

 ARL-TN-0699 ● SEP 2015

 US Army Research Laboratory

Hand Gesture Data Collection Procedure Using
a Myo Armband for Machine Learning

by Michael Lee and Nikhil Rao

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TN-0699 ● SEP 2015

 US Army Research Laboratory

Hand Gesture Data Collection Procedure Using
a Myo Armband for Machine Learning

by Michael Lee and Nikhil Rao
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

Sep 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Hand Gesture Data Collection Procedure Using a Myo Armband for Machine
Learning

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Michael Lee and Nikhil Rao
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CII-B
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TN-0699

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

In 2015, the Battlefield Information Processing Branch investigated using machine learning (ML) to identify military hand
gestures. A Naïve Bayes model was trained and created as an initial test. Naturally, the capability of the model relies on the
quality and quantity of the training data. Therefore, the data collection is an important and necessary step in building a ML
classifier. This report describes the procedure used to collect arm gesture movement data using a Myo armband. The source
code for this work is included as an Appendix.

15. SUBJECT TERMS

Myo, Machine Learning, Classifier, Data Collection

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

20

19a. NAME OF RESPONSIBLE PERSON

Michael Lee
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

(301) 394-5608
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. Myo Armband Setup 1

3. Myo Script Setup 2

4. Data Collection Procedure 5

5. Conclusion 8

Appendix. PrintArmMovements.lua 9

Distribution List 13

iv

List of Figures

Fig. 1 Myo armband ...1

Fig. 2 Myo icon in the Windows notification area ...2

Fig. 3 Position information printed from PrintArmMovements.lua script3

Fig. 4 Myo Application Manager ...3

Fig. 5 Add Connector window to select the PrintArmMovements.lua script ..4

Fig. 6 Print Arm Movement script added to the Myo Application Manager ...4

Fig. 7 Examples of military hand gestures used for the data collection5

Fig. 8 Myo Armband Manager indicating the Myo is connected6

Fig. 9 Debug Console window launched after the Print Arm Movements
script starts ...6

Fig. 10 The PrintArmMovements.lua script printing to the Debug Console
window ...7

1

1. Introduction

One area of focus in the Battlefield Information Processing Branch is in human and
information interaction, which addresses getting the right information to the right
people at the right time to achieve the right objective. This work is divided into 2
areas: 1) information access and 2) information-based collaboration and
negotiation. An example of work in the information access initiative is using
machine learning (ML) technology to model human gestures to exploit human
physiological information. One aspect of this study is collecting arm gesture data
from volunteers wearing an arm motion-tracking sensor to train a classifier (e.g.,
Naïve Bayes) capable of recognizing similar arm gestures. The data collection
procedure is described in the following sections.

2. Myo Armband Setup

The wearable sensor used for this data collection process is the Myo armband
(Fig. 1). The Myo armband is a commercially available Bluetooth device worn on
the forearm. It is capable of transmitting various positioning and pose information
to a target application. Myo detects 5 poses: fingers spread, wave in, wave out, fist,
and double tap. Positioning data (e.g., roll, pitch, yaw, and acceleration) are
accessed using an accompanying software development kit (SDK) from the Myo
manufacturer. Further details and specifications are available on the company
website: https://www.myo.com/techspecs.

Fig. 1 Myo armband

The initial step in setup for the Myo rum band data collection is to install the Myo
softwru·e on the computer that will be used for the data collection. The softwru·e
installation process is quick and straightforward. This softwru·e allows the user to
configure the Myo rum band, add custom scripts, add applications, create new
profiles, etc. In order to synchronize the Myo, follow the onscreen instructions to
verify the Myo is connected to the computer. If the software is installed con ectly,
a new Myo icon is added in the notification ru·ea (Fig. 2) .

Customize ...

