can be attacked by commercial optimization 
solvers, they typically exhibit extremely poor performance. We develop a variety of effective 
model and algorithm enhancement techniques for the standard MIP formulations. These 
techniques are easily integrable into commercial MIP solvers, thereby making them readily 
usable in applications of selective optimization.  
 
In the following we describe our research activities, key results, and publications. Details of the 
results appear in the papers appended at the end of this report. 
 
Performance period 4/2012-4/2013 
The first year of the project was devoted to the following three activities: 

1. Partial covering problems where a subset of the constraints is required to be satisfied: 
We analyzed the complexity of this class of problems, and developed strengthened 
formulations and algorithmic techniques which perform significantly better than standard 
MIP approaches. A paper on this work has been published. 

2. Transportation problems where a subset of the demands is to be satisfied: When 
resources are constrained, one may be able to satisfy only a subset of demands, rather 
than all the demands. Therefore the transportation problem now includes two sets of 
decisions: the decision of which demands to satisfy and a decision of how to satisfy 
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these demands. We study the complexity of this problem and present cases where the 
problem is tractable. For all other cases, we developed cutting-plane based techniques 
to improve the efficacy of a general purpose IP solver solving this problem.  

3. Scenario decomposition of stochastic combinatorial problems: We developed a new 
decomposition algorithm for stochastic 0-1 problems based on selecting solutions from 
the set of single scenario solutions, and refining this set iteratively. The algorithm is very 
easily parallelizable and has the best computational performance to-date on various 
benchmark problems. A paper on this work has been published. 

 
The project provided partial support for PhD students Feng Qiu and Gustavo Angulo. Feng Qiu 
graduated in 2013 and is currently a postdoc in Argonne national labs. One month for each of 
the two PIs was also supported. The projects funds were also used for travel to various 
conferences (INFORMS, MIP2013, ICSP2013) for dissemination of research results.  
 
The following publications resulted from the 2012-2013 activities: 

1. F. Qiu, S. Ahmed, S.S. Dey, L. Wolsey. ‘‘Covering linear programming with violations,’’ 
INFORMS Journal on Computing, vol. 26, pp. 531-546, 2014. 

2. P. Damci-Kurt, S.S. Dey, S. Kucukyavuz. "On the transportation problem with market 
choice” Discrete Applied Mathematics, vol.181, pp.54-77, 2015. 

3. S. Ahmed. ‘‘A scenario decomposition algorithm for 0-1 stochastic programs,’’ 
Operations Research Letters, vol. 41, pp. 565-569, 2013. 

 
Performance period 4/2013-4/2014: 
The second year of the project was devoted to the following three activities: 

1. Strengthening the bounds for estimating the probability of k-out-of-n events: Given a set 
of n random events, represented by n Bernoulli variables, we consider the computation 
of bounds on the probability that k out of n events occur when partial distribution 
information is available. Upper or lower bound can be computed for this probability using 
a linear program. We designed inequalities that can be added to this linear program to 
significantly strengthen these bounds. The bounding approach is very useful in deriving 
relaxations and restrictions of probabilistic set covering problems. 

2. Forbidding vertices of a polytope: Given a polytope P and a subset X of its vertices, we 
study the complexity of linear optimization over the subset of vertices of P that are not 
contained in X. This problem is closely related to finding the k best basic solutions to a 
linear problem. We show that the complexity of the problem changes significantly 
depending on the encoding of both P and X. Using these results we show that optimizing 
on the binary all different polytope can be accomplished in polynomial-time.  

3. Improved integer L-shaped method: The Integer L-shaped method is the state-of-the-art 
algorithm for solving two-stage stochastic programs with integer recourse. We develop 
two enhancements to this algorithm to significantly improve its performance. The first 
approach relies on carefully alternating between solving integer and linear subproblems, 
and the second approach uses our results from forbidding vertices of a polytope (item 2 
above) to strengthen integer L-shaped cuts.  
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The project provided partial support for PhD students Gustavo Angulo and Kevin Ryan. Gustavo 
Angulo graduated in Summer 2014. He is currently a postdoctoral researcher at CORE, Belgium 
for a year and will bee joining as a faculty at Pontificia Universidad Católica de Chile. One 
month for each of the two PIs was also supported.  
 
The following publications resulted from the 2013-2014 activities: 

1. F. Qiu, S. Ahmed, S.S. Dey. “Strengthened bounds for probability of k-out-of-n events,” 
accepted for publication in Discrete Applied Math. 

2. G. Angulo, S. Ahmed, S.S. Dey, V. Kaibel. ‘‘Forbidden vertices,’’ Mathematics of 
Operations Research, vol.40, pp.350-360, 2015. 

3. G. Angulo, S. Ahmed, S.S. Dey. “Improving the integer L-shaped method,” under review 
in the INFORMS J. on Computing. 

 
 
Performance period 4/2014-4/2015: 

1. Transportation problems with a cardinality constraint on the number of demands to be 
satisfied: It is well-known that the intersection of the matching polytope with a cardinality 
constraint is integral. In this project we prove a similar result for the polytope 
corresponding to the transportation problem with market choice (TPMC) (studied in 
performance period 4/2012-4/2014) when the demands are in a specific set. This result 
generalizes the result regarding the matching polytope and also implies that some 
special classes of minimum weight perfect matching problem with a cardinality constraint 
on a subset of edges can be solved in polynomial time. 

2. Intersection on mixing sets with cardinality constraint: Intersection of two mixing sets 
with a cardinality constraint arises as a relaxation of deterministic equivalent of chance-
constrained programming problems with finite discrete distributions. We study an 
extended formulation of this set and describe the convex hull in some special cases. 

 
The project provided partial support for PhD students Kevin Ryan and Qianyi Wang. One month 
for each of the two PIs was also supported.  
 
The following publications resulted from the 2013-2014 activities: 

1. M. Walter, P. Damci-Kurt, S.S. Dey, S. Kucukyavuz. “On a Cardinality-Constrained 
Transportation Problem With Market Choice” submitted for publication, 2015. 

2. K. Ryan, S. Ahmed, S.S. Dey. “Intersection of mixing sets with cardinality constraint,” 
working paper, 2015. 
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Covering Linear Programming with Violations

Feng Qiu, Shabbir Ahmed, Santanu S. Dey and Laurence A. Wolsey

May 8, 2012

Abstract

We consider a class of linear programs involving a set of covering constraints of which at most k are
allowed to be violated. We show that this covering linear program with violation is strongly NP-hard. In
order to improve the performance of mixed-integer programming (MIP) based schemes for these problems,
we introduce and analyze a coefficient strengthening scheme, adapt and analyze an existing cutting plane
technique, and present a branching technique. Through computational experiments, we empirically verify
that these techniques are significantly effective in improving solution times over the CPLEX MIP solver.
In particular, we observe that the proposed schemes can cut down solution times from as much as six
days to under four hours in some instances.

1 Introduction

A point belongs to the feasible region of a linear program (LP) if it satisfies all the linear constraints defining
the LP. However, when certain problems are being modeled, the feasibility requirement is soft. That is, a
point is considered feasible even if it violates no more than a specified number of the constraints defining the
problem. Such a linear program is called a k-violation linear program (KVLP) [19]:

min c>x

s.t. a>i x ≥ bi i = 1, ...,m, (1)

at most k of the m constraints can be violated,

x ∈ Rn+.

The feasible region of a KVLP is the union of
(
m
k

)
polyhedral sets, each of which are defined by the intersection

of some subset of (m − k) inequalities from the m inequalities in (1). In general, such a feasible region is
nonconvex and KVLP is a strongly NP-hard optimization problem [1]. Much of the existing work on this
class of problems focuses on polynomial time algorithms for low dimensional problems (i.e. n is fixed and
small) (cf. [5] for a survey).

This paper addresses KVLPs where the linear system (1) consists of covering type linear inequalities,
i.e., ai and bi are non-negative for all i. We call such a problem a covering-type k-violation linear program
(CKVLP). CKVLPs, which are an important subclass of KVLPs, have many applications.

As a concrete example, consider a probabilistically-constrained portfolio optimization problem [16] to
determine a minimum cost distribution of a unit investment among n assets with uncertain returns, requiring
the overall return to be at least r with a probability of 1 − ε, where ε ∈ (0, 1) is a prespecified risk level. A
formulation of this problem is

min c>x

s.t. e>x = 1

P{ã>x ≥ r} ≥ 1− ε (2)

x ∈ Rn+,

1
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where ã is the random return vector for n assets following some known distribution, P{A} denotes the
probability of the random event A, and c is the cost vector. A common approach to dealing with the
probabilistic constraint in (2) is the sample average approximation method [12] where the distribution of ã
is approximated by an empirical distribution corresponding to an i.i.d sample of return vectors {ai}mi=1. The
approximated problem then reads as follows:

min c>x

s.t. e>x = 1

a>i x ≥ r i = 1, ...,m, (3)

at most k of the m constraints can be violated,

x ∈ Rn+,

where k = bmεc. Since the return is non-negative and only nonnegative investments are allowed, (3) is an
example of CKVLP with an additional equality constraint. In Section 6, we discuss a similar application
of CKVLP in an optimal vaccine allocation under probabilistic constraints [18]. Additional applications of
CKVLP arise in intensity modulated radiation therapy (IMRT) planning [20] and signal broadcasting coverage
design [17].

A CKVLP can be modeled as a mixed integer program (MIP) in a straight-forward manner. First, note
that if bi = 0 for any i ∈ {1, . . . ,m}, then the corresponding inequality is redundant since then the inequality
is implied by the non-negativity constraints on the x variables. Thus, we assume henceforth that bi > 0 for
all i ∈ {1, . . . ,m} and so they can be scaled to 1. Then, an MIP formulation of CKVLP is

min c>x

s.t. a>i x+ zi ≥ 1 i = 1, ...,m, (4)
m∑
i=1

zi ≤ k

x ∈ Rn+, zi ∈ {0, 1} i = 1, ...,m,

where we have introduced the binary variables zi taking the value 1 if the i-th constraint is violated. For
large scale CKVLPs, the above MIP formulation performs very poorly. The goal of this paper is to study
a number of enhancement schemes to improve the computational performance of MIP-based approaches for
solving CKVLPs.

We begin by studying the theoretical complexity of CKVLPs and illustrating the difficulty of solving
realistic instances directly by the CPLEX MIP solver (Section 2) as well. Next, in order to improve the
performance of standard solvers on the MIP model (4) of CKVLPs, we introduce and analyze a coefficient
strengthening scheme (Section 3), adapt and analyze an existing cutting plane technique (Section 4), and
present a branching technique (Section 5). Through computational experiments on the probabilistic portfolio
optimization problem (3) and an optimal vaccination allocation problem, we empirically verify that these
techniques are extremely effective in improving solution times (Section 6). In particular, we observe that
the proposed schemes can cut down solution times from as much as six days to under four hours in some
instances.

We close this section by pointing out that all three enhancement schemes studied here are applicable when
there are additional side constraints in the MIP (4). This follows since these schemes attempt to tighten the
LP relaxation of (4), which is a valid relaxation even when additional side constraints are present.

2 Difficulty of Solving CKVLP

2.1 Computational Complexity

General KVLP has been shown to be NP-complete [1]. However, to the best of our knowledge, the complexity
of CKVLP, a sub-class of KVLP, has not been addressed. In a recent paper [20], Tunçel et al. showed that

2
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a packing version KVLP is weakly NP-hard (the linear inequalities in KVLP are packing inequalities) by
reduction from the partition problem. This result can be modified to show the NP-hardness of CKVLP. In
this paper we provide a direct proof that CKVLP is strongly NP-hard.

By complementing the binary variables z in (4), we have the following equivalent formulation of CKVLP:

min c>x
s.t. Ax ≥ z

e>z ≥ p
x ∈ Rn+
z ∈ {0, 1}m,

(5)

where A = [a>1 , ..., a
>
m] ∈ Qm×n+ , c ∈ Qn+, p = m − k, e is the column vector with each entry equal to 1, and

Q is the set of rationals.
To prove that CKVLP (5) is NP-hard, we first verify that the following intermediate decision problem is

NP-complete.

Intermediate CKVLP Feasibility Problem: Given η ∈ Q, A ∈ Qm×n+ and c ∈ Qn, does there exist
a solution (x, z) ∈ Rn+ × {0, 1}m to the following system?

c>x− e>z ≤ η
Ax ≥ z.

(6)

Lemma 1. The Intermediate CKVLP Feasibility Problem (6) is strongly NP-complete.

Proof. Since (6) is a decision version of a mixed integer linear program, it is in NP. In order to show that
determining the feasibility of (6) is strongly NP-complete, we polynomially reduce an arbitrary instance of
the strongly NP-complete vertex cover problem [8] to an instance of (6). An instance of the vertex cover
problem is defined as follows:

Vertex Cover : Given a graph G = (V,E) and q ∈ N, does there exist S ⊆ V such that (i) |S| ≤ q
and (ii) S is a vertex cover, that is for all (i, j) ∈ E, either i ∈ S or j ∈ S?

Given an instance of the vertex cover problem, we construct an instance of (6) by setting m := |V | + E|,

n := |V |, η := q − |E|, c := 2e, A :=

[
H
I

]
, where H is the node-arc incidence matrix of G and I is a

|V | × |V | identity matrix. The resulting instance of (6) is then:

2
∑
j∈V

xj −
∑
j∈V

zj −
∑

(i,j)∈E

yij ≤ q − |E| (7)

xi + xj ≥ yij ∀ (i, j) ∈ E (8)

xi ≥ zi ∀ i ∈ V (9)

x ∈ R|V |+ (10)

z ∈ {0, 1}|V | (11)

y ∈ {0, 1}|E|. (12)

Note that the size of (7)-(12) is polynomial in the encoding length of G and q. We complete the proof by
showing that a vertex cover instance has an answer yes if and only if the associated system (7)-(12) has a
solution.

(⇒) Let S be a vertex cover for G such that |S| ≤ q. Then, consider a solution (x̃, ỹ, z̃) ∈ R|V |+ × {0, 1}|E| ×
{0, 1}|V | defined as:

x̃j = z̃j =

{
1 ∀ j ∈ S
0 ∀ j ∈ V \ S,

ỹi,j = 1 ∀ (i, j) ∈ E.

3
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The solution (x̃, ỹ, z̃) satisfies (9)-(12) by construction, and since S is a vertex cover it also satisfies (8).
Finally, 2

∑
j∈V x̃j −

∑
j∈V z̃j −

∑
(i,j)∈E ỹij = |S| − |E| ≤ q − |E|. Thus the system (7)-(12) has a solution.

(⇐) Now assume that the system (7)-(12) has a solution. Note that an arbitrary feasible solution to (7)-
(12) may have fractional x components that cannot be directly converted to a vertex cover for G. We
show that there exists a feasible solution of (7)-(12) with integral values of x and y = e whenever (7)-
(12) is feasible. Towards this end, we first present some properties of feasible solutions to (7)-(12). Given

(x, y, z) ∈ R|V |+ × {0, 1}|E| × {0, 1}|V |, which satisfies (8)-(12), let

f(x, y, z) := 2
∑
j∈V

xj −
∑
j∈V

zj −
∑

(i,j)∈E

yij ,

i.e., if (x, y, z) is feasible for (7)-(12), then f(x, y, z) ≤ q − |E|.

Claim a. Given (x1, y1, z1) satisfying (8)-(12), there exists (x2, y2, z2) satisfying (8)-(12) such that y2 = e
i.e. a vector of ones, and f(x2, y2, z2) ≤ f(x1, y1, z1).

Proof of Claim a. Suppose there exists (̃i, j̃) ∈ E such that y1
ĩj̃

= 0. Construct (x3, y3, z3) as follows:

x3j =

{
1 j = ĩ

x1j j ∈ V \ {̃i} ,

z3j =

{
1 j = ĩ

z1j j ∈ V \ {̃i} ,

y3ij =

{
1 (i, j) = (̃i, j̃)

y1ij (i, j) ∈ E \ {(̃i, j̃)}.

It is easy to see that (x3, y3, z3) satisfies (8)-(12). We observe that f(x1, y1, z1)− f(x3, y3, z3) = (2x1
ĩ
− z1

ĩ
−

y1
ĩ,j̃

) − (2 × 1 − 1 − 1) = x1
ĩ

+ (x1
ĩ
− z1

ĩ
) ≥ 0, where the last inequality holds due to the fact that (x1, y1, z1)

satisfies (9). By repeating the above construction at most |E| times we arrive at a solution (x2, y2, z2) satis-
fying the claim. ♦

We now restrict our attention to feasible solutions of (7)-(12) with the vector y fixed to e. Next, we show
that a feasible solution with integral x components exists.

Claim b. Given (x1, e, z1) satisfying (8)-(12), there exists a solution (x2, e, z2) satisfying (8)-(12) such that
x2 ∈ {0, 1}|V | and f(x2, e, z2) ≤ f(x1, e, z1).

Proof of Claim b. If x1 ∈ {0, 1}|V |, then there is nothing to verify. If there exists j such that x1j > 1, then

we can set x1j = 1. The resulting solution still satisfies (8)-(12), and the value of the function f reduces.

Therefore, the non-trivial case is when there exists j̃ such that x1
j̃
∈ (0, 1). In this case, we construct a solution

(x3, e, z3) as follows. Examine the set of neighboring vertices N(j̃) of the vertex j̃. If x1
ĩ

+ x1
j̃
> y1

ĩj̃
= 1 for

all ĩ ∈ N(j̃) then we may reduce the value of x1
j̃

by a sufficiently small positive value so that (x1, e, z1) still

satisfies (8)-(12) and the value of f(x1, e, z1) reduces. Therefore, we may assume that there exists a vertex
ĩ ∈ N(j̃) such that x1

ĩ
+ x1

j̃
= 1. Without loss of generality, we may assume that 1 > x1

j̃
≥ 1

2 (otherwise we

4
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can swap ĩ and j̃), which also implies that z1
j̃

= 0. Next, we construct (x3, e, z3) as follows:

x3j =

{
1 j = j̃

x1j j ∈ V \ {j̃} ,

z3j =

{
1 j = j̃

z1j j ∈ V \ {j̃} .

It is easy to see that (x3, e, z3) with x3
j̃
∈ {0, 1} as constructed above satisfies (8)-(12). Furthermore

f(x1, e, z1) − f(x3, e, z3) = 2x1
j̃
− (2 − 1) = 2x1

j̃
− 1 ≥ 0. By repeating the above construction at most

|V | times, we obtain the required (x2, e, z2) satisfying the claim. ♦

From the claims a and b, it is clear that there exists a feasible solution of the form (x, y, z) with (i) y = e
and (ii) x ∈ {0, 1}|V |. If xj = 1 and zj = 0 for some j, then we can set zj = 1, and the resulting solution
is still feasible for (7)-(12). Therefore, we may assume that the feasible solution also satisfies xj = zj for all
j ∈ V . We select any such feasible solution and let S = {j : xj = 1}. Clearly, S is a vertex cover for G since
y = e. Notice that f(x, y, z) = 2|S| − |S| − |E| ≤ q − |E| or equivalently |S| ≤ q.

Theorem 1. CKVLP is strongly NP-hard.

Proof. To verify that (5) is NP-hard, we show that if there exists a polynomial time algorithm for solving
(5), then there is a polynomial time algorithm for deciding the feasibility of (6). This completes the proof,
since by Lemma 1, we have that deciding the feasibility of (6) is NP-complete.

Let v(p) denote the optimal value of (5) as a function of p ∈ {0, . . . ,m}. Consider the following algorithm
for deciding the feasibility of (6):

1. Given A ∈ Zm×n+ , c ∈ Zn, and η ∈ Z, compute v(p) for all p ∈ {0, . . . ,m}, using the polynomial-time
algorithm for solving (5).

2. Compute η∗ := min
0≤p≤m

{v(p)− p}. If η∗ ≤ η, return “yes,” (i.e. (6) is feasible); otherwise return “no.”

Notice that the above algorithm is a polynomial time algorithm in the size of the encoding of (6). It remains
to verify the validity of the above algorithm.

Suppose η∗ ≤ η and p∗ ∈ argmin{v(p) − p}. Consider an optimal solution (x∗, z∗) to (5) corresponding
to p = p∗. Since η ≥ η∗ = v(p∗)− p∗ ≥ v(p∗)− e>z∗ = c>x∗ − e>z∗, the instance of (6) is feasible.

Suppose η∗ > η. Assume by contradiction that the instance of (6) is feasible and let (x∗, z∗) be a feasible
point. Let p∗ =

∑m
j=1 z

∗
j . Then, observe that (x∗, z∗) is feasible to (5) corresponding to p = p∗. Thus,

η∗ ≤ v(p∗)− p∗ ≤ c>x∗ − p∗ ≤ η, a contradiction.

2.2 Performance of a standard MIP solver on CKVLP instances

Given the significant advancements made in MIP solution technology, many instances of NP-hard problems
are not necessarily difficult to solve in practice. To assess the practical computational difficulty of CKVLP,
we next report on the performance of CPLEX, a state-of-the-art MIP solver, on randomly generated instances
of the MIP (4).

We consider instances with n = 20, m = 200 and k ∈ {15, 20}. The data is generated as follows:

1. “Dense Data”: Each left-hand-side coefficient aij is generated uniformly between 0.8 and 1.5, and then
the coefficients are divided by 1.1. The cost vector is a vector of ones.

2. “Sparse Data”: This uses the same input data as in “Dense Data”, except that half of the left-hand-side
coefficients are randomly set to zero.
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3. “Random Objective”: These instances have the same constraint coefficients as in “Dense Data”, but
with random integer cost coefficients between 1 and 100.

For each of the six combinations of two values of k and three data classes, we considered 10 instances with a
total for 60 instances. The computations are run on Intel Xeon 2.27 GHz dual core Linux server installed with
4 Gb RAM. The model is implemented with the callable libraries and solved by the MIP solver in CPLEX
12.1 with default settings.

The average results over ten instances in each size-data combination are presented in Table 1. The ‘Gap’
column in the table reports the root node LP relaxation gap closed by CPLEX cuts. That is, the value(
zLP+Cuts−zLP

z∗−zLP

)
× 100, where zLP+Cuts, zLP , and z∗ are the objective function values of the LP relaxation

with CPLEX cuts at the root node, of just the LP relaxation, and of the MIP, respectively. The ‘Nodes’ and
the ‘Time’ columns report the number of branch-and-bound tree nodes generated and the time in seconds
needed to solve the instances to optimality, respectively.

Dense Data Sparse Data Random Objective
k Gap Nodes Time Gap Nodes Time Gap Nodes Time
15 2% 3,537,864 2,454 7% 158,039 83 17% 1,777 1
20 2% 43,296,679 25,948 6% 1,769,574 917 21% 6,227 2

Table 1: Performance of CPLEX on CKVLP

Following are some observations based on the above computations.

1. The effect of k: Setting k to a larger value results in a substantial increase in time and memory
consumption (measured in the number of nodes in the branch-and-bound tree), as seen by a ten-
fold increase for the first two types of instances. This phenomenon can perhaps be explained by the
combinatorial nature of CKVLP, which is to choose the linear program with the best objective value
among

(
m
k

)
linear programs. When k increases to bm2 c, the number of possible linear programs increases

rapidly.

2. The effect of sparsity: The coefficient matrix density, measured by the number of non-zeros, can make
instances significantly harder to solve, as seen by a 20-time increase in nodes and 30-time increase
in time when the density increases from 50% to 100%. The dense coefficients not only make the LP
relaxation hard to solve, but also make it hard for CPLEX to find effective cuts, e.g., CPLEX default
cuts close only 2% of the LP relaxation gap in the “Dense Data” instances, whereas 6-7% of the gap is
closed in the “Sparse Data” instances.

3. The effect of objective function: The objective function coefficients play a crucial role in determining
the computational difficulty, as demonstrated by the contrast between “Dense Data” and “Random
Objective”. The instances with random objective coefficients can be solved in seconds; however, the
instances with the same constraints but uniform objective coefficients in “Dense Data” take hours to
solve. When the cost coefficients and the constraint coefficients are set up in a way so that the objective
values of linear programs formed by different choices of linear constraints are close, the branch-and-
bound procedure generates a great number of nodes, of which the LPs are similar in terms of bounds,
and the MIP solver spends an enormous amount of time on proving optimality.

In the rest of the paper, we focus on variants of the most difficult class of the above instances, that is,
instances that are very similar in type to “Dense Data,” and attempt to tighten the root node lower bound
and reduce the size of the search tree.
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3 Iterative Coefficient Strengthening

In this section, we propose and analyze a scheme for strengthening the coefficients of the binary variables in
the MIP formulation (4) of CKVLP. Let X denote the set of feasible x solutions of (4), i.e.

X := {x ∈ Rn+ : ∃z ∈ {0, 1}m s.t. a>i x+ zi ≥ 1 ∀ i = 1, ...,m and
m∑
i=1

zi ≤ k}. (13)

Definition 1. A vector ` ∈ Rm is called a valid bound vector if `i ≤ min{a>i x : x ∈ X} for all i = 1, . . . ,m.

Given a valid bound vector `, let

X(`) := {x ∈ Rn+ : ∃z ∈ [0, 1]m s.t. a>i x+ (1− `i)zi ≥ 1 ∀ i = 1, ...,m and
m∑
i=1

zi ≤ k}.

Proposition 2. (i) If ` is a valid bound vector then X(`) ⊇ X. (ii) The bound vector ` = 0 is valid. (iii)
For valid bounds `1 and `2, if `2 ≥ `1 then X(`1) ⊇ X(`2).

Proof. (i) If x ∈ X then there exists z ∈ {0, 1}m such that a>i x ≥ max{1 − zi, `i} for all i = 1, . . . ,m and∑m
i=1 zi ≤ k. Since max{1− zi, `i} = 1− (1− `i)zi when zi ∈ {0, 1}, it follows that a>i x+ (1− `i)zi ≥ 1 and

x ∈ X(`). (ii) Since a>x ≥ 0 for all x ∈ Rn+, we obtain that ` = 0 is a valid bound vector. (iii) If x ∈ X(`2)
then there exists z ∈ [0, 1]m such that a>i x ≥ 1− (1− `2i )zi for all i = 1, . . . ,m and

∑m
i=1 zi ≤ k. Since zi ≥ 0

this implies that a>i x ≥ 1− (1− `1i )zi, hence x ∈ X(`1).

Note that X(0) is the projection, on to the x variables, of the LP relaxation of the MIP formulation (4).
Proposition 2 suggests that we can strengthen this LP relaxation by iteratively tightening the bound vector
` and hence the coefficients of the binary variables in (4), starting from ` = 0. Algorithm 1 describes such
a coefficient strengthening procedure. Note that procedure requires solving m feasible linear programs with
bounded objectives in each iteration.

Algorithm 1 Iterative Coefficient Strengthening

Input : A threshold parameter ε > 0 and the data (m,n, k, aij) describing X

Output : A valid bound vector ˆ̀∈ Rm+

∆← 2ε, t← 1, `t ← 0
while ∆ > ε do

for i = 1, ...,m do
`t+1
i = min{a>i x : x ∈ X(`t)}

end for
∆← ||`t+1 − `t||∞
t← t+ 1

end while
ˆ̀← `t

Proposition 3. Let {`t} be the sequence of bound vectors produced in Algorithm 1. We have (i) `t+1 ≥ `t

and (ii) `t is a valid bound vector for all t. Accordingly, Algorithm 1 terminates finitely returning a valid

bound vector ˆ̀.

Proof. We proceed by induction on t. For the base case t = 1 we have `1 = 0, then (ii) holds from part (ii)
of Proposition 2. Moreover `2i = min{a>i x : x ∈ X(0)} ≥ 0 for all i, hence (i) holds. Suppose now that (i)
and (ii) hold for some t > 1. By definition `t+1

i = min{a>i x : x ∈ X(`t)} for all i = 1, . . . ,m. Thus, for
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each i = 1, . . . ,m, `t+1
i ≤ a>i x for all x ∈ X(`t) and hence for all x ∈ X since X ⊆ X(`t) from the validity

of `t. Thus `t+1 is a valid bound vector and (ii) holds for all t. By our induction hypothesis `t+1 ≥ `t thus
X(`t+1) ⊆ X(`t) by part (iii) of Proposition 2. Thus `t+2

i = min{a>i x : x ∈ X(`t+1)} ≥ min{a>i x : x ∈
X(`t)} = `t+1

i for all i = 1, . . . ,m, and so (i) holds for all t. Finally note that, for any t, X(`t) ⊇ X from
part (i) of Proposition 2, thus `ti = min{a>i x : x ∈ X(`t)} ≤ min{a>i x : x ∈ X} =: ¯̀∗

i , where ¯̀∗
i is a

well defined finite value, for all i = 1, . . . ,m. Thus, for each i = 1, . . . ,m, {`ti} is a bounded nondecreasing
sequence, and hence convergent. It follows that for any ε > 0 there exists a sufficiently large value of t such
that ||`t+1 − `t||∞ ≤ ε ensuring finite termination of the algorithm.

Next we analyze the strength of the LP relaxation of (4) using tightened coefficients derived using Algo-
rithm 1. Given a cost vector c, let

v∗ = min{c>x : x ∈ X} and zL(`) = min{c>x : x ∈ X(`)}, (14)

be the optimal value of the MIP (4) and the optimal value of the LP relaxation corresponding to bound
vector `, respectively. Note that these values are finite as long as c ≥ 0. Recall that vL(0) is the natural
LP relaxation bound for (4), and the coefficient tightening scheme in Algorithm 1 is aimed to improve this
bound. In the following we analyze this improvement as a function of the instance data. For simplicity of
the analysis we assume that cj > 0 and aij > 0 for all i and j. Let

ρ = min
i=1,...,m

min
j=1,...,n

{
aij

(1/m)
∑m
i′=1 ai′j

}
. (15)

Note that ρ is a measure of the variability of the constraint coefficient data and ρ ∈ (0, 1]. Let {`t} be
the sequence of bound vectors produced by the scheme in Algorithm 1 with a threshold of ε = 0. From
Proposition 3 we know that this sequence is convergent. Let

`∗ = lim
t→∞

`t. (16)

Recall that m is the number of constraints in (4) and k is maximum number of constraints allowed to be
violated.

Lemma 2. Assuming aij > 0 for all i = 1, . . . ,m and j = 1, . . . , n,

`∗i ≥
m− k
m− ρk

ρ ∀ i = 1, . . . ,m,

where ρ and `∗ are as defined in (15) and (16), respectively.

Proof. Let {ut} be a sequence of m dimensional vectors defined by the following recursion:

u1i = 0 and ut+1
i = ρ(1− (1− uti)k/m) ∀ i = 1, . . . ,m, ∀ t ≥ 1. (17)

First, we claim that
`t ≥ ut ≥ 0 ∀ t ≥ 1. (18)

We prove this claim by induction on t. Note that (18) holds for t = 1 since `1i = u1i = 0 for all i = 1, . . . ,m.
Suppose now that (18) holds for some t > 1. Since uti ≥ 0 and 0 < k/m ≤ 1 we have that (1− (1−uti)k/m) =
(1−k/m)+utik/m ≥ 0, and hence ut+1

i ≥ 0. Let µj =
∑m
i=1 aij/m for j = 1, . . . , n and µ be the corresponding
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n-dimensional vector. For any i = 1, . . . ,m,

`t+1
i = min{a>i x : x ∈ X(`t)} (19)

≥ min{a>i x : x ∈ X(ut)} (20)

= min{a>i x : a>i′ x+ (1− uti′)zi′ ≥ 1 ∀ i′ = 1, . . . ,m,
m∑
i′=1

zi′ ≤ k, x ∈ Rn+, z ∈ [0, 1]m} (21)

≥ min{a>i x : µ>x ≥ 1− (1− uti)k/m, x ∈ Rn+} (22)

= (1− (1− uti)k/m)( min
j=1,...,n

{aij/µj}) (23)

≥ ρ(1− (1− uti)k/m) (24)

= ut+1
i , (25)

where (20) follows from the induction hypothesis `t ≥ ut since X(`t) ⊆ X(ut) by Proposition 2(iii); (21)
follows from the definition of X(ut); (22) follows by aggregating the m rows of the linear program defined in
(21), noting that uti′ = uti for all i and i′, and eliminating the z variables; since (1− (1− uti)k/m) ≥ 0, (23)
follows from the optimal solution of the single constrained linear program defined in (22); (24) follows from
the definition of ρ; and (25) follows from the definition of ut+1

i . Thus (18) holds.

Next we claim that, for all i = 1, . . . ,m, {uti} is convergent and

lim
t→∞

uti =
m− k
m− ρk

ρ. (26)

Consider any i ∈ {1, . . . ,m}. We first verify that uti ≤ m−k
m−ρkρ for all t. We proceed by induction on t. By def-

inition u1t = 0 ≤ m−k
m−ρkρ. By induction hypothesis, we have that uti ≤ m−k

m−ρkρ. Now ut+1
i = ρ− ρ km + ρ kmu

t
i ≤

ρ − ρ km + ρ km

(
m−k
m−ρkρ

)
= m−k

m−ρkρ. Now we verify that the sequence {uti} is non-decreasing. Observe that

uti − ut+1 = uti −
(
ρ− ρ km + ρ kmu

t
i

)
= uti

(
1− ρ km

)
− ρ + ρ km ≤

(
m−k
m−ρkρ

) (
1− ρ km

)
− ρ + ρ km = 0. Finally

suppose by contradiction that the sequence {uti} converges to a value m−k
m−ρkρ − δ, where δ > 0. Therefore,

there exists a t such that m−k
m−ρkρ− δ > uti >

m−k
m−ρkρ− δ − ε, in which ε = δ

(
1− ρ km

)
. Since ρ km < 1, we have(

1− ρ km
)
< 1. Hence, we obtain uti−u

t+1
i <

(
m−k
m−ρkρ− δ

) (
1− ρ km

)
− ρ+ ρ km = −(δ)

(
1− ρ km

)
= −ε. Thus,

ut+1
i > uti + ε > m−k

m−ρkρ− δ which is a contradiction. Thus (26) holds.

It then follows from (18) and (26) that

`∗i ≥
m− k
m− ρk

ρ ∀ i = 1, . . . ,m.

Theorem 4. Assuming cj > 0 and aij > 0 for all i = 1, . . . ,m and j = 1, . . . ,m,

v∗ − vL(`∗)

v∗
≤ m(1− ρ)

m− ρk
. (27)
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Proof. Note that

vL(`∗) = min

{
c>x : a>i x+ (1− `∗i )zi ≥ 1 ∀ i = 1, . . . ,m,

m∑
i=1

zi ≤ k, x ∈ Rn+, z ∈ [0, 1]m

}
(28)

≥ min

{
c>x : a>i x+ (1− m− k

m− ρk
ρ)zi ≥ 1 ∀ i = 1, . . . ,m,

m∑
i=1

zi ≤ k, x ∈ Rn+, z ∈ [0, 1]m

}
(29)

≥ min

{
c>x : µ>x+ (1− m− k

m− ρk
ρ)
k

m
≥ 1 ∀ i = 1, . . . ,m, x ∈ Rn+

}
(30)

=
cĵ
µĵ

m− k
m− ρk

(31)

where

ĵ ∈ argmin

{
cj
µj

: j = 1, . . . , n

}
. (32)

In the above, (29) follows from Lemma 2; (30) follows from aggregating the rows of the LP defined in (29)
and eliminating the z variables; and (31) follows from solving the single constrained LP defined in (30).

Note that

v∗ = min

{
c>x : a>i x+ zi ≥ 1 ∀i ∈ {1, . . . ,m},

m∑
i=1

zi ≤ k, x ∈ Rn+, z ∈ {0, 1}m
}
.

Next we obtain an upper bound on v∗. For ĵ defined in (32):

1. Sort aiĵ ’s from smallest to largest.

2. Let aîĵ be the (k + 1)st smallest number.

3. Let vH =
cĵ
aîĵ

. This corresponds to the objective function value of the feasible solution xj = 0 for j 6= ĵ

and xĵ = 1
aîĵ

. Thus v∗ ≤ vH .

Now observe that

cĵ
µĵ

m− k
m− ρk

≤ vL ≤ v∗ ≤
cĵ
aîĵ

= zH . (33)

Therefore using the definition of ρ we obtain that,

v∗ − vL

v∗
≤ zH − vL

zH
≤ m(1− ρ)

m− ρk
. (34)

4 Mixing Set Inequalities

In this section, we study valid inequalities derived from a mixing set relaxation of CKVLP. A mixing set is
defined as follows:

P = {(y, z) ∈ R+ × {0, 1}n : y + hizi ≥ hi, i = 1, ..., n}, (35)
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where h1 ≥ h2 ≥ · · · ≥ hn. The mixing set was introduced by Günlük and Pochet [10], and its variants in
different contexts have also been studied in [6, 15, 7, 21, 9, 11]. The following inequalities, known as mixing
(set) inequalities, are valid for P :

y +
l∑

j=1

(htj − htj+1
)ztj ≥ ht1 ∀ T = {t1, ..., tl} ⊆ N, (36)

where ht1 > ht2 > · · · > htl and htl+1
:= 0. Furthermore, these inequalities can be separated in polynomial

time, are facet-defining for P when t1 = 1, and are sufficient to describe the convex hull of P [2, 10].
Recently, the mixing set inequalities have been applied to solve the MIP formulation of chance-constrained

problems, which has a k-violation-type substructure, i.e., a feasible solution must satisfy the constraints
corresponding to at least k out of m scenarios [13, 14]. CKVLPs can be viewed as a special case of this
substructure in which each scenario consists of only one covering linear constraint. We next describe and
analyze the mixing set inequalities for CKVLPs.

Let the set of (x, z)-solutions to the MIP (4) be denoted by XMIP, and recall from (13) that the set of x-
solutions to (4) is denoted by X. Note that X is the projection of XMIP into x-space, i.e., X = Projx(XMIP).
Following [14], we can obtain a mixing set relaxation of XMIP as follows. Given a vector α ∈ Rn+, calculate
βαi , i ∈ {1, . . . ,m} as below:

βαi := min α>x

s.t. a>i x ≥ 1, x ∈ Rn+,

where ai is the coefficient vector for the i-th constraint in the MIP (4). Assume without loss of generality
that βα1 ≥ βα2 ≥ ... ≥ βαm, and consider the following set

Y (α) := {(x, z) ∈ Rn+ × {0, 1}m : α>x+ (βαi − βαk+1)zi ≥ βαi , i = 1, ..., k}. (37)

Proposition 5. For any α ∈ Rn+, XMIP ⊆ Y (α) and X ⊆ Projx(Y (α))

Proof. Let (x̄, z̄) ∈ XMIP. Then the non-negativity constraints and integrality constraints in Y (α) are satisfied
by (x̄, z̄). Without loss of generality, we may assume that the indexes 1, ..., k in Y (α) are the first k indexes
in XMIP. It remains to verify that (x̄, z̄) satisfies the constraints α>x̄+ (βαi −βαk+1)z̄i ≥ βαi for all i = 1, ..., k.

(i) For i such that z̄i=1: We require to verify that α>x̄ ≥ βαk+1. Since (x̄, z̄) ∈ XMIP, there exists some

u ∈ {1, . . . , k + 1} such that a>u x̄ ≥ 1. Moreover as βαu = min{α>x : x ∈ Rn+, a>u x ≥ 1}, we obtain that
α>x̄ ≥ βαu ≥ βαk+1, where the last inequality is due to the fact that u ≤ k + 1.

(ii) For i such that z̄i=0: We require to verify that α>x̄ ≥ βαi . Since (x̄, z̄) ∈ XMIP, we obtain that a>i x̄ ≥ 1.
Moreover as βαi = min{α>x : x ∈ Rn+, a>i x ≥ 1}, we have that α>x̄ ≥ βαi .

Therefore, (x̄, z̄) ∈ Y (α) and XMIP ⊆ Y (α). The result X ⊆ Projx(Y (α)) follows from the fact that
X = Projx(XMIP).

The set Y (α) is a valid relaxation of XMIP and it is in the form of a mixing set. This can be noted by
considering y := (α>x− βαk+1) as a nonnegative continuous variable to obtain the mixing system

y + (βαi − βαk+1)zi ≥ βαi − βαk+1 ∀ i = 1, . . . , k.

Thus, we have the complete description of conv(Y(α)) using the inequalities (36), which are also valid for
XMIP, i.e., conv(XMIP) ⊆ conv(Y(α)). Let us call

⋂
α∈Rn

+
conv(Y(α)) the mixing closure. Clearly, the mixing

closure is a valid relaxation of conv(XMIP). Let vMIX be the optimal objective value of optimizing over the
mixing closure, and v∗ be the optimal objective value of the MIP (4). Then, the best root node gap that can
be potentially achieved by the mixing inequality procedure is bounded by (v∗ − vMIX)/v∗. To study this gap
quantitatively, e.g., deriving a bound for (v∗ − vMIX)/v∗, we analyze the projection of the mixing closure on
the x-space, i.e., Projx(

⋂
α∈Rn

+
conv(Y(α))) in the following subsections.
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4.1 The mixing closure

Note that

conv(X) = Projx(conv(XMIP))) ⊆ Projx(
⋂
α∈Rn

+

conv(Y (α))) (38)

⊆
⋂
α∈Rn

+

Projx(conv(Y (α))) =
⋂
α∈Rn

+

conv(Projx(Y (α))).

Thus, minimizing over
⋂
α∈Rn

+
conv(Projx(Y (α))) yields a lower bound for vMIX.

Proposition 6. Projx(Y (α)) = {x ∈ Rn+ : α>x ≥ βαk+1}.

Proof. ⊆: Let x̄ ∈ Projx(Y (α)), then there exists z̄ ∈ {0, 1}k such that α>x̄+(βαi −βαk+1)z̄i ≥ βαi , i = 1, ..., k.

Thus α>x̄ ≥ βαi (1− z̄i) + βαk+1z̄i ≥ βαk+1 since βαi ≥ βαk+1 and z̄i ∈ [0, 1].

⊇: Let x̄ ∈ {x ∈ Rn+ : α>x ≥ βαk+1}, set z̄i = 1, i = 1, ..., k, then (x̄, z̄) ∈ Y (α) and x̄ ∈ Projx(Y (α)).

Since Projx(Y (α)) is a half space in the non-negative orthant and hence convex, the convex hull operator in⋂
α∈Rn

+
conv(Projx(Y (α))) is unnecessary.

Proposition 7.⋂
α∈Rn

+

conv(Projx(Y (α))) =
⋂
α∈Rn

+

Projx(Y (α)) =
⋂
α∈Rn

+

{x ∈ Rn+ : α>x ≥ βαk+1}.

Proposition 7 and (38) indicate that the projection of the mixing closure onto the x-space is contained in the
closure constituted by infinitely many half spaces. To study this closure, we give a formal definition as below:

Definition 2 (Basic Mixing Closure). The Basic Mixing Closure is defined as

M :=
⋂
α∈Rn

{x ∈ Rn+ : α>x ≥ βα}, (39)

where βα := βαk+1.

We call α>x ≥ βα a basic mixing inequality corresponding to α. In order to understand the basic mixing
closure, we describe another class of inequalities.

Definition 3 (Simple Disjunctive Cuts and Closure).

1. Select a subset S of k+1 constraints. Since at least one of these constraints must be satisfied, we obtain
the simple disjunction:

(a>i1x ≥ 1, x ∈ Rn+) ∨ (a>i2x ≥ 1, x ∈ Rn+) ∨ · · · ∨ (a>ik+1
x ≥ 1, x ∈ Rn+), (40)

where S = {i1, . . . ik+1}.

2. Define aS ∈ Rn as

(aS)j = maxi∈S{aij} ∀j = 1, ..., n.

The convex hull of (40) is

(aS)>x ≥ 1, x ∈ Rn+,

and we call (aS)>x ≥ 1 a simple disjunctive cut.
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We define the simple disjunctive closure as

D :=
⋂

S⊆{1,...,m},|S|=k+1

{x ∈ Rn+ : (aS)>x ≥ 1}. (41)

Proposition 8. D =M

Proof. D ⊆ M: For any given α, without loss of generality, let β1 ≥ . . . βk ≥ βk+1 ≥ · · · ≥ βm. Then
βα = βk+1. Since α>x ≥ βi is a valid inequality for the set {a>i x ≥ 1, x ∈ Rn+} ∀i = 1, ..., k + 1, α>x ≥ βα
is a valid inequality for the convex hull of the set

(a>1 x ≥ 1, x ∈ Rn+) ∨ (a>2 x ≥ 1, x ∈ Rn+) ∨ · · · ∨ (a>k+1x ≥ 1, x ∈ Rn+),

or equivalently α>x ≥ βα is dominated by the inequality (aS)>x ≥ 1.
M⊆ D: Let S ⊆ {1, . . . ,m} such that |S| = k + 1. We set α = αS . Then for any i ∈ {1, . . . ,m},

βi = min (aS)>x

s.t. (ai)
>x ≥ 1, x ∈ Rn+.

Since aij ≤ (aS)j , we obtain that βi = min1≤j≤n
(aS)j
aij

≥ 1. Therefore, βaS ≥ 1. Hence, the basic mixing

inequality is

(aS)>x ≥ β(aS)

which dominates the inequality (aS)>x ≥ 1.

Because m and k are finite numbers, the number of simple disjunctive cuts is also finite, the following result
is immediate:

Corollary 9. M is polyhedral.

4.2 Bound Quality

Using the equivalence of D and M, and the fact that D has an explicit form and simple structure, we derive
a lower bound for vMIX by studying D. We then provide a bound on the best possible gap achievable by the
addition of all possible mixing inequalities, i.e., (v∗ − vMIX)/v∗.

Proposition 10. Suppose c > 0 and aij > 0 for all i, j. Let a = minij{aij} and a = maxij{aij}. Let v∗ be
the optimal objective value over X and vM be the optimal value over the basic mixing closure, then

0 ≤ v∗ − vMIX

v∗
≤ v∗ − vM

v∗
≤ a− a

a
.

Proof. Let c = minj{cj}. Note that v∗ ≤ min{c>x : a>i x ≥ 1∀ i = 1, . . . ,m, x ∈ Rn+} ≤ min{c>x : (e>x) ≥
1/a, x ∈ Rn+} = c/a. By the equivalence of D and M, we obtain that vM = min{c>x : (aS)>x ≥ 1 ∀S ⊆
{1, ...,m}, |S| = k+1, x ∈ Rn+} ≥ min{c>x : a(e>x) ≥ 1, x ∈ Rn+} = c/a. Thus, (v∗−vM )/v∗ = 1−vM/v∗ ≤
1− (c/a)/(c/a) = (a− a)/a.

The above result implies that the relaxations D and equivalently M can be tight when the variation of
the constraint coefficients is small. However, the separation of the most violated simple disjunctive cut from
D is NP-complete. Consider an arbitrary x∗ ∈ Rn+ that we want to separate. Let M := {i ∈ {1, . . . ,m} :

13
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a>i x
∗ < 1}. Clearly, |M | > k, because otherwise, x∗ belongs to the feasible region of the k-violation problem

X and therefore belongs to D. When |M | ≥ k + 1, we solve the following separation problem:

η = min
n∑
j=1

πjx
∗
j − 1

s.t. πj + aijwi ≥ aij j = 1, ..., n; ∀i ∈M∑
i∈M

wi = |M | − (k + 1)

πj ≥ 0 ∀j ∈ {1, . . . , n}
wi ∈ {0, 1} ∀i ∈M,

where πj is the cut coefficient for variable xj and wi is a binary variable taking value 0 whenever the i-th row
is considered in the disjunction (40). The inequality

∑n
j=1 πjxj ≥ 1 separates x∗ from D if and only if η < 0.

This separation problem is NP-hard [13]. Notice that although the mixing closure is contained in D and sepa-
ration over D is NP-complete, we do not know the complexity of the separation over Projx(

⋂
α conv(Y (α))).

5 Branching Scheme

As demonstrated in Table 1, the branch and bound search tree could be enormously large even for a small-
sized instance of the MIP (4). Part of the reason for the excessive number of nodes is the overlap in the
search tree. Without loss of generality, we assume that zj is the binary variable to branch on at the root
node. The left branch with zj fixed at zero consists of the following set

BL := {(x, z) :
∑
i6=j

zi ≤ k, a>j x ≥ 1, (x, z) ∈ Xj
MIP},

where Xj
MIP represents the set XMIP with the constraint a>j x+ zj ≥ 1 dropped and the variable zj removed

from the formulation. The right branch with zj fixed at one consists of the following set

BR := {(x, z) :
∑
i6=j

zi ≤ k − 1, a>j x ≥ 0, (x, z) ∈ Xj
MIP},

which is the union of the following two sets:

BR≥ := {(x, z) :
∑
i6=j

zi ≤ k − 1, a>j x ≥ 1, (x, z) ∈ Xj
MIP}

and
BR≤ := {(x, z) :

∑
i6=j

zi ≤ k − 1, a>j x ≤ 1, (x, z) ∈ Xj
MIP}.

Note that BR≥ is in fact a restriction of BL and hence a overlap between the left and right branches. Re-

exploring BR≥ in the right branch is a redundancy which could also hinder the infeasibility-based pruning:

When BR≤ is infeasible but BR≥ is feasible, the overall right branch will be treated as a feasible node that,

otherwise, would have been pruned. We can safely take BR≥ out of the right branch and the remaining search
tree will still cover the whole solution space. This logic applies to any node with a zi fixed at one.
One way to remove the overlap from the search tree is to introduce extra constraints and use a big-M
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formulation to model the dichotomy of zis:

min c>x

a>i x+ zi ≥ 1 i = 1, ...,m

a>i x+Mzi ≤ 1 +M i = 1, ...,m
m∑
i=1

zi ≤ k

x ∈ Rn+, zi ∈ {0, 1} ∀i = 1, ...,m.

With this big-M formulation, however, the number of constraints doubles, and an appropriate large number
M is not obvious. Instead, we remove the overlap during the branch-and-bound process as follows: whenever
a branching variable zi is fixed at one, we reverse the sign of a>i x ≥ 1 and add it as a local cut to this node.
The addition of these local cuts keeps the search tree compact and could improve infeasibility-based node
pruning. Another example exploring similar infeasiblity-based pruning can be found in [4].

6 Computational Experiments

In this section, we examine the potential impact of the proposed MIP approaches in solving two classes of
problems with the CKVLP structure, i.e. MIPs of the form of (4). We implement the algorithms using
CPLEX callable libraries (version 12.1), run the programs on Intel Xeon 2.27 GHz dual core Linux servers
installed with 4 Gb RAM, and compare the performance against the CPLEX MIP solver with default settings.

6.1 Implementation Details

The implementation of the coefficient strengthening technique (described in Section 3) straightforwardly
follows Algorithm 1. Notice that, we could obtain a tighter `t by enforcing integrality constraints on some
binary variables in X(`t), but the series of minimization problems in Algorithm 1 would become more time-
consuming. We keep X(`t) in Algorithm 1 as the set in Definition 1. The threshold parameter ∆ is chosen
to be 0.001.

In the implementation of the mixing set inequality procedure (described in Section 4), we add cuts only
at the root nodes of search trees. We first solve the root node LP relaxation and obtain an optimal solution
(x̄, z̄). Next we select the vector α from the following two sets:

• those constraint vectors ai’s for which a>i x̄ < 1; and

• the cost vector c, if all ais have been used as α.

Then we build a mixing set Y (α) as described in Section 4. Other than the most violated mixing inequality
from (36), we also add violated inequalities (36) with |T | = 2 and t1 = 1 to the root-node LP relaxation
and solve it. The choice of these inequalities is based on recommendations in [14]. We iterate this process
until one of the following stopping criteria is reached: (1) no cut with a violation of more than 0.00001 is
identified, (2) the solution time exceeds 10,000 seconds, or (3) the cut generation procedure has run for 1000
iterations. To obtain the most violated mixing inequality, we implemented the separation algorithm in [2].
At the end of the cut generation phase, we keep only the tight cuts in the final model that is passed on to
the branch-and-bound phase.

In the implementation of the branching rule, we add a>i x ≤ 1 as a local cut to the nodes in which zi is
fixed at one.
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6.2 Probabilistic Portfolio Optimization

The first class of instances we test are from the probabilistically-constrained portfolio optimization model (2)
introduced in Section 1. This problem can be approximated by the sample approximation approach as in (3)
and reformulated as the following MIP [16]:

min c>x

s.t. e>x = 1

a>i x+ rzi ≥ r, ∀i = 1, ...,m
m∑
i=1

zi ≤ k,

x ∈ Rn+, zi ∈ {0, 1} ∀i = 1, ..., n.

where ai is the i-th sample drawn from the distribution of ãi and k = bm× εc. The k-violation substructure
in this formulation enforces that the number of sampled scenarios in which the overall return is not achieved
must not exceed bm× εc. Hence, k

m , the frequency, approximates the risk level ε. The constraint e>x = 1 is
the budget constraint obtained by scaling the investment levels to a unit budget. We also considered instances
where there is no budget constraint.

Each component of ai is drawn from an independent uniform distribution between 0.8 and 1.5, which, in
this context, represents the range between a 20% loss on one’s investment and a 50% profit. The required
return r is chosen to be 1.1, and ε is set at 0.05, indicating a ten percent average return with a probability of
95%. We set n = 20, m = 200, and k = 15, allowing, at most, 15 of 200 linear inequalities to be violated. The
cost coefficients in the model with a budget constraint take on integer values uniformly distributed between
1 and 100. For the model without the budget constraint, we use the vector with all components equal to one
as the cost vector, since the instances with this particular cost vector are especially difficult to solve. We
select ten randomly generated instances for each model that can be solved by CPLEX within ten hours, and
compare the proposed methods against CPLEX with default settings.

Tables 2 and 3 present the computational results for the model with a budget constraint and the model
without a budget constraint, respectively. The first column gives the instance number. The second and third
columns give the branch-and-bound (B&B) time (in seconds) and nodes of the CPLEX MIP solver (CPX).
Columns 4-6 give the root node gap closed by the cuts generated by CPX, the coefficient strengthening (CS),
and the mixing set inequalities (MIX), respectively. Finally, columns 7-9 and 10-12 compare the percentage
improvements of the three schemes: the branching rule (BR), CS, and MIX, over the CPLEX MIP solver on
branch-and-bound time and nodes, respectively. The percentage improvement in time for BR is computed as
100 × (Time(CPX) - Time(BR))/Time(CPX), where Time(CPX) is the branch-and-bound time for default
CPLEX and Time(BR) is the branch-and-bound time using the proposed branching rule. The percentage
improvements for the other two schemes, and the nodes saved are computed analogously.

The reported solution times are only for the branch-and-bound phase of the overall procedure. The mixing
set cutting plane algorithm spends 20 to 30 seconds on root node until no more cuts can be separated. The
time spent on coefficient strengthening, which amounts to solving a series of linear programming problems, is
under 20 seconds. The local cuts added in the branching scheme can be obtained instantly by simply reversing
the sign of the corresponding constraint. Since the preprocessing times in these instances are negligible in
comparison with the branch-and-bound times, we do not include them in the solution time.
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Table 2: Percentage Improvements Over CPLEX (Portfolio Optimization with Budget Constraint)
Instance CPX Default Root Gap Closed B&B Time Saved B&B Nodes Saved
Number B&B time B&B nodes CPX CS MIX BR CS MIX BR CS MIX

1 11,094 13,640,260 19% 24% 25% 91% 89% 60% 89% 85% 62%
2 968 1,657,606 19% 23% 24% 75% 82% 51% 70% 79% 54%
3 223 505,037 36% 36% 41% 77% 86% 25% 77% 86% 36%
4 19,830 25,651,409 7% 10% 13% 90% 91% 79% 88% 89% 80%
5 400 786,701 29% 31% 33% 70% 69% -4% 66% 62% -3%
6 5,044 9,786,835 14% 19% 22% 68% 82% 27% 66% 80% 37%
7 10,923 14,365,495 29% 33% 35% 82% 88% 26% 80% 85% 35%
8 1,822 3,177,889 12% 18% 21% 87% 90% 20% 86% 88% 35%
9 2,115 3,454,682 17% 24% 28% 71% 69% -17% 66% 65% -2%
10 13,017 10,526,548 15% 18% 21% 75% 88% 11% 79% 76% -15%

Average 6,544 8,355,246 20% 24% 26% 79% 83% 28% 77% 80% 32%

Table 3: Percentage Improvements Over CPLEX (Portfolio Optimization Without Budget Constraint)
Instance CPX Default Root Gap Closed B&B Time Saved B&B Node Saved
Number B&B Time B&B Nodes CPX CS MIX BR CS MIX BR CS MIX

1 11,903 23,786,322 2% 64% 57% -15% 85% -176% 22% 91% 85%
2 14,584 24,366,521 4% 66% 61% 29% 95% 65% 38% 95% 89%
3 8,730 17,586,672 2% 64% 58% 14% 92% -181% 19% 93% 88%
4 5,516 10,898,121 5% 64% 59% 7% 90% 51% 19% 91% 83%
5 12,462 18,021,273 4% 66% 62% 19% 95% 65% 19% 94% 89%
6 21,475 30,948,921 2% 64% 58% 58% 92% 65% 46% 93% 84%
7 6,928 14,634,688 2% 64% 60% -27% 86% 44% 17% 88% 80%
8 15,547 20,957,656 2% 65% 61% 42% 93% 68% 33% 94% 89%
9 34,512 68,752,624 2% 64% 55% 41% 89% 63% 50% 94% 84%
10 5,314 9,376,843 2% 65% 60% -2% 94% 69% 14% 94% 88%

Average 13,697 23,932,964 3% 65% 59% 17% 91% 13% 28% 93% 86%

From Tables 2 and 3 we observe that the mixing set inequalities and coefficient strengthening have compa-
rable performance in terms of closing root node gaps. They both close more gap than the CPLEX default cuts,
especially in the model without a budget constraint. However, in the branch-and-bound process afterwards,
the mixing set inequalities cannot take full advantage of the tighter lower bounds to reduce overall time and
nodes. In fact, in four of the 20 instances, the mixing set inequalities even worsen the performance. The
reason lies in the difficulty of selecting effective cuts to keep in the model throughout the branch-and-bound
process. In our experiment, we also try to employ the CPLEX cut pool to dynamically manage all the cuts
generated at root nodes, but we have not been successful in identifying the most useful cuts.

The coefficient strengthening technique closes gap amounts similar to those closed by the mixing inequal-
ities, but the improvement in the overall branch-and-bound process is significantly larger than for the mixing
inequalities. The coefficient strengthening is able to cut down the time and nodes by an average of over 80%.
This achievement can be attributed to the fact that the coefficient strengthening tightens the lower bound
without introducing any extra variables or constraints at the root node.

The branching rule performs remarkably better in the model with the budget constraint, over 70% savings
on nodes and time versus less than 30% savings in the model without the budget constraint. This sizable
difference can be explained by the presence of the budget constraint. The budget constraint, as one type
of side constraint, greatly reduces the feasible region of the node problems. Consequently, the feasibility of
the node problems that have budget constraints is more sensitive to the addition of local cuts obtained by
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reversing the signs of the corresponding covering inequalities. Therefore, adding the local cuts to the models
with budget constraints is more likely to lead to infeasible node problems, triggering the infeasibility-based
node pruning more frequently.

6.3 Optimal Vaccination Allocation

The second class of test instances is the optimal vaccination allocation problem under uncertainty addressed
in [18]. In this application, a scarce vaccine is allocated to households in a community to prevent an epidemic
from breaking out by restricting the post-vaccination reproductive number to be strictly less than one. The
sample average approximation approach to this problem yields a MIP formulation which has a CKVLP
structure, plus some side constraints of form

∑
i∈S xi = 1, where S is some subset of the index set of the

decision variables. A full description of the model is provided in the Appendix. We use the same test instances
of this problem as in [18]. These instances have 302 continuous variables and m binary variables (see Column
1 in Table 4). The risk level ε is set to 0.05, and the value of k can be determined accordingly by k = bm× εc.

Table 4 compares the performance of three schemes against the performance of the CPLEX MIP solver.
The first two columns describe the sizes of the instances. The next three columns provide the root node gaps
closed by the cuts generated by the CPLEX MIP solver, the coefficient strengthening procedure, and the mix-
ing inequalities, respectively. Columns 6-7 present the time (in seconds) spent on coefficient strengthening and
generating mixing inequalities at the root node, respectively. Columns 8-11 and columns 12-15 compare the
time (in seconds) and the number of nodes in the branch-and-bound phase by the CPLEX MIP solver and the
three proposed schemes, respectively. Table 5 summarizes the percentage improvements of the three schemes
over the CPLEX MIP solver with default settings. The percentage improvements in total time (root node
time + branch-and-bound time) for CS is computed as 100 × (Time(CPX) - Time(CS))/Time(CPX), where
Time(CPX) is the total time for default CPLEX and Time(CS) is the total time using coefficient strength-
ening. The percentage improvements in the branch-and-bound time (excluding the coefficient strengthening
time) and the nodes saved are computed analogously. The percentage improvements for MIX and BR are
computed similarly.

Table 5: Percentage Improvements Over CPLEX (Optimal Vaccination Allocation Problem)
Size B&B Node Saved B&B Time Saved Total Time Saved

m k CS MIX BR CS MIX BR CS MIX BR
250 12 43% 17% 40% 100% 100% 50% -5033% -7669% 50%

88% 81% 80% 100% 100% 33% -3220% -5237% 33%
92% 95% 92% 100% 100% 60% -2186% -3257% 60%
99% 96% 95% 100% 100% 78% -1037% -1836% 78%
78% 84% 78% 100% 100% 50% -5191% -7379% 50%

500 25 96% 88% 86% 90% 86% 69% -1083% -4142% 69%
95% 87% 92% 91% 78% 78% -701% -2637% 78%
96% 93% 84% 93% 82% 61% -1808% -6459% 61%
91% 91% 82% 91% 82% 50% -2251% -7785% 50%

100% 100% 98% 98% 96% 82% -913% -3833% 82%
750 37 100% 99% 97% 99% 99% 96% -24% -590% 96%

78% 72% -82% 75% 74% -159% -2506% -14788% -159%
95% 91% 84% 89% 83% 57% -1418% -8252% 57%
97% 96% 83% 97% 93% 63% -380% -3399% 63%
95% 94% 89% 94% 86% 73% -764% -6194% 73%

1000 50 100% 99% 99% 100% 99% 97% 54% -58% 97%
97% 96% 96% 98% 96% 87% 12% -180% 87%
99% 96% 96% 99% 96% 92% 30% -127% 92%
91% 46% 67% 93% 61% 47% -827% -2800% 47%
88% 59% 54% 88% 55% 7% -1498% -5689% 7%

2000 100 99% 78% 97% 99% 78% 92% 93% 72% 92%
99% 59% 99% 99% 52% 96% 97% 49% 96%

100% 87% 100% 99% 85% 98% 96% 81% 98%
98% 85% 99% 99% 82% 96% 91% 74% 96%

100% 30% 100% 100% 14% 98% 98% 12% 98%
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Table 4: Computational Results (Optimal Vaccination Allocation Problem)
Size Root Gap Closed Root Node Time B&B Time B&B Nodes

m k CPX CS MIX CS MIX CPX CS MIX BR CPX CS MIX BR
250 12 62% 95% 95% 103 155 2 0 0 1 81 46 67 49

61% 93% 92% 100 160 3 0 0 2 673 81 129 134
64% 93% 93% 114 168 5 0 0 2 1,096 83 52 91
58% 92% 90% 102 174 9 0 0 2 3,054 39 112 149
55% 94% 94% 106 150 2 0 0 1 153 33 24 33

500 25 52% 91% 89% 493 1,776 42 4 6 13 7,082 286 820 995
50% 93% 90% 507 1,738 64 6 14 14 20,166 1,004 2,600 1,551
55% 91% 90% 532 1,832 28 2 5 11 5,329 218 390 839
54% 90% 90% 515 1,731 22 2 4 11 3,907 347 359 694
48% 94% 92% 506 1,964 50 1 2 9 18,822 38 26 458

750 37 30% 91% 90% 1,656 9,230 1,340 7 16 59 206,179 463 1,648 5,276
44% 91% 91% 1,574 9,066 61 15 16 158 7,124 1,554 1,989 12,944
49% 93% 92% 1,522 8,418 101 11 17 43 16,857 804 1,436 2,729
45% 91% 90% 1,106 8,101 232 8 16 87 40,393 1,057 1,497 6,692
42% 91% 90% 1,116 8,164 130 8 18 35 23,886 1,198 1,332 2,658

1000 50 26% 90% 89% 2,928 10,162 6,449 30 35 182 829,738 3,142 4,773 6,351
32% 91% 89% 3,107 10,056 3,636 86 143 482 433,591 11,998 16,333 15,915
29% 92% 90% 3,157 10,144 4,546 28 166 376 348,976 2,552 13,239 15,253
38% 91% 88% 3,218 10,012 350 25 137 185 28,423 2,424 15,406 9,278
33% 91% 88% 2,791 10,109 176 21 79 163 15,241 1,821 6,310 7,065

2000 100 16% 88% 84% 10,684 10,804 166,074 843 36,096 13,992 9,978,113 57,601 2,237,052 294,053
15% 89% 85% 10,259 11,084 386,246 2,740 185,168 15,960 24,523,780 191,138 10,109,370 316,629
14% 89% 86% 10,570 11,276 324,023 1,779 49,923 6,305 24,463,163 116,273 3,297,139 114,177
15% 89% 85% 11,082 11,091 141,172 2,023 24,990 5,129 9,032,616 138,575 1,350,094 89,084
15% 89% 84% 11,257 11,448 574,819 1,889 493,400 10,795 39,500,399 128,181 27,842,365 184,543

The results in Table 4 and 5 show the effectiveness of the coefficient strengthening technique in both
closing root node gaps and reducing nodes and time of the branch-and-bound phase. We observe that the
performance of the coefficient strengthening algorithm is significantly more consistent than the other two
methods and exhibits a certain stability. For example when m = 1000, the branch-and-bound time saved
by the branching scheme ranges from 7.4% to 97.2%; the branch-and-bound time saved by the mixing set
inequalities ranges from 55.1% to 99.5%; in contrast, the coefficient strengthening algorithm varies only
from 88.1% to 99.5%. This consistent behavior is also observed for the probabilistic portfolio optimization
instances in Tables 2 and 3. The branching scheme has a comparable impact on reducing the search tree size
to the coefficient strengthening in the vaccination instances, especially for the difficult ones with m = 2000.
Since this model consists of equalities as side constraints, the local cuts added by the branching rule cause
infeasibility in the node problems frequently, therefore, effectively reducing the search tree size.

The performance improvement in the branch-and-bound phase comes at the expense of computational
effort in coefficient strengthening and separation of mixing inequalities at the root node. Unlike the portfolio
optimization instances, this effort is quite significant for the vaccination instances (see columns 6-7 in Table
4). Each iteration of the coefficient strengthening requires solving m linear programs – for the instances with
m = 1000 and m = 2000, several thousand linear programs need to be solved. Similarly, in generating the
mixing set inequalities, m linear programs need to be solved in order to form one mixing set for a given α,
and there are m possible choices for α. Accordingly, the cut generation time increases in the order of m2.
Comparing column 8 in Table 4 and column 9 in Table 5, we observe that significant effort on coefficient
strengthening is not justifiable for instances that CPLEX can solve in under 1500 seconds. For example,
for the instances with m = 1000, the coefficient strengthening technique takes around 3000 seconds. Recall
that we impose a time limit of 10000 seconds, so for these instances coefficient strengthening is run till no
coefficients can be further tightened. Considering the fact that CPLEX takes only one to two hours to solve
these instances, running the strengthening procedure to termination is not economical. Similarly, we observe
(by comparing column 8 in Table 4 and column 10 in Table 5) that the effort on mixing inequalities is not
justified for instances with m < 2000 that CPLEX can solve within 6500 seconds. On the overall solution
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time, the branching rule has a more consistent performance since it requires no additional effort at the root
node. For the larger size instances with m = 2000, it is worth spending about three hours on strengthening
to reduce the branch-and-bound time from days to minutes. The CPLEX MIP solver takes one to six days to
solve these instances to optimality, whereas the coefficient strengthening reduces the overall effort to under
four hours.

7 Concluding Remarks

In this paper, we study covering-type k-violation linear programs. We show that such problems are strongly
NP-hard, and study empirically the computational difficulty of MIP-based approaches for these problems.
We introduce and analyze a coefficient strengthening scheme, adapt and analyze an existing cutting plane
technique, and present a branching technique to improve the performance of MIP approaches. Computational
experiments on two classes of problems show that the proposed methods are effective in significantly reducing
running times. The coefficient strengthening is most effective for large instances and reduces the solution
time and the number of search tree nodes by 80% to 98% in these instances. The branching scheme reduces
the size of search trees by removing overlaps between branches and incurring infeasiblity-based node pruning.
It takes no effort to implement and works most effectively on the CKVLP models with side constraints. The
mixing set cuts are capable of closing a large percentage of root node gaps. However, the impact of these
cuts on the branch-and-bound process are mixed. Perhaps better performance might be achieved by a more
effective separation procedure for mixing inequalities. We have also investigated the performance of various
combinations of the three schemes, but the gains are not significant.

References

[1] E. Amaldi and V. Kann. The complexity and approximability of finding maximum feasible subsystems
of linear relations. Theoretical Computer Science, 147(1-2):181–210, 1995.

[2] A. Atamtürk, G. L. Nemhauser, and M. W. P. Savelsbergh. The mixed vertex packing problem. Math-
ematical Programming, 89(1, Ser. A):35–53, 2000.

[3] N.G. Becker and D.N. Starczak. Optimal vaccination strategies for a community of households. Mathe-
matical Biosciences, 139(2):117–132, 1997.

[4] D. Bienstock. Computational study of a family of mixed-integer quadratic programming problems.
Mathematical Programming, 74(2):121–140, 1996.

[5] T.M. Chan. Low-dimensional linear programming with violations. SIAM Journal on Computing,
34(4):879–893, 2005.

[6] M. Conforti and L.A. Wolsey. Compact formulations as a union of polyhedra. Mathematical Programming,
114(2):277–289, 2008.

[7] M. Constantino, A.J. Miller, and M. Van Vyve. Mixing MIR inequalities with two divisible coefficients.
Mathematical Programming, 123(2):451–483, 2010.

[8] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness.
WH Freeman & Co. New York, NY, USA, 1979.

[9] Y. Guan, S. Ahmed, and G.L. Nemhauser. Sequential pairing of mixed integer inequalities. Discrete
Optimization, 4(1):21–39, 2007.
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Appendix

Optimal Vaccination Allocation Model of [18]

The vaccination allocation problem allocate a scarce vaccine to households in a community to prevent an
epidemic from breaking out. The epidemic will die out if the post-vaccination reproductive number is strictly
less than one. Assume a community has a set F of types of households and each type of household f ∈ F
consists of a combination of person types t ∈ T , e.g., child, adult, or elderly. A vaccination policy v ∈ V
is a delivery of vaccine to certain types of persons in a household f ∈ F . For example, a vaccination policy
could be a delivery of vaccine only to the two children in a household type that consists of two adults and
two children. The decision problem is to determine an implementation of vaccination policies for each type
of household in this community with a minimal cost which guarantees that the post-vaccination reproductive
number is strictly below one with a high probability 1− ε. We state below the probabilistically-constrained
model in [18]:
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min :
∑
f∈F

∑
v∈V

∑
t∈T

vthfxfv

s.t.
∑
v∈V

xfv = 1 ∀f ∈ F

P{
∑
f∈F

∑
v∈V

afv(ω)xfv ≤ 1} ≥ 1− ε

0 ≤ xfv ≤ 1 ∀f ∈ F, v ∈ V,

where xfv is the decision variable representing the percentage of policy v to be implemented for household
type f , vt is the number of people of type t vaccinated in policy v, hf is the proportion of households
in the community that are of type f , and afv(ω) is the computed random parameter for impact of the
vaccination policy v for household type f , which is a function of different random numbers following some
known distributions. For more details, see [3, 18].

After m i.i.d. samples are taken from afv(ω)s, the above probabilistically-constrained problem can be
approximated by the following MIP, which has a CKVLP structure:

max :
∑
f∈F

∑
v∈V

∑
t∈T

vthfx
′
fv −

∑
f∈F

∑
v∈V

∑
t∈T

vthf

s.t.
∑
v∈V

x′fv = 1 ∀f ∈ F∑
f∈F

∑
v∈V

aifvx
′
fv + bizi ≥ bi i = 1, ...,m

m∑
i=1

zi ≤ k

0 ≤ x′fv ≤ 1 ∀f ∈ F, v ∈ V, zi ∈ {0, 1} i = 1, ..,m,

where aifv is the i-th sample of afv(ω), x′fv = 1− xfv, bi =
∑
f∈F

∑
v∈V a

i
fv − 1, and k = bε×mc.
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Abstract

We study a variant of the classical transportation problem in which suppliers with limited capacities
have a choice of which demands (markets) to satisfy. We refer to this problem as the transportation
problem with market choice (TPMC). While the classical transportation problem is known to be strongly
polynomial-time solvable, we show that its market choice counterpart is strongly NP-complete. For the
special case when all potential demands are no greater than two, we show that the problem reduces
in polynomial time to minimum weight perfect matching in a general graph, and thus can be solved
in polynomial time. Next, we consider the convex hull of solutions to the problem when a cardinality
constraint is introduced on the number of rejected markets. We show that the cardinality constraint does
not introduce new fractional extreme points for the case when TPMC is polynomially solvable. We give
valid inequalities and coefficient update schemes for general mixed-integer sets that are substructures of
TPMC. Finally, we give conditions under which these inequalities define facets, and report our preliminary
computational experiments with using them in a branch-and-cut algorithm.

Keywords: Transportation problem, market choice, complexity, cardinality constraint, facet

1 Introduction

We consider a variant of the classical transportation problem in which suppliers with limited capacities have
a choice of which demands (markets) to satisfy. In this problem, if a market is selected its demand must be
satisfied fully through shipments from the suppliers. If a market is rejected, then the corresponding potential
revenue is lost. The objective is to minimize the total cost of shipping and lost revenues. We refer to this
problem as the transportation problem with market choice (TPMC).

More formally, we are given a set of supply and demand nodes that form a bipartite graph G(V1 ∪ V2, E).
The nodes in set V1 represent the supply nodes, where for i ∈ V1, si ∈ N represents the capacity of supplier
i. The nodes in set V2 represent the potential markets, where for j ∈ V2, dj ∈ N represents the demand
of market j. The edges between supply and demand nodes have weights that represent shipping costs wij ,
where (i, j) ∈ E. For each j ∈ V2, rj is the revenue lost if the market j is rejected. For a given vector of
parameters γj for j ∈ S and S′ ⊆ S, we let γ(S′) :=

∑
j∈S′ γj , throughout the paper.

Let xij be the amount of demand of market j satisfied by supplier i for (i, j) ∈ E, and let zj be an
indicator variable taking a value 1 if market j is rejected and 0 otherwise. A mixed-integer programming
(MIP) formulation of the problem is given where the objective is to minimize the transportation costs and
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the lost revenues due to unchosen markets:

min
∑

(i,j)∈E

wijxij +
∑
j∈V2

rjzj (1a)

s.t.
∑

i:(i,j)∈E

xij = dj(1− zj) ∀j ∈ V2 (1b)

∑
j:(i,j)∈E

xij ≤ si ∀i ∈ V1 (1c)

z ∈ {0, 1}|V2| (1d)

x ∈ R|E|+ . (1e)

We refer to problem description (1a)-(1e) as TPMC. The first set of constraints (1b) is the demand con-
straint. In TPMC either a demand for a market is fully satisfied or rejected altogether, which necessitates
the introduction of the additional binary variables. The second set of constraints (1c) model the supply
restrictions.

TPMC is closely related to the capacitated facility location (CFL) problem. In CFL, given a set of
potential facilities j ∈ V2 with capacities d̄j , j ∈ V2 and customers i ∈ V1 with demands s̄i, i ∈ V1, we would
like to determine which facilities to open so that the demand of all customers can be satisfied from shipments
from the open facilities. A MIP formulation of CFL is∑

i:(i,j)∈E

x̄ij ≤ d̄j z̄j ∀j ∈ V2 (2a)

∑
j:(i,j)∈E

x̄ij = s̄i ∀i ∈ V1 (2b)

z̄ ∈ {0, 1}|V2| (2c)

x̄ ∈ R|E|+ . (2d)

Therefore one may view the CFL problem as a ‘complement’ of the TPMC problem where the constraints
(1b) and (1c) of TPMC change signs in the constraints (2a) and (2b) in CFL respectively. Note that there is
no straightforward way of ‘complementing’ the variables of TPMC in order to construct an instance of CFL
or vice versa. While the CFL problem has been extensively studied with respect to its complexity, polyhedral
structure, and approximability ([1, 8] and references therein), TPMC is less understood.

Recently, approximation algorithms and heuristics have been proposed for various supply chain planning
and logistics problems with market choice [11, 18]. It is assumed that these problems are uncapacitated or
that they have soft capacities. A two-stage approach is utilized in solving these classes of problems that
admit a facility location formulation. In the first stage, the problem is to determine a subset of markets and
reject the others. In the second stage, the goal is to minimize the production cost and lost revenues due to
unselected markets. In particular, for the uncapacitated lot-sizing problem, the facility location formulation is
used to model the market choice counterpart. It is shown that the LP relaxation solution can be rounded in
a way that guarantees a constant factor approximation algorithm. However, this algorithm relies on scaling
continuous variables up, so it does not immediately generalize to our problem with hard capacity constraints
(1c). Van den Heuvel et al. [25] consider a maximization version of the same problem and show that no
constant factor approximation algorithm exists for this version, unless P=NP. The authors also give several
polynomially solvable special cases, and test heuristics for the general case.

The rest of the paper is organized as follows. In Section 2 we explore the complexity of TPMC. We
show that while the classical transportation problem admits a strongly polynomial algorithm [16], its market
choice counterpart is strongly NP-complete. We also identify a polynomially solvable case when the demands
of all potential markets are no more than two. In Section 3 we consider a version of the problem with
a service level constraint on the maximum number of markets that can be rejected. We show that for
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the case in which the original problem is polynomial, its cardinality-constrained version is also polynomial.
Furthermore, in this case, we show that adding the cardinality constraint to the convex hull of solutions to
the original problem does not create any new fractional extreme points. In Section 4 we present methods
for constructing valid inequalities for mixed integer cover sets and mixed-integer knapsack sets with variable
upper bound constraints, which appear as substructures of TPMC. We show that these methods are useful
for generating valid inequalities for TPMC. We also study the strength of the proposed valid inequalities. Our
preliminary computations, summarized in Section 5, show that there is a reduction in the root gap when our
valid inequalities are incorporated to the branch-and-cut algorithm. However, we do not give an extensive
computational study and the heuristic separation we use needs significant improvement.

2 Complexity

We first show that TPMC is strongly NP-hard in general.

Proposition 1. The decision version of TPMC is NP-complete even when:

1. si = 1 for all i ∈ V1, dj = d ≥ 3 for all j ∈ V2, wij = 0 for all (i, j) ∈ E and rj = 1 for all j ∈ V2.

2. |V1| = 1 and wij = 0 for all (i, j) ∈ E.

The proof for Proposition 1 Part 1 is similar to the proof of a related result presented in [22]. For
completeness, we provide its proof and the proof of Part 2 in the Appendix. Because the reduction of Part 1
is from the Exact 3-Cover problem, which is strongly NP-complete [10], we conclude that TPMC is strongly
NP-hard even for the case where all demands are equal to three. In contrast, Proposition 2 shows that TPMC
is polynomially solvable when demands of all markets do not exceed two.

Proposition 2. Suppose that dj ≤ 2 for all j ∈ V2. Then there exists a polynomial-time algorithm to solve
TPMC.

This result is proven by a polynomial time reduction to a minimum weight perfect matching problem on
a general graph (provided in the Appendix). The key ideas of the reduction are based on those presented
in [3]. This result can also be proven by a polynomial time reduction to the b-matching problem [9], see also
Theorem 36.1 in [23].

A matrix A is said to have the Edmonds-Johnson property if the sum of the absolute values of the entries
in any column of A is less than or equal to 2. Edmonds and Johnson [9] show that the convex hull of integer
solutions to a system Ax ≤ b, where A has this property is given by the so-called blossom inequalities. Note

that the constraint matrix defined by inequalities (1b), (1c), (1e), and z ∈ R|V2|
+ have the Edmonds-Johnson

property when dj ≤ 2 for all j ∈ V2. Hence adding the blossom inequalities to the original formulation is
enough to give the convex hull of solutions to TPMC in this case. The blossom inequality for TPMC is∑

i∈U1,j∈U2:(i,j)∈E

xij +
∑
j∈U2

bdj/2czj ≤
⌊
s(U1) + d(U2)

2

⌋
, (3)

where U1 ⊆ V1, U2 ⊆ V2 such that the sum of total supply in U1 and total demand in U2, s(U1) + d(U2), is
odd. The separation of blossom inequalities (3) is polynomial [12, 17, 20]. We propose other classes of valid
inequalities for the general case in Section 4.

3 TPMC with a cardinality constraint

An important and natural constraint that one may add to the TPMC problem is that of a service level,
i.e., the number of rejected markets is restricted to be at most k. This restriction can be modelled using
a cardinality constraint,

∑
j∈V2

zj ≤ k, appended to (1a)-(1e). We call the resulting problem cardinality

3
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constrained TPMC (CCTPMC). If we are able to solve CCTPMC in polynomial-time, then we can solve
TPMC in polynomial time by solving CCTPMC for all k ∈ {0, . . . , |V2|}. Therefore by Proposition 1, we
obtain that CCTPMC is NP-hard in general. In this section, we examine the specific case where we know
that TPMC admits a polynomial-time algorithm.

In light of the proof of Proposition 2, via the reduction to a minimum weight perfect matching problem
on a general (non-bipartite) graph G′ = (V ′, E′), it is possible to reduce CCTPMC with dj ≤ 2 for all j ∈ V2

to a minimum weight perfect matching problem with a cardinality constraint on a subset of edges (specifically
the cardinality constraint is applied only on the edges (j, j′) ∈ E′ for each j ∈ V2; see proof of Proposition
2 in Appendix). To the best of our knowledge, the complexity status of minimum weight perfect matching
problem on a general graph with a cardinality constraint on a subset of edges is open. This can be seen by
observing that if one can solve minimum weight perfect matching problem with a cardinality constraint on
a subset of edges, then one can solve the exact perfect matching problem; see discussion in the last section
in [6]. On the other hand, we will prove in this section that CCTPMC with dj ≤ 2 for all j ∈ V2, which is a
special case of a minimum weight perfect matching problem with cardinality constraint on a specific subset
of edges, in fact admits a polynomial-time algorithm. Our approach will be following: We will prove that the
TPMC polytope (when dj ≤ 2 for all j ∈ V2) along with the constraint

∑
j∈V2

zj ≤ k is integral. Therefore by
invoking the ellipsoid algorithm it is possible to solve CCTPMC in polynomial time. This result also allows
for solving CCTPMC (when dj ≤ 2 for all j ∈ V2) by a Lagrangian relaxation approach, where we relax the
cardinality constraint.

Before we proceed, we briefly note that the intersection of the perfect matching polytope with a cardinality
constraint on a strict subset of edges is not always integral.

Example 1. Consider the bipartite graph G(V1 ∪V2, E) with V1 = {1, 2, 3}, V2 = {4, 5, 6}, E = {(1, 4), (1, 5),
(2, 4), (2, 5), (2, 6), (3, 5), (3, 6)}, and the cardinality constraint x14 + x25 ≤ 1. It is straightforward to show
that x14 = x15 = x24 = x25 = 0.5, x26 = x35 = 0, x36 = 1 is a fractional extreme point of the intersection of
the perfect matching polytope with the cardinality constraint.

Let X ∈ R|E|+ × {0, 1}|V2| be the set of feasible solutions of TPMC. Our main result of this section is
presented next.

Theorem 1. Let k ∈ Z+ and k ≤ |V2|. Let Xk := conv(X ∩ {(x, z) ∈ R|E|+ × {0, 1}|V2| |
∑

j∈V2
zj ≤ k}). If

dj ≤ 2 for all j ∈ V2, then Xk = conv(X) ∩ {(x, z) ∈ R|E|+ × [0, 1]|V2| |
∑

j∈V2
zj ≤ k}.

Corollary 3. CCTPMC is polynomially solvable when dj ≤ 2 for all j ∈ V2.

Observation 1. Theorem 1 is a generalization of the well-known result, Matching Cardinality Theorem: Let
G(V,E) be a graph with n vertices and m edges. Let M ⊂ Rm be the matching polytope and let Mk ⊂ Rm be the
convex hull of incidence vectors of matchings with at least k edges. Then Mk = M ∩{x ∈ Rm |

∑m
i=1 xi ≥ k}.

(See [23] for a proof.)
We construct a bipartite graph Ĝ(V̂ 1 ∪ V̂ 2, Ê) as follows: V̂ 1 is a set of n vertices corresponding to the

n vertices in G. V̂ 2 corresponds to the set of edges of G, i.e., V̂ 2 contains m vertices. We use (i, j) to refer
to the vertex in V̂ 2 corresponding to the edge (i, j) in E. The set of edges in Ê are of the form (i, (i, j)) and
(j, (i, j)) for every i, j ∈ V such that (i, j) ∈ E. Now we can construct (the feasible region of) an instance of
TPMC with respect to Ĝ(V̂ 1 ∪ V̂ 2, Ê) as follows:

Q = {(x, z) ∈ R2m × Rm |xi,(i,j) + xj,(i,j)+2z(i,j) = 2 ∀(i, j) ∈ V̂ 2 (4)∑
j:(i,j)∈E

xi,(i,j) ≤ 1 ∀i ∈ V̂ 1 (5)

z(i,j) ∈ {0, 1} ∀(i, j) ∈ V̂ 2}. (6)

We can construct an instance of CCTPMC by adding the constraint
∑

(i,j)∈E z(i,j) ≤ k (call this set Qk).

It is straightforward to verify that the Matching Cardinality Theorem is equivalent to stating conv(Qk) =

4
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conv(Q) ∩ {(x, z) |
∑

(i,j)∈E z(i,j) ≤ k}. Thus, the Matching Cardinality Theorem follows from Theorem 1

applied to the bipartite graph Ĝ.
Now note that the graph Ĝ has a very special structure. In particular, the degree of every node in the

second set of vertices (V̂ 2) is 2. On the other hand, Theorem 1 holds for a general instance of TPMC with
dj ≤ 2 for all j ∈ V2, i.e. in particular for instances corresponding to general bipartite graphs where the
degree of the vertices can be more than 2 and the value of dj can be either 1 or 2. �

To prove Theorem 1, one approach could be to appeal to the reduction to minimum weight perfect
matching problem and then use the well-known adjacency properties of the vertices of the perfect matching
polytope. However, as illustrated in Example 1, the integrality result does not hold for the perfect matching
polytope on a general graph with a cardinality constraint on any subset of edges. Therefore a generic approach
considering the perfect matching polytope appears to be less fruitful. We use an alternative approach to prove
this result. In particular, we apply a technique similar to that used in [2]. Consider the following desirable
property:

Definition 1 (Edge Property). Let T ⊆ Rp
+×{0, 1}n be some mixed integer set. We say that T satisfies the

edge property if for all (w, r) ∈ Rp+n such that min{w>x+ r>z | (x, z) ∈ T} is bounded and has at least two
optimal solutions, (x1, z1) and (x2, z2) where

∑n
j=1 z

1
j = k1,

∑n
j=1 z

2
j = k2 and k1 ≤ k2 − 2, then there is an

optimal solution (x3, z3) such that
∑n

j=1 z
3
j = k3 and k1 < k3 < k2.

Proposition 4. Let T ⊆ Rp
+ × {0, 1}n be a mixed integer set such that conv(T ) is a pointed polyhedron

and let T k := conv(T ∩ {(x, z) ∈ Rp
+ × {0, 1}n |

∑n
j=1 zj ≤ k}). If T satisfies the edge property, then T k =

conv(T ) ∩ {(x, z) ∈ Rp
+ × [0, 1]n|

∑n
j=1 zj ≤ k}.

Proof. Assume by contradiction that

T k 6= conv(T ) ∩ {(x, z) ∈ Rp
+ × [0, 1]n|

n∑
j=1

zj ≤ k},

for some k = k′ ∈ {0, 1, . . . , n}. By definition T k = conv(T ∩ {(x, z) ∈ Rp
+ × {0, 1}n|

∑n
j=1 zj ≤ k}) so

T k ⊆ conv(T ) ∩ {(x, z) ∈ Rp
+ × [0, 1]n|

∑n
j=1 zj ≤ k} holds for all k ∈ {0, 1, . . . , n}. By assumption we obtain

T k′ ⊂ conv(T )∩ {(x, z) ∈ Rp
+ × [0, 1]n|

∑n
j=1 zj ≤ k′}. Since conv(T ) is pointed this implies that there exists

a vertex (x′, z′) of conv(T ) ∩ {(x, z) ∈ Rp
+ × [0, 1]n|

∑n
j=1 zj ≤ k′} such that (x′, z′) 6∈ T k′ . Therefore z′ is

fractional and
∑n

j=1 z
′
j = k′ (if

∑n
j=1 z

′
j < k′, then this point is also a vertex of conv(T ), therefore integral

and belonging to T k′ - a contradiction).
Since (x′, z′) is not a vertex of conv(T ), there exists (w, r) such that the vertex (x′, z′) is the intersection

of the face defined by {(x, z) ∈ Rp
+ × [0, 1]n|

∑n
j=1 zj = k′} and an edge of conv(T ) defined as:

{(x, z) ∈ conv(T ) |w>x+ r>z = δ}, (7)

where δ = min{w>x + r>z | (x, z) ∈ conv(T )} = w>x′ + r>z′. Let (x1, z1) and (x2, z2) be two feasible
points of T that belong to the edge (7) such that (x′, z′) is a convex combination of (x1, z1) and (x2, z2).
Note that δ = w>x′ + r>z′ = w>x1 + r>z1 = w>x2 + r>z2. Hence, (x1, z1) and (x2, z2) are two optimal
solutions corresponding to the objective function (w, r). Furthermore, due to our selection of δ,

∑
j∈V2

z1
j <

k′ <
∑

j∈V2
z2
j . The edge property ensures that there exists an integral optimal solution (x3, z3) with

k3 =
∑

j∈V2
z3
j = k′ such that

∑
j∈V2

z1
j < k3 <

∑
j∈V2

z2
j . However, this implies that (x3, z3) belongs to the

edge defined by (7). Thus, (x3, z3) must be a convex combination of (x1, z1) and (x2, z2) or equivalently, we
must have (x3, z3) = (x′, z′) with z′ integral, a contradiction.

Now, we show how edge property and Proposition 4 can be applied to TPMC with an additional constraint
that at most k markets can be rejected. To prove Theorem 1 we use Proposition 4. Similar to the argument

5
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in the proof of Proposition 2, we assume that all data are integral, and that si = 1 for all i ∈ V1 without loss
of generality. It is straightforward to verify that the polyhedron X corresponding to the original instance
with si > 1 for some i ∈ V1 satisfies the edge property if and only if X corresponding to the corresponding
instance with si = 1 for all i ∈ V1 satisfies the edge property. We are now ready to present the proof of
Theorem 1.
Proof of Theorem 1. By hypothesis dj ≤ 2 for all j ∈ V2. From Proposition 4 it is sufficient to prove that the
edge property holds.

Suppose that (x1, z1) and (x2, z2) are optimal solutions to min{w>x + r>z | (x, z) ∈ X} and that x1 is
fractional. Then we can solve a simple transportation problem with the set of demand nodes j such that
z1
j = 0. Since all data is integral, there exists an optimal solution with integral flows. Therefore, we may

assume that x1 (and similarly x2) are integral.

Claim 1. Suppose we have two feasible solutions of X, namely (x3, z3) and (x4, z4), such that

1.
∑

j∈V2
z3
j = k1 + 1 and

∑
j∈V2

z4
j = k2 − 1 and

2. The objective function value of (x3, z3) is ρ − δ and that of (x4, z4) is ρ + δ, where ρ is the objective
function value of the solution (x1, z1) and δ ∈ R,

then the proof of Theorem 1 is complete.

Proof. Since ρ is the optimal objective function value, we obtain that δ = 0 since otherwise the objective
function value of either (x3, z3) or (x4, z4) is better than that of (x1, z1). Therefore (x3, z3) is an optimal
solution with k1 <

∑
j∈V2

z3
j < k2. Because edge property is satisfied by Proposition 4, the proof of Theorem

1 is complete.

Given an integral point (x̃, z̃) of X, let S(z̃) := {j ∈ V2 | z̃j = 0} be the set of nodes in V2 whose demands
are met. For j ∈ S(z̃), let Ij(x̃, z̃) = {i ∈ V1 | x̃ij > 0} = {i ∈ V1 | x̃ij = 1} be the set of suppliers that sends
one unit to j.

Given the optimal solutions (x1, z1) and (x2, z2), let F :=
(
S(z1) \ S(z2)

)
∪
(
S(z2) \ S(z1)

)
, P := S(z1)∩

S(z2) and R := V2 \ (F ∪ P ). For j ∈ F , observe that only the set Ij(x
1, z1) or the set Ij(x

2, z2) is defined.
So for j ∈ F , we define Ij as:

Ij :=

{
Ij(x

1, z1) if j ∈ S(z1) \ S(z2)
Ij(x

2, z2) if j ∈ S(z2) \ S(z1).
(8)

As a first step towards constructing (x3, z3) and (x4, z4) required in Claim 1, we construct a bipartite
(conflict) graph G∗(U1 ∪ U2, E). The set of nodes is constructed as follows:

1. If j ∈ S(z1) \ S(z2) , then j ∈ U1 and j is called a full node. Let W1 = S(z1) \ S(z2) be the set of full
nodes of U1.

2. Similarly, if j ∈ S(z2) \ S(z1) , then j ∈ U2 and j is called a full node. Let W2 = S(z2) \ S(z1) be the
set of full nodes of U2.

3. If j ∈ S(z1)∩ S(z2) and dj = 2 then we place two copies of node j in U1 (call these j1 and j2) and two
copies of j in U2 (call these j3 and j4). These nodes are called partial nodes of j. Each partial node of
j is distinct: If Ij(x

1, z1) = {t1, t2}, then associate (WLOG) t1 with j1 and t2 with j2, that is define
Ij1 := {t1} and Ij2 := {t2}. Similarly if Ij(x

2, z2) = {t3, t4}, then associate (WLOG) t3 with j3 and t4
with j4, that is define Ij3 := {t3} and Ij4 := {t4}. If j ∈ S(z1) ∩ S(z2) and dj = 1, then we place one
copy of node j in U1 (call this j1) and one copy of j in U2 (call this j3). Similar to the dj = 2 case
these nodes are called partial nodes of j. If Ij(x

1, z1) = {t1} and Ij(x
2, z2) = {t3}, then set Ij1 = {t1}

and Ij3 = {t3}. Let P = P 1 ∪ P 2, where P 1 = {j ∈ P : dj = 1} and P 2 = {j ∈ P : dj = 2}.
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Thus U1 = W1 ∪
(⋃

j∈P 2{j1, j2}
)
∪
(⋃

j∈P 1{j1}
)

and for each element a ∈ U1 the set Ia is well-defined and

non-empty. Similarly, U2 = W2 ∪
(⋃

j∈P 2{j3, j4}
)
∪
(⋃

j∈P 1{j3}
)

and for each element b ∈ U2 the set Ib is

well-defined and non-empty. Now we construct the edges E as follows: For all a ∈ U1 and b ∈ U2, there is an
edge (a, b) ∈ E if and only if a and b have at least one common supplier, i.e.,

Ia ∩ Ib 6= ∅ iff (a, b) ∈ E . (9)

Let G′(V ′, E′) be a subgraph of G∗(U1 ∪ U2, E). Since the elements in V ′ ∩ (W1 ∪W2) correspond to unique
elements in V2, whenever required we will (with slight abuse of notation) treat V ′ ∩ (W1 ∪W2) ⊆ V2.

Claim 2. Let G′(V ′, E′) be a subgraph of G∗(U1 ∪ U2, E) satisfying the following properties:

1. There are no edges in G∗ between the nodes in V ′ and the nodes in (U1 ∪ U2) \ V ′.

2. For each j ∈ P 1, |V ′ ∩ {j1}| = |V ′ ∩ {j3}| and for each j ∈ P 2, |V ′ ∩ {j1, j2}| = |V ′ ∩ {j3, j4}|.

3. |W1 ∩ V ′| = |W2 ∩ V ′|+ 1.