Fig. 2 Myo icon in the Windows notification area

3. Myo Script Setup

There ru·e several ways to develop an application that communicates with the Myo
rum band. Myo supports development in multiple platfonns (e.g., Windows, iOS,
Android, etc.) and many languages (e.g. , Java, C++, C#, Lua, etc.). For the data
collection process, a custom Lua script was written to print the position inf01m ation

to the screen. This script is the critical piece to the data collection process because
it is the component that displays the volunteer 's movement data. Once the script
executes, it waits for the volunteer to perfonn a double-tap pose. At that point, the
script prints 10 sets of position infonnation per second until another double-tap
pose is detected to stop the script. Each set contains 16 comma-sepru·ated atu·ibutes:
ROLL, PITCH, YAW, xGyro/sec, yGyro/sec, zGyro/sec, xAccel_g, yAccel_g,
zAccel_g, xAccelWorld_g, yAccelWorld_g, zAccelWorld_g, X-Direction,
xOrientation World, yOrientation World, and zOrientation World. An exrunple of a
prutial script printout is displayed in Fig. 3. For convenience, the Lua script
(PrintAimMovements.lua) is appended at the end of this rep01t in the Appendix.

2

ROLL, PITCH, YAW, xGyro/sec, yGyro/ sec, zGyro/sec, xAccel_g,yAccel_g,zAccel_g,xAccelWorld_g,yAccelW•
1 . 2180560511153, -1 . 2717251777619,2 . 5171097728729,3 . 75,-2 . 5 , -0 . 25,0 . 96181375, -0 . 2705078125,0 . 1•

1 . 2378561196735, -1 . 2762925621817,2 . 55352592 1682 6,2 . 0625,-1 . 6875, -0 . 9375,1 . 16357121875,-0 . 3066·

1 . 1123713963212 , -1 . 270906329155, 2 . 6132280510166, 1 . 9375, - 1. 125, -0 . 5 , 0 . 8981 375,-0 . 29150390625 , 0

1 . 113767952 919,-1 . 2699771503708, 2 . 6111681175232 , 0 . 9375, 2 . 25 , 0 . 25,1 . 01116015625,-0 . 28173828125

1 . 1131811111968, -1 .2732555866211,2 . 6611819177081,2 . 3125,-1 . 125,-0 . 12 5,0 . 96923828125,-0 . 2 65136"

1 . 1166722188103, -1 .2762250900269,2 . 629617731781, 1 . 5625, -1 . 875, 0 . 1875, 0 . 9 677731375, -0 . 271972 65•

1 . 1717113873672 , -1 .279702 12 50031,2 . 5972815551352, 2. 9375,-3 . 25 , -0 . 9375,0 . 966796875, -0 . 27731375

1 . 2052552700013, -1 .2858585119217, 2. 5573663711518,5 . 0625,-1 . 6875, - 2.25,0 . 951171875, -0 . 29052731:

1 . 2163300228119, -1 .2859728336331, 2. 5067818161825, 6. 125, -5 . 1875,0 . 75, 0 . 955078125, -0 . 3166796875

1 . 286708351 95, -1 .2608993053136,2 .1 511990756 989, - 9 . 1875, -8 . 375, 19,0 . 9125 9765625,-0 . 1101296875,

1 . 3320822 715759,-1 . 0138015519393, 2.1010050 2 96783, - 12. 5 625 ,35 . 875 ,185 . 875, 1 . 173828125, - 1 .217551

New Pose Dececced : f isc
1 . 2 1 12264347076,-0 .4182132901859 3,2 . 3900108337102 , 96 . 3125 ,113 . 3125 ,385 . 8 7 5,1 . 3681610625 , - 1 . 82:

1 . 038885116 5771, 0 . 2331677 7260303,2 . 31182 62290955 ,110 . 6875 ,125, 350 . 6875 , 0 . 54 1015625 , - 0 . 8969726.

0 . 76 50037 1078751,0 . 779929 10116713, 2 . 1202063560186, 65 . 5 625 ,82 . 062 5 , 208,0 . 02 4 9023437 5, - 0 . 33 9813"

0 . 1765018623085, 1 . 0 551 11 4382177, 1 . 8 5 9597 6829529 , 15.5625 , 72 . 125 ,111 , - 0 . 3 31 9609375 , - 0 . 15129 6875

Fig.3 Position information printed from PrintArm1\fovements lua sc1ipt

The Lua script must be registered in the Myo Application Manager before it can be
lalmched. The following instructions describe this process:

1) Locate the Myo script on the computer or copy and paste the Myo script
from this document to a text file named "PrintA.nnMovements.lua".

2) Launch the Application Manager by right-clicking on the Myo icon and

selecting Application Manager. The Application Manager displays a list of
other Lua scripts cunently installed on the computer. Press the "+ Add"
button in the Application Manager to launch the Add Connector window

(Fig. 4).

0 Application Manager - Cl

...

Presentation Mode Keyboard Mapper

Of*1

Adobe Reader Connector
:4 t< Oero • won E> 10 c o u

ITunes Connector
:4 II>: Ot11t • w 1n E

C O C)

Fig. 4 Myo Application Manager

3

3) In the Add C01mector window, navigate to the location of the
PrintArmMovements.lua script. Select the Print.AnnMovements.lua script
(Fig. 5) and click the "Open" button .

•
® ... t

Add Connector

« IE1 • 201 50415 • Myo ... v C:, S~arch20150415·MyoArmb ... p

Organize .,. New folder

Nam~ Oat~ modified Typ~ Siz~

Nikhil Rioo 9/ 2/2015 3:16PM file folder

• LJ ControiMP3Piayer.lua 4/ 27/ 201510:49... LUA File 5 KB

4/ 23/2015 3:24PM LUA File 19 KB

5/ 12/2015 2:39PM LUA File 7 KB

Fi l~ name: PrintArmMov~m~nts.lua v [Myo Conn~ctors (".lua •.myo) v

Open

F ig. 5 Add Connector window to select the Pr intArmMovements.lua scrip t

4) The PrintAnnMovements.lua script is now registered with the Myo
Application Manager and ready for use. The new script titled "Print Ann
Movements" is now included in the list (Fig. 6). The toggle switch on the
right indicates whether the script is cunently nmning (indicated by the color
green) or not nmning (indicated by the color gray). Switch the toggle to
disable the script lmtil it is needed.

• Application Manager - Cl

...
....

.. ... a
Presentation Mode Keyboard Mapper

(J Open

• Adobe Reader Connector - 0 u Details · View in Explorer -
I' Print Arm Movements - 0

View in Explorer - "

Fig. 6 Piint Arm Movement script added to the Myo Application Manager

4

5

4. Data Collection Procedure

At this point, the testing environment is ready and the data collection administrator
can begin instructing the volunteer subject. The volunteer will perform the steps in
this section of the report 10 times for each of the 8 hand gestures (Fig. 7): freeze,
rally point, hurry up, down, come, stop, line abreast formation, and vehicle. At the
conclusion of the data collection session, there should be 80 data samples collected
from each subject. The remainder of this section assumes that the subject is tasked
to perform a rally point gesture, but the instructions are applicable for any of the
other 7 gestures.

Fig. 7 Examples of military hand gestures used for the data collection

The data collection administrator will execute the following procedure:

1) Review each of the 8 hand gestures with the volunteer. For this data
collection, the volunteer will be asked to stand while performing the
gestures and exclusively use the right arm. Each gesture will start with the
right palm resting on the right side of the body. Verify that the volunteer
performs each hand gesture correctly.

2) Provide the Myo armband to the volunteer. The armband should be worn
on the right arm with the universal serial bus (USB) outlet pointing toward
the wrist. Position the Myo so that the blue glowing logo faces upward along
the forearm. Ask the volunteer to perform the synchronize motion and wait
until the Myo is warmed up. Verify that the Myo Armband Manager
indicates the Myo is currently connected (Fig. 8) before continuing to the
next step.

• Myo Armband Manager

•

Mikes Myo
• p~ .AJI:'i'

STATUS DETAILS CALIBRATION

(e Connected I Primary } Disconnect J

Ping Myo Ping

Turn MyoOff Turn Off

P ug Myo in to tum it back on

+ - Firmware V~rs·on 1.5 1931

3)

Fig. 8 Myo Armband Manager indicating the Myo is connected

4) Lallllch the Myo Application Manager and strut the "Print Aim Movement"
script by toggling the switch from gray to green. As soon as the script is
activated and 1lllllling, a new window titled "Debug Console" is lmmched
automatically (Fig. 9). The PrintAimMovements.lua script uses the Debug
Console window as a conduit to print the rum movement data. Click on the
Debug Console window to give focus. It is critical that the Debug Console
window maintain focus during the data collection, othe1w ise the
PrintAimMovements.lua script will stop printing the movement data.