Now construct

z3
j =


z1
j if j ∈ V2 \ (V ′ ∩ F )
1 if j ∈ V ′ ∩W1

0 if j ∈ V ′ ∩W2.
(10)

x3
ij =



1 if j ∈ F, z3
j = 0, i ∈ Ij

1 if j ∈ P, j1 ∈ (U1 ∪ U2) \ V ′, i ∈ Ij1
1 if j ∈ P, j2 ∈ (U1 ∪ U2) \ V ′, i ∈ Ij2
1 if j ∈ P, j3 ∈ V ′, i ∈ Ij3
1 if j ∈ P, j4 ∈ V ′, i ∈ Ij4
0 otherwise.

(11)

and

z4
j =


z2
j if j ∈ V2 \ (V ′ ∩ F )
0 if j ∈ V ′ ∩W1

1 if j ∈ V ′ ∩W2.
(12)

x4
ij =



1 if j ∈ F, z4
j = 0, i ∈ Ij

1 if j ∈ P, j3 ∈ (U1 ∪ U2) \ V ′, i ∈ Ij3
1 if j ∈ P, j4 ∈ (U1 ∪ U2) \ V ′, i ∈ Ij4
1 if j ∈ P, j1 ∈ V ′, i ∈ Ij1
1 if j ∈ P, j2 ∈ V ′, i ∈ Ij2
0 otherwise.

(13)

Then (x3, z3) and (x4, z4) are feasible solutions of X that satisfy the requirements of Claim 1.

Proof. 1. We verify that (x3, z3) is a valid solution to X. A similar proof can be given for the validity of
(x4, z4). Clearly x3 and z3 satisfy the variable restrictions. We verify that the constraint

∑
i:(i,j)∈E x

3
ij+

djzj = dj is satisfied for all j ∈ V2. If j ∈ R, then z3
j = z1

j = 1 and x3
ij = 0 for all (i, j) ∈ E;

therefore the constraint is satisfied. If j ∈ F , then using the first and last entry in (11), we have∑
i:(i,j)∈E x

3
ij + djz

3
j = dj . If j ∈ P , then j ∈ V2 \ (V ′ ∩ F ). Therefore z3

j = z1
j = 0. Now it is

straightforward to verify that
∑

i:(i,j)∈E x
3
ij = 2 = dj for each j ∈ P 2 since |V ′∩{j1, j2}| = |V ′∩{j3, j4}|

and by the use of the last five entries in (11). For j ∈ P 1 we have
∑

i:(i,j)∈E x
3
ij = 1 = dj since

|V ′ ∩ {j1}| = |V ′ ∩ {j3}| and by the use of the second, fourth and sixth entries in (11).
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Now we verify that the constraint
∑

j:(i,j)∈E xij ≤ 1 is satisfied for all i ∈ V1. Given i ∈ V1, assume for

contradiction that x3
ig = x3

ih = 1 for some g, h ∈ V2 and g 6= h. By construction of (x3, z3), x3
ij = 0 for

all j ∈ R. Thus, g, h /∈ R. Moreover since
∑

i:(i,j)∈E x
3
ij + djzj = dj is satisfied for all j ∈ V2, we have

z3
g = z3

h = 0. Now, there are three cases to consider:

(a) g, h ∈ F . By construction of x3 we have i ∈ Ig∩Ih. Now if g /∈ V ′ and h /∈ V ′, then by construction
of z3 (first entry in (10)) we have z1

g = z3
g = 0 = z3

h = z1
h and thus g, h ∈ S(z1). Therefore by the

validity of (x1, z1) we have Ig ∩ Ih = ∅. This contradicts i ∈ Ig ∩ Ih. Now consider the case where
g ∈ V ′ and h ∈ V ′. Since i ∈ Ig ∩ Ih by (9) there is an edge between g and h in G∗(U1 ∪ U2, E).
Thus we may assume without loss of generality that g ∈ V ′ ∩W1 and h ∈ V ′ ∩W2. However,
this implies that z3

g = 1, a contradiction. Now, without loss of generality, assume that g ∈ V ′ and
h /∈ V ′. Since i ∈ Ig ∩ Ih by (9) there is an edge between g and h in G∗(U1 ∪ U2, E). On the
other hand, by assumption there is no edge between nodes in V ′ and those not in V ′, which is the
required contradiction.

(b) g ∈ F and h ∈ P . Without loss of generality we may assume that g ∈W1. If g ∈ V ′, then z3
g = 1,

a contradiction. Therefore, we have g /∈ V ′. Thus z1
g = z3

g = 0. Therefore by validity of (x1, z1)
we have i /∈ Ih(x1, z1) or equivalently i ∈ Ih(x2, z2). Without loss of generality we may assume
that i ∈ Ih3

. Note that h3 belongs to V ′ (by the construction of x3 and the fact that x3
ih = 1 and

i ∈ Ih3). Since i ∈ Ig, there exists an edge between g and h3. However, since g /∈ V ′ and h3 ∈ V ′,
we get a contradiction to the fact that there are no edges between the nodes in V ′ and the nodes
in (U1 ∪ U2) \ V ′.

(c) g, h ∈ P . In this case we may assume without loss of generality that i ∈ Ig(x1, z1) and i ∈
Ih(x2, z2). Therefore without loss of generality, we may assume that i ∈ Ig1 and i ∈ Ih3

. Since
x3
ig = x3

ih = 1, we have g1 /∈ V ′ and h3 ∈ V ′. By assumption on G′, this implies that there is no
edge between g1 and h3. On the other hand, since i ∈ Ig1 ∩Ih3 by (9) we have an edge (g1, h3) ∈ E ,
a contradiction.

2. Next we verify that the objective function value of (x3, z3) is ρ − δ and that of (x4, z4) is ρ + δ where
ρ is the objective function value of the solution (x1, z1) and δ ∈ R. This result is verified by showing
that (x3, z3) and (x4, z4) are obtained by ‘symmetrically’ updating demands from (x1, z1) and (x2, z2)
respectively. In particular, we examine each demand node and examine the cost of either satisfying it
or not satisfying it in each solution. We consider the different cases next:

(a) j ∈ R. Then z4
j = z3

j = z1
j = z2

j = 1.

(b) j ∈ V ′ ∩W1. Then z1
j = 0 and z3

j = 1. On the other hand z2
j = 1 and z4

j = 0. Notice that in each
solution where dj is satisfied, this is done by using the same set of input nodes (and thus using
the same arcs). Therefore the difference in objective function value between (x1, z1) and (x3, z3)
due to demand node j is −

∑
i∈Ij wij + rj and the difference in objective function value between

the solutions (x2, z2) and (x4, z4) due to demand node j is
∑

i∈Ij wij − rj .

(c) j ∈ V ′ ∩W2. Similar to the above case the difference in objective function value between (x1, z1)
and (x3, z3) due to demand node j is

∑
i∈Ij wij − rj and the difference in objective function value

between (x2, z2) and (x4, z4) due to demand node j is −
∑

i∈Ij wij + rj .

(d) j ∈ F \ V ′, then z1
j = z3

j and z2
j = z4

j .

(e) j ∈ P 2 such that j1, j2 ∈ (U1∪U2)\V ′ and j3, j4 ∈ (U1∪U2)\V ′. Then the demand dj is satisfied
by the nodes in Ij(x

1, z1) in (x1, z1) and (x3, z3). Therefore there is no difference in objective
function value between (x1, z1) and (x3, z3) with respect to demand node j. Similarly, the demand
dj is satisfied by the nodes in Ij(x

2, z2) in (x2, z2) and (x4, z4) and there is no difference in objective
function value between (x2, z2) and (x4, z4) with respect to demand node j. We can make a similar
argument for j ∈ P 1 such that j1 ∈ (U1 ∪ U2) \ V ′ and j3 ∈ (U1 ∪ U2) \ V ′.
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(f) j ∈ P 2 such that j1 ∈ V ′, j2 ∈ (U1 ∪ U2) \ V ′, j3 ∈ (U1 ∪ U2) \ V ′, j4 ∈ V ′ without loss of
generality. Then the demand dj is satisfied by the nodes in (Ij1 ∪ Ij2) in (x1, z1) and by nodes
(Ij2 ∪ Ij4) in (x3, z3). Therefore the difference in objective function value between (x1, z1) and
(x3, z3) with respect to demand node dj is

∑
i∈Ij1

wij −
∑

i∈Ij4
wij . The demand dj is satisfied

by the nodes in (Ij3 ∪ Ij4) in (x2, z2) and by the nodes in (Ij1 ∪ Ij3) in (x4, z4). Therefore the
difference in objective function value between (x2, z2) and (x4, z4) with respect to demand node j
is
∑

i∈Ij4
wij −

∑
i∈Ij1

wij . We can make a similar argument for the cases: j1 ∈ (U1 ∪ U2) \ V ′,
j2 ∈ V ′, j3 ∈ V ′, j4 ∈ (U1 ∪U2) \ V ′; j1 ∈ V ′, j2 ∈ (U1 ∪U2) \ V ′, j3 ∈ V ′, j4 ∈ (U1 ∪U2) \ V ′ and
j1 ∈ (U1 ∪ U2) \ V ′, j2 ∈ V ′, j3 ∈ (U1 ∪ U2) \ V ′, j4 ∈ V ′.

(g) j ∈ P 2 such that j1 ∈ V ′, j2 ∈ V ′, j3 ∈ V ′, j4 ∈ V ′. Then the demand dj is satisfied by the
nodes in (Ij1 ∪ Ij2) in (x1, z1) and by the nodes in (Ij3 ∪ Ij4) in (x3, z3). Therefore, the difference
in the objective function value between (x1, z1) and (x3, z3) with respect to satisfying demand
dj is

∑
i∈(Ij1∪Ij2 )(wij + wij) −

∑
i∈(Ij3∪Ij4 )(wij + wij). The demand dj is satisfied by the nodes

in (Ij3 ∪ Ij4) in (x2, z2) and by the nodes in (Ij1 ∪ Ij2) in (x4, z4). Therefore, the difference in
the objective function value between (x2, z2) and (x4, z4) with regards to satisfying demand dj is
−
∑

i∈(Ij1∪Ij2 )(wij + wij) +
∑

i∈(Ij3∪Ij4 )(wij + wij). For j ∈ P 1, we can similarly consider j1 and

j3 with j1 ∈ V ′, j3 ∈ V ′.

Therefore, the objective function value of (x3, z3) is ρ − δ and that of (x4, z4) is ρ + δ where ρ is the
objective function value of the solution (x1, z1) and (x2, z2) and δ ∈ R.

3. Finally we verify that
∑

j∈V2
z3
j = k1 + 1 and

∑
j∈V2

z4
j = k2 − 1. We prove this for (x3, z3). The proof

is similar for the case of (x4, z4). Observe that if j ∈ R, then z1
j = z3

j = 1. If j ∈ P , then z1
j = z3

j = 0.

If j ∈ F \ V ′, then z1
j = z3

j . If j ∈ W1 ∩ V ′, then z1
j = 0 and z3

j = 1 and if j ∈ W2 ∩ V ′, then z1
j = 1

and z3
j = 0. Thus

∑
j∈V2

z1
j −

∑
j∈V2

z3
j = |V ′ ∩W2| − |V ′ ∩W1| = −1, where the last equality is by

assumption (3) of G′. Thus,
∑

j∈V2
z3
j = k1 + 1.

Now the proof of Theorem 1 is complete by showing that a subgraph G′(V ′, E′) of G∗(U1 ∪U2, E) always
exists that satisfies the conditions of Claim 2. In order to prove this, we verify a few results.

Claim 3. Connected components of G∗ are paths or cycles of even length and all the cycles involve only full
nodes.

Proof. This is evident from the fact that G∗ is bipartite and degree of a ∈ (U1 ∪ U2) is bounded from above
by |Ia|.

We associate a value vj to each node j ∈ U1 ∪ U2. In particular:

1. If j ∈W1, then vj = 1.

2. If j ∈ U1 and j is a partial node, then vj = 1
2 .

3. If j ∈ U2 and j is a partial node, then vj = − 1
2 .

4. If j ∈W2, then vj = −1.

For a subgraph G̃(Ṽ , Ẽ) of G∗ we call v(Ṽ ) =
∑

j∈Ṽ vj the value of the path.

Claim 4. v(U1 ∪ U2) = k2 − k1 ≥ 2.

Proof.
∑

j∈U1∪U2
vj =

∑
j∈W1

vj+
∑

j∈P 2(vj1 +vj2)+
∑

j∈P 1 vj1 +
∑

j∈W2
vj+

∑
j∈P 2(vj3 +vj4)+

∑
j∈P 1 vj3 =

|S(z1) \ S(z2)| − |S(z2) \ S(z1)| = |S(z1)| − |S(z2)| = k2 − k1.
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Claim 5. If G̃(Ṽ , Ẽ) is a cyclic subgraph of G∗(U1 ∪ U2, E), then v(Ṽ ) = 0.

Proof. By Claim 3, a cycle has only full nodes. Moreover, since a cycle is of even length, it contains equal
number of nodes from W1 and W2.

Note that a partial node must be a leaf node in a path. Using this observation and by some simple case
analysis the following three claims can be verified.

Claim 6. If G̃(Ṽ , Ẽ) is a path containing exactly one partial node, then v(Ṽ ) ∈ {− 1
2 ,

1
2}.

Claim 7. If G̃(Ṽ , Ẽ) is a path containing two partial nodes, then v(Ṽ ) = 0.

Claim 8. If G̃(Ṽ , Ẽ) is a path containing only full nodes, then v(Ṽ ) ∈ {−1, 0, 1}.

For the subgraph G̃(Ṽ , Ẽ), consider a k ∈ Ṽ \ F such that k = jt where t ∈ {1, 2, 3, 4} and j ∈ P 2. Suppose
k = j1 or j2, then we say that a path G̃(Ṽ , Ẽ) is a mirror path for j, if Ṽ contains either j3 or j4. Moreover
we call one of j3 or j4 (whichever belongs to Ṽ or arbitrarily select one of these if both belong to Ṽ ) as the
mirror node. Similarly if k = j3 or j4, then we say that a path G̃(Ṽ , Ẽ) is a mirror path for j, if Ṽ contains
either j1 or j2. Mirror node is similarly defined in this case. For j ∈ P 1 we consider k = j1 and k = j3.
Suppose k = j1, then we say that a path G̃(Ṽ , Ẽ) is a mirror path for j, if Ṽ contains j3 and we call j3 the
mirror node. Similarly if k = j3, then we say that a path G̃(Ṽ , Ẽ) is a mirror path for j, if Ṽ contains j1 and
we call j1 the mirror node.

Algorithm 1 constructs G′(V ′, E′) that satisfies all the properties of Claim 2. We next verify that Al-
gorithm 1 is well-defined, that is all the steps can be carried out. Moreover we show that the algorithm
generates a subgraph G′(V ′, E′) that satisfies the conditions of Claim 2.

Algorithm 1 Construction of G′(V ′, E′)

Input: G∗(U1 ∪ U2, E).
Output: G′(V ′, E′) that satisfies all conditions of Claim 2.

1. If there exists a path G̃(Ṽ , Ẽ) in G∗(U1 ∪ U2, E) containing only full nodes with v(Ṽ ) = 1, then set
G′ := G̃. STOP.

2. Tag all paths in G∗(U1 ∪ U2, E) as ‘unmarked.’

3. Select a path G̃(Ṽ , Ẽ) from the set of ‘unmarked’ paths containing a partial node such that v(Ṽ ) = 1
2 .

Tag this path as ‘marked.’ Note that by Claim 6 and Claim 7, Ṽ contains a unique partial node j∗.

4. Select a path from the list of ‘unmarked’ paths, such that it is a mirror path for j∗. Tag this path as
‘marked.’

5. There are three cases:

(a) The mirror path tagged as ‘marked’ in (4) contains a unique partial node and its value is 1
2 .

GO TO Step 6

(b) The mirror path tagged as ‘marked’ in (4) contains a unique partial node and its value is − 1
2 .

GO TO Step 3.

(c) The mirror path tagged as ‘marked’ in (4) contains two partial nodes (then its value is 0):
One of the partial nodes corresponds to the mirror node. Set j∗ to be the other partial node. GO
TO Step 4.

6. Set G′(V ′, E′) to be disjoint union of the paths tagged as ‘marked.’ STOP.
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Claim 9. Algorithm 1 is well-defined.

1. At the beginning of Step (3), the total value of all marked paths is 0.

2. Let V̂ :=
⋃

G̃(Ṽ ,Ẽ) is marked before Step (3) Ṽ . Then |V̂ ∩ {j1, j2}| = |V̂ ∩ {j3, j4}| for all j ∈ P 2 and

|V̂ ∩ {j1}| = |V̂ ∩ {j3}| for all j ∈ P 1.

3. Step (3) is well-defined, that is as long as the algorithm does not terminate, Step (3) can be carried out.

4. At the end of Step (3), the total value of all marked paths is 1
2 .

5. Step (4) is well-defined, that is as long as the algorithm does not terminate, Step (4) can be carried out.

Proof. We prove Claim 9 by induction on the iteration number (n) of the algorithm visiting Step (5). When
n = 0:

1. At the beginning of Step (3) there are no ‘marked’ paths and therefore the total value of all marked
paths is 0.

2. V̂ = ∅.

3. By Step (1), we know that there exists no path containing only full nodes with v(Ṽ ) = 1. Moreover by
Claim 4 we have v(U1 ∪U2) ≥ 2. Since by Claim 5 all cycles have a value of 0, there must exist at least
one path with partial nodes with positive value. Since this is only possible (Claim 6 and Claim 7) if
there exists exactly one partial node in the path, we see that Step (3) is well-defined.

4. At Step (3) one path is marked which has a value of half.

5. Since one path is tagged as marked in Step (3), it contains exactly one partial node, j∗ ∈ P . Suppose
that j∗ ∈ P 2 and j∗ = j∗i for some i ∈ {1, . . . , 4}. Then there exists paths (at least two) which contain
the other three partial nodes corresponding to j∗. If j∗ ∈ P 1 then there exists one path which contains
the other partial node. Therefore this step is well-defined.

Now for any n ∈ Z+, assuming by the induction hypothesis that the result is true for n′ = 0, . . . , n− 1:

1. Step (3) is arrived at via Step (5b). Let n′ < n be the last iteration when Step (3) is invoked. By the
induction hypothesis the total value of all the marked paths at the end of Step (3) in iteration n′ is 1

2 .
From iterations n′ + 1, . . . , n − 1, the algorithm alternates between Step (4) and Step (5c). The total
value of all the marked paths here is 0. Finally, the value of the last path tagged as marked in Step (4)
is − 1

2 (since the algorithm invokes Step (5b)). Hence, the total value of all the marked paths is 0 at the
beginning of Step (3) in iteration n.

2. Let n′ < n be the last iteration when Step (3) is invoked. By the induction hypothesis |V̂ ∩ {j1, j2}| =
|V̂ ∩ {j3, j4}| for all j ∈ P 2 and |V̂ ∩ {j1}| = |V̂ ∩ {j3}| for all j ∈ P 1 where
V̂ :=

⋃
G̃(Ṽ ,Ẽ) is marked before Step (3) iteration n’ Ṽ . From iterations n′ + 1, . . . , n − 1, the algorithm

alternates between Step (4) and Step (5c). Since in iteration n − 1 at Step (4), we add one path that
contains only the mirror node to j∗ (the unique partial node from the previous iteration), we arrive at
this result.

3. Proof same as that in the case where n = 0.

4. The total value of paths at the end of Step (3) = value of marked path + total value of previously
marked path = 1

2 + 0.
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5. Step (4) is invoked after either Step (3) or Step (5c). In case we arrive via Step (3), by the induction
hypothesis |V̂ ∩ {j1, j2}| = |V̂ ∩ {j3, j4}| for all j ∈ P 2 and |V̂ ∩ {j1}| = |V̂ ∩ {j3}| for all j ∈ P 1

where V̂ :=
⋃

G̃(Ṽ ,Ẽ) is marked before Step (3) iteration n’ Ṽ . Moreover the path marked in step (3) contains
exactly a unique partial node j∗ then, there must exist an unmarked path containing a mirror node to
j∗. In case of we arrive via Step (5c), again the proof is essentially the same by observing that at the
start of Step (4), there is a unique partial node j∗ that is not paired with a mirror partial node.

Claim 10. Algorithm 1 terminates in finite time.

Proof. This is true since there are a finite number of edges and at each iteration of the algorithm at least one
unmarked path is tagged as marked.

Claim 11. Algorithm 1 generates a subgraph G′(V ′, E′) that satisfies the properties of Claim 2.

Proof. First observe that since the output G′(V ′, E′) of the algorithm is a disjoint union of paths, there exists
no edge between V ′ and (U1 ∪ U2) \ V ′ in E , so property 1 is satisfied.

By Claim 9, 2. we have |V̂ ∩ {j1, j2}| = |V̂ ∩ {j3, j4}| for all j ∈ P 2 and |V̂ ∩ {j1}| = |V̂ ∩ {j3}| for all
j ∈ P 1 where

V̂ :=
⋃

G̃(Ṽ ,Ẽ) is marked before Step (3)

Ṽ .

Therefore, it is easily verified that in the last iteration before termination, a path with a unique partial
node, which is a mirror node to j∗, is marked in Step (4). This is because before termination we arrive at
Step (5a) implying that the value of the path marked in Step (4) is 1

2 . Hence Claim 6 and Claim 7 imply
that there is a unique partial node in this path. Thus, |V ′ ∩ {j1, j2}| = |V ′ ∩ {j3, j4}| for all j ∈ P 2 and
|V ′ ∩ {j1}| = |V ′ ∩ {j3}| for all j ∈ P 1, so property 2 is satisfied.

Finally, since v(V ′) = 1 and |V ′ ∩ {j1, j2}| = |V ′ ∩ {j3, j4}| for all j ∈ P 2 and |V ′ ∩ {j1}| = |V ′ ∩ {j3}| for
all j ∈ P 1 we have ∑

j∈V ′∩W1

vj +
∑

j∈V ′∩W2

vj = 1.

As a result, |V ′ ∩W1| = |V ′ ∩W2|+ 1, so property 3 is satisfied.

We showed that the set of solutions to TPMC satisfies the edge property. Theorem 1 then follows from
Proposition 4.

Finally we ask the natural question: Does the edge property hold for TPMC when there exist demands
that are greater than 2? The next example illustrates that the edge property can fail to hold even if dj > 2
for only one j ∈ V2.

Example 2. Consider an instance of TPMC where G(V1∪V2, E) is a bipartite graph with V1 = {1, 2, . . . , 6},
V2 = {1, 2, 3, 4}, E = {(1, 1), (2, 2), (3, 3), (4, 1), (4, 4), (5, 2), (5, 4), (6, 3), (6, 4)}, si = 1, i ∈ V1, dj = 2, j =
{1, 2, 3}, d4 = 3. For k = 2 we obtain a non-integer extreme point of conv(T )∩{(x, z) ∈ Rp

+×[0, 1]n|
∑n

j=1 zj ≤
k}, given by x11 = x22 = x33 = x41 = x44 = x52 = x54 = x63 = x64 = z1 = z2 = z3 = z4 = 1

2 . Therefore,
T k 6= conv(T ) ∩ {(x, z) ∈ Rp

+ × [0, 1]n|
∑n

j=1 zj ≤ k} in this example. Next we show how the conflict graph
construction fails for this example. In fact, it can be shown that the edge property is not satisfied in this
example by using an alternative characterization defined in [2]. Let w11 = w22 = w33 = w41 = w44 = w52 =
w54 = w63 = w64 = 1 and rj = 3, j = {1, 2, 3} and r4 = 6. For k = 0 the problem is infeasible. For k = 1,
an optimal solution is x11 = x22 = x33 = x41 = x52 = x63 = z4 = 1 and all other variables are zero, with
an objective function value 12. For k = 3, an optimal solution is x44 = x54 = x64 = z1 = z2 = z3 = 1 and
all other variables are zero, with an objective function value 12. We show that Algorithm 1 fails to find a
subgraph G′(V ′, E′) of G∗(U1 ∪U2, E) that satisfies the properties given in Claim 2 for this example. We use
two feasible solutions, namely solution for k = 1 and k = 3 to build the bipartite graph given in Figure 1.

12

DISTRIBUTION A: Distribution approved for public release.



Note that I1 = {1, 4}, I2 = {2, 5}, I3 = {3, 6} and I4 = {4, 5, 6}. In Step (1) of Algorithm 1 we find a path
with v(Ṽ ) = 1 which is 1− 4− 2 then the algorithm stops. We have V ′ = {1, 4, 2} and (U1 ∪ U2) \ V ′ = {3}.
However, property 1 does not hold since there exists an edge between 3 and 4 but 3 ∈ (U1 ∪ U2) \ V ′ and
4 ∈ V ′. Hence, Algorithm 1 fails.

Figure 1: Bipartite Graph G∗(U1 ∪ U2, E) for Example 2

4 Valid Inequalities

In this section we give valid inequalities for TPMC and study their strength. First, observe that the variable
upper bound inequalities (VUB) for (i, j) ∈ E

xij ≤ min{si, dj}(1− zj) (14)

are valid for X.

Proposition 5. Let I ⊆ V1, J ⊆ V2 such that d(J) ≥ s(V1 \ I). The inequality∑
i∈I,j∈J:(i,j)∈E

xij +
∑
j∈J

(min {d(J)− s(V1 \ I), dj}) zj ≥ d(J)− s(V1 \ I) (15)

is valid for X.

Proof. Given a feasible solution (x, z) we consider two cases.

1. If zj′ = 1 for some j′ ∈ J such that min {d(J)− s(V1 \ I), dj′} = d(J) − s(V1 \ I), then the feasible
solution satisfies inequality (15) because we have∑

i∈I,j∈J:(i,j)∈E

xij +
∑
j∈J

(min {d(J)− s(V1 \ I), dj}) zj

=
∑

i∈I,j∈J\{j′}:(i,j)∈E

xij +
∑

j∈J\{j′}

(min {d(J)− s(V1 \ I), dj}) zj + d(J)− s(V1 \ I)

≥ d(J)− s(V1 \ I)

where the last inequality holds because min {d(J)− s(V1 \ I), dj} ≥ 0 for all j ∈ J , and all x and z
variables are non-negative.

2. If zj = 0 for all j ∈ J satisfying min {d(J)− s(V1 \ I), dj} = d(J)− s(V1 \ I), then∑
j∈J (min {d(J)− s(V1 \ I), dj}) zj =

∑
j∈J djzj . Moreover, observe that

∑
i∈I,j∈J:(i,j)∈E xij + s(V1 \

13
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I) is at least as large as the total flow sent to the demand nodes in J in the solution (x, z), i.e.,∑
i∈I,j∈J:(i,j)∈E xij + s(V1 \ I) ≥

∑
j∈J dj(1− zj). Therefore we have∑

i∈I,j∈J:(i,j)∈E

xij +
∑
j∈J

(min {d(J)− s(V1 \ I), dj}) zj + s(V1 \ I) ≥
∑
j∈J

djzj +
∑
j∈J

dj(1− zj) = d(J),

so inequality (15) is valid.

Next, we give valid inequalities for general mixed-integer sets that are substructures of TPMC.

4.1 A Coefficient Update Scheme for Mixed-Integer Covers

Consider the mixed integer cover set S1 defined by

t+
∑
j∈J

βjzj ≥ β0 (16)

t ≥ 0 (17)

zj ∈ {0, 1} ∀j ∈ J, (18)

for given βj ≥ 0 for all j ∈ J and β0 ≥ 0. We assume that βj ≤ β0 for all j ∈ J without loss of generality. Let
T1 = conv(S1). We refer to inequalities in the form of (16) as type-I base inequalities. Note that inequalities
(15) for TPMC are in the form of (16) since we can replace

∑
i∈I,j∈J:(i,j)∈E xij by t and t ≥ 0. Therefore,

(16)-(18) is a relaxation of TPMC.

Proposition 6. Given a type-I base inequality (16) valid for a mixed-integer program (MIP) with (17)-
(18), let J̃ := {j1, j2, . . . , jp} ⊆ J be a minimal cover, i.e.,

∑
j∈J̃ βj > β0 and

∑
j∈J̃\{jk} βj ≤ β0 for all

k ∈ {1, . . . , p}. Let βjp ≥ βjk for all k ∈ {1, . . . , p}. Let J∗ := J̃ ∪ {j ∈ J : βj ≥ βjp}, β =
∑

j∈J̃ βj − β0 and

β
′

0 := β0 − (p− 1)β. Then,

t+
∑
j∈J∗

min
{

(βj − β), β
′

0

}
zj +

∑
j∈J\J∗

min
{
β
′

0, βj

}
zj ≥ β

′

0 (19)

is a valid inequality for S1.

Proof. We first claim that βj ≥ β for all j ∈ J∗. Suppose, without loss of generality, that βj1 ≤ βj2 ≤
· · · ≤ βjp , and recall that βj ≥ βjp for all j ∈ J∗ \ J̃ . Assume by contradiction that βj1 < β or equivalently

βj1 − (
∑p

k=1 βjk − β0) < 0. This is a contradiction to the minimality of the cover J̃ .

Next we claim that β
′

0 ≥ 0: By the previous claim we have β ≤ βjk for k = 1, . . . , p. Therefore, we obtain

β
′

0 = β0 − (p− 1)β ≥ β0 −
p−1∑
k=1

βjk ≥ 0,

where the last inequality follows from the fact that J̃ is a minimal cover.
Given a feasible solution (x, z), let J1 = {j ∈ J : zj = 1} and J∗1 = {j ∈ J∗ : zj = 1}. Consider the

following cases:

1. Suppose that there exists j′ ∈ J∗1 such that min
{
β
′

0, βj′ − β
}

= β
′

0. Then,

t+
∑
j∈J∗

min
{

(βj − β), β
′

0

}
zj +

∑
j∈J\J∗

min
{
β
′

0, βj

}
zj

≥ t+
∑

j∈J∗\{j′}

min
{

(βj − β), β
′

0

}
zj +

∑
j∈J\J∗

min
{
β
′

0, βj

}
zj + β

′

0 ≥ β
′

0,

14
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where the last inequality follows from the fact that all variables are non-negative, βj ≥ β for all j ∈ J∗

and β
′

0 ≥ 0. The proof for the case where there exists j′ ∈ J1 \ J∗1 such that min
{
β
′

0, βj′
}

= β
′

0 follows

similarly.

2. Suppose that for all j ∈ J∗1 , we have min
{
β
′

0, βj − β
}

= βj − β and for all j ∈ (J1 \ J∗1 ) we have

min
{
β
′

0, βj

}
= βj . There are two cases to consider:

(a) Suppose that |J∗1 | ≤ p− 1. In this case,

t+
∑
j∈J∗

(βj − β)zj +
∑

j∈J\J∗
βjzj = t+

∑
j∈J∗1

(βj − β) +
∑

j∈J1\J∗1

βj

= t+
∑
j∈J∗1

βj +
∑

j∈J1\J∗1

βj − |J∗1 |β

≥ β0 − |J∗1 |β ≥ β0 − (p− 1)β,

where the first inequality follows because inequality (16) is valid and the second inequality follows
because of our assumption |J∗1 | ≤ p− 1.

(b) Suppose that |J∗1 | ≥ p. In this case,

t+
∑
j∈J∗

(βj − β)zj +
∑

j∈J\J∗
βjzj = t+

∑
j∈J∗1

(βj − β) +
∑

j∈J1\J∗1

βj

≥
∑
j∈J∗1

(βj − β) ≥
p∑

k=1

(βjk − β)

=

p∑
k=1

βjk − pβ = β0 − (p− 1)β.

The second inequality holds since |J∗1 | ≥ p and since β ≤ βj1 ≤ βj2 ≤ · · · ≤ βjp ≤ βj for j ∈ J∗ \ J̃ .

Given type-I base inequalities (16) valid for any MIP with t ≥ 0, and zj ∈ {0, 1}, j ∈ J , we can derive
a new class of valid inequalities (19). Similarly, inequality (19) is in the form of (16), so this process can
be repeated by letting the valid inequality (19) be the type-I base inequality to derive other classes of valid
inequalities.

Inequality (19) is related to the weight inequalities of Weismantel [26] for the 0/1 knapsack polytope.
Note that inequality (19) is valid when J∗ is replaced with J̃ . After complementing the z variables, we
can show that inequality (19) where J∗ is replaced with J̃ and the condition βj ≤ β′0 for all j ∈ J \ J̃
is satisfied is equivalent to the weight inequalities for the 0/1 knapsack polytope (ignoring the continuous
term t). However, if J∗ ) J̃ then inequality (19) with J∗ dominates inequality (19) with J̃ . Additionally if
J∗ = J̃ and there exists j ∈ J \ J̃ such that βj > β′0 then inequality (19) dominates the corresponding weight
inequality. Weismantel also proposes weight-reduction and extended weight inequalities for the 0/1 knapsack
polytope. In Example 3 we show that weight-reduction inequalities and inequalities (19) are not equivalent.
We also show that the extended weight inequality is dominated by the inequalities found using Proposition
6 for this example.

Example 3. Consider the type-I base inequality

3z1 + 4z2 + 5z3 + 6z4 ≥ 6, (20)

for t = 0. Next, we give examples of inequality (19) for different choices of J̃ .

15
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1. Let J̃ = {1, 4}. Then J∗ = J̃ and β = (3 + 6) − 6 = 3. Then corresponding inequality (19) defined by
this choice of J̃ is min{4, 3}z2 + min{5, 3}z3 + 3z4 ≥ 3, or

z2 + z3 + z4 ≥ 1. (21)

2. Let J̃ = {2, 4}. Then J∗ = J̃ and β = (4 + 6) − 6 = 4 Then corresponding inequality (19) defined by
this choice of J̃ is min{3, 2}z1 + min{5, 2}z3 + 2z4 ≥ 2, or

z1 + z3 + z4 ≥ 1. (22)

3. Let J̃ = {3, 4}. Then J∗ = J̃ and β = (5 + 6) − 6 = 5. Then corresponding inequality (19) defined by
this choice of J̃ is min{3, 1}z1 + min{4, 1}z2 + z4 ≥ 1, or

z1 + z2 + z4 ≥ 1. (23)

Inequalities (21)-(23) dominate the corresponding weight inequalities since for all the inequalities there exists
j ∈ J \ J̃ such that βj > β′0. Inequality (23) cannot be obtained by weight-reduction inequalities in [26]. On
the other hand, the weight-reduction inequality

3z1 + z3 + 2z4 ≥ 2,

cannot be obtained using Proposition 6. For this example, the only valid extended weight inequality is

z1 + z2 + 2z3 + 2z4 ≥ 2,

which is dominated by the inequalities (21) and (22).

4.2 A Coefficient Update Scheme for Mixed-Integer Knapsacks with Variable
Upper Bounds

Next, we consider another substructure of TPMC consisting of a mixed integer knapsack and variable upper
bound constraints. We define set S2 as follows:∑

j∈J
tj +

∑
j∈J

αjzj ≤ α0 (24)

tj ≤ dj(1− zj) ∀j ∈ J (25)

z ∈ {0, 1}|J|, tj ∈ R|J|+ , (26)

for given αj ≥ 0 for all j ∈ J and α0 ≥ 0.
Let T2 = conv(S2). We refer to inequalities in the form of (24) as type-II base inequalities. If we replace

tj :=
∑

i∈I:(i,j)∈E xij , I ⊆ V1 then the sum of relaxation of the supply constraints (1c) over I is in the form

of (24) (with αj = 0 for all j ∈ J) for TPMC, and (25) is a relaxation of the demand constraints (1b). In
this case, we observe that TPMC contains the fixed-charge network flow substructure. Therefore, the lifted
flow cover and pack inequalities [4, 5, 13, 21, 24], and submodular inequalities [1, 27] are all valid for TPMC.
Furthermore, these inequalities and the blossom inequalities (3) are in the form of (24). Next we describe
valid inequalities for the set S2.

Proposition 7. Given the mixed-integer set S2, let J̃ = {j1, j2, . . . , ju} ⊆ J such that dj1 − αj1 ≥ dj2 −
αj2 ≥ · · · ≥ dju − αju and there exists m = max{l ∈ {0, . . . , u− 1} :

∑l
k=1 djk +

∑u
k=l+1 αjk < α0 −∑

j∈J\J̃ max {dj , αj}}. Let M = {j1, j2, . . . , jm} (M = ∅ if m = 0) and α = α0 −
∑

j∈J\J̃ max {dj , αj} −
d(M)− α(J̃ \M). Then the inequality given by∑

j∈J
tj +

∑
j∈J̃

(αj + α)zj +
∑

j∈J\J̃

αjzj ≤ α0 + (u−m− 1)α (27)

is valid for S2.
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Proof. Given a feasible solution (t, z) to S2, let J̃1 = {j ∈ J̃ : zj = 1} and J̃0 = {j ∈ J̃ : zj = 0}. Consider
the following cases:

1. Suppose that u−m− 1 ≥ |J̃1|. In this case,

∑
j∈J

tj +
∑
j∈J̃

(αj + α)zj +
∑

j∈J\J̃

αjzj =
∑

j∈J\J̃1

tj +
∑
j∈J̃1

αj +
∑

j∈J\J̃

αjzj + |J̃1|α

≤ α0 + |J̃1|α
≤ α0 + (u−m− 1)α.

2. Suppose that u−m ≤ |J̃1|, or equivalently m ≥ u− |J̃1| = |J̃0|. Then,∑
j∈J

tj +
∑
j∈J̃

(αj + α)zj +
∑

j∈J\J̃

αjzj

=
∑

j∈J\J̃1

tj +
∑
j∈J̃1

αj +
∑

j∈J\J̃

αjzj + |J̃1|α

≤
∑

j∈J\J̃

max {dj , αj}+ d(J̃0) +
∑
j∈J̃1

αj + |J̃1|α

= α0 − α− d(M)− α(J̃ \M) + d(J̃0) + α(J̃1) + |J̃1|α

= α0 −
[
(d(M)− α(M))− (d(J̃0)− α(J̃0))

]
+ (|J̃1| − 1)α,

where the first inequality holds since∑
j∈J\J̃1

tj +
∑

j∈J\J̃

αjzj

=

 ∑
j∈J\J̃

tj +
∑

j∈J\J̃

αjzj

+
∑
j∈J̃0

tj ≤
∑

j∈J\J̃

max {dj , αj}+ d(J̃0),

and the second equality holds because
∑

j∈J\J̃ max {dj , αj} = α0 − α− d(M)− α(J̃ \M).

Furthermore, due to the choice of index m, 0 < α ≤ djm+1
− αjm+1

. Thus, we have

(m− |J̃0|)α ≤ (m− |J̃0|)(djm+1 − αjm+1) ≤
m∑

k=|J̃0|+1

(djk − αjk).

Moreover, −
[
(d(M)− α(M))− (d(J̃0)− α(J̃0))

]
≤ −

[∑m
k=|J̃0|+1(djk − αjk)

]
. Thus we have

α0 + (|J̃1| − 1)α−
[
(d(M)− α(M))− (d(J̃0)− α(J̃0))

]
≤ α0 + (|J̃1| − 1)α− (m− |J̃0|)α = α0 + (u−m− 1)α,

completing the proof.

As in Proposition 6, Proposition 7 can be applied recursively to obtain new nontrivial valid inequalities
for TPMC.

Next we give an example illustrating the valid inequalities introduced in this section.
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Example 4. Consider an instance of TPMC with a complete bipartite graph, V1 = {1, 2}, V2 = {1, 2, 3, 4},
s = (31, 20) and d = (11, 19, 8, 13). A valid inequality for X for this instance is

x21 + x22 + x23 + x24 + 11z1 + 19z2 + 8z3 + 13z4 ≥ 20, (28)

which corresponds to inequality (15) with I = {2} and J = {1, 2, 3, 4}. Note that d(J)− s(V1 \ I) = 20 ≥ dj
for all j ∈ J .

Using (28) as the type-I base inequality, we apply the coefficient update in Proposition 6 and let J̃ = {1, 4},
J∗ = {1, 2, 4}. Then β1 + β4 = 11 + 13 = 24 and (β1 + β4) − β0 = 24 − 20 = 4 = β, and we obtain the
corresponding inequality (19)

x21 + x22 + x23 + x24 + 7z1 + 15z2 + 8z3 + 9z4 ≥ 16, (29)

which is valid for X.
Using (29) as the type-I base inequality, we apply the coefficient update in Proposition 6 and let J̃ = {3, 4},

J∗ = {2, 3, 4}. Then β3 + β4 = 8 + 9 = 17 and (β3 + β4) − β0 = 17 − 16 = 1 = β and again we obtain the
corresponding inequality (19)

x21 + x22 + x23 + x24 + 7z1 + 14z2 + 7z3 + 8z4 ≥ 15, (30)

which is valid for X.
Now, consider the supply constraint (1c) for supplier 2

x21 + x22 + x23 + x24 ≤ 20. (31)

Then using (31) as the type-II base inequality with I = {2} and J = {1, 2, 3, 4}, we apply the coefficient update
in Proposition 7, where we let J̃ = {2, 4}. Then α0−

∑
j∈J\J̃ max {dj , αj} = α0−(d1+d3) = 20−(11+8) = 1.

However, all demand values in set J̃ are greater than 1 so m = 0 and α = α0 − (d1 + d3) − α2 − α4 =
20− (11 + 8)− 0− 0 = 1. Then we obtain the corresponding inequality (27)

x21 + x22 + x23 + x24 + z2 + z4 ≤ 21, (32)

which is valid for X.

4.3 Strength of the Proposed Inequalities

Next we give several facet conditions for inequalities (15). Let V ′2 be the set of markets. Observe that if
s(V1) < dj for some j ∈ V ′2 then the demand of market j can never be met in any feasible solution to TPMC.
Therefore, we can set zj = 1 for such markets and let V2 = {j ∈ V ′2 : s(V1) ≥ dj}. In other words, we remove
the markets that can never be satisfied from the given set of markets. Therefore, throughout we make the
assumption that

s(V1) ≥ maxj∈V2
dj . (33)

Let J< = {j ∈ J : dj < d(J)− s(V1 \ I)}.

Theorem 2. Inequality (15) defines a nontrivial facet of conv(X) only if the following conditions hold:

1. d(J) > s(V1 \ I).

2. There exists j ∈ J such that dj > d(J)− s(V1 \ I).

3. s(V1) ≥ d(J)−maxj∈J{dj}+ maxj∈V2\J{dj}.

4. If s(V1) < d(J) and I 6= ∅, then |J<| ≥ 2 and the sum of the smallest two demands in set J< is not
greater than d(J)− s(V1 \ I).
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5. I 6= V1.

6. If |J | = 1, then |V1 \ I| = 1.

7. s(V1) ≥ d(J \ J<) + maxj∈J<{dj}.

8. If s(V1) = d(J) and dj ≥ d(J)− s(V1 \ I) for all j ∈ J then |I| ≤ 1.

In addition, if the following conditions hold, then (15) is a facet of conv(TPMC):

9. s(V1) > d(J)−maxj∈J{dj}+ maxj∈V2\J{dj}.

10. There exists Ĵ ( J< such that d(J \ Ĵ) > s(V1 \ I) and d(J \ Ĵ ′) > s(V1 \ I) where Ĵ ′ = Ĵ ∪ {k1}, for
all k1 ∈ J< \ Ĵ .

11. s(V1) > maxj∈V2dj .

Proof. Necessity.

1. Assume that d(J)− s(V1 \ I) ≤ 0.

From validity of inequality (15) we have d(J)− s(V1 \ I) ≥ 0 and combined with the assumption we get
d(J) − s(V1 \ I) = 0. The resulting inequality is implied by the nonnegativity of xij and zj for i ∈ I,
j ∈ J , (i, j) ∈ E.

2. Assume that dj ≤ d(J)− s(V1 \ I) for all j ∈ J . Under this assumption inequality (15) reduces to∑
i∈I,j∈J:(i,j)∈E

xij +
∑
j∈J

djzj ≥ d(J)− s(V1 \ I). (34)

We add all the demand constraints (1b) in J ,∑
i∈V1,j∈J:(i,j)∈E

xij +
∑
j∈J

djzj = d(J). (35)

When we subtract (35) from (34) we obtain∑
i∈V1\I,j∈J:(i,j)∈E

xij ≤ s(V1 \ I). (36)

If J ( V2 then inequality (36) is weaker than all the supply inequalities (1c) in V1 \I combined, because
xij ≥ 0 for all i ∈ I, j ∈ V2 \ J , (i, j) ∈ E. If J = V2 then inequality (36) is dominated by the supply
inequalities

∑
j∈V2:(i,j)∈E xij ≤ si for all i ∈ V1\I unless |V1\I| = 1. However, when J = V2, |V1\I| = 1

and dj ≤ d(J)− s(V1 \ I) for all j ∈ J inequality (15) reduces to a trivial facet.

3. Assume that s(V1) < d(J)−maxj∈J{dj}+ maxj∈V2\J{dj}. Because we have showed that there exists
j ∈ J such that dj > d(J)− s(V1 \ I) we can conclude that s(V1 \ I) > d(J)− dj ≥ d(J)−maxj∈J{dj}.
Note that we have to have s(I) < maxj∈V2\J{dj} for s(V1) < d(J)−maxj∈J{dj}+maxj∈V2\J{dj} to hold
because if s(I) ≥ maxj∈V2\J{dj}, then s(V1) = s(V1 \ I) + s(I) > d(J)−maxj∈J{dj}+ maxj∈V2\J{dj}
which would contradict our assumption. Let r∗ = arg maxj∈V2\J{dj}. Because (15) is a non-trivial
facet, it is different from zr∗ ≤ 1 and there exists solutions on the face defined by (15) with zr∗ = 0.
Note that

∑
j∈J\J< zj ≤ 1 for any point to be on the face defined by inequality (15). We consider the

following cases:
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(a)
∑

j∈J\J< zj = 1 = zl for some l ∈ J \ J<.

In this case, left-hand side of inequality (15) reduces to∑
i∈I,j∈J:(i,j)∈E

xij +
∑

j∈J\{l}

(min {d(J)− s(V1 \ I), dj}) zj + d(J)− s(V1 \ I)

since l ∈ J \ J<, min {d(J)− s(V1 \ I), dl} = d(J) − s(V1 \ I). Thus to satisfy inequality (15) at
equality we must have

∑
i∈I,j∈J:(i,j)∈E xij = 0, zj = 0 for all j ∈ J \ {l} and∑

i∈V1\I,j∈J\{l}:(i,j)∈E

xij = d(J \ {l}) ≤ s(V1 \ I)− (dr∗ − s(I)) = s(V1)− dr∗ (37)

where dr∗ − s(I) is the amount of demand of market r∗ that cannot be satisfied by the suppliers
in set I. We obtain a contradiction because (37) implies that s(V1) ≥ d(J) − dl + dr∗ ≥ d(J) −
maxj∈J{dj}+ maxj∈V2\J{dj}, since dl ≤ maxj∈J{dj}.

(b)
∑

j∈J\J< zj = 0.

Let Ĵ = {j ∈ J< : zj = 1}. Then a point on the face defined by inequality (15) satisfies∑
i∈I,j∈J:(i,j)∈E

xij +
∑
j∈Ĵ

dj = d(J)− s(V1 \ I).

This implies that
∑

i∈I,j∈J:(i,j)∈E xij = d(J \ Ĵ) − s(V1 \ I) ≥ 0 because otherwise we would not

have a feasible solution. Furthermore,
∑

i∈V1\I,j∈J\Ĵ:(i,j)∈E xij = s(V1 \ I). Combining the results

we observe that because s(I) < dr∗ we cannot send all the demand of dr∗ from s(I) so some of the
supply from s(V1 \ I) should be sent to dr∗ but all the supply s(V1 \ I) is sent to markets in J \ Ĵ .
We reach a contradiction, we cannot have zr∗ = 0.

4. Suppose that s(V1) < d(J) and I 6= ∅, then not all demand in set J can be met, hence
∑

j∈J zj ≥ 1.
Consider the following cases:

(a) J< = ∅. Then inequality
∑

j∈J(d(J) − s(V1 \ I))zj ≥ d(J) − s(V1 \ I) dominates inequality (15)
since inequality (15) has the additional term

∑
i∈I,j∈J:(i,j)∈E xij ≥ 0.