• Debug Console - CJ

Clear

onForegroundWindowChange(app, title} - Found lAoflat I wanted. Returning True.

Fig. 9 Debug Console window launched after the Print Arm Movements sc1·ipt sta11s

6

7

5) Maximize the Debug Console window by clicking on the Maximize button
near the top right corner of the window. This step is important, because the
Debug Console does not provide a way to buffer text scrolling in its
window. In other words, if any text scrolls pass the top of the window, it
cannot be retrieved. For this reason, the largest possible window real estate
is needed to capture the arm movement data (printing at a rate of 10 lines
per second).

6) Instruct the volunteer to form to the starting position (i.e., standing with
right palm resting on right thigh), and perform a double-tap pose by double-
tapping the right middle finger and thumb together when ready. The
PrintArmMovements.lua script will detect a double-tap pose was performed
and immediately begin to print the movement data to the Debug Console
window (Fig. 10).

Fig. 10 The PrintArmMovements lua script printing to the Debug Console window

7) Instruct the volunteer to perform a rally point gesture. Once the gesture is
complete, keep and hold the hand in its final position. Even though the
gesture is complete and the arm is not moving, the script is still running and
will continue to print the data to the Debug Console window.

8) When the scrolling arm movement data approaches the bottom of the Debug
Console window, instruct the volunteer to perform another double-tap pose
by double-taping the right middle finger and thumb together. The
PrintArmMovements.lua script will detect the double-tap pose and
immediately exit.

8

9) Copy the rally point movement data from the Debug Console window to a
plain text file assigned to this volunteer. Be sure to document the
information about this data instance (e.g., hand gesture performed, date,
time, etc.) in the file. This text file is merely a temporary placeholder for
the data and it will be formatted during the data processing stage. Continue
to append all arm gesture data from this volunteer into this file. The first
instance of the rally point gesture data capture is now complete.

10) Instruct the volunteer to perform the second instance of the rally point arm
gesture and repeat steps 5 through 8.

5. Conclusion

This report described the steps the Battlefield Information Processing Branch used
to collect arm gesture data using the Myo armband. The data collection is the first
step in training and building a ML classifier. Subsequent steps involve formatting
the data and importing it into a ML library (e.g., Weka). The data processing and
model creation procedure is out of the scope of this report and is not described here.
Once a ML classifier is built, it will be able to evaluate the arm gesture data and
identify the performed gesture. The accuracy of the gesture identification will vary
depending on an array of factors. There are many types of classifiers and several
ways to generate the classifier. For example, depending on the purpose, a Naïve
Bayes classifier can be implemented using data from a single person to achieve
high accuracy, or it can be implemented using data from many people to build a
model that applies to a wider domain. As an experiment, the Battlefield Information
Processing Branch created a simple Naïve Bayes classifier using arm movement
data from 1 person, and it demonstrated 70% accuracy from that person. Future
plans for this work are to analyze multiple permutations of training the model and
study the performance and accuracy of the models.

9

Appendix. PrintArmMovements.lua

10

scriptId = 'mil.army.arl.20150427'
scriptTitle = "Print Arm Movements"
scriptDetailsUrl = ""

programInFocusNow Name = ""
programInFocusNow Title = ""

isPrintMovements = false
timeLastPrinted = 0

-- When user unlocks the Myo via double-tap, keep it unlocked and
start printing the movement info.
-- Stop printing the movements and re-engage the lock when the
user double-taps again.
-- Update: 05/12/2015 - Print the pose done by the user (via
onPoseEdge call-back method) while the onPeriodic() function is
printing data.
-- This was added to further help identify the
hand gesture, because the position data alone was not enough.

function onForegroundWindowChange(app, title)
 programInFocusNow_Name = app
 programInFocusNow Title = title

 if (platform == "Windows" and app == "Myo Connect.exe")
then
 myo.debug("onForegroundWindowChange(app, title) -
Found. Returning True.")
 return true
 else
 return false
 end
end

function onUnlock()
 if (isPrintMovements == false) then
 end

 myo.debug("Myo is unlocked. Begin printing movements.")
 myo.debug("--------------------- START PRINTING MOVEMENTS -
------------------------------------")
 myo.debug("ROLL" .. "," .. "PITCH"
 .. "," .. "YAW" .. "," ..
 "xGyro/sec,yGyro/sec,zGyro/sec" .. "," ..
 "xAccel g,yAccel g,zAccel g" .. "," ..
 "xAccelWorld g,yAccelWorld g,zAccelWorld g" .. ","
 .. "X-Direction" .. "," ..
 "xOrientationWorld,yOrientationWorld,zOrientationWorld")
 isPrintMovements = true
 myo.unlock("hold")
end

function onPoseEdge(pose, edge)
 pose = conditionallySwapWave(pose)

11

 if (edge == "on" and pose ~= "rest" and pose ~= "unknown")
then
 myo.debug("New Pose Detected: " .. pose)
 end

 if (pose == "doubleTap" and edge == "on") then
 -- Double-Tap stops printing the Myo movements.
 if (isPrintMovements == true) then -- Myo was
unlocked and was printing movements. Return locking
 myo.unlock("timed") -- Lock Myo in ~1
second
 myo.debug("Double-tap detected. Stop printing
movements.")
 myo.debug("--------------------- STOP PRINTING
MOVEMENTS -------------------------------------")
 isPrintMovements = false
 end
 end
end

function onPeriodic()
 local isDesiredPeriodPassed_Print = false
 local msBetweenPrints = 100 -- 100ms = 10
prints per second.
 local now = myo.getTimeMilliseconds()
 if (now - timeLastPrinted) > msBetweenPrints then
 isDesiredPeriodPassed Print = true -- It has
been longer than the period we set. So it's okay to print.
 else
 isDesiredPeriodPassed Print = false -- Enough
time hasn't passed. Wait longer before we print.
 end

 xGyro,yGyro,zGyro = myo.getGyro()
 local printGyro = xGyro .. "," .. yGyro .. "," .. zGyro
 xAccel,yAccel,zAccel = myo.getAccel()
 local printAccel = xAccel .. "," .. yAccel .. "," .. zAccel
 xAccelWorld,yAccelWorld,zAccelWorld = myo.getAccelWorld()
 local printAccelWorld = xAccelWorld .. "," .. yAccelWorld
.. "," .. zAccelWorld
 xOrientationWorld,yOrientationWorld,zOrientationWorld =
myo.getOrientationWorld()
 local printOrientationWorld = xOrientationWorld .. "," ..
yOrientationWorld .. "," .. zOrientationWorld

 if isPrintMovements == true and isDesiredPeriodPassed_Print
== true then
 myo.debug(myo.getRoll() .. "," ..
 myo.getPitch() .. "," .. myo.getYaw() ..
 "," .. printGyro ..
 "," .. printAccel ..
 "," .. printAccelWorld
 .. "," .. myo.getXDirection() .. ","
 .. printOrientationWorld)

 timeLastPrinted = myo.getTimeMilliseconds()
 end

12

end

function activeAppName()
 return programInFocusNow Title
end

function conditionallySwapWave(pose)
 if myo.getArm() == "left" then
 if pose == "waveIn" then
 pose = "waveOut"
 elseif pose == "waveOut" then
 pose = "waveIn"
 end
 end
 return pose
end

13

 1 DEFENSE TECH INFO CTR
 (PDF) ATTN DTIC OCA

 2 US ARMY RSRCH LAB
 (PDF) ATTN IMAL HRA MAIL & RECORDS MGMT
 ATTN RDRL CIO LL TECHL LIB

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 4 US ARMY RSRCH LAB
 (PDF) RDRL CII B
 M LEE
 ROBERT P WINKLER

 LAUREL C SADLER
 RDRL-CII
 DEBORAH A WELSH

14

INTENTIONALLY LEFT BLANK.