(b) |J<| = 1. Let J< = {k}. We apply the coefficient update in Proposition 6 using inequality (15)
as the type-I base inequality. Let J̃ = {j, k} where j ∈ J \ {k}. Therefore, β = βj + dk − β0 =
d(J)− s(V1 \ I) + dk − (d(J)− s(V1 \ I)) = dk and the corresponding inequality (19) is∑
i∈I,j∈J:(i,j)∈E

xij +
∑

j∈J\{k}

(d(J)− s(V1 \ I)− dk)zj + (dk − dk)zk ≥ d(J)− s(V1 \ I)− dk. (38)

If we add
∑

j∈J dkzj ≥ dk to inequality (38) we obtain (15). Hence, (15) cannot be a facet.

(c) |J<| ≥ 2 and dj1 +dj2 > d(J)−s(V1 \I) where dj1 and dj2 are the two smallest demands in set J<.
We use the coefficient update in Proposition 6 using inequality (15) as the type-I base inequality.
Let J̃ = {j1, j2}. Therefore, β = dj1 + dj2 − (d(J) − s(V1 \ I)) and the corresponding inequality
(19) is ∑

i∈I,j∈J:(i,j)∈E xij +
∑

j∈J\J<(2(d(J)− s(V1 \ I))− dj1 − dj2)zj (39)

+
∑

j∈J<\{j1,j2}(dj − (dj1 + dj2 − (d(J)− s(V1 \ I))))zj

+(d(J)− s(V1 \ I)− dj2)zj1 + (d(J)− s(V1 \ I)− dj1)zj2
≥ 2(d(J)− s(V1 \ I))− dj1 − dj2 .

Because dj1 and dj2 are the two smallest demands we have J∗ = J in Proposition 6. Note that if
we add

∑
j∈J(dj1 + dj2 − (d(J)− s(V1 \ I)))zj ≥ dj1 + dj2 − (d(J)− s(V1 \ I)) to inequality (39)

we obtain (15). Hence, (15) cannot be a facet.
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5. Assume that I = V1. Then inequality (15) reduces to∑
i∈V1,j∈J:(i,j)∈E

xij +
∑
j∈J

djzj ≥ d(J). (40)

Inequality (40) is a relaxation of the demand equalities (1b) in TPMC. Therefore, if I = V1 then all
points in TPMC are on the face defined by inequality (15), therefore this inequality does not define a
proper face.

6. Suppose that J = {j}, but |V1 \ I| > 1. Then inequality (15) is∑
i∈I:(i,j)∈E

xij + (dj − s(V1 \ I))zj ≥ dj − s(V1 \ I), (41)

where dj > s(V1 \ I) from facet condition 1. Subtracting the original demand equality (1b) for j from
inequality (41), we get ∑

i∈V1\I:(i,j)∈E

xij ≤ s(V1 \ I)(1− zj),

which is dominated by VUB inequalities (14) for i ∈ V1 \ I.

7. Assume that s(V1) < d(J \ J<) + maxj∈J<{dj}. Then not all demand for markets in set J \ J< and
the largest demand in set J< can be met at the same time. Hence,

∑
j∈J\J< zj + zm ≥ 1 where

m = arg maxj∈J<{dj}. We use Proposition 6 and inequality (15) as the type-I base inequality. Let

J̃ = {l,m} where l ∈ J \ J< then β = d(J)− s(V1 \ I) + dm − (d(J)− s(V1 \ I)) = dm. We obtain∑
i∈I,j∈J:(i,j)∈E

xij +
∑

j∈J\J<

(d(J)− s(V1 \ I)− dm)zj +
∑

j∈J<\{m} djzj + (dm − dm)zm (42)

≥ d(J)− s(V1 \ I)− dm.

If we add
∑

j∈J\J< dmzj +dmzm ≥ dm to inequality (42) we obtain (15). Hence, (15) cannot be a facet.

8. Assume that s(V1) = d(J), dj ≥ d(J)− s(V1 \ I) for all j ∈ J and for contradiction |I| ≥ 2. Because of
assumption s(V1) = d(J) we have dj ≥ d(J)− s(V1 \ I) = s(V1)− s(V1 \ I) = s(I) for all j ∈ J . Under
these assumptions inequality (15) reduces to

∑
i∈I,j∈J:(i,j)∈E xij +

∑
j∈J s(I)zj ≥ s(I). Let I ′ = I \{i′}

and I
′′

= {i′} where i′ ∈ I (I ′ 6= ∅ and I
′′ 6= ∅ because |I| ≥ 2 by assumption). Consider the following

inequalities in the form of inequality (15) with set I replaced with sets I ′ and I ′′, respectively∑
i∈I\{i′},j∈J:(i,j)∈E

xij +
∑
j∈J

(s(I)− si′)zj ≥ s(I)− si′ , (43)

∑
j∈J:(i′,j)∈E

xi′j +
∑
j∈J

si′zj ≥ si′ . (44)

Inequality (43) is valid because d(J)−s(V1\I ′) = d(J)−s(V1\I)−si′ = s(I)−si′ > 0. Furthermore, the
coefficient of zj is min{dj , s(I)−si′} = s(I)−si′ because of the assumption dj ≥ d(J)−s(V1 \I) = s(I)

for all j ∈ J . Inequality (44) is valid because d(J)−s(V1\I
′′
) = s(V1)−s(V1\I

′′
) = s(I

′′
) = si′ > 0 and

similarly the coefficient of zj is min{si′ , dj} = si′ , because dj ≥ s(I) ≥ si′ for all j ∈ J by assumption.
By adding inequalities (43) and (44) we obtain inequality (15) with set I. Hence, (15) cannot be a
facet.
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Sufficiency. We use the technique in §I.4.3 Theorem 3.6 [19]. We show that inequality (15), plus any linear
combination of the demand constraints

∑
i∈V1:(i,j)∈E xij + djzj = dj for all j ∈ V2 is the only inequality that

is satisfied at equality by all points (x, z) feasible to TPMC that are tight at (15), i.e., we show that if all
points of TPMC at which (15) is tight satisfy∑

(i,j)∈E

αijxij +
∑
j∈V2

ψjzj = α̂, (45)

then

1. αij = uj , j ∈ V2 \ J , i ∈ V1, (i, j) ∈ E,

2. αij = uj , j ∈ J , i ∈ V1 \ I, (i, j) ∈ E,

3. αij = ᾱ+ uj , j ∈ J , i ∈ I, (i, j) ∈ E,

4. ψj = ujdj , j ∈ V2 \ J

5. ψj = ᾱ (min {d(J)− s(V1 \ I), dj}) + ujdj , j ∈ J ,

6. α̂ = ᾱ (d(J)− s(V1 \ I)) +
∑

j∈V2
ujdj .

In the proof we consider three different types of points at which (15) is tight. These points are solutions
to TPMC but are subject to additional systems of constraints. Throughout, let ε be a very small number
greater than zero unless noted otherwise.

1. Suppose that dl > d(J) − s(V1 \ I) for l = arg maxj∈J{dj}. Consider a point where only markets
j ∈ {r} ∪ J \ {l} are satisfied for some r ∈ V2 \ J and constraints∑

i∈I,j∈J:(i,j)∈E

xij = 0

∑
i∈V1\I,j∈J:(i,j)∈E

xij = d(J)− dl

∑
i∈V1:(i,r)∈E

xir = dr

xij = 0, i ∈ V1, j ∈ {l} ∪ V2 \ (J ∪ {r})
xij ≥ ε, i ∈ V1 \ I, j ∈ J \ {l}
xir ≥ ε, i ∈ V1∑

j∈V2:(i,j)∈E

xij ≤ si − ε, i ∈ V1

zj = 1, j ∈ {l} ∪ V2 \ (J ∪ {r})
zj = 0, j ∈ {r} ∪ J \ {l}

in addition to the original constraints are satisfied, which we refer to as System 1. We know that a
solution to System 1 exists from facet conditions 9 and 11. For a solution to be feasible to System 1 the
demand of markets j ∈ {r} ∪ J \ {l} have to be met, i.e., s(V1) ≥ d(J)−maxj∈J{dj}+ maxj∈V2\J{dj}.
Additionally, we would like to change a given solution by increasing and decreasing the x values by ε
hence the need for > relationship in facet condition 9.
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2. Suppose that dl > d(J)− s(V1 \ I) for some l ∈ J . Consider a point where only markets j ∈ J \ {l} are
satisfied and constraints ∑

i∈I,j∈J:(i,j)∈E

xij = 0

∑
i∈V1\I,j∈J:(i,j)∈E

xij = d(J)− dl

xij = 0, i ∈ V1, j ∈ {l} ∪ V2 \ J
xij ≥ ε, i ∈ V1 \ I, j ∈ J \ {l}∑

j∈V2:(i,j)∈E

xij ≤ si − ε, i ∈ V1 \ I

zj = 1, j ∈ {l} ∪ V2 \ J
zj = 0, j ∈ J \ {l}

in addition to the original constraints are satisfied, which we refer to as System 2. We know that
a solution to System 2 exists from facet condition 2 since there exists at least one j ∈ J such that
s(V1) ≥ s(V1 \ I) > d(J)− dj , and from facet condition 11.

3. We define Ĵ ⊂ J such that d(J \ Ĵ) > s(V1 \ I). Due to the choice of Ĵ we have dj < d(J)− s(V1 \ I)

for all j ∈ Ĵ so Ĵ ⊆ J< (if dj′ ≥ d(J)− s(V1 \ I) and j′ ∈ Ĵ then we cannot have d(J \ Ĵ) > s(V1 \ I)).

In this point, markets in set Ĵ ∪ V2 \ J are rejected and constraints∑
i∈I,j∈J:(i,j)∈E

xij = d(J \ Ĵ)− s(V1 \ I)

∑
i∈V1\I,j∈J:(i,j)∈E

xij = s(V1 \ I)

xij = 0, i ∈ V1, j ∈ Ĵ ∪ V2 \ J
xij ≥ ε, i ∈ V1, j ∈ J \ Ĵ∑

j∈J\Ĵ:(i,j)∈E

xij ≤ si − ε, i ∈ I

zj = 1, j ∈ Ĵ ∪ V2 \ J
zj = 0, j ∈ J \ Ĵ

in addition to the original constraints are satisfied, which we refer to as System 3. We consider a set Ĵ such
that all demand in set J \J< is satisfied and

∑
i∈I,j∈J:(i,j)∈E xij > 0. This is possible due to facet conditions

7, 11, and non-negativity of x variables.
In order to establish the values of the coefficients αij , ψj and α̂, we construct a feasible solution to the

given systems 1, 2 and 3. Then a small change in the solution is made. By evaluating (45) at both solutions,
which are on the face defined by (15) and comparing the resulting expressions, the possible values of a set of
coefficients are obtained.

We start by showing that

1. αij = uj , j ∈ V2 \ J , i ∈ V1, (i, j) ∈ E.

Consider any solution to system 1 with any market r ∈ V2 \ J that is satisfied. Choose arbitrary
suppliers i, i′ ∈ V1 such that (i, r), (i′, r) ∈ E. Construct a new point by decreasing the flow on edge
(i, r) by ε and increasing the flow on edge (i′, r) by ε. Note that this point is also on the face defined
by inequality (15). Thus,

αij = uj , j ∈ V2 \ J, i ∈ V1, (i, j) ∈ E.
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2. αij = uj , j ∈ J , i ∈ V1 \ I, (i, j) ∈ E. Note that if |V1 \ I| = 1, then αij = uj , j ∈ J trivially holds. We
condition on the number of markets in set J .

(a) J = {k}. Note that, from facet condition 6, we have |V1 \ I| = 1, so the result holds.

(b) |J | ≥ 2. By assumption, |V1 \ I| > 1. Due to facet condition 2 there exists k ∈ J such that
dk > d(J) − s(V1 \ I). We consider a solution to system 2 with l = k. Choose any market
j ∈ J \ {k}, any suppliers i, i′ ∈ V1 \ I such that (i, j), (i′, j) ∈ E. Make an ε-change of flow
between the two suppliers i, i′ and market j. Thus,

αij = uj , j ∈ J \ {k}, i ∈ V1 \ I, (i, j) ∈ E.

Next we show that αik = uk for all i ∈ V1 \ I. If there exists another j∗ such that dj∗ >
d(J) − s(V1 \ I), j∗ 6= k then we consider a point satisfying System 2 with l = j∗, and use
the same argument as before to show that αik = uk for all i ∈ V1 \ I. If no such j∗ exists
then dj ≤ d(J) − s(V1 \ I) for all j ∈ J \ {k}. In this case k is the only market in J with
dk > d(J) − s(V1 \ I). Then from facet condition 7 we know that there exists a solution to a
variant of System 3 with Ĵ ⊆ J< \ {j} for some j ∈ J \ {k} (in which we set ε = 0 in case facet
condition 7 is satisfied at equality), where along with market k we can satisfy at least one more
market, j. Choose suppliers i, i′ ∈ V1 \ I such that (i, k), (i′, k), (i, j), (i′, j) ∈ E. Decrease flow on
edges (i, j), (i′, k) by ε and increase flow on edges (i, k), (i′, j) by ε. Note that since we are using
a solution to a variant of system 3 in which we set ε = 0 inequality (15) is still tight. Thus,

αik − αij − αi′k + αi′j = αik − uj − αi′k + uj = αik − αi′k = 0.

Therefore, αik = uk for all i ∈ V1 \ I.

3. αij = ᾱ+ uj , j ∈ J , i ∈ I, (i, j) ∈ E.

Consider a solution to system 3 with Ĵ ⊆ J<. Choose any market j ∈ J \ Ĵ , any two suppliers i, i′ ∈ I
such that (i, j), (i′, j) ∈ E. Make an ε-change of flow between the two suppliers i, i′ and market j.
Thus,

αij = α1
j , j ∈ J \ Ĵ , i ∈ I, (i, j) ∈ E.

Let α1
j = ᾱj + uj , j ∈ J \ Ĵ . Facet condition 10 and definition of Ĵ (i.e. Ĵ ⊆ J<) implies that for

any k1 ∈ J< we can redefine Ĵ to either include k1 or not. More specifically, if k1 ∈ Ĵ then market k1

is rejected. To show that αik1
= α1

k1
for all i ∈ I, (i, k1) ∈ E we choose another Ĵ such that k1 6∈ Ĵ .

Using the same argument as before we obtain αik1 = α1
k1

for all i ∈ I, (i, k1) ∈ E. As a result, we have

shown that αij = α1
j , j ∈ Ĵ , i ∈ I, (i, j) ∈ E. Next we show that ᾱj = ᾱ, j ∈ J \ Ĵ . Choose any markets

j, j′ ∈ J \ Ĵ , any suppliers i ∈ V1 \ I, i′ ∈ I such that (i, j), (i′, j), (i, j′), (i′, j′) ∈ E. Decrease flow on
edges (i, j′), (i′, j) by ε and increase flow on edges (i, j), (i′, j′) by ε. Thus,

αij − αij′ − αi′j + αi′j′ = uj − uj′ − α1
j + α1

j′ = 0.

By again using α1
j = ᾱj + uj and α1

j′ = ᾱj′ + uj′ , we obtain

ᾱj = ᾱj′ .

Since j and j′ can be chosen as any market in J \ Ĵ we conclude that ᾱj = ᾱ, j ∈ J \ Ĵ . Furthermore,

since as before we can rearrange set Ĵ to include or not include any k1 ∈ J< we get ᾱj = ᾱ, j ∈ Ĵ .

4. ψj = ujdj , j ∈ V2 \ J . We rewrite (45) using the information obtained until now and get

ᾱ
∑

i∈I,j∈J:(i,j)∈E

xij +
∑

(i,j)∈E

ujxij +
∑
j∈V2

ψjzj = α̂. (46)
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Consider any solution to system 1 with any market r ∈ V2 \J that is satisfied. Then we construct a new
solution based on this solution where we set zr = 1 and xir = 0 for all i ∈ V1, (i, r) ∈ E and all other
variables remain the same. Note that this solution is also on the face defined by (15) since r ∈ V2 \ J
and the new solution is a solution to system 2. We compare face (45) evaluated at these two solutions.
Thus,

ur
∑

i∈V1:(i,r)∈E

xir − ψr = 0.

Because
∑

i∈V1:(i,r)∈E xir = dr we have ψr = urdr.

5. ψj = ᾱ (min {d(J)− s(V1 \ I), dj}) + ujdj , j ∈ J .

We consider 2 cases.

(a) dj′ < d(J)− s(V1 \ I) for some j′ ∈ J .

We consider a solution to system 3 with Ĵ such that d(Ĵ)+dj′ ≤ d(J)−s(V1 \I). This is a feasible
solution due to facet condition 10 where k1 = j′. We evaluate (46) at this solution and obtain

ᾱ(d(J \ Ĵ)− s(V1 \ I)) +
∑

i∈V1,j∈J\Ĵ:(i,j)∈E

ujxij +
∑

j∈Ĵ∪V2\J

ψj = α̂.

Then we use the same solution except now we set zj′ = 1, xij′ = 0, i ∈ V1, (i, j′) ∈ E (so we

redefine Ĵ as Ĵ ′ = Ĵ ∪ {j′}) and
∑

i∈I,j∈J:(i,j)∈E xij = d(J \ Ĵ) − s(V1 \ I) − dj′ and evaluate

(46) again. Note that this solution is also on the face defined by (15) because we had zj′ = 0,∑
i∈I,j∈J:(i,j)∈E xij = d(J \ Ĵ) − s(V1 \ I) and we changed it with zj′ = 1,

∑
i∈I,j∈J:(i,j)∈E xij =

d(J \ Ĵ)− s(V1 \ I)− dj′ and the coefficient of zj′ is dj′ in inequality (15). Thus,

ᾱ(d(J \ Ĵ)− s(V1 \ I)− dj′) +
∑

i∈V1,j∈J\Ĵ′:(i,j)∈E ujxij

+
∑

j∈Ĵ∪V2\J ψj + ψj′ = α̂.

Taking the difference between (46) evaluated at these two solutions, we obtain

ψj′ = ᾱdj′ + uj′
∑

i∈V1:(i,j′)∈E

xij′ = ᾱdj′ + uj′dj′ .

(b) dj′ ≥ d(J)− s(V1 \ I) for some j′ ∈ J .

We consider a solution to system 3 with any feasible Ĵ such that the right hand side of in-
equality

∑
i∈I,j∈J:(i,j)∈E xij = d(J \ Ĵ) − s(V1 \ I) is nonnegative and market j′ is satisfied. In

the solution we can set
∑

i∈I,j∈J:(i,j)∈E xij =
∑

i∈I:(i,j′)∈E xij′ . This is a feasible solution since

dj′ ≥ d(J)− s(V1 \ I) by assumption and we know that for inequality (15) to be tight we cannot
have

∑
i∈I,j∈J:(i,j)∈E xij > d(J)− s(V1 \ I). Hence,

∑
i∈I,j∈J:(i,j)∈E xij ≤ d(J)− s(V1 \ I) and we

can choose a solution in which a part (or all) of the demand of market j′ is met by suppliers in set
I. We use ψj = ᾱdj + ujdj for all j ∈ J< and recall that markets in set Ĵ ⊆ J< are rejected. We
evaluate (46) at this solution and obtain

ᾱ(d(J \ Ĵ)− s(V1 \ I) + d(Ĵ)) + uj′
∑

i∈I:(i,j′)∈E

xij′ +
∑

i∈V1\I,j∈J\Ĵ:(i,j)∈E

ujxij

+
∑

j∈Ĵ∪V2\J

ujdj = α̂.
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Then we use the same solution except now we set zj′ = 1, zq = 0, q ∈ Ĵ (this is still a feasible
solution since s(V1) ≥ s(V1 \I) ≥ d(J)−dj′ by assumption, i.e., once market j′ is rejected all other
markets in set J can be satisfied) and

∑
i∈I,j∈J:(i,j)∈E xij = 0 (implying that

∑
i∈I:(i,j′)∈E xij′ = 0)

and reevaluate (46). Note that this solution is also on the face defined by (15) because we had
zj′ = 0, zq = 1, q ∈ Ĵ ,

∑
i∈I,j∈J:(i,j)∈E xij = d(J \ Ĵ)− s(V1 \ I) and we changed it with zj′ = 1,

zq = 0, q ∈ Ĵ ,
∑

i∈I,j∈J:(i,j)∈E xij = 0 and the coefficient of zj′ is d(J)− s(V1 \ I). Thus,

ᾱ(0) + 0 +
∑

i∈V1\I,j∈J\{j′}:(i,j)∈E

ujxij +
∑

j∈V2\J

ujdj + ψj′ = α̂.

Taking the difference between (46) evaluated at these two solutions, we get ᾱ(d(J)− s(V1 \ I)) +
uj′
∑

i∈V1:(i,j′)∈E xij′ −
∑

i∈V1,j∈Ĵ ujxij +
∑

j∈Ĵ ujdj − ψj′ = 0. Because
∑

i∈V1:(i,j′)∈E xij = dj′

and
∑

i∈V1,j∈Ĵ ujxij =
∑

j∈Ĵ ujdj we have ψj′ = ᾱ(d(J)− s(V1 \ I)) + uj′dj′ .

6. α̂ = ᾱ (d(J)− s(V1 \ I)) +
∑

j∈V2
ujdj .

Rewriting equality (45), we get

ᾱ
(∑

i∈I,j∈J:(i,j)∈E xij +
∑

j∈J min {d(J)− s(V1 \ I), dj} zj
)

(47)

+
∑

(i,j)∈E:j∈V2
ujxij +

∑
j∈V2

ujdjzj = α̂.

Evaluating (47) at any point (x, z) feasible to TPMC that is tight at inequality (15) gives

ᾱ (d(J)− s(V1 \ I)) +
∑
j∈V2

uj

 ∑
i∈V1:(i,j)∈E

xij + djzj

 = α̂.

From equality (1b) in the definition of TPMC we have
∑

i∈V1:(i,j)∈E xij + djzj = dj for all j ∈ V2.

Thus, α̂ = ᾱ (d(J)− s(V1 \ I)) +
∑

j∈V2
ujdj .

Our next result shows that the coefficient update scheme in Proposition 6 is neither lifting nor coefficient
strengthening. We show that both a type-I base inequality (16) and the corresponding inequality (19) can
be facets of T1 under certain conditions.

Proposition 8. If the following conditions hold, then type-I base inequality (16) and the corresponding
inequality (19) are facets of T1.

1. If there exists j ∈ J∗ \ J̃ with βj < β0 then βj − β < β
′

0 and β(J̃ \ {jp, jp−1}) + βj ≤ β0 where

J̃ = {j1, j2, . . . , jp} and βj1 ≤ βj2 ≤ · · · ≤ βjp .

2. For all j ∈ J \ J∗, βj < β
′

0 and β(J̃ \ {jp}) + βj ≤ β0.

Proof. We first show that there exists dim(T1) = |J | + 1 many affinely independent points that satisfy
inequality (19) at equality. Consider the following points:

• Let t = 0, zj = 1 for all j ∈ J̃ , zj = 0 for all j ∈ J \ J̃ . In this case, the left-hand side of inequality (19)

is β(J̃)− pβ = β0 + β − pβ = β0 − (p− 1)β = β
′

0.

• For each j′ ∈ J̃ , t = βj′−β, zj′ = 0, zj = 1 for all j ∈ J̃\{j′}, zj = 0 for all j ∈ J\J̃ . In this case, the left-

hand side of inequality (19) is βj′−β+β(J̃\{j′})−(p−1)β = β(J̃)−pβ = β0+β−pβ = β0−(p−1)β = β
′

0.
This point also satisfies type-I base inequality (16) at equality.

• For each j′ ∈ J∗ \ J̃ we consider two cases:

26

DISTRIBUTION A: Distribution approved for public release.



1. βj′ = β0.

Let t = 0, zj′ = 1, zj = 0 for all j ∈ J \ {j′}. The left-hand side of inequality (19) is min{(βj′ −
β), β

′

0} = min{(β0 − β), β0 − (p − 1)β} = β0 − (p − 1)β since p is the number of elements in set
J̃ and p ≥ 2, for J̃ to be a minimal cover. This point also satisfies type-I base inequality (16) at
equality.

2. βj′ < β0.

Let t = β0−β(J̃\{jp, jp−1})−βj′ , zj = 1, for all j ∈ J̃\{jp, jp−1}, zjp = 0, zjp−1 = 0, zj′ = 1, zj = 0

for all J\(J̃∪{j′}). From facet condition 1 we have βj′−β < β
′

0 hence the left-hand side of inequality

(19) is β0−β(J̃ \{jp, jp−1})−βj′+β(J̃ \{jp, jp−1})− (p−2)β+βj′−β = β0− (p−1)β = β
′

0. Note
that due to facet condition 1, t ≥ 0. Furthermore, this point also satisfies type-I base inequality
(16) at equality.

• For each j′ ∈ J \ J∗ first observe that βj′ < β0 since by definition of J∗, βj′ < βjp ≤ β0. Let

t = β0 − β(J̃ \ {jp}) − βj′ , zj = 1, for all j ∈ J̃ \ {jp}, zjp = 0, zj′ = 1, zj = 0 for all J \ (J̃ ∪ {j′}).
From facet condition 2 we have βj′ < β

′

0 hence the left-hand side of inequality (19) is β0−β(J̃ \{jp})−
βj′ + β(J̃ \ {jp}) − (p − 1)β + βj′ = β0 − (p − 1)β = β

′

0. Note that due to facet condition 2, t ≥ 0.
Furthermore, this point also satisfies type-I base inequality (16) at equality.

In total we have described 1 + |J̃ |+ |J∗ \ J̃ |+ |J \ J∗| = |J |+ 1 many points. It is easy to see that these
points are affinely independent. Furthermore, except for the first described point (t = 0, zj = 1 for all j ∈ J̃ ,

zj = 0 for all j ∈ J \ J̃) all the other |J | many points also satisfy type-I base inequality (16) at equality. If
we replace the first point with the point t = β0, zj = 0 for all j ∈ J , which satisfies the type-I base inequality
at equality, then we still get |J |+ 1 many affinely independent points. Hence, both the type-I base inequality
(16) and the corresponding inequality (19) are facets of T1 under conditions 1 and 2.

Suppose that inequality
∑

j∈J tj ≤ α0 is given as a type-II base inequality in the form of (24) for

set S2, where αj = 0 for all j ∈ J . Assume that there exists J̃ and m such that α0 > d(J \ J̃) and

α0− d(J \ J̃) < maxj∈J̃{dj}. These conditions imply that m = 0 and α = α0− d(J \ J̃). Then we obtain the
corresponding inequality (27) ∑

j∈J
tj +

∑
j∈J̃

αzj ≤ α0 + (|J̃ | − 1)α, (48)

which is valid for S2, under these assumptions.

Proposition 9. Inequality (48), valid for S2, defines a facet of T2 only if

1. J̃ 6= ∅.

In addition, if the following conditions hold then (48) is a facet of T2:

2. α0 < d(J \ J̃) + minj∈J̃{dj},

3. α0 < d(J \ J̃) + maxj∈J̃{dj} −maxj∈J\J̃{dj},

4. |J \ J̃ | ≥ 2.

Proof. Necessity.
1. Assume that J̃ = ∅. Then inequality (48) reduces to∑

j∈J
tj ≤ α0 − α. (49)
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This case implies that α = α0 − d(J \ J̃) = α0 − d(J). Thus, inequality (49) becomes
∑

j∈J tj ≤ d(J) which
is dominated by tj + djzj ≤ dj for all j ∈ J .

Sufficiency. We show that there exists dim(T2) = 2|J | many affinely independent points that satisfy
inequality (48) at equality. Let ε > 0 be a very small number and j∗ = arg maxj∈J̃{dj} (j∗ exists due to
facet condition 1). Consider the following points:

• For each j′ ∈ J̃ , let zj′ = 0, tj′ = α0−d(J \ J̃), zj = 1, j ∈ J̃ \{j′}, tj = 0, j ∈ J̃ \{j′}, zj = 0, j ∈ J \ J̃ ,

tj = dj , j ∈ J \ J̃ . Note that this is a feasible solution due to the assumption that α0 > d(J \ J̃) and
facet condition 2. Furthermore, for each such point we construct another point by increasing tj′ by ε

and decreasing any tj , j ∈ J \ J̃ by ε (j exists due to facet condition 4). This gives 2|J̃ | many points.

• For each j′′ ∈ J \ J̃ , let zj′′ = 1, tj′′ = 0, zj = 0, j ∈ (J \ (J̃ ∪ {j′′}))∪ {j∗}, tj = dj , j ∈ J \ (J̃ ∪ {j′′}),
tj∗ = α0 − d(J \ J̃) + dj′′ , zj = 1, j ∈ J̃ \ {j∗}, tj = 0, j ∈ J̃ \ {j∗}. Note that this is feasible due to
facet condition 3. For each such point we construct another point by increasing tj∗ by ε and decreasing

any tj , j ∈ J \ (J̃ ∪ {j′′}) by ε (j exists due to facet condition 4). This gives 2|J \ J̃ | many points.

It is easy to see that these points are affinely independent.

Now, suppose that we start with a type-II base inequality
∑

i∈I,j∈J:(i,j)∈E xij ≤ s(I) in Proposition 7.

Note that inequality
∑

i∈I,j∈J:(i,j)∈E xij ≤ s(I) is a relaxation of the supply constraints (1c). Let tj =∑
i∈I:(i,j)∈E xij and αj = 0 for all j ∈ J in inequality (24). Suppose that there exists J̃ and m such that

s(I) > d(J \ J̃) and s(I)−d(J \ J̃) < maxj∈J̃{dj}. These conditions imply that m = 0 and α = s(I)−d(J \ J̃).
Then we obtain the inequality ∑

i∈I,j∈J:(i,j)∈E

xij +
∑
j∈J̃

αzj ≤ s(I) + (|J̃ | − 1)α, (50)

which is valid for X.

Proposition 10. Inequality (50), valid for X, defines a facet of conv(X) only if

1. J̃ 6= ∅.

In addition, if the following conditions hold then (50) is a facet of conv(X):

2. s(V1) > d(J \ J̃) + maxj∈(V2\J)∪J̃{dj},

3. s(I) < d(J \ J̃) + minj∈J̃{dj},

4. s(I) ≤ d(J \ J̃) + maxj∈J̃{dj} −maxj∈J\J̃{dj}.

Proof. Necessity.
1. If we replace tj by

∑
i∈I:(i,j)∈E xij for all j ∈ J and α0 by s(I) we can use the same argument as in

the necessity of facet condition 1 in Proposition 9.
Sufficiency. For the proof we use §I.4.3 Theorem 3.6 [19]. We show that inequality (50), plus any linear

combination of the demand constraints
∑

i∈V1:(i,j)∈E xij + djzj = dj for all j ∈ V2 is the only inequality that

is satisfied at equality by all points (x, z) feasible to TPMC that are tight at (50), i.e., we show that if all
points of TPMC at which (50) is tight satisfy∑

(i,j)∈E

λijxij +
∑
j∈V2

ωjzj = λ̂, (51)

then
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1. λij = uj , j ∈ V2 \ J , i ∈ V1, (i, j) ∈ E,

2. λij = uj , j ∈ J , i ∈ V1 \ I, (i, j) ∈ E,

3. λij = λ̄+ uj , j ∈ J , i ∈ I, (i, j) ∈ E,

4. ωj = ujdj , j ∈ V2 \ J̃ ,

5. ωj = λ̄α+ ujdj , j ∈ J̃ ,

6. λ̂ = λ̄
(
s(I) + (|J̃ | − 1)α

)
+
∑

j∈V2
ujdj .

In the proof we consider four different types of points at which (50) is tight that make use of the facet
conditions. Throughout, let ε be a very small number greater than zero unless noted otherwise.

1. Consider a point where only markets j ∈ J \ J̃ ∪ {r} are satisfied for some r ∈ V2 \ J , and constraints∑
i∈I,j∈J:(i,j)∈E

xij = d(J \ J̃)

∑
i∈V1:(i,r)∈E

xir = dr

xij = 0, i ∈ V1, j ∈ J̃ ∪ V2 \ (J ∪ {r})
xij ≥ ε, i ∈ I, j ∈ J \ J̃
xir ≥ ε, i ∈ V1∑

j∈V2:(i,j)∈E

xij ≤ si − ε, i ∈ V1

zj = 1, j ∈ J̃ ∪ V2 \ (J ∪ {r})
zj = 0, j ∈ {r} ∪ J \ J̃

in addition to the original constraints are satisfied, which we refer to as System 1. We know that a
solution to System 1 exists from assumption s(I) > d(J \ J̃) and facet condition 2.

2. Consider a point where only markets j ∈ J \ J̃ are satisfied, and constraints∑
i∈I,j∈J:(i,j)∈E

xij = d(J \ J̃)

xij = 0, i ∈ V1, j ∈ J̃ ∪ V2 \ J
xij ≥ ε, i ∈ I, j ∈ J \ J̃∑

j∈V2:(i,j)∈E

xij ≤ si − ε, i ∈ I

zj = 1, j ∈ J̃ ∪ V2 \ J
zj = 0, j ∈ J \ J̃

in addition to the original constraints are satisfied, which we refer to as System 2. We know that a
solution to System 2 exists from assumption s(I) > d(J \ J̃).
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3. Consider a point where only markets j ∈ J \ J̃ ∪ {l} are satisfied for some l ∈ J̃ , and constraints∑
i∈I,j∈J:(i,j)∈E

xij = s(I)

∑
i∈V1\I,j∈J:(i,j)∈E

xij = d(J \ J̃) + dl − s(I)

xij = 0, i ∈ V1, j ∈ J̃ \ {l} ∪ V2 \ J
xij ≥ ε, i ∈ V1, j ∈ J \ J̃ ∪ {l}∑

j∈V2:(i,j)∈E

xij ≤ si − ε, i ∈ V1 \ I

zj = 1, j ∈ J̃ \ {l} ∪ V2 \ J
zj = 0, j ∈ J \ J̃ ∪ {l}

in addition to the original constraints are satisfied, which we refer to as System 3. We know that a
solution to System 3 exists from facet conditions 2 and 3.

4. Consider a point where only markets j ∈ J \ (J̃ ∪ {j′})∪ {l∗} are satisfied for l∗ = arg maxj∈J̃{dj} and

some j′ ∈ J \ J̃ , and constraints ∑
i∈I,j∈J:(i,j)∈E

xij = s(I)

∑
i∈V1\I,j∈J:(i,j)∈E

xij = d(J \ J̃) + dl∗ − dj′ − s(I)

xij = 0, i ∈ V1, j ∈ {j′} ∪ J̃ \ {l∗} ∪ V2 \ J
zj = 1, j ∈ {j′} ∪ J̃ \ {l∗} ∪ V2 \ J
zj = 0, j ∈ J \ (J̃ ∪ {j′}) ∪ {l∗}

in addition to the original constraints are satisfied, which we refer to as System 4. We know that a solution
to system 4 exists from facet conditions 2 and 4.

1. λij = uj , j ∈ V2 \ J , i ∈ V1, (i, j) ∈ E.

Consider any solution to system 1 with any market j = r ∈ V2 \ J that is satisfied. Choose arbitrary
suppliers i, i′ ∈ V1 such that (i, j), (i′, j) ∈ E. Construct a new point by decreasing the flow on edge
(i, j) by ε and increasing the flow on edge (i′, j) by ε. Note that this point is also on the face defined
by inequality (50). Thus,

λij = uj , j ∈ V2 \ J, i ∈ V1, (i, j) ∈ E.

2. λij = uj , j ∈ J , i ∈ V1 \ I, (i, j) ∈ E.

Consider any solution to system 3 with market j ∈ J \ J̃ ∪{l} satisfied for some l ∈ J̃ . Choose arbitrary
suppliers i, i′ ∈ V1 \ I such that (i, j), (i′, j) ∈ E. Construct a new point by decreasing the flow on edge
(i, j) by ε and increasing the flow on edge (i′, j) by ε. Note that this point is also on the face defined
by inequality (50) since i, i′ ∈ V1 \ I. Thus,

λij = uj , j ∈ J \ J̃ ∪ {l}, i ∈ V1 \ I, (i, j) ∈ E.

Note that since we can use the above argument for any l ∈ J̃ , we have λil = ul for all l ∈ J̃ , i ∈ V1 \ I,
(i, l) ∈ E.
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3. λij = λ̄+ uj , j ∈ J , i ∈ I, (i, j) ∈ E.

Consider any solution to system 2. Choose arbitrary suppliers i, i′ ∈ I such that (i, j), (i′, j) ∈ E for
j ∈ J \ J̃ . Construct a new point by decreasing the flow on edge (i, j) by ε and increasing the flow on
edge (i′, j) by ε. Note that this point is also on the face defined by inequality (50). Thus,

λij = λ1
j , j ∈ J \ J̃ , i ∈ I, (i, j) ∈ E.

Next we consider a solution to system 3 with ε = 0. Choose arbitrary suppliers i, i′ ∈ I and market
j ∈ J \ J̃ such that (i, j), (i′, j), (i, l), (i′, l) ∈ E. Construct a new point by decreasing the flow on edges
(i, j), (i′, l) by ε and increasing the flow on edges (i′, j), (i, l) by ε. Note that this point is also on the
face defined by inequality (50). Thus,

−λij + λil + λi′j − λi′l = −λ1
j + λil + λ1

j − λi′l = λil − λi′l = 0.

Because l is any market in set J̃ , λij = λ1
j , j ∈ J̃ , i ∈ I, (i, j) ∈ E.

Let λ1
j = λ̄j+uj , j ∈ J . Next we show that λ̄j = λ̄, j ∈ J . We consider a solution to system 3 with ε = 0.

Choose any markets j, j′ ∈ J , any suppliers i ∈ V1 \ I, i′ ∈ I such that (i, j), (i′, j), (i, j′), (i′, j′) ∈ E.
Decrease flow on edges (i, j′), (i′, j) by ε and increase flow on edges (i, j), (i′, j′) by ε. Thus,

λij − λij′ − λi′j + λi′j′ = uj − uj′ − λ1
j + λ1

j′ = 0.

By again using λ1
j = λ̄j + uj and λ1

j′ = λ̄j′ + uj′ , we obtain

λ̄j = λ̄j′ = λ̄.

4. ωj = ujdj , j ∈ V2 \ J̃ .

We rewrite (51) using the information obtained until now, and get

λ̄
∑

i∈I,j∈J:(i,j)∈E

xij +
∑

(i,j)∈E

ujxij +
∑
j∈V2

ωjzj = λ̂. (52)

Consider any solution to system 1 with market r ∈ V2 \ J that is satisfied. Then we construct a new
solution based on this solution where we set zr = 1 and xir = 0 for all i ∈ V1, (i, r) ∈ E and all other
variables remain the same. This is a solution to System 2. Thus this solution is also on the face defined
by (50). We compare inequality (51) evaluated at these two solutions. Thus,

ur
∑

i∈V1:(i,r)∈E

xir − ωr = 0.

Because
∑

i∈V1:(i,r)∈E xir = dr we have ωr = urdr, r ∈ V2 \ J .

Next we show that ωj = ujdj , j ∈ J \ J̃ . First we consider a solution to system 3 where we choose
l = l∗ = arg maxj∈J̃{dj}. This is a feasible choice due to facet condition 2. We evaluate (52) at this
solution, and get

λ̄(s(I)) +
∑

i∈V1,j∈J\J̃∪{l∗}:(i,j)∈E

ujxij +
∑

j∈V2\J∪J̃\{l∗}

ωj = λ̂. (53)

Next we consider a solution to system 4 where some market j′ ∈ J \ J̃ is rejected. We evaluate (52) at
this solution, and obtain

λ̄(s(I)) +
∑

i∈V1,j∈J\(J̃∪{j′})∪{l∗}:(i,j)∈E

ujxij +
∑

j∈V2\J∪J̃\{l∗}

ωj + wj′ = λ̂. (54)

We subtract (54) from (53) and obtain uj′
∑

i∈V1:(i,j′)∈E xij′−ωj′ = 0. Because
∑

i∈V1:(i,j′)∈E xij′ = dj′

we have ωj′ = uj′dj′ , j
′ ∈ J \ J̃ .
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5. ωj = λ̄α+ ujdj , j ∈ J̃ .

Consider any solution to system 3 with any market l ∈ J̃ that is satisfied. Then (51) reduces to

λ̄(s(I)) +
∑

i∈V1,j∈J\J̃∪{l}:(i,j)∈E

ujxij +
∑

j∈V2\J∪J̃\{l}

ωj = λ̂. (55)

We also consider a solution to system 2 where market l ∈ J̃ is rejected. Then (51) reduces to

λ̄(d(J \ J̃) +
∑

i∈V1,j∈J\J̃:(i,j)∈E

ujxij +
∑

j∈V2\J∪J̃

ωj = λ̂. (56)

We subtract (56) from (55) and obtain, λ̄(s(I)− d(J \ J̃)) + ul
∑

i∈V1:(i,l)∈E xil − ωl = 0. Since s(I)−
d(J \ J̃) = α and

∑
i∈V1:(i,l)∈E xil = dl we conclude that ωl = λ̄α+ uldl for l ∈ J̃ .

6. λ̂ = λ̄
(
s(I) + (|J̃ | − 1)α

)
+
∑

j∈V2
ujdj .

We rewrite (51), and get

λ̄

 ∑
i∈I,j∈J:(i,j)∈E

xij +
∑
j∈J̃

αzj

+
∑

(i,j)∈E

ujxij +
∑
j∈V2

ujdjzj = λ̂. (57)

Evaluating (57) at any point (x, z) feasible to TPMC that is tight at inequality (50) gives

λ̄
(
s(I) + (|J̃ | − 1)α

)
+
∑
j∈V2

uj

 ∑
i∈V1:(i,j)∈E

xij + djzj

 = λ̂.

From the definition of TPMC we have
∑

i∈V1:(i,j)∈E xij + djzj = dj for all j ∈ V2. Thus, λ̂ =

λ̄
(
s(I) + (|J̃ | − 1)α

)
+
∑

j∈V2
ujdj .

Even though Propositions 6 and 7 are general results for mixed-integer cover and knapsack sets S1 and
S2, we observed that many of the facets for TPMC can be derived from the recursive application of these
results.

Example 4. (Continued.) Observe that inequalities (28), (29) and (30) satisfy all the conditions given in
Proposition 8 and inequality (32) satisfies all the conditions given in Proposition 10, and hence they are facets
of conv(X).

Finally, while the blossom inequalities (3) are strong for the case that dj ≤ 2 for all j ∈ V2, they are not
facet-defining for the general case of TPMC based on our experience with PORTA [7].

5 Computational Results

In this section we present our computational results for the TPMC problem. We conduct the experiments
on an Intel Xeon x5650 Processor at 2.67GHz with 4GB RAM. We use IBM ILOG CPLEX 12.4 as the MIP
solver. We test the TPMC problem for various settings of V1 and V2. There are 12 combinations of V1 and
V2 as shown in Tables 1 and 2, in the first column. For each combination, we create 3 instances and report
the averages. We observed that most instances of the TPMC problem are solved under a minute for each
setting of V1 and V2. Therefore, we found “hard” instances by continually generating and solving instances
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until we were able to find 3 that were solved in at least 15 minutes under default CPLEX settings. Problem
parameters are generated using a discrete uniform distribution with supply values si ∈ [10, 20], demand values
dj ∈ [10, 20], weights wij ∈ [20, 50] and lost revenues rj ∈ [5000, 6000]. In our computations, we impose a
time limit of half an hour, and consider the following four algorithms:

(1) BB (Branch and Bound): TPMC formulation, (1a)-(1e) with no cuts,

(2) UC (User Cuts): TPMC formulation, (1a)-(1e) with only user cuts,

(3) CD (CPLEX Default Settings): TPMC formulation, (1a)-(1e) with default CPLEX cuts,

(4) UCD (User Cuts and CPLEX Default Settings): TPMC formulation, (1a)-(1e) with user cuts and default
CPLEX cuts.

Table 1: Comparison of Algorithms BB and UC

|V1|, |V2| RGap RCuts EGap ECuts Time (unslvd) B&C Nodes
BB UC BB UC BB UC BB UC BB UC BB UC

200,230 86.7% 86.7% - u8 0.8% 1.0% - u189 1800(3) 1800(3) 176305.3 107412
200,240 1.7% 1.7% - u4.3 0.7% 0.8% - u186 1800(3) 1800(3) 168384.7 91004.7
200,250 28.1% 28.1% - u4.7 0.2% 0.2% - u103.3 1800(3) 1800(3) 141624.3 89966.7
300,330 54.3% 54.3% - u4 0.5% 0.5% - u125.7 1800(3) 1800(3) 75466.3 56085.3
300,340 1.6% 1.6% - u6 0.9% 0.9% - u123.3 1800(3) 1800(3) 60125.7 50122.7
300,350 58% 29.5% - u4.3 0.4% 0.4% - u98.3 1800(3) 1800(3) 51141.3 44166.7
400,430 0.8% 0.7% - u4 0.4% 0.5% - u74.7 1800(3) 1800(3) 29565 32466.7
400,440 81% 54.3% - u4.7 0.3% 0.3% - u72.7 1800(3) 1800(3) 23177.7 26600
400,450 0.4% 0.4% - u4.7 0.2% 0.2% - u57.7 1800(3) 1800(3) 22593 23733.3
500,530 83.2% 83.2% - u7 0.5% 0.2% - u52 1800(3) 1690.5(2) 18152.3 16380
500,540 81.4% 81.4% - u4 0.4% 0.4% - u61.3 1800(3) 1800(3) 16115 17573.3
500,550 0.6% 0.6% - u6.3 0.4% 0.4% - u21.7 1800(3) 1800(3) 14767.7 18100
Average 43.5% 35.2% - u5.2 0.5% 0.5% - u96.4 1800(3) 1790.9(2.9) 66451.5 47801

Table 2: Comparison of Algorithms CD and UCD

|V1|, |V2| RGap RCuts EGap ECuts Time (unslvd) B&C Nodes
CD UCD CD UCD CD UCD CD UCD CD UCD CD UCD

200,230 58.4% 58.1% 10.7 6,u2.3 0.2% 0.2% 568.7 569,u37.3 1342.3(1) 1249.8(1) 64767 57478.7
200,240 1.6% 1.6% 10 9.3,u2.7 0.4% 0.6% 307.3 219.7,u101.7 1420.9(2) 1333.9(2) 93360.7 74344.3
200,250 28.1% 1% 7.3 4,u3.3 0.1% 0.1% 573.3 412,u17.3 1265.4(1) 815.6(1) 53962.7 39750
300,330 0.8% 0.7% 12 8,u2 0.3% 0.3% 164.7 178.3,u50.3 1800(3) 1227.1(2) 72057.7 33551.3
300,340 1.6% 1.5% 13.3 7.3,u1.3 0.2% 0% 334.7 239,u16.3 1678.3(1) 1067.6(1) 49950 31914.3
300,350 29.5% 29.5% 4.7 5.7,u2 0.2% 0.2% 161 139.3,u53.3 1025.9(1) 901.7(1) 29653.7 23473.7
400,430 0.7% 0.7% 10.7 8.3,u2.7 0.2% 0.3% 114.7 105.7,u41 1800(3) 1234.9(2) 34852 21395.7
400,440 27.5% 27.8% 12 8,u3.3 0.2% 0.1% 128.7 167.7,u25 1800(3) 1216.6(2) 24729.3 16442.7
400,450 0.4% 0.4% 6 6.3,u3.7 0.1% 0.1% 133 173.3,u23 1800(3) 1800(3) 19398.7 22166.7
500,530 42.3% 42.3% 7.7 5.3,u3 0.2% 0.2% 76.3 86.3,u55 1800(3) 1661.7(2) 34852 21089.7
500,540 27.9% 27.9% 7 8.7,u1 0.4% 0.2% 58.3 151.3,u32.7 1800(3) 1800(3) 20709 18757.3
500,550 0.6% 0.6% 7 8.7,u3.7 0.4% 0.3% 26.3 68,u34.7 1800(3) 1800(3) 17482 18707.3
Average 18.3% 16% 9 7.1,u2.6 0.2% 0.2% 220.6 209.1,u40.6 1611.1(2.3) 1342.4(1.9) 42981.2 31589.3

In Tables 1 and 2, column RGap reports the average percentage integrality gap at the root node just
before branching, which is 100× (zub− zrb)/zub, where zub is the objective function value of the best integer
solution obtained within time limit and zrb is the best lower bound obtained at the root node. Column
RCuts reports the average number of cuts added at the root node. In column EGap, we report the average
percentage end gap at termination output by CPLEX, which is 100 × (zub − zbest)/zub, where zbest is the
best lower bound available within time limit. Column ECuts reports the average number of cuts added
after the problem is solved to optimality within the time limit. Column Time (unslvd) reports the average
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solution time in seconds and the number of unsolved instances in parentheses in cases where not all three
instances are solved to optimality within time limit. We denote the user cuts by u and for the other cuts,
i.e., cuts added by CPLEX we do not use a prefix. In column B&C Nodes we report the average number
of branch-and-cut tree nodes explored. At the end of Tables 1 and 2 we give the averages of RGap, RCuts,
EGap, ECuts, Time (unslvd) and B&C Nodes, respectively. For each value in the tables we report the
numbers rounded to the first decimal place.

User cuts are generated every 10000 B&C nodes. For the variable upper bound inequalities (14) we add
a violated inequality if si < dj , i ∈ V1, j ∈ V2, (i, j) ∈ E and x̄ij > si(1 − z̄j). Recall that inequalities (19)
are related to the weight inequalities for 0/1 knapsack problems. The exact separation of weight inequalities
involves solving 0/1 knapsack problems. Weismantel, Kaparis and Letchford give exact pseudo-polynomial
separation algorithms for weight inequalities [15, 26]. The optimization problems for finding the most violated
inequalities (15) and (27) involve nonlinear objectives and constraints that resemble knapsack constraints.
Thus, we use a heuristic separation for inequalities (15), (19) and (27). Let (x̄, z̄) be a fractional point. The
heuristic for finding a violated inequality (15) takes (x̄, z̄) and selects sets I and J simultaneously. Set J
includes a market with fractional z̄ value, and other markets that receive demand from the same suppliers as
the market with fractional z̄. All the suppliers that do not send demand to markets in set J are placed in set
I. More details for this heuristic can be found in Algorithm 2. The heuristic for finding a violated inequality
(19) uses the type-I base inequalities (15), and adds the smallest p coefficients of the z variables that exceed
the right-hand side, β0 to obtain the cover J̃ . For all the instances in Tables 1 and 2 the violated inequality
(15) (i.e. type-I base inequality) found by the heuristic separation has the coefficients of all the z variables
equal to the right-hand side, β0. It is easy to see that if at least two coefficients of z variables are not strictly
less than the right-hand side, β0 in a given type-I base inequality, the new inequality of type (19) cannot be
a facet of conv(X). Therefore, for the given instances no violated inequality of type (19) is generated. Note
that our separation heuristic for inequality (19) is different than that of [14, 15, 26] because our choice of set
J also impacts the continuous term t =

∑
i∈I,j∈J:(i,j)∈E xij , which is not present in their setting. We have

three heuristics for finding a violated inequality (27). Two of them uses the supply constraints as a base
inequality for a certain choice of J (i.e.

∑
j∈J:(i,j)∈E xij ≤ si for i ∈ V1 and J ⊆ V2), one of which finds an

inequality with |J̃ | = 1 and the other finds an inequality with |J̃ | = |J | − 1. The details for these heuristics
are given by Algorithms 3 and 4, respectively. The third heuristic uses

∑
i∈V1,j∈V2:(i,j)∈E xij ≤ s(V1) as a

base inequality and finds a violated inequality with J̃ that includes the rejected markets and markets that
have fractional z̄ values. More details on this heuristic is given in Algorithm 5.

Table 1 compares the performance of algorithms BB and UC, to isolate the reduction in the root gap
(8.3%) using our inequalities. Similarly, Table 2 compares the performance of the algorithms CD and UCD,
to illustrate the marginal benefit of incorporating our inequalities into default CPLEX, where we observe a
reduction in the root gap of 2.3%. Due to the reduction in the integrality gap the number of branch-and-cut
nodes is almost always lower for UC and UCD compared to BB and CD, respectively. The solution times
and the number of unsolved instances are slightly lower for algorithms that include our proposed inequalities.
However, the end gap is not lower for algorithms UC and UCD compared to BB and CD, respectively. In
conclusion, our preliminary computational results show that our proposed inequalities does have some positive
effects, but the separation heuristics need to be significantly improved.
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Algorithm 2 Heuristic separation for inequalities (15)

Input: (x̄, z̄)
Output: Sets I and J and the corresponding cut for each fractional z̄

I ← V1

s(V1 \ I) = 0
d(J) = 0
tempSupplies← ∅
tempDemand← ∅
switch = 0
for all the fractional variables z̄j do

tempDemand = {j}
J = {j}
while |tempDemand| ≥ 1 or |tempSupplies| ≥ 1 do

if switch = 0 then
for all the supplies i that have an edge to all nodes j in tempDemand do

if x̄ij > 0 then
I ← I \ {i}
s(V1 \ I)← s(V1 \ I) + si
tempSupplies← tempSupplies ∪ {i}

end if
end for
switch = 1
tempDemand← ∅

end if
if switch = 1 then

for all demand j that have an edge to all nodes i in tempSupplies do
if x̄ij > 0 then

J ← J ∪ {j}
d(J)← d(J) + dj
tempDemand← tempDemand ∪ {j}

end if
end for
switch = 0
tempSupplies← ∅

end if
end while
if d(J) > s(V1 \ I) and |J | ≥ 2 and maxj∈J{dj} > d(J)− s(V1 \ I) then

if
∑

i∈I,j∈J:(i,j)∈E x̄ij +
∑

j∈J(min{d(J)− s(V1 \ I), dj})z̄j < d(J)− s(V1 \ I) then

add inequality (15) with I and J
end if

end if
I ← V1

s(V1 \ I) = 0
d(J) = 0
switch = 0

end for

35

DISTRIBUTION A: Distribution approved for public release.



Algorithm 3 Heuristic separation for inequalities (27) that finds |J̃ | = 1

Input: (x̄, z̄)
Output: Sets I, J , J̃ and the corresponding cut for each fractional z̄

I, J, J̃ ← ∅
d(J \ J̃) = 0
α = 0
for all the fractional variables z̄j do

J ← {j}, J̃ ← {j}
for all i such that x̄ij > 0 do

I ← {i}
for all j∗ 6= j do

if x̄ij∗ = dj∗ then
J ← J ∪ {j∗}
d(J \ J̃) = d(J \ J̃) + dj∗

end if
end for
α = si − d(J \ J̃)
if |J | ≥ 2 and

∑
j∈J:(i,j)∈E x̄ij + αz̄j > si then

add inequality (27) with I, J , J̃ and α
end if
I ← ∅, J ← {j}, d(J \ J̃) = 0

end for
end for
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Algorithm 4 Heuristic separation for inequalities (27) that finds |J̃ | = |J | − 1

Input: (x̄, z̄)
Output: Sets I, J , J̃ and the corresponding cut for each fractional z̄

J0 ← {j ∈ V2 : z̄j = 0}
J1 ← {j ∈ V2 : z̄j = 1}
I ← ∅
α = 0
maxdjJ̃ = maxj∈J1{dj}
for all the fractional variables z̄j do

J̃ ← J1 ∪ {j}
if maxdjJ̃ < dj then

maxdjJ̃ = dj
end if
for all i ∈ V1 do

for all j′ ∈ J0 do
if x̄ij′ > 0 and si > dj′ and si − dj′ < maxdjJ̃ then

α = si − dj′
I ← {i}, J ← J̃ ∪ {j′}
if
∑

j∈J:(i,j)∈E x̄ij + α
∑

j∈J̃ z̄j > si + (|J̃ | − 1)α then

add inequality (27) with I, J , J̃ and α
end if

end if
end for

end for
end for

Algorithm 5 Heuristic separation for inequalities (27) that finds general J̃

Input: (x̄, z̄)
Output: Sets I, J , J̃ and the corresponding cut

Jf ← {j ∈ V2 : 0 < z̄j < 1}
J1 ← {j ∈ V2 : z̄j = 1}
I ← V1

J ← V2

J̃ ← Jf ∪ J1

α = 0
maxdjJ̃ = maxj∈J1∪Jf

{dj}
if s(V1)− d(V2 \ J̃) > 0 and s(V1)− d(V2 \ J̃) < maxdjJ̃ then

α = s(V1)− d(V2 \ J̃)
if
∑

i∈V1,j∈V2:(i,j)∈E x̄ij + α
∑

j∈J̃ z̄j > s(V1) + (|J̃ | − 1)α then

add inequality (27) with I, J , J̃ and α
end if

end if
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A Proofs of Section 2

In this section, we assume that all data are integral.

Proposition 1. The decision version of TPMC is NP-complete even when:

1. si = 1 for all i ∈ V1, dj = d ≥ 3 for all j ∈ V2, wij = 0 for all (i, j) ∈ E and rj = 1 for all j ∈ V2.

2. |V1| = 1 and wij = 0 for all (i, j) ∈ E.

Proof. Since TPMC is a mixed integer linear problem with rational data, it is in NP. We present two reductions
to verify the two parts of this result.

1. We reduce every instance of the Exact 3-Cover (E3C) problem to an instance of TPMC. An instance
of E3C is given as: Let B be a base set where |B| = 3q for some q ∈ N. Let C be a collection of subsets
of B where each subset is of cardinality 3. Does there exist D ⊆ C such that |D| = q and the union of
sets in D covers every element of B?

It is well-known that E3C is strongly NP-complete [10]. Given an instance of E3C, we construct an
instance of TPMC as follows: For every element in B, we construct a node in V1 and for every element
in C we construct a node in V2. For i ∈ V1, we use the notation B(i) to denote the element of B
corresponding to node i. Similarly, for j ∈ V2, we let C(j) denote the element of C corresponding to
node j. We add an edge between i ∈ V1 and j ∈ V2 if B(i) ∈ C(j). Let si = 1 for all i ∈ V1. Let dj = 3
for all j ∈ V2. Let wij = 0 for all (i, j) ∈ E. Let rj = 1 for all j ∈ V2.

Next, we verify that there exists D ⊆ C such that |D| = q and D covers every element of B if and only
if there exists a feasible solution to TPMC with a cost at most |C|− q. Note that the size of the TPMC
instance is polynomially bounded by the size of the E3C instance.

(⇒) Assume that there exists {D1, . . . , Dq} =: D ⊆ C such that D covers every element of B. Let D(u)
represent the element of D (and therefore of C) that contains u ∈ B. Now construct the solution

x̂ij =

{
1 if B(i) = u and C(j) = D(u)
0 otherwise.

ẑj =

{
1 if C(j) /∈ {D1, . . . , Dq}
0 otherwise.

It is straightforward to verify that (x̂, ẑ) satisfies all the constraints of TPMC and
∑

(i,j)∈E wij x̂ij +∑
j∈V2

rj ẑj = |C| − q.
(⇐) Consider a solution (x̂, ẑ) of TPMC such that∑

(i,j)∈E

wij x̂ij +
∑
j∈V2

rj ẑj =
∑
j∈V2

ẑj ≤ |C| − q. (58)

Since there are 3q supply nodes, each with a capacity of 1, the demand of at most q nodes can be
satisfied. Therefore, from (58), we conclude that there are exactly q nodes whose demands are satisfied.
Let D = {C(j) |

∑
i∈V1

ẑj = 0}. Clearly, |D| = q and D covers every element of B. As a result TPMC
is strongly NP-complete.
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2. We reduce every instance of the Subset Sum (SS) problem to an instance of TPMC. An instance of SS
is given as: Let A be a finite set, an ∈ Z+ be the size of each element n ∈ A and B be a positive integer.
Does there exist a subset A

′ ⊆ A such that the sum of the sizes of the elements in A
′

is exactly B?

It is well-known that SS is NP-complete [10]. Given an instance of SS, we construct an instance of
TPMC as follows: We construct a single node V1 = {1} and for every element in A we construct a node
in V2. We add all the edges between the nodes in V1 and V2. Let the single supply be s1 = B. Let
demand of market j be dj = aj for all j ∈ V2 = A. Finally, let the unit shipping costs and lost revenues
be w1j = 0 and rj = dj , for j ∈ V2.

Next, we verify that there exists subset A
′ ⊆ A such that the sum of the sizes of the elements in A

′
is

exactly B if and only if there exists a feasible solution to TPMC with a cost of at most
∑

n∈A an −B.
Note that the size of the TPMC instance is polynomially bounded by the size of the SS instance.

(⇒) Assume that there exists a subset A
′ ⊆ A such that the sum of the sizes of the elements in

A
′

is exactly B. Now construct the solution

x̂1j =

{
aj if j ∈ A′

0 otherwise,

ẑj =

{
1 if j /∈ A′

0 otherwise.

It is straightforward to verify that (x̂, ẑ) satisfies all the constraints of TPMC and
∑

(i,j)∈E wij x̂ij +∑
j∈V2

rj ẑj =
∑

n∈A an −B.
(⇐) Consider a solution (x̂, ẑ) of TPMC such that∑

(i,j)∈E

wij x̂ij +
∑
j∈V2

rj ẑj =
∑
j∈V2

aj ẑj ≤
∑
n∈A

an −B. (59)

The total demand satisfied by any feasible solution is at most B since we cannot satisfy more than the
supply. Furthermore, since each edge has a cost per unit flow of 0, we have that

∑
(i,j)∈E wij x̂ij = 0.

Therefore, from (59), the total demand satisfied must equal B. Let the set of satisfied demand nodes
be A

′
= {j ∈ A : ẑj = 0}, so we have

∑
n∈A′ an = B.

Proposition 2. Suppose that dj ≤ 2 for all j ∈ V2. Then there exists a polynomial-time algorithm to solve
TPMC.

Proof. We can convert a given instance of TPMC with dj ≤ 2 for all j ∈ V2 and arbitrary supplies into an
equivalent instance with all supplies equal to 1. Observe that in any feasible solution since dj ≤ 2 for all
j ∈ V2, no supply can send more than 2|V2| units. Therefore, if si > 1 for some i ∈ V1, then we construct an
updated instance by replacing supply node i ∈ V1 with min{si, 2|V2|} supply nodes with a capacity of 1 and
unit shipping cost to demand node j of wij for (i, j) ∈ E. Notice that the resulting instance is polynomial in
the size of the original problem. Therefore from now on we assume that si = 1 for all i ∈ V1.

We show that TPMC with dj ≤ 2 for all j ∈ V2 is equivalent to the problem of finding a minimum weight
perfect matching on a suitably constructed general graph G′ = (V ′, E′).

1. For each i ∈ V1, we add a corresponding i ∈ V ′ and similarly for each j ∈ V2 we add j ∈ V ′. (When we
use notation V1 ⊆ V ′, V1 represents the vertices of V ′ corresponding to the vertices V1 of G; similary
for V2.)

2. Let M1 = {j ∈ V2 : dj = 1} and M2 = {j ∈ V2 : dj = 2}.
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3. For each demand node j ∈ V2, add a node j′ ∈ V ′ (note that this is in addition to j ∈ V ′ for j ∈ V2

as described in 1.). Add an edge (j, j′) ∈ E′ with a cost of rj . We refer to the set of nodes j′ ∈ V ′
corresponding to j ∈M1 as M ′1. (We define M ′2 similarly.)

4. For each i ∈ V1 such that (i, j) ∈ E and j ∈M1, add the edge (i, j) ∈ E′ with cost of wij .

5. For each i ∈ V1 such that (i, j) ∈ E and j ∈ M2, add two nodes, ij1, ij2 ∈ V ′. Add edges
(i, ij1), (ij1, ij2), (ij2, j), (ij2, j′) ∈ E′ with costs

wij

2 , 0,
wij

2 ,
wij

2 respectively.

6. If |V1| is odd, we add an additional artificial node {0} to V ′. Let V ′1 ⊆ V ′ be defined as V ′1 := V1 ∪M ′1
if |V1| is even and V ′1 := V1 ∪M ′1 ∪ {0} if |V1| is odd.

7. For all u, v ∈ V ′1 such that u 6= v, add an edge (u, v) ∈ E′ with a cost of 0. Therefore, the subgraph
induced by the nodes in V ′1 is a complete graph/clique.

Note that the size of the resulting minimum weight perfect matching problem is polynomial in the size of the
TPMC problem. Figure 2 illustrates the original graph of a TPMC instance, where the demand of market A
is 2 and that of market B is 1. Figure 3 illustrates the new graph. (The clique induced by V1 ∪ {B′} ∪ {0} is
not shown.)

1

2

Figure 2: A TPMC instance

1

Figure 3: Construction of G′

We next show that any solution to the TPMC problem corresponds to a perfect matching in G′ = (V ′, E′).
Consider a feasible solution (x, z) to the TPMC problem. If zj = 0 for j ∈M1, then there exists exactly one
supply node i such that xij = 1. For constructing a matching in G′, we choose edge (i, j), where i ∈ V1 and
j ∈M1, thereby covering nodes i and j in V ′. If zj = 0 for j ∈M2, then there exists two supply nodes i1 and
i2 ∈ V1 such that xi1j = xi2j = 1. For constructing a matching in G′, without loss of generality, we choose
edges (i1, i1j1), (i1j2, j), (i2, i2j1) and (i2j2, j

′), thereby covering nodes i1, i2, i1j1, i1j2, i2j1, i2j2, j, j
′. If

zj = 1 for j ∈ V2, then no supply node i sends demand to j and for the matching we choose edge (j, j′),
hence covering nodes j and j′ in V ′. Moreover if j ∈ M2, we choose edges (ij1, ij2) for all (i, j) ∈ E, i ∈ V1

in the matching and therefore the nodes ij1, ij2, j, j′ are also covered. Hence whether zj = 1 or zj = 0, and
whether j ∈ M1 or j ∈ M2, the nodes in V2, M ′2, and the nodes ij1, ij2 for all (i, j) ∈ E, j ∈ M2 are always
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covered by the edges in the matching we have selected thus far. To complete the proof we show how nodes
i ∈ V ′1 are also covered in all cases by extending the matching we have until now.

Let M̄1 = {j ∈M1 : zj = 0}, M̄2 = {j ∈M2 : zj = 0} and V̄1 = {i ∈ V1 : xij = 1}. In other words, set M̄1

represents the nodes j ∈ M1 whose unit demands are satisfied, set M̄2 represents the nodes j ∈ M2 whose
demands, dj = 2, are satisfied, and set V̄1 represents the set of supply nodes that send demand. Observe that
the nodes in V̄1 are also covered in the matching constructed thus far. However, the nodes j ∈ V1 \ V̄1, and
j′ ∈ M ′1 for j ∈ M̄1 and {0} (if it exists) are not yet covered. Note that |V̄1| = |M̄1| + 2|M̄2|. We consider
two cases.

1. |V1| is even. If |V̄1| is even, then |V1| − |V̄1| and |M̄1| are even. If |V̄1| is odd, then |V1| − |V̄1| and |M̄1|
are odd. Therefore, |V1| − |V̄1| + |M̄1| is always even. Thus, we can cover all nodes i ∈ V1 \ V̄1 and

j′ ∈ M ′1 for j ∈ M̄1 using |V1|−|V̄1|+|M̄1|
2 many disjoint edges that exist between them (recall that the

subgraph induced by the nodes i ∈ V ′1 form a complete graph).

2. |V1| is odd. If |V̄1| is even, then |V1| − |V̄1| is odd and |M̄1| is even. If |V̄1| is odd, then |V1| − |V̄1| is
even and |M̄1| is odd. Therefore, |V1| − |V̄1| + |M̄1| is always odd. Recall that when |V1| is odd we
have an additional dummy node {0} that forms a fully connected graph with nodes i ∈ V1 and j ∈M ′1.

Therefore, we obtain an even number of nodes that need to be covered by choosing |V1|−|V̄1|+|M̄1|+1
2

disjoint edges.

So we have verified that given any solution to the TPMC problem we can find a perfect matching in G′ =
(V ′, E′). Moreover, it is straightforward to check that the cost of this matching is equal to the cost of the
given solution to TPMC.

Next we show that any solution to the perfect matching in G′ = (V ′, E′) corresponds to a feasible solution
of the TPMC problem. Let P be the set of edges that are in the perfect matching. If edge (j′, j) ∈ P for
j′ ∈ M ′1, j ∈ M1 (or j ∈ M2, j′ ∈ M ′2), then set zj = 1. Set all remaining zj = 0. If edge (i, j) ∈ P for
j ∈M1, then we set xij = 1. If edge (i, ij1) ∈ P , then set xij = 1. Set all remaining xij = 0. Note that due to
the construction of graph G′, a supply node i ∈ V1 can send at most 1 unit of demand. Similarly for j ∈M1

a single edge that has j as one of its endpoints will be selected. For j′ ∈M ′2, j ∈M2 if edge (j, j′) ∈ P , then
for any i ∈ V1 edges (ij2, j), (ij2, j′) 6∈ P . However, if edge (j, j′) 6∈ P then for a perfect matching there must
exist exactly two i1, i2 ∈ V1 such that (i1j2, j), (i2j2, j

′) ∈ P . Therefore, for any j ∈M2 either the demand is
fully satisfied or it is rejected altogether. Finally, it is easy to see that the cost of the solution to the TPMC
problem is equivalent to the cost of the corresponding perfect matching in G′, completing the proof.
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Abstract

We propose a scenario decomposition algorithm for stochastic 0-1 programs. The algorithm recovers
an optimal solution by iteratively exploring and cutting-off candidate solutions obtained from solving sce-
nario subproblems. The scheme is applicable to quite general problem structures and can be implemented
in a distributed framework. Illustrative computational results on standard two-stage stochastic integer
programming and nonlinear stochastic integer programming test problems are presented.

1 Introduction

We consider stochastic programs of the following form

min{E[f(x, ξ)] : x ∈ X ⊆ {0, 1}n}, (1)

where ξ is a random vector with support Ξ and known distribution P , and the expectation in (1) is with
respect to P . An important example of (1) is the class of two-stage stochastic programs with 0-1 first stage
variables with

f(x, ξ) = c>x+ min{φ(y(ξ), ξ) : y(ξ) ∈ Y (ξ, x)}

where, for realization ξ of ξ, y(ξ) is the second stage decision vector, φ(·, ξ) is the second stage objective
function, and Y (ξ, x) is the second stage constraint system depending on the first stage decision vector
x. We assume that the random vector ξ has a finite support, i.e. Ξ = {ξ1, . . . , ξN}, where each ξi for
i ∈ {1, . . . , N} is referred to as a scenario. We can then rewrite (1) as

min

{
N∑
i=1

fi(x) : x ∈ X ⊆ {0, 1}n
}
, (2)

where fi(x) = pif(x, ξi) and pi is the probability mass associated with scenario i.
A popular approach for solving (2) is the so-called scenario or dual decomposition method. By making

copies of the decision variables x, problem (2) can be reformulated as

min

{
N∑
i=1

fi(x
i) : xi ∈ X ∀ i,

N∑
i=1

Aix
i = h

}

where the equations
∑N
i=1Aix

i = h enforce the nonanticipativity constraints x1 = · · · = xN . The La-
grangian dual problem by dualizing these nonanticipativity constraints take the form

max
λ

{
v(λ) :=

N∑
i=1

min
{
fi(x

i) + λ>Aix
i : xi ∈ X

}
− λ>h

}
, (3)

1
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where λ is the dual vector. For any λ the value v(λ) provides a lower bound to (2) which can be evaluated by
separately solving subproblems corresponding to each scenario. The best possible such bound is given by
the optimal value of the dual problem (3) which is a large-scale and nonsmooth, albeit convex, optimization
problem and is in general quite challenging. Even with an optimal dual solution, owing to the presence of
integer decision variables, there typically remains a duality gap, and moreover a primal feasible solution
(one that satisfies the original and the nonanticipativity constraints) is not readily available. Caroe and
Schultz [5] proposed a branch and bound algorithm where the dual problem (3) is used to generate lower
bounds, the integer feasible solutions to the scenario subproblems are “averaged” to generate a possibly
fractional primal solutions, and the feasible region is successively partitioned by branching on the fractional
variables to enforce integrality. Alonso-Ayuso et.al. [2] propose solving scenario subproblems (with λ =
0) with a branch-and-fix approach that coordinates the selection of the branching nodes and branching
variables in order to enforce the nonanticipativity constraints. A number of heuristics [6, 9, 15] have also
been designed based on the scenario-wise decomposability of the dual problem (3). In these approaches the
dual problem is augmented by an additional penalty to achieve consensus among the scenario subproblem
solutions, and the penalty parameters are iteratively updated to try to achieve primal feasible solutions. No
convergence guarantees are available for such approaches, but they are reported to have good performance
in various applications.

In this paper we propose a scenario decomposition algorithm for (2) that proceeds by solving scenario
subproblems to generate candidate solutions and lower bounds, evaluating candidate solutions to get up-
per bounds, and cutting off candidate solutions from the scenario subproblems to get improved lower
bounds and new candidate solutions. The scheme is applicable for quite general problem structures and,
since unlike existing exact scenario decomposition methods requires little coordination among scenario
subproblems, can be implemented easily in a distributed framework. The remainder of the paper is orga-
nized as follows: in Section 2 we describe the proposed scenario decomposition method along with some
implementation issues, in Section 3 we discuss some justification for exploring solutions to scenario sub-
problems as candidate solutions for the overall problem, and finally in Section 4 we present some computa-
tional results using a distributed implementation of the proposed method on standard two-stage stochastic
integer programming and nonlinear stochastic integer programming test problems.

2 A Scenario Decomposition Algorithm

We propose a simple scenario decomposition algorithm that exploits the scenario-wise decomposability of
(3) and the 0-1 nature of the variables. The algorithm explores solutions to the scenario subproblems as
candidate primal feasible solutions to the overall problem. The explored solutions are then cut-off from
future consideration in all subproblems. This allows for an improvement in the lower bound by restricting
the feasible region and eventually closing the duality gap.

The overall scheme is outlined in Algorithm 1. In the lower bounding step (lines 3-12), the scheme uses
the decomposable dual problem (3) to generate lower bounds, and a set of candidate solutions. Note that
we have not exactly specified how to update the dual solutions λ since the general scheme is independent
of this. In fact, the scheme is valid without updating λ at all. In the upper bounding step (lines 13-22)
each of the candidate solutions is evaluated and the best of these provide an upper bound and becomes the
incumbent solution x∗. A key feature of the scheme is that the evaluated set of solutions is discarded from
the set of feasible solutions (note the set X \ S in line 7). Because of the 0-1 nature of the solutions this can
be easily accomplished by adding “integer cuts” of the form∑

j:x̂j=1

(1− xj) +
∑
j:x̂j=0

xj ≥ 1 ∀ x̂ ∈ S

to the original constraints X of the problem. Recently stronger formulations for discarding a given set of
0-1 solutions have been proposed which can also be used in this context [3].

Proposition 1 Assuming that solving a scenario subproblem (step 7) and evaluating the objective function (step 17)
requires finite time, Algorithm 1 (scenario decomposition) terminates in a finite number of iterations returning an
optimal solution or detecting infeasibility.

2
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Algorithm 1 Scenario Decomposition
1: UB ← +∞, LB ← −∞, S = ∅, x∗ ← ∅
2: while UB > LB do

3: Lower bounding:
4: λ← 0
5: while some termination criteria is not met do
6: for i = 1 to N do
7: solve min{fi(x) + λ>Aix : x ∈ X \ S}
8: let vi be the optimal value and xi be an optimal solution
9: end for

10: update λ
11: end while
12: LB ←

∑N
i=1 vi − λ>h, Ŝ = ∪Ni=1{xi} and S ← S ∪ Ŝ

13: Upper bounding:
14: for x ∈ Ŝ do
15: u← 0
16: for i = 1 to N do
17: compute fi(x) and set u← u+ fi(x)
18: end for
19: if UB > u then
20: UB ← u and x∗ ← x
21: end if
22: end for

23: end while

Proof: If the problem is infeasible the lower bound is set to +∞ and the algorithm terminates after the first
iteration. Otherwise, finite termination of the algorithm follows from the fact that the feasible region gets
strictly smaller in each iteration and so the lower bound is nondecreasing (the lower bound is +∞ when
the feasible region becomes empty). Moreover since no solution is ever discarded without evaluation, it
follows from the finiteness of the solution set that the algorithm returns an optimal solution in a finite num-
ber of iterations. 2

The proposed scenario decomposition algorithm presumes that we have exact oracles to solve scenario
subproblems of the form:

min{fi(x) + λ>Aix : x ∈ X \ S}

for any λ and S, and to evaluate the objective function fi(x) for a given solution. These are similar to the
assumptions made for other decomposition schemes based on the dual problem (3). For two-stage stochas-
tic integer programs these steps require solving many single scenario integer programs and can present
significant bottleneck. Of course instead of exact computations, we can compute the scenario subproblems
and objective function to some pre-specified tolerance, use the best lower bound in the lower bounding
step and the best upper bound in the upper bounding step, and terminate the algorithm after the lower and
upper bounds are within tolerance. Also, note that in the upper bounding step when evaluating a solution
x̂ we do not need to consider the scenarios for which this solution was optimal in the lower bounding step
since the corresponding objective function values are already available. Significant computational benefits
can be obtained by using relaxations of the scenario subproblems. Let f

i
(x) be a relaxation of fi(x), i.e.

f
i
(x) ≤ fi(x) for all x ∈ X . For two-stage stochastic integer programs such a relaxation could be obtained

by relaxing the integrality requirements on the second-stage variables. It is valid to use f
i
(x) in the lower

bounding step. The upper bounding step can be modified as follows: for a given candidate solution x̂ first
evaluate u :=

∑N
i=1 f i(x̂) and if u ≥ UB then we do not need to further consider x̂ since a better solution

is already known; on the other hand if u < UB then we need to evaluate u =
∑N
i=1 fi(x̂) as usual before

3
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x̂ can be cut-off from further consideration. We could also evaluate and discard only a small subset of the
solutions found rather than considering all the scenario subproblem solutions Ŝ. This would reduce the
effort within a main iteration, perhaps at the expense increasing the number of main iterations.

An attractive feature of the proposed scheme is that there is very little interaction between the scenario
subproblems in the lower and upper bounding steps. Accordingly the scheme can be easily implemented
in a distributed framework. Each processor can be assigned a subset of scenarios and would essentially run
through Algorithm 1 independently except for broadcasting and collecting solutions and objective values
after solving scenario subproblems in step 7 and after evaluating objective functions in step 17. Note that if
a subgradient algorithm (cf. [4]) is used to update the dual solutions λ where the update only depends on
the scenario subproblem solutions and objective values, then each processor can locally update their copies
of the dual solutions after exchanging solutions to the scenario subproblems in step 7, and these local
dual solutions will be identical. In Section 4 we provide computational results using such a distributed
implementation.

3 Optimality of scenario solutions

The algorithm proposed in the previous section explores solutions to the scenario subproblems as candi-
dates for solutions to the overall problem. This is a departure from other methods based on solving the dual
problem (3) where candidate solutions are generated by aggregating solutions to the scenario subproblems.
In this section we attempt to provide some rationale why the solutions to the scenario subproblems them-
selves can be good solutions to the overall problem in the case the problem of interest is a sample average
approximation problem.

Consider a 0-1 stochastic program

(P ) : min {E[f(x, ξ)] : x ∈ X ⊆ {0, 1}n} ,

and its sample average approximation

(SAAN ) : min

{
(1/N)

N∑
i=1

f(x, ξi) : x ∈ X ⊆ {0, 1}n
}
,

corresponding to an iid sample {ξi}Ni=1. The scenario subproblem corresponding to the i-th scenario/sample
is

(Pi) : min
{
f(x, ξi) : x ∈ X ⊆ {0, 1}n

}
.

Let SN be the set of optimal solutions of (SAAN ), and Si be the set of optimal solutions of (Pi) for i =
1, . . . , N . Note that these are random sets since they depend on the sample drawn. We investigate the
following question:

What is the probability that the set of solutions to one of the scenario problems (Pi) contain a
solution to (SAAN )?

More precisely we would like to estimate Pr[SN ∩ (
⋃N
i=1 Si) 6= ∅] and understand its dependence on X and

N .
Trivially, if |X| ≤ 2 and N ≥ 2 then the above probability is 1. On the other hand, it is not hard to

construct examples where this probability is arbitrarily small. For example, suppose X = {x1, x2, x3}, ξ
has two realizations ξ1 and ξ2 with equal probability, and the values of f(x, ξ) are as in Table 1. Then for N
reasonably large SN = {x1}with very high probability while

⋃N
i=1 Si = {x2, x3}with probability one.

In the following we show that if the collection of random objective functions {f(x, ξ)}x∈X of (P ) is
jointly normal with a nonnegative and strictly diagonally dominant covariance matrix then

lim
N→∞

Pr

[
SN ∩ (

N⋃
i=1

Si) 6= ∅

]
= 1

4
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Solution ξ1 ξ2

x1 0 0
x2 -1 2
x3 2 -1

Table 1: Values of f(x, ξ) for an example

exponentially fast. Before proceeding with a proof of the above result we make some remarks. The con-
dition of nonnegative covariance matrix implies that the objective functions at different solutions are non-
negatively correlated, and therefore, perhaps it is not very surprising that a scenario solution is likely to be
optimal for the sample average problem. Recall that a matrix is strictly diagonally dominant if the diagonal
element in a row is greater than the sum of the absolute values of all other elements in that row. This con-
dition can be ensured by adding independent zero-mean normal noise to the objective function value for
each solution without changing the optimal solution or optimal value of (P ). We will need the following
Lemma.

Lemma 1 Let W be a K + 1 dimensional Gaussian random vector, W ∼ N(µ,Σ) with the following properties:

1. For some ε ≥ 0, µ0 ≤ µk + ε for all k = 1, . . . ,K and

2. the covariance matrix Σ is nonnegative and strictly diagonally dominant.

Condition 2 implies that there exists δ such that 0 < δ2 := min
k 6=l
{σ2

k − σkl, σ2
l − σkl}. Then

Pr[W0 ≤Wk ∀k = 1, . . . ,K] ≥ (Φ(−
√

2ε/δ))K ,

where Φ is the standard normal cdf.

Proof: Since µ0 ≤ µk + ε for all k = 1, . . . ,K, we have

Pr[W0 ≤Wk ∀k = 1, . . . ,K] ≥ Pr[(W0 − µ0)− (Wk − µk) ≤ −ε ∀k = 1, . . . ,K].

LetUk := (W0−µ0)−(Wk−µk) for k = 1, . . . ,K, and note thatU is aK dimensional Gaussian random vector
with E[Uk] = 0, E[U2

k ] = σ2
0 + σ2

k − 2σ0k ≥ 2δ2, and E[UkUl] = σ2
0 − σ0l− σ0k + σkl ≥ 0 for all k, l = 1, . . . ,K.

Consider anotherK dimensional Gaussian random vector V with E[Vk] = 0, E[V 2
k ] = E[U2

k ] and E[VkVl] = 0
for all k, l = 1, . . . ,K. Since E[VkVl] ≤ E[UkUl] for all k, l = 1, . . . ,K, by Slepian’s inequality [14]

Pr[W0 ≤Wk ∀k] ≥ Pr[Uk ≤ −ε ∀k] ≥ Pr[Vk ≤ −ε ∀k] =
K∏
k=1

Pr[Vk ≤ −ε],

where the last identity follows from independence. Since E[V 2
k ] ≥ 2δ2. Hence for any k,

Pr[Vk ≤ −ε] = Pr

[
Vk/
√
E[V 2

k ] ≤ −ε/
√

E[V 2
k ]

]
≥ Pr

[
Vk/
√
E[V 2

k ] ≤ −
√

2ε/δ

]
= Φ(−

√
2ε/δ)

and the result follows. 2

Proposition 2 If the collection of random objective functions {f(x, ξ)}x∈X of (P ) is jointly normal with a nonneg-
ative and strictly diagonally dominant covariance matrix then

lim
N→∞

Pr

[
SN ∩ (

N⋃
i=1

Si) 6= ∅

]
= 1

exponentially fast.

5
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Proof: Pick ε ∈ (0, 1) and let Sε∗ be the set of ε-optimal solutions to (P ), i.e. Sε∗ = {x ∈ X : E[f(x, ξ)] ≤
E[f(x, ξ)] + ε ∀y ∈ X}. Note that,

Pr

[
SN ∩ (

N⋃
i=1

Si) 6= ∅

]
≥ Pr

[
[Sε∗ ⊆ (

N⋃
i=1

Si)] ∧ [SN ⊆ Sε∗]

]
≥ Pr[Sε∗ ⊆ (

N⋃
i=1

Si)] + Pr[SN ⊆ Sε∗]− 1,

where the last inequality is using Boole’s inequality. From SAA theory [8] we already know that

Pr[SN ⊆ Sε∗] ≥ (1− |X|e−N
ε2

4σ2max ).

where σ2
max = maxx∈X [V[f(x, ξ)]. Consider x∗ ∈ Sε∗, then

Pr[Sε∗ ⊆ (
⋃N
i=1 Si) 6= ∅] ≥ Pr[x∗ ∈ (

⋃N
i=1 Si)]

= 1−
∏N
i=1 Pr[x∗ 6∈ Si]

= 1−
∏N
i=1(1− Pr[x∗ ∈ Si])

= 1−
∏N
i=1(1− Pr[f(x∗, ξ) ≤ f(y, ξ) ∀ y ∈ X \ {x∗}]).

Applying Lemma 1 with K = |X \ {x∗}|,W0 = f(x∗, ξ) and Wk = f(y, ξ) for y ∈ X \ {x∗}, we get

Pr [f(x∗, ξ) ≤ f(y, ξ) ∀ y ∈ X \ {x∗}] ≥ (Φ(−
√

2ε/2δ))|X|,

for some δ > 0 depending on the covariance matrix of {f(x, ξ)}x∈X . Thus

Pr

[
SN ∩ (

N⋃
i=1

Si) 6= ∅

]
≥ (1− (1− (Φ(−

√
2ε/δ))|X|)N )− |X|e−N

ε2

4σ2max . (4)

Since Φ(−
√

2ε/δ) > 0 for δ > 0, taking limits with respect toN on both sides of (4) we get the desired result.
2

We close this section with some remarks on Proposition 2. Note that when ε is very small relative to δ,
Φ(−
√

2ε/δ) ≈ 1/2 and so the right hand side of (4) is approximately (1− (1− (1/2)|X|)N )− |X|e−NC where
C is a small constant. This indicates that smaller the solution set,|X|, relative to the sample sizeN , higher is
the probability that one of the scenario solutions is optimal. If |X| is large relative toN , then the bound in (4)
is very loose, even negative. Consequently inequality (4) does not lead to any meaningful finite sample size
estimates, but implies asymptotic behavior with respect to N for fixed X . Proposition 2 can be extended
to more general distributions under different assumptions. For example, if the random vector {f(x∗, ξ) −
f(y, ξ)}y∈X\{x∗} (where x∗ is an ε-optimal solution of (P )) has a density and contains a ball centered at 0 of
radius at least ε in its support, then there exists p > 0 such that Pr [f(x∗, ξ) ≤ f(y, ξ) ∀ y ∈ X \ {x∗}] ≥ p.
We can then replace (Φ(−

√
2ε/δ))|X| with p in (4) and the conclusion of Proposition 2 holds.

4 Computational Results

In this section we report some computational results using a distributed implementation of the proposed
scenario decomposition to solve a class of two-stage stochastic integer programs and a class of nonlinear
stochastic programs. Our implementation uses CPLEX 12.5 as the MIP solver (in single thread mode) and
openMPI [7] for parallelization. We use a barrier synchronization step after solving the scenario subprob-
lems and evaluating objective function across the processors before coordinating the scenario solutions and
optimal values. Preliminary experiments with the subgradient method to update the dual solutions λ did
not provide significant improvement in the lower bounds. Consequently, in the current implementation
we use λ = 0 and do not update the dual solutions. We use an absolute optimality tolerance of 10−6

in the overall algorithm and in solving the MIP subproblems, and impose a time limit of 5000 seconds.
All computations are done using the boyle cluster in the ISyE High Performance Computing Facility
(http://www.isye.gatech.edu/computers/hpc/). These constitute a set of 16 identical machines
each with 8 Intel Xeon 2.66GHz chips and 8 GB RAM running Linux. We limit our parallelization to 32
processors since this is the current limit on the cluster.

6
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4.1 Two-stage stochastic integer programming instances

Our first set of results correspond to the sslp problem instances available in the SIPLIB library at http:
//www2.isye.gatech.edu/˜sahmed/siplib/. These are a set of 10 two-stage stochastic integer pro-
gramming instances from a telecommunications application [11]. The deterministic equivalent of the largest
of these problems has over 1000000 binary variables. In our implementation we use continuous relaxation
of the second stage variables in the lower bounding step as explained in Section 2 .

Table 2 presents the computational results. The first column is the name of the instance in the form
sslp n1 n2 N where n1 is the number of first stage variables (all binary), n2 is the number of second
stage variables (mixed), and N is the number of scenarios. Columns 2-6 present the optimal value, the
number of main iterations, total number of solutions explored, and the total solution time using 1 and
32 processors (except for the three sslp 15 45 instances where the number of scenarios are less than 32;
in this case the number of processors used is equal to the number of scenarios). Each reported solution
time is the average of 3 independent runs to account for the load variability in the computing cluster. In
each of the 10 instances an optimal solution is found in the first iteration, i.e. one of the solutions to the
scenario subproblems was optimal. In Figure 1 we present speedup of the proposed distributed scenario
decomposition algorithm with respect to the number of processors for the instance sslp 10 50 500. The
appearance of super-linear speedup is due to the fact that the run times are averages of 3 independent runs,
and perhaps also due to the cache effects. The parallel solution times are significantly smaller and serial
solution times are competitive in comparison to the times reported in the literature for these instances [10,
11, 12, 13]. In particular, comparing with the parallel implementation of [10] for solving the dual problem
(without recovering primal feasible solutions) we note that [10] reports 2900+ seconds on 1 processor and
800+ seconds on 32 processors for sslp 10 50 500.

Time (secs)
Problem Optimal Value Iterations Solutions 1 processor 32 processors
sslp 5 25 50 -121.600 2 16 2.3 0.7
sslp 5 25 100 -127.370 2 17 6.0 1.0
sslp 10 50 50 -364.640 4 123 65.7 6.0
sslp 10 50 100 -354.190 4 187 153.3 11.0
sslp 10 50 500 -349.136 3 241 1296.0 46.3
sslp 10 50 1000 -351.711 2 191 2691.0 60.7
sslp 10 50 2000 -347.262 2 226 4952.0 143.3
sslp 15 45 5 -262.400 6 27 4.3 2.0∗

sslp 15 45 10 -260.500 13 116 35.3 7.0∗

sslp 15 45 15 -253.600 17 233 92.7 13.3∗

Table 2: Solutions times for the sslp instances (∗the number of processors is equal to the number of sce-
narios.)

4.2 Nonlinear stochastic integer programming instances

Our second set of instances is a class of expected utility knapsack problems from [1]. These problems are of
the form

min

−(1/N)
N∑
i=1

U(
n∑
j=1

vijxj) :
n∑
j=1

ajxj ≤ 1, xj ∈ {0, 1}n
 ,

where U(t) = 1 − exp(−t/c), i.e. a negative exponential utility function with risk aversion coefficient
c. We generated instances with number of variables n ∈ {25, 50, 100} and number of scenarios N ∈
{100, 500, 1000}. The coefficients vij and aj for each instance were generated according to [1] and c = 4. The
data for all instances are available in the SIPLIB library at http://www2.isye.gatech.edu/˜sahmed/
siplib/.
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Figure 1: Speedup for sslp 10 50 500.

Note that for these problem, due to the monotonicity of the utility function, solving the i-th scenario
subproblem in the lower bounding step (when λ = 0) is equivalent to solving the (linear) knapsack problem

min


n∑
j=1

vijxj :

n∑
j=1

ajxj ≤ 1, xj ∈ {0, 1}n
 .

The lower bound is then obtained by averaging the negative of the utility function evaluated at the optimal
values of such knapsack problems corresponding to each scenario. The upper bounding step constitute
simply evaluating the scenario solutions.

Table 3 presents the computational results. The first column is the name of the instance in the form
exputil n N where n is the number of variables and N is the number of scenarios. As before, columns 2-
6 present the optimal value, the number of main iterations, total number of solutions explored, and the total
solution time or the % optimality gap in case the 5000 sec time limit is exceeded. Each reported solution
time is the average of 3 independent runs to account for the load variability in the computing cluster. Once
again, in all of the instances an optimal solution is found in the first iteration.

Time (secs) / gap (%)
Problem Optimal Value Iterations Solutions 1 processor 32 processors
exputil 25 100 -0.242304 2 49 4.7 1.7
exputil 25 500 -0.246211 2 68 24.0 6.3
exputil 25 1000 -0.242750 2 261 122.0 15.7
exputil 50 100 -0.246343 2 78 3.3 2.3
exputil 50 500 -0.247751 3 462 100.0 20.7
exputil 50 1000 -0.247643 3 323 225.3 41.7
exputil 100 100 -0.247542 22 2072 4443.0 690.7
exputil 100 500 -0.248989 >22 >10096 0.025% 0.009%
exputil 100 1000 -0.249317 9 5418 0.004% 721.0

Table 3: Solution times for the exputil instances
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Abstract

Given a set of n random events in a probability space, represented
by n Bernoulli variables (not necessarily independent,) we consider the
probability that at least k out of n events occur. When partial distribution
information, i.e., individual probabilities and all joint probabilities of up
to m (m < n) events, are provided, only an upper or lower bound can be
computed for this probability. Recently Prèkopa and Gao (Discrete Appl.
Math. 145 (2005) 444) proposed a polynomial-size linear program to
obtain strong bounds for the probability of union of events, i.e., k = 1. In
this work, we propose inequalities that can be added to this linear program
to strengthen the bounds. We also show that with a slight modification of
the objective function this linear program and the inequalities can be used
for the more general case where k is any positive integer less than or equal
to n. We use the strengthened linear program to compute probability
bounds for the examples used by Prèkopa and Gao, and the comparison
shows significant improvement in the bound quality.

Keywords: linear programming, probability bound, k-of-n event

1 Introduction

Let {Aj : j ∈ N} be a set of events, where N is the index set {1, . . . , n}.
Define random variable Xj : Aj → {0, 1} as Xj = 1 if Aj occurs, and Xj = 0,
otherwise. Define µ as a random variable that represents the number of events,
Ajs, that occur, i.e., µ =

∑
j Xj . Let k be a positive integer between 1 and n;

then the probability that (at least) k out of n events in {A1, ..., An} occur is
denoted by P(µ ≥ k).

Computation of P(µ ≥ k) is often needed in applications. For example, in a
maximum availability location problem [3], the probability that the population
in a subregion is covered by at least k facilities is used to calculate the expected

∗Tel:+1-(608)-354-5638, Fax: +1-(630)-252-9868, Email: fqiu@gatech.edu
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coverage. Another example is the reliability problem of communication net-
works, where each arc fails with a certain probability and we want to compute
or approximate the node-to-node reliability of the system.

Accurate computation of P(µ ≥ k) is not easy. A complete distribution func-
tion for a system of Bernoulli events involves an exponential size of data, which
is difficult to handle when n is large. Furthermore, in practice, the complete
distribution function for (X1, ..., Xn) is often not available, unless the Bernoulli
random numbers Xj are independent from each other. The available informa-
tion is often the marginal distributions and joint distributions up to level m
(m � n). In this situation, it is desirable/preferable to compute a lower or
upper bound using only a limited amount of information.

A number of bounding results that utilize different amounts of information
under different settings have been proposed. The classic Boole inequality yields
a lower bound for the union of events with only individual marginal probabili-
ties, i.e., k = 1 and m = 1. Dawson and Sanko [4] provide a sharp lower bound
for the probability of the union of events using marginal and pairwise joint prob-
abilities, i.e., m = 2; Kwerel [5, 6] developed bounds that can utilize one more
degree of joint probabilities, i.e., m = 3; Prèkopa, Boros and other researchers
[7, 8, 2] employed certain linear programs to derive lower and upper bounds
for a general case where m can be any positive integer less than or equal to n.
Most of these works use aggregation of the individual joint probabilities of the
same degree in their formulations, called binomial moments. As a consequence
of summation, individual probability information is lost, and the given infor-
mation is not fully utilized. To make better use of the available information,
Prèkopa and Gao [9] derived LP-based bounds for a union of events using par-
tially aggregated information. We call this LP model as the partially aggregated
model (PAM). The numerical examples showed that their bounds were at least
as strong as other results using binomial moments.

In this paper, we first observe that the results in [9] which is stated for
the case of k = 1, generalizes in a straightforward way to the case where k is
any positive integer less than or equal to n. Our key contribution is to identify
inequalities that can be appended to PAM to strengthen the bounds. We call the
resulting LP model as strengthened partially aggregated model (SPAM). These
results are presented in Section 2. We test the strength of the extra inequalities
using the instances in [9], and the results show significant improvement of the
bound quality of SPAM over PAM. We also computationally identify a family
of probability distributions for which the bounds provided by SPAM has the
largest improvement over the bounds provided by PAM model. We report these
computational results in Section 3.
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2 Strengthening the Partially Aggregated Model

2.1 The Partially Aggregated Model for k ∈ {1, . . . , n}
Let S be a subset of N . Denote the joint probability that all events in the set
S occur as pS := P(

⋂
`∈S A`). Let sjt :=

∑
S:
|S|=t
j∈S

pS . We first state the main

result of [9] using our notation.

Theorem 1 ([9]). Given the joint distributions up to level m, i.e., |S| ≤ m,
a lower (or upper) bound for the probability of the union of these events, i.e.,
P(µ ≥ 1), can be calculated by solving the following linear program (PAM):

min(max)
n∑
i=1

n∑
j=1

vij (1a)

s.t.
n∑
i=0

n∑
j=1

vij = 1 (1b)

n∑
i=t

(
i

t

)
vij = 1

t s
j
t (1c)

vij ≥ 0. (1d)

�

The LP model above and those in [7, 8, 2, 9] are derived using probabilistic
reasonings (See Appendix 1 for a brief review.)

We next show that the bounds on P(µ ≥ k) for k ∈ {1, . . . , n} can be ob-
tained by solving (1) by changing the objective function (1a) to

∑n
i=k

∑n
j=1 vij .

As pointed out in [9], any bound that uses pS can be recovered as the value
of the objective function of the Boolean LP model [1], which consists of the
probability of each possible outcome. Let C be a subset of N , and let the
probability of the outcome associated with C be denoted as

wC := P

(
⋂
i∈C

Ai)
⋂

(
⋂

j∈N\C

Āj)

 ,

where Āj represents that event Aj does not occur. Note that these outcomes are
mutually exclusive. The probability of any event can be represented by using
the probabilities of an appropriate set of outcomes. For example, the probability
that at least k out of n events occur can be expressed as

∑
C⊆N,|C|≥k wC . Given

joint distributions up to level m, i.e., pS , |S| ≤ m, a lower (or upper) bound of
P(µ ≥ k) can be obtained by the following Boolean linear program [1]:

min(max)
∑

C:|C|≥k

wC

3
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s.t.
∑
C⊆N

wC = 1 (2)

∑
C:S⊆C

wC = pS , ∀S ⊆ N, |S| ≤ m

wC ≥ 0 ∀C ⊆ N.

Formulation (2) consists of an exponential number of variables and may not be
useful in practice. In order to obtain the PAM LP model, we first duplicate
each row with right-hand side pS in (2) |S|-1 times, add up rows with |S| = t
and j ∈ S for each t and j, and then arrive at

min
n∑
i=k

n∑
j=1

1

i

∑
C:
|C|=i
j∈C

wC (3a)

s.t.
n∑
i=1

n∑
j=1

1

i

∑
C:
|C|=i
j∈C

wC = 1 (3b)

n∑
i=t

(
i− 1

t− 1

) ∑
C:
|C|=i
j∈C

wC =
∑

S:
|S|=t
j∈S

pS t = 1, ...,m j = 1, ..., n (3c)

wC ≥ 0 ∀C ⊆ N. (3d)

Equations (3a)-(3d) are the resulting rows by duplicating and aggregating the
rows in (2). Notice that the following variables share the same coefficient in each
row: wC with |C| = i and j ∈ C. Therefore, we aggregate these variables into
a single variable and, for notational simplicity, scale the resulting aggregrated
variable as

vij :=
1

i

∑
C:
|C|=i
j∈C

wC i = 1, ..., n j = 1, ...n. (4)

Thus we obtain the following linear program:

min

n∑
i=k

n∑
j=1

vij (5a)

s.t.

n∑
j=1

n∑
i=0

vij = 1 (5b)

n∑
i=t

(
i

t

)
vij =

1

t
sjt t = 1, ...,m j = 1, ..., n (5c)

vij =
1

i

∑
C:
|C|=i
j∈C

wC i = 1, ..., n j = 1, ...n (5d)
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v ≥ 0 i = 1, ..., n j = 1, ..., n (5e)

wC ≥ 0 ∀C ⊆ N. (5f)

Now observing that the variables wC do not appear in the objective function
(5a), we may relax (5), by dropping the variables wC and the constraints (5d)
and (5f), to obtain the PAM model.

2.2 Strengthened PAM

As discussed in the previous section, PAM is obtained by relaxing (5). In order
to strengthen PAM, we project out the variables wC from the set defined by the
constraints (5d) and (5f) to obtain valid inequalities which we append to PAM.
Again we are able to accomplish this using the fact that the wC variables do
not appear in the objective function.

We need the following lemma.

Lemma 1. Let Si := {x ∈ {0, 1}n |
∑n
j=1 xj = i}. For 1 ≤ i ≤ n − 1,

dim(Si) = n.

Proof. We list n vectors from Si that are linearly independent. Set vectors
v1, . . . , vi+1 as

vjk =

{
1 k ∈ {1, . . . , i+ 1} \ {j}
0 otherwise.

(6)

Set vectors vi+2, . . . , vn as

vjk =

{
1 k ∈ {1, . . . , i− 1} ∪ {j}
0 otherwise.

(7)

It is straighforward to check that v1, . . . , vn belong to Si and are linearly inde-
pendent.

Proposition 2. Let

Wi = {(..., wC , ..., vij , ...) ∈ R(n
i)

+ × Rn : vij =
1

i

∑
C:
|C|=i
j∈C

wC j = 1, ...n}. (8)

Then the projections of Wis onto v space are the following sets:

Projv(Wi) = {(vi1, ..., vin) ∈ Rn | − (i− 1)vij +
∑
t6=j

vit ≥ 0, vij ≥ 0 j ∈ N}

i = 2, ..., n− 2, (9)

Projv(Wn−1) = {(v(n−1)1, ..., v(n−1)n) ∈ Rn | −(n−2)v(n−1)j+
∑
t6=j

v(n−1)t ≥ 0, j ∈ N}

(10)

5
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and

Projv(Wn) = {(vn1, ..., vnn) ∈ Rn+ | vn1 = vnt 2 ≤ t ≤ n, vn1 ≥ 0}. (11)

Proof. Note that Projv(Wi) is a cone. Therefore, for simplicity of analysis, we
may scale the v variables and thus without loss of generality assume that

Wi := {(..., wC , ..., vij , ...) ∈ R(n
i)

+ × Rn : vij =
∑

C:
|C|=i
j∈C

wC j = 1, ...n}. (12)

We show that (9) holds for an arbitrary i between 2 and n − 1, where
|C| = i. To simplify notations, for now, we drop subscript i in the constraint.

Let w = (..., wC , ...) ∈ R(n
i)

+ and v = (..., vij , ...) ∈ Rn. We then rewrite (12) as
follows

Wi = {(w, v) ∈ R(n
i)

+ × Rn : v = Gw},

whereG = (..., gC , ...) ∈ Rn×(n
i) is the coefficient matrix and gC = (g1

C , ..., g
j
C , ..., g

n
C)>

is the column corresponding to the variable wC . gjC = 1 if j ∈ C; gjC = 0 if
j /∈ C. G consists of all permutations of the 0-1 vector with i ones and n − i
zeros. Rewrite (9) as follows:

Vi := {v ∈ Rn : (e− iej)>v ≥ 0, e>j v ≥ 0 j = 1, ..., n},

where e ∈ Rn is a vector with all components equal to one and ej ∈ Rn is the
j-th unit vector.

To show that Vi is the projection of Wi into v-space, we need to show

v̄ ∈ Vi ⇔ There is a w̄ ∈ R(n
i)

+ such that Gw̄ = v̄.

By Farkas’ lemma, we have that

There is a w̄ ∈ R(n
i)

+ such that Gw̄ = v̄ ⇔ u ∈ Rn such that u>G ≥ 0⇒ u>v̄ ≥ 0.

Let {u`} be the set of extreme rays of the cone{u : u>G ≥ 0}. It is sufficient
to show that the set of constraint vectors in Vi, i.e., (e− iej) and ej , is exactly
{u`}.

We first show (e− iej) and ej are extreme rays.
(e− iej)> is a feasible solution for the cone {u : u>G ≥ 0}:

(e− iej)>gC =

{
0 C : j ∈ C
i− 1 C : j /∈ C.

6
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Furthermore, the products above have
(
n−1
i−1

)
zeros, which means that

(
n−1
i−1

)
constraints in u>G ≥ 0 are tight. Notice that the binding constraint vectors gC
are all the permutations of vectors with the j-th position fixed to one. Therefore,
by Lemma 1, they span Rn−1 and we can find n−1 linearly independent vectors
among them which have zero products with (e − iej). Thus, (e − iej) is an
extreme ray of {u : u>G ≥ 0}.

As for ej , we have e>j G as follows

e>j gC =

{
1 C : j ∈ C
0 C : j /∈ C.

Therefore, ej is a feasible solution for the cone {u : u>G ≥ 0} and the product
above has

(
n−1
i

)
zeros that correspond to gC with j /∈ C. Among those columns

that have zero products with ej , by using Lemma 1 we can find n − 1 linearly
independent columns. Therefore, ej is an extreme ray of {u : u>G ≥ 0}.

Now we show by contradiction that there are no other extreme rays. Let λ 6=
0 be a new distinct extreme ray; and let gS`

= (g1
S`
, ..., gtS`

, ...gnS`
)> ` = 1, ..., n−1

be the set of linear independent columns of G with λ>gS`
= 0 ` = 1, ..., n − 1.

Since λ 6= ej for all j = 1, ..., n, we have

@t such that gtS`
= 0 ∀` = 1, ..., n− 1 (13)

since otherwise, et would be the extreme ray formed by the half planes {u>gS`
≥

0 ` = 1, ..., n− 1}. Similarly, since λ 6= (e− iej) for all j = 1, ..., n, we have

@t such that gtS`
= 1 ∀` = 1, ..., n− 1. (14)

Using (13) and gS`
≥ 0, we obtain that λt∗ < 0 for some t∗ (Otherwise, λ>gS`

>
0 for some ` by (13)). By (14), there is a `∗ such that gt

∗

S`∗
= 0. Since λ>gS`∗ =∑

t6=t∗ λtg
t
S`∗

= 0 and gS`∗ 6= 0, we can find an index t̄ such that λt̄ ≥ 0

and gt̄S`∗
= 1. Let g∗ be a vector obtained by switching the components at

position t∗ and t̄ in vector gS`∗ . Note that g∗ is also a vector of G. Then
λ>g∗ = λ>gS`∗ + λt∗ − λt̄ < 0. Thus, λ is not a feasible ray of the cone
{u : u>G ≥ 0}. Therefore, there are no extreme rays of {u : u>G ≥ 0} other
than {(e− iej), ei j = 1, ..., n} and Proj(Wi) = Vi for i = 2, ..., n− 2.

For Proj(Wn−1), we can show that {(e− iej) j = 1, ..., n} are extreme rays
of {u : u>G ≥ 0}. However {ej} are not extreme rays in this case since each row
of G has only one zero. Using a similar argument as that in (2), we can show
that {(e− iej) j = 1, ..., n} are the only extreme rays and that Proj(Wn) = Vn.

The equations in (10) hold since vnj = vN for all j = 1, ...n.

Notice that the projection of W1 yields only non-negativity constraints on
v1j , j = 1, ..., n and the non-negativity of v(n−1),j for j = 1, ..., n is implied by
−(i− 1)v(n−1)j +

∑
t6=j vit ≥ 0 j = 1, ..., n.

The inequalities in Proposition 2,

−(i− 1)vij +
∑
t6=j

vit ≥ 0, vij ≥ 0 j = 1, ..., n, i = 2, ..., n− 1 (15)

7
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and
vn1 = vnt 2 ≤ t ≤ n, (16)

are valid for model (5) and they are not implied by the constraints in PAM. We
call the linear program with these additional constraints as the Strengthened
Partially Aggregated Model or SPAM.

3 Numerical Examples

In the following, we calculate lower bounds with the strengthened model for
the examples in [9], and compare the new bounds with those presented in [9].
Note that the lower bounds in [9] are only for the probability of the union of
events, i.e., k = 1. Examples 1, 2, and 3 have 20 Bernoulli variables each, i.e.,
X1, ..., X20. All the outcomes and their probabilities are presented in Table 1, 2,
and 3, respectively. With these tables, we can obtain the marginal probabilities,
pair-wise joint probabilities, and higher-order joint probabilities by adding up
appropriate rows.

Table 1: Probability Distributions in Example 1

Outcome
Bernoulli Random Variables

Probability
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0.012214
2 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0.022231
3 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0.023287
4 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0.033976
5 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0.034761
6 0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0.044582
7 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0.045943
8 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0.055185
9 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0.056404
10 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0.066317
11 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0.067685
12 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0.077376
13 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0.078648
14 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0.088878
15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.292514

We compare the lower bounds corresponding to k = 1 produced by SPAM
with the results in [9] in Table 4. Note that all of the bounds in Table 4 are
calculated with only marginal probabilities and pair-wise joint probabilities,
except those in the fourth column.

The second column cites the results obtained by the formula derived in [4],
which can be obtained by further aggregating the Boolean LP model. We call
this the Fully Aggregated Model or FAM (See (18) in Appendix 1). The third
column cites the results obtained by PAM derived in [9]. The fourth column
cites the results obtained by PAM but with three binomial moments, including
the triple-wise joint probabilities. Prèkopa and Gao also developed heuristics in
[9] to strengthen the lower bounds by PAM, but the best results obtained are
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Table 2: Probability Distributions in Example 2

Outcome
Bernoulli Random Variables

Probability
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0.00896463
2 1 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0.02492217
3 1 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0.02109813
4 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0.03779353
5 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0.04632610
6 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 1 0.04284324
7 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0.07804262
8 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0.02536991
9 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0.01916672
10 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0.06340085
11 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0.07315289
12 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0.07732742
13 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0.02248020
14 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0.09164494
15 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0.36745660

Table 3: Probability Distributions in Example 3

Outcome
Bernoulli Random Variables

Probability
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0.10176880
2 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0.11299200
3 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0.01514044
4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0.05684733
5 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0.03270125
6 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0.10050750
7 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0.07306695
8 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0.01743922
9 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0.06284498
10 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0.05830101
11 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 0.06833096
12 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0.07153743
13 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0.04503293
14 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0.03487869
15 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.14860240

Table 4: Comparison with results in [9] for k = 1
Example FAM PAM PAM(3) SPAM

4 0.8275266 0.8580833 0.8864460 0.9394167
5 0.8658182 0.9100646 0.9354100 0.9482229
6 0.8985498 0.9435812 0.9587778 0.9715460
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no better than those obtained by involving triple-wise probabilities, which are
listed in the fourth column. Therefore, we ignore the results of the heuristics.
The fifth column gives the results obtained by SPAM. We observe in Table 4
that the extra inequalities derived in this study significantly improve the lower
bounds calculated by PAM.

Now, we use the same instances to calculate the lower bounds for the prob-
ability of 3-coverage, i.e., k = 3, and summarize the results in Table 5, which

Table 5: Lower Bounds for 3-Coverage (k = 3)

Example FAM PAM PAM(3) SPAM

1 0.6643058 0.665249 0.6768353 0.6745504
2 0.7298830 0.7528989 0.7847514 0.8005835
3 0.7387907 0.7819380 0.8482093 0.8614323

again shows that SPAM produces significantly tighter lower bounds than both
FAM and PAM. We also calculate the upper bounds and compare the results
with the results in [9]. However, we do not observe improvement in the new
upper bounds.

In Table 6 we provide examples to show that for certain probability dis-
tributions, the improvement by the inequalities in Proposition 2 can be much
more significant than the improvement observed in Examples 1, 2, and 3. The
specific distrobution under which the lower bounds in Table 6 are calculated
are obtained computationally by an optimization model provided in Appendix
2. We run this optimization model with n fixed at 10, m fixed at 3, and k
varying from 2 to 4. The optimization problems are solved by the nonlinear
solver BARON and the optimal solutions produce probability distributions un-
der which the gaps between PAM and SPAM are maximal. In our experiments
we enforce a solution time limit of ten hours. Columns 3 and 4 of Table 6 list
the lower bounds yield by PAM and SPAM, respectively. For comparison we
also calculate the lower bounds using FAM and the Boolean model (BM) and
list them in Columns 2 and 5, respectively.

Table 6: Comparison of Lower Bounds

k FAM PAM SPAM BM

2 0.6296296 0.6296296 1.0000000 1.0000000
3 0.3412896 0.3432099 0.8065844 0.8065844
4 0.2108243 0.2143992 0.8599802 0.8599802
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Appendix 1
We briefly motivate the partially aggregated model introduced in [9]. Let

(
µ
i

)
represent the combination of choosing i out v. We observe that [7](

µ

i

)
=

∑
S⊆N :|S|=i

∏
`∈S

X`. (17)

Notice that both sides of above equation are random numbers. After taking
expectation, we have the following equation

n∑
t=1

(
t

i

)
vi =

∑
S⊆N :|S|=i

pS , (18)

where pS = P(
⋂
`∈S A`) and the right-hand side is the i-th binomial moment.

Note that (18) are the constraints of the LP model in [7, 8, 2], which we call
Fully Aggregated Model or FAM.

A simple consequence of (17) is as follows [9]

Xj

(
µ− 1

i− 1

)
= Xj

∑
S⊆N :|S|=i

∏
`∈S

X`. (19)
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Taking expectation of both sides in above equation, we have the following

n∑
t=1

(
t− 1

i− 1

)
vtj =

∑
S⊆N :|S|=i,j∈S

pS , (20)

where vtj = P(µ = t ∩ Xj = 1). Note that the right-hand side of (20) only
consists of the probabilities of those events that Aj occurs. Since the probability
of the union of A1, . . . , An can be expressed as follows

Theorem 3 ([9]).

P(µ ≥ 1) =
n∑
j=1

n∑
i=1

1

i
vij , (21)

an upper bound or a lower bound on the probability of union of events can be
obtained by minimizing or maximizing the right-hand side of (21) over the set
of constraints in (20) and the non-negativity constraints [9].

Appendix 2
The following optimization model identifies the probability distributions for

which the gap between SPAM and PAM is maximal. Let z∗SPAM and z∗PAM
be the lower bounds for the probability that at least k-out-of-n events occur,
obtained by SPAM model and PAM model, respectively. Let variables pS , for
all S ⊆ Nand |S| ≤ m, represent the probability distributions we aim to obtain.
Note that sji is now a function of pS . Let π0 and πji be the dual variables for

constraint (5b) and (5c), respectively; µji be the dual variable corresponding
to the constraint (15) for i = 2, .., n − 1 and j = 1, ..., n, and µjn be the dual
variable corresponding to the constraint (16) for j = 2, ..., n.

gap = max
pS

(z∗SPAM − z∗PAM )

= max
pS

(min
vij
{
n∑
j=1

n∑
i=k

vij : (5b), (5c), (5e), (15), and (16)}

−min
vi
{
n∑
i=k

vi : (5b), (5c), and (5e)})

= max
pS

(max
(π,µ)
{π0 +

n∑
j=1

m∑
i=1

1

i
πji s

j
i :

π0 + πj1 ≤ e1 j = 1, ..., n

π0 +
m∑
i=1

(
t

i

)
πji − (t− 1)µtj +

∑
`6=j

µ`t ≤ et t = 2, ..., n− 1; j = 1, ..., n

π0 +

m∑
i=1

(
n

i

)
π1
i −

n∑
j=2

µjn ≤ en
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π0 +
m∑
i=1

(
n

i

)
πji + µjn ≤ en j = 2, ..., n

π0, π
j
i , µ

j
n free, , µji ≥ 0 i = 2, ..., n− 1}

+ max{
n∑
i=k

n∑
j=1

−vij :
∑
i,j

vij = 1;
n∑
i=t

(
i

t

)
vij =

1

t
sjt (x) t = 1, ...,m j = 1, ..., n,

vji ≥ 0})

= max
pS ,π,µ,v

j
i

{π0 +
n∑
j=1

m∑
i=1

1

i
πji s

j
i −

n∑
i=k

n∑
j=1

vij :

π0 + πj1 ≤ e1 j = 1, ..., n

π0 +
m∑
i=1

(
t

i

)
πji − (t− 1)µtj +

∑
`6=j

µ`t ≤ et t = 2, ..., n− 1; j = 1, ..., n

π0 +

m∑
i=1

(
n

i

)
π1
i −

n∑
j=2

µjn ≤ en

π0 +

m∑
i=1

(
n

i

)
πji + µjn ≤ en j = 2, ..., n

∑
i,j

vij = 1;

n∑
i=t

(
i

t

)
vij =

1

t
sjt (x) t = 1, ...,m j = 1, ..., n,

π0, π
j
i , µ

j
n free, , µji ≥ 0 i = 2, ..., n− 1, vji ≥ 0},

where et = 0 if t < k; et = 1, otherwise.
The feasible set for (..., pS , ...) is as follows

Pm = {(..., pS , ...) ∈ R(n
1)+...+(n

m)
+ : ∃v ∈ R2n

+ s.t.
∑
C⊆N

wC ≤ 1, pS =
∑

C:S⊆C

wC ∀S ⊆ N, |S| ≤ m}.
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Forbidden vertices
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Abstract

In this work, we introduce and study the forbidden-vertices problem. Given a polytope P and a
subset X of its vertices, we study the complexity of linear optimization over the subset of vertices of
P that are not contained in X . This problem is closely related to finding the k-best basic solutions
to a linear problem. We show that the complexity of the problem changes significantly depending
on the encoding of both P and X . We provide additional tractability results and extended formula-
tions when P has binary vertices only. Some applications and extensions to integral polytopes are
discussed.

1 Introduction

Given a nonempty rational polytope P ⊆ Rn, we denote by vert(P ), faces(P ), and facets(P ) the sets of
vertices, faces, and facets of P , respectively, and we write f(P ) := |facets(P )|. We also denote by xc(P )
the extension complexity of P , that is, the minimum number of inequalities in any linear extended
formulation of P , i.e., a description of a polyhedron whose image under a linear map is P (see for
instance [6].) Finally, given a set X ⊆ vert(P ), we define forb(P,X) := conv(vert(P ) \ X), where
conv(S) denotes the convex hull of S ⊆ Rn. This work is devoted to understanding the complexity of
the forbidden-vertices problem defined below.

Definition 1. Given a polytope P ⊆ Rn, a set X ⊆ vert(P ), and a vector c ∈ Rn, the forbidden-vertices
problem is to either assert vert(P ) \X = ∅, or to return a minimizer of c⊤x over vert(P ) \X otherwise.

Our work is motivated by enumerative schemes for stochastic integer programs [9], where a series of
potential solutions are evaluated and discarded from the search space. As we will see later, the problem
is also related to finding different basic solutions to a linear program.

To address the complexity of the forbidden-vertices problem, it is crucial to distinguish between differ-
ent encodings of a polytope.

Definition 2. An explicit description of a polytope P ⊆ Rn is a system Ax ≤ b defining P . An implicit
description of P is a separation oracle which, given a rational vector x ∈ Rn, either asserts x ∈ P , or returns a
valid inequality for P that is violated by x.

∗Georgia Institute of Technology and Pontificia Universidad Católica de Chile: gangulo@gatech.edu
†Georgia Institute of Technology: sahmed@isye.gatech.edu, santanu.dey@isye.gatech.edu
‡Otto-von-Guericke-Universität Magdeburg: kaibel@ovgu.de
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Note that an extended formulation forP is a particular case of an implicit description. When P admits a
separation oracle that runs in time bounded polynomially in the facet complexity of P and the encoding
size of the point to separate, we say that P is tractable. We refer the reader to [19, Section 14] for a
deeper treatment of the complexity of linear programming.

We also distinguish different encodings of a set of vertices.

Definition 3. An explicit description of X ⊆ vert(P ) is the list of the elements in X . If X = vert(F ) for some
face F of P , then an implicit description of X is an encoding of P and some valid inequality for P defining F .

Below we summarize our main contributions.

• In Section 2, we show that the complexity of optimizing over vert(P )\X or describing forb(P,X)
changes significantly depending on the encoding of P and/or X . In most situations, however,
the problem is hard.

• In Section 3 we consider the case of removing a list X of binary vectors from a 0-1 polytope P .
When P is the unit cube, we present two compact extended formulations describing forb([0, 1]n, X).
We further extend this result and show that the forbidden-vertices problem is polynomially solv-
able for tractable 0-1 polytopes.

• Then in Section 4 we apply our results to the k-best problem and to binary all-different polytopes,
showing the tractability of both. Finally, in Section 5, we also provide extensions to integral
polytopes.

The complexity results of Sections 2 and 3 lead to the classification shown in Table 1, depending on the
encoding of P and X , and whether P has 0-1 vertices only or not. Note that (∗) is implied, for instance,
by Theorem 18. Although we were not able to establish the complexity of (∗∗), Proposition 19 presents
a tractable subclass.

P

General 0-1
Explicit Implicit Explicit Implicit

X

Explicit
NP-hard (Thm. 11)

NP-hard for |X| = 1 (Thm. 9) Polynomial Polynomial (Thm. 16)
Polynomial for fixed |X| (Prop. 6)

Implicit NP-hard (Prop. 10) NP-hard (∗) (∗∗) NP-hard (Thm. 18)

Table 1: Complexity classification.

In constructing linear extended formulations, disjunctive programming emerges as a practical power-
ful tool. The lemma below follows directly from [2] and the definition of extension complexity. We will
frequently refer to it.

Lemma 4. Let P1, . . . , Pk be nonempty polytopes in Rn. If Pi = {x ∈ Rn| ∃yi ∈ Rmi : Eix + Fiyi =

hi, yi ≥ 0}, then conv(∪k
i=1Pi) = {x ∈ Rn| ∃xi ∈ Rn, yi ∈ Rmi , λ ∈ Rk : x =

∑k
i=1 xi, Eixi + Fiyi =

λihi,
∑k

i=1 λi = 1, yi ≥ 0, λ ≥ 0}. In particular, we have xc
(
conv(∪k

i=1Pi)
)
≤
∑k

i=1(xc(Pi) + 1).

2 General polytopes

We begin with some general results when P ⊆ Rn is an arbitrary polytope. The first question is how
complicated forb(P,X) is with respect to P .
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Proposition 5. For each n, there exists a polytope Pn ⊆ Rn and a vertex vn ∈ vert(Pn) such that Pn has 2n+1
vertices and n2 + 1 facets, while forb(Pn, {vn}) has 2n facets.

Proof. Let Qn := [0, 1]n ∩ L, where L :=
{
x ∈ Rn| 1⊤x ≤ 3

2

}
and 1 is the vector of ones. It has been

observed [1] that Qn has 2n+1 facets and n2+1 vertices. We translate Qn and define Q′
n := Qn−

1
n1 =[

− 1
n , 1−

1
n

]n
∩ L′, where L′ :=

{
x ∈ Rn| 1⊤x ≤ 1

2

}
. Since Q′

n is a full-dimensional polytope having
the origin in its interior, there is a one-to-one correspondence between the facets of Q′

n and the vertices
of its polar Pn := (Q′

n)
∗ and vice versa. In particular, Pn has n2 + 1 facets and 2n + 1 vertices. Let

v ∈ vert(Pn) be the vertex associated with the facet of Q′
n defined by L′. From polarity, we have

forb(Pn, {v})
∗ =

[
− 1

n , 1−
1
n

]n
. Thus forb(Pn, {v})

∗ is a full-dimensional polytope with the origin in
its interior and 2n vertices. By polarity, we obtain that forb(Pn, {v}) has 2n facets.

Note that the above result only states that forb(P,X) may need exponentially many inequalities to be
described, which does not constitute a proof of hardness. Such a result is provided by Theorem 11 at
the end of this section. We first show that forb(P,X) has an extended formulation of polynomial size
in f(P ) when both P and X are given explicitly and the cardinality of X is fixed.

Proposition 6. Suppose P = {x ∈ Rn| Ax ≤ b}. Using this description of P , and an explicit list of vertices
X , we can construct an extended formulation of forb(P,X) that requires at most f(P )|X|+1 inequalities, i.e.,
xc(forb(P,X)) ≤ f(P )|X|+1.

Proof. Let X = {v1, . . . , v|X|} and define FX := {F1∩· · ·∩F|X|| Fi ∈ facets(P ), vi /∈ Fi, i = 1, . . . , |X |}.
We claim

forb(P,X) = conv (∪F∈FX
F ) .

Indeed, let w ∈ vert(P ) \X . For each i = 1, . . . , |X |, there exists Fi ∈ facets(P ) such that w ∈ Fi and
vi /∈ Fi. Therefore, letting F := F1 ∩ · · · ∩ F|X|, we have F ∈ FX and w ∈ F , proving the forward
inclusion. For the reverse inclusion, consider F ∈ FX . By definition, F is a face of P that does not
intersect X , and hence F ⊆ forb(P,X).

By Lemma 4, we have xc(forb(P,X)) ≤
∑

F∈FX
(xc(F ) + 1). Since xc(F ) ≤ f(F ) ≤ f(P ) − 1 for each

proper face F of P and |FX | ≤ f(P )|X|, the result follows.

Note that when X = {v}, the above result reduces forb(P, {v}) to the convex hull of the union of the
facets of P that are not incident to v, which is a more intuitive result. Actually, we can expect describing
forb(P,X) to be easier when the vertices in X are “far” thus can be removed “independently”, and
more complicated when they are “close”. Proposition 6 can be refined as follows.

The graph of a polytope P , or the 1-skeleton of P , is a graph G with vertex set vert(P ) such that two
vertices are adjacent in G if and only if they are adjacent in P .

Proposition 7. Let G be the graph of P . Let X ⊆ vert(P ) and let (X1, . . . , Xm) be a partition of X such that
Xi and Xj are independent in G, i.e., there is no edge connecting Xi to Xj , for all 1 ≤ i < j ≤ m. Then

forb(P,X) =

m⋂

i=1

forb(P,Xi).

Proof. We only need to show forb(P,X) ⊇
⋂m

i=1 forb(P,Xi). For this, it is enough to show that for each
c we havemax{c⊤x : x ∈ forb(P,X)} ≥ max

{
c⊤x : x ∈

⋂m
i=1 forb(P,Xi)

}
. Given c, let v be an optimal

solution to the maximization problem in the right-hand side, and let W ⊆ vert(P ) be the set of vertices

3
DISTRIBUTION A: Distribution approved for public release.



w of P such that c⊤w ≥ c⊤v. Observe that W induces a connected subgraph of the graph G of P since
the simplex method applied to max{c⊤x : x ∈ P} starting from a vertex in W visits elements in W only.
Hence, due to the independence of X1, . . . , Xm, either there is some w ∈ W with w /∈ X1 ∪ · · · ∪Xm, in
which case we have w ∈ forb(P,X) and c⊤w ≥ c⊤v as desired, or W ⊆ Xi for some i, which yields the
contradiction v ∈ forb(P,Xi) ⊆ forb(P,W ) with c⊤x < c⊤v for all x ∈ vert(P ) \W .

Conversely, we may be tempted to argue that if forb(P,X) = forb(P,X1) ∩ forb(P,X2), then X1 and
X2 are “far”. However, this is not true in general. For instance, consider P being a simplex. Then
any X ⊆ vert(P ) is a clique in the graph of P , and yet forb(P,X) = forb(P,X1) ∩ forb(P,X2) for any
partition (X1, X2) of X .

Proposition 7 generalizes the main result of [12] regarding cropped cubes. Moreover, the definition
of being “croppable” in [12] in the case of the unit cube coincides with the independence property of
Proposition 7.

Recall that a vertex of an n-dimensional polytope is simple if it is contained in exactly n facets. Propo-
sition 7 also implies the following well-known fact.

Corollary 8. If X is independent in the graph of P and all its elements are simple, then

forb(P,X) = P ∩
⋂

v∈X

Hv,

where Hv is the half-space defined by the n neighbors of v that does not contain v.

Proof. The result follows from Proposition 7 since, as X is simple, we have forb(P, {v}) = P ∩ Hv for
any v ∈ X .

Observe that when P is given by an extended formulation or a separation oracle, f(P ) may be ex-
ponentially large with respect to the size of the encoding, and the bound given in Proposition 6 is
not interesting. In fact, in this setting and using recent results on the extension complexity of the cut
polytope [5], we show that removing a single vertex can render an easy problem hard.

Let Kn = (Vn, En) denote the complete graph on n nodes. We denote by CUT(n), CUT0(n), and
st-CUT(n) the convex hull of the characteristic vectors of cuts, nonempty cuts, and st-cuts of Kn, re-
spectively.

Theorem 9. For each n, there exists a set Sn ⊆ Rn(n−1)/2 with |Sn| = 2n−1 +n− 1 and a point vn ∈ Sn such
that linear optimization over Sn can be done in polynomial time and xc(conv(Sn)) is polynomially bounded, but
linear optimization over Sn \ {vn} is NP-hard and xc(conv(Sn \ {vn})) grows exponentially.

Proof. Let Tn :=
{
n21e| e ∈ En

}
, where 1e is the e-th unit vector, and define Sn := vert

(
CUT0(n)

)
∪Tn.

We have that linear optimization over Sn can be done in polynomial time. To see this, suppose
we are minimizing c⊤x over Sn. Let xT and xC be the best solution in Tn and CUT0(n), respec-
tively. Note that computing xT is trivial, and if c has a negative component, then xT is optimal.
Otherwise, c is nonnegative and xC can be found with a max-flow/min-cut algorithm. Then the
best solution among xT and xC is optimal. Now, consider the dominant of CUT0(n) defined as

CUT0(n)+ := CUT0(n) + R
n(n−1)/2
+ . From [4], we have that CUT0(n)+ is an unbounded polyhedron

having the same vertices as CUT0(n), and moreover, it has an extended formulation of polynomial size
in n. Let L := {x ∈ Rn(n−1)/2|

∑
e∈En

xe ≤ n2}. Then CUT0(n)+ ∩ L is a polytope having two classes
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of vertices: those corresponding to vert
(
CUT0(n)

)
and those belonging to the hyperplane defining L.

Let W be the latter set. Since conv(W ) ⊆ conv(Tn), we obtain conv(Sn) = conv
(
CUT0(n) ∪ Tn

)
=

conv
(
(CUT0(n) ∪W ) ∪ Tn)

)
= conv

(
(CUT0(n)+ ∩ L) ∪ Tn

)
. Applying disjunctive programming in

the last expression yields a compact extended formulation for conv(Sn).

Now, let vn be any point from Tn, say the one corresponding to {s, t} ∈ E. We claim that linear opti-
mization over Sn \ {vn} is NP-hard. To prove this, consider an instance of max{c⊤x| x ∈ st-CUT(n)},
where c is a positive vector. Let c̄ := max{ce| e ∈ E}. Let d be obtained from c as

de =

{
ce e 6= {s, t}

ce + c̄n2 e = {s, t}

and consider the problem max{d⊤x| x ∈ Sn\{vn}}. We have that every optimal solution to this problem
must satisfy xst = 1. Indeed, if x ∈ Tn\{vn}, then for some e ∈ En\{{s, t}}we have d⊤x = dexe = cen

2.
If x ∈ vert(CUT0(n)) is not an st-cut, then xst = 0 and thus d⊤x ≤ c̄n2. On the other hand, if x is an
st-cut, then xst = 1 and thus d⊤x ≥ dstxst = cst + c̄n2. Therefore xst = 1 in any optimal solution, and
in particular, such a solution must define an st-cut of maximum weight. Finally, since xst ≤ 1 defines a
face of conv(Sn \ {vn}) and conv(Sn \ {vn})∩ {x ∈ Rn(n−1)/2| xst = 1} = st-CUT(n), we conclude that
xc(conv(Sn \ {vn})) is exponential in n, for otherwise applying disjunctive programming over all pairs
of nodes s and t would yield an extended formulation for CUT(n) of polynomial size, contradicting
the results in [5].

Contrasting Proposition 6 and Theorem 9 shows that the complexity of forb(P,X) depends on the
encoding of P . On the other hand, in all cases analyzed so far, X has been explicitly given as a list.
Now we consider the case where X = vert(F ) for some face F of P .

Proposition 10. Given a polytope P ⊆ Rn and a face F , both described in terms of the linear inequalities
defining them, optimizing a linear function over vert(P ) \ vert(F ) is NP-hard. Moreover, xc(conv(vert(P ) \
vert(F ))) cannot be polynomially bounded in the encoding length of the inequality description of P and thus not
in n.

Proof. Let a ∈ Zn
+ and b ∈ Z+, and consider the binary knapsack set S := {x ∈ {0, 1}n| a⊤x ≤ b}.

Let P := {x ∈ [0, 1]n| 2a⊤x ≤ 2b + 1} and note that S = P ∩ Zn. It is straightforward to verify that
x ∈ vert(P ) is fractional if and only if 2a⊤x = 2b+1. Then, if F is the facet of P defined by the previous
constraint, we have S = vert(P ) \ vert(F ). The second part of the statement is a direct consequence of
[17] using multipliers 4i as discussed after Remark 3.4 of that reference.

It follows from Theorem 9 and Proposition 10 that only when P and X are explicitly given there is
hope for efficient optimization over forb(P,X).

In a similar vein, when the linear description of P is provided, we can consider the vertex-enumeration
problem, which consists of listing all the vertices of P . We say that such a problem is solvable in
polynomial time if there exists an algorithm that returns the list in time bounded by a polynomial of n,
f(P ), and the output size |vert(P )|. In [8] it is shown that given a partial list of vertices, the decision
problem “is there another vertex?” is NP-hard for (unbounded) polyhedra, and in [3] this result is
strengthened to polyhedra having 0-1 vertices only. Building on these results, we show hardness of the
forbidden-vertices problem (Def. 1) for general polytopes.

Theorem 11. The forbidden-vertices problem is NP-hard, even if both P and X are explicitly given.

Proof. Let Q = {x ∈ Rn : Ax = b, x ≥ 0} be an unbounded polyhedron such that vert(Q) ⊆ {0, 1}n.
In [3], it is shown that given the linear description of Q and a list X ⊆ vert(Q), it is NP-hard to
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decide whether X 6= vert(Q). Let P be the polytope obtained by intersecting Q with the half-space
defined by

∑n
i=1 xi ≤ n + 1, and let F be the facet of P associated with this constraint. Then we have

vert(P ) = vert(Q) ∪ vert(F ),
∑n

i=1 xi ≤ n for x ∈ vert(Q), and
∑n

i=1 xi = n+ 1 for x ∈ vert(F ). Now,
given the description of P and a list X ⊆ vert(Q) ⊆ vert(P ), consider the instance of the forbidden-
vertices problem min {

∑n
i=1 xi : x ∈ vert(P ) \X}. The optimal value is equal to n + 1 if and only if

X = vert(Q). Since the reduction is clearly polynomial, the result follows.

In fact, it also follows from [3] that the forbidden-vertices problem for general polytopes becomes hard
already for |X | = n. Fortunately, the case of 0-1 polytopes is amenable to good characterizations.

3 0-1 polytopes

We consider polytopes having binary vertices only. We show that forb(P,X) is tractable as long as P is
and X is explicitly given. Our results for P = [0, 1]n allow us to obtain tractability in the case of general
0-1 polytopes.

3.1 The 0-1 cube

In this subsection we have P = [0, 1]n, and therefore vert(P ) = {0, 1}n. We show the following result.

Theorem 12. Let X be a list of n-dimensional binary vectors. Then xc(forb([0, 1]n, X)) ≤ O(n|X |).

For this, we present two extended formulations involving O(n|X |) variables and constraints. The
first one is based on an identification between nonnegative integers and binary vectors. The sec-
ond one is built by recursion and lays ground for a simple combinatorial algorithm to optimize over
forb([0, 1]n, X) and for an extension to remove vertices from general 0-1 polytopes.

3.1.1 First extended formulation

Let N := {1, . . . , n} and N := {0, . . . , 2n − 1}. There exists a bijection between {0, 1}n and N given by
the mapping σ(v) :=

∑
i∈N 2i−1vi for all v ∈ {0, 1}n. Therefore, we can write {0, 1}n = {v0, . . . , v2

n−1},

where vk gives the binary expansion of k for each k ∈ N , that is, vk = σ−1(k). Let X = {vk1 , . . . , vkm},
where without loss of generality we assume kl < kl+1 for all l = 1, . . . ,m − 1. Also, let NX := {k ∈
N| vk ∈ X}. Then we have

{0, 1}n \X =

{
x ∈ {0, 1}n|

∑

i∈N

2i−1xi /∈ NX

}
.

Now, for integers a and b, let

K(a, b) =

{
x ∈ {0, 1}n| a ≤

∑

i∈N

2i−1xi ≤ b

}
.

If b < a, then K(a, b) is empty. Set k0 = −1 and km+1 = 2n. Then we can write

{0, 1}n \X =

m⋃

l=0

K(kl + 1, kl+1 − 1).
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Thus

forb([0, 1]n, X) = conv

(
m⋃

l=0

K(kl + 1, kl+1 − 1)

)
= conv

(
m⋃

l=0

conv(K(kl + 1, kl+1 − 1))

)
. (1)

For k ∈ N , let Nk := {i ∈ N | vki = 1}. From [15] we have

conv(K(a, b)) =




x ∈ [0, 1]n :

∑

j /∈Na| j>i

xj ≥ 1− xi ∀i ∈ Na

∑

j∈Nb| j>i

(1− xj) ≥ xi ∀i /∈ N b





,

thus conv(K(a, b)) has O(n) facets. Finally, combining this and (1), by Lemma 4, we have that forb([0, 1]n, X)
can be described by an extended formulation having O(n|X |) variables and constraints.

3.1.2 Second extended formulation

Given X ⊆ {0, 1}n, let X ′ denote the projection of X onto the first n − 1 coordinates. Also, let X̂ :=

X̃ \X , where X̃ is constructed from X by flipping the last coordinate of each of its elements. The result
below is key in giving a recursive construction of forb([0, 1]n, X).

Proposition 13. {0, 1}n \X =
[(
{0, 1}n−1 \X ′

)
× {0, 1}

]
∪ X̂ .

Proof. Given v ∈ {0, 1}n, let v′ ∈ {0, 1}n−1 and ṽ ∈ {0, 1}n be the vectors obtained from v by removing
and by flipping its last coordinate, respectively.

Let v ∈ {0, 1}n \ X . If ṽ ∈ X , since v /∈ X , we have v ∈ X̂ . Otherwise v′ /∈ X ′, and thus v ∈
({0, 1}n−1 \X ′)× {0, 1}.

For the converse, note that X̂ ⊆ {0, 1}n \X . Finally, if v ∈ ({0, 1}n−1 \X ′) × {0, 1}, then v′ /∈ X ′ and
thus v /∈ X .

The second proof of Theorem 12 follows from Proposition 13 by induction. Suppose that forb([0, 1]n−1, X ′)
has an extended formulation with at most (n − 1)(|X ′| + 4) inequalities, which holds for n = 2. Then
we can describe forb([0, 1]n−1, X ′) × {0, 1} using at most (n − 1)(|X ′| + 4) + 2 inequalities. Since the

polytope conv(X̂) requires at most |X̂| inequalities in an extended formulation, we obtain an extended

formulation for forb([0, 1]n, X) of size no more than [(n− 1)(|X ′|+4)+ 2+ 1] + [|X̂ |+ 1] ≤ n(|X |+4).

3.2 General 0-1 polytopes

In this subsection we analyze the general 0-1 case. We show that the encoding of X plays an important
role in the complexity of the problem.
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3.2.1 Explicit X

In order to prove tractability of the forbidden vertices problem corresponding to general 0-1 tractable
polytopes, we introduce the notion of X-separating faces for the 0-1 cube.

Definition 14. Given X ⊆ {0, 1}n, we say that F ⊆ faces([0, 1]n) is X-separating if {0, 1}n\X = ∪F∈FF ∩
{0, 1}n. We denote by µ(X) the minimal cardinality of an X-separating set.

Clearly, if F is X-separating, then

min
{
c⊤x| x ∈ {0, 1}n \X

}
= min

F∈F
min

{
c⊤x| x ∈ F ∩ {0, 1}n

}
.

Thus, if we can find an X-separating family of cardinality bounded by a polynomial on n and |X |, then
we can optimize in polynomial time over {0, 1}n \ X by solving the inner minimization problem for
each F ∈ F and then picking the smallest value.

Proposition 15. For every nonempty set X ⊆ {0, 1}n, we have µ(X) ≤ n|X |.

Proof. For each y ∈ {0, 1}n \ X , let 0 ≤ k ≤ n − 1 be the size of the longest common prefix between
y and any element of X , and consider the face F = F (y) := {x ∈ [0, 1]n| xi = yi ∀1 ≤ i ≤ k + 1} =
(y1, . . . , yk, yk+1) × [0, 1]n−k−1. Then the collection F := {F (y)| y ∈ {0, 1}n \X} is X-separating since
any y ∈ {0, 1}n \X belongs to F (y) and no element of X lies in any F (y) by maximality of k. Clearly,
|F| ≤ n|X | since each face in F is of the form (v1, . . . , vk, 1− vk+1)× [0, 1]n−k−1 for some v ∈ X .

In other words, letting X i be the projection of X onto the first i components and X̂ i := (X i−1×{0, 1})\

X i, where X̂1 := {0, 1} \X1, we have

{0, 1}n \X =
n⋃

i=1

[
X̂ i × {0, 1}n−i

]
.

Moreover, it also follows from the proof of Proposition 15 that µ(X) is at most the number of neighbors
of X since if (v1, . . . , vk, 1 − vk+1, vk+2, . . . , vn) is a neighbor of v ∈ X that also lies in X , then the face
{(v1, . . . , vk, 1− vk+1)} × [0, 1]n−k−1 in not included in F in the construction above.

Now, let P ⊆ Rn be an arbitrary 0-1 polytope. Note that vert(P ) \X = vert(P ) ∩ ({0, 1}n \X). On the
other hand, if F ⊆ faces([0, 1]n) is X-separating, then {0, 1}n \X = ∪F∈FF ∩{0, 1}n. Combining these
two expressions, we get

vert(P ) \X =
⋃

F∈F

vert(P ) ∩ F ∩ {0, 1}n =
⋃

F∈F

P ∩ F ∩ {0, 1}n.

Note that since P has 0-1 vertices and F is a face of the unit cube, then P∩F is a 0-1 polytope. Moreover,
if P is tractable, so is P ∩ F . Recalling that µ(X) ≤ n|X | from Proposition 15, we obtain

Theorem 16. If P ⊆ Rn is a tractable 0-1 polytope, then the forbidden-vertices problem is polynomially solvable.

In fact, a compact extended formulation for vert(P ) \X is available when P has one.

Proposition 17. For every 0-1 polytope P and for every nonempty set X ⊆ vert(P ), we have

xc(forb(P,X)) ≤ µ(X)(xc(P ) + 1).
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Proof. The result follows from

forb(P,X) = conv

(
⋃

F∈F

P ∩ F ∩ {0, 1}n

)
= conv

(
⋃

F∈F

F

)
,

Lemma 4, and xc(F ) ≤ xc(P ) for any face F of P .

Observe that when P is tractable but its facet description is not provided, Theorem 16 is in contrast to
Theorem 9. Having all vertices with at most two possible values for each component is crucial to retain
tractability when X is given as a list. However, when X is given by a face of P , the forbidden-vertices
problem can become intractable even in the 0-1 case.

3.2.2 Implicit X

Let TSP(n) denote the convex hull of the characteristic vectors of Hamiltonian cycles in the complete
graph Kn. Also, let SUB(n) denote the subtour-elimination polytope for Kn with edge set En.

Theorem 18. For each n, there exists a 0-1 polytope Pn ⊆ Rn(n−1)/2 and a facet Fn ∈ facets(Pn) such that
linear optimization over Pn can be done in polynomial time and xc(Pn) is polynomially bounded, but linear
optimization over vert(Pn) \ vert(Fn) is NP-hard and xc(forb(Pn,vert(Fn))) grows exponentially.

Proof. Given a positive integer n, consider T+
n := {x ∈ {0, 1}En|

∑
e∈En

xe = n + 1}, T−
n := {x ∈

{0, 1}En|
∑

e∈En
xe = n− 1}, and Hn := TSP(n) ∩ {0, 1}En. The idea is to “sandwich” Hn between T−

n

and T+
n to obtain tractability, and then remove T−

n to obtain hardness.

We first show that linear optimization over T−
n ∪Hn∪T+

n is polynomially solvable. Given c ∈ Rn(n−1)/2,
consider max{c⊤x| x ∈ T−

n ∪Hn ∪ T+
n }. Let x− and x+ be the best solution in T−

n and T+
n , respectively,

and note that x− and x+ are trivial to find. Let m be the number of nonnegative components of c. If
m ≥ n + 1, then x+ is optimal. If m ≤ n − 1, then x− is optimal. If m = n, let xn ∈ {0, 1}En have
a 1 at position e if and only if ce ≥ 0. If xn belongs to Hn, which is easy to verify, then it is optimal.
Otherwise either x− or x+ is an optimal solution.

Now we show that linear optimization over Hn ∪ T+
n is NP-hard. Given c ∈ Rn(n−1)/2 with c > 0,

consider min{c⊤x| x ∈ Hn}. Let c̄ := max{ce| e ∈ En} and define de := ce +nc̄. Consider min{d⊤x| x ∈
Hn ∪ T+

n }. For any x ∈ T+
n , we have d⊤x = (n + 1)nc̄ + c⊤x > (n + 1)nc̄. For any x ∈ Hn, we have

d⊤x = n2c̄+ c⊤x ≤ n2c̄+ nc̄ = (n+ 1)nc̄. Hence, the optimal solution to the latter problem belongs to
Hn and defines a tour of minimal length with respect to c.

Letting Pn := conv(T−
n ∪ Hn ∪ T+

n ), we have that Pn is a tractable 0-1 polytope,
∑

e∈En
xe ≥ n − 1

defines a facet Fn of Pn, and vert(Pn) \ vert(Fn) = Hn ∪ T+
n , which is an intractable set. Now, since

forb(Pn,vert(Fn)) = conv(Hn ∪ T+
n ), we have that

∑
e∈En

xe ≥ n defines a facet of forb(Pn,vert(Fn))

and forb(Pn,vert(Fn)) ∩ {x ∈ Rn(n−1)/2|
∑

e∈En
xe = n} = TSP(n). Therefore, xc(forb(Pn,vert(Fn)))

is exponential in n [18]. It remains to show that xc(Pn) is polynomial in n.

Let Tn := {x ∈ {0, 1}En|
∑

e∈En
xe = n} and let Hn := Tn \ Hn be the set of incidence vectors of

n-subsets of En that do not define a Hamiltonian cycle. Given x ∈ {0, 1}En , let N(x) be the set of neigh-
bors of x in [0, 1]En , let L(x) be the half-space spanned by N(x) that does not contain x, and let C(x) :=
[0, 1]En \ L(x). Finally, let ∆n := conv(T−

n ∪ Tn ∪ T+
n )= {x ∈ [0, 1]En | n− 1 ≤

∑
e∈En

xe ≤ n+ 1}.

We claim that Pn = conv(T−
n ∪ SUB(n) ∪ T+

n ). By definition, we have Pn ⊆ conv(T−
n ∪ SUB(n) ∪ T−

n ).
To show the reverse inclusion, it suffices to show SUB(n) ⊆ Pn. Note that any two distinct elements in

9
DISTRIBUTION A: Distribution approved for public release.



Tn can have at most |En| − 2 tight inequalities in common from those defining ∆n. Thus, Tn defines
an independent set in the graph of ∆n. Moreover, for each x ∈ Tn the set of neighbors in ∆n is N(x)
and thus all vertices in Tn are simple. As Hn ⊆ Tn, we have that Hn is simple and independent, and
by Corollary 8 we have

Pn = ∆n ∩
⋂

x∈Hn

L(x) = ∆n \
⋃

x∈Hn

C(x).

Since SUB(n) ⊆ ∆n, from the second equation above, it suffices to show C(x) ∩ SUB(n) = ∅ for all
x ∈ Hn. For this, note that for any x ∈ Hn, there exists a set ∅ 6= S ( Vn such that x(δ(S)) ≤ 1, which
implies y(δ(S)) ≤ 2 for all y ∈ N(x). Thus C(x) ∩ SUB(n) = ∅ as x(δ(S)) ≥ 2 is valid for SUB(n).

Finally, applying disjunctive programming and since xc(SUB(n)) is polynomial in n [20], we conclude
that Pn has an extended formulation of polynomial size.

To conclude this section, consider the case where P is explicitly given and X is given as a facet of P .
Although we are unable to establish the complexity of the forbidden-vertices problem in this setting,
we present a tractable case and discuss an extension.

Proposition 19. Let P = {x ∈ Rn| Ax ≤ b} be a 0-1 polytope, where A is TU and b is integral. Let F be the
face of P defined by a⊤i x = bi. Then

forb(P,vert(F )) = P ∩ {x ∈ Rn| a⊤i x ≤ bi − 1}.

Proof. We have
vert(P ) \ vert(F ) = P ∩ {x ∈ {0, 1}n| a⊤i x ≤ bi − 1}.

Since A is TU and b in integral, the set P ∩ {x ∈ Rn| a⊤i x ≤ bi − 1} is an integral polyhedron contained
in P , which is a 0-1 polytope.

Since any face is the intersection of a subset of facets, the above result implies that removing a single
face can be efficiently done by disjunctive programming in the context of Proposition 19. Also, if we
want to remove a list of facets, that is, X = ∪F∈Fvert(F ) and F is a subset of the facets of P , then we
can solve the problem by removing one facet at a time. However, if F is a list of faces, then the problem
becomes hard in general.

Proposition 20. If F is a list of faces of [0, 1]n, then optimizing a linear function over {0, 1}n \ ∪F∈Fvert(F )
is NP-hard.

Proof. Let G = (V,E) be a graph. Consider the problem of finding a minimum cardinality vertex cover
of G, which can be formulated as

min
∑

i∈V xi

s.t. xi + xj ≥ 1 ∀{i, j} ∈ E

xi ∈ {0, 1} ∀i ∈ V.

Construct F by adding a face of the form F = {x ∈ [0, 1]n| xi = 0, xj = 0} for each {i, j} ∈ E.
Then the vertex cover problem, which is NP-hard, reduces to optimization of a linear function over
{0, 1}n \ ∪F∈Fvert(F ).
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4 Applications

4.1 k-best solutions

The k-best problem defined below is closely related to removing vertices.

Definition 21. Given a nonempty 0-1 polytope P ⊆ Rn, a vector c ∈ Rn, and a positive integer k, the k-best
problem is to either assert |vert(P )| ≤ k and return vert(P ), or to return v1, . . . , vk ∈ vert(P ), all distinct,
such that max{c⊤vi| i = 1, . . . , k} ≤ min{c⊤v| v ∈ vert(P ) \ {v1, . . . , vk}}.

Since we can sequentially remove vertices from 0-1 polytopes, we can prove the following.

Proposition 22. Let P ⊆ [0, 1]n be a tractable 0-1 polytope. Then, for any c ∈ Rn, the k-best problem can be
solved in polynomial time on k and n.

Proof. For each i = 1, . . . , k, solve the problem

(Pi) min c⊤x

s.t. x ∈ Pi,

where P1 := P , Pi := forb(Pi−1, {vi−1}) = forb(P, {v1, . . . , vi−1}) for i = 2, . . . , k, and vi ∈ vert(Pi) is
an optimal solution to (Pi), if one exists, for i = 1, . . . , k. From Theorem 16, we can solve each of these
problems in polynomial time. In particular, if (Pi) is infeasible, we return v1, . . . , vi−1. Otherwise, by
construction, v1, . . . , vk satisfy the required properties. Clearly, the construction is done in polynomial
time.

The above complexity result was originally obtained in [10] building on ideas from [16] by applying a
branch-and-fix scheme.

4.2 Binary all-different polytopes

With edge-coloring of graphs in mind, the binary all-different polytope has been introduced in [11]. It
was furthermore studied in [14] and [13]. We consider a more general setting.

Definition 23. Given a positive integer k, nonempty 0-1 polytopes P1, . . . , Pk in Rn, and vectors c1, . . . , ck ∈
Rn, the binary all-different problem is to solve

(P) min
∑k

i=1 c
⊤
i xi

s.t. xi ∈ vert(Pi) i = 1, . . . , k

xi 6= xj 1 ≤ i < j ≤ k.

In [11], it was asked whether the above problem is polynomially solvable in the case Pi = [0, 1]n for all
i = 1, . . . , k. Using the tractability of the k-best problem, we give a positive answer even for the general
case of distinct polytopes.

Given a graph G = (V,E) and U ⊆ V , a U -matching in G is a matching M ⊆ E such that each vertex
in U is contained in some element of M .
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Theorem 24. If Pi ⊆ Rn is a tractable nonempty 0-1 polytope for i = 1, . . . , k, then the binary all-different
problem is polynomially solvable.

Proof. For each i = 1, . . . , k, let Si be the solution set of the k-best problem (Def. 21) for Pi and ci.
Observe that |Si| ≤ k. Now, consider the bipartite graph G = (S ∪ R,E), where S := ∪k

i=1Si and
R := {1, . . . , k}. For each v ∈ S and i ∈ R, we include the arc {v, i} in E if and only if v ∈ Si. Finally,
for each {v, i} ∈ E, we set wvi := c⊤i v.

We claim that (P) reduces to finding an R-matching in G of minimum weight with respect to w. It
is straightforward to verify that an R-matching in G defines a feasible solution to (P) of equal value.
Thus, it is enough to show that if (P) is feasible, then there exists an R-matching with the same optimal
value. Indeed, let (x1, . . . , xk) be an optimal solution to (P) that does not define an R-matching, that
is, such that xi /∈ Si for some i = 1, . . . , k. Then, we must have |vert(Pi)| > k and |Si| = k. This latter
condition and xi /∈ Si imply the existence of v ∈ Si such that v 6= xj for all j = 1, . . . , k. Furthermore,
by the definition of Si, we also have c⊤i v ≤ c⊤i xi. Therefore, the vector (x1, . . . , xi−1, v, xi+1, . . . , xk) is
an optimal solution to (P) having its i-th subvector in Si. Iteratively applying the above reasoning to
all components, we obtain an optimal solution to (P) given by an R-matching as desired.

5 Extension to integral polytopes

In this section, we generalize the forbidden-vertices problem to integral polytopes, that is, to polytopes
having integral extreme points, even allowing the removal of points that are not vertices. We show that
for an important class of integral polytopes the resulting problem is tractable.

For an integral polytope P ⊆ Rn and X ⊆ P ∩ Zn, we define forbI(P,X) := conv((P ∩ Zn) \X).

Definition 25. Given an integral polytope P ⊆ Rn, a set X ⊆ P ∩Zn of integral vectors, and a vector c ∈ Rn,
the forbidden-vectors problem asks to either assert (P ∩ Zn) \ X = ∅, or to return a minimizer of c⊤x over
(P ∩ Zn) \X otherwise.

Given vectors l, u ∈ Rn with l ≤ u, we denote [l, u] := {x ∈ Rn| li ≤ xi ≤ ui, i = 1, . . . , n}. We term
these sets as boxes.

Definition 26. An integral polytope P ⊆ Rn is box-integral if for any pair of vectors l, u ∈ Zn with l ≤ u, the
polytope P ∩ [l, u] is integral.

Polytopes defined by a TU matrix and an integral right-hand-side, or by a box-TDI system, are exam-
ples of box-integral polytopes. Further note that if P is tractable and box-integral, so is P ∩ [l, u]. When
both conditions are met, we say that P is box-tractable.

With arguments analogous to that of the 0-1 case, we can verify the following result.

Theorem 27. If P ⊆ Rn is a box-tractable polytope, then, given a list X ⊆ P ∩ Zn, the forbidden-vectors
problem is polynomially solvable. Moreover,

xc(forbI(P,X)) ≤ 2n|X |(xc(P ) + 1).

Proof. Since P is bounded, it is contained in a box. Without lost of generality and to simplify the
exposition, we may assume that P ⊆ [0, r − 1]n for some r ≥ 2. As in the 0-1 case, we first address
the case P = [0, r − 1]n, for which we provide two extended formulations for forbI(P,X) involving
O(n|X |) variables and constraints.
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The first extended formulation relies on the mapping φ(x) :=
∑n

i=1 r
i−1xi for x ∈ [0, r − 1]n, which

defines a bijection with {0, . . . , rn − 1}. Letting Kr(a, b) := {x ∈ {0, . . . , r − 1}n| a ≤ φ(x) ≤ b}, we
have that forbI(P,X) is the convex hull of the union of at most |X |+ 1 sets of the form Kr(a, b). Since
conv(Kr(a, b)) has O(n) facets [7], by disjunctive programming we obtain an extended formulation for
forbI(P,X) having O(n|X |) inequalities.

For the second extended formulation, let X ′ denote the projection of X onto the first n− 1 coordinates

and set X̂ := (X ′ × {0, . . . , r − 1}) \X . Along the lines of Proposition 13, we have

{0, . . . , r − 1}n \X =
[(
{0, . . . , r − 1}n−1 \X ′

)
× {0, . . . , r − 1}

]
∪ X̂.

Although X̂ can have up to r|X | elements, we also see that X̂ is the union of at most 2|X | sets of the
form v × {α, . . . , β} for v ∈ X ′ and integers 0 ≤ α ≤ β ≤ r − 1. More precisely, for each v ∈ X ′, there
exist integers 0 ≤ αv

1 ≤ βv
1 < αv

2 ≤ βv
2 < · · · < αv

qv ≤ βv
qv ≤ r − 1 such that

X̂ =
⋃

v∈X′

qv⋃

l=1

v × {αv
l , . . . , β

v
l }

and
∑

v∈X′ qv ≤ 2|X |. Therefore, conv(X̂) can be described with O(|X |) inequalities. Then a recursive
construction of an extended formulation for forbI(P,X) is analogous to the binary case and involves
O(n|X |) variables and constraints.

In order to address the general case, we first show how to cover {0, . . . , r−1}n\X with boxes. For each

i = 1, . . . , n, let X i be the projection of X onto the first i components and let X̂ i := (X i−1 × {0, . . . , r −

1}) \X i, where X̂1 := {0, . . . , r − 1} \X1. Working the recursion backwards yields

{0, . . . , r − 1}n \X =

n⋃

i=1

[
X̂ i × {0, . . . , r − 1}n−i

]
.

Combining the last two expressions, we arrive at

{0, . . . , r − 1}n \X =

n⋃

i=1

⋃

v∈Xi−1

qv⋃

l=1

v × {αv
l , . . . , β

v
l } × {0, . . . , r − 1}n−i.

The right-hand-side defines a family B of at most 2n|X | boxes in Rn, yielding

{0, . . . , r − 1}n \X =
⋃

[l,u]∈B

[l, u] ∩ Zn.

Finally, if P ⊆ [0, r − 1]n, then

(P ∩ Zn) \X = (P ∩ Zn) ∩ ({0, . . . , r − 1}n \X) =
⋃

[l,u]∈B

P ∩ [l, u] ∩ Zn.

Moreover, if P is box-tractable, then

forbI(P,X) = conv


 ⋃

[l,u]∈B

conv (P ∩ [l, u] ∩ Zn)


 = conv


 ⋃

[l,u]∈B

P ∩ [l, u]


 ,

where each term within the union is a tractable set.
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The k-best problem and the binary all-different problem can be extended to the case of integral vectors
as follows.

Definition 28. Given a nonempty integral polytope P ⊆ Rn, a vector c ∈ Rn, and a positive integer k, the
integral k-best problem is to either assert |P ∩ Zn| ≤ k and return P ∩ Zn, or to return v1, . . . , vk ∈ P ∩ Zn,
all distinct, such that max{c⊤vi| i = 1, . . . , k} ≤ min{c⊤v| v ∈ (P ∩ Zn) \ {v1, . . . , vk}}.

Definition 29. Given a positive integer k, nonempty integral polytopesP1, . . . , Pk in Rn, and vectors c1, . . . , ck ∈
Rn, the integral all-different problem is to solve

(P) min
∑k

i=1 c
⊤
i xi

s.t. xi ∈ P ∩ Zn i = 1, . . . , k

xi 6= xj 1 ≤ i < j ≤ k.

The above problems can be shown to be polynomially solvable if the underlying polytopes are box-
tractable.
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Abstract

We consider the integer L-shaped method for two-stage stochastic integer programs. To improve
the performance of the algorithm, we present and combine two strategies that deal with different
aspects of the algorithm. First, to avoid time-consuming exact evaluations of the second-stage cost
function, we propose a simple modification that alternates between linear and mixed-integer sub-
problems. Then, to better approximate the shape of the second-stage cost function, we present a
general framework to generate optimality cuts via a cut-generating linear program which considers
information from all solutions found up to any given stage of the method. In order to address the im-
pact of the proposed approaches, we report computational results on two classes of stochastic integer
problems.

1 Introduction

In this work we consider mixed-integer programs of the form

(IP) min
x,z,θ

cx + dz + θ

s.t. Ax + Cz ≤ b (1)
Q(x)− θ ≤ 0 (2)
x ∈ {0, 1}n (3)
z ≥ 0, z ∈ Z, (4)

where Z is a mixed-integer set and Q(x) is a real-valued function taking a binary vector x as argument.
We say that (x∗, z∗, θ∗) is a candidate solution if (x∗, z∗) satisfies (1), (3), and (4). If in addition (2) holds,
then we say (x∗, z∗, θ∗) is a feasible (candidate) solution. Constraint (2) together with the presence of θ
in the objective function ensures θ = Q(x) is satisfied by any optimal solution to (IP). A fundamental
assumption is that given x, Q(x) can be computed with a reasonable amount of effort.

In the context of two-stage stochastic integer programming, we usually have

Q(x) := Eξ

[
min

y
{qy : Wy = h− Tx, y ∈ Y}

]
,

which denotes the expected second-stage cost of x with respect to the random data ξ = (q, W, T, h).
We assume that Y imposes some integrality requirements on y. When ξ has a finite set of possible
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outcomes, we have Q(x) = ∑ξ pξ Qξ(x), where Qξ(x) denotes the optimal second-stage value of the
scenario associated to ξ, and pξ is the probability of occurrence of ξ. Thus, (IP) can be cast as a large-
scale mixed integer program. When the burden of solving (IP) is mainly due to the presence of a large
number of scenarios, schemes similar to Benders’ decomposition [4] and the L-shaped method [16] can
be effective. The idea is to relax (2) and consider θ as an underestimator of Q(x), and successively add
cuts in the (x, θ)-space to better approximate the shape of Q(x). This is done until an optimal solution
(x∗, z∗, θ∗) satisfying θ∗ = Q(x∗) is found. When the second-stage problem is a linear program, Q(x) is
convex in x and thus can be approximated by subgradients using optimal dual solutions. In contrast,
when the second-stage problem is a mixed-integer program, such a nice property does not hold, and
moreover, Q(x) can even be discontinuous. Thus, the decomposition approaches of the linear case
have to be modified to accommodate integer variables in the second stage. In [8], such a modification,
the integer L-shaped method, is introduced. It is designed for two-stage stochastic integer problems
having binary first-stage variables as it exploits the facial property of 0-1 sets. More generally, the
integer L-shaped method can be applied to any mixed-integer problem having the form of (IP) as long
as Q(x) is computable from binary x. In particular, it also fits situations where Q(x) can be evaluated
with a closed-form analytical formula, but it does not have an amenable mixed-integer formulation.
Applications of this method include vehicle routing [11], [6], probabilistic traveling salesman problems
[9], location problems[10], and generalized assignment [1], among others.

Next we describe the integer L-shaped method. Let X be the projection of the feasible region of (IP)
onto the x-space, and let L ∈ R be a lower bound on Q(x) over X. Then (IP) can be equivalently
formulated as

(MP) min cx + dz + θ

s.t. Ax + Cz ≤ b
Πx− 1θ ≤ π0 (5)
x ∈ {0, 1}n

z ≥ 0, z ∈ Z
θ ≥ L,

where 1 denotes a vector of ones of appropriate size, as long as for each x∗ ∈ X constraints (5) include
a cut of the form πkx − θ ≤ πk

0 such that πkx − πk
0 ≤ Q(x) for all x ∈ X and πkx∗ − πk

0 = Q(x∗). In
other words, the affine function πkx − πk

0 underestimates Q(x) on X, and the estimate is tight at x∗.
The optimality cuts of Laporte and Louveaux [8] define such a cut family and form the basis of the
integer L-shaped method.

Given x∗ ∈ {0, 1}n, let S(x∗) := {i : x∗i = 1}. In [8], the (standard) integer optimality cut at x∗ is
defined as

θ ≥ (Q(x∗)− L)

 ∑
i∈S(x∗)

xi − ∑
i/∈S(x∗)

xi − |S(x∗)|

+ Q(x∗). (6)

Let ∆x∗(x) := |S(x∗)| −∑i∈S(x∗) xi + ∑i/∈S(x∗) xi be the Hamming distance between x and x∗, and note
that 0 ≤ ∆x∗(x) ≤ n with ∆x∗(x) = 0 if and only if x = x∗. Thus, if x = x∗, then the right-hand side
of (6) attains its maximum value Q(x∗). If x ∈ {0, 1}n \ {x∗}, then it takes a value less than or equal
to L. Since θ ≥ L, combining both cases, we have that (6) models the implication x = x∗ ⇒ θ ≥ Q(x).
Observe also that as we have one cut per element in X, (5) might have exponentially many constraints.
Thus, (5) is omitted from the initial formulation (MP) and cuts (6) are added on-the-fly as new solutions
are discovered.

It is important to keep in mind that given the enumerative nature of (6), in practice these cuts are
complemented with other inequalities that, albeit not tight, help to improve the global lower bound
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on Q(x). When Q(x) is the expected second-stage value of x given by the value function of a mixed-
integer program, the most obvious inequalities to add are the subgradient cuts given by the continuous
relaxation QLP(x) of Q(x). They have the form

θ ≥ s(x− x∗) + QLP(x∗), (7)

where s is a subgradient of QLP(x) at x∗.

An implementation of the integer L-shaped method with a current state-of-the-art solver works as
follows. Having computed a lower bound L on Q(x) and solved the continuous relaxation of (IP) with
Benders’ decomposition, we end up with a linear master problem that includes subgradient cuts of the
form (7). Then we reinforce the binary requirements on x and any integrality restrictions on z, leading
to a mixed-integer master problem of the form (MP), but where the system (5) is a relaxation of (IP), so
that an optimal solution to the current problem may not be feasible to (IP). The idea now is to solve the
mixed-integer master problem in a way such that all integer solutions are checked against feasibility
with respect to (IP) before being accepted as an incumbent. For this, the solver proceeds in a similar
fashion to branch-and-cut, that is, it generates a search tree by solving linear subproblems, branching,
and adding cutting planes. The main difference is that when a candidate integer solution (x∗, z∗, θ∗)
satisfying (1), (3) and (4) is found at a node of the search tree, an additional routine, the so-called
optimality cut function, is called in order to assert feasibility and add optimality cuts. If the solution
is infeasible to the true problem (IP), i.e., θ∗ < Q(x∗), this function generates an optimality cut that is
applied to all pending nodes in the master problem tree, ensuring that this solution is discarded. Then
the solver continues exploring the tree with the guarantee that any discarded, and thus infeasible,
solution will not appear again. If the solution is actually feasible to (IP), then it is accepted by the
optimality cut function and the current incumbent is updated accordingly. A modern implementation
of the (standard) integer L-shaped method is presented in Algorithm 1 below.

Algorithm 1 Integer L-shaped method

Input: A, C, b, c, d, Q : X → R, QLP : X → R

Output: Optimal solution x∗ to (IP) and optimal value
1: Compute a lower bound L of Q(x)
2: Solve the LP relaxation of (IP) with Benders’ decomposition
3: Declare x variables as binary in master problem
4: Initialize the optimality cut function
5: Solve the integer master problem using the optimality cut function to assert feasibility of solutions

and add optimality cuts
6: return x∗ and optimal value

In line 4 of Algorithm 1 we initialize any additional structures that may be needed by the optimality cut
function before invoking the solver in line 5. In particular, as there may be several solutions sharing
the same x subvector, we keep a list V of first-stage x for which Q(x) has been computed to avoid
duplicate evaluations. In a standard implementation, the optimality cut function has the form shown
in Algorithm 2

The optimality cut function returns TRUE if the candidate integer solution is indeed feasible to (IP).
Otherwise it returns FALSE to reject the solution and apply the optimality cut. Note that the steps in
lines 4 and 5 in Algorithm 2 are not needed for convergence of the method, but help to improve the
global lower bound on Q(x).

The optimality cut (6) relies on exact evaluations of Q(x), which can be very time-consuming in the
case where Q(x) is given by a complicated mixed-integer program. Also, observe that (6) depends on
x∗ and Q(x∗) only, i.e., it only depends on the point to be cut-off. In particular, it does not take into
account the information provided by other solutions that we may have found while exploring the first-
stage set. To improve the performance of the integer L-shaped method, we propose two approaches to
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Algorithm 2 Standard optimality cut function

Input: (x∗, z∗, θ∗) candidate integer solution, Q : X → R, QLP : X → R, V
Output: true if solution is feasible, false otherwise

1: if x∗ ∈ V then // We know θ∗ ≥ Q(x∗)
2: return true
3: end if
4: Compute QLP(x∗)
5: Add the subgradient cut (7)
6: Compute Q(x∗)
7: V ← V ∪ {x∗}
8: if θ∗ < Q(x∗) then
9: Add the integer optimality cut (6)

10: return false
11: else
12: return true
13: end if

deal with the above issues. First, in Section 2, we present a simple modification that alternates between
exact and approximate evaluations of Q(x). Then, in Section 3, we introduce of a new type of opti-
mality cut that includes information obtained from different solutions; in particular, evaluations and
estimates of Q(x) at different points. These new cuts are obtained through a cut-generating linear pro-
gram which is constructed based on ideas from disjunctive programming and the forbidden-vertices
problem [2]. Then, in Section 4, we outline an implementation that combines both modifications in a
single method. Finally, in Section 5, we present computational results of the proposed variants on two
classes of stochastic integer programs.

2 Alternating cuts

In this section we present a simple cut strategy to decrease the overall effort incurred in computing the
function Q(x).

Suppose that while solving (IP) with the integer L-shaped method, a candidate solution (x∗, z∗, θ∗)
has been found along the search tree of (MP). Recall that we reject the solution if θ∗ < Q(x∗). Since
QLP(x) ≤ Q(x), a sufficient condition to reject (x∗, z∗, θ∗) is θ∗ < QLP(x∗). Given that QLP(x) is
convex, we have that the subgradient cut (7) is a valid inequality that cuts off the pair (x∗, θ∗) in
the (x, θ)-space. Therefore, instead of evaluating Q(x∗) exactly, we first evaluate QLP(x∗) and check
whether θ∗ < QLP(x∗). If so, we add the subgradient cut (7) to remove (x∗, θ∗). Otherwise, we compute
Q(x∗) and check whether θ∗ < Q(x∗). If so, we add the integer optimality cut (6). Otherwise, we
accept the solution. The key idea is to use QLP(x) as a proxy for Q(x) to check feasibility of a candidate
solution, preventing unnecessary, and more costly, computations of Q(x).

The modification just described is similar in spirit to sequential approximation schemes such as [15],
[5], [7], and [14], where the second-stage cost function Q(x) is approximated by linear programs which,
starting with QLP(x), are iteratively strengthened with additional cuts. Although these methods are
shown to converge after a finite number of steps, the convergence can be very slow and in practice
exact evaluations of Q(x) may be required. In contrast, in the context of the integer L-shaped method,
we propose to use QLP(x) as the unique intermediate approximation for Q(x), which is a simple yet
useful modification whose implementation is rather straightforward and, to the best of our knowledge,
has not been reported in the literature.
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To implement the approach presented above, in addition to V, we also keep a list VLP of visited first-
stage solutions x for which the continuous relaxation QLP(x) has been computed. The modified strat-
egy, which we call alternating cuts, proceeds as shown in Algorithm 3.

Algorithm 3 Optimality cut function with alternating cut strategy

Input: (x∗, z∗, θ∗) candidate integer solution, Q : X → R, QLP : X → R, V, VLP
Output: true if solution is feasible, false otherwise

1: if x∗ ∈ V then // We know θ∗ ≥ Q(x∗)
2: return true
3: end if
4: if x∗ /∈ VLP then
5: Compute QLP(x∗)
6: VLP ← VLP ∪ {x∗}
7: if θ∗ < QLP(x∗) then
8: Add the subgradient cut (7).
9: return false

10: end if
11: end if

// Now we have x∗ ∈ VLP and θ∗ ≥ QLP(x∗)
12: Compute Q(x∗).
13: V ← V ∪ {x∗}
14: if θ∗ < Q(x∗) then
15: Add the integer optimality cut (6)
16: return false
17: else
18: return true
19: end if

Note that if x∗ /∈ VLP satisfies (7), then x∗ is included into VLP and thus the steps in lines 12–19 of
Algorithm 3 are applied to check whether (x∗, z∗, θ∗) is a feasible solution or not. As we shall see in
Section 5, this simple modification yields speedups of one order of magnitude on instances from the
literature.

3 New optimality cuts

In this section, we present a new class of integer optimality cuts that can be used as an alternative
to the standard cut (6). After providing an overview of the approach, we show how to construct a
cut-generating linear program to separate these new inequalities and then we discuss some implemen-
tation details. In this section we denote conv (T) the convex hull of a set T of real vectors.

Let S be the projection of the feasible set of (MP) onto the (x, θ)-space, which corresponds to the epi-
graph of Q(x) over X, i.e.,

S = {(x, θ) ∈ X×R : θ ≥ Q(x)} .

Let V ⊆ X be such that Q(x) is known for all x ∈ V. We have

S ⊆ S(X, V) :=
⋃

x∈V
{(x, θ) : θ ≥ Q(x)} ∪ (X \V)× {θ : θ ≥ L}.

In some sense, S(X, V) is the best approximation of S when only the values of Q(x) for x ∈ V are
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known and only the trivial lower bound L is available over X \V. We consider the relaxation S(V) of
S(X, V) given by

S(X, V) ⊆ S(V) :=
⋃

x∈V
{(x, θ) : θ ≥ Q(x)} ∪ ({0, 1}n \V)× {θ : θ ≥ L}.

Figure 1 illustrates an example with x ∈ {0, 1}2 and V =
{(

1
0

)
,
(

1
1

)}
. The bold dots represent the

values of Q(x) that are known depending on whether x belongs to V or not. Then S(V) is given by the
union of the vertical rays.

Figure 1: S(V).

Observe that S(V) ⊆ S(U) for any U ⊆ V, and in particular, S(V) ⊆ S({x}) for x ∈ V. Moreover,
S(V) =

⋂
x∈V S({x}). Since (6) is a valid inequality for conv (S({x})), it is also valid for conv (S(V)).

Actually, (6) is the only nontrivial cut needed to describe conv (S({x})). However, in general, conv (S(V)) ⊆⋂
x∈V conv (S({x})) holds with strict containment, i.e., adding (6) for all x ∈ V does not yield conv (S(V)).

Our goal is to derive a compact extended formulation for conv (S(V)) and use it to generate optimality
cuts for a point (x∗, θ∗) in the (x, θ)-space that take into account the values of Q(x) for x ∈ V. Fig-
ure 2 shows how this information can improve our approximation of the convex hull of the epigraph
of Q(x).

Several steps of the construction of our cut-generating linear program rely on Lemma 1 below, which
follows from disjunctive programming [3] applied in the context of linear extended formulations of
polyhedra.

Lemma 1. Let P1, . . . , Pk be nonempty polyhedra in Rn having the same recession cone. If Pi = {x ∈ Rn| ∃yi ∈
Rmi : Eix + Fiyi ≥ hi}, then conv

(
∪k

i=1Pi

)
= {x ∈ Rn| ∃xi ∈ Rn, yi ∈ Rmi , λ ∈ Rk : x =

∑k
i=1 xi, Eixi + Fiyi ≥ λihi, ∑k

i=1 λi = 1, λ ≥ 0}.
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(a) The standard cut at x = (1, 1) (light gray)
can be strengthened if Q(1, 0) is known
(dark gray).

(b) The description of the solutions that are not in V
given by standard cuts (gray triangle) can be made
exact (bold segment).

Figure 2: Improving the description of conv (S(V)).

3.1 Construction of CGLP

Clearly, we have conv (S(V)) = conv
(

PQ(V) ∪ PL(V)
)
, where

PQ(V) := conv

(⋃
x∈V
{(x, θ) : θ ≥ Q(x)}

)

and
PL(V) := conv ({0, 1}n \V)× {θ : θ ≥ L}.

Thus to describe conv (S(V)) it suffices to provide compact extended formulations for PQ(V) and
PL(V) and then apply disjunctive programming to their union as illustrated in Figure 3.

Describing PQ(V) is trivial: letting V = {x1, . . . , xt}, then PQ(V) is the set of vectors (xQ, θQ) ∈ Rn×R

for which there exists φ ∈ Rt satisfying

−xQ +
t

∑
s=1

φsxs = 0

−θQ +
t

∑
s=1

φsQ(xs) ≤ 0

t

∑
s=1

φs = 1

φ ≥ 0.

To describe PL(V), it is enough to describe conv ({0, 1}n \V) and then take the Cartesian product with
{θ : θ ≥ L}. We build on results from the forbidden-vertices problem [2] to do this.
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Figure 3: conv (S(V)) = conv
(

PQ(V) ∪ PL(V)
)
.

Let Vi be the projection of V onto the first i coordinates. Define V̂1 := {0, 1} \ V1, V̂i := [Vi−1 ×
{0, 1}] \ Vi ⊆ {0, 1}i for i ≥ 2, and write V̂i = {vi

1, . . . , vi
ki
}. Finally, for all i, let Wij := V̂i × {0}j−i =

{wij
1 , . . . , wij

ki
} ⊆ {0, 1}j for all j ≥ i and define Wi := Win = {wi

1, . . . , wi
ki
} ⊆ {0, 1}n.

From [2], for all 1 ≤ j ≤ n− 1 we have

{0, 1}j+1 \V j+1 =
[(
{0, 1}j \V j

)
× {0, 1}

]
∪ V̂ j+1. (8)

The idea behind (8) is that any vector in {0, 1}j+1 \ V j+1 is such that either its projection onto {0, 1}j

does not lie in V j or it is obtained by flipping the value of the last component of a vector in V j+1

otherwise.

Example 2. Consider n = 3 and V =

{(
0
1
0

)
,
(

0
1
1

)
,
(

1
0
1

)}
. For j = 2, we have V2 =

{(
0
1

)
,
(

1
0

)}
and therefore {0, 1}2 \V2 =

{(
0
0

)
,
(

1
1

)}
. Clearly, any vector in {0, 1}3 whose projection onto {0, 1}2 lies

outside V2 must belong to {0, 1}3 \V. Hence [{0, 1}2 \V2]×{0, 1} =
{(

0
0
0

)
,
(

0
0
1

)
,
(

1
1
0

)
,
(

1
1
1

)}
⊆

{0, 1}3 \ V. On the other hand, we have V ⊆ V2 × {0, 1} =

{(
0
1
0

)
,
(

0
1
1

)
,
(

1
0
0

)
,
(

1
0
1

)}
, and thus

V̂3 = [V2 × {0, 1}] \ V =

{(
1
0
0

)}
⊆ {0, 1}3 \ V. Then we can verify that (8) holds for j = 2, i.e.,

{0, 1}3 \V =
[(
{0, 1}2 \V2)× {0, 1}

]
∪ V̂3.

We use the recursion (8) to derive an explicit extended formulation for conv ({0, 1}n \V) havingO(n|V|)
variables and constraints.

Proposition 3. For all 2 ≤ j ≤ n, conv
(
{0, 1}j \V j) is given by all x ∈ Rj for which there exist vectors y, λ,

8
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and µ satisfying

−x + y +
j

∑
i=1

ki

∑
l=1

µi
lw

ij
l = 0

k1

∑
l=1

µ1
l − λ1 = 0

ki

∑
l=1

µi
l + λi−1 − λi = 0 ∀2 ≤ i ≤ j− 1

kj

∑
l=1

µ
j
l + λj−1 = 1

y1 = 0
yi − λi−1 ≤ 0 ∀2 ≤ i ≤ j
y ≥ 0, λ ≥ 0, µ ≥ 0.

Proof. We apply induction on 2 ≤ j ≤ n. The base case reduces to proving that conv
(
{0, 1}2 \V2) is

given by

−x + y +
2

∑
i=1

ki

∑
l=1

µi
lw

i2
l = 0

k1

∑
l=1

µ1
l − λ1 = 0

k2

∑
l=1

µ2
l + λ1 = 1 (9)

y1 = 0
y2 − λ1 ≤ 0
y ≥ 0, λ ≥ 0, µ ≥ 0.

Indeed, from (8), we have

{0, 1}2 \V2 =
[(
{0, 1}1 \V1

)
× {0, 1}

]
∪ V̂2. (10)

By definition, we have W12 = V̂1 × {0} = ({0, 1} \V1)× {0}. Then observe that(
{0, 1}1 \V1

)
× {0, 1} = W12 +

{(
0
0

)
,
(

0
1

)}
,

and thus

conv
((
{0, 1}1 \V1

)
× {0, 1}

)
= conv

(
W12

)
+
{

y ∈ R2 : y1 = 0, 0 ≤ y2 ≤ 1
}

.

Writing W12 = {w12
1 , . . . , w12

k1
}, it follows that conv

((
{0, 1}1 \V1)× {0, 1}

)
is given by p ∈ R2 such

9
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that

−p + y +
k1

∑
l=1

µ1
l w12

l = 0

k1

∑
l=1

µ1
l = 1

y1 = 0
y2 ≤ 1

y ≥ 0, µ1 ≥ 0.

We also have by definition V̂2 = W22 = {w22
1 , . . . , w22

k2
}, and thus conv

(
V̂2) is given by q ∈ R2 such

that

−q +
k2

∑
l=1

µ2
l w22

l = 0

k2

∑
l=1

µ2
l = 1

µ2 ≥ 0.

From (10), we apply Lemma 1 to the above polytopes: we introduce a multiplier 0 ≤ λ1 ≤ 1, we
include the equation x = p + q, and we multiply the right-hand-side vectors of the first and second
systems by λ1 and 1− λ1, respectively. After eliminating p and q, we immediately obtain the desired
system (9) for conv

(
{0, 1}2 \ V2).

Now, assuming that the claim holds for some 2 ≤ j ≤ n− 1, we will prove that it also holds for j + 1.
Since conv

(
({0, 1}j \ V j)× {0, 1}

)
= conv

(
({0, 1}j \ V j)

)
× [0, 1], by the inductive hypothesis, we

have that conv
(
({0, 1}j \ V j)× {0, 1}

)
is given by p ∈ Rj+1 satisfying

−p + y +
j

∑
i=1

ki

∑
l=1

µi
lw

ij+1
l = 0

k1

∑
l=1

µ1
l − λ1 = 0

ki

∑
l=1

µi
l + λi−1 − λi = 0 ∀2 ≤ i ≤ j− 1

kj

∑
l=1

µ
j
l + λj−1 = 1

y1 = 0
yi − λi−1 ≤ 0 ∀2 ≤ i ≤ j
yj+1 ≤ 1
y ≥ 0, λ ≥ 0, µ ≥ 0,

where we have appended a new variable 0 ≤ yj+1 ≤ 1 and vectors wij
l have been extended to wij+1

l by
appending another component with value 0.
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We also have that conv
(
V̂ j+1) is given by q ∈ Rj+1 satisfying

−q +
kj+1

∑
l=1

µ
j+1
l wj+1j+1

l = 0

kj+1

∑
l=1

µ
j+1
l = 1

µj+1 ≥ 0.

From (8), it is enough to apply Lemma 1 to the above polytopes to find an extended formulation for
conv

(
{0, 1}j+1 \V j+1). Analogously to the base case, we introduce a multiplier 0 ≤ λj ≤ 1, we include

the equation x = p + q, and we multiply the right-hand-side vectors of the first and second systems by
λj and 1− λj, respectively. After eliminating p and q, we immediately obtain the desired system for
conv

(
{0, 1}j+1 \ V j+1).

From Proposition 3, we obtain that conv ({0, 1}n \V) is given by the vectors xL ∈ Rn such that

−xL + y +
n

∑
i=1

ki

∑
l=1

µi
lw

i
l = 0

k1

∑
l=1

µ1
l − λ1 = 0

ki

∑
l=1

µi
l + λi−1 − λi = 0 ∀2 ≤ i ≤ n− 1

kn

∑
l=1

µn
l + λn−1 = 1

y1 = 0
yi − λi−1 ≤ 0 ∀2 ≤ i ≤ n
y ≥ 0, λ ≥ 0, µ ≥ 0.

Appending the variable θL and the constraint θL ≥ L to the above system gives an extended formula-
tion for PL(V). Note that excluding the nonnegativity restrictions, the constraint matrix has 3n rows
and 3n +O(n|V|) columns, i.e, only its width changes with V. In particular, updating the formulation
can be done columnwise, which is a desirable property from the computational point of view.

Once again, we apply disjunctive programming, but this time to PL(V) and PQ(V) to derive an ex-
tended formulation for conv (S(V)). Note that both PL(V) and PQ(V) have {(0, θ) ∈ Rn ×R : θ ≥ 0}
as their recession cone and thus Lemma 1 applies. We introduce a multiplier 0 ≤ δ ≤ 1, we include the
equations x = xL + xQ and θ = θL + θQ, and we multiply the right-hand-side vectors of the systems
defining PL(V) and PQ(V) by δ and 1− δ, respectively.

Recall that in the definition of S(V) we have dropped the dependence on X. To recover part of that
information, we can describe a polyhedron that lies between conv (S) and conv (S(V)). For that, PL(V)
can be coupled with any valid inequality for (MP). In particular, including variables z ≥ 0 and the
system AxL + Cz ≤ b tightens the formulation. Lower bounds of the form ΠxL − 1θL ≤ π0 can be
useful too to better approximate the shape of the epigraph S of Q(x). Thus we may assume that both
types of constraints are added to the formulation of PL(V), and that θL ≥ L is absorbed in ΠxL− 1θL ≤
π0.

11
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Finally, we obtain that if (x∗, θ∗) does not belong to conv (S(V)), and thus not to conv (S), then the
following system is infeasible:

(α) xL + xQ = x∗

(β) θL + θQ = θ∗

(σ) −xL + y +
n

∑
i=1

ki

∑
l=1

µi
lw

i
l = 0

(ρ1)
k1

∑
l=1

µ1
l − λ1 = 0

(ρi)
ki

∑
l=1

µi
l + λi−1 − λi = 0 ∀2 ≤ i ≤ n− 1

(ρn)
kn

∑
l=1

µn
l + λn−1 − δ = 0

(ϕ1) y1 = 0
(ϕi) yi − λi−1 ≤ 0 ∀2 ≤ i ≤ n

(ψ) ΠxL − 1θL − π0δ ≤ 0

(ν) AxL + Cz− bδ ≤ 0

(γ) −xQ +
t

∑
s=1

φsxs = 0

(τ) −θQ +
t

∑
s=1

φsQ(xs) ≤ 0

(η)
t

∑
s=1

φs + δ = 1

y ≥ 0, λ ≥ 0, µ ≥ 0
φ ≥ 0
δ ≥ 0.

By Farkas’ Lemma, and after removing redundancies, we arrive at the alternative system

x∗α + θ∗β + η < 0

α− σ + A>ν + Π>ψ = 0
β− 1ψ = 0

−ρn + η − bν− π0ψ ≥ 0

C>ν ≥ 0
σi + ϕi ≥ 0 2 ≤ i ≤ n

−ρi + ρi+1 + ϕi+1 ≥ 0 1 ≤ i ≤ n− 1

wi
lσ + ρi ≥ 0 1 ≤ n, 1 ≤ l ≤ ki

xsα + Q(xs)β + η ≥ 0 1 ≤ s ≤ t
β ≥ 0, ϕ ≥ 0, ν ≥ 0, ψ ≥ 0.

Thus, any feasible solution to the above system yields an inequality αx + βθ ≥ −η that is valid for
conv (S), but is violated by (x∗, θ∗).
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For finite termination of the integer L-shaped method, we need a tightness condition at the current
solution, namely αx∗ + βQ(x∗) = −η. Including this condition yields 0 > x∗α + θ∗β + η = x∗α +
βQ(x∗)+ η− βQ(x∗)+ θ∗β = β(θ∗−Q(x∗)). Since θ∗ < Q(x∗), we conclude that β > 0 in any feasible
tight solution. Therefore, we replace the condition x∗α + θ∗β + η < 0 with x∗α + Q(x∗)β + η = 0 and
the normalization β = 1. Note that the objective function of the resulting linear program is fixed to
zero, and we only need to find a feasible solution, which always exists by definition of the system; in
particular, (6) is feasible. The final system, denoted CGLP, reads

α− σ + A>ν + Π>ψ = 0
1ψ = 1

−ρn + η − bν− π0ψ ≥ 0

C>ν ≥ 0
σi + ϕi ≥ 0 2 ≤ i ≤ n

−ρi + ρi+1 + ϕi+1 ≥ 0 1 ≤ i ≤ n− 1

wi
lσ + ρi ≥ 0 1 ≤ i ≤ n, 1 ≤ l ≤ ki (11)

xsα + Q(xs) + η ≥ 0 1 ≤ s < t (12)
xtα + Q(xt) + η = 0 (13)

ϕ ≥ 0, ν ≥ 0, ψ ≥ 0.

Having set xt := x∗, we solve CGLP to find a feasible solution to the system. In particular, we obtain α
and η defining a CGLP-based optimality cut of the form

αx + θ ≥ −η (14)

which by construction cuts off (x∗, θ∗) with θ∗ < Q(x∗).

3.2 Implementation

The main difference that we are proposing with the standard implementation is the use of the CGLP-
based cut (14) in place of (6). This requires keeping a list V of first-stage solutions for which Q(x) has
been computed and updating CGLP accordingly. Algorithm 4 shows the procedure.

A key step is found in line 7 of Algorithm 4 as conv (S(V)) has to be recomputed whenever a new
vector x∗ is added to V. Of course, we could derive CGLP from scratch every time. Doing so requires
computing the sets Wi and thus creating O(n|V|) constraints in (11). Instead, we propose to perform
marginal updates from an iteration to the next one using the fact that Wi = V̂i × {0}n−i.

Let Vt = {x1, . . . , xt} be the set of the first t solutions found along the master tree. Similarly, let Vi
t be the

projection of Vt onto the first i components and set V̂i
t := [Vi−1

t × {0, 1}] \ Vi
t with V̂1

t := {0, 1} \ V1
t .

Suppose a new vector xt+1 = (x1, . . . , xn) is to be included and let Vt+1, Vi
t+1, V̂i

t+1 be the updated
sets. Let x̄i := (x1, . . . , xi−1, xi) and x̂i := (x1, . . . , xi−1, 1− xi). Clearly, we have Vt+1 = Vt ∪ {xt+1}
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Algorithm 4 Optimality cut function with CGLP-based optimality cuts

Input: (x∗, z∗, θ∗) candidate integer solution, Q : X → R, QLP : X → R, V
Output: true if solution is feasible, false otherwise

1: if x∗ ∈ V then // We know θ∗ ≥ Q(x∗)
2: return true
3: end if
4: Compute QLP(x∗)
5: Add the subgradient cut (7)
6: Compute Q(x∗)
7: Update CGLP.
8: V ← V ∪ {x∗}
9: if θ∗ < Q(x∗) then

10: Solve CGLP to obtain α and η
11: Add the integer optimality cut (14)
12: return false
13: else
14: return true
15: end if

and Vi
t+1 = Vi

t ∪ {x̄i}. Now, to obtain V̂i
t+1, observe that

V̂i
t+1 =

[
Vi−1

t+1 × {0, 1}
]
\Vi

t+1

=
[
Vi−1

t × {0, 1} ∪ {x̂i, x̄i}
]
\
[
Vi

t ∪ {x̄i}
]

=
[
Vi−1

t × {0, 1} ∪ {x̂i}
]
\
[
Vi

t ∪ {x̄i}
]

=
([

Vi−1
t × {0, 1}

]
\
[
Vi

t ∪ {x̄i}
])
∪
(
{x̂i} \

[
Vi

t ∪ {x̄i}
])

=
(

V̂i
t \ {x̄i}

)
∪
(
{x̂i} \ Vi

t

)
.

Therefore, if x̂i /∈ V̂i
t and x̂i /∈ Vi

t , then x̂i is included in V̂i
t+1. Also, if x̄i ∈ V̂i

t , then x̄i is removed to
obtain V̂i

t+1. Further observe that both operations cannot occur at the same iteration since the equiva-
lence

x̄i ∈ V̂i
t ⇐⇒ x̂i ∈ Vi

t ∧ x̄i /∈ Vi
t

implies that x̂i /∈ Vi
t and x̄i ∈ V̂i

t cannot hold true at the same time.

It follows that updating V involves adding or removing at most one vector for each Wi, totaling at
most n such operations. The system CGLP is updated accordingly by appending or dropping at most
n rows in (11). Also, xt+1 takes the place of xt in (13) and the cut corresponding to xt now takes the
form (12) by changing the equality sign into inequality. The procedure to update CGLP is shown in
Algorithm 5.

4 Combined method

Now we outline an implementation of the integer L-shaped method that combines the alternating
strategy discussed in Section 2 with the new optimality cuts presented in Section 3.
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Algorithm 5 Updating CGLP

Input: CGLP, Vi, V̂i, t, xt+1 = (x1, . . . , xn)
Output: Updated CGLP, Vi, V̂i

1: for 1 ≤ i ≤ n do
2: x̄i ← (x1, . . . , xi−1, xi)
3: x̂i ← (x1, . . . , xi−1, 1− xi)
4: if x̂i /∈ V̂i and x̂i /∈ Vi then
5: w← x̂i × {0}n−i

6: Add wσ + ρi ≥ 0 to (11)
7: V̂i ← V̂i ∪ {x̂i}
8: end if
9: if x̄i ∈ V̂i then

10: w← x̄i × {0}n−i

11: Remove wσ + ρi ≥ 0 from (11)
12: V̂i ← V̂i \ {x̄i}
13: end if
14: Vi ← Vi ∪ {x̄i}
15: end for
16: Add xtα + Q(xt) + η ≥ 0 to (12)
17: Replace (13) with xt+1α + Q(xt+1) + η = 0

We keep two disjoint lists of first-stage solutions: in VLP we include solutions for which only QLP(x)
has been computed, while in V we keep solutions for which Q(x) has been evaluated. At any given
stage, we assume that for each x ∈ V we have added an optimality cut that is tight at x. Now, when
a candidate integer solution (x∗, z∗, θ∗) is found in the master tree, we check whether x∗ ∈ V or not.
If so, we accept the solution as we already know Q(x∗) ≤ θ∗. Now, if x∗ /∈ VLP, then we compute
QLP(x∗), we add x∗ into VLP, and in case θ < QLP(x∗), we add the subgradient cut (7). At this point, if
(x∗, θ∗) has been neither accepted nor rejected, we have x∗ ∈ VLP and θ∗ ≥ QLP(x∗). Thus we compute
Q(x∗), we move x∗ from VLP to V, and in case θ < Q(x∗), we add the CGLP-based cut (14) and accept
the solution otherwise. Algorithm 6 below presents the method.

5 Results

In this section we address the performance of the variants of the integer L-shaped method discussed
so far. Given that the implementations differ in the cut strategy used and in the type of optimality cut
added, we consider the following combinations:

1. Std-Std: standard cut strategy and standard optimality cut (6); see Section 1.

2. Alt-Std: alternating cut strategy and standard optimality cut (6); see Section 2.

3. Std-CGLP: standard cut strategy and new optimality cut (14); see Section 3.

4. Alt-CGLP: alternating cut strategy and new optimality cut (14); see Section 4.

In other words, Std-Std corresponds to the usual implementation of the integer L-shaped method, on
top of which the variants are built.

Our computational implementation uses CPLEX 12.5.0.1 as a solver and its Callable Library for ad-
vanced control routines. Since either optimality cuts (6) or (14) are part of the complete formulation
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Algorithm 6 Optimality cut function with alternating cut strategy and CGLP-based optimality cuts

Input: (x∗, z∗, θ∗) candidate integer solution, Q : X → R, QLP : X → R, V, VLP
Output: true if solution is feasible, false otherwise

1: if x∗ ∈ V then // We know θ∗ ≥ Q(x∗)
2: return true
3: end if
4: if x∗ /∈ VLP then
5: Compute QLP(x∗).
6: VLP ← VLP ∪ {x∗}.
7: if θ∗ < QLP(x∗) then
8: Add the subgradient cut (7).
9: return false

10: end if
11: end if

// Now we have x∗ ∈ VLP and θ∗ ≥ QLP(x∗)
12: Compute Q(x∗).
13: Update CGLP.
14: V ← V ∪ {x∗}.
15: VLP ← VLP \ {x∗}
16: if θ∗ < Q(x∗) then
17: Solve CGLP to obtain α and η
18: Add the integer optimality cut (14)
19: return false
20: else
21: return true
22: end if

(MP) but not included from the beginning, we have to add them on-the-fly through the optimality cut
function. This routine is called every time the solver finds a candidate integer solution to the master
problem and is in charge of generating an optimality cut if needed. In the case of CGLP, it calls addi-
tional subroutines to make the required updates to generate (14). We include the formulation of the
first-stage set in CGLP, along the subgradients cuts derived from the linear relaxation of Q(x) used in
Benders’ decomposition.

The experiments were carried out on a personal computer with 3.33 Ghz CPU, 4 Gb of RAM, and
running Linux. A relative optimality gap of 0.01% was set as stopping criterion and a time limit of
7200 seconds was imposed. We do not report on the extensive form of the instances as solving them
using an off-the-shelf solver is much slower than the decomposition approaches.

5.1 Stochastic server location problem

The stochastic server location problem is described in [12]. Given n locations, in the first stage we are
asked to decide where to place servers so that the demand given by m potential customers is satisfied
in the second stage. The uncertain data is the set of customers to be served in the second stage and the
objective is to maximize the expected second-stage revenue minus the first-stage installation costs. In
minimization form, the problem can be written as

min cx + Q(x)
s.t. x ∈ {0, 1}n,
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where Q(x) := Eξ [Qξ(x)] and

Qξ(x) := min q1y + q2s
s.t. W1y + W2s ≥ h(ξ)− Tx

y ∈ {0, 1}nm

s ∈ Rn
+.

The random right-hand-side vector h(ξ) represents the set of active customers in a given scenario.

We tested our methods on the instances presented in [13]. Instances SSLP.n.m.k have n locations, m
customers, and k scenarios, leading to n binary variables in the first stage and nm binary variables and
n nonnegative variables per scenario in the second stage. For each n and m, five replications with k
scenarios each are considered. We did not include instances having n = 5 as all of them took less than
1 second to solve with any method.

Tables 1 and 2 summarize our results. In both tables, column Instance indicates the combination of n,
m and k as above. Headers Std-Std, Alt-Std, Std-CGLP, Alt-CGLP denote the type of implementation
under consideration. Here we present the averages over the five replications of each instance. Detailed
results are given in Tables 6 and 7 in the Appendix.

In Table 1 we present the overall results for all four methods. Columns Nodes show the average number
of nodes explored in the master problem. Columns Time show the average total time spent to reach
optimality, which includes computing an initial lower bound L, solving the LP relaxation with Benders’
decomposition, and exploring and evaluating candidate solutions in the master problem.

From Table 1, we see that there is no significant variation in the number of explored nodes among the
different methods. Now, the implementations that use the alternating cut strategy clearly outperform
the other two methods, with speedups of one order of magnitude. On the other hand, with a few
exceptions, the use of CGLP-based cuts does not cause major changes in the total running time, espe-
cially when combined with the alternating cut strategy. This can be explained by the fact that in these
problems, the first-stage is very simple as X = {0, 1}n with n ≤ 15, which does not present a challenge
for CPLEX.

Instance Std-Std Std-CGLP Alt-Std Alt-CGLP
Nodes Time Nodes Time Nodes Time Nodes Time

SSLP.10.50.50 402.4 70.9 394.8 71.5 406.8 6.8 404.2 6.8
SSLP.10.50.100 370.2 91.1 373.0 90.5 371.8 13.2 371.0 13.6
SSLP.10.50.500 381.0 548.5 385.0 561.7 386.8 64.0 385.0 65.5
SSLP.10.50.1000 360.0 1294.1 357.8 1307.1 367.4 128.2 368.2 129.3
SSLP.10.50.2000 392.2 3298.0 371.4 3160.7 404.4 339.3 404.6 336.7
SSLP.15.45.5 772.6 81.5 750.2 89.0 763.4 2.7 764.6 2.8
SSLP.15.45.10 1408.0 400.9 1370.8 353.6 1450.8 6.1 1414.0 6.5
SSLP.15.45.15 1500.0 534.3 1498.4 539.1 1526.0 11.7 1523.6 11.9
SSLP.15.45.20 495.6 358.4 481.4 347.8 500.4 8.0 502.4 8.1
SSLP.15.45.25 733.0 708.4 698.8 704.9 737.8 16.7 732.2 17.4

Table 1: Stochastic server location: overall results.

To understand the effect of alternating cuts, in Table 2 we present details regarding subproblems. Recall
that every time a candidate integer solution is found, we have to check whether it is feasible, by either
solving a series of MIPs or LPs, one per scenario, and then add a cut to discard the solution if necessary.
Headers #LP and #MIP denote the average number of times a candidate solution was checked using
linear or mixed-integer subproblems, while headers Time LP and Time MIP indicate the average time
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spent in each case. We focus only on the implementations Std-Std and Alt-Std as the comparison for
the remaining pair is similar.

From Table 2, we see that with the alternating cut strategy the number of MIP evaluations reduces
considerably. This means that in the problems we tested, most of the time it is not necessary to com-
pute the exact second-stage value of a given first-stage solution to reject it. Furthermore, only a small
fraction of these solutions are visited twice, and only in those cases we have to solve MIP subproblems.
The benefits are evident.

Instance Std-Std Alt-Std
#LP #MIP Time LP Time MIP #LP #MIP Time LP Time MIP

SSLP.10.50.50 147.6 147.6 1.8 65.8 148.6 3.4 1.7 1.8
SSLP.10.50.100 131.6 131.6 3.3 81.0 130.8 3.8 3.0 3.5
SSLP.10.50.500 131.6 131.6 16.4 497.2 130.6 3.0 14.8 15.2
SSLP.10.50.1000 132.0 132.0 33.6 1193.3 127.2 3.0 30.2 32.8
SSLP.10.50.2000 142.6 142.6 72.4 3082.5 143.4 4.2 67.3 133.2
SSLP.15.45.5 143.0 143.0 0.3 80.6 143.2 5.8 0.3 1.9
SSLP.15.45.10 262.0 262.0 1.1 398.2 268.5 5.3 1.1 3.6
SSLP.15.45.15 310.6 310.6 1.9 530.1 317.4 6.0 1.9 7.9
SSLP.15.45.20 99.4 99.4 0.7 356.1 98.4 3.2 0.7 5.9
SSLP.15.45.25 162.4 162.4 1.5 704.3 163.0 5.4 1.4 12.8

Table 2: Stochastic server location: subproblems details.

5.2 Stochastic multiple binary knapsack problem

The second benchmark set corresponds to a class of stochastic multiple binary knapsack problems.
They have the form

min cx + dz + Q(x)
s.t. Ax + Cz ≥ b

x ∈ {0, 1}n

z ∈ {0, 1}n,

where Q(x) := Eξ [Qξ(x)],

Qξ(x) := min q(ξ)y
s.t. Wy ≥ h− Tx

y ∈ {0, 1}n,

and all data are nonnegative integers. In the second-stage problem, only the objective vector q(ξ) is
random, following a discrete distribution with finitely many scenarios.

We generated 30 instances of the above problem with n = 120 and 20 equiprobable scenarios. The
systems Ax + Cz ≥ b and Wy ≥ h− Tx have 50 and 5 rows, respectively. The entries of A, C, T, W, c,
d, and q are i.i.d. sampled from the uniform distribution over {1, . . . , 100}. We set b = 3

4 (A1 + C1) and
h = 3

4 (T1 + W1), with 1 denoting the n-dimensional vector of ones.

We divided the instances intro three groups depending on how much time the standard implemen-
tation took to solve each of them: Easy (less than 200 seconds, instances 1–6), Medium (between 200
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and 1000 seconds, instances 7–18), and Hard (more than 1000 seconds, instances 19–29). We ommitted
instance 30 since none of the methods was able to solve it to optimality within the time limit.

Tables 3, 4, and 5 below summarize the results. Column Difficulty denotes the instance class. The
remaining headers and columns are as in Tables 1 and 2. Detailed results are given in Tables 8, 9, and
10 in the Appendix.

Difficulty Std-Std Std-CGLP Alt-Std Alt-CGLP
Nodes Time Nodes Time Nodes Time Nodes Time

Easy 151531.5 87.1 127696.0 82.5 154611.7 86.0 133724.2 82.8
Medium 945487.8 520.8 714822.5 453.8 940249.3 516.1 748502.7 446.7

Hard 3356158.1 2125.7 2654448.1 1833.6 3371088.5 2065.2 2656526.5 1756.3

Table 3: Stochastic multiple knapsack: overall results.

From Table 3, we see that the application of the alternating cut strategy does not yield the time savings
we saw with the stochastic server location problems. On the other hand, in most instances, adding
CGLP-based cuts instead of standard cuts yields reductions in both the number of nodes and the total
time, regardless of the cut strategy being used. We would like to conclude that these improvements
are due to the fact that CGLP-based cuts help to explore the master tree. However, at this point, that is
not completely clear, as for example, time reductions could be consequence of less evaluations of Q(x)
and not because of the strength of the new cuts.

To aid our analysis, in Table 4 we report the average number of candidate solutions for which QLP(x)
and Q(x) were evaluated and the average time spent doing so. This time we compare Std-Std and
Std-CGLP, and the notation is similar to that of Table 2.

Difficulty Std-Std Std-CGLP
#LP #MIP Time LP Time MIP #LP #MIP Time LP Time MIP

Easy 13.7 13.7 0.0 25.7 14.7 14.7 0.0 28.1
Medium 49.2 49.2 0.1 99.1 54.1 54.1 0.1 107.2

Hard 112.3 112.3 0.2 231.6 114.9 114.9 0.2 235.8

Table 4: Stochastic multiple knapsack: subproblems details.

We observe that both implementations require roughly the same number of evaluations of both QLP(x)
and Q(x), which explains why alternating cuts does not outperform the standard cut strategy. More-
over, the difference in the time solving subproblems is very small compared to the total running times
presented in Table 3. Thus, the reductions observed in Table 3 can be attributed to the better approxi-
mation of the first-stage set given by the CGLP-based cuts and not to the variability of the evaluations.
In this regard, it is important to stress that, in principle, having a better description of the first-stage set
does not have a direct relationship with the number of candidates solutions found in the master tree,
and actually, having more candidates could hurt the total running time if their evaluation is too costly.
However, in situations where after decomposing the problem the burden of the computation lies on
the master problem, our improved cuts may prove beneficial as exemplified by our results.

Finally, in Table 5 we present the overhead incurred by using CGLP to generate cuts, that is, the time
spent in additional operations to maintain and solve CGLP through the method. For each class, column
|V| shows the average final size of V, which is the number of candidate solutions for which Q(x)
was evaluated exactly. Headers Update and Generate denote the average total time spent updating
the formulation of CGLP and actually solving the system to find an optimality cut, respectively. This
additional time is already included in the total running time presented in Table 3.

As expected, the overhead increases as more solutions are included in the extended formulation. Up-
dating CGLP takes practically no time, whereas generating the cut takes a nonnegligible amount of
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Difficulty |V| Update Generate
Easy 14.7 0.0 0.5

Medium 54.1 0.2 7.2
Hard 114.9 0.4 24.7

Table 5: Stochastic multiple knapsack: CGLP overhead.

time. However, compared to the total running time, the overhead is very small and the effort of com-
puting improved cuts pays off as shown in Table 3. For more complicated problems where the number
of binary first-stage variables is too large or where too many candidate solutions are evaluated, the cost
of maintaining CGLP is likely to be higher. In those cases, we can enforce rules to limit the number of
calls to CGLP, such as using the standard optimality cuts as a baseline and applying the improved cuts
only once in a while.

6 Concluding remarks

In this work, we have presented two modifications to the integer L-shaped method with the objective
of reducing the running time of the algorithm. The first one, termed alternating cuts strategy, seeks
to avoid expensive evaluations of the second-stage cost function, while the second, the use of CGLP-
based optimality cuts, helps to better approximate the shape of the epigraph of the cost function when
evaluations at different points are available. Our computational results suggest the following:

1. The alternating cuts strategy works better in problems where the computational bottleneck of
(IP) is in evaluating Q(x). Even when that is not the case, this modification does not seem to hurt
the total running times and thus it could be considered as the base method on top of which more
evolved algorithms can be built.

2. CGLP-based cuts are a viable alternative when the first-stage set is difficult to explore and com-
puting Q(x) is a relatively cheap operation. As the sole purpose of these new cuts is to have a
better representation of the epigraph of the second-stage cost function within the master problem,
there is no guarantee about the number or the sequence of solutions for which Q(x) is evaluated,
and thus, in general, this method performs well when the impact of this variability is small com-
pared with the effort of solving the master problem.

3. We also point out that our overall computational experience indicates that CGLP-based cuts are
particularly suitable for problems having additional integer variables in the set Z, since a deep
cut discarding a point (x∗, θ∗) in the (x, θ)-space may also prove effective in discarding a large
number of points of the form (x∗, z, θ∗) for z ∈ Z.

4. As favorable conditions for both modifications are unlikely to be attained at the same time, we
observe that time reductions in a combined method are mainly consequence of one strategy or
the other, but not because of the combination of both. That being said, it would be interesting to
experiment with implementations where CGLP also incorporates approximations of Q(x) such as
subgradient cuts or ad-hoc lower bounds rather than exact evaluations only. That would require
also keeping track of firt-stage vectors x for which estimates of Q(x) have been computed.

5. Finally, in more general settings where Q(x) is an easy-to-evaluate nonconvex function for which
a tractable convex underestimator is not available, CGLP-based cuts may prove helpful in solving
problems having the form (IP). Situations where Q(x) is given by black-box computations remain
a case study to be explored.
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Appendix

Stochastic server location problem

Instance Rep. Std-Std Std-CGLP Alt-Std Alt-CGLP
Nodes Time Nodes Time Nodes Time Nodes Time

SSLP.10.50.50

a 478 61.1 485 67.8 468 7.0 466 7.1
b 452 91.3 434 85.5 472 6.7 466 6.7
c 300 79.3 297 80.0 303 7.0 298 7.1
d 237 25.3 224 26.9 230 5.0 230 5.0
e 545 97.5 534 97.2 561 8.2 561 8.3

SSLP.10.50.100

a 452 109.7 434 106.2 462 17.1 470 18.3
b 497 80.3 494 83.7 493 11.0 493 11.1
c 313 95.3 291 98.0 302 12.8 289 13.6
d 216 49.5 224 43.6 229 10.7 229 10.5
e 373 120.5 422 121.0 373 14.2 374 14.4

SSLP.10.50.500

a 466 605.5 470 643.9 472 63.3 476 63.5
b 441 482.6 447 492.9 449 57.7 449 57.8
c 277 571.7 292 557.6 275 64.0 271 64.8
d 235 348.8 239 353.5 247 57.5 247 57.6
e 486 733.8 477 760.8 491 77.5 482 84.0

SSLP.10.50.1000

a 481 1542.1 473 1549.6 486 134.5 487 135.4
b 473 1128.7 477 1142.2 460 114.5 466 116.8
c 276 1509.3 261 1509.7 282 124.2 279 125.5
d 225 752.8 227 782.2 229 113.2 229 113.7
e 345 1537.6 351 1551.8 380 154.4 380 155.3

SSLP.10.50.2000

a 466 3777.1 467 3769.2 472 382.7 478 373.2
b 472 2565.3 471 2751.8 483 246.7 478 251.0
c 286 3189.4 286 3158.8 302 368.9 300 360.5
d 219 1937.1 219 1994.5 223 249.0 225 249.4
e 518 5021.2 414 4129.2 542 449.4 542 449.6

SSLP.15.45.5

a 230 11.3 233 11.6 244 0.7 244 0.7
b 261 2.9 262 3.0 270 0.5 262 0.5
c 2364 320.9 2288 354.9 2298 9.9 2294 10.2
d 870 56.2 826 58.7 872 1.4 888 1.7
e 138 16.4 142 16.8 133 1.0 135 1.0

SSLP.15.45.10

a 430 79.0 442 80.1 429 2.7 428 2.8
b 284 189.0 251 190.9 256 6.2 278 7.6
c 2384 245.0 2240 236.6 2512 7.4 2449 7.7
d 2534 1090.7 2550 906.8 2606 7.9 2501 8.0

SSLP.15.45.15

a 1408 1646.1 1329 1594.5 1368 13.1 1358 13.3
b 223 55.7 216 55.5 212 2.3 219 2.3
c 2676 580.6 2718 611.0 2791 19.0 2785 18.9
d 2986 359.1 2994 404.1 3038 22.3 3024 23.0
e 207 30.1 235 30.2 221 1.9 232 1.9

SSLP.15.45.20

a 498 186.4 469 181.4 506 4.0 523 4.1
b 351 87.2 335 87.5 341 7.6 331 7.6
c 380 196.8 358 193.4 380 5.1 387 5.2
d 552 873.0 548 898.1 560 20.7 562 20.9
e 697 448.4 697 378.5 715 2.8 709 2.8

SSLP.15.45.25

a 658 554.1 629 532.0 662 18.4 633 18.5
b 671 324.7 620 435.1 670 9.0 680 6.7
c 433 165.2 399 160.7 447 11.8 422 11.9
d 965 435.2 946 465.7 967 26.9 1001 32.3
e 938 2062.7 900 1931.0 943 17.6 925 17.8

Table 6: Stochastic server location: overall results per instance.
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Instance Rep. Std-Std Alt-Std
#LP #MIP Time LP Time MIP #LP #MIP Time LP Time MIP

SSLP.10.50.50

a 189 189 2.2 55.5 185 3 2.1 1.7
b 154 154 1.6 86.2 166 3 1.6 1.6
c 113 113 1.6 74.5 109 4 1.6 2.3
d 44 44 0.6 21.3 45 2 0.6 0.9
e 238 238 2.8 91.6 238 5 2.7 2.6

SSLP.10.50.100

a 181 181 4.3 98.4 183 6 3.9 6.4
b 176 176 4.0 69.7 175 2 3.7 0.9
c 112 112 3.1 86.2 109 5 2.9 4.1
d 51 51 1.3 40.9 50 2 1.2 2.2
e 138 138 3.7 109.8 137 4 3.3 4.0

SSLP.10.50.500

a 178 178 21.1 549.8 179 2 19.1 11.0
b 152 152 17.8 428.5 150 2 15.2 7.4
c 89 89 13.7 523.9 89 4 12.0 18.6
d 56 56 8.1 303.3 56 2 8.1 12.4
e 183 183 21.1 680.4 179 5 19.8 26.7

SSLP.10.50.1000

a 188 188 46.4 1429.6 185 3 41.9 29.4
b 163 163 36.6 1028.5 156 2 32.4 21.2
c 106 106 29.6 1410.1 95 3 25.8 30.2
d 56 56 16.0 665.2 55 2 15.3 27.3
e 147 147 39.4 1433.1 145 5 35.5 56.1

SSLP.10.50.2000

a 184 184 92.6 3548.0 181 5 82.4 169.9
b 158 158 70.3 2352.7 156 2 65.4 44.2
c 98 98 60.7 2980.4 103 5 56.6 167.0
d 59 59 34.2 1746.0 58 2 31.2 62.1
e 214 214 104.3 4785.4 219 7 101.0 222.7

SSLP.15.45.5

a 28 28 0.1 10.9 28 2 0.1 0.2
b 42 42 0.1 2.5 41 4 0.1 0.2
c 481 481 1.0 318.3 496 17 0.9 7.7
d 154 154 0.3 55.2 141 4 0.3 0.6
e 10 10 0.0 16.1 10 2 0.0 0.7

SSLP.15.45.10

a 93 93 0.3 77.8 90 2 0.3 1.6
b 68 68 0.2 188.2 67 5 0.2 5.4
c 501 501 2.2 240.1 538 9 2.3 2.9
d 386 386 1.7 1086.8 379 5 1.7 4.4

SSLP.15.45.15

a 263 263 1.6 1642.3 262 4 1.5 9.7
b 41 41 0.2 54.4 39 2 0.2 1.0
c 623 623 4.3 572.8 645 16 4.4 11.8
d 597 597 3.3 352.0 613 6 3.1 16.2
e 29 29 0.2 29.0 28 2 0.2 0.8

SSLP.15.45.20

a 134 134 0.9 183.7 132 2 0.9 1.4
b 63 63 0.4 85.1 61 2 0.4 5.6
c 61 61 0.4 195.2 60 4 0.4 3.6
d 148 148 1.1 870.2 145 6 1.0 18.0
e 91 91 0.7 446.2 94 2 0.7 0.7

SSLP.15.45.25

a 156 156 1.3 550.0 147 4 1.2 14.4
b 135 135 1.3 321.0 148 4 1.4 5.3
c 73 73 0.6 162.1 74 4 0.6 8.8
d 213 213 2.2 430.0 215 7 2.1 21.9
e 235 235 2.0 2058.5 231 8 1.9 13.7

Table 7: Stochastic server location: subproblems details per instance.
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Stochastic multiple binary knapsack problem

Instance Std-Std Std-CGLP Alt-Std Alt-CGLP
Nodes Time Nodes Time Nodes Time Nodes Time

1 27705 26.4 27615 27.0 27837 25.5 26295 24.9
2 63528 41.1 55448 38.6 65213 41.1 57170 38.2
3 93185 59.9 87560 60.2 101121 57.8 81480 50.9
4 137303 101.1 121687 97.3 132782 89.1 127963 89.1
5 224063 107.2 183462 94.1 244755 112.1 251017 128.3
6 363405 186.6 290404 177.5 355962 190.1 258420 165.5
7 503998 245.8 401809 204.4 517313 250.4 397677 200.2
8 436738 267.5 310136 218.0 431356 249.3 334569 214.8
9 470356 273.3 451931 269.7 502174 280.5 450104 254.8
10 507120 315.6 320672 251.1 518329 333.1 342582 257.5
11 623424 379.4 675292 404.9 637749 422.5 615580 342.6
12 887595 468.7 672117 422.7 954211 502.8 741931 436.2
13 1099397 541.0 1024147 692.2 1172464 579.1 984003 527.4
14 1416129 686.6 880154 516.9 1484427 711.5 1057895 600.3
15 1650580 714.4 1120524 509.8 1692521 726.8 1148229 516.0
16 1322774 749.9 832266 533.7 1013473 572.2 956447 579.2
17 1197577 771.1 900476 652.4 1192205 753.2 974525 686.0
18 1230166 836.7 988346 769.7 1166769 811.6 978490 745.9
19 2189204 1158.0 1618305 950.0 2225393 1160.4 1713778 962.0
20 2395096 1460.9 1663945 1142.5 2383548 1404.2 1756720 1109.5
21 3277812 1488.2 2789613 1328.8 3563188 1603.1 3144784 1499.3
22 2702878 1664.7 2244862 1422.6 2816341 1714.0 2087732 1430.1
23 2309196 1825.3 1919811 1711.6 2306792 1715.5 1833302 1520.5
24 3301135 1998.1 2690441 1771.6 3101311 1816.8 2580654 1620.4
25 3346788 2310.7 2987190 2149.9 3541754 2346.8 2998747 2068.1
26 3024670 2319.8 2966064 2373.0 3087399 2258.1 2806757 2172.3
27 3890594 2344.4 3225433 2099.7 3787260 2210.1 3128508 1980.4
28 4762714 3223.2 3253202 2425.3 4449516 2890.2 3285741 2311.3
29 5717652 3589.2 3840063 2795.1 5819471 3597.8 3885068 2645.9

Table 8: Stochastic multiple knapsack: overall results per instance.
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Instance Std-Std Std-CGLP
#LP #MIP Time LP Time MIP #LP #MIP Time LP Time MIP

1 9 9 0.0 14.4 9 9 0.0 14.7
2 9 9 0.0 15.7 9 9 0.0 15.8
3 14 14 0.0 24.7 14 14 0.0 26.0
4 24 24 0.0 46.2 24 24 0.0 45.9
5 12 12 0.0 21.0 12 12 0.0 19.8
6 14 14 0.0 32.1 20 20 0.0 46.2
7 10 10 0.0 17.3 10 10 0.0 17.2
8 40 40 0.1 80.3 40 40 0.1 80.7
9 34 34 0.1 74.5 36 36 0.1 74.6
10 46 46 0.1 97.9 49 49 0.1 102.1
11 46 46 0.1 77.6 47 47 0.1 78.9
12 45 45 0.1 108.5 51 51 0.1 123.0
13 45 45 0.1 87.2 87 87 0.2 160.9
14 51 51 0.1 124.4 51 51 0.1 123.9
15 22 22 0.0 29.9 26 26 0.1 36.2
16 79 79 0.2 128.8 74 74 0.2 119.3
17 80 80 0.2 168.0 81 81 0.2 167.5
18 92 92 0.2 194.7 97 97 0.2 202.1
19 66 66 0.1 134.3 65 65 0.1 131.9
20 97 97 0.2 193.0 98 98 0.2 193.9
21 49 49 0.1 99.8 48 48 0.1 97.7
22 93 93 0.2 245.2 91 91 0.2 237.2
23 175 175 0.4 341.7 176 176 0.4 339.1
24 89 89 0.2 211.2 92 92 0.2 221.1
25 127 127 0.3 222.2 127 127 0.3 221.8
26 155 155 0.3 331.5 157 157 0.3 331.4
27 103 103 0.2 246.0 111 111 0.2 264.1
28 150 150 0.3 263.7 152 152 0.3 268.0
29 131 131 0.3 259.4 147 147 0.3 287.6

Table 9: Stochastic multiple knapsack: subproblems details per instance.

Instance |V| Update Generate
1 9 0.0 0.2
2 9 0.0 0.2
3 14 0.0 0.4
4 24 0.0 1.0
5 12 0.0 0.3
6 20 0.0 0.8
7 10 0.0 0.2
8 40 0.1 2.7
9 36 0.1 2.5

10 49 0.1 3.4
11 47 0.1 4.7
12 51 0.1 4.5
13 87 0.2 13.2
14 51 0.1 5.3
15 26 0.1 1.3
16 74 0.2 11.9
17 81 0.3 15.7
18 97 0.4 21.2
19 65 0.2 6.9
20 98 0.3 21.7
21 48 0.1 4.0
22 91 0.3 18.8
23 176 0.9 41.2
24 92 0.3 13.8
25 127 0.4 29.8
26 157 0.6 37.0
27 111 0.4 25.1
28 152 0.6 39.6
29 147 0.6 33.3

Table 10: Stochastic multiple knapsack: CGLP overhead per instance.
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Abstract

It is well-known that the intersection of the matching polytope with a cardinality constraint is integral [8].
In this note, we prove a similar result for the polytope corresponding to the transportation problem with
market choice (TPMC) (introduced in [4]) when the demands are in the set {1, 2}. This result generalizes
the result regarding the matching polytope. The result in this note uses the fact that some special classes of
minimum weight perfect matching problem with a cardinality constraint on a subset of edges can be solved
in polynomial time.

Keywords: Transportation problem with market choice, cardinality constraint, integral polytope

1. Introduction and Main Result

1.1. Transportation Problem with Market Choice

The transportation problem with market choice (TPMC), introduced in the paper [4], is a transportation
problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. If a
market is selected, then its demand must be satisfied fully through shipments from the suppliers. If a market
is rejected, then the corresponding potential revenue is lost. The objective is to minimize the total cost of
shipping and lost revenues. See [5, 7, 9] for approximation algorithms and heuristics for several other supply
chain planning and logistics problems with market choice.

Formally, we are given a set of supply and demand nodes that form a bipartite graph G = (V1 ∪ V2, E).
The nodes in set V1 represent the supply nodes, where for i ∈ V1, si ∈ N represents the capacity of supplier
i. The nodes in set V2 represent the potential markets, where for j ∈ V2, dj ∈ N represents the demand of
market j. The edges between supply and demand nodes have weights that represent shipping costs we, where
e ∈ E. For each j ∈ V2, rj is the revenue lost if the market j is rejected. Let x{i,j} be the amount of demand
of market j satisfied by supplier i for {i, j} ∈ E, and let zj be an indicator variable taking a value 1 if market
j is rejected and 0 otherwise. A mixed-integer programming (MIP) formulation of the problem is given where
the objective is to minimize the transportation costs and the lost revenues due to unchosen markets:

min
x∈R|E|+ , z∈{0,1}|V2|

∑
e∈E

wexe +
∑
j∈V2

rjzj (1)

s.t.
∑

i:{i,j}∈E

x{i,j} = dj(1− zj) ∀j ∈ V2 (2)

∑
j:{i,j}∈E

x{i,j} ≤ si ∀i ∈ V1. (3)
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We refer to the formulation (1)-(3) as TPMC. The first set of constraints (2) ensures that if market j ∈ V2
is selected (i.e., zj = 0), then its demand must be fully satisfied. The second set of constraints (3) model the
supply restrictions.

TPMC is strongly NP-complete in general [4]. Aardal and Le Bodic [1] give polynomial-time reduc-
tions from this problem to the capacitated facility location problem [6], thereby establishing approximation
algorithms with constant factors for the metric case and a logarithmic factor for the general case.

1.2. TMPC with dj ∈ {1, 2} for all j ∈ V2 and the Matching Polytope

When dj ∈ {1, 2} for each demand node j ∈ V2, TPMC is polynomially solvable [4]. This is proven through
a reduction to a minimum weight perfect matching problem on a general (non-bipartite) graph G′ = (V ′, E′);
see [4]. We call this special class of the problem, the simple TPMC problem in the rest of this note.

Observation 1 (Simple TPMC generalizes Matching on General Graphs). The matching problem can be
seen as a special case of the simple TPMC problem. Let G = (V,E) be a graph with n vertices and m edges.
We construct a bipartite graph Ĝ = (V̂ 1 ∪ V̂ 2, Ê) as follows: V̂ 1 is a set of n vertices corresponding to the n
vertices in G, and V̂ 2 corresponds to the set of edges of G, i.e., V̂ 2 contains m vertices. We use {i, j} to refer
to the vertex in V̂ 2 corresponding to the edge {i, j} in E. The set of edges in Ê are of the form {i, {i, j}} and
{j, {i, j}} for every i, j ∈ V such that {i, j} ∈ E. Now we can construct (the feasible region of) an instance
of TPMC with respect to Ĝ = (V̂ 1 ∪ V̂ 2, Ê) as follows:

Q = {(x, z) ∈ R2m
+ × Rm | x{i,e} + x{j,e}+2ze = 2 ∀e = {i, j} ∈ V̂ 2 (4)∑

j:{i,j}∈E

x{i,{i,j}} ≤ 1 ∀i ∈ V̂ 1 (5)

ze ∈ {0, 1} ∀e ∈ V̂ 2}. (6)

Clearly there is a bijection between the set of matchings in G and the set of solutions in Q. Moreover, let

H := {(x, z, y) ∈ R2m × Rm × Rm | (x, z) ∈ Q, y = e− z},

where e is the all ones vector in Rm. Then we have that the incidence vector of all the matchings in G = (V,E)
is precisely the set projy(H).

Note that the instances of the form of (4)-(6) are special cases of simple TPMC instances, since in these
instances all si’s are restricted to be exactly 1 and all dj’s are restricted to be exactly 2.

1.3. Simple TPMC with Cardinality Constraint: Main Result

An important and natural constraint that one may add to the TPMC problem is that of a service level,
that is the number of rejected markets is restricted to be at most k. This restriction can be modelled using
a cardinality constraint,

∑
j∈V2

zj ≤ k, appended to (1)-(3). We call the resulting problem cardinality-
constrained TPMC (CCTPMC). If we are able to solve CCTPMC in polynomial-time, then we can solve
TPMC in polynomial time by solving CCTPMC for all k ∈ {0, . . . , |V2|}. Since TPMC is NP-hard, CCTPMC
is NP-hard in general.

In this note, we examine the effect of appending a cardinality constraint to the simple TPMC problem.

Theorem 1. Given an instance of TPMC with V2, the set of demand nodes, and E, the set of edges, let

X ⊆ R|E|+ × {0, 1}|V2| be the set of feasible solutions of this instance of TPMC. Let k ∈ Z+ and k ≤ |V2|.
Let Xk := conv(X ∩ {(x, z) ∈ R|E|+ × {0, 1}|V2| |

∑
j∈V2

zj ≤ k}). If dj ≤ 2 for all j ∈ V2, then Xk =

conv(X) ∩ {(x, z) ∈ R|E|+ × [0, 1]|V2| |
∑

j∈V2
zj ≤ k}.

Our proof of Theorem 1 is presented in Section 2. We note that the result of Theorem 1 holds even when

Xk is defined as conv(X ∩ {(x, z) ∈ R|E|+ ×{0, 1}|V2| |
∑

j∈V2
zj ≥ k}) or conv(X ∩ {(x, z) ∈ R|E|+ ×{0, 1}|V2| |∑

j∈V2
zj = k}).

By invoking the ellipsoid algorithm and the use of Theorem 1 we obtain the following corollary.
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Corollary 1. Cardinality constrained simple TPMC is polynomially solvable.

We note that, as a consequence of Theorem 1 (but also inherent in our proof), a special class of minimum
weight perfect matching problem with a cardinality constraint on a subset of edges can be solved in polynomial
time: Simple TPMC can be reduced to a minimum weight perfect matching problem on a general (non-
bipartite) graph G′ = (V ′, E′) [4]. Therefore, it is possible to reduce CCTPMC with dj ≤ 2 for all j ∈ V2
to a minimum weight perfect matching problem with a cardinality constraint on a subset of edges. Hence,
Corollary 1 implies that a special class of minimum weight perfect matching problems with a cardinality
constraint on a subset of edges can be solved in polynomial time.

Note that the intersection of the perfect matching polytope with a cardinality constraint on a strict subset
of edges is not always integral.

Example 1. Consider the cycle C4 of length 4 with edge set E = {{1, 2}, {2, 3}, {3, 4}, {1, 4}}, and the
cardinality constraint x12 + x34 = 1. The only perfect matchings are {{1, 2}, {3, 4}} and {{1, 4}, {2, 3}} for
which the cardinality constraint has activity 2 and 0, respectively. Thus the perfect matching polytope is a
line which is intersected by the hyperplane defined by the cardinality constraint in the (fractional) center.

To the best of our knowledge, the complexity status of minimum weight perfect matching problem on a
general graph with a cardinality constraint on a subset of edges is open. This can be seen by observing that
if one can solve minimum weight perfect matching problem with a cardinality constraint on a subset of edges
in polynomial time, then one can solve the exact perfect matching problem in polynomial time; see discussion
in the last section in [2].

Finally we ask the natural question: Does the statement of Theorem 1 hold when dj ≤ 2 does not hold
for every j? The next example illustrates that the statement does not hold in such case.

Example 2. Consider an instance of TPMC where G = (V1 ∪ V2, E) is a bipartite graph with

V1 = {i1, i2, i3, i4, i5, i6}, V2 = {j1, j2, j3, j4},
E = {{i1, j1}, {i2, j2}, {i3, j3}, {i4, j1}, {i4, j4}, {i5, j2}, {i5, j4}, {i6, j3}, {i6, j4}},
si = 1, i ∈ V1, dj1 = dj2 = dj3 = 2, dj4 = 3.

For k = 2 it can be verified that we obtain a non-integer extreme point of conv(X) ∩ {(x, z) ∈ Rp
+ × [0, 1]n |∑n

j=1 zj ≤ k}, given by x{i1,j1} = x{i2,j2} = x{i3,j3} = x{i4,j1} = x{i4,j4} = x{i5,j2} = x{i5,j4} = x{i6,j3} =

x{i6,j4} = z1 = z2 = z3 = z4 = 1
2 . To see this, consider the face defined by the supply constraints of nodes

{i4, i5, i6} and observe that this face has precisely two solutions having 1 and 3 markets, respectively.
Therefore, Xk 6= conv(X) ∩ {(x, z) ∈ Rp

+ × [0, 1]n |
∑n

j=1 zj ≤ k} in this example.

2. Proof of Theorem 1

To prove Theorem 1 we use an improved reduction to a minimum weight matching problem (compared to
the reduction in [4]) and then use the well-known adjacency properties of the vertices of the perfect matching
polytope. Since the integrality result does not hold for the perfect matching polytope on a general graph with
a cardinality constraint on any subset of edges, as illustrated in Example 1, we need to refine the adjacency
criterion.

We begin with some notation. For a graph G = (V,E) with node set V and edge set E, and a node v ∈ V ,
we denote by δ(v) := δG(v) := {e ∈ E | v ∈ e} the set of edges incident to v. For a vector x ∈ R|E| and a
subset F ⊆ E of its ground set, we define x(F ) :=

∑
f∈F xf .

We now describe the improved reduction to a minimum weight matching problem. Consider a simple
TPMC instance on a graph G = (V1 ∪ V2, E) with supplies s ∈ N|V1|, demands d ∈ {1, 2}|V2|, edge weights
w ∈ R|E|, and revenues r ∈ R|V2|. Let Dk = {j ∈ V2 | dj = k} be the partitioning of V2 into two classes
corresponding to the demands.
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Figure 1: Improved Reduction to a Matching Problem

We create the auxiliary graphG∗ (see Figure 1) with nodes V s
1 ∪D1∪D̂1∪D1

2∪D2
2 and edges E1∪E2∪F1∪F2

with

V s
1 = {i` | i ∈ V1 and ` ∈ {1, 2, . . . , si}},

D̂1 = {ĵ | j ∈ D1},
Dk

2 = {jk | j ∈ D2} for k = 1, 2,

E1 = {{i`, j} | {i, j} ∈ E, ` ∈ {1, 2, . . . , si} and j ∈ D1},
E2 = {{i`, jk} | {i, j} ∈ E, ` ∈ {1, 2, . . . , si}, j ∈ D2 and k ∈ {1, 2}},
F1 = {{j, ĵ} | j ∈ D1}, and

F2 = {{j1, j2} | j ∈ D2}.

In the construction every node i ∈ V1 with supply si is split into si identical nodes with intended supply
value of 1. Furthermore, to every node j ∈ V2 with demand 1 we attach an edge with a dead end ĵ, and every
node j ∈ V2 with demand 2 is split into nodes j1 and j2 which are connected by an edge. Note that this is a
polynomial construction, because the supply, si, is at most 2|V2| for any i ∈ V1.

Lemma 1. Let X ⊆ R|E|+ × {0, 1}|V2| be the set of feasible solutions of a simple TPMC instance on a graph

G = (V1 ∪ V2, E) with supplies s ∈ N|V1| and demands d ∈ {1, 2}|V2|. Let the sets Dk and the auxiliary graph
G∗ be defined as above.

Then P := conv(X) is equal to the projection of the face of the matching polytope Pmatch(G∗) of G∗

Q := {y ∈ Pmatch(G∗) | y(δ(v)) = 1 for all v ∈ D1 ∪D1
2 ∪D2

2}

via the map π defined by x{i,j} =
∑si

`=1 y{i`,j} for {i, j} ∈ E and j ∈ D1, x{i,j} =
∑si

`=1(y{i`,j1}+ y{i`,j2}) for
{i, j} ∈ E and j ∈ D2, zj = y{j,ĵ} for j ∈ D1, and zj = y{j1,j2} for j ∈ D2.

Proof. We first show π(Q) ⊆ P . Let y be a vertex of Q and (x, z) = π(y) be the projection.
Clearly, for all i ∈ V1 we have x(δG(i)) =

∑si
`=1 y(δG∗(i`)) ≤ si, i.e., (x, z) satisfies (3). For every

node j ∈ D1 we have x(δG(j)) + zj = y(δG∗(j) \ {{j, ĵ}}) + y{j,ĵ} = y(δG∗(j)) = 1. Furthermore, for

every node j ∈ D2 we have x(δG(j)) + 2zj = y(δG∗(j1) \ {{j1, j2}}) + y(δG∗(j1) \ {{j1, j2}}) + 2y{j1,j2} =
y(δG∗(j1)) + y(δG∗(j2)) = 2. Hence, (x, z) satisfies (2) proving (x, z) ∈ conv(X) since z is binary.

We now show P ⊆ π(Q) for which it suffices to consider only integer points in P since both polytopes are
integral. Note that P is integral since for integral z the remaining system is totally unimodular with integral
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right-hand side. Let (x, z) ∈ P ∩ (Z|E|+ × {0, 1}|V2|) be an integral point in P . For j ∈ D1, let ej ∈ E be
the unique edge with x{i,j} > 0, and for j ∈ D2, let {ej , fj} be the set of edges incident to j with positive
x-value. Observe that if ej = fj holds, then xej = 2, and otherwise xej = xfj = 1.

Construct a matching M satisfying

M = {{j, ĵ} | j ∈ D1 with zj = 1} ∪ {{j1, j2} | j ∈ D2 with zj = 1} (7)

∪ {{i`, j} | j ∈ D1 and i ∈ ej with zj = 0} (8)

∪ {{i`, j1} | j ∈ D2 and i ∈ ej with zj = 0} (9)

∪ {{i`, j2} | j ∈ D2 and i ∈ fj with zj = 0} (10)

choosing ` in (8)–(10) such that every node i` ∈ V s
1 has at most one incident edge in M . This is possible

since for each i ∈ V1, G∗ has si identical copies i1, . . . , isi and M has to contain at most x(δG(i)) ≤ si edges
incident to one of the copies because x is integral.

We first prove that M is indeed a matching. A node j ∈ D1 is matched either to ĵ (if zj = 1) or by ej .
Similarly, either j1 and j2 are matched by the edge {j1, j2} (again if zj = 1) or by ej and fj , respectively.

The fact that M projects to (x, z) is easy to check by the construction of M according to (7)–(10). This
concludes the proof.

We now turn to the proof of Theorem 1. By definition of the projection map π in Lemma 1, the equation
z(V2) = k corresponds to the equation y(F1 ∪ F2) = k in Q, that is,

P ∩ {(x, z) ∈ R|E|+ × [0, 1]|V2| | z(V2) = k} = {π(y) | y ∈ Q with y(F1 ∪ F2) = k}

holds. Hence, in order to show that the former is integral (and since π projects integral vectors to integral
vectors), it suffices to prove the following claim:

Claim 1. Let X ⊆ R|E|+ × {0, 1}|V2| be the set of feasible solutions of a simple TPMC instance on a graph

G = (V1 ∪ V2, E) with supplies s ∈ N|V1| and demands d ∈ {1, 2}|V2|. Let the sets Dk and the auxiliary graph
G∗ be defined as above and let Q be as in Lemma 1.

Then {y ∈ Q | y(F1 ∪ F2) = k} is an integral polytope for any integer k ∈ Z+.

Proof. Let H = {y | y(F1 ∪ F2) = k} denote the intersecting hyperplane and assume, for the sake of
contradiction, that Q ∩ H is not integral. Then there must exist two adjacent (in Q) matchings M1 and
M2 defining an edge of Q that is intersected by H in its relative interior, i.e., |M1 ∩ (F1 ∪ F2)| < k and
|M2 ∩ (F1 ∪ F2)| > k.

By the adjacency characterization of the matching polytope [3], the symmetric difference C := M1∆M2

must be a connected component (a cycle or a path) in G∗ containing edges of M1 and M2 in an alternating
fashion.

We now verify that there must exist a path e-P -f in C of odd length consisting of two edges e, f ∈
C ∩ (F1 ∪ F2) and a subpath P in C \ (F1 ∪ F2): If for every choice of e, f ∈M2 ∩C ∩ (F1 ∪ F2) there exists
an edge belonging to M1 ∩ (F1 ∪ F2) in all subpath(s) e-P -f of C, then M2 can have at most one more edge
of F1 ∪ F2 than M1 in C. However since M2 contains at least two more edges of F1 ∪ F2 than M1 does, we
have that there exists a path e-P -f in C consisting of two edges e, f ∈M2 ∩ C ∩ (F1 ∪ F2) and a subpath P
in C \ (F1 ∪ F2). Now since e-P -f is subpath of C and e, f ∈M2, we have that P is of odd length.

Clearly, since we have P ∩ (F1 ∪F2) = ∅, all of P ’s edges must go between V s
1 and D1 ∪ (D1

2 ∪D2
2). Since

P also has odd length, one of its endpoints is in V s
1 . But no edge in F1 ∪ F2 is incident to any node in V s

1

which yields a contradiction.
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